eprintid: 4089 rev_number: 22 eprint_status: archive userid: 351 dir: disk0/00/00/40/89 datestamp: 2016-01-15 02:04:03 lastmod: 2021-08-27 17:14:45 status_changed: 2016-01-15 02:04:03 type: monograph metadata_visibility: show item_issues_count: 4 creators_name: Rosa, C.H. creators_name: Ruszczynski, A. creators_id: 1545 creators_id: 1475 title: On Augmented Lagrangian Decomposition Methods for Multistage Stochastic Programs ispublished: pub internal_subjects: iis_cmp internal_subjects: iis_met internal_subjects: iis_sys divisions: prog_opt abstract: A general decomposition framework for large convex optimization problems based on augmented Lagrangians is described. The approach is then applied to multistage stochastic programming problems in two different ways: by decomposing the problem into scenarios and by decomposing it into nodes corresponding to stages. Theoretical convergence properties of the two approaches are derived and a computational illustration is presented. date: 1994-12 date_type: published publisher: WP-94-125 iiasapubid: WP-94-125 price: 10 creators_browse_id: 1541 creators_browse_id: 1544 full_text_status: public monograph_type: working_paper place_of_pub: IIASA, Laxenburg, Austria pages: 23 coversheets_dirty: FALSE fp7_type: info:eu-repo/semantics/book citation: Rosa, C.H. & Ruszczynski, A. (1994). On Augmented Lagrangian Decomposition Methods for Multistage Stochastic Programs. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-94-125 document_url: https://pure.iiasa.ac.at/id/eprint/4089/1/WP-94-125.pdf