TY - RPRT CY - IIASA, Laxenburg, Austria ID - iiasa4589 UR - https://pure.iiasa.ac.at/id/eprint/4589/ A1 - Pflug, G.C. A1 - Ruszczynski, A. A1 - Schultz, R. Y1 - 1995/01// N2 - Integrals of optimal values of random linear programming problems depending on a finite dimensional parameter are approximated by using empirical distributions instead of the original measure. Uniform convergence of the approximations is proved under fairly broad conditions allowing non-convex or discontinuous dependence on the parameter value and random size of the linear programming problem. PB - WP-95-003 M1 - working_paper TI - On the Glivenko-Cantelli Problem in Stochastic Programming: Linear Recourse AV - public EP - 18 ER -