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FOREWORD

The public provision of urban facilities and services often
takes the form of a few central supply points serving a large
number of spatially dispersed demand points: for example,
hospitals, schools, libraries, and emergency services such as
fire and police. A fundamental characteristic of such systems
is the spatial separation between suppliers and consumers. No
market signals exist to identify efficient and inefficient geo-
graphical arrangements, thus the location problem is one that
arises in both East and West, in planned and in market economies.

This problem is being studied at IIASA by the Public Facility
Location Task which started in 1979. The expected results of
this Task are a comprehensive state-of-the-art survey of current
theories and applications, an established network of international
contacts among scholars and institutions in different countries,
a framework for comparison, unification, and generalization of
existing approaches as well as the formulation of new problems and
approaches in the field of optimal location theory.

This paper sets out a general method for maximizing the like-
lihood function of spatial choice models in an effort to bring
together the many separate methods for modeling spatial choices
or interactions that have been presented in the past. Also
included is a computer program written for the calibration of
these various models.

A list of related publications appears at the end of this
paper.

Andrei Rogers
Chairman

Human Settlements
and Services Area
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ABSTRACT

In this paper, an interactive computer program for estimating
the parameters of spatial choice models with multiattribute
utilities is presented. The models to be calibrated may be
unconstrained, singly constrained, or doubly constrained random
utility choice or entropy-maximizing interaction models. Utilities
may be associated with choice alternatives (zones) or with the
choices themselves (trips). The program maximizes the likelihood
of the choice matrix (trip table) given observed choices (trips)
using a combination of gradient search and Newton-Raphson itera-
tion.methods.

The paper contains a specification of the range of models
that can be calibrated with the program and a description of
its solution algorithm and organization, as well as an illustra-
tive application and a listing of the source code.
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ESTIMATING MULTIATTRIBUTE
SPATIAL CHOICE MODELS

INTRODUCTION

Recent advances in spatial theory have led to a unification
of formerly separate approaches to modeling spatial choices or
interactions. It has been shown that spatial choice models built
on stochastic utility maximization (McFadden 1973) and spatial
interaction models of the entropy-maximizing type (Wilson 1970)
are formally identical (Williams 1977) and have the same param-
eters and results when applied at the same aggregation level
(Anas 1981). Moreover, it has been observed that by varying the
exponent parameter of these models, the whole continuum from
indifferent to strict utility maximizing behavior can be repre-

sented, actual human behavior being something in between (Brotchie
et al. 1980).

The model doing so many things is the multinomial logit
model with its many variations. Because of its simplicity,
its attractive mathematical properties, and its multiple
interpretability, it has become the most widespread, almost
universal approach to modeling spatial choices in transporta-

tion or residential and industrial location analysis.



This paper deals with the problem of calibrating a spatial
choice model of the multinomial logit or entropy-maximizing type,
i.e., of estimating its parameters such that it reproduces a
given set of observed choices (trips) as closely as possible.
Unfortunately, this is not a trivial problem, because the model
is intrinsically nonlinear, i.e., cannot normally be linearized
by logarithmic‘transformation. This means that there is no
straightforward analytical technique to find the best-fit param-
eters, but that a numerical approximation technique has to be
applied.

Earlier work in this field includes, among others, that of
Hyman (1969), Evans (1971), Batty and Mackie (1972), Batty (1976),
van Est and van Setten (1977, 1978), Putman and Ducca (1978a),
and Openshaw (1979). Hyman (1969) and Evans (1971) proposed
different but equivalent algorithms to estimate one-parameter
production-attraction-constrained trip distribution models based
on Bayesian statistics and on the principle of maximum likeli-
hood, respectively. Batty and Mackie (1972) and Batty (1976)
explored various numerical methods to estimate singly and doubly
constrained models with one, two, or three parameters. Van Est
and van Setten (1977, 1978) investigated maximum-likelihood and
least-square methods for singly constrained models with multiple
parameters. Putman and Ducca (1978a) proposed a maximum-likelihood
method for estimating a production-constrained interaction model
where not the interactions themselves but only the destinations
are known. An evaluation of various calibration techniques is

contained in Openshaw (1979).

A summary result of this accumulated research is that there
is no single "correct" way of calibrating spatial choice or
interaction models, as the choice of a calibration method heavily
depends on the available data, the purpose of the model, and
the specific preferences of the research. However, maximum-
likelihood estimation seems to be the most widely accepted method.
This is true also for nonspatial random-utility choice models

where maximum-likelihood estimation now is a standard method



(cf. van Lierop and Nijkamp 1981). Therefore, in the approach
presented in this paper, the maximum-likelihood criterion is

used.

Maximizing the likelihood function of a spatial choice or
interaction model is conceptually straightforward, and most of
the references given above contain the necessary equations.
However, all of them are specific, i.e., are restricted to a
certain type of model, to a certain kind of constraint, or to
a limited number of parameters. In contrast, the method presented
in this paper is general. The models to be calibrated may be
unconstrained, production-constrained, attraction-constrained,
or production-attraction—-constrained. Moreover, they may be
single-attribute or multiattribute in the exponent, i.e., in
the utility term, and the utility attributes may be associated
either with the choice alternatives (zones) or with the choices
themselves (trips). So the method encompasses most of the
specialized models dealt with in the above references.

In addition, the paper differs from others by explicitly
listing and explaining the computer program written for the
calibration. Programs of this kind may exist at many places,
but are not generally available. Many researchers must there-
fore either write their own programs or resort to less efficient

trial-and-error methods.

The computer program presented in this paper maximizes the
likelihood of the choice matrix (trip table) of a multinomial
logit model with marginal constraints and multiattribute util-
ities given observed choices (trips) using a combination of
gradient search and Newton-Raphson iteration methods. The
program has been designed for interactive work at a computer
terminal to allow for maximum control of the calibration process
by the user.



1. THE PROBLEM

1.1 Choices and Interactions

Consider a population of decision makers who have to make
choices in a spatial context. Let the decision makers be sub-
divided into groups or categories, which are assumed to display
similar preferences and/or choice behaviors. Such categories
may be made up of individuals of a certain kind, households of
a certain type, or a population living in a certain location or
zone of a city. In reference to transport modeling usage, the
size of these groups is indicated by Oi’ i=1,...,1, where 0

stands for origins.

The decision makers face choice alternatives. Choice alter-
natives, too, may be classified into groups of similar character,
e.g., jobs of a certain kind, houses of a certain type, or
facilities in a certain zone. Again in reference to transport
modeling language, the size of Ehese categories is indicated

by Dj' j=1,...,3, where D stands for destinations.

The choice alternatives are characterized by attributes.
It frequently requires more than one attribute to characterize
an alternative. Some attributes are perceived similarly by
all decision makers, i.e., they vary only over alternative groups
j; others are perceived differently by each decision maker group,
i.e., they vary over i and j. In transportation terms, some
attributes are destination-specific (sometimes called attraction
variables), some are origin- gnd destination-specific, i.e.,
associated with trips. To simplify the notation, both kinds of
attributes are stored in a three-dimensional matrix X where Xijk’
k=1,...,K is the vector of K attributes of alternative group
j as seen by decision maker group i. Note that for destination-
specific attributes the xijk

With this notation, a unified spatial choice or interaction

are equal for all 1i.

model can be derived either as a random utility-maximizing choice
model or as an entropy-maximizing spatial interaction model.

The discussion partly follows Anas (1981).



1.2 Random Utility Choice Models

The random utility choice model is one possible approach
to take account of the many deviations in human behavior from
what seems to be the rational norm within the framework of
the utility-maximizing paradigm. This is achieved by subsuming
all unexplained behavior into a random component of the utility

function:
.. = W.. + €. . (1)

where uz. is the perceived utility of choice alternative group

j for decision maker group i, and uij and eij are its deter-
ministic and stochastic components, respectively. The random
term Eij is thought to represent all taste differences between
individual decision makers in decision maker group i as well as
all unobserved differences between alternatives in alternative
group j, plus all measurement and specification errors associated

with the u,..
1]

Furthermore, it is postulated that the deterministic part
of the utility function, uij’ can be expressed as a linear func-

tion of the attributes of the alternatives:

Uiy = }Z BrXisk = B'¥y5 (2)

where the Bk are, at the same time, scaling factors and weights
needed to aggregate the attributes into a common measure of
utility. The vector notation, with the prime indicating trans-

position, will be used henceforth for brevity.

The random utility model states that decision maker group

*
i will choose alternative group j over alternative j' if uij >

E
uij" The probability that this occurs is

+ €,. > U.

TR ;3= 1,00 (3)

P

+ -
Elj'

where pj]i is a conditional probability such that for any i

%lei=1 (%)



In addition, it is assumed that the stochastic terms of the
utility function, Eij’ are stochastically independent and iden-
tically distributed following an extreme value or Gumbel distribu-

tion (cf. Domencich and McFadden 1975):

w2 ¢
Prob(eij < eg) = exp-—exp[f(ggi) 8] (5)

where 02 is the variance of the distribution. If this assump-
tion holds (which is impossible to test), the binomial logit
model can be derived (cf. Domencich and McFadden 1975):

2\%
kis
In(py|i/Pyri) = (557) (W4 = Uy50) (6)

The binomial logit model is in agreement with the choice
axiom by Luce (1959) stating that tﬁe choice ratio of two
alternatives depends only on their relative utility and is
independent of other alternatives of the choice set. More
specifically, the binomial logit model says that the odds of
alternative j being preferred over alternative j' are a log-
linear function of the difference between the utilities of

the two alternatives.

From (4) and (6) the multinomial logit choice model can be

2\ %
exp[(il—) u..]
‘602 ij

= ' (7)
exp||l—=| wu..,
j' \602) 1]

where pj|i is the conditional probability (for decision maker

derived:

Pj|i

group i) that of all alternative groups j', j =1,...,J, alter-
native group j will be selected. Inserting (2) in (7) and

incorporating the root into the By vields:



where B' and ﬁij are defined as in (2).

1.3 Entropy-maximizing Spatial Interaction Models

The same model can be derived from information-theoretic
principles by using the entropy-maximizing (Wilson 1970) or
information-minimizing (Snickars and Weibull 1977) approach.
This approach determines the most random prediction of choices
(trips) consistent with macro (i.e., aggregate) constraints on
the choice matrix by minimizing the information or negative

entropy H contained in it:

Min -H = 2 ) P;y 1n Pi 4 (9)
Py § ij
subject to:
Pij_O i=1, ' I; J=1,...,30 (10)
zipij=1 (11)
J

S
U1
'o

-z _ 1 _
ijxijk =% = o g % tl] 14k k =1,...,K (12)

where the tij are observed choices of decision maker groups i
for alternative groups j, and X is the mean of attribute k
over all observed choices. Constraints (10) and (11) state
that the pij are probabilities - note that now absolute proba-
bilities summing up to one over the whole choice matrix are
used. Constraint (12) contains the available macro informa-
tion about the choice matrix. The minimization uses the La-

grangian function

ij l]k

%pijlnpij—YQ%pij‘l) ) B (ZZP -%
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with y and Bk’ k =1,...,K as Lagrangian multipliers. Setting

the first partial derivatives of this function to zero gives

H . s
Bp,_—1+lnpij—y-28kxijk—o i=1,...,I; 3 =1, . J (14)
ij k
3
_£E==z y p,,~1=0 (15)
Y id J
Rearranging (14) yields
= - ]
Pij exp (y 1) exp(B fij) (16)

and substituting into (15) and back into (16) gives the absolute

choice probabilities

exp(B'x, .)
Py = = (17)

T L expgx L)
i J

The corresponding conditional choice probabilities are

exp(B'x. .)
1) (18)

) jz' exp(B'%; 5.)

Pyl1

which is identical to (8).

1.4 Constraints and Expansions

By introducing additional constraints, the basic choice or
interaction model (8) or (18), respectively, can be diversified
to fit different planning problems or data situations. Moreover,
by expanding the model by mass terms expressing the number or
s72e of the decision maker and/or alternative groups, the model
can be adapted to situations where the number of decision makers
(demand) and the number of alternatives (supply) are not equal.
Constraints and expansions introduce the dimensions of the prob-
lem into the model, which means that henceforth the model results
are not choice probabilities pij or pjli' but predicted choices
or trips tij’



Following Wilson's (1970) classification of spatial inter-
action models, six model types can be distinguished. They are

summarized in Figure 1.

As can be seen, there is one unconstrained model, two
production-constrained and attraction-constrained models, and
one production-attraction-constrained model. The unconstrained
model is not really unconstrained, but is constrained only by
the requirement that T, the total of all predicted choices
(trips), equals 79, the total of all observed trips. The two
production-constrained models are constrained by the reguirement
that, in addition, the number of decision makers in each
decision maker group (or the number of trip origins in each
origin zone) is known and is to be matched in the predicted
choice matrix (trip table). Similarly, in the two attraction-
constrained models the number of alternatives in each alter-
native group (or the number of trip destinations in each destina-
tion zone) is known and is to be matched in the predicted choice
matrix (trip table). In the doubly constrained model both the
decision maker or origin vector as well as the alternaﬁive or
destination vector are known and are to be reproduced in the

choice matrix.

The two types of production-constrained models differ in
that one is unexpanded and one is expanded. The unexpanded type
is the multinomial logit model in its pure form, which allocates
a known number of decision makers or trip origins O-l to alter-
natives of equal size, but possibly different utility. The
expanded version includes a mass term Dj’ which accounts for
the fact that the choice set is subdivided into alternative
groups or zones of possibly different size. Similarly, the
expanded version of the attraction-constrained model includes
a mass term O; to account for decision maker groups or origin

zones of possibly different size.

The notation in Figure 1 is the usual compressed form
where the inverse of the denominator is called a balancing factor
and is included in the enumerator as A,, Bj’ or C. Note that

i
the doubly constrained model has two balancing factors, Ai and
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MODEL

MODEL

MODEL

MODEL

MODEL

MODEL

UNCONSTRAINED (COD)

H
[

1
C OiDj exp(ﬁ_gi.)

ij j

(@]
i

o 1
T / g J§ 0D, exp(B'x; )

PRODUCTION-CONSTRAINED (AO)

L
Tij Aioi exp(ﬁlgij)

A.
1

1/ Z exp(ﬁ'iij)
J

PRODUCTION-CONSTRAINED (AOD)

|
AiOiDj exp(ﬁ_zi.)

T..
1] J

o
[}

1/ g Dj exp(gfiij)

ATTRACTION-CONSTRAINED (BD)

T..
1]

B.D. e 'x. .
iP5 exp (Blxy4)

B.

; 1/ g exp(ﬁ'gij)

ATTRACTION-CONSTRAINED (BOD)

1
Tij BjOiDj exp (B Eij)
B.
]

1/} o, exp(B'x; ;)
1

DOUBLY CONSTRAINED (ABOD)

- T
Tij = AiBjOiDj exp(ﬁ'iij)
A. =1/ ) B.D. exp(B'x..)
i JE 3Py exp(Blxy
B, =1 .0. 'x..
] / g 8;0; exp(B'x;4)

Figure 1. The six model types.
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Bj’ which are mutually interdependent. The sequence of balancing
factors and origin and destination terms in the model equations

is used to identify an easy-to-remember acronym for each model
type.

For spatial planning purposes, model types 3 (AOD) and
6 (ABOD) are most widely used. The production-constrained
Model 3 (AOD) is a general location model distributing all kinds
of activities Oi such as households, jobs, shops, or services
over competing locations Dj such as zones, vacant dwellings, or
vacant land. The doubly constrained Model 6 (ABOD) is the basic
model for trip distribution in transportation planning, where
both origins Oi and destinations Dj are projected exogenously.
Various applications of these two model types are discussed,
for instance, in Wilson (1974), Batty (1976), or Foot (1981).
Model 2 (AO) predicts choices between equal sized alternatives
and may thus be viewed as the disaggregate version of Model 3
(AOD) . This model is extensively used in disaggregate travel
demand modeling, in particular for mode and route choice (see,
for instance, Domencich and McFadden 1975). The two attraction-
constrained models, Model 4 (BD) and Model 5 (BOD), are used
much less frequently, because they present some calibration
problems (which will be shown later) and can be equally well
reformulated as the corresponding production-constrained model,
i.e., either as Model 2 (AO) or Model 3 (AOD), just by exchanging
subscripts. - The unconstrained Model 1 (COD) is of no practical

importance and has been included only for demonstration purposes.

1.5 Variations

Although the six models presented above cover a wide range
of potential applications, there are some widely used variations,
which may continue to be of interest. Such variations include
different forms of the utility function or of the attraction
term Dj. It will now be shown that by a simple logarithmic
transformation, some of these can be incorporated into the

six standard models.
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(a) The Power Function

In some applications, especially in trip distribution
modeling, it may be desired to use the power function instead

of the exponential function as the spatial deterrence term, e.g.:

t.. = A,B.O.D.c.b - (19)
1] 1]1]1]
where cij is a measure of travel cost. It is easily seen that

this is equivalent to

tij = AiBjOiDj exp (-8 1n Cij) (20)

which is a one-parameter version of Model 6 (ABOD).

(b) The Tanner Function

Another alternative to the exponential form of the spatial
deterrence function is the function proposed by Tanner (1961).
A trip distribution model using the Tanner function

-8

t.. = A.B.0.D.cC

ij i737i73713 eXp(_BZCij) (21)

can be transformed into a two-parameter version of Model 6
(ABOD) :

(c) Weighted Attraction Terms

In production-constrained location models of the type of
Model 3 (AOD), the term expressing the attraction of the
competing alternatives or zones sometimes is not a single
variable, Dj' but a multiplicative aggregate of attributes
with exponents as weights (see, for instance, the residential

location model by Putman and Ducca 1978b; Putman 1980):
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Gy -B
.. = A.O, X.,. C
ij i1, jk

L c..) (23)

exp(—B2 i3

ij
In this case, the tij are residents employed in zone i allocated
to zone j. This model is equivalent to the following multi-
attribute version of Model 2 (AOQ):

tis = A0, exp(g a, 1ln Xik = By In c;. - B ) (24)

ij ij 2cij
However, even if the attraction term is a single variable, it
may have an exponent to account for, say, effects of scale as,
for instance, in the following version of the Lakshmanan-Hansen
(1965) shopping model:

_ o B

where the tij are shopping expenditures of customers from zone
i in zone j, and the Oi are total expenditures of i. This model
could be written as an AO or AOD model:

t
]

ij A;0, exp(a 1n Dj - B8 1n cij) (26)
or

AioiDj exp(a¢ 1ln Dj - B8 1n cij) (27)
The latter formulation distinguishes between quantitative and

qualitative effects of the size of the shopping facilities in j.

(d) Other Variations

There are still other model variations that cannot be
transformed into the six standard models. For instance, models
that are multiplicative in the exponent (cf. Anas 1975) or have
otherwise nonlinear utilities (cf. Wegener 1981) cannot be
estimated directly. 1In these cases, the utilities have to be
determined in a separate procedure before they can be entered

into one of the models.
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1.6 The Calibration Problem

In all of the above models, the parameter vector g deter-
mines how well the model reproduces actual choice or travel
behavior subject to the given data and constraints. Calibrating
a spatial choice model, therefore, means finding the set of values
of B8 that yields the closest possible correspondence between
the choices (trips) predicted by the model and actual choices
(trips) observed in reality. It is assumed throughout that a
matrix of observed choices (trips) considered relevant for the

problem at hand is available.

It is the purpose of this paper to propose a method for
estimating the optimal vector B for this range of models from
a given choice matrix and to present a reliable and efficient

computer program for executing this estimation.

2. THE ALGORITHM
2.1 The Super Model

To calibrate the range of models presented in the preceding
section, a hybrid super model incorporating all terms of all

six models has been devised:

- 1
tij = AiBjCOiDj exp (8 Eij) (28)

where the constraints are:

A, =1/ [/E § ByD exp (B Eij)] (29)

By = 1/ [/E z A0, exp(@_'ggij)] (30)
—_ O 1

c=17T / z g AiBjOiDj exp (8 Eij) (31)

the absolute choice probabilities (C cancels out)

(32)
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and the conditional choice probabilities (Ai, Oi’ and C cancel

out)

B.D. exp(f'x.,.)
Pal. = J ] 1] (33)

I T ey exp(x, )
J

From the super model, all other models can be derived by setting

terms not needed to unity. This is illustrated in Table 1.

Table 1. Derivation of model types from the super model.
Model A. B. C 0. D,
1 ] 1 ]
1 (COD) 1 ] C 0. D.
1 ]
2 (AO) Ai 1 1 0i 1
3 (AOD) A, 1 1 0. D.
i 1 1
4 (BD) 1 B. 1 1 D.
( ] ]
5 (BOD) 1 B. 1 D.
] 1 ]
6 (ABOD) A, B. 1 D.
1 ] 1 ]

2.2 Maximum Likelihood

The problem addressed in this paper can now be restated as
finding the best-fit parameter vector B for the super model in
its various realizations. As indicated earlier, the maximum
likelihood of the choice matrix has been selected as the crite-

rion of goodness-of-fit.

The maximum likelihood principle states that, given a
stochastic model with unknown parameters, that set of parameter
values is considered to be the best estimate that has the highest
probability of reproducing the data. In this particular context,

the stochastic model is the super model defined by (28)-(33),
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the unknown parameters are the B, and the data are the observed
choices tij. The probability that from 7° independent choices

a choice matrix t will be generated is (up to a constant)

(o]
nig) = 11 11 p; 4 (8) “13 (34)
i

where L(B) is the likelihood function. Maximum likelihood estima-

tion of the parameter vector B consists of finding that vector 8

that maximizes the likelihood function or its logarithm

Maximum likelihood estimation of the parameters of a choice
or interaction model then means to maximize the loglikelihood

function (35) for the super model (32)

t
A;BOD, exp(B'x, .)

Max L*(B) =} ] tij 1n L J (36)
1
B ij g % A;B,0,Dy exp (B X;5)
subject to the constraints (29) and (30)
A, = ! (37)
Z Bij exp (B §ij)
]
Bj = (38)
1
g A;0; exp(B'x;.)

where Ai, B., Oi’ and Dj are set to unity as specified in Table

J
1 to account for the different model types.

2.3 Derivatives

For maximizing (36), first it is temporarily assumed that
Ai, Bj’ Oi’ and Dj' if present, are constants, although Ai and

Bj’ as can be seen from (37) and (38), depend on f. Under this

assumption, the function (36) is continuous and differentiable
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and has a unique maximum. To solve this unconstrained nonlinear
optimization problem, a procedure built on a combination of n-
dimensional gradient search and Newton-Raphson iteration methods
has been developed. Both methods require the first and second

derivatives of (36) to be calculated.

For this, equation (36) is rewritten

* (o] '
Max L*(8) = J J t.. 1n (A,B.O.D.) + ) J t>;.(B'x..)
8 i3 ij i7371i7) i3 ij 1]
(39)
o
- J )t 1n|] ] A.,B.O.D. exp(B8'x..)
i5 ij [i 3 i737i73 ij ]
The gradient of first derivatives of this function is
aL* (B) o o
9 B) = —g— = ) Z £15%5k = T I} Pi %5k (40)
k i3 i3
and the Hessian matrix of second derivatives
3g, (8) 32L* (g)
h ,(B) = =
ke = 382 BBkBBE
‘ (41)
o
=T | ) ) PyiXiayXesp, = <Z ) DP.iX. . ) ) DX,
[i 3 i37ijk7ijL i3 i37ijk i3 ijTije
where k,£ = 1,...,K. The maximum of the loglikelihood function
(36) is where its gradient (40)
gk(g) =0 k=1,...,K (42)

The derivatives calculated according to (40) and (41) could
be used for the estimation of the parameters of all six models
contained in the super model. However, for reasons of computa-
tional efficiency, it is preferable to work with the conditional
probabilities pjli instead of the absolute probabilities pij'
where this is possible. This is the case with models 2 (AO), 3
(AOD) , and 6 (ABOD), in which the production constraint ensures

that
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O = —
) iy = ) £ i=1, I (43)
J J
and thus
°© X, L, = 9. X, k=1,...,K 44
T g § Pii¥ijk g (§ ij § Pili*iqk (44)

Taking advantage of (44), the gradient (40) can be expressed in

terms of conditional probabilities:

aL* (B)
g, (B) = ——— =7} t9.x, ., - ) £9. Y DL iX. o (45)
k= 38, i3 i3 ijk ¢ 3 i3) 3 jliTijk

with the Hessian matrix

g, (B) 32L* (8)

h (B) = = =
ke = BBK BBkBBK

(46)
(]
- g (% tij)[§ Pyli*¥19k®ije ~ (% pj|ixijk> % pj[ixijz]

It can be seen that these are the derivatives of the loglikeli-

hood function of the super model expressed in conditional prob-

abilities (33):

B.D. exp(B'x.,.)
J J Pl X

= (47)

Max L*(8) = ] J t?. 1n
B ij

B ]

In the maximization procedure described below, the condi-
tional probabilities (33) and their derivatives (46) and (47)
are used for models 2 (A0O), 3 (AOD), and 6 (ABOD), while for

the remaining three models the absolute probabilities (32) and

their derivatives (40) and (41) are used.

2.4 Maximization

The maximization procedure used is a combination of n-dimen-
sional gradient search and Newton-Raphson iteration methods. The

reason for using two different numerical techniques lies in the



-19-

different characteristics of these two methods; the gradient
search method in general has a high probability of convergence,
but tends to be slow on flat solution surfaces. The Newton-
Raphson technique is usually much faster, but can diverge from
bad starting values. For a discussion of these and other
techniques for nonlinear parameter estimation, see among others
Bard (1974), Schwetlick (1979), Stopher and Meyburg (1979),
Manski and McFadden (1981), and Churchhouse (1981).

Both methods start from initjial estimates of the values of
B and proceed by iteratively improving them, until an optimum

is reached:
Bk(n+1) = Bk(n) + ABk(n) k=1,...,K (48)

where n is the number of the iteration. The two methods differ,
however, in the manner by which the parameter increments ABk

are determined.

The gradient method uses the gradient g to establish the
direction of steepest ascent on the solution surface and uses
the Hessian matrix Q to determine a stepsize for movement along

that direction:
g'g

AB, = —— g
' k
|g'hg|

K k =1,...,K (49)

where again the prime denotes transposition, and g'g is the

gradient norm.

The Newton-Raphson method, on the other hand, solves the
system of K nonlinear equations (42) by approximation using
Taylor series expansion truncated after the first order term:

9y (8) f%hkz(gmsﬂ= 0 kK =1,...,K (50)

or

% hy, ,(B) 8B, = =g, (B) k=1,...,K (51)
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This system of K linear equations with K unknowns can be solved
by a standard numerical technique like the Gauss-Jordan methoa
(cf. Churchhouse 1981) to yield a set of ABk.

Thus both methods are interchangeable, but of different
effectiveness. The strategy is to use the more efficient Newton-
Raphson technique as much as possible and to use the gradient
technique only where divergence seems to occur. The optimiza-

tion process comes to an end when a convergence criterion is met.

2.5 Introducing the Constraints

The optimization procedure described so far is unconstrained,
i.e., it disregards constraints (29)-(31). These constraints
are introduced numerically between iterations by calculating
new balancing factors Ai and Bj' where applicable, after each
iteration and feeding them back into the calculation of the
probabilities (32) or (33) in the next iteration. This is
equivalent to numerical approximation of the Lagrangian multi-

pliers of the corresponding constrained optimization problem.

The balancing factors Ai and Bi are calculated using the
biproportional adjustment technique known as Furness or Fratar
method in transportation planning and as the RAS technique in
input-output analysis. Willekens et al. (1979) and Willekens
(1980) have shown the close relationship of this technique to
the entropy-maximizing method. Here the original RAS algorithm
suggested by Stone (1963) for the updating of input-output

matrices is used.

The RAS algorithm, like all biproportional adjustment
techniques, adjusts the elements of a given two-dimensional
matrix such that (a) given constraints on the marginal sums of
the matrix are satisfied and (b) the adjusted elements of the
matrix stay as close as possible to their prior values. In
other words, if a_ is the prior matrix, the RAS algorithm seeks

~0
to determine two vectors r and s such that

a=r'a s (52)
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where a is the posterior (adjusted) matrix satisfying the
constraints, hence the algorithm's name. It is obvious that,
if a

o is replaced by the predicted choice matrix t, r and s

contain the desired balancing factors Ai and Bj'

The RAS algorithm proceeds by iteration. In each iteration,
first the rows and then the columns of the matrix are adjusted
such that

tij(m+1) €55 (m)0; / % tij(m) i=1,...,I (53)

and

tij(m+2) tij(m+1)D. / Z tij(m+1) 3 1,¢e0.,3 (54)

J i
where m is the number of half-iterations. The algorithm is
certain to converge to a unique optimum and ends when a conver-

gence criterion is met.

The balancing factors Ai and Dj can be derived by calculating
in each iteration

A; (m+1) = A, (m)O; / § ty4(m i=1,...,I (55)
and
By (m+2) = By(m+1)Dy / y tygme) 3 =1,...,3 (56)

J
Note that initially all Ai and Bj are set to unity and that they

retain their updated values between calls of the RAS algorithm

to speed up convergence.

Of course, the above iterative adjustment applies only to
the doubly constrained Model 6 (ABOD) where Oi and Dj are to be
matched by the row and column sums, respectively. For the two
attraction-constrained Models 4 (BD) and 5 (BOD), only the
second half of the RAS algorithm, i.e., equations (54) and (56),
need to be passed, and this requires no iteration. No pass
through the RAS algorithm is necessary for estimating the remain-
ing Models 1 (COD), 2(A0), and 3 (AOD), because in these models

the balancing factors do not affect the estimation results.



-22-

3. THE PROGRAM

3.1 Program Organization

The above calibration algorithm has been implemented in a

computer program called LOGIT.

LOGIT is written in Fortran. It consists of a short main
program and 19 subroutines. Each subroutine performs a specific
task and returns its result to the calling program. Figure 2

represents the hierarchical organization of LOGIT:

IPUT — TRIP
IDAT

NORM — RAST
| MDAT INIT | PROBT
MAIN - —| MLML DERV1
BETA | PROB2
|| TRIP || DERV2
|| EcaL RAST GRAD
| MEAN | NEWT

STAT

TTAB

Figure 2. Program organization of LOGIT.
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The program is organized such that with one set of input
data several calibrations using different constraints and/or
attributes can be performed. This is the outer loop of the
program. Within each calibration, the optimal-fit parameter
vector is approached by iteration. This is the inner loop.
Figure 3 is a flow diagram showing the normal flow of information
within the program. In addition, but not shown in Figure 3,
there are options permitting the user to interrupt the itera-
tion process, inspect intermediate results and then continue,

restart, or end the calibration.

Two kinds of subprograms can be distinguished. The first
one performs calculations and input and output operations. The
second one leads a dialog with the user. The main program and
the first-level subroutines IDAT, MDAT, and ECAL are of the
second kind. They prompt the user for information or decisions
necessary for running the program. While everything has been
done in these subprograms to make interaction with the program
as convenient as possible, no effort has been made to anticipate

Oor correct user errors.

3.2 Subprograms

In this section, the 20 subprograms of LOGIT are briefly
discussed. The source code of all subprograms is listed in the

Appendix.

MAIN: The main program controls the outer loop of the
program. It calls IDAT once and MDAT and ECAL once

for each calibration.

IDAT: IDAT prompts the user for the dimension of the
problem: the number of origins (decision maker
groups), destinations (alternative groups), and
attributes. The number of origins need not to be
equal to the number of destinations, i.e., the trip
table (choice matrix) need not to be square. Two
kinds of attributes are distinguished: attributes
that vary only over destinations and attributes
that vary over origins and destinations (see section
1.1).
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specify input data
v

read input data

v

normalize attributes

v

specify model data

models

O
[S20 ]
o w

v

initialize model arrays

v

specify start vector beta

v

start iteration

v456
calculate trips

~ \2

update balancing factors

Vv 6 va5

3
1

calculate probabilities 1 calculate probabilities 2

v ¥

calculate derivatives 1 calculate derivatives 2

< convergence? >
V¥ no Y yes

gradient search Newton-Raphson iteration

] v

update vector beta

¥

(bad vector beta? \ yes

—ymo
n94<fconvergence limit? >

y ves
no < output? >

Yy yes
calculate trips

v

adjust trip matrix

v

output...

]

>< another try? \ ves

no

Figure 3. Flow diagram of LOGIT.



-25-

IPUT: This subroutine reads the input data. The program

accepts three kinds of data:

(a) Origins and/or destinations: These are optional.
If absent, origins and destinations will be inferred
by aggregation from the observed trip matrix.

(b) Observed trip matrix: Row and column sums of
this matrix need not coincide with the above

origins and destinations.

(e¢) Attributes: These can be either attributes of

destinations or of trips.

Format and organization of the input dataset are

specified in section 3.3.

NORM: All attributes read are subsequently normalized
such that the value halfway between their extremes
is between -1 and +1. This serves three purposes.
First, it separates the scaling and the weighting
function of the parameters and thus makes them
comparable. Second, it contributes to keeping
parameters in a range acceptable for exponents by
computers. Third, it increases the precision of
the parameter estimates; precision is expressed in
significant digits rather than in digits. The
normalizing factor of each attribute is stored for

later use.

MDAT: For each new calibration, MDAT prompts the user
for model type, specification of origins and desti-
nations, and selection of attributes. Attributes
may be selected from the attributes present on the

input dataset in any order.

INIT: Depending on these specifications, INIT initializes
model arrays, in particular origins, destinations,
and balancing factors. The balancing factors are
always set to unity.
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This subroutine controls the execution of one
calibration. It asks for a start vector of betas

as initial values and calls MLML, which performs

the parameter estimation. 1In addition, ECAL handles
the options permitting the user to look at inter-
mediate results, restart the calibration, or specify

the program output.

This subroutine controls the parameter estimation
process, i.e., the iterative maximization of the
likelihood function. Depending on the model type
selected, MLML in each iteration calls the requisite
subroutines calculating balancing factors, proba-
bilities, and derivatives. For the calculation of
parameter changes, MLML normally calls the Newton-
Raphson procedure NEWT. However, if the parameter
changes, instead of getting smaller, continue to
increase considerably over more than one iteration,
MLMI. assumes that divergence is occurring and calls
the more reliable gradient search procedure GRAD.

In the first iteration, GRAD is always called to
avoid divergence due to bad starting values. MLML
also checks parameter values and if they become

too large asks for a new start vector. If the
parameter changes approach zero at the level of five
significant digits, it is assumed that the optimum

has been reached and the iteration process is stopped.

This subroutine calculates the choice probabilities
following equation (33). These probabilities add
up to unity in each row and thus are appropriate

for model types 2, 3, and 6.

In this subroutine, the first and second partial
derivatives of the likelihood function are calculated
according to equations (45) and (46), respectively,

using the probabilities calculated in PROBI1.
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PROB2: PROB2 is equivalent to PROB1, except that the prob-
abilities are calculated as in equation (32), i.e.,
add up to unity over all rows of the choice matrix.
These probabilities are used for model types 1, 4,
and 5.

DERV2: DERV2 is equivalent to DERV1, except that equations
(40) and (41) and the probabilities calculated in
PROB2 are used.

GRAD: Subroutine GRAD is called when the gradient search
method is to be applied. GRAD calculates an
increment to each parameter according to equation
(49).

NEWT: Subroutine NEWT is called when the Newton-Raphson
method is to be applied. NEWT calculates the
parameter increments by solving the system of linear
equations (51) using the Gauss-Jordan method (cf.
Churchhouse 1981).

BETA: BETA writes the estimated parameter values on the
terminal and/or on the output printer file. Note
that these parameter values have to be multiplied

by their associated normalizing factors.

TRIP: This subroutine generates the trip table or choice
matrix following equation (28) using the new param-
eter estimates and the balancing factors of the
previous iteration. During the estimation process,
calculating trips is necessary only for model types
4 (BD), 5 (BOD), and 6 (ABOD), while after the
estimation the subroutine is used to generate the
trip table for the output dataset regardless of
model type.

RAST: This is the RAS algorithm for matrix adjustment
according to equations (53)-(56). During the
estimation process, the subroutine is called only
for model types 4 (BD), 5 (BOD), and 6 (ABOD). After
the estimation, when preparing the output dataset,
the subroutine is used for all model types except
Model 1 (COD).
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This subroutine calculates totals and/or means of
trips and attributes of the observed and predicted
trip table. Observed and predicted values are

equal if origins and destinations are taken from the
observed trip table, but may differ if other origins
and/or destinations have been specified. Note that
the normalized attributes now have been restored

to their original magnitudes.

In this subroutine, a number of statistics expressing
the goodness-of-fit between the observed and the
predicted trip table are calculated and written on
the terminal and/or the output printer file. The

following statistics are used:

(a) loglikelihood ratio: the ratio between the
maximum value of the loglikelihood function achieved
in the calibration and the maximum possible value.

A ratio of one would result if both trip tables

were identical:

o]

D) tiy In tyy
- i3
LLR = 5 5 (57)
g % tij 1n £

Note that the constant term —TO 1n TO has been
dropped in the denominator and in the numerator to
make the measure more sensitive.

(b) slope b and intercept a of a regression line

t2. = bt

T + a
1]

ij
(c¢) correlation coefficient r, coefficient of deter-

mination r2, and t of r2 in their usual meaning
(d) mean absolute percentage error calculated as
o
YOy oeS. - ot
{93 ij ij

MAPE = = 100 (58)
T
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These statistics are most meaningful if origins
and destinations are aggregated from the observed
trip table. If other origins and destinations are
specified, the statistics represent the combined
effect of differences in the constraints and of
errors in the prediction.

TTAB: This subroutine writes the predicted trip table
(choice matrix) on the output dataset. The format
of a trip table on this dataset is identical to
that of the observed trip table on the input data

set (see section 3.3).

3.3 Input

Input is entered to the program through the user's terminal
(Fortran number 5) and an input dataset (Fortran number 8).
While input requests by the program at the terminal are self-
explanatory, the organization and format of the input dataset

need to be specified.

The input dataset is organized by record groups. Each
record carries a record group identification. Within each record
group, the records are sorted in ascending order. Record group
identification and sorting number are not read by the program.

The dataset consists of 80-byte card-image records with

the following format:

column 1-4 record group identification
column 5-8 sorting number

column 9-10 blank

column 11-70 10 data fields, 6 columns each
column 71-72 blank

column 73-80 seguence number

The data fields may or may not contain a decimal point at any
desired position. On some computers, no sequence numbers are

recognized.

There are four kinds of data on the input dataset: (1)

origins and destinations, (2) observed trips, (3) attributes of
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zones, and (4) attributes of trips. They are stored in this

order on the dataset:

(1) Origins and destinations: The first records contain
first the origins, ten to a record, and then the
destinations. If I is the number of origin zones,

(I - 1)/10 + 1 records are needed for the origins.

If J is the number of destination zones, (J - 1)/10 + 1
records are needed for the destinations. Origin and
destination records may be blank if origins and destin-
ations are to be taken from the observed trip table.

(2) Observed trip table: Observed trips are stored ten
to a record in (J - 1)/10 + 1 record groups, each
containing I records. Hence, I(J - 1)/10 + 1 records
are needed to store the trip table. Within each record
group, ten columns of the trip table are stored (possibly
less in the final record group). To give an example,
for a 30-zone system the following records will result:

record 1-30 trips to zones 1-10
record 31-60 trips to zones 11-20
record 61-90 trips to zones 21-30

(3) Attributes of =zones: Zonal attributes are stored from
left to right on one record per zone. Thus J records
are needed for storing zonal attributes. If no zonal
attributes are present, no zonal attribute records

must be included in the dataset.

(4) Attributes of trips: Trip attributes are stored as
matrices of exactly the same format as the observed
trip table. Any number of attribute matrices up to

| the maximum number of attributes may be present.
If no trip attributes exist, the dataset ends after

the zonal attributes records.

The program is presently dimensioned to handle up to 30
origin zones (decision maker groups), up to 30 destination zones

(alternative groups), and up to 8 zonal or trip attributes.
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The last page of the Appendix contains a test dataset for a

10-2zo0ne system with no zonal attributes and four trip attributes.

3.4 Output

Output is written by the program to the user's terminal
(Fortran number 6), to a printer file (Fortran number 7), and
to a card-image output dataset (Fortran number 9). Except

terminal output, all output is optional.

The printer file contains the estimation results and
statistics as produced by subroutines BETA, MEAN, and STAT.
The card-image dataset contains the predicted trip table in

the same format as the observed trip table on the input dataset.

3.5 Portability

The program LOGIT is written in a subset of Fortran 77 that
should be compatible with any Fortran IV compiler (if the few
CHARACTER specifications are removed). The program requires

no other subroutines or functions except standard functions.

Although the program is presently dimensioned to handle
a 30-zone system and up to 8 attributes, these dimensions can

easily be adapted to larger problems.

To facilitate portability, input and output have been
deliberately kept primitive on the assumption that researchers
working in this field have at their disposal programs for pro-

cessing and displaying data of this kind.

4. AN APPLICATION
4.1 The Data

In this section, an illustrative application of the program
LOGIT will be presented. The data for this application have
been taken from a project on spatial change processes in the
urban region of Dortmund, FRG (cf. Wegener 1982). The region
has a population of about 2.4 million and is subdivided into 30

zones in the project.
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The data used in this application are work trip data of
the year 1970 and travel times and travel costs of both the
public transport and the highway system. No origins or destin-
ations different from those of the observed work trip table
are provided, nor are any zonal attributes or attraction vari-
ables. Thus, the input dataset for this 30-zone system con-
sists of six blank records (substituting for the origins and
destinations) plus five blocks of matrix data with 90 records
each (one matrix containing observed work trips and four

matrices containing trip attributes).

For demonstration purposes, also a 20-zone system and a
10-zone system have been artifically created by taking the
innermost 20 or 10 zones of the 30-zone system, respectively,
discarding the rest of the region. The test dataset listed

in the Appendix is the input dataset of the 10-zone system.

The travel time and travel cost data were derived from a
transportation model based on public transport and highway link
data and employing minimum-path and congestion-sensitive
assignment techniques. Public transport travel times include
access, waiting, in-vehicle, and transfer waiting time. Car
travel times include access, driving, congestion, and parking-
search time. Public transport costs are based on a flat fare
plus a distance-dependent component. Car travel costs only
include out-of-pocket costs of a car trip, i.e., gasoline costs
and parking fees.

4.2 A Small Model

First, a very small application example will be presented
in detail. It uses the 10-zone system with a reduced dataset:

only the two travel time attributes are considered. The reduced
input dataset is shown in Figure 4.

The task is to estimate the parameters of a trip distribution
model from these two attributes such that (a) the predicted
origins and destinations equal the origins and destinations
of the observed trip table, and (b) the predicted flows are as
close to the observed flows as possible. Obviously, the appro-
priate model type is Model 6 (ABOD).
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Figure 5 is a protocol of the dialog between the user and
the program LOGIT as it would appear on a hardcopy terminal.
It can be seen that the program, after having received its
directions, writes the results of each inner-loop iteration on
the terminal: the first column (Zt) is the number of the cur-
rent iteration. The second column (ras) shows the number of
iterations required in the RAS algorithm to reach convergence;
this number starts at one (a consequence of choosing two zeros
as starting values), then jumps to six and gradually returns
to one. The third column monitors the accumulated absolute
change of the parameter values occurring in this iteration.

It can be observed that the gradient search method (which is
always called into action in the first iteration) pushes the
parameter values from the arbitrarily selected starting values
already very close to their final position. The rest is accom-
plished by the Newton-Raphson method in six more iterations,
and it can be seen that the parameter changes decrease rapidly
from one iteration to the other.

The program then displays the result of the calibration,
i.e., the final parameter values with their normalizing factors
(see subroutine NORM). The notation used means that in this case
both parameter values have to be multiplied by 10-2. As oOne

might expect, the parameters of both attributes carry a minus

sign.

The user may then ask for some statistics about the solution
and he will see the results of subroutines MEAN and STAT dis-
played on the terminal. As is to be expected, total trips;
trips per observation, and the means of both attributes are
identical for the observed and for the predicted trip matrix.

The high loglikelihood ratio seems to indicate a very good fit.
Also the slope and intercept of the regression line are very
close to one and zero, respectively, where they belong. The cor-

relation coefficient and the r2

-statistic, too, convey a close
correspondence between observed and predicted trips. However,
the mean average percentage error could be less for a doubly

constrained model.
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specify input data:
enter no. of origins (decisionmaker groups)
10
enter no. of destinations (alternatives)
10
enter no. of attributes of alternatives
0
enter no. of trip (distance) attributes
2
specify model data:
select model type:
unconstrained (cod)
production-constrained (a
production-const rained (a
attraction-constrained gb
b
d)

O A0 0
[« TRNEPY © TR

)

attraction-constrained
doubly constrained (abo

(02N ) IR GV NS Ry

6
specify origins:
1 take from input origins
2 aggregate from observed trips (choices)

specify destinations:
1 take from input destinations
2 aggregate from observed trips (choices)

attribute selection?
n
enter start vector beta: 2 number(s)
0,0
select one:
1 stop after intermediate steps
2 continue until final solution

ras change beta 1 beta 2

1 8.8903 -6.7484 -2.1419

6 0.9479 -7.0615 -2.7768

4 0.1464 -7.0589 -2.9205

3 0.0221 -7.0567 -2.9404

2 0.0028 -7.0564 -2.9429

2 0.0004 -7.0563 -2.9432

1 0.0000 -7.0563 -2.9433
gradient search terminated at iteration 7
parameter changes less than specified limit

QOGN = o

doubly constrained model (abod):

beta 1 (1.e-02) . . . « « « . . . -7.0563%
beta 2 (1.e-02) . . . . « « < . . -2.9433

Calibration of small model.
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select one:

1 new start vector beta

2 repeat with present balancing factor(s)
3 statistics

4 continue until final solution

5 exit
totals and means: observed predicted
observations . . . . . 100 100

trips (choices) . . . . 198329 198329
trips/observation . . . 1983%.29 1983%.29
mean of attribute + . . 29.93%2 29.93%2
mean of attribute 2 . . 20.068 20.068

statistics:

loglikelihood ratio . . . . . . . 0.9971
slope « . . . e e e e e e 1.0021
intercept . . . . e e e s -4.14
correlation coefflclent ST 0.9892
r-squared . . e e e e e e e 0.9784
t of r—squared . .. . o .. 66 .70
mean absolute percentage error . 13.46

select one:

1 new start vector beta

2 repeat with present balancing factor(s)
3 statistics

4 continue until final solution

5 exit
output?

another try?

Continued.
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In Table 2, observed and predicted trips are compared. As
specified in the constraints, row and column totals of both trip
tables are equal (except for round-off errors during printout).
However, a flow-by-flow comparison between observed and predicted
trips reveals that the predictive power of the calibrated model,
despite most goodness-of-fit statistics being excellent, is
no more than satisfactory. This suggests caution towards most
goodness-of-fit statistics of spatial interaction models except
the MAPE statistic. This view has been expressed also by other
researchers (see, for instance, Smith and Hutchinson.1979).

4.3 More Models

In a similar way as demonstrated with the small model, the
program was tested with a variety of zonal systems, numbers of
attributes, and model types. In particular, it was investigated
how sensitive the calibration results are to variations in zones,
attributes, or model type, keeping everything else equal. The
results of these experiments are summarized in Tables 3-6.

In the first experiment, one model type, Model 6 (AROD),
was tested with different zonal systems and between one and
four attributes. It may be recollected that the three zonal
systems used are not really different, but that the two smaller
ones are subsets of the 30-zone system. Table 3 shows the
parameter values estimated in the calibration, and Table 4 shows

selected goodness-of-fit measures associated with them.

It can be observed that adding more attributes to the model
in general increases its explanatory power, but not in all cases.
Most often, a considerable improvement in fit is achieved by
adding the second attribute, but only very little is contributed
by the third and fourth one. The parameters of three of the
four attributes always have the expected negative sign, while
the parameters of the third attribute, obviously due to inter-
actions between the attributes, always turn out to be positive.
This is disturbing, since this attribute represents public

transport fares.



Table 2. Calibration results of small model: observed versus predicted trips.

Observed trips

1 2 3 4 5 6 7 8 9 10 y
! 15,490 2,900 2,957l 285 504 471 231 634 375 454 24,301
2 6,442 14,601 3,203 647 228 627 292 590 336 238 27,204
3 8,552 3,284 10,780 241 153 996 385 880 341 204 25,816
4 3,000 3,133 1,199 7,183 225 260 106 245 124 74 15,549
5 3,333 4,210 1,917 307 5,404 1,063 357 493 153 100 17,337
6 4,827 3,125 3,188 269 536 6,721 733 901 221 138 20,659
7 3,275 1,474 1,807 144 102 518 6,275 2,997 264 107 16,963
8 3,465 1,408 2,105 171 53 313 736 9,249 467 120 18,087
9 5,173 2,372 1,947 232 87 298 226 1,390 5,452 237 17,414
10 3,979 1,397 1,088 152 371 221 118 315 260 7,098 14,999
) 57,536 37,904 30,191 9,631 7,663 11,488 9,459 17,694 7,993 8,770 198,329

Predicted trips

I 2 3 4 5 6 7 8 9 10 y
I 15,009 3,315 3,110 375 224 581 205 811 399 - 273 24,302
2 6,005 16,054 2,442 734 427 409 127 619 272 115 27,204
3 8,359 3,264 9,988 329 220 1,457 258 1,272 297 374 25,818
4 3,171 3,499 1,013 6,921 361 149 35 257 65 79 15,550
5 3,670 4,085 1,473 629 4,782 1,435 526 523 155 60 17,338
6 5,246 2,028 5,022 153 824 4,808 868 1,346 178 185 20,658
7 3,100 1,064 1,466 85 476 1,369 6,285 2,827 233 58 16,963
8 3,551 1,496 2,213 138 152 684 884 8,457 414 98 18,087
9 5,627 2,205 1,511 146 139 299 214 1,273 5,362 638 17,414
10 3,796 895 1,954 122 60 298 56 310 618 6,890 14,999
) 57,534 37,905 30,192 9,632 7,665 11,489 9,458 17,695 7,993 8,770 198,333

_82_
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Table 3. Calibration results of Model 6 (ABOD) for different
zonal systems: parameters.

Number of Number of beta 1 beta 2 beta 3 beta 4
zones attributes x 0.01 X 0,01 X 0.1 x 0.1
10 1 -7.9009

2 -7.0563 -2.9433 a

3 -7.3850 -3.2000 +O.5592a a

4 -7.4676 -2.5328 +0.5878 -0.1269
20 1 -8.4531

2 -6.2621 -6.5190

3 -6.2789 -6.5717 +0.2707

4 -6.7472 -2.7470 +3.2603 -6.9092
30 1 -9,0090

2 -6 .0485 -8.2175

3 -6.1418 -8.4361 +0.9683

4 -6.3721 -6.7160 +2.2035 -2.8184
2% 1.0

Table 4. Calibration results of Model 6 (ABOD) for different
zonal systems: statistics.

Number of Number of

zones attributes LLR Slope Intercept r2 MAPE
10 1 0.9968 1.0028 -16.28 0.9730 14,89
2 0.9971 1.0021 =4.14 0.9784 13.46
3 0.9973 0.9910 17.87 0.9780 13.43
4 0.9973 0.9924 15.10 0.9782 13.48
20 ] 0.9936 1.0314  -28.17 0.9781 19.67
2 0.9954 1.0143 -12.78 0.9868 15.56
3 0.9954 1.0137 -12.27 0.9868 15,57
4 0.9956 1.0144  -12.92 0.9877 15.29
30 1 0.9936 1.0127 -12.25 0.9949 17.43
2 0.9956 1,0070 -6.72 0.9973 13.01
3 0.9956 1.0072 -6.97 0.9973 13.10
4 0.9956 1.0088 -8.48 0.9973 13.06
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Table 5. Calibration results of different model types for

30-zone system: parameters.

Number of beta 1 beta 2 beta 3 beta 4
Model attributes X 0.01 X 0.01 X 0.1 x 0.1
1 (COD) | -7.6210

2 -7.0815 -1.0815

3 -5.5109 -0.9941 -10.0975

4 -4.8385 -6.8728 -16.2628 +11.3280
2 (A0) ] =-9.3440

2 -8.8248 -1.4775

3 -8.0403 -0.1299 ~-7.2623

4 -10.0317 +16.5646 +4.9628 -29.5222
3 (AOD) 1 -9.1192

2 -6.0140 -8.0077

3 -5.9998 ~7.9840 -0.1267

4 -5.8502 -9,2271 -1.3382 +2.4552
4 (BD) 1 -9,2288

2 -8.1183 ~3.0334

3 ~7.0052 ~1.7155 -9.2298

4 -7.7352 +4.0910 -4.5550 -10.4606
5 (BOD) 1 -8.3357

2 -6.5403 -4.,6992

3 -5.8937 -3.7171 -5.7258

4 -6.8097 +2.8541 +0.1330 -11.8827
6 (ABOD) 1 -9.0090

2 -6.0485 -8.2175

3 -6.1418 -8.4361 +0.9683

4 -6.3721 -6.7160 +2.2035 -2.8184
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Table 6. Calibration results of different model types for
30-zone system: statistics.

Numbgr of ' 2
Model attributes LLR Slope Intercept r MAPE
1 (COD) 1 0.9702 0.8238 170.21 0,8692 57.97
2 0.9704 0.8417 152.94 0.8594 57.88
3 0.9721 0.8194 174.42 0.8810 55.41
4 0.9728 0.8272 166.91 0.8825 55.60
2 (AO) 1 0.9778 1.1425  =137.64 0.9633 40.94
2 0.9779 1.1451 -140,15 0.9640 40.73
3 0.9786 1.1300 -125.55 0.9712 38.99
4 0.9819 1.1232 -119.02 0.9701 34.63
3 (AOD) 1 0.9910 1.0010 -0.94 0.9889 22.04
2 0.9935 1.0127 -12.31 0.9914 18.80
3 0.9935 1.,0126 -12.18 0.9914 18.79
4 0.9935 1.0126 -12.16 0.9916 18.62
4 (BD) 1 0.9831 1.1127 -108.91 0.9653 35.79
2 0.9835 1.1153 =110.42 0.9640 36.01
3 0.9846 1.1015 -98.08 0.9764 33.60
4 0.9849 1.1098 -106.06 0.9782 32.60
5 (BOD) | 0.9845 0.9765 22,71 0.9767 33.32
2 0.9845 0.9802 19.10 0.9760 32.89
3 0.9858 0.9775 27.75 0.9782 32.62
4 0.9863 0.9831 16.34 0.9811 31.56
6 (ABOD) 1 0.9936 1.0127 -12.25 0.9949 17.43
2 0.9956 1.0070 -6.72 0.9973 13.01
3 0.9956 1.0072 -6.97 0.9973 13.10
4 0.9956 1.0088 -8.48 0.9973 13.06
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As may be expected, the parameter values change if more
attributes are added to the model. However, they also change
when more zones are added to the spatial system. This is no
less disturbing, since it means that either different spatial
behavior is present in different parts of the urban region or
that the spatial deterrence function of this kind of model is

dependent on the trip length distribution in the system, or both.

In the second experiment, not the system size, but the
model type was varied. Now all six model types of Figure 1
were applied to the full 30-zone system. Tables 5 and 6 sum-

marize the results of these calibrations.

It can be seen that the different constraints imposed by
the different models have an even stronger effect on the param-
eter values than changes of the zonal system. Now the parameters
of some attributes even change their sign. Moreover, the magni-
tudes of the same parameters differ considerably between model
types. Not surprisingly, the goodness-of-fit measures achieved
with the six models differ widely. The model type consuming
the maximum amount of exogenous information, Model 6 (ABOD),
is the most successful in reproducing the observed trip matrix,
while the model that uses the least such information, Model 1
(CoD), performs worst. This conforms with the findings of
Openshaw (1976). As in the first experiment, the most sensitive
goodness-of-fit measure seems to be the MAPE statistic, which
varies between 13 percent for the two-parameter ABOD model and
58 percent for the one-parameter COD model, or by a ratio of

almost 1:5.

The results of both experiments are rather depressing.
They say that the precision with which the model parameters
are estimated in the calibration procedure is a spurious one.
In fact, the estimated parameters are more likely to be an
artefact of the accidental combination of zones, attributes,

and constraints than a true representation of spatial behavior.

If this is correct, the usefulness of models estimated by
these (and similar) techniques would be severely limited. For

forecasting purposes, they would only be applicable if no major
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changes in the zones, attributes, or constraints occurred in
the forecasting period—a very unlikely and uninteresting case.
They would be completely useless where the impacts of major
changes of the model environment are the object of investiga-
tion. For instance, forecasting the impacts of rising gasoline
prices on residential location using the four-parameter Model 3
(AOD) would lead to strange results, since in this model car
trip costs happen to figure positively. Even the crudest
heuristic choice of parameter values guided by common sense
(e.g., equal weighting of attributes) would lead to a more

plausible forecast!

4.4 Program Performance

Throughout the above experiments, LOGIT proved to be a
reliable and efficient program. In all cases, the program
reached convergence even from remote starting values. The

program never needed to ask for a new start vector.

The number of iterations required for each calibration is
comparable to numbers reported by other authors (Batty 1976;
van Est and van Setten 1977). Remarkably, the number of itera-
tions was found to be almost independent of the starting values
selected or of the number of zones or attributes. However, in
the model types 4 through 6 requiring the calculation of balancing
factors in the RAS procedure, the number of iterations increases
with the number of attributes and with the number of zones.
The largest number of iterations was required for the doubly
constrained Model 6 (ABOD).

Table 7 summarizes the performance of the program for Model
3 (AOD) and Model 6 (ABOD) with the three zonal systems used in
the experiments. 1In all cases, zeros were entered as starting
values. The table shows for each model and each combination
of zones and attributes the number of iterations and the computing
time. The computing time includes the time for reading the input
file and writing the output files and represents processing time
in seconds on the IIASA VAX 11/780 computer. The VAX is reported
to be about four times slower than the IBM/370-168. The Model 3
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results are representative also for Models 1 (COD) and 2 (AO),
while the results for Models 4 (BD) and 5 (BOD) lie between
the results listed for Models 3 and 6.

At the beginning of the experiments, the program converged
much slower in the four-parameter ABOD model, regardless of
the number of zones. Equally slow convergence was observed when
attribute 4 was entered as the only attribute. A closer inspec-
tion of the travel cost matrix of attribute 4 revealed that
excessively high parking fees had been assumed for zone 1, the
central business district, producing extreme imbalances in the
cost matrix. After these distortions had been removed, attribute

4 behaved reasonably.

Table 7. Number of iterations and computing time of Models 3
(AOD) and 6 (ABOD) for different zonal systems and
numbers of attributes.

Model 3 (AOD) Model 6 (ABOD)
Number of Number of Number of Number of
zones attributes iterations Time? iterations Time%
10 1 4 0.7 6 1.1
2 4 0.9 7 1.5
3 5 1.3 7 1.9
4 5 1.6 24 6.5
20 1 5 1.8 10 6.4
2 5 2.7 21 14.2
3 6 4.2 21 17.6
4 6 5.4 32 33.0
30 1 6 4.1 13 17.3
2 6 6.4 31 43.8
3 6 8.6 28 50.9
4 6 11.5 41 88.6

aprocessing time on the ITASA VAX 11/780 computer in seconds
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CONCLUSIONS

In this paper, a reliable and efficient computer program
for estimating spatial choice models with multiattribute utili-
ties has been presented. The application of this program for
a wide range of spatial systems, attributes, and model types
has been demonstrated. However, the experiments also revealed
serious problems connected with the stability and interpreta-
bility of the parameter estimates in the face of changing model

environments and in the presence of interactions among attributes.

Two, perhaps complementary, strategies for further research
may be derived from these results. One strategy would go in
the direction of further refinement of the models and their
calibration. One important issue under this strategy relates to
feedbacks that exist between demand variables, such as trip
distribution or locational choice, on the one hand, and supply
constraints in the interactions, such as highway congestion, on
the other hand. 1In the application presented this would mean
to feed the estimated model parameters back into the congestion-
sensitive transport model used to determine travel times and
travel costs. Ideally, the transport model would, for a given
set of parameters, simultaneously solve the trip distribution
and trip assignment problem under given link capacity constraints
yielding equilibrium travel times and costs. Algorithms that
do this consistently and efficiently have been available for
some time (Evans 1976; Florian and Nguyen 1977). If the equil-
ibrium travel times and costs are used to recalibrate the model
with the LOGIT program, a different set of model parameters may
result. These then can again be fed into the transport model,
and so on until the process converges, i.e., true equilibrium
model parameters and travel times and costs are derived. Such
a procedure has been suggested, for instance, by Boyce et al.
(1981).

However, it remains to be seen if such a complicated pro-
cedure would indeed substantially improve the explanatory power
of this kind of models. The results of the two experiments

presented in the preceding section suggest a rather cautious
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view on this matter. Therefore, a second research strategy may
also be pursued that, instead of getting the maximum fit out

of the data as they are, seeks to improve the model by respeci-
fying the data. This would include experimentation with less
rigorous, but more behaviorally oriented methods for attribute
selection, transformation, and aggregation making use of judg-
ment, plausibility considerations, and sensitivity analysis.

It can be shown that calibration results achieved with such
"softer" methods can be comparable or even better than results
derived from rigorous statistical estimation (cf. Wegener 1981).
It is hoped that by combining soft calibration methods with
efficient statistical techniques like the one presented in this
paper, more meaningful and consistent models, which also make
better predictions, can be developed.
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APPENDIX:

0O000000O00000

Q

o

10

5000
6000

6000
6010
6020
6030
6040

program logit

estimation of the parameters
of a multinomial logit model
with marginal constraints

and multiattribute utilities

authors: michael wegener
friedrich graef

date: 14 july 1982

dimension mv(8),bf(8)

character*! ma,no

data no /'n'/

call idat{(nt,na,nx,mv,bf)

mn = O
mm = mm+1

call mdat{(mm,mc,mt,nt,na,nx,mx,mv)
call ecal{mm,nc,mt,nt,na,mx,mv,bf)

write (6,6000)

read (5,5000) ma

if (ma.ne.no) goto 10
stop

tormat (at)
format (' another try?')
end

subroutine idat{nt,na,nx,mv,bf)

specifying the input data
dimension nv(8),bf(8)

write
write

’
read (5,*) nxj
write (6,60409

read (5,*) nxij

call iput{nt,na,nxj,nxij,mv)
nx = nxj+nxij

call norm(nt,na,nx, of)
return

Fortran Listing of the LOGIT Program

format
format
format
format
format
end

.

specify input data:')

enter no.
enter no.
enter no.
enter no.

of origins (decisionmaker groups)')
of destinaticns (alternatives)')

of attributes of alternatives')

of trip (distance) attributes')

-51-~
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subroutine iput(nt,na,nxj,nxij,mv)
reading the input data

common a(30),b(30),
*66(30), 80130} 1513030
dimension mv(8),xj(8)

read (8,8000) (oo{(i), i=1,nt)
read (8,8000) (do(j),j=1,na)
nk = (na—1)/1o+1
do 100 ik=1,nk
ja = (ik=1)*10+1
je = min0O(ja+9,na)
do 100 i=1,nt
read (8,8000) (to(i,Jj),j=ja,je)
100 continue
if (nxj.eq.0) goto 10
nk = (nxj-1)/10+1
do 200 ik=1,rk
ka = (ik-1)*10+1
ke = minO(ka+9,nxj)
do 200 j=1,na
read (8,8000) (xj(k),k:ka,ke)
do 200 i=1,nt
do 200 k=ka,ke
X(i,j,k) = XJ(k)
200 continue
do 300 k=1,nxj
nv(k) =
300 continue
10 if (nxij.eq.0) return
nk = (na-1)/10+1
do 400 k=1,nxij
mv{nxj+k) = nxj+k
do 400 ik=1, nk
= (ik- 1)*10+1
Je = m1nO(Ja+9 na)
do 400 i=t,
read (8,8000) (x(i, j,nxj+k), j=ja, je)
400 continue
" return

8000 format (10x,10f6.0)
end

subroutine norm(nt,na,nx,bf)
normalizing all attributes

common a{30),b(30),0(30),d(30),
*00(30),do(30), to(30,30),x(30,30,8)

dimension bf(8)

do 200 k=1,nx

xmax = -1.e30

xmin = 1.e30

do 210 i=1,nt

do 210 j=1,na

xmax = amaxi(xmax,x(i,j,k

xmin = amint{xmin,x(i,j,k
210 continue

ama = xm1n+(xmax-xm1n)*0.5

ilog = alog10(ama +1.

br(k) = 710**110g

do 220 i= 1

do 220

X(i,j,k%
220 continue
200 continue

return

end

= x(1 3,k )*vi(x)
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subroutine mdat(mm,mc,mt,nt,na,nx,mx,mv)
c specifying the model data

dimension mv(8)

character*! ma,no

data no /'n'/

write (6,6000)
write (6,6010)
read (5,%) mt
no =
md =
if (mt.ne.4) write (6,6020)
if (mt.ne.4) read (5,*) mo
if (mt.ne.2) write (6,6030)
if (mt.ne.2) read (5,*) md
call init(mt,mo,md, nt,na)
if (mm.gt.1) goto 10
mc = O
mX = nx
write (6,6040)
read (5,5000) ma
if (ma.eq.no) return
goto 20
10 me =1
write (6,6050)
read (5,5000) ma
if (ma.ne.no) return
20 mc = O
write (6,6060)
read (5,%) mx
write (6,6070) mx
read (5,*) (mv(k),k=1,mx)
return

N~

c

5000 format (at)

6000 format (' specify model data:')

6010 format (' select model type:'/
unconstrained (cod)'/
production-constrained (
production-constrained (
attraction-constrained E

d

—_

attraction-constrained

* ok ok K x ok

doubly constrained (abo

2
3
4
5
6
6020 format (' specify origins:'/
* 1
2
spe
1

a
a
b
b
)
take from input origins'/
aggregate from observed trips (choices)')
cify destinations: '/
take from input destinations'/
2 eaggregate from observed trips (choices)')
attribute selection?')
same attribute(s) as before?')
how many attributes?')
enter',i3,' attribute number(s)')

*

6030 format (
*
*

6040 format
6050 format
6060 format
6070 format
end

P T N
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subroutine init(mt,mo,md, nt,na)

initializing origins, destinations,
and balancing factors

common a{30),b(30), of

30),d4(30),
*00(3%0),do (30), to(30,30)

do 100 i=1,nt

a%i = 1.

o{i) = oo(i)

goto (100,102,103),mo
o(i) = 0.

do 110 j=1,na

o(i) = o(i)+to(i,j)
continue

goto 100

o(i) = 1.

continue

do 200 j=1,na

b(j) = 1.

a(j) = do(j)

goto (200,202,203),md
a(j) = 0.

do 210 i=1,nt

a(3) = a(jl+toli,g)
continue

goto 200

d(J) = 1.

continue

if (mt.ne.6) return
so = 0.

do 300 i=t1,nt

so = so+o(i)
continue

sd = O.

do 400 j=1,na

sd = sd+d(j)
continue

cf = sd/so

efp = (cf-1.)*100.
if (abs(efp).1lt.t.) return
do 500 i=1,nt

0(i) = o(id*csf
continue

write (6,6060) cfp
return

format (' warning: origins adjusted by',f8.1,' percent'/)

end
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subroutine ecal(mm,mc,mt,nt,na,mx,mv,bf)

execution of the calibration

dimension mv(8),bf(8),bt(8)

real*8 bt

character*! ma,no

data no /'n'/

mb = O
mp = O
mqg = O
if (

mc. eq.0) §oto 11

write (6,6000

read (5,5000) ma

if (ma.ne.no) goto 12
write (6,6010) mx

read (5,*) (bt(k),k=1,mx)
write (6,6020)

read (5,%*) ms

ng = ms+2

call mlml(mb,mq,nr,mt,nt,na,mx,mv,bt)
if (mb.eq.1) goto 10

call beta(6,mt,mx,mv,bf,bt)

if (mg.eq.4) goto 50

write (6,6030)

read (5,*) mp

goto (10,20,30,40,60),mp

call trip(nr,nt, na,mx,mv,bt)

if (mt.gt.1) call rast(O,nr,mt,nt,na)
call mean(6,nt, na,mx,mv,bf)

call stat(G,nt,naS

goto 50
mg = 4
goto 20

wite (6,6040)

read (5,%) mq

goto (10,20,3%0,20,60),mq
write (6,6050)

read (5,5000) ma

if (ma.eq.no) return

call beta(7,mt,mx,mv,bf,bt)
call trip(nr,nt,na,mx,mv,bt)
if (mt.gt.1) call rast(O,nr,mt,nt,na)
call mean(7,nt, ra,mx,mv,bf)
call stat(7,nt,na)

call ttab(9,nt,na)

return

format
format
format
format

* %

format

* ok ox ok Xk

format

* ok ok ok k

format
end

(
(
(
(
(

(

(

al)

]
'
)
'
1
1
'
1
1
1]
'
1
1
]
v
1

continue with present beta(s)?')
enter start vector beta:',i3,' number(s)')
select ore:'/
1 stop after intermediate steps'/
2 continue until final solution')
select one:'/
new start vector beta'/
repeat with present beta(s)'/
statistics'/
continue until final solution'/
exit"')
select one:!'/

Vi

1 new start vector beta'/
2 repeat with present balancing factor(s)'/
3 statistics'/
4 continue until final solution'/
5 exit')
output?')
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subroutine mlml(mb,mq,nr,mt,nt,na,mx,mv,bt)
maximizing the loglikelihood
of the multinomial logit model

either with gradient search
or newton-raphson iteration

common a(30),b(30),0(30),d4(30),
*00(30) ,do(30J, t0(30,30) ,x(30,30,8),
*p(30,30)

dimension mv(8),bt(8),g(8),h(8,8)
real*8 p,bt,g,h,eps

character*4 beta

data beta,eps,nit /'beta’,.00005,200/

it = 0

mn = 0

cn = 9999.
it = it+1

if (mg.ne.4.or.mt.1t.4) goto 10
call trip(nr,nt,na,mx,mv,bt)
call rast(O,nr,mt,nt,na)

goto (12,11,11,12,12,11),mt
call probt(nt,na,mx,mv,bt)
call dervi(nt,na,mx,mv,g,h)
goto 13

call prob2(nt, na,mx,mv,bt)
call derv2(nt,na,mx,mv,g,h)

if (mn.eq.0) call grad(mx,g,h)
if (mn.gt.0) call newt(mx,g,h)
ca = cn

if (mn.ne.1) mn = 2

cn = 0.

do 100 k=1,mx

cn = cn+dabs(g(k))

continue

if (cn.gt.ca*2.) mn = mn-1

if (mn.eq.0) goto 10

do 200 k=1 ,mx
bt(k) = bt(k)-g(k)
if (dabs(bt(k)%.gt.100.) goto 95

continue

if (it.eq.1) write (6,6000) (beta,mv(k),k=1,mx)
write (6,6010) it,nr,cn, (bt(k),k=1,mx)

if (it.eq.nit) goto 99

if (nr.gt.1.or.cn.gt.eps*mx) goto 20

write (6,6020) it

write (6,6030)

return

write (6,6040)

mb = 1

return

write (6,6020) nit

write (6,6050)

return

format (' it ras change',8(2x,a4,i2))

format (' ',i3,i4,9f8.4

format (' gradient search terminated at iteration',i4)
format (' parameter changes less than specified limit')
format (' bad start vector: try other beta(s)')

format (' maximum number of iterations exceeded')

end
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subroutine prob!{(nt,na,mx,mv,bt)

calculating choice probabilities
summing up to one over each row

common a(30),b(30),0(30),d(30),
*00(30),do(30),t0(30,30),x(30,30,8),
*p(30,30)

dimension mv (8), bt (8)
real*8 p,bt,xv,xw

do 100 i=1,nt

do 100 j=1,na

xw = 0.

do 110 k=1,mx

xw = xw+bt(k)*x(i,j,mv(k))
continue

bd = b(j)*d(j)
p(i,j) = bd*dexp(xw)
continue

do 200 i=1,nt

xv = 0.

do 210 j=1,na

xv = xv+p(i,j)
continue

do 220 j=1,na
p(i,j) = p(i,3)/ xv
continue

continue

return

end

subroutine dervi(nt,na,mx,mv,g,h)

calculating the gradient vector
and the hessian matrix for probi

common a(30),b(30),0(30),d(30),
*00(30),d0(30), to(30,30),x(30,30,8),
*p(30,30)

dimension mv (8),g(8),h(8,8),sto(30),xm(8),xs(8,8)
real*8 p,g,h,xm,xs

do 100 k=1,mx
g(k) = 0.

do 100 1=1,mx
h(k,1) = O.
continue

do 200 i=1,nt
sto(i) = O.
do 200 j=1
sto(i) =
continue
do 300 i=1\,nt

do 310 k=1,mx

xm(k) = O.

do 311 1=1,mx

xs(k,1) = O.

continue

do 32 j=1,na

gk) = glk)+to(i,j)*x(i,j,mv(k))

xm(k) = xm(k)+p(i,j)*x(i,j,mv(k))

do 312 1=1,mx

xs(k,1) = xs(k,1)+p(i,j)*x(i,j,mv(k))*=x(i,j,mv(1))
continue

g(k) = glk)-sto(i)*xm(k)

continue

do 320 k=1,mx

do 320 1=1,mx

h(k,1) = h(k,1l)-sto(i)*(xs(k,l)-xm(k)*xm(1))
continue

continue

return

end
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subroutine prob2(nt, na,mx,mv,bt)

calculating choice probabilities
summing up to one over all rows

common a(30),b(30),0(30),d(30),
*00(30),do(30),t0(30,30),x(30,30,8),
*p (30,30)

dimension mv(8),bt(8)
real*8 p,bt,xv,xw

do 100 i=1,nt

do 100 j=1,na

xw = 0.

do 110 k=1,mx

xw = xw+bt (k)*x (i, j,mv(k))
continue

abod = a(i)*b(jl*c(i)*d(j)
p(i,j) = abod*dexp(xw
continue

xv = O.

do 200 i=1,nt

do 200 j=1,na

xv = xv+p (i, )

cont inue

do 300 i=1,nt

do 300 j=1,na.

p(i,j) = p(i,§)/xv
continue

return

end

subroutine derv2(nt,na,mx,mv,g,h)

calculating the gradient vector
and the hessian matrix for prob2

common a(30),b(30),0(30),4d(30),
*00(30),d0(30),to(30,30),x(30,30,8),
*p(30,30)

dimension mv(8),g(8),h(8,8),xm(8),xs(8,8)
real*8 p,g,h,xm, xs

do 100 k=1,mx

xm(k) = O.

g(k) = 0.

do 100 1=1,mx

xs(k,1l) = O.

h(k,1) = 0.

continue

sto = 0.

do 200 i=1,nt

do 200 j=1,na

sto = sto+to(i,j)

do 200 k=1,mx

xm(k) = xm(k)+p(i,j)*x(i,j,mv(k))
do 200 1=1,mx

xs(k,1) = xs(k,1)+p(i, j)*x(i,j,ov(k))*x (i, j,mv(1))
continue

do 300 i=1,nt

do 300 j=1,na

do 300 k=1 ,mx

g(k) = glic)+toli, j)*x(1,],mv(k))
continue

do 400 k=1 ,mx

g(k) = g(k)-sto*xm(k)

do 400 1=1,mx

h(k,1) = h(k,1)-sto*(xs(k,1)~xm(k )*xm(1))
continue

return

end
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subroutine grad(mx,g,h)

gradient search method:
search alorng the steepest ascent

dimension g(8),h(8,8)

real*8 g,h,gsq,hsq,xv,qt

gsq = O.

do 100 k=1,mx

gsq = gsq+g(k)*g(k)
continue

hsq = O.

do 200 k=1,mx

xv = O.

do 210 1=1,mx

xv+h (k,1)*g(1)
continue

hsq = hsq+g(k)*xv
continue

hsq = dabs(hsq)

qt = gsq/hsq

do 300 k=1,mx

= -qt*g(k)
continue

return

Xv =

g(k)

end

subroutine newt(mx,g, h)

newton-raphson method:
solving mx linear equations
using the gauss-jordan method

dimension g(8),h(8,8)

real*8 g,h,t

do 100 k=1,mx

k1 = k+1

if (k.eq.mx) goto 101
1=k

do 110 j=k1,mx

if (dabs(h(j,k)).gt.dabs(n(1,k))) 1

continue )
if (l.eq.k) goto 101

g
if
g(k)

h

?

K,k).eq.0.) hik,k) = 1.e-10
g(k)/h(k,k)

if (k.eq.mx) goto 100
do 130 j=k1,mx

hk,j

)

= n(k, j)/n(k,k)

continue
do 140 i=k1,mx

do 14

1

Jj=k1,mx

continue

g(i)

g(i)-h(i,k)*g(k)

continue

continue

if (mx.eg.1) return
do 200 j=2,mx

k = mx+2-)

k1t = k-1

do 200 i=1,k1

g(i)

g(i)-n(i,k)*gk)

continue
return

end

J
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subroutine beta(nf,mt,mx,mv,bf,bt)

output of beta vector

dimension mv(8),bt(8),bf(8)

real*8 bt

write
write
write
write
write
write

if (mt.eq.1)
if )
if
if
if (mt.eq.5)
if

do 100 k=1,mx

(nf,9000)
(nf,9010)
(nf,9020)
(nf,9030)
(nf,9040)
(nf,9050)

write (nf,6000) mv(k),bf(mv(k)),bt(k)

continue
return

format
format
format
format
format
format
format
end

subroutine

beta', i2,’
unconstrained model (cod):'
product ion-constrained model (ao):'/)
production-constrained model (aocd):'/)
attraction~constrained model (bd):'/)
attraction-constrained model (bod):'/)
doubly constrained model (abod):'/)

trip(nr,

(*,1pe6.0,")",9("

nt,na,mx,nv, bt)

3'),0pf10.4)

generation of trip table (choice matrix)

common a(30),b(30),0(30),d(30),
*00(30),d0(30),t0(30,30),x(30,30,8),

*p(30,30),t(30,30)

dimension mv (8),bt(8)

a(i)*p(j)*o(i)*d(j)*exp(xw)

real*s p,bt

nr =0

st = 0.

so = 0.

sd = 0.

do 100 i=1,nt

so = so+o(i)

sd = sd+d(i)

do 100 j=1,na

xw = 0.

do 110 k=1,mx

xw = xw+bt (k)*x(i,j,mv(k))
continue

t(lyJ) =

st = st+t (i, j)
continue

sto = amax1(so,sd)
ef = sto/st

do 200 i=1,nt

do 200 j=1,na
t(i,3j) = t(i,j)*ef
continue

return

end
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subroutine rast(mr,nr,mt, rt,na)

biproportional (uniproportional) adjustment
of the trip table (choice matrix) using the
ras-technique and calculation of balancing
factors

common a(30),b(30),0(30),d(30),
*00(30),do(30),to(30,30),x(30,30,8),
*p(30,30),%(30,30)

dimension so(30),sd (30)
real*8 p
data eps,nit /0.0001,200/

do 100 it=1,nit

se = O.

if (mt.eq.4.0r.mt.eq.5) goto 101
do 200 i=t,nt

so(i) = O.

do 210 j=1,na

if (£(i,3j).1t.0.0001) t(i,j) = 0.0001
so(i) = so(i)+t(i,j)

continue

se = se+abs(o(i)-so(i))

so(i) = o(i)/so(i

a(i) = a(i)*so(i)

continue

do 300 i=1,nt

do 300 j=1,na

t(irj) =t(irj)*so(i)
continue

if (mt.1t.4) goto 10

sod = 0.

do 400 j=1,na

sod = sod+d(j)

sd(j) = O.

do 410 i=1,nt

if (t(i,j).eq.0.) t(i,j) = 0.0001
sd(j) = sd (3t (1,3)

continue )

se = se+abs{d(j)-sd(j))

sd(g) = d(;)/sd(g)

b(j) = b(j)*sd(j

continue

do 500 j=1,na

do 500 i=%1,nt

£(i73) = t(i,4)*sd(3)

continue

if (mt.eq.4 .or.m .eq.5) goto 10
if (se.lt.eps*it*sod) goto 10
continue

it = nit

if (mr.gt.0) write (6,6000) it
nr =1it

return

format (' no. of iterations in ras:',i4)
end
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subroutine stat(nf,nt,na)
goodness-of-fit statistics
common a(30),b(30),0(30),d(30),

*00(30),d0(30),t0(30,30),xx(30,30,8),
*p(30,30),t(30,30)

real*8 p
sx = O.
sy = 0.
sxy = O.
sxx = O.
syy = O.
sax = O.
rlx = O.
rly = O.
af = O.
nb = nt*na

do 100 i=1,nt
do 100 j=1,na

x =to(i, J)

1f (x eq.0.) x = 0.0001%
=t(i,])

if (y.eq.O.) y = 0.0001

SX = SX+X

8y = Sy+y

SXy = sSxy+x¥*y

SXX = SXX+X*X

Syy = syy+y*y

sax = sax+abs(x)

rlx = rlx+x*alog(xg

rly = rly+x*alog(y

af = af+abs (x-y %

continue

xm = sx/nb

ym = sy/nb

vXy (sxy xm*sX)/(nb-1)

vx = (sxx-xm*sx)/(nb-1)

vy = (syy-ym*sy)/(nb-1)

rl = rly/rlx

af = af/sax*100.

rc = vxy/vy

cn = xm-~rc*ym

cc = vxy/sqrt (vx*vy)

rr = cc*ce

tt = ce*sqrt(nb-2.)/sqrt(1.-rr)

write (nf,6000) rl,rec,cn,cc,rr,tt,af
return

statistics: '/

t of r-squared
mean absolute percentage error

1
* ' loglikelihood ratio .
* ' slope . . . . . .
* ' intercept . .
* ' correlation coeff1c1ent r .
* ' r-squared . . . . . . . . .
» t
* '

end

', f10.
,f10.

1
.

,£10.
, £10.
, £10.

,f10.

, f10.
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subroutine mean(nf,nt, na,mx,mv,bf)

comparison of observed and
predicted totals and means

common a(30),b(30),0f
%00(30) 40 (30 140 (36,30 ,x
*p(30,30),t(30,30)

dimension mv(8),bf(8),sx(8),sy(8)

real*8 p

sto = 0.

st = 0.

rb = nt*na

do 100 i=1,nt

do 100 j=1,na
sto = sto+to(i, )
st = st+t (i, j)

100 continue
do 200 k=1,mx
sx(k) = O.
sy(k) = 0.
do 210 i=1,nt
do 210 j=1,na

sx (k) = sx(k)+to(i,')*x(i,j,mv(k))

oy (k) = sy ()t (1, 33%x (i, jomv )
210 continue

sx(k) = sx(k)/ (sto*pf(mv(k)))

sy(k) = sy(k)/ (st*vf(mv(k)))

200 contlnue
isto = sto+0.5

ist = st+0.5
sto = sto/nb
st = st/nb

write (nf,6000) nb, rb, isto, ist,sto, st
do 300 k=1,mx .
. write (nf,6010) mv(k),sx(k),sy(k)
300 continue
return

c
6000 format (/' totals and means:',8x,'observed predicted'/

]
* ' observations . . . . .',2i10/
* ' trips (choices) . . . .’,2i10/
* ' trips/observation . . .',2f10.2)
6010 format ( ' mean of attribute',i2,’ . .',2f10.3)
end

subroutine ttab(nf,nt, na)

output of trip table (choice matrix)
common a(30) ( ),0(30),4d(30),
*50(30) ,4d0(30] , £0 (30 30). (30,30,8),
*p(30,30),t(30, 30)

dimens ion it (30)

real*s p

nk = (na-1)/10+1
do 100 1k=1 ,nk

ja = (ik-1)%10+1
je = minO( ja+9,na)
do 100 i=1,nt

do 110 j=ja, je
it(j) = t(i,j)+0.5

110 continue

write (nf,9000) ik,i,(it(j),j=ja,je)
100 continue .

return

9000 format ('t ', i1, i4,2x,101i6)
end



Test Dataset

oo 1 1

do 1 1

to 1 1 1 15490
to 11 2 6442
to 11 3 8552
to 1 1 4 3000
to 1 1 5 3333
to 116 4827
to 11 7 3275
to 1 1 8 3465
to 119 5173
to 1 110 3979
tt 111 13.0
tt 112 26.5
tt 11 3 24 .6
tt 1 1 4 44 .1
tt 115 47.4
tt 116 34 .6
tt 11 7 48.7
tt1 18 37.6
tt 119 40.9
tt 1 110 45.6
tt 2 11 13.2
tt 212 16 .4
tt 213 17.7
tt 2 1 4 23 .4
tt 215 27.0
tt 216 32.7
tt 217 28.0
tt 218 27.9
tt 219 23.9
tt 2 110 24 .7
tec 1 11 0.36
te 11 2 0.36
te 113 0.36
te 11 4 0.40
tec 115 0.57
tc 116 0.38
te 11 7 0.96
tc 11 8 0.67
tc 119 0.37
te 1 110 0.49
tec 211 0.17
te 21 2 0.21
te 21 3 0.24
tc 21 4 0.45
tec 215 0.54
tc 21 6 1.01
te 217 0.64
tc 218 0.69
te 219 0.49
tc 2 110 0.75
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