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HEIEROGENEITY'S RUSES SOm SURPRISING 

EPFECTS OF SEUC'I'ION ON POPULATION DYNAMICS 

James W. Vaupel* and Anatoli I. Yashin** 

INTRODUCTION 

The members of many kinds of populations gradually die off or drop out. 

Animals and plants die, bachelors marry, machines break down, the childless 

give birth, the unemployed find jobs. A cohort's rate of death or exit is often 

measured by the so-called force of mortality or hazard rate, p. At age z  and 

time y. 

where ~ ( z , ~ )  is the proportion of the cohort born z years ago that  is surviving 

a t  time y and where yo is the year the cohort was born. Note that z  and y are 

continuous and that the derivative is a full, and not a partial, derivative. In a 

homogeneous population, all individuals age z in year face the same hazard 

*Duke University, USA and international Institute for Applied Systems Analysis, Austria. 
"International Institute for Applied Systems Analysis, Austria, and Institute for Control Sciences, 
USSR. 



rate p ( z , y ) .  A heterogeneous population consists of various homogeneous 

sub-populations. In the extreme case, each homogeneous sub-population con- 

sists of a single individual. 

Heterogeneity is sometimes used as a synonymn for variability or diver- 

sity; here it has a narrower meaning of variability with respect to mortality 

(or with respect to attributes of individuals that  affect their mortality). This 

concept of heterogeneity is closely linked with the concept of selection: a 

heterogeneous population is one in which there is differential mortality and 

hence one ic which selection is occurring. 

Because of the effects of selection, the patterns of mortality (or exit) in a 

heterogeneous population can differ qualitatively from the patterns of mortal- 

ity in the constituent sub-populations. These qualitative differences can be 

surprising; unsuspecting researchers who are not wary of heterogeneity's 

ruses may fallaciously assume that  observed patterns for the population as a 

whole also hold on the sub-population or individual level. Such incorrect 

inferences may produce erroneous policy recommendations, because the  

effect of an intervention usually depends on the behavior and response of indi- 

viduals. In addition, because rates for homogeneous groups often follow 

simpler patterns than composite population rates, both theoretical and empir- 

ical research may be unnecessarily complicated by failure to recognize the 

effects of heterogeneity. 

The multiplicity of heterogeneity's ruses can be neatly illustrated in the 

simplest example of a heterogeneous population -namely, a composite popu- 

lation that  consists of two homogeneous sub-populations. I t  is not difficult to  

develop models of heterogeneous sub-populations that  cons.ist of a very large 

or infinite number of sub-populations, as shown, for example, in some of our 

earlier work (Vaupel, Manton, and Stallard 1979; Vaupel and Yashin 1963). The 



ruses illustrated here could have been described in the context of such a 

model, but for purposes of simplicity and clarity, a focus on the most elemen- 

tary kind of heterogeneous population seems appropriate. Moreover, i t  turns 

out that  almost all the distinctive features of heterogeneous populations 

become apparent as soon as the transition is made from a homogeneous popu- 

lation to  a mixed population with two major sub-populations. Important 

research on such mixed populations includes Blumen, Kogan, and McCarthy's 

pioneering work on mover/stayer models of labor mobility (1955), Shepard and 

Zeckhauser's health-care studies (1975; 1980), arid Keyfitz and Littwin's (1980) 

and Keyfitz's (1983) analyses of mortality. 

1. The Devious Dynamics of Aging Cohorts 

Consider first the dynamics of mortality among a cohort of aging indivi- 

duals. Age here could represent time since marriage or since release from 

prison and death could be interpreted metaphorically as divorce or recidivism. 

Let ~ ~ ( 2 )  and &(z) be the  hazard rates for the two sub-cohorts a t  age z and 

let  G(z) be the observed hazard rate for the entire cohort. (Since age and 

time advance synchronously for a cohort, i t  is  not necessary to explicitly con- 

sider time y in addition to  age z; for simplicity we suppress the argument y 

given in the definition of p in (1). The key question of.interest is: how does 

the trajectory of P(Z) compare with the trajectories of pl(z) and fiz(z)? 

Let pl(z) and pZ(z) be the proportions of the two cohorts that survive to 

age z. And le t  nl, nz, and n be the sizes of the two sub-cohorts and the  entire 

population at' birth. Clearly, n is the sum of nl and nz. Define n(z) as the 

proportion of the surviving cohort a t  age z that  is in the first sub-cohort. By 

definition, 



and 

An alternative equation for rr(z) that follows from (2a) and (2b) is 

Clearly, 

F(z > = d z  )c l l (~ )  + [l - 4~ )lclz(z> . (3) 

The dependency of the cohort hazard rate on the sub-cohorts' hazard rates is 

thus mediated by the changing proportion of the population that is in one or 

the other of the sub-cohorts. 

Suppose the first sub-cohort is the weaker or frailer: 

p 1 ( 2 ) > ~ ( 2 ) .  a l l2  . 

since (1) implies 

the proportion of the surviving population that is in the frailer sub-cohort, 

n(z), will steadily decline. Consequently, the observed hazard rate will 

approach the hazard rate of the more robust sub-cohort. Figures 1 through 5 

illustrate some specific instances. Figures 1-5a plot the observed hazard rate 

for the  entire cohort. whereas Figures 1-5b plot the hazard rates for the two 

sub-cohorts. 



FIGURE 1 The observed hazard rate may decline even though the hazard rates 
for the two cohorts are constant. 
NOTE The curve for F was calculated from (2c), (3), and (4) using pl=.06, 
k=.01,  and n(0)=.6. The curves are shown for values of z from 0 to 75. 

1.1. Decreasing Recidivism 

The recidivism rate for convicts released from prison declines with time 

since release (Harris, Kaylan, and Maltz, 1961). The recidivism rate for former 

smokers who are trying to stop smoking and for former alcoholics who are try- 

ing to stop drinking also declines with time. Does this imply that the recidiv- 

ism rate (i.e., the instantaneous "force" or hazard of recidivism) for individual 

convicts, smokers, and alcoholics declines over time? Not necessarily. A s  

illustrated in Figures l a  and b, there might be two groups of individuals, the 

reformed and the incorrigible. For individuals in each group, the hazard of 

recidivism might be constant. The observed decline would be an artifact of 

heterogeneity, a ruse. 

As another example of the same kind of phenomenon, consider tooth 

decay. New caries tend to become less frequent with age. Does this mean that 

adults brush their teeth more carefully than children? Not necessarily. The 

surface area of teeth may simply differ in susceptibility to decay. 



FIGURE 2 The observed hazard rate may decline and then rise even though 
the hazard rate for one cohort is rising steadily and the hazard rate for the 
other cohort is constant. 
NOTE The curve for was calculated from (2c). (3) and (4) using p1=.14, 
&(z)=.001+.015z, and n(0)=.5. The curves are shown for values of z from 0 to 

FIGURE 3 The observed hazard ra te  may rise steadily, then decline, and then 
rise again even though the hazard rates for the two cohorts are steadily rising. 
NOTE The curve for jZ was calculated from (2c), (3). and (4) using 
p1(~)=.0001.exp(.2z), &(z)=.0001.exp(.lz) and 7~(0)=,5. The curves are shown 
for values of z from 0 to 75. Note that jZ and p, are plotted on logarithmic 
scales. 



FIGURE 4 The observed hazard rate may increase more slowly than the hazard 
rates for the two cohorts. 
NOTE The curve for jZ was calculated from (Zc), (3), and (4) using 
/11(z)=.01.exp(.04z), Cc2(z)=.002.exp(.04z) and ~r(0)=.8. The curves are shown 
for values of z from 0 to 75. Note that ji and /+ are  plotted on logarithmic 
scales. 

(a! 

FIGURE 5 The observed hazard rate may increase and then decline if the ha- 
zard rate for one cohort is increasing and the other cohort is immune. 
NOTE The curve for I(, was calculated from (Zc), (3), and (4) using p1(z)=.002z. 
&(z)=O and lr(0)=.95. The curves are  shown for values of z from 0 t o  75. 



A similar phenomenon is familiar to atomic physicists. Various elements 

have different isotopes: uranium, for example, has the common isotope U238 

and the rarer isotope, used in atomic bombs, !i235. Eolh  isot,oyr-I; fire radioac- 

tive and thus decay: ultimately uranium is transformed into lead. In a sense, 

then, uranium can be considered to be dying and the population of uranium 
! 

can be 'considered to consist of the subcohorts U235 and U238 that are  dying 

a t  different rates: U235 decays faster than U238. Over time the observed 

radioactivity of a sample of uranium will decline, because the  sample will con- 

sist increasingly of the  "less frail" U238. "In 1910 Frederick Soddy called the 

varieties of the  same element isotopes, as they were in the same place (iso 

means same; tope means place) in the list of chemical elements" (Weinberg 

1983). By the  way of analogy, members of the subcohorts of a population 

might be called "isotypes". 

As a final example, consider the rate of innovation among some popula- 

tion of business firms. For instance, as the result of a banking reform, the  

savings banks in some states of the  United States have been permitted to offer 

commercial loans. An economist keeps track of the rate at  which savings 

banks start to  offer this service. Over time, the  rate declines. Does this imply 

that it is becoming more difficult or less profitable to  break into the commer- 

cial market? Not necessarily. Some savings banks, perhaps the larger or 

more aggressive ones, may have a high probability of adopting the innovation 

whereas other savings banks may have a much lower probability. 

1.2. Lemons 

The cohort hazard rate shown in Figure 2a follows the "bathtub" shape 

familiar to  reliability engineers (see, e.g., Mann, Shafer and Singpurwalla 1974 

or Barlow and Proschan 1975) and reminiscent of some human and animal 

mortality curves. Does this cohort curve imply that  the failure rate for a 



specific device decreases during the "infant mortality phase", is roughly con- 

stant during the "useful life phase", and increases during the "wearout 

phase"? Not necessiii-ily. The high initial rate of breakdown col11.d be. due to a 

group of "lemons". Although In F igye  2b the hazard rate for the "lemons" is 
I '  

constant and for the other cohort i t  is increasing linearly, the bathtub curve 

can be produced by a variety of patterns in a mixed population. As long as one 

group is frail enough initially, its hazard rate can be increasing, constant, or 

even decreasing. The hazard rate for the more reliable group could be 

increasing linearly, quadratically, exponentially, etc. Note that  if the popula- 

tion were only observed for a short time, about a quarter of the time displayed 

almg the  z-axis in Figures 2a and b, then the cohort curve would be steadily 

decreasing even though the curves for every device or individual in the popu- 

lation would be steadily increasing. 

1.9. Waves 

Figures 3a and b depict another ruse: the observed hazard rate increases 

steadily, suddenly declines, and then starts increasing again, albeit a t  a slower 

rate. This trajectory is produced by two cohorts that suffer constantly 

increasing hazard rates. The sudden decline in the  observed hazard rate is 

produced by t he  rapid extinction of the frailer cohort. Up until the point of 

decline. the frailer cohort experiences death rates that are relatively low. 

Then, due to the exponential increase in the force of mortality, the death 

rates become sufficiently large so that within a few years almost all the frailer 

cohort dies. The observed hazard rate declines to  the  level of the hazard ra te  

forthe more robust cohort. Since this hazard rate i s  increasing, the observed 

hazard ra te  then starts t o  increase as well: the observed hazard rate now : 

equals t he  hazard rate for the more robust cohort because only members of 

the more robust cohort are  still alive. 



1.4. People Are Older Than They Look 

Figures 4a and b depict a somewhat subtler ruse: the observed cohort 

hazard rate increases more sluwljr tt,an the hazard rates for indivlclusls in 

either sub-cohort. Individuals are, in a sense, aging more rapidly than the 

cohort data shows. Vaupel, Manton, and Stallard (1979) Vaupel and Yashin 

(1983). and Horiuchi and Coale (1983) explore various demographic implica- 

tions of this effect. 

1.5. The Extinction of the Vulnerable 

In the so-called mover/stayer model, one group in the population is sus- 

ceptible to emigration, marriage, divorce, some disease, etc., and the  other 

group is immune. If the  hazard for the susceptible cohort is steadily increas- 

ing, then as shown in Figure 5a the observed hazard for the entire population 

may rise and then fall. Divorce rates, for instance, follow this general rising- 

falling pattern (Rogers 1982). Does this imply that  marriages are  shakiest 

after a few years of marriage? Not necessarily, as Figures 5a and b illustrate. 

The same basic effect can be produced even if one group is not immune, but 

simply a t  low risk. Indeed, the  rising-falling pattern can be produced if the 

hazard steadily increases for the high-risk group but steadily decreases for 

the low-risk group. For one group marriages strengthen with duration, for the 

other group marriages weaken - despite the appearance of the  cohort curve, 

there is no "seven-year itch". 

In the five examples illustrated by Figures 1 through 5, the focus is on 

how the  trajectory of the  observed hazard rate deviates from the trajectories 

of the hazard rates for individuals in the two sub-cohorts. Similar ruses may 

hold for any characteristic of an individual that  is correlated with an 

individual's hazard rate. 



1.6. The Weight of Herring 

For instance, suppose that individuals of some animal species (fluke, say, 

or perhaps red herring) are either lean or fat. Suppose tha.t, Ihe fat individuals 

suffer a higher mortality rate. Observations indicate that the average weight 

of 3-year-olds is about the same as the average weight of Gyear-olds. Does 

that mean that individual members of the species do not gain any weight 

between age 3 and 4? Not necessarily - each individual may be gaining 

weight, but selection of the fatter individuals may hold the average weight of 

the surviving individuals approximately constant. 

1.7. AVegetable Market 

As another example, imagine an anthropologist who is observing a food 

market where sellers bargain with potential customers. She discovers the 

price of tomatoes steadily falling over the course of the day. Her initial 

hypothesis is that  tomatoes deteriorate rapidly, but by studying a few selected 

tomatoes she discovers that tomatoes do not lose much flavor or texture from 

hour to  hour or even from one day to the next. What is happening is that the 

best tomatoes get sold (i.e., "die") first; as the day goes on, the remaining 

tomatoes tend to be the most inferior ones. 

1.8. Should Geologists Be Paid More? 

Over the course of the  last century, it  has taken more and more effort (as 

measured by cost or by feet drilled) to discover a specified amount of oil. Are 

geologists becoming more incompetent? It  seems more likely that the oil that 

is easiest to find and that  is contained in the biggest fields tends to be found 

(i.e., "die") first. Even if geologists were steadily becoming more and more 

expert, this selection effect could outspace their growing knowledge and make 

i t  increasingly difficult for them to discover oil. 



2. Mortality Crossovers 

2.1. The Advantages of Being Disadvantaged 

Figure 6a depicts a so-called mortality crossover. Cne cohort's hazard 

rate is  lower than the other cohort's a t  younger ages, but higher a t  advanced 

ages. Numerous such crossovers have been discovered in comparisons of dif- 

ferent national populations and of the same national population a t  different 

points in time (Nam, Weatherby. and Ockay 1978); the effect also occurs for US 

Blacks vs. Whites (Manton and Stallard 1981). Some of these crossovers may 

be due to  incorrect reporting of age of death; others may be due to  differences 

in life style or other factors. Some of the crossovers may also be, a t  least in 

part, artifacts of heterogeneity. . 

FIGURE 6 A disadvantaged cohort may appear to suffer lower mortality rates 
than an  advantaged cohort a t  older ages. 
NOTE The curves for k, and kd were calculated from (2c), (3), and (4) using 
1l.~~(z)=.0025exp(0.4z), kld(~)=,01exp(.04z), &(z)=.002exp(.04z), and 
rr(0)=.7. The curves are shown for values for z from 0 to  96. Note that  the 
curves are  plotted on logarithmic scales. 

In particular, the cohort curves in Figure 6a can be produced, using (2). 

(3). and (4), from the sub-cohort curves shown in Flgure Bb. The robust sub- 

cohorts of each of the two populations face the same mortality chances. the 



frail sub-cohort of the disadvantaged population, however, faces higher mor- 

tality chances than the frail cohort of the advantaged population. Conse- 

quently, the frailer members of the disadvantaged population die off relatively 

quickly, leaving a surviving population that largely consists of the robust sub- 

cohort. If this selection effect is strong enough, a crossover may be observed 

for the two populations (Vaupel, Manton, Stallard 1979; Manton and Stallard 

1981). A crossover can also be produced if the frail and robust subcohorts of 

both populations experience the same death rates, but the disadvantaged 

population has, at birth, a larger proportion of frail individuals. 

2.2. Heart F'ailure 

The relative prevalence of various diseases changes with age. Cancer, for 

example, is more common than heart failure a t  younger ages but less com- 

mon a t  older ages. Does this imply that  any particular individual is more 

likely to  die from cancer in youth and from heart  disease in old age? Not 

necessarily, as illustrated by Figures 7a and b. A simple model (that readily 

can be made more realistic) might assume that  everyone faces the same 

hazard of heart failure, but that people differ in their  susceptibility to cancer. 

In Figure 7b, the top line gives the  hazard rate for individuals a t  high-risk of 

cancer. the bottom line gives the corresponding hazard rate for individuals a t  

low-risk of cancer, and the middle line gives the hazard rate for heart failure. 

These hazard lines produce the apparent crossover in mortality rates shown in 

Figure ?a: the calculations are based on (2). (3), and (4). Essentially, the 

incidence of cancer declines relative to  t he  incidence of heart failure because 

the individuals most susceptible to  cancer have died. 



FIGURE 7 Observed mortality rates for two cause of death may appear to in- 
tersect. 
NOTE The curve for pc was calculated from (2c), (3), and (4) using 
plc=.01exp(.04z), & =.0025exp(.04z). and ~r(0)=.8. The curve for Til, is given 
by ph(z)=~(z)=.005exp(.04z). The curves are shown for values of z from 0 to 
96. Note that the curves are plotted on logarithmic scales. 

3. Redundancy and the Death of Families 

3.1. Does Redundancy Help? 

Suppose a machine or device will fail if some specific component fails. To 

guard against this, a backup component is installed in parallel to the original 

component so that the machine will run i f  either component is operating; the 

failure rates of the two components are independent. Will the failure rate of 

the machine be reduced a t  all ages? Not necessarily. If the two components 

are heterogeneous in that the backup component is somewhat less reliable 

than the original component, then Barlow and Proschan (1975) have shown 

that the  failure rate of the redundant system will, after some age, exceed the 

failure rate of the original, single-component system. Furthermore, as shown 

by the solid curve in Figure 8, a system consisting of two components with 

constant failure rates will have a failure rate that first increases and then 



decreases; the levels of the failure rates for the two components are shown by 

the dotted lines in the Figure. (The equations used to calculate this failure 

rate curve are presented below.) 

FIGURE B The hazard rate for a redundant system may exceed the  hazard rate 
of its more reliable component. 
NOTE The curve for j i  was calculated from (5), (6). and (7) using pl=O.l and 
&=0.05. The curves are shown for z from 0 to 64. 

At  first thought, it  may seem rather mystifying that  a redundant system 

can be less reliable than a single component. A common sense explanation 

runs as follows. The functioning system can be in three possible states: both 

components are working, only the more reliable one is working, or only the  

less reliable one is working. As time passes, it  becomes more likely that only 

one of the components is still working. If the probability that  both com- 

ponents are still working is low enough, then the failure rate for the system is 

roughly equal to a weighted average of the failure rates of the two com- 

ponents. Thus the failure rate of the system can rise to a level between the  

failure rates of the two components. As more time passes, i t  becomes increas- 

ingly likely that if the machine is still working, it  is working using the more 



reliable component. Consequently, the  failure rate approaches the  failure 

rate of the more reliable component. 

Although Barlow and Proschan's example concerns t;vo components with 

constant failure rates, the same effect can be shown in more elaborate exam- 

ples with several components with changing failure rates. Consider a system 

with i components in parallel: the system fails when all i components fail. As 

before, let P(Z) be the hazard or failure rate for the  system. The failure rates 

for the  various components are independent of each other. Let pl(z)  be the  

probability tha t  component i is functioning, given by 

Let qi(z) be the  probability that  only component i is working: all the  other 

components have failed. Clearly, 

Since the system can only fail when its last functioning component fails. 

These equations, simplified to the special case where there are only two com- 

ponents, were used to calculate F'igure 8. 

The equations could be applied to the study of human mortality and mor- 

bidity rather than equipment failure. Some models of human disease 

processes are based on the  hypothesis that  the body has several lines of 

defense and that  some diseases only occur after all of these lines of defense 

have failed. The multiple-hit model of carcinogenesis, for example, assumes 

that malignant tumor growth results only after several independent "hits", 



perhaps from radiation or exposure to a chemical, have altered the nature of 

the affected cell. If the different kinds of hits occur at  different hazard rates, 

then the mathematics sketched above may be useful. 

3.2. The Life-Span of a Family 

Another application might be in actuarial studies of the death of families: 

a family unit might be defined as dead when the last member of the unit dies. 

For example, evolutionary biologists study the extinction not only of species 

but also of higher taxonomic levels such as genera, families, and orders: A 

taxon dies when all the species in the taxon become extinct (Simpson, 1983). 

As another, simpler example, consider a husband and wife who own an annuity 

that guarantees some monthly payment as long as either of them is living. If 

the husband's and wife's forces of mortality are independent of each other and 

are given by the dotted lines in Figure 9, then the "hazard rate" for the 

annuity is given by the solid curve in Figure 9. As the figure shows, at  

advanced ages the hazard rate for the annuity exceeds the wife's force of mor- 

tality. Furthermore, the hazard rate for the annuity follows a winding curve 

that initially rises a t  a much more rapid rate but eventually at  a somewhat 

slower rate than the force of mortality curves. (The assumption that forces of 

mortality for members of a family are independent may be unrealistic; i t  is 

not difficult to adjust the calculations for a common cause of death). 

4. Apparent Failures of Success 

In heterogeneous populations progress sometimes comes out looking like 

failure. Seven such ruses are adumbrated below. 



FIGURE 9 The hazard rate for a family may exceed the hazard rate for the 
more robust member of the family. 
NOTE The curve for ji was calculated from (5), (6). and (7) using 
pl(z)=.00333exp(.2z) and ~(z)=.01exp( .2z) .  The curves are shown for z from 
0 to 30. Note that the curves are plotted on a logarithmic scale. 

4.1. The Future of Gerontology 

The apparent gerontological failures that can be produced by pediatric 

success are illustrated by Kgures 10a and b. As shown in Figure lob, a cohort 

consists of a frail and a robust sub-cohort. Health progress reduces mortality 

rates, a t  younger ages, from the solid lines to the dotted lines. As shown in 

Figure 10a, this does indeed lower mortality rates for the entire cohort a t  

younger ages. At later ages, however, the observed cohort death rate is higher 

than i t  would have been. The frail individuals saved in childhood are dying at 

older ages. Every individual's life chances are improved a t  younger ages and 

are as good as ever a t  later ages, but observed cohort mortality makes it look 

as if pediatricians are making progress whereas gerontologists are losing 

ground. 



FIGURE 10 Lowering mortality rates before some age m a y  increase observed 
mortality rates after that  age. 
NOTE The solid curve for ji was calculated from (Zc), (3), and (4) using 
p1(z)=.05exp(.O25z), p2(z)=.02exp(.025z) and n(0)=.5. For the dotted curves, 
mortality rates before age 24 were cut  in half. The curves are shown for 
values of z from 0 to 72. Note that  the curves are plotted on logarithmic 
scales. 

4.2. More Puzzles for Demographers 

Consider now another kind of progress, namely, steady progress over time 

in reducing mortality a t  all ages: 

where r is the rate of progress. (As before, p is defined by (1); we now expli- 

citly indicate that  p i s  a function of time y because we are no longer following 

a single cohort but are interested in an entire population over age and time.) 

Then, the observed mortality rate will steadily decline a t  age zero, but a t  older 

ages the pattern may be more complex. Observed mortality rates may decline 

a t  an increasing rate, they may rise and then fall, or, as shown on the left- 

hand side of Figure 11, they may decline, increase, and then decline again. 

The curve in Figure 11 is based on exponentially increasing mortality with 

age, but similarly complex patterns can be generated using constant 



mortality, linearly increasing mortality, and so on. 

At age 75: 

.-- - '5 

(Year) y 

FIGURE 11 Observed mortality rates may follow complex patterns over time 
even though individual mortality rates are steadily declining (or become con- 
stant) a t  all ages. 
NOTE The curve for ji was calculated from (B), (9). (lo), and (11) using 
pI(~,0)=.002exp(.07z), pZ(~,0)=.0001exp(.07z), no=.5, and T =,02 up until 
y =I00 and T = O  afterwards. The curves are shown for values of y from 0 t o  120. 
Note that  the curves are plotted on a logarithmic scale. 

The formulas used to calculate such curves are simple generalizations of 

(2c), (3) and (4). For each of the two sub-populations, the  proportion of a 

cohort born in year y -z that  is alive a t  age z is given by: 

The proportion of the entire surviving population a t  age z in year y that is in 

the first sub-population is given by: 

pi(z.y) = exp 

where .no is the proportion of the entire population a t  birth that  is in the first 

0 

- fk ( t  .y - z + t )d t  . i = 1.2 
0 I 

sub-population; this proportion is assumed to be constant over time. Finally, 



the observed hazard rate is given by 

Z z ( z ~ ~ ) = ~ ( z l ~ ) ~ l ( z ~ ~ ) + [ 1 - n ( ~ ) l p ~ ( ~ , y )  . 

To generate the curves in Figure 11, it was assumed tha t  

pi(z,O) = a exp(bx) , 

where al was greater than a2. The values of &(x,y)  were calculated using (8). 

An intuitive explanation of the  pattern of the curve in 11 runs as 

follows. Reductions in mortality rates at younger ages permit more individu- 

als from the frailer sub-population to survive to older ages. This influx of 

frailer individuals serves as a brake or counter-current on reductions in mor- 

tality rates a t  older ages. If the influx is small enough, progress may still be 

observed; but if the  influx is large enough, observed mortality rates may actu- 

ally increase. The size of the influx depends on the absolute magnitude of the 

reduction in mortality rates a t  younger ages (i.e., on the number of lives 

being saved in the frailer sub-population) and on the chance a frailer indivi- 

dual has of reaching older ages. For the curve in 11, the influx is small 

initially because so few frail individuals live to age 75; the influx becomes 

small again later on because so few deaths occur before age 75. 

4.3. When Progress Stops 

Now suppose that progress against mortality ceases: after declining for 

many years, mortality rates henceforth remain constant: 

Then, the observed mortality ra te  a t  age zero will stay constant, but as shown 

on the  right-hand side of Figure 11, observed mortality rates a t  older ages will 

increase before leveling off. 



To understand this phenomenon, consider the cohorts aged 50 and 70 in 

the year progress ceases. Because the 50 year-olds have benefited from 20 

more years of mortality progress than have the 70 year-olds, there will be 

more frail individuals among the 50 year-olds than there were among the 70 

year-olds twenty years ago (when they were 50 years old). Furthermore, 

because of the additional twenty years of mortality progress, more of these 

frail 50 year-olds will survive to age 70. Thus, twenty years hence, when the 50 

year-olds are 70 years old, more of them will be from the frailer sub- 

population than is currently the case. Consequently, the observed mortality 

rate among those future 70 year-olds will be higher than it currently is. 

This implies that when progress is being made against mortality, then 

currently observed mortality rates are lower than the mortality rates that  

would be observed if the current rates for individuals persisted or, indeed, 

merely declined a t  a slower rate of progress than before. Vaupel, Manton, and 

Stallard (1979) indicate how to calculate the values of mortality rates under 

current health conditions, adjusted for heterogeneity and past health pro- 

gress. 

4.4. The Growth of Failure Out of Success 

As explained by Keyfitz (1983), another kind of ruse occurs in growing 

populations. In a population that consists of a number of sub-populations with 

differing mortality rates, reductions in mortality rates for all the sub- 

populations may lead to an increase in the observed mortality rates for the 

entire population. This ruse will occur if the reduction in mortality leads to 

more rapid growth in the size of the sub-populations that have high mortality 

rates. 



As a simple example, consider a population with crude death rate d that  

consists of two stable sub-populations with the same crude growth rate and 

with death rates d l  and d 2 ,  d l  substantially greater than d 2 .  (Because the 

crude growth rates are the same, the birth rates will also differ.) Then reduc- 

ing both d l  and d 2  by the same amount, say .0 l ,  or by the same percentage, 

say 10 percent, will eventually result in an increase in d .  If the first sub- 

population constitutes a proportion 7~ of the total population, then 

If the crude death rates of the two populations are reduced by 61 and 62, such 

that h1 is greater than 62, then the crude growth rate for the first sub- 

population will s tart  exceeding the crude growth rate for the second sub- 

population. The first sub-population will thus constitute a greater and greater 

share of the total population: 7~ will approach one. Hence, the crude death 

rate will approach d l  - 61. As long as this value is greater than a, the crude 

death rate will increase. 

Since d l  exceeds dZ,  an equal percentage reduction yields h1 greater than 

d2, SO equal percentage reductions are a special case of the above. It is not 

difficult to generalize to n sub-populations or  to the case where the crude 

growth rates of the  sub-populations are different. Under a variety of condi- 

tions, lowering individual or sub-population. death rates in a growing popula- 

tion can result in increases in the observed population mortality rate. 

4.5. When Death Does Not Influence Mortality 

Yet another of heterogeneity's sleights of hand can be illustrated by a 

simple type of stochastic discrete-state (or compartment) model, depicted in 

Figure 12. Each of the members of some population are in one of two states. 

The forces of mortality from these two states, pl and p2 are constant over 



time. Moreover, & exceeds pI: the  individuals in the second state are the 

frail individuals. There is a constant transition intensity from state 1 to  state 

2, denoted by A, but there is no transition from state 2 to state 1. Let n ( t )  

denote the proportion of individuals in state 2 at time t .  Assume that ~ ( 0 )  is 

given. 

As shown by Yashin, Vaupel, and Manton (1983), 

where A p  =p2 -pl exceeds zero. If A is smaller than Ap,  then ~ ( t )  will 

approach X / A p  and the observed force of mortality for the population as a 

whole will approach 

This is a surprising result because the observed force of mortality does not 

depend on the force of mortality in the second state. Any attempt to reduce jZ 

by reducing will fail unless can be sufficiently reduced so that A p  is less 

than A. Although this is an asymptotic result, to the  extent A p  exceeds h the 

asymptote will be approached in a fraction of the life-span of the cohort. 

4.6. Prevention vs. Cure 

As a concrete illustration, consider a population of individuals who are 

exposed to a condition or disease that  in most cases quickly results in death. 

Specifically, assume that  p1 = .03, u2 = .80, and A = .02. As shown in Table 1, 

the overall death rate quickly approaches .05'even in the extreme case 

where all the individuals in a cohort start off without the condition. If an 

astonishing breakthrough is made such that  ~ 1 2  is cut from .80 to  .10 or even 



.50, then ji changes relatively little. However, halving the incidence of the 

condition - i.e., reducing h from .02 to .O1 - reduces ji by about 20 percent. 

And cutting A from .02 to .001 produces a close to 40 percent reductran in ji. 

TABLE 1 The impact over time on ji of 
various changes in p2 and A. 

Time 

- - - - - -  

0 -030 .030 .030 .030 .030 

1 .043 ,042 .040 .036 .031 

2 .047 ,046 .043 .039 .031 

3 .049 .048 .045 .039 .031 

4 ,050 ,049 .046 .040 .031 

5 .050 .050 .047 .040 .031 

OD ,050 .050 .050 .040 .031 

4.7. Trying to Help Smokers 

Consider now a generalization of the  model shown in Figure 12 such that  

A depends on p2. In particular, suppose that X increases as p2 decreases. This 

effect may occur widely: if cigarette smoking were made safer (if, say, a cure 

were developed for lung cancer), more people might smoke; if automobiles are 

made safer, more people might drive recklessly (Peltzman, 1975; Wilde, 1982). 

If, as before, X exceeds Ap., then 



Consequently, if /+ decreases, ji will increase. Making an activity safer can 

increase mortality. 

4.8. ~ebil i tat ion and Death 

Another simple kind of stochastic discrete-state model is shown in 

13. There are two states and a single, constant transition rate A. The force of 

mortality in the first state is given by a constant pI. There are two causes of 

death in the second state, with constant forces of mortality p2 and k. Let 

n(t) represent the proportion of the surviving population in the second state 

a t  time t .  State 1 might be imagined as being the "healthy" state, and state 2 

the "debilitated" state, perhaps the state of old age or of high blood pressure. 

The observed forces of mortality from the three causes of death for the 

entire population are given by 

and 

If ~5 is decreased, then equation (15) implies that n(t)  will increase: more of 

the surviving individuals will be in the debilitated state if debilitated individu- 

als are not dying as rapidly as before. Hence, the observed force of mortality 

from the second cause of death, &, will increase. And the observed force of 

.mortality from the first cause of death, fill will decrease. Even if the three 

causes of death are independent on the individual level, on the population 

level they are linked. 



This result can be generalized to more complex situations where mortal- 

ity rates increase with age, where there are several causes of death, and 

where there are several different states (see Yashin, Vaupel, and Manton 1983 

for some of the mathematics). In particular, it  seems likely that in a wide 

variety of situations, reducing one cause of death will result in an increase in 

the observed mortality rate from some other causes and, perhaps, a decrease 

in the observed mortality rate from some remaining causes. Because every- 

one has to  die of something it is obvious that reducing one cause of death will 

increase the number of people dying from another. The point here is deeper: 

contrary to  the commonly made assumption of independence among compet- 

ing causes of death, reducing one cause of death may change the observed 

force of mortality from another cause of death - even if, on the individual 

level, i t  is t rue  that  the two causes of death are independent. In a heterogene- 

ous population, a cure for cancer'might raise the mortality rate from heart 

disease and lower it  from automobile accidents. 

DISCUSSlON 

Every individual (or thing) differs from every other individual (or thing) 

in countless ways. I t  is impossible to take all these differences into account: 

in all research and in all policy analysis individuals are classified along a few 

dimensions or in a few categories. In the 'analysis of human mortality, the 

salient dimensions have usually been taken to be age, sex, race, and national- 

ity. Sometimes other factors have also been considered, such as educational 

achievement or cholesterol level, but most of the characteristics of individu- 

als have been ignored. Studies of phenomenon other than mortality, such as 

marriage or employment, have taken other kinds of factors into account. Hair 

color may not be significant in a study of mortality but i t  might be significant 



in a study of marriage. Hence, depending on a researcher's or policymaker's 

interests, individuals should be classified in different ways. 

Regardless of how many different attributes are considcred individuals 

who are grouped together will differ along various neglected dimensions. 

Some of these differences will almost certainly affect the individuals' chances 

of 'death, marriage, unemployment, or other transition. Because of this 

heterogeneity, selection will occur: the surviving population will differ from 

the original population. This in turn means that  observations of the surviving 

population cannot be directly translated into conclusions about the behavior 

or characteristics of the individuals who made up the original population. The 

observed dynamics on the population level will deviate from the underlying 

dynamics on the individual level. 

Sometimes this is  not important. Perhaps the population, when classified 

along various observed factors, is more o r  less homogeneous, so tha t  effects of 

unobserved heterogeneity's are  unsubstantial. 

Sometimes, however, selection is important. And when it is, the  patterns 

observed may be surprisingly different from the underlying patterns on the  

individual level. Researchers interested in uncovering these individual pat- 

terns, perhaps to  help develop or test theories or to  make predictions, might 

benefit from an understanding of heterogeneity's ruses. Because the  impact 

of a policy intervention can sometimes only be correctly predicted if the vary- 

ing responses of different kinds of individuals are taken into account, aware- 

ness of the  effects of selection may also help policymakers. 
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