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Abstract

The aim of this paper is to provide an overview of existing concepts of robustness and
to identify promising directions for coping with uncertainty and risks of global changes�
Unlike statistical robustness� general decision problems may have rather di�erent facets
of robustness� In particular� a key issue is the sensitivity with respect to low�probability
catastrophic events� That is� robust decisions in the presence of catastrophic events are
fundamentally di�erent from decisions ignoring them� Speci�cally� proper treatment of
extreme catastrophic events requires new sets of feasible decisions� adjusted to risk per�
formance indicators� and new spatial� social and temporal dimensions� The discussion is
deliberately kept at a level comprehensible to a broad audience through the use of simple
examples that can be extended to rather general models� In fact� these examples often
illustrate fragments of models that are being developed at IIASA�
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Global Changes� Facets of Robust Decisions

Y� Ermoliev and L� Hordijk

� Introduction

An alarming global tendency is the increasing vulnerability of our society� A thorough
scienti�c policy analysis of related socio�economic� technological and environmental global
change processes raises new methodological problems that challenge traditional approaches
and demonstrate the need for new methodological developments� A key issue is the vast
variety of inherent� practically irreducible uncertainties and �unknown� risks that may
suddenly a�ect large territories and communities ���� �	
�� ��
�� Traditional approaches
usually rely on real observations and experiments� Yet� there are no adequate observations
for new problems� responses of involved processes may have long term delays� and learning�
by�doing experiments may be very expensive� dangerous� or simply impossible�

Large�scale catastrophic impacts and the magnitudes of the uncertainties that surround
them particularly dominate the climate�change policy debates ���� ���� ����� �

�� �
��� �
���
����� The exact evaluation of overall global climate changes and vulnerability requires not
only a prediction of the climate system� but also an evaluation of endogenous socioeco�
nomic� technological� and environmental processes and risks� The main issue is the lack
of historical data on potential irreversible changes occurring on large spatial� temporal�
and social scales� The inertia of the overall climate change system and the possibility of
abrupt catastrophic changes ��� restricts purely adaptive wait�and�see approaches� More�
over� extreme events of heavy consequences playing such a decisive role are� on average�
evaluated as improbable events during a human lifetime�

Unfortunately� the evaluation of complex heterogeneous global�change processes on
�average� can be dramatically misleading� A �

�year disaster �e�g�� an extreme �ood
that occurs on average once in �

 years� may� in fact� occur next year� However� it is
impossible to research all the details connected with such an occurrence in order to achieve
evaluations required by the traditional models in economics� insurance� risk�management�
and extreme value theory� For example� standard insurance theory essentially relies on
the assumption of independent� frequent� low�consequence �conventional� risks� such as
car accidents� for which decisions on premiums� claims estimates and the likelihood of
insolvency can be calculated via rich historical data� Existing extremal value theory �		�
also deals primarily with independent variables quanti�able by a single number �e�g��
money�� Catastrophes are de�nitely not quanti�able events in this sense� They have
di�erent patterns� spatial and temporal dimensions and induce heterogeneity of losses and
gains which exclude the use of average characteristics� Globally� an average resident may
even bene�t from some climate�change scenarios� while some regions may be simply wiped
out�

Under inherent uncertainty and heterogeneity of global processes the role of global
change models rests on the ability to guide comparative analysis of the feasible decisions�
Although exact evaluations are impossible� the preference structure among decisions can
be a stable basis for a relative ranking of alternatives in order to design robust policies�

	



As we know� �nding out which of two parcels is the heavier without having the exact
measurements is easier than saying how much heavier that parcel is�

Sections � and 
 analyze the known concepts of robustness in statistics� deterministic
control theory and classical optimization� Global change decision problems call for new
approaches� Sections 
 and � show that� contrary to the standard expected utility max�
imization� stochastic optimization �STO� models allow in a natural manner to represent
di�erent endogenous uncertainties and risks� spatial and temporal dependencies� equity
constraints and abrupt changes� The ability of STO models to incorporate both anticipa�
tive ex�ante and adaptive ex� post decisions induces risk aversion among ex�ante decisions
that implicitly depends on input data and goals and that practically cannot be charac�
terized by an exogenous utility function� In particular� even in the simplest linear model
�Example ��� the co�existence of ex�ante and ex�post decisions induces VaR and CVaR
type risk measures� Section � also indicates the misleading character of average char�
acteristics� e�g�� hazard maps� which are often used in the analysis of spatial exposures
and vulnerability� This emphasizes the importance of stochastic models� distributional
aspects� and the use of quantiles instead of average values� Unfortunately� the straight�
forward application of quantiles destroy additivity and concavity �convexity� of models
and it makes the applicability of standard decomposition schemes problematic �Example
��� Section � introduces concepts of STO robustness� In particular� it shows that models
with quantiles can be equivalently substituted by speci�c STO models preserving con�
cavity �convexity�� Section � emphasizes the role played by downscaling and catastrophe
modeling to properly represent spatial and temporal distributions and vulnerability� Sec�
tion � outlines the main ideas behind STO methods� especially� fast adaptive Monte Carlo
optimization procedures which can be incorporated into catastrophe models and vulner�
ability analysis in order to evaluate robust strategies� Section � discusses the sensitivity
of robust strategies with respect to extreme events� It introduces the concept of a stop�
ping time which allows for direct evaluations towards the most distractive extreme events
�random scenarios�� Combined with the catastrophe modeling� this concept opens up new
approaches to spatio�temporal discounting in the presence of extreme events� Section �
provides concluding remarks�

� Concepts of robustness�

��� Statistical robustness�

The term �robust� was introduced into statistics in 	��
 by Box and acquired recog�
nition only after the publication of a path�breaking paper by Huber ���� in 	���� As
Huber admits� researchers had long been concerned with the sensitivity of standard esti�
mation procedures to �bad� observations �outliers�� and the word �robust� was loaded with
many� sometimes inconsistent connotations� frequently for the simple reason of confering
respectability on it� According to Huber ������ pp� �� ��� ���� any statistical procedure ���
should be robust in the sense that small deviations from the model assumptions should
impair the performance only slightly ���� This concept of robustness� in fact� corresponds
to standard mathematical ideas of continuity� when disturbances become small� the per�
formance of the perturbed and initial models also deviate slightly�

��� Bayesian robustness�

The concept of robustness was also introduced into Bayesian statistics ���� primarily be�
cause of the insensitivity of statistical decisions to the uncertainty of prior probability
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distribution� A Bayesian sampling model P is often parameterized by a vector � of un�
known parameters� Let � be the observable random variables from P with true unknown
parameters � � �� that have to be recovered from observations of �� In contrast to clas�
sical statistical models� it is assumed that there is a prior �probability� distribution ����
characterizing the degree of beliefs about true vector ��� which in the presence of new
information is updated by the Bayesian rule� In this case a statistical decision �estimate�
about the true parameter �� can be characterized by an expected distance �loss function�
EL�x� �� �

R
L�x� ����d�� from x to admissible �� The e�ciency of x is calculated by the

posterior expected distance

E�L�x� �j�� �
Z
L�x� ����d�j��� ��d�j�� � P ��j����d��R

P ��j����d�� � �	�

where � is a given sample of data from P ��j���� Bayesian robustness is characterized by
the range of posterior expected distance� as the prior ���� varies over the elicited class P �
An alternative approach is to choose a hyper�prior on the class of P and the standard
Bayesian model�

��� Non�Bayesian minimax robustness�

A probabilistic minimax robustness ���� consists of choosing x with respect to a worst�case
distribution� minimize max��P

R
d�x� ����d�j��� This type of minimax ranking of x does

not correspond to the Bayesian ranking w�r�t� a single distribution in P � The worst�case
distribution � � P depends on x and �� i�e�� it is a random endogenous distribution�

��� Deterministic control theory�

As statistical robustness is similar to the local stability of dynamic systems� the robustness
in deterministic control theory ���� was introduced as an additional requirement on the
stability of optimal trajectories� In other words� additional constraints were introduced in
the form of a stability criterion�

��� Robust deterministic optimization�

Optimization theory provides tools for analyzing and solving various decision making
problems� A standard deterministic problem is formulated as the maximization �mini�
mization� of a function f��x� �� subject to constraints fi�x� �� � 
� i � 
� 	� ����m� where
x � �x�� ���� xn� is a vector of decisions and � are �xed variables characterizing the structure
of the model� including the input data� Functions fi�x� ��� i � 
� 	� ����m� are assumed to be
exactly known and analytically tractable� and � belongs to an explicitly given set � of ad�
missible scenarios� � � �� Robustness is de�ned ��� as the maximization of min��� f��x� ��
over solutions x that satisfy all admissible values of uncertainty fi�x� �� � 
� i � 	� ���� m�
� � �� The set � is often characterized by a �nite number of scenarios or simple sets such
as intervals or ellipsoidal uncertainty � �

�
�l �

P
k 	lk�k �

P
k �

�
k � 	

�
� These sets� in a

sense� attempt to substitute for normal probability distributions in a simple but inconsis�
tent with statistical analysis manner� which can be misleading �Section ��� It is clear that
this type of deterministic worst�case robustness leads to extremely conservative decisions�






� Decision problems under uncertainty�

Statistical decision theory deals with situations in which the model of uncertainty and
the optimal solution are de�ned by a sampling model with an unknown vector of �true
parameters� ��� Vector �� de�nes the desirable optimal solution� its performance can
be observed from the sampling model and the problem is to recover �� from these data�
Potential estimates of �� de�ne feasible solutions x of the statistical decision problem� It is
essential that x does not a�ect the sampling model so that the optimality and robustness
of solutions can be evaluated by posterior distance �	��

The general problems of decision making under uncertainty deal with fundamentally
di�erent situations� The model of uncertainty� feasible solutions� and performance of the
optimal solution are not given and all of these have to be characterized from the context
of the decision making situation� e�g�� socio�economic� technological� environmental� and
risk considerations� As there is no information on true optimal performance� robustness
cannot be also characterized by a distance from observable true optimal performance�
Therefore� the general decision problems� as the following Sections illustrate� may have
rather di�erent facets of robustness�

��� Expected utility maximization�

Standard policy analysis� as a rule� uses a utility �disutility� maximization �minimization�
model for the evaluation of desirable decisions� In the presence of uncertainty� any related
decision x results in multiple outcomes characterized by functions g��x� ��� ���� gK�x� ��
such as costs� bene�ts� damages� and risks� as well as indicators of fairness� equity� and en�
vironmental impacts� They depend on x� x � Rn and uncertainty from a set of admissible
scenarios �� � � ��

A given decision x for di�erent scenarios � may have rather contradictory outcomes� In
	�
� the mathematician Daniel Bernoulli introduced the concept of expected utility max�
imization as a rule for choosing decisions under multiple outcomes� It is assumed that all
outcomes g��x� ��� ���� gK�x� �� can be summarized in a single index of preferability q�x� ���
say� a monetary payo�� The standard expected utility model suggests that the choice of de�
cision xmaximizing an expected utility function U�x� � Eu�q�x� ��� �

R
u�q�x� ���P �d���

where u��� is a utility associated with an aggregate outcome q�x� ��� The shape of u de�
�nes attitudes to risks� This model presupposes that� in addition to the knowledge of ��
one can rank the alternative scenarios � according to weights � objective or subjective
probability measure P � The use of a probability measure as a degree of belief was formal�
ized by Ramsey �	����� Savage �	���� published a thorough treatment of expected utility
maximization based on subjective probability as a degree of belief �see discussion in ��
���
As a result of this work the use of probability measure became a standard approach for
modeling uncertainty by using �hard� observations and soft public and expert opinions in
a consistent way within a single model�

��� Stochastic optimization �STO	 model�

The shortcomings of the expected utility maximization model are well known� Generally
speaking� it is practically impossible to �nd a utility function that enables the aggre�
gation of various attributes in one preferability index� including attitudes to di�erent
risks� the distributional aspects of gains and losses� the rights of future generations� and
responsibilities for environmental protection� It is natural that� for complex problems�
nonsubstitutable indicators should exist that have to be controlled separately in the same
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way as indicators of� say� health �e�g�� temperature and blood pressure�� Moreover� it is
often practically impossible to identify exactly subjective �and objective� probability as a
degree of beliefs� Most people cannot clearly distinguish ���� between probability ranging
roughly from 
�
 to 
��� Decision analysis often has to rely ��� on imprecise statements�
for example� that event e� is more probable than event e�� or that the probability p��
p� of event e� or of event e� is greater than �
 percent and less than �
 percent� These
statements may be represented by inequalities such as p� � p�� 
�� � p� � p� � 
��� A
number of models with imprecise probabilities have been suggested �see� e�g�� ��
�� and
these models were later integrated into classical probability theory�

The expected utility model is a speci�c case of STO ���� �	��� �
��� �
��� ���� models that
use various performance indicators fi�x� ��� i � 	� ���� m� one of which can be the expected
utility �disutility�� These indicators depend on outcomes gk�x� ��� k � 	� ���� K� on x and ��
i�e�� fi�x� �� �� qi�g�� ���� gk� x� ��� A rather general STO problem is formulated as the maxi�
mization �minimization� of the expectation function F��x� � Ef��x� �� �

R
f��x� ��P �d���

subject to constraints Fi�x� � Efi�x� �� �
R
fi�x� ��P �d�� � 
� i � 	� ���� m� The choice of

proper indicators fi�x� �� and outcomes gk�x� ��� k � 	� ���� K� is essential for the robust�
ness of x� Globally or regionally aggregated outcomes are less uncertain but they may
not reveal potentially dramatic heterogeneities induced by global changes on individuals�
governments� and the environment� For instance� an aggregate income or growth indi�
cators may not reveal an alarming gap between poor and rich regions� which may cause
future instabilities� By choosing appropriate functions gk�x� �� and fi�x� ��� STO models
allow in a natural and �exible way to represent various risks� spatial� social� and temporal
heterogeneities� and the sequential resolution of uncertainty in time� Often� as in Example
	� fi�x� �� are analytically intractable� nonsmooth� and even discontinuous functions �	���
and probability measure P is unknown� or only partially known� and may depend on x
�Section �� ��� which is essential for modeling endogenous catastrophic risks and the e�ects
of increasing returns leading to concentrations of values in risk prone areas� Moreover� de�
cisions x can be composed of anticipative ex�ante and adaptive ex�post components� which
allows to model dynamic decision making processes with �exible adaptive adjustments of
anticipative decisions when new information is revealed� The main challenge confronted
by STO theory is that it is practically impossible in general to evaluate exact values of
Fi�x�� i � 
� 	� ����m� see� e�g�� Example 	� As �deterministic� is a degenerated case of
�stochastic�� STO methods allow to deal with problems which are not solved by standard
deterministic methods�

Example �� Pollution control� A common feature of most models used in designing
pollution�control policies �	� is the use of transfer coe�cients aij that link the amount of
pollution xj emitted by source j to the pollution concentrations gi�x� �� at the receptor lo�
cation i as gi�x� �� �

Pn
j�� aijxj � i � 
� 	� ����m� The coe�cients are often computed with

Gaussian type di�usion equations� These equations are solved over all possible meteoro�
logical conditions� and the outputs are then weighted by the frequencies of meteorological
inputs over a given time interval� yielding average transfer coe�cients aij � Deterministic
models ascertain cost�e�ective emission strategies xj � j � 	� ���� n subject to achieving ex�
ogenously speci�ed environmental goals� such as ambient average standard bi at receptors
i � 	� ���� m� These models can be improved by the inclusion of safety constraints that ac�
count for the random nature of coe�cients aij and ambient standards bi to reduce impacts
of extreme events�

Fi�x� � Prob�
nX

j��

aijxj � bi� � pi� i � 	� ���m� ���

�



namely� the probability that the deposition level in each receptor �region� grid� or country�
i will not exceed uncertain critical load �threshold� bi at a given probability �acceptable
safety level� pi�

Remark �� The constraints ��� are known as chance constraints ���� �	��� �
��� �
���
They can be written in the form of the standard STO model with discontinuous functions�
fj�x� �� � 	�pi if

Pn
j�� aijxj�bi � 
 and fj�x� �� � �pi� otherwise� If pi � 	� i � 	� ���� m�

the constraints ��� are reduced to constraints of deterministic robustness �Section �����
The main computational complexity confronted by STO methods is the lack of explicit

analytical formulas for goal functions Fi�x�� i � 
� 	� � m� For example� consider constraints
���� If there is a �nite number of possible scenarios � � �aij � bi� i � 	� m� j � 	� n�
re�ecting� say� prevailing weather conditions� then Fi�x� are piecewise constant functions�
i�e�� gradients of Fi�x� are 
 almost everywhere� Hence� the straightforward conventional
optimization methods cannot be used�

Ignorance of risks de�ned by constraints ��� may cause irreversible catastrophic events�
Although an average daily concentration of a toxicant in a lake is far below a vital thresh�
old� real concentrations may exceed this threshold for only a few minutes and yet be enough
to kill o� �sh� Constraints of the type ��� are important for the regulation of stability
in the insurance industry� known as the insolvency constraints� The safety regulation of
nuclear reactors requires pi � 	�	
��� i�e�� a major failure occurs on average only once in
	
� years� Stochastic models do not� however� exclude the possibility that a disaster may
occur next year�

� Uncertainty modeling�

As discussed in Section 
� traditional statistical decision theory deals with situations where
the model of uncertainty and the performance of optimal solution are given by a sampling
model� In general decision problems the uncertainty� decisions and interactions among
them have to be characterized from the context of the decision making situation�

Any relevant decision in the presence of essential uncertainty leads to multiple outcomes
with potentially positive and negative consequences� A trade�o� between them has to be
properly evaluated which represents a challenging counterintuitive task� This is often used
as a reason to ignore uncertainty with a plea for simple models or for postponing decisions
until full information is available� The purpose of this section is to provide important
motivations for the appropriate treatment of uncertainty�

��� Adaptive control�

Adaptive feedback control is often suggested as a way of dealing with the �unforeseen
surprises� �ignored uncertainties� of deterministic models� A feedback control strategy
depends on the current state of the system� therefore� when the state is perturbed� the
strategy proceeds the control from a new state� The main issue in this approach is the
inherent uncertainty� the delayed responses of socio�economic and environmental systems�
and irreversibilities� The real consequences of decisions may remain invisible for long
periods of time� thus� purely adaptive deterministic approaches can be compared to driving
a car in the mountains on a foggy day facing backwards�

��� Simple models�

As the assumption of deterministic models about exact input data is often unrealistic� a
number of simple models of uncertainty have been used� Simple models that provide an
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impression of explicit treatment of uncertainty may� in fact� produce misleading or wrong
conclusions� One of the most popular ideas is to model uncertainty by a �nite number of
scenarios or states of the world� All members �agents� of the society know these states and
their probabilities� i�e�� they know �what�and�when� happens and can thus easily design
compensation schemes or securities to spread risks around the world� As Arrow admits
�
�� catastrophes do not exist in such models �see also discussion in ���� �	
��� Moreover�
any of these scenarios in reality has the probability of 
�

��� Mean�variance analysis�

This analysis substitutes real distributions by normal probability distributions� The fol�
lowing example illustrates its main danger� As discussed in ����� trajectories of the average
annual atmospheric CO� changes were obtained from various monitoring stations� Ana�
lysts suggested characterizing the variability of these trajectories by calculating the sam�
ple mean� the standard deviation� and associated �� percent con�dence interval� which�
in fact� contains only 	
 percent of the observable CO� changes� The reason for this is
that the histogram of indicated changes has a multimodal character that is fundamen�
tally di�erent from the normal distribution de�ned by the calculated sample mean and
standard deviation� Multimodal distributions are typically used for characterizing the be�
liefs �opinions� of di�erent political parties or movements and heterogeneities induced by
catastrophic events �see Fig� �� � in �	
��� In �nance� a distribution of portfolio returns
can be multimodal due to the contribution of di�erent assets and asset classes�

��� Using average values�

Average income� growth� daily pollutant concentration� average losses� expected utility� or
expected returns may have a rather misleading character�

The projected global mean temperature changes fall within the di�erence between the
average temperature of cities and their surrounding rural areas� Therefore� global climate
change impacts can be properly evaluated only in terms of local temperature variability
and related extreme events� in particular� heat waves� �oods� droughts� windstorms� dis�
eases� and sea level rise� The proper treatment of indicators with nonnormal� especially
multimodal distributions requires special attention� The mean value of a multimodal dis�
tribution can be even outside the support of a distribution �the set of admissible values��
Still� this value can be reasonably interpreted in the case of frequent repetitive observa�
tions� Subjective multimodal probability distributions and rare extreme events call for
the use of quantiles� e�g�� the median� Unfortunately� this destroys the additive struc�
ture and concavity �convexity� of standard models� as �in contrast to the average value�
median

P
l vl ��

P
lmedian�vl� for random variables vl� As a result this makes the ap�

plicability of well�known decomposition schemes and optimization methods problematic�
Sections ���� ��
 indicate a promising approach for dealing with arising problems�

Example �� Optimal control problems� Discrete�time optimal control can be
viewed as a speci�c case of STO models� In this case� x is composed of state variables
z�t�� and control variables u�t�� that is�
x � fz�t�� u�t�� t � 
� 	� ���� Tg� where T is a given time horizon� Functions fi�x� �� are
additive� fi�x� �� �

PT
t�� gi�z�t�� u�t�� �t� t�� where �t is a stochastic disturbance at time

t� Therefore� the use of median�fi�x� ��� destroys the additive structure of optimal con�
trol problems essentially utilized in the Pontriagin�s Maximim Principle and Bellman�s
recursive equations�

�



��� Deterministic versus stochastic optimization�

Deterministic decision problems are formulated in two steps� First of all� statistical proce�
dures are used to estimate average values � of input data �� After this intermediate task is
performed� the deterministic problem with goal functions fi�x� ��� i � 
� 	� ����m is solved�
The use of � for multimode distributions orients decision analysis even on inadmissible
scenarios� As well as for nonlinear fi�x� ��� Efi�x� �� �� fi�x� ��� For example� if � is
uniformly distributed on ��	� 	�� then � � 
 and E��x�� 
 ��x�� � 
�

STO methods deal directly with the variability of fi�x� �� a�ected by the variability
of � and decisions x� i�e�� they deal simultaneously with uncertainty and decision analysis�
Some decisions x can considerably reduce the variability of indicators fi�x� ��� despite
signi�cant variability of �� e�g�� decisions x� � 
� x� � 
 for function ��x� � ��x��
Therefore� STO models can signi�cantly reduce requirements on data quality in contrast
to disconnected from decisions standard uncertainty analysis �see also Section �����

The use of average values often smoothes the problem� but this may lead to wrong
conclusions� The following simple model with abrupt changes shows that the use of average
characteristics converts this model to a smooth and even linear deterministic version�
Combined with sensitivity analysis� the resulting linear deterministic model is not able to
detect abrupt changes� it plays a misleading role and can easily provoke an environmental
collapse�

Example �� Abrupt changes� Global changes with possible dramatic interactions
among humans� nature and technology call for nonsmooth models� Nonsmooth and discon�
tinuous processes are typical for systems undergoing structural changes and developments�
In risk management� the possibility of an abrupt change is� by its very nature� present in
the problem� The concept of nonsmooth and abrupt change is emphasized in the study of
environmental and anthropogenic systems by such notions as critical load� surprise� and
time bomb phenomena �	�� ���� �	��� There are a number of methodological challenges
involved in the policy analysis of nonsmooth processes� Traditional local or marginal
analysis cannot be used because continuous derivatives do not exist� i�e�� a nonsmooth�
even deterministic� system cannot be predicted �in contrast to classical smooth systems�
outside an arbitrary small neighborhood of local points�

The concentration of a pollutant rt � r� � xt �
PN�t�

k�� ek� where fekg is a sequence
of emissions from extreme episodes in interval �
� t�� N�t�� t � 
� is a counting process
for the number of episodes in �
� t�� x is a rate of emission reduction� and r� is an initial
concentration� The rate x pushes rt down� whereas the random �ow of emissions pushes
rt up� The main problem is to reduce the probability of a catastrophe associated with
crossing a vital threshold � by rt� rt 
 �� Assume that fekg are independent� identically
distributed random variables with mean value e� N�t� is a Poisson process with intensity
�� EN�t� � �t and fekg� N�t� are independent� Then� the expected concentration rt �
r�� ��e� x�t� that is� complex random jumping process rt� is simply replaced by a linear
function that decreases in time for x 
 �e� The strong law of large numbers for random

sums of random variables ek implies that xt � PN�t�
k�� ek � t�x � �e� for large t with

probability 	� Thus� deterministic model rt suggests� that if x slightly exceeds the average
emission rate �e� then rt decreases in time� which is the wrong conclusion� This is true
only if a catastrophe does not occur before time t� The sensitivity analysis of the linear
deterministic model rt under di�erent scenarios for � and e produces the same trivial
conclusions that robust x has to slightly exceed �e�

�



��
 Probabilistic and stochastic models�

There are two fundamental approaches to modeling uncertainty in probability theory�
namely� probabilistic and stochastic models� Probabilistic models attempt to character�
ize processes completely and explicitly in terms of probability distributions or some of
their characteristics� If one can evaluate explicitly multidimentional integrals Fi�x� �
Efi�x� �� �

R
� fi�x� ��P �d��� then the STO problem is reduced to a standard determin�

istic optimization model� Even the simplest situations illustrate di�culties� Thus� for
two random variables ��� �� with known probability distribution functions� the evalua�
tion of probability distribution �� � �� is already an analytically intractable �in general�
task requiring the evaluation of an integral� In addition� the distribution of fi�x� ��� say�
��x� � ��x� signi�cantly depends on x� e�g�� compare x� � 
� x� � 	 and x� � 	� x� � 
�
Exponential increase of computations occurs when one uses probability trees� transition
probabilities� and variance�covariance matrices to represent the dynamics of uncertainties�
The number of states of even the simplest discrete event systems �see� e�g�� �	��� can be
too large for explicit representations of them by matrices of transition probabilities� The
computational �explosion� of probabilistic models� similar to the well�known �curse of di�
mensionality� of Bellman�s equations� restricts their practical applicability for large scale
global change problems�

Stochastic models deal directly with random variables fi�x� �� without an exact eval�
uation of Fi�x�� In combination with fast Monte Carlo simulations� some of the STO
methods lead only to a linear increase of computations w�r�t� uncertain variables �� In
this case� goal functions are characterized by random laws �rules� and random processes
�e�g�� stochastic di�erential equations� rather than by transition probabilities� variance� co�
variance matrices� and partial di�erential equations� In fact� fast Monte Carlo procedures
�Example �� combine probabilistic and stochastic submodels�

� Robust stochastic optimization�

Although STO models allow to represent interdependencies among decisions� uncertainties
and risks� yet inappropriate treatment of the variability of indicators fi�x� �� can be rather
misleading for achieving desirable robustness�

��� Portfolio selection�

The Nobel prize laureate Markowitz �
	� proposed the following mean�variance approach
for designing robust portfolios of �nancial assets �and others� e�g�� portfolios of technolo�
gies�� Assume that �j is the expected value of random returns �j from asset j� j � 	� ���� n�
and xj is a fraction of this asset in the portfolio�

Pn
j�� xj � 	� xj � 
� j � 	� ���� n� The

maximization of expected return r�x� �
Pn

j�� �xj from a portfolio x � �x�� ���� xn� yields
a trivial nonrobust solution� to invest all capital in the asset with the maximal expected
return� The main idea �
	� to achieve diversi�ed robust portfolio is to consider a trade�o�
between expected returns and their variability characterized by the variance of returns
V ar��x� ��� i�e�� to maximize r�x� � �V ar��x� ��� ��x� �� �

Pn
j�� �jxj � where � is a

trade�o� �risk� parameter� Let us note that this approach requires that only returns from
portfolio

Pn
j�� �jxj have close to normal distribution� but not returns �j �

Remark �� The most important concerns in the case of more general portfolio selection
problems are those related to the overestimation of real returns ��x� �� by maximizing ex�
pected returns r�x�� i�e�� when ��x� ��
 r�x�� This calls for the maximization of a trade�o�
between expected returns and the risk of overestimation�

�



r�x� � �Emin f
� ��x� ��� r�x�g� It is easy to see that when the distribution of ran�
dom returns ��x� �� is normal� then the maximization of this function is equivalent to
the maximization of the mean�variance criterion� as the absolute values of asymmetric
risk function Emin f
� ��x� ��� r�x�g are constant multiples of the standard deviation�
Unfortunately� for nonlinear concave function r�x� the mean�variance approach leads to
nonconcave optimization� The next section maneuvers this obstacle for rather general
optimization problems�

��� Robust utility maximization�

Consider the maximization of utility function U�x� � Eu�q�x� ���� �e�g�� returns r�x��� If
the distribution of random outcome u�q�x� ��� is not normal� for example� when the policy
analysis involves the polarized beliefs of di�erent communities� then� instead of U�x� we
can use a quantile Up�x� of u�q�x� ��� de�ned as maximal v such that
Prob�u�q�x� ��� � v� � p� for 
 
 p 
 	� The robust utility maximization problem
can be formulated as the maximization of an adjusted to risk utility function Up�x� �
�Emin f
� u�q�x� ���� Up�x��g� which is not a concave function� As Remark � indicates�
for normal distributions and p � 	��� this is equivalent to the mean�variance approach�
Similar to Example �� Section ���� one can conclude that the formulated problem is equiv�
alent to the following concave STO optimization problem� maximize w�r�t� �x� z� function
��x� z� � z � �Emin f
� � � zg� � � u�q�x� ���� � � 	�p�

Remark �� This important fact can be seen from the following simple observations �see
also Example ���

R z
� �p� Prob�� � v��dv � pz �Emin f
� � � zg for a random variable �

with density� Let us also notice that for
� � 	�p we haveUp�x���Emin f
� u�q�x� u��� Up�x�g � �	�p�

R
u�q�x����Up�x�

U�q�x� ��dP �

i�e�� the adjusted to risk utility function equals to the so�called expected shortfall �see�
e�g�� �		�� ��	���

��� General STO model�

Similarly� a robust STO model can be written in the form� maximize w�r�t� �x� z� function
z� � ��Emin f
� f��x� ��� z�g subject to
zi � �iEmin f
� fi�x� ��� zig � 
� i � 	� ���� m� where �i are weights� Components z�i �
i � 
� 	� ���� m� of optimal solution �x�� z�� are quantiles of fi�x

�� ��� The proof follows from
the positivity of the Lagrange multipliers and Remark �� Depending on the case� the robust
model can also be formulated by using safety �Example 	� constraints Prob�fi�x� �� � 
� �
pi in combination� say� with constraints Efi�x� �� � �iEmin f
� fi�x� ��g � 
� i � 	� ���� m
and other possible options �
���

��� Flexibility of robust strategies�

The standard expected utility maximization model suggests two types of decisions in the
response to uncertainty� either risk averse or risk prone decisions� These two options also
dominate the climate change policy debates �

�� �
��� emphasizing either ex�ante antic�
ipative emission reduction programs or ex�post adaptation to climate changes when full
information becomes available� Clearly� a robust policy must include both options� i�e�� the
robust strategy must be �exible enough to allow for later adjustments of earlier decisions�
The so�called �two�stage and multistage� recourse models of stochastic optimization ����
�	��� ���� incorporate both fundamental ideas of anticipation and adaptation within a sin�
gle model and allow for a trade� o� between long�term anticipatory strategies and related

	




short�term adaptive adjustments� Therefore� the adaptive capacity can be properly de�
signed ex�ante say� through emergency plans and insurance arrangements� The following
example shows that the explicit incorporation of ex�ante and ex�post decisions induces risk
aversion measures that cannot� in general� be imposed exogenously by a standard utility
function�

Example �� Mitigation versus adaptation� CVaR Risk measure� A stylized
static model of a climate stabilization problem �
�� can be formulated as follows� let x

denote an amount of emission reduction and let a random variable � denote an uncertain
critical level of required emission reduction� Ex�ante emission reductions x � 
 with costs
cx may underestimate �� x 
 �� It generates a linear total adaptation cost az�dy� where
y is an ex�post adaptation� y � z with cost dy� z is an ex�ante developed adaptive capacity
with cost az�

To illustrate the main idea� let us assume that ex�post adaptive capacity is unlimited�
z � �� and c 
 d� A two�stage stochastic optimization model is formulated as the
minimization of expected total cost cx � dEy subject to the constraint x � y � �� This
problem is equivalent to the minimization of function F �x� � cx�Emin fdyjx� y � �g or
F �x� � cx�dEmax f
� � � xg� which is a simple stochastic minimax problem� Optimality
conditions for these types of STO minimax problems show �see� e�g�� �	��� �	��� �	��� pp� 	
��
�	�� ��	� see also Remark �� that the optimal ex�ante solution is the critical quantile x� �
�p satisfying the safety constraint Prob�x � �� � p for p � 	� c�d� This is a remarkable
result� highly non�linear and even often discontinuous safety or chance constraint of type
��� is derived �justi�ed� from an explicit introduction of ex�post second stage decisions y�
Although the two stage model is linear in variables �x� y�� the ex�post decisions y induce
strong risk aversion among ex�ante decisions characterized by the critical quantile �p�

Remark �� If c�d 
 	� then x� 
 
� i�e�� it calls for coexistence of ex�ante and ex�post
decisions� The optimal value F �x�� � dE�I�� 
 x��� where I��� is the indicator function�
Again� according to Remark 
� this is the expected shortfall or Conditional Value�at�Risk
�CVaR� risk measure �		�� ��	��

Remark �� In more general two�stage models �	
�� �
��� the risk aversion of an ex�
ante decision is not necessarily induced in the form of the critical quantile and CVaR
risk measure� Despite this� the structure of robust policy remains the same� Only partial
commitments are made ex�ante whereas other options are kept open until new information
is revealed� In a sense� such �exible decisions incorporate both risk�averse and risk�prone
components according to di�erent �slices� of risks�

��� Uncertain probability distributions�

Models of Section 
 assume that P �d�� is known exactly� However� only some of its
characteristics may be known� The elicited class P for admissible P is often given by
constraints

R
�k���P �d�� � 
� k � 	� K�

R
P �d�� � 	� for example� constraints on joint

moments cs������sl �
R
�s�� ����sll P �d�� � Cs������sl� where cs������sl � Cs������sl are given constants�

The robust STO problem can be formulated similar to Section ��
 as a probabilistic max�
imin problem� maximize F��x� � minp�P

R
f��x� ��P �d�� subject to general constraints

of Section 
��� This probabilistic maximin approach was �rst initiated in STO in �	���
�	��� ����� For speci�c sets P � the solution of the inner minimization problem has a simple
analytical form ����� �

�� For example� it is concentrated only in a �nite number ��	���
�	��� �

�� and Example �� of admissible scenarios from �� Numerical methods for general
problems were developed in �	��� �	��� ����� ����� �����

Example 	� Robust stabilization and CVaR� The simple emission stabilization
problem is de�ned �Example �� by the minimization of

		



cx� dEmax f
� � � xg � z � d
R�
z �� � x�P �d��� A robust CVaR measure can be de�ned

by minimization cx � dmaxp�P
R�
x �� � x�P �d��� To illustrate this possibility� suppose

that � is a scalar random variable� � � �a� b�� and an additional condition that de�nes the
class P is E� � �� It is easy to see that the worst�case distribution is concentrated only
in points a� b� with the probability mass p�a� � b��

b�a � p�b� �
��a
b�a � Hence� the robust model

is reduced to replacing the set of all admissible scenarios � by only two extreme scenarios
a and b with probabilities p�a�� p�b��

Probabilistic maximin robustness may not be su�cient to properly address the e�ects
of extreme events �Section ����� A more general approach would be the combination of a
probabilistic and a stochastic maximin model with F��x� � minp�P Eminz�Z f��x� y� z� ���
where � is represented by variables y� z� �� � � �y� z� ��� Z is a set of variables z which
are there to take into account potential extreme random scenarios� as in the extremal
value theory �		�� the x variables are themselves decision variables� the y� y � Y variables
correspond to uncertainty ranked by an objective or subjective probability measure P
from P � and � variables are ranked by a �xed probability measure as in the basic STO
models� Thus in this model the worst case situation is evaluated with respect to the worst�
case distribution for some uncertain variables y� whereas for other uncertain variables
z it is evaluated from potential extreme random scenarios� In particular� this class of
models includes purely stochastic maximin models with F��x� � Eminy�Y f��x� y� �� as
well as models with F��x� � miny�Y Ef�x� y� �� combining the worst�case and the Bayesian
approaches of Sections ���� ��� �see also discussion in �	��� �	��� pp� 	
��	
���

� Temporal	 spatial and social heterogeneities�

The signi�cance of extreme events arguments in global climate changes has been summa�
rized in ���� as follows� Impacts accrue ��� not so much from slow �uctuations in the mean�
but from the tails of the distributions� from extreme events� Catastrophes do not occur on
average with average patterns� They occur as �spikes� in space and time� In other words�
the distributional aspects� i�e�� temporal and spatial distributions of values and risks are
key issues to capture the main sources of vulnerability for designing robust policies�


�� Temporal heterogeneity�

Extreme events are usually characterized by their expected arrival time� for example� as
a 	


�year �ood� that is� an event that occurs on average once in every 	


 years�
Accordingly� these events are often ignored as they are evaluated as improbable during a
human lifetime� In fact� a 	


�year �ood may occur next year� For example� �oods across
Central Europe in �

� were classi�ed as 	


�� �

�� ��
�� and 	

�year events� Another
tendency is to evaluate potential extreme impacts by using so�called annualization� i�e��
by spreading losses from a potential� say� 

�year catastrophe� equally over 

 years� In
this case� roughly speaking� a potential 

�year crash of an airplane is evaluated as a
sequence of independent annual crashes� one wheel in the �rst year� another wheel in the
second year� and so on� until the �nal crash of the navigation system in the 

th year�
The main conclusion from this type of deterministic analysis is that catastrophes do not
exist� Section ��	 introduces the notion of stopping time and related new approaches to
discounting that allow for properly addressing the temporal variability of extreme events�

	�




�� Spatial and social heterogeneity�

A similar common tendency is the ignorance of real spatial patterns of catastrophes� A
general approach is to use so�called hazard maps� i�e�� maps showing catastrophe patterns
that will never be observed as a result of a real episode� as a map is the average image
of all possible patterns that may follow catastrophic events� Accordingly� social losses in
a�ected regions are evaluated as the sum of individual losses computed on a location�by�
location rather than pattern�by�pattern basis w�r�t� joint probability distributions� This
highly underestimates the real impacts of catastrophes� as the following simple example
shows�

Example �� Social and individual losses� In a sense� this example shows that

	

 	
���z �� �

	 � 	� � � �� 	� Assume that each of 	

 locations has an asset of the same type�
An extreme event destroys all of them at once with probability 	�	

� Consider also a sit�
uation without the extreme event� but with each asset still being destroyed independently
with the same probability 	�	

� From an individual point of view� these two situations
are identical� an asset is destroyed with probability 	�	

� i�e�� individual losses are the
same� Collective �social� losses are dramatically di�erent� In the �rst case 	

 assets are
destroyed with probability 	�	

� whereas in the second case 	

 assets are destroyed only
with probability 	

����� which is practically 
� This example also illustrates the potential
exponential growth of vulnerability from increasing network�interdependencies�


�� Downscaling� upscaling and catastrophe modeling�

So�called downscaling �see discussion in ���� ����� and catastrophe modeling ���� are becom�
ing increasingly important for estimating spatio�temporal vulnerability and catastrophic
impacts� The designing of a catastrophe model is a multidisciplinary task requiring the
joint e�orts of environmentalists� physicists� economists� engineers and mathematicians�
To characterize �unknown� catastrophic risks� that is� risks with the lack of historical data
and large spatial and social impacts� one should at least characterize the random patterns
of possible disasters� their geographical locations� and their timing� One should also design
a map of values and characterize the vulnerabilities of buildings� constructions� infrastruc�
ture� and activities� Catastrophe models allow to derive histograms of mutually dependent
losses for a single location� a particular hazard�prone zone� a country� or worldwide from
fast Monte Carlo simulations rather than real observations �	
�� �����

The development of catastrophe models can be considered as a key risk management
policy providing information for decision analysis in the absence of historical observations�
in particular� on potential extreme events that have never occurred in the past� This
raises new estimation problems� Traditional statistical methods are based on the ability
to obtain observations from unknown true probability distributions� whereas new problems
require information to be recovered from only partially observable or even unobservable
variables� Rich data may exist on occurences of natural disasters� incomes� or production
values on global and national levels� Downscaling and upscaling methods in this case must
� by using all available objective and subjective information � make plausible evaluations
of local processes consistent with available global data� as well as� conversely� with global
implications emerging from local data and tendencies�

	





 STO methods for robust solutions�

��� Scenario analysis�

Outcomes of Monte Carlo simulations for a STO model are random sample functions
f��x� ��� f��x� ��� ���� fm�x� ��� that depend on the simulation run � and a given vector
of decisions x� Therefore� for a given x� outcomes vary at random from one simulation to
another� The estimation of their mean values� variances� and other moments or histograms
is time consuming in the presence of rare extreme events that require developments of spe�
ci�c fast Monte Carlo�type sampling procedures� Moreover� a change in policy variables x
a�ects the probabilistic characteristics of outcomes and requires a new sequence of Monte
Carlo simulations to estimate their new values� If functions fi�x� ��� i � 
� 	� ����m� have
well de�ned analytical structure with respect to x for each simulated �� then the following
scenario analysis is often used� The Monte Carlo simulations generate scenarios ��� ��� ����
�N for each of which optimal solutions x����� x����� ���� x��N� of the deterministic opti�
mization model are calculated� Any of these solutions calculated for one scenario may not
be feasible for other scenarios� The number of possible combinations of potential scenarios
� and decisions increases exponentially� Thus� with only 	
 feasible decisions� for instance�
levels of emission reductions in a given region� 	
 regions and 	
 possible scenarios for all
of them� the number of �what�if� combinations is 	
��� The straightforward evaluation
of these alternatives would require more than 	

 years if a single evaluation takes only a
second� Besides� the probability of each scenario �l� l � 	� ���� K� is in general� equal to 
�
Therefore� the choice of �nal robust decisions is unclear and is not explicitly addressed�

��� Sample�mean approximations�

STO models of Sections 
��� � are able to explicitly characterize robustness by using proper
indicators of di�erent risks� �exible decisions and various equity and fairness constraints as
goals of desirable policy� The main challenge is to design a search procedure that enables
to �nd policy decisions speci�ed by these goals� STO methods� in particular� adaptive
Monte Carlo �AMC� optimization methods �	
�� avoid exact evaluations of all feasible
alternatives� The problem confronted by STO methods is to estimate the maximum F��x

��
of F��x� subject to constraints Fi�x� � 
� Fi�x� � Efi�x� ��� i � 	� ���� m� by making
use of only random outcomes from simulations fi�x� ��� i � 
� 	� ����m� Standard Monte
Carlo methods can be regarded as estimating the value of multidimensional integrals
Fi�x� �

R
fi�x� ��P �d��� i � 
� 	� ����m� for �xed x� In particular� this can be done by

using a sample mean FN
i � 	�N

PN
k�� fi�x� �

k�� If functions fi�x� �� are analytically
tractable w�r�t� x� then FN

i �x� can be used to �nd an approximate solution of the STO
problem� assuming that FN

i �x� su�ciently approximates Fi�x�� i � 	� ���� m� Although in
this case the original STO model is approximated by a deterministic optimization problem�
its solution often requires new deterministic large�scale optimization methods �see� e�g��
���� �	��� �
��� �
��� ������ as well as the sample size N reduction techniques and fast Monte
Carlo simulations� A principle complexity �Sections �� �� is that the measure P is often
analytically intractable� that it may depend on x as in Section ���� and that samples are
a�ected by current x and rare catastrophic events� In this case� in general� only AMC
optimization is applicable�

��� Adaptive Monte Carlo optimization�

An �Adaptive Monte Carlo� simulation ��
� is a technique that makes online use of sam�
pling information to sequentially improve the e�ciency of the sampling itself� The notion

	�



�Adaptive Monte Carlo� optimization is used �	
�� ��
� in a rather broad sense� where
improvements of the sampling procedure with respect to the variability of estimates may
be only a part of the improvements with respect to other goals of robust decisions�

Remark �� A counterintuitive fact is that the estimation of a robust solution x� and
F��x

�� starting from an initial solution x� often requires approximately the same �or
an even smaller� number of simulations than the estimation of only F��x

�� for �xed x��
This is because of two forces� First of all� robust solutions x� reduce risks and� hence�
the variability of F��x�� therefore� movements toward F��x

�� according to STO methods
are themselves a variance�reducing process �see� e�g�� numerical calculations in ��
��� In
contrast� F��x

�� may have considerable variability due to the e�ects of extreme events�
therefore� its estimation requires large samples� Secondly� the variance reductions can also
be achieved by deliberate switches in the importance sampling�

Example �� Environmental collapse� Let us illustrate the main idea of fast
sample mean approximations and AMC optimization by a modi�cation of Example 
�
The concentration of a global pollutant at time t is calculated as rt � r� �

Pt
t�� xtet�

where xt is the rate of global emission et reduction� 
 � xt � 	� and e�� e�� ��� are
random dependent variables� At a random time moment � � the critical threshold � for
rt is revealed and a collapse occurs when rt 
 �� Assume that � is characterized by a
probability distribution B�z� � Prob�� 
 z� and Prob�� � t� � p�	 � p�t� t � 
� 	� ����
where probability p is characterized by a probability distribution in an interval �p�� p���
The probability of a collapse ��x� � E

P�
t�� I�� 
 rt�� where I�� 
 rt� � 	 or 
 if � 
 rt

or � � rt� respectively� Equivalently�

��x� � E
�X
t��

E�p�	� p�t�B�r� �
tX

t��

xtet� � E
�X

t��

EB�r� �
tX

t��

xtet�� �
�

The probabilistic model is described by the analytically intractable function ��x��
Moreover� an emission path e�� e�� ��� is usually generated by solving a global en�
ergy�economy model� and et is a complex function of an emission reduction policy x�
The stochastic model in this example is described by the right hand side of �
� including
the process rt� the probability distribution for � � and a stochastic generator of uncertainties
and dependent emission path� �e�g�� using global energy�economy model��

It is possible to use a straightforward Monte Carlo simulation to estimate ��x� for a
�xed x� A simulation run s� s � 	� �� ��� consists of sampling ps � �p�� p��� � � �s� a path
est � t � 
� 	� ���� �s and �s� The value ��x� is estimated as �N �x� �

PN
s�� I��

s 
 rs��N � If
ps is a small probability then this straightforward approach requires large N � A stochastic
model �
� allows much faster sample mean evaluations of ��x� and fast AMC optimization
procedures �	��� ��
�� Conceptually� AMC optimization involves the following steps� An
initial solution x� is �xed� p�� ��� e��� e

�
�� ���� e

�
��

are simulated� On this basis� a so�called
stochastic gradient is calculated allowing for adaptive adjustment of x� to x�� For x�� a
new sample p�� ��� e��� e

�
�� ���� e

�
��

is calculated� and x� is adaptively adjusted in the same
manner as x�� and so on� It is important that evaluation of robust strategy in this manner
proceeds with simulations s � 	� �� ��� without intermediate evaluations of �N �x�� Details
of this solution technique for rather general risk processes are discussed in �	
�� �	��� In
parallel with adjustments of solutions xs� the AMC optimization is able to change the
sampling procedure ��
� itself �importance sampling��

	�



� Sensitivity of robust strategies�

Robust strategies for global changes require a proper focus on potential extreme events�
As a result� the robust strategy with a small � 
 
 probability of extreme events can be
signi�cantly di�erent from the policy that ignores these events by using � � 
� Formally
speaking� this is evident from Section ��
� when � 
 
 results in shifts of ranges fi�x� ��
to include potential catastrophic impacts �say� ranges of required emission reductions
� in Example �� that suddenly disappear for � � 
� Informally speaking� the explicit
introduction of extreme events with � 
 
 requires new sets of feasible decisions� new
spatial� temporal� and social dimensions which suddenly disappear for � � 
� This Section
shows that a key issue is the proper treatment of discounting and random time horizons
of extreme events�


�� Extreme events and discounting�

How can we justify strategies that may possibly turn into bene�ts over long and uncertain
time horizons in the future For example� how can we justify investment� say� in a �ood
defense system to cope with foreseen extreme 	

�� ��
�� �

� and 	


� year �oods A
common approach is to discount future costs and bene�ts using a geometric �exponential�
discount factors with the prevailing market interest rate as V �

P�
t�� dtVt� where dt �

�	 � r��t� r is a discount rate� An in�nite deterministic stream of values Vt� t � 
� 	� ����
can represent a cash��ow stream of a long�term investment activity� In economic growth
models and integrated assessment models �see� e�g�� �
��� the value Vt represents utility
U�xt� of an in�nitely living representative agent with consumptions xt �

The in�nite time horizon in V creates an illusion of truly long�term analysis� The
choice of discount rate r as a prevailing interest rate within a time horizon of existing
�nancial markets is well established� Uncertainties� especially related to extreme events�
challenge the possibility of markets to o�er proper rates� The following simple fact shows
��	� that the standard discount factors obtained from markets orient policy analysis only
on few decades� what precludes to properly address catastrophic impacts�

Let p � 	 � d� d � �	 � r���� q � 	 � p� and let � be a random variable with the
geometric probability distribution P �� � t� � pqt� It is easy to see ��	� that

�X
t��

dtVt � E
�X

t��

Vt� ���

where dt � dt� t � 
� 	� ���� This is also true for general discounting dt � �	 � rt��t with
increasing positive rt� where the stopping time � is de�ned as P �� � t� � dt�

That is� the discounted sum can be viewed as an expected value of the undiscounted
sum within a random interval �
� � �� We can think of � as a random �stopping time�
associated with the �rst occurrence of an extreme stopping time �killing� event� The
expected duration of � � E� � 	�p � 	 � 	�r 
 	�r for small r� Therefore� for the interest
rate of 
�� percent� r 
 
�

�� the expected duration is E� 
 

 years� i�e�� this rate orients
the policy analysis on an expected 

�year time horizon with the standard deviation

p
q�p�

i�e�� approximately another 

 years� The bias in favour of the present in discounting with
the rate of 
�� percent is easily illustrated �
��� For a project with long�run bene�ts or
costs� 	 Euro of bene�ts or costs in years �
� 	

� and �

� has a present value respectively
of 
�	�� 
�


� and practically 
 Euros� De�nitely� this rate has no correspondence with
how society has to deal with a 


�year �ood with the standard deviation of another 



years�

	�



Example 
� Catastrophic risk management� The implications of ��� for long�
term policy analysis are rather straightforward� It is realistic to assume �
�� that typical
cash��ow investment in a new nuclear plant has the following average time horizons�
without a disaster� the �rst six years of the stream re�ect the costs of constructions
and commissioning� followed by �
�years of operating life when the plant is producing
positive cash �ows and� �nally� a �
�year period of expenditure on decommissioning� The
�at discount rate of � percent� according to ���� orients the analysis on a �
� year time
horizon� It is clear that a lower discount rate places more weight on distant costs and
bene�ts� For example� the explicit treatment of a potential �

� year disaster would
require a discount rate of at least 
�� percent instead of � percent� Similar examples are
investments in mitigations to cope with climate change related extreme events� A rate
of 
�� percent� as is often used in integrated assessment models �
��� ���� is de�nitely not
appropriate�

Example 
� Time varying discounting� Multipliers E�p�	�p�t� in �
� with random
p can be viewed as time�varying discount factors� It is easy to see that the asymptotic
of these multipliers are dominated by the least�probable extreme events� Indeed� assume
that there is only a �nite number of scenarios p� 
 p� 
 ��� 
 pL ranked by probability
weights v�� v�� ���� vL� Then E�p�	� p�t� � �	� p��

t�v�p� �
PL

s���
��ps
��p�

�t� � v�p��	� p��
t�

Therefore� the ignorance of the least�probable extreme events can signi�cantly shrink
internal stopping time horizons of evaluation V � De�nitely� a given exogenous standard
discount rate cannot match the expected time horizons of rather di�erent sets of extreme
events� This calls for the explicit introduction of stopping time � and the use ��	� of
undiscounted evaluation V � E

P�
t�� Vt instead of V �

P�
t�� dtVt� As ��� shows� this

approach includes any standard exogenous discounting� Its advantage is the ability to
introduce proper endogenous discounting in the presence of catastrophic risks� As decisions
a�ect the occurrence of extreme events ��� in space� this approach� in fact� is equivalent
to using implicit spatio�temporal endogenous discounting dependent on goals and input
data of the decision problem� such as the incomes of agents� risks� equity� and fairness
constraints� This approach allows also to treat distributional aspects by using distributions
of random sum

P�
t�� vt� Vt � Evt� e�g�� its quantiles instead of mean value�


�� Stopping time and stochastic minimax�

As Section ��	 shows� the concept of stopping time allows to orient the analysis on the least�
probable and the most destructive �killing� extreme events� There are strong connections
�	�� between the stopping time� and stochastic maximin type�problems de�ned in Section
��� that can be used for designing optimization methods�

The stopping time is often associated with the likelihood of some processes crossing
�vital� thresholds� Consider a random process Rt�x� and the threshold de�ned by a
random �� Let us de�ne the stopping time � as the �rst time moment t when Rt�x� is
above �� that is�
��x� � max ft � �
� T � � Rs�x� � �� 
 � s � tg � For example� climate change mitigations x
deal with preventing the global temperature� say� Rt� from crossing its critical level �� In
this case� the safety constraint can be de�ned by probability Prob���x� � T �� where T is
a given horizon� Explicit analytical evaluation of this probability is practically impossible
even for the simplest insurance risk processes �		�� This precludes the use of standard
optimization methods� A promising idea is to use connections with stochastic minimax
problems �see� e�g�� �	��� Assume that rt and � are one dimensional random variables� �
is independent of rt� H�y� � Prob�� � y�� and the performance indicators of the general
STO problem depend on t� fi�t� x� ��� i � 
� 	� ����m� The robustness can be de�ned as in

	�



�	
� by functions Efi�t� x� �� at t � ��x�� Fi�x� � Efi���x� ��� x� ��� Functions Fi�x� can
be written �	�� as Fi�x� � E

PT
t�� fi�t� x� ��H�max��s�tRs�x� ���� i�e�� a stopping time

problem with implicit and� in general� discontinuous random function ��x� is equivalently
transformed into a stochastic minimax problem that can be solved by di�erent methods
�	���

� Concluding Remarks�

In the absence of su�cient information� models play a key role in comparative analysis of
alternative solutions for designing robust policies� Any policy analysis focuses attention
on situations where processes can be changed by decisions that should be selected in the
best possible manner� In this paper we discussed various facets of robustness assuming
that the policy analysis includes optimization models with given sets of goals and feasi�
ble decisions� In reality these sets are also uncertain and they can be speci�ed through
a dialogue of users with models� where optimization models create only some blocks of
the overall decision support system� Advances in modeling and computational methods
allow us to create a �laboratory world� �	
�� where we can test new policies never im�
plemented in reality� This �learning�by�modeling� dialogue with models requires speci�c
robust optimization methods which are able to maintain a consistency of outcomes un�
der the changing environment of the �laboratory world� where goals and sets of feasible
solutions are subject to modi�cations by users� new information and gained experience�
In particular� the evaluation of robust policies often requires speci�c robust optimization
methods that are able to correctly detect the e�ects of rare extreme events� A discussion
of these is beyond the scope of this paper� At least� they require the development of
speci�c fast Monte Carlo procedures �see� e�g�� �	���� The use of quantiles� thresholds� and
stopping times requires� in general� speci�c non� smooth stochastic optimization methods
�	��� �	��� Since the notion of robustness depends on the nature of decision problems� it
is hopeless to provide a complete overview of all its feasible facets� Therefore� in this
paper we have primarily focused on issues relevant to on�going modeling of global change
processes at IIASA�
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