eprintid: 4589 rev_number: 23 eprint_status: archive userid: 351 dir: disk0/00/00/45/89 datestamp: 2016-01-15 02:06:32 lastmod: 2021-08-27 17:15:24 status_changed: 2016-01-15 02:06:32 type: monograph metadata_visibility: show item_issues_count: 2 creators_name: Pflug, G.C. creators_name: Ruszczynski, A. creators_name: Schultz, R. creators_id: 1361 creators_id: 1475 creators_orcid: 0000-0001-8215-3550 title: On the Glivenko-Cantelli Problem in Stochastic Programming: Linear Recourse ispublished: pub internal_subjects: iis_cmp internal_subjects: iis_met internal_subjects: iis_sys divisions: prog_opt abstract: Integrals of optimal values of random linear programming problems depending on a finite dimensional parameter are approximated by using empirical distributions instead of the original measure. Uniform convergence of the approximations is proved under fairly broad conditions allowing non-convex or discontinuous dependence on the parameter value and random size of the linear programming problem. date: 1995-01 date_type: published publisher: WP-95-003 iiasapubid: WP-95-003 price: 10 creators_browse_id: 229 creators_browse_id: 1544 full_text_status: public monograph_type: working_paper place_of_pub: IIASA, Laxenburg, Austria pages: 18 coversheets_dirty: FALSE fp7_type: info:eu-repo/semantics/book citation: Pflug, G.C. ORCID: https://orcid.org/0000-0001-8215-3550 , Ruszczynski, A. , & Schultz, R. (1995). On the Glivenko-Cantelli Problem in Stochastic Programming: Linear Recourse. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-95-003 document_url: https://pure.iiasa.ac.at/id/eprint/4589/1/WP-95-003.pdf