eprintid: 14560 rev_number: 9 eprint_status: archive userid: 353 dir: disk0/00/01/45/60 datestamp: 2017-05-04 08:28:44 lastmod: 2021-08-27 17:28:53 status_changed: 2017-05-04 08:28:44 type: article metadata_visibility: show item_issues_count: 1 creators_name: Nurmi, T. creators_name: Parvinen, K. creators_name: Selonen, V. creators_id: 7727 creators_orcid: 0000-0001-9125-6041 title: The evolution of site-selection strategy during dispersal ispublished: pub divisions: prog_eep keywords: Mathematical models; Habitat selection; Adaptive dynamics; Territory prospecting; Settlement abstract: We propose a mathematical model that enables the evolutionary analysis of site-selection process of dispersing individuals that encounter sites of high or low quality. Since each site can be inhabited by at most one individual, all dispersers are not able to obtain a high-quality site. We study the evolutionary dynamics of the low-quality-site acceptance as a function of the time during the dispersal season using adaptive dynamics. We show that environmental changes affect the evolutionary dynamics in two ways: directly and indirectly via density-dependent factors. Direct evolutionary effects usually follow intuition, whereas indirect effects are often counter-intuitive and hence difficult to predict without mechanistic modeling. Therefore, the mechanistic derivation of the fitness function, with careful attention on density- and frequency dependence, is essential for predicting the consequences of environmental changes to site selection. For example, increasing fecundity in high-quality sites makes them more tempting for dispersers and hence the direct effect of this ecological change delays the acceptance of low-quality sites. However, increasing fecundity in high-quality sites also increases the population size, which makes the competition for sites more severe and thus, as an indirect effect, forces evolution to favor less picky individuals. Our results indicate that the indirect effects often dominate the intuitive effects, which emphasizes the need for mechanistic models of the immigration process. date: 2017-07 date_type: published publisher: Elsevier id_number: 10.1016/j.jtbi.2017.05.002 creators_browse_id: 2852 full_text_status: none publication: Journal of Theoretical Biology volume: 425 pagerange: 11-22 refereed: TRUE issn: 1095-8541 coversheets_dirty: FALSE fp7_project: no fp7_type: info:eu-repo/semantics/article citation: Nurmi, T., Parvinen, K. ORCID: https://orcid.org/0000-0001-9125-6041 , & Selonen, V. (2017). The evolution of site-selection strategy during dispersal. Journal of Theoretical Biology 425 11-22. 10.1016/j.jtbi.2017.05.002 .