relation: https://pure.iiasa.ac.at/id/eprint/4589/ title: On the Glivenko-Cantelli Problem in Stochastic Programming: Linear Recourse creator: Pflug, G.C. creator: Ruszczynski, A. creator: Schultz, R. description: Integrals of optimal values of random linear programming problems depending on a finite dimensional parameter are approximated by using empirical distributions instead of the original measure. Uniform convergence of the approximations is proved under fairly broad conditions allowing non-convex or discontinuous dependence on the parameter value and random size of the linear programming problem. publisher: WP-95-003 date: 1995-01 type: Monograph type: NonPeerReviewed format: text language: en identifier: https://pure.iiasa.ac.at/id/eprint/4589/1/WP-95-003.pdf identifier: Pflug, G.C. ORCID: https://orcid.org/0000-0001-8215-3550 , Ruszczynski, A. , & Schultz, R. (1995). On the Glivenko-Cantelli Problem in Stochastic Programming: Linear Recourse. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-95-003