?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rft.relation=https%3A%2F%2Fpure.iiasa.ac.at%2Fid%2Feprint%2F4985%2F&rft.title=Linear+Convergence+of+Epsilon-Subgradient+Descent+Methods+for+a+Class+of+Convex+Functions&rft.creator=Robinson%2C+S.M.&rft.description=This+paper+establishes+a+linear+convergence+rate+for+a+class+of+epsilon-subgradient+descent+methods+for+minimizing+certain+convex+functions.++Currently+prominent+methods+belonging+to+this+class+include+the+resolvent+(proximal+point)+method+and+the+bundle+method+in+proximal+form+(considered+as+a+sequence+of+serious+steps).+Other+methods%2C+such+as+the+recently+proposed+descent+proximal+level+method%2C+may+also+fit+this+framework+depending+on+implementation.+The+convex+functions+covered+by+the+analysis+are+those+whose+conjugates+have+subdifferentials+that+are+locally+upper+Lipschitzian+at+the+origin%2C+a+class+introduced+by+Zhang+and+Treiman.+We+argue+that+this+class+is+a+natural+candidate+for+study+in+connection+with+minimization+algorithms.&rft.publisher=WP-96-041&rft.date=1996-04&rft.type=Monograph&rft.type=NonPeerReviewed&rft.format=text&rft.language=en&rft.identifier=https%3A%2F%2Fpure.iiasa.ac.at%2Fid%2Feprint%2F4985%2F1%2FWP-96-041.pdf&rft.identifier=++Robinson%2C+S.M.++(1996).++Linear+Convergence+of+Epsilon-Subgradient+Descent+Methods+for+a+Class+of+Convex+Functions.+++IIASA+Working+Paper.+IIASA%2C+Laxenburg%2C+Austria%3A+WP-96-041+++++