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PREFACE

The International Institute for Applied Systems Analysis (IIASA) in Laxenburg,
Austria, has been involved in research on nondifferentiable optimization since 1976.
IIASA-based East—West cooperation in this field has been very productive, leading to
many important theoretical, algorithmic and applied results. Nondifferentiable optimi-
zation has now become a recognized and rapidly developing branch of mathematical
programming.

To continue this tradition, and to review recent developments in this field, IIASA
held a Workshop on Nondifferentiable Optimization in Sopron (Hungary) in September
1984.

The aims of the Workshop were:

1. To discuss the state-of-the-art of nondifferentiable optimization (NDO), its origins
and motivation;

2. To compare various algorithms;

3. To evaluate existing mathematical approaches, their applications and potential;
4. To extend and deepen industrial and other applications of NDO.

The following topics were considered in separate sessions:

. General motivation for research in NDO: nondifferentiability in applied problems,
nondifferentiable mathematical models.

. Numerical methods for solving nondifferentiable optimization problems, numerical
experiments, comparisons and software.

. Nondifferentiable analysis: various generalizations of the concept of subdifferen-
tials.

. Industrial and other applications.

This volume contains selected papers presented at the Workshop. It is divided
into four sections, based on the above topics:

I. Concepts in Nonsmooth Analysis

II. Multicriteria Optimization and Control Theory
III. Algorithms and Optimization Methods

IV. Stochastic Programming and Applications

We would like to thank the International Institute for Applied Systems Analysis,
particularly Prof. V. Kaftanov and Prof. A.B. Kurzhanski, for their support in organiz-
ing this meeting.

We would also like to thank Helen Gasking for her help in preparing this volume.

V. Demyanov
D. Pallaschke
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ATTEMPTS TO APPROXIMATE A SET-VALUED MAPPING

V.F. Demyanov', C. Lemaréchal? and J. Zowe?
! International Institute for Applied Systems Analysis, Laxenburg, Austria
and Leningrad State University, Leningrad, USSR
2INRIA, P.O. Box 105, 78153 Le Chesnay, France
3 University of Bayreuth, P.0. Box 3008, 8580 Bayreuth, FRG

Abstract. Given a multi-valued mapping F, we address the problem of finding
another multi-valued mapping H that agrees locally with F in some sense.

We show that, contrary to the scalar case, introducing a derivative of F is
hardly convenient. For the case when F is convex-compact-valued, we give
some possible approximations, and at the same time we show their limitations.
The present paper is limited to informal demonstration of concepts and mech-
anisms. Formal statements and their proofs will be published elsewhere.

1. INTRODUCTION
Consider first the problem of solving a nonlinear system:

f(x) =0 (1)

where £ is a vector-valued function. If we find a first order approximation
of f near x, i. e. a vector-valued bi—-function h such that

h(x;d) = £(x+) + o(d) (2)

(where o(d)/fdll » O when d - O) then we can apply the Newton principle:
given a current iterate x, solve for d

h(x;d) = O (3)
(supposedly simpler than (1)) and move to x+d.

Everybody knows that if f is differentiable and if, in addition to sat-
isfying (2), h is required to be affine in d, then it is unambiguously
def ined by

h(x;d) := £(x) + £' (x)d (4)

Merging (2) and (4) and subtracting f£(x) gives also a nonambiguous defi-
nition of f£' (the jacobian operator of f) by:

f' (x)d := £(x+d) - £(x) + o(d).

Part of this research was performed at the Mathematics Research Center of
the University of Wisconsin under Contract # DAAG 29-80-C-0041



Suppose now that we have to solve
0 € F(x) (5)

where F is a multi-valued mapping, i. e, F(x) < rR™. a possible application
of (5) is in nonsmooth optimization, when F is the (approximate) subdiffer-
ential of an objective function to be minimized. To apply the same principle
as in the single valued case, F(x+d) must be approximated by some set

H(x;d) < Rn. Continuing the parallel and requiring H to be affine in 4
(whatever it means), we must express it as a swn of two sets: H(x,d) =F(x) +G.
In summary, we want to find a set G such that, for all ¢ > O and |4} small
enough:

F(x+d) €« F(x) + G + ¢glldllu (6.a)
and

F(x) + G F(x+d) + ¢eldlu (6.b)

where U is the unit ball of R". Unfortunately, such a writing is already
worthless. First, it does not help defining the "linearization" G: just
because the set of subsets is not a group, F(x) cannot be substracted in (6).
Furthermore, (6) is extremely restrictive: for n = 1, consider the innocent
mapping F(x) := [0,3x] (defined for x > 0). Take x =1, ¢ =1 and d < O.

It is impossible to find a set G satisfying (6.b), i. e. [0,3]+Gc[qd,3+2d].
For example, G = {d} is already too "thick".

A conclusion of this section is that a first order approximation to a
multivalued mapping cannot be readily constructed by a standard lineari-
zation; the definition of such an approximation is at present ambiguous.

For a deep insight into differentiability of sets, we refer to [6] and its
large bibliography. Here, for want of a complete theory, we will give in

the next sections two possible proposals. None of them is fully satisfactory,
but they are rather complementary, in the sense that each one has a chance
to be convenient when the other is not. We will restrict ourselves to the
convex compact case. Furthermore, as is usual in nondifferentiable optimi-
zation, we will consider only directional derivatives. Therefore we adopt
simpler notations: x and the direction d being fixed, we call F(t) the image
by F of x+td, t > O. We say that H approximates F to lst order near t = O
if for every € > 0O, there is & > O such that t € [0,6] implies

F(t) € H(t) + ¢t U and H(t) € F(t) + ¢tU (7)

Note that, among others, F approximates itself!

2. MAPPINGS DEFINED BY A SET OF CONSTRAINTS

As a first illustration, suppose F is defined by:
F(t) := {z € R" lejteim) <0 for j= 1,...,m}

where the "constraints” cj are convex in z. Assume the existence of cS(O,z),
+
the right derivative of cj(-,z) at t =0 (c%(o ,2z) would be more suggestive).

Then it is natural to consider approximating F(t) by

H(t) := {2 ch(O,z) + t c%(O,z) €0 for j=1,...,m}. (8)



An algorithm based on this set would then be quite in the spirit of [7].
It is possible to prove that the H of (8) does satisfy (7), provided

some hypotheses hold, for example

(1) [Cj(t,Z) - cy 0,21/t - ¢} (0,2) uniformly in z, when t +O0,

(ii) there exists z, such that cj(o,zo) <0 for j=1,...,m.

A weak point of (8) is that it is highly non-canonical. For example, per-

turbing the constraints to (1l +a,t)c.(t,z) gives the same F but does
change H. J J

3. A DIRECT SET-THEORETIC CONSTRUCTION

If we examine (6) again, we see that there would be no difficulty if
F(x) were a singleton: then (6) would always be consistent because F (x+d)
would never be less thick than F(x), and F(x) could be subtracted. This
leads to differentiating F at an arbitrary but fixed y € F(O). Define

F;(O) = {z

or, in a set—theoretic notation (see [2], Chapter VI):

there exist t and Y, € F(tn) for n € ]N}
with tn+ 0 and (yn-y) / t >z

F'(0) := lim sup [F(t)-y]/t
¥ £40

This set is called the contingent derivative in [1], the (radial) upper Dini
derivative in [6] and the feastible set of first order in [3]. We refer to (1]
for an extensive study of F', but some remarks will be useful:

a) F;(O) depends on the behaviour of F near y only. If we take an arbi-
trary & > O and set G(t) := F(t) N {y+au}, then G;{(O) = F)’/(O) .

b) If F(t) = F(O) does not depend on t, F'(0) is just the tangent cone
to F(O) at vy. ¥

c) Let A be a convex set in R™, and f: [0,1] — R" a differentiable

mapping (with f£(0) = O for notational simplicity). Consider F(t) :={f(t)} + A.
Given y € F(O) = A, call Ty the tangent cone to F(O) = A at y. Then it can
be shown that F;(O) = {f' @} + Ty. This is the situation when F is the
approximate subdifferential of a convex quadratic function (see [41).

d) Let n = 2. Given r € R, consider F(t) := P(t) N U with the halfspace
P(t) := {y = (yi,y2) ly2 > rtyl} . It can be shown that, for y = 0 € F(0),

Fé(O) = {z = (21'22) | z. > 0}; Fé(O) is the same as it would be if r were O

2
(in which case F(t) would be fixed), and doee not predict the rotation of
F(t) around y = O.

Because a convex set is the intersection of the cones tangent to it,
our remark b) above suggests to approximate F(t) by

H(t) =N {y + tF (0 | y € F(0)} (9)

Of course, this will be possible only under additional assumptions (not only
due to the multi-valuedness of F; for example F(t) := {tsinlogt} has



F(o) = {o}, F'(0) = [-1,+1] and H(t) = [-t,+t]).

Before mentioning the assumptions in question, we introduce another
candidate to approximate F: for p € Rn, denote by sp(t):= sup {<p,y>|yEIF(t)}
the support function of F(t). It is known that F can be described in terms
of s, namely F(t) = {y | <pry> € sp(t) Vp¢€ Rn}. Then, if sp has a (direc-

tional) derivative sé(o), the following set is natural (see [5]):
G(t) := {yl<p,y> < sp(o) + t.sb(o) vV p€ Rn}. (10)

To assess these candidates (9) and (10), the following assumptions can
be considered:

(i) [sp(t) - sp(O)] /t - sé(O) uniformly for p € U, when t ¥ O;
(ii) F(O) has a nonempty interior.
They allow to prove:
If (i) holds, then H(t) = G(t); if (ii) also holds, then (7) holds.

We remark that (i) alone suffices to prove the second half of (7), which
is the important one for (5) (solving O € H(t) gives some among the possible
Newton iterates); however H(t) may be void if (ii) does not hold. It is also
interesting to remark that, if sb(o) is assumed to be convex in p (in which

case (ii) is not needed), then it is the support function of a convex set
that we are entitled to call F' (0)d because there holds H(t) =F(0) +t F'(0)d
(due to additivity of support functions). In other words, convexity of s' (0)
gives the "easy" situation in which (6) holds. P

The role of assumption (i) is more profound. It is natural to require
that F;(O) does predict the behaviour of F(t) near y; this behaviour is

trivial when y € int F(O) (then F(t) must contain y for all t small enough);
if y is on the boundary of F{0) then there is a normal cone Ny(O) to F(0)

at y, and sp(O) = <p,y> for p € Ny(O); hence the behaviour of F(t) near y is
naturally related to the behaviour of sp(t) for these normal p's (inciden-
tally, a key result is that F;(O) = {z | <p,z> < sé(O) Vp€E Ny(O)}; (1) is

essential for this). However, it is not only some technicalities in the
proof that require the uniformity stated in (i), but rather the deficiency
of P' suggested by d) above: consider the innocent mapping

F(t) := {y = (v o¥,) 10y, 1, ty, £, € 1}.

Given ¢ € R and p = (&,-1), sp(t) = max {(O(—t)y1 | o < y, € 1} and thus,
(i) is violated: when a ¥ O, s;(o) jumps from -1 to O. For this example,

H(t) = G(t) = [0,1] x[t,1], which is a poor approximation of F(t). This is
rather disappointing, but observe that Section 2 is well-suited for the
present F.
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MISCELLANIES ON NONSMOOTH ANALYSIS AND OPTIMIZATION

J.-B. Hiriart-Urruty
Paul Sabatier University, 118 route de Narbonne, 31062 Toulouse, France

People who work in the area of research concerned with the analysis
and optimization o4 nonsmooth functions know they now have a panoply of
"generalized subdifferentials" or "generalized gradients" at their disposal
to treat optimization problems with nonsmooth data. In this short paper,
which we wanted largely introductory, we develop some basic ideas about how
nonsmoothness s handled by the various concepts introduced in the past
decade.

For the sake of simplicity, we assume that the functions f considered throu-
ghout are defined and Locally Lipschitz on some finite-dimensional space X
(take X = R" for example). To avoid technicalities, we suppose moreover that
the (wsual) directional derivative

d > f'(x;d) = 1im TlxAd) - F(x) (0.1)

0t A

exists for f at all x and for all d. As the reader easily imagines, all these
assumptions have been removed in the different generalizations proposed by
the mathematicians, but this is not our point here.

Clearly, f'(x;d) can also be expressed as :

lim f(x+Av { fx .
A0t
v=d

(0.2)

f'(x;d) is a genuine approximation of f around x. The graph of the function



d »~ f'(x;d) is, roughly speaking, the tangent cone to the graph of f at
(x,f(x)). So, we have our "primal" mathematical object for approximating f,

f' : XxX-+R (0.3)
(x,d) » f'(x:d),

which plays the role of a substitute for the linear mapping d - <vf(x),d>.
The "dual" corresponding concept is some multifunction, denoted generically
by of,

of + X T X (0.4)

which, hopefully, will act as the gradient mapping does for differentiable
functions.

1. NEEDS

Any primal object, denoted generically by fv(x;d) (i.e., f'(x;d)
or some generalization of it), and the corresponding dual object 3f(x)
should satisfy the following properties :

. To pass easily from the primal object to the duafl one ; the support
function of 3f(x) has to be built up, in some manner, from f'(x;d).

. To allow 4irst-onder developments and mean-value theorems. For the
directional derivative f', we do have :

f (x#xd) = f(x) + Af'(x:;d) + o(}). (1.1)
What is expected for 3f to verify is :
fly) - f(x)e<df(z),y-x> for some z e IX,y[. (1.2)

. In view of the properties of (x,d) » f'(x;d) or x I 3f(x), one should
be able to recognize the function f, and to recover it through some integral
nephesentation of f(y) - f(x). We have that

fly) = £(x) +f £ (x+t(y-x) 3 y-x) dt, (1.3)

and we expect
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fly) = f(x) + j <af(x+t(y-x)),y-x> dt. (1.4)

. Semicontinuity properties of the function (x,d) » fv(x;d) and of the
multifunction x 3 8f(x). These requirements are of a particular importance
for algorithmic purposes.

. fv(x;d) and 3f(x) should be tractable from the computational view-
point 3 in effect, elements of af(xn) are used to devise X+l in all first-
order methods.

Consider for example the case of convex functions f. f'(x;d) is itself a
convex function of d so that the concept 3f(x), dual of f'(x;d), is the so-
called subdifferential of f at x,

af(x) = {x* | <x™,d> < f'(x;d) for all deX}. (1.5)

of enjoys all the properties listed above. One is able to recognize a convex
function when f' is at our disposal since : § {8 convex 4§ and only if

§' (x;y-x) + §' {ysx-y) < 0 for all x and y. If, instead, the generalized gra-
dient 3f of f is considered (cf. section 2), 4 48 convex if and only if 3§
L8 monotone, that is

<3f(x) - af(y), x-y> > 0 for all x,y. (1.6)

Mean-value theorems, integral representations, semicontinuity properties

of f' and 3f are basic facts in Convex Analysis.

Another class of functions which has played an important role in the develop-
ment of nonsmooth analysis and optimization is that of maximums of C1
functions :

fe max fi, fieCH(X).
i=1,.. .k

f'(x;d) is a convex function of d ; it is the support function of
af(x) = co{Vfi(x)[ fo(x) = f(x)}.

Actually, f behaves locally 1ike a convex function, so that handling such
functions brings us back to Convex Analysis.
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2. SOME ASPECTS OF THE EVOLUTION OF IDEAS (1974-1984)

Our 1977 survey paper on the various "diconvexifying" processes
([121) remains of the present day. We will schematize here the enlightenments
which have been brought up since.
Typically, dealing with nonconvex nonsmooth functions leads to the following :

M-. convexifyier |ama—p| Convex
Analysis

With the Tinear mapping d + &(d) = <x*,d> is associated the dual element x*.

In a similar way, with the positively homogeneous convex function d + h(d)
is associated the dual set of x* for which <x*,d> < h(d) for all d. But,
since d » f'(x;d) is not convex for general nonsmooth functions f, some
convexifying process has firstly to be devised for building up a positively
homogeneous convex function fv(x;d). Once this step is carried out, defining
of(x) and deriving calculus rules for it belong to the realm of Convex
Analysis. So, treating of nonconvex functions relies heavily, in fine, on
techniques from Convex Analysis ; that explains why researches in nonsmooth
analysis and optimization are prominent in countries where there is a long
standing tradition in Convex Analysis.

2.1 - Generalized subdifferentials (J.-P. PENOT, 1974)

Roughly speaking, the approach of PENOT consisted in skipping over
the "convexifying operation" on f'(x;d) so that the primal object fv(x;d) is
f'(x;d) itself. That led to the generalized subdifferential of f at x,

5°F(x) = {x" | <x*,d> < f'(x3d) for all d}, (2.1)

and to the generalized superdifferential of f at x,
37F(x) = {x*] <x*,d> > f'(x3d) for all d}. (2.2)

Evidently azf(x) = -85(—f)(x). The support function of asf(x) is the bi-
conjugate function of d +~ f'(x;d) and, therefore, may "slip" to -~ for all d.
If f(x) < g(x) in a neighborhood of X, and f(xo) = g(xo), we then have that

asf(xo)c asg(xo). The vocable "generalized subdifferential" 1is appropriate

for asf(xo) here since one is looking for the x* such that the linear map-
ping <x*,d> is a minorant of f'(x;d).
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f is said to be tangentially convex at x if d -~ f'(x;d) is convex, that is
to say the tangent problem at x is convex [Following B.N. PSHENICHNYI's
terminology [21], f is quasidifferentiable at x]. Tangential convexity is a
property which allows to develop calculus rules on 9%f.

As we will do it for each concept, we list some advantages and drawbacks of
5 f.

Advantages Drawbacks
. sharp necessary conditions for . asf(x) is empty too often,
optimality, keeping apart conditions due to the lack of convexity of
for minimality (Oe asf(x)) and condi- frix;.).

tions for maximality (Oe Bzf(x)).
. necessity of imposing

. nice relationship with the classical assumptions like tangential conve-
conical approximations of a set ; for xity for the calculus to be robust.
example, the contingent cone to epi f
(resp. hyp f) at (x,f(x)) is the epi-
graph (resp. hypograph) of f'(x;.). f'(x;d) as a function of x.

. lack of semicontinuity of

. mean-value theorems ; integral .. ..............
representations of f(y) - f(x)

{under some additional assumptions

on f).

2.2 - Generalized gradients (F.H. CLARKE, 1973, 1975)

The “"convexifyier" of CLARKE can be described shortly as :

fO(x3d) = 1im sup f'(x';d). (2.3)
X'+x
fo(x;d) is therefore a regularized version of f'(x;d). fo(x;.) is convex so
that the generalized gradient of f at x, 9f(x), is the dual object associa-
ted, in a natural way, to fo(x;d) :

af (x) = {x*| <x*,d> < fO(x;d) for all d},
(2.4)

O(x3d) = L max o <x,d>.
x € of (x)
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By setting fo(x;d) = 1im inf f'(x';d), we get nothing else than
X'+X

- (—f)o(x;d). Thus, the set of x* for which <x*,d> > fo(x;d) boilds down to
af(x) [a fact apparently missed by some authors].

Various appellations have been proposed for 3f : epidifferential or peri-
differential of f, multigradient of f, etc. "Peridifferential of f at x" is
not so bad since it reminds us of the information on f we are looking for
around x. "Generalized subdifferential” should be proscribed [3f is the
superdifferential for a concave function fJ]. Anyway, we stand by the origi-
nal appellation "generalized gradient of f".

af(x) is conceptually close to the notion of derivative of f ; 3f(x) reduces
to {Df(x)} whenever f is stnictly digferentiable at x. A function f for
which fo(x;d) = f'(x;d) for all d is called strnictly tangentially convex

at x [there is between "strict tangential convexity" and "tangential conve-
xity" the same kind of gap there exists between "strict differentiability"
and "differentiability"]. If one could rewrite mathematical history, one
would say "f is tangentially linear at x" for "f is differentiable at x"
[i.e., the tangent problem at x is linear] and "f is strictly tangentially
linear at x" for "f is strictly differentiable at x".

Note that if f(x) < g(x) in a neighborhood of X and f(xo) = g(xo), we only
have that af(xo) nag(xo) £ o

Advantages Drawbacks

. 3f(x) is nonempty at all x for . af (x) is sometimes too Tlarge
a very large class of functions. a set.

. the calculus is robust ; . the associated geometrical
virtually all the results holding concepts (1ike the tangent cone) are
for Df have their counterparts in not well adapted for nonsmooth
terms of af. manifolds.

. the function (x,d) » fo(x;d) . calculating effectively e-
as well as the multifunction lements of af(xn) at the nti:h step

x 3 38f(x) are upper-semicontinuous of an algorithm might be difficult.

...........................
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Note incidentally there is an integral estimate of f(y) - f(x) via 3f since

fly) - f(x)e j; <af(x+t(y-x)), y-x> dt. (2.5)
This representation is however loose, since the right-hand side may be too
large and the resulting estimate not much informative.
A final remark to mention is there is a generalization of the concept of gene-
ralized gradient to vector-valued functions F : (fl,..., fm)T :R" >R,
The so-called generalized Jacobian matrix of F at x is a nonempty convex set
of (n,m) matrices which take into account the possible relationships between

the component functions fi' A11 the other concepts extended to vector-valued
m

F = (fl,..., fm)T amount to considering X Bfi(xo)’ that is the generalized
i=1

derivatives of the components fi taken separately. This possibility of hand-
ling globally all the fi is definitely an advantage for CLARKE's generalized
derivatives. Its consequences are conspicuous in what can be called
"multidifferential calculus".

2.3 - The *-generalized derivatives (E. GINER, 1981)

Given f'(x;d), we are looking for a convex, positively homogeneous
function h such that

h(d) > f'(x3d) for all d, (2.6)

what B.N. PSHENICHNYI calls "an upper convex approximation of 4 at x" ([231]).
CLARKE's generalized directional derivative f°(x;.) is an example of such h.
There is another automatic way of selecting an upper convex approximation

of f at x, initiated by GINER (1981). When I moved to TOULOUSE in october 1981,
GINER showed me the following way of "convexifying" a positively homogeneous
function p :

h(d) = sup {p(d+u) - p(u)}. (2.7)
ueX
h is a positively homogeneous convex function which majorizes p. h is moreo-
ver Lipschitz whenever p is Lipschitz over X. The functional operation
paa»h has a geometrical interpretation by means of the so-called x-difference
of sets (of cones, in the present case). Given two subsets A and B, the
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*x-difference of A and B, denoted by A X B is defined as the set of x for
which x + Bc A, This operation was introduced by PONTRYAGIN (1967) when
dealing with linear differential games and further exploited by
PSHENICHNYI (1971) in the context of Convex Analysis. It now comes clearly
that :

. . * .
epi h = epi p—epip

{xeX|x + epi pcepi p} (2.8)

{xeepi p| x + epi pcepi p}.

That is the reason why the convex function h built up from p in (2.7) bears
the name “p. Needless to say, there is a concave counterpart p built up
from p mutatis mutandis.

In a certain sense, *p is the "minimal convex function majorizing p".

To be more precise, given doe X,

p(d,) + *p(d—do) > p(d) for all d, (2.9)

and h = *p for any positively homogeneous convex function h satisfying

p(d,) + h(d-d ) = p(d) for all d_ and d.
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We denote by *f'(x;d) what should be written as [*(f'(x;.)1(d). The corres-
ponding *-generalized derivative of f at x is defined by :

37 F(x) = {x*| <x™,d> < *f'(x;d) for all d}. (2.10)

H. FRANKOWSKA (1983) got independently at the same concepts she called
asymptotic directional derivative of f (= *f') and asymptotic gradient of f
(= B*f) respectively. The terminology comes from the fact that the asymptotic
(or recession) cone of a closed convex set C is precisely C X,

A wonderful thing about 3™f and the generalized gradients in CLARKE's sense
is the following :

THEOREM : The generalized gradient of d - §'[x;d) at 0 is exactly 3%4(x).

That means, among other things, that the generalized directional derivative
(in CLARKE's sense) of a positively homogeneous function p can be calculated
via the formula (2.7). Furthermore, calculus rules on generalized gradients
may be used for deriving calculus rules on *-generalized derivatives.

The proof of the theorem above is based upon the following geometrical re-
sult : CLARKE's tangent cone to a cone K at its apex is K ZK (cf. [5]1 for
example).

As expected, the advantages and drawbacks of 3*f are pretty much alike those
of the generalized gradient 3f.

Advantages Drawbacks
. a*f(x) is nonempty at all x for . lack of upper-semicontinuity
a large class of functions ; of x » *f'(x;d) [and therefore of
9 f(x) < af(x). x T 3% f(x)].
. 9°f(x) reduces to {Df(x)} . difficulties of calculating
whenever f is differentiable at x. *f'(x;d) when f (or f'(x;d)) is at

di .
. good calculus ; mean-value our disposal

theorems ,integral representations ... ... il
(without any further assumption
on f).
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If f(x) < g(x) in a neighborhood of Xo and f(xo) = g(xo), we have that

B*f(xo) na*g(xo) # ¢ (and not B*f(xo)c a*g(xo)!).

2.4 - Bidifferentials of tangentially d.c. functions (V.F. DEMYANOV and
A.M. RUBINOV, 1980)

DEMYANOV and RUBINOV consider the class functions f for which
f'(x;d) can be written as a dif4erence of two positively homogeneous convex
functions :

f'(x;d) = p(d) - q(d). (2.11)

The so-called d.c. functions (differences of convex functions) belong to this
class as well as functions whose directional derivatives f'(x;d) can be ex-
pressed as a minimum of two positively homogeneous convex functions.

DEMYANOV and RUBINOV use the vocable quasidifferentiable for the functions
for which (2.11) holds true, a term borrowed from PSHENICHNYI ([211). In
accordance with the terminology used earlier in this paper, we call these
functions tangentially d.c. (i.e., the tangent problem is d.c.).

f'(x;d) is thus the difference of two support functions p and g,

f'(x;d) = max <x",d> - max_<x",d> (2.12)
X €A X eB
= max <x",d> + min <x",d>. (2.13)
* *
X ehA X e-B

The sets A and B are not uniquely determined since one could add a support
function to the support function of A and cut if off from the support func-
tion of B, without altering f'(x;d). However, provided a relation of equi-
valence is used, the sets A and B are associated with f'(x;d) and the pair
(A,B) [actually (A,-B) in the formulation (2.13) used by DEMYANOV and
RUBINOV], is the bidifferential of f at x. This bidifferential, denoted as
(3f(x), 9f(x)), includes a subdifferential 3f(x) (taking into account the
convex part of f'(x;d)) and a superdifferential 3f(x) (reflecting the conca-
ve contribution of f'(x;d)).

Now, calculus on (3f(x), 3f(x)) amounts to using Convex Analysis twice !
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Advantages Drawbacks
. conceptually close to the usual . the bidifferential is actual-
directional derivative f'(x;d). ly a class of equivalence ; there is

no automatic way of selecting a re-
. separates the "convex part"

and the "concave part" of f'(x;d) ;

presentative of it.
sharp optimality conditions. . heavy calculus rules.

. mean-value theorems, etc. . no geometrical interpreta-
tion for (3f(x), 8f(x)).

.............

. lack of upper-semicontinuity
of x 3 (3f(x), af(x)).

A way of taking something which is unambiguously associated with the class
of equivalence (3f(x), 3f(x)) is to consider 3f(x) = 3f(x) and 3f(x) = 3f(x).
It is an easy exercise to verify that

(see §2.1)
FF(x) X 3f(x) =-87F(x).

So, for tangentially d.c. functions, necessary conditions for optimality
become :

0e 8 F(x) <> 0e df(x) X TF(X) <=> 3F(X) c 5F(X)
{necessary condition for minimality)

0ed7f(xX) <=> 0e 3f(x) X 5f(x) <==> 3f(x) c 3F(x)
(necessary condition for maximality).

The problem of selecting a representative of (3f(x), 3f(x)) is related to
that of finding the "best" decomposition of f'(x;d) as a difference of two
support functions p and q ; the same problem arises in decomposing d.c. func-
tions ([6, 141).

When we say there is no geometrical base for (3f(x), 3f(x)), we are actually
posing a question : is there some tangent "bicone" around ?
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3. RECOGNIZING FUNCTIONS f AND RECOVERING THEM FROM f', af

Given a multifunction T : X + X, is T the generalized derivative
(in some sense) of a function f : X >R ? There is no full answer to this
question, whatever the kind of generalized derivative we are considering. In
particular, the generalized gradient multifunction (in CLARKE's sense) may
be very "bizarre". A more sensible question is : knowing that T is a genera-
lized derivative multifunction of a function f, what kind of pronerties of T
could serve to characterize f ?

T = 9f is .... Lo fis ....

A strongly related question is : how to recover f from af ?
1
fly) - f(x) = J <f (x+t{y-x)), y-x> dt ? (3.1)
0

Recovering f from the directional derivative offers no problem ; but pro-
perties of "derivatives" are better expressed in terms of 3f, so that the
question (3.1) arises.

Classifying nonsmooth functions can be splitted up into two parts :

(1) Having the definition of a class of functions, what is the charac-
terization of such functions in terms of af or f'(.,.) ?

(2) Defining a class of functions via 3f, what is an equivalent defi-
nition in terms of the function f itself ?
Let us mention some classes of functions used in nonsmooth optimization :
Conv(X) : convex functions on X ;
QC(X)  : quasi-convex functions on X ;
LCk(X) : Tower - Ck functions on X ;

SS(X)  : semi-smooth functions on X ;

DC(X) : differences of convex functions on X.

We have that :

Conv(X) 5
) }CLC (X) e DC(X) < SS(X).
C(X)
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Convex or 1ower'-C2 functions enjoy a characterization via f or CLARKE's
generalized gradient 3f of f :

f is convex if and only if 9f is monotone ;

£ is lower-C2 if and only if of is strictly hypomotone ([251).
D.c. functions are, by definition, differences of convex functions. To cha-
racterize them in terms of af is a difficult task ; see [6, Ch. II] for the
first fruits in that respect. Even for d.c. functions, it may happen that

3"f differs from of ; see [14, §1] for an example of d.c. function for which
B*f(xo) = {Df(xo)} and Bf(xo) contains other elements than Df(xo).

Semismooth functions are, on the contrary, defined through a property of 3f
or f'(.,.) ; what such properties mean equivalently on f is unclear.

Quasi-convex functions are defined analytically,
F(Ax+{1-N)y) < max{f(x),f(y)} for all x,y and Xx¢[0,1],
or geometrically
{xe X | f(x) = a} is convex for all aeR.

A characterization of quasi-convex functions, similar to the one known for
differentiable quasi-convex functions, is a follows :

THEOREM ([10, Ch. III]) : Let § be menely fLocally Lipschitz on X. Then § 4s
quasi-convex on X Lf and only Li§ the following property holds thue :

Ux, x'eX Ix'] < fix) = <x'-x, ¥4l{x)> < 0,

Unfortunately, this characterization uses both f and 3f. It is desirable
to find a characterization based upon 3f only ; this has been done by
HASSOUNI (£10, Ch. IIII).

Following HASSOUNI, a multifunction T: X 3 X* is said to be quasi-monofone
in the direction de X if, for all xe X, there exists A eR such that

sign(A-X) . <r(x+Ad), d>c<R® for all A ¢R,

where sign u =1 if u> 0, -1 if u<0, 0 if u = 0.
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Observe that X may be +o or - in the requirement above. Also all the x' on
the line x0-+Rd give rise to the same condition ; only the direction d is
relevant.

I is called quasi-monotone if it is quasi-monotone in all directions of X.
As expected, a monotone I' is quasi-monotone.

THEOREM ([10, Ch. III1) : A Locally Lipschitz § is quasdi-convex Lf and
only Lf the generalized gradient multifunction 3§ is quasi-monotone.

The proof reduces to the one-dimensional case since quasi-convexity is a
"radial" notion ; it has however to overcome the difficulty that the gene-
ralized gradient of fx,d : A » f(x+)d) does not necessarily equal
<3f(x+rd), d>.

IV. CONCLUSION AND CURRENT TRENDS

The presentation we have made here is somewhat sketchy. Virtually
all the mathematicians who have contributed substantially to the area of
nonsmooth analysis and optimization have proposed their own "generalized
derivative" or "generalized subdifferential". The reader interested in going
more deeply in the subject will find in the bibliographies [9] and [18]
most of the appropriate references.

Concerning the first-order generalized differentiation of nonsmooth func-
tions, we think the golden age is over for researches in this area, even if
several problems remain unsolved. Theories are now solidifyied at least for
real-valued functions. The researches which are pursued can be described in
the following manner :

. classification of nonsmooth functions and optimization problems, this
classification using in most of the cases the various concepts of generalized
derivatives we discussed about.

. applications of the new tools and methods to problems which are nons-
mooth "by nature" : problems from Mathematical Economy, Optimal Control and
Calculus of Variations, as also Mechanics. In spite of continuous efforts,
the studies in view of dealing with vector-valued functions (i.e., functions
taking values in an infinite-dimensional space) are neither quite satis-
factory nor complete. There is a strong demand from Nonlinear Analysis
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(bifurcation theory, etc) for tools like implicit function theorems, inverse
function theorems for nonsmooth data.

. Fall-out in Nonsmooth Analysis and Geometry. New geometrical notions
of "tangency" and "normality" are associated with the generalized gradients.
For "thin" sets like Lipschitz manifolds, all the convex normal cones deri-
ved, from first-order differentiation are too small (they reduce to {0} at
the corners of the manifold). Attempts by the author to define a "normal
subcone" to the set S = {x|h(x) = 0}, h Lipschitz function, depend on the
function h used for representating S as an equality constraint.

It is clear that much more work should be done to better understand the
geometrical structure of Lipschitz manifolds.

A very promising area of research is now the generalized second-orden
digfenentiation of nonsmooth functions. Various generalized second-order di-
rectional derivatives have been studied in the literature, some of them
quite recently. It remains that no satisfactory (= tractable) definition of

azf(x) has come out as yet.
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BUNDLE METHODS, CUTTING-PLANE ALGORITHMS AND
o-NEWTON DIRECTIONS

C. Lemaréchal® and J.J. Strodiot?
YINRIA, P.O. Box 105, 78153 Le Chesnay, France
2FNDP, Rempart de la Viérge 8, 5000 Namur, Belgium

1. INTRODUCTION

Recently Lemaréchal and Zowe [7] have introduced a theoretical second-
order model for minimizing a real, not necessarily differentiable, convex
function defined on RR. This model approximates the convex function f along
any fixed direction d and is based on the variation with respect to ¢ of
the perturbed directional derivative fj(x,d) (all definitions in convex ana-
lysis used in this paper can be found in the classical book by Rockafellar
[9]1). With this help, a second-order expansion of f(x+d) - £(x), depending
on ¢ 2 0, is obtained at the current iterate X and a o—Newton direction is
naturally defined as a direction which minimizes this expansion (when f is
twice continuously differentiable on a neighborhodd of x and ¢ = 0, then
this direction coincides with the classical Newton direction).

If the subdifferential 3f(x) is approximated by a singleton {g,} and

the g-subdifferential Bcf(x) by some convex compact set Gc such that O ¢ Gc’

then a o-Newton direction (relative to 8y and Gc) is a vector d of norm 1
satisfying :

gTzz <g*,d> = <t g »d> < 0 @))
g

where < , > denotes the usual scalar product and ts the smallest number
t > 0 such that t gy € GG. Condition (1) means that the hyperplane defined
by d in R® supports Gc at t_ g and separates Gc strictly from the origin.
As observed in [6], the model is really interesting when t, < 1, in the
sequel it will be assumed that O < tG < 1.

Our purpose in this paper is to prove that if Gc is the usual polyhe-

dral approximation of many bundle methods (see, e.g. [61, [41, [8], [3])
then finding a oc-Newton direction is equivalent to solving a variant of
the cutting plane problem, in which one of the linear pieces is imposed to
be active. We also show that a c-Newton direction can be interpreted in
terms of the perturbed second order derivative given in [5], [11].
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2. PRELIMINARY RESULTS

Let x <y Xy be the iterates generated by the algorithm and let

1’
Bls tes B be the corresponding subgradients. As usual, at each subgradient
gi,.l <i <k, is associated a weight p; [6]1 defined by :

f; = f(xk) - f(xi) - <g;» X -x,> For ¢ 20, Bgf(xk) is approximated by the

convex compact polyhedron

k
Go = {.Z i .
i=1] i

Throughout, we will assume that Py = 0 and p; > 0, 1 <1 < k-1 ; observe

that gy belongs to Go' The following lemma gives the extreme points of Gg
k k~1
when o is small (throughout, we use the notation z, for ¥ and I_ for I ).
i=l i=1

LEMMA |. If ¢ < P; > l <i < k-1, then

p. = 1}

G ={Z+uiyi|p.20,lsisk,2+ :

g 1

= g - i =
where vy, = g * > (gi gk) for i < k and Y = 8t

PROOF. Let g = Be 8 T I_ Mg ovg with w2 0 and L, W = l. Then

g=[1-2_ owu/p;lg +0I_wu g/p;.

Set XO =1-z_ e O/pi 21 =-z_ My pi/pi =W 20 and Xi =y 0/pi >0,
to observe that I, Ai = 1 and

T, P T O0+I_ APy sI_w o= (- WO < 0, SO g € G-
The converse inclusion is proved through a similar calculation. |

The next lemma relates G, and the function used in the cutting plane
algorithm.

LEMMA 2
G0 = 30 f(xk)
where

E(x) = max [£(x) - p; + <g;, XX}
I<i<k
PROOF. Set fi(x) = f(xk) T p; to<gy, XX and observe that E(x) = max fi(x);

for all a 2 O, 3, (%) = {gi} and fi(xk) = E(xk) - p;-
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Then use a result of Hiriart- Urruty ([2],seealso[10]) to obtain the desi-

red result. |
In a bundle algorithm, the direction is computed by minimizing

~ 1 2 . . . .

f(x) + 7 u | Ix - xkll for given u20. Choosing u=0 gives the cutting plane

algorithm. Here, a variant of the cutting plane algorithm is considered, in
which the last linear function is imposed to be active at the optimum. More
precisely, consider the problem.

Minimize g(x)
x

[ s.t. f(x) = f(xk) +o<gy, XK >,
or equivalently

Minimize v
v,X

(CP) { s.t. v

£(x) + <g, x>

v

v f(xk) TPyt By, XK i=1,...,k-1.

Eliminating v, this problem is nothing else than finding d= x - % solution
of the following program :

Minimize <g_ , d>
d
(®)

S.t. < = 8> d> < p; i=1,...,k-1.
It is a linear programming problem whose dual is

Minimige I_ Ai P;

(D) s.t. I_A;(g; —g) *g =0

A, 20 i=1
1

When O <o < p;, | <1i <k-1, then, using the definition of Yy in

Lemma | and setting Ai P; = 0 u;, one sees that (D) can be written :

Minimize Z_ u;

A - =
(D ¢ sete I_u(y; —g) +tg =0

My 2 0, i=1,...,k-1.

The following lemma characterizes the length ts in terms of the solu-
tion of (D) or (D).
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LEMMA 3, If 0 < ty < 1 and 0 < osp;, 1 <i < k-1, then (D) and (D") are fea-
sible and there exists at least one solution to problems (P), (D) and (D').
Moreover if d* denotes a solution to (P), 2= (A;,...,Ai_l) a solution to

(D) and U* = (UT,...,ui_]) a solution to (D') then da* 40 s

* *
t, = I -o/z_ 2 py=1-1/5 uy

and
* *
<ge,d > =-I_ A Py -

> 0,

PROOF. Take t < I such that tg ¢ Go' By Lemma 1, there exist vy

I <1 <k such that I, v; = 1 and

gy = Iovi g TV g T Iovilyy T og) F g

Hence {vi/(l—t)} is feasible in (D'), which has an optimal solution
{uz} satisfying :

0 <3z Hs < Z_ Vi/(l_t)
so that

(2)

t
e}
=
Y
o~
=
|
[
<
Y
e}
|
=
%
!
—

Now let {ui} be feasible in (D'). Then

@! "Z_ Ui) gk'*'z_ Ui Yi

Because we have assumed 0 ¢ Go’ this implies that 3_ uy > 1 and, divi-

ding by 3_ u;, we obtain

(1 -1/z_ ui) B = I_ W Yi/Z_ uy € Gd'

Hence t0 <1 -1/z_ by 3 equality follows from (2), and the rest of

the Lemma is a consequence of duality theory. [ ]

3. CHARACTERIZATION OF ¢-NEWTON DIRECTIONS

The next theorem makes precise the relationship between o-Newton direc-—
tions and solutions of problem (P).

THEOREM | . If 0 <t <land 0 <o <p;, | <1 <k-1, then

(i) for each o-Newton direction d, od is a solution of (P) where

o = - optimal value (D) 0
By s d>
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(ii) for each solution d of (P), the direction d/||d|| is a o-Newton direc-
tion.

PROOF.

(i) By the strong duality theorem in linear programming and Lemma 3, it is
sufficient to prove that od is feasible for (P) and <g , ad> = Z_ x; P

* . .
where A 1is a solution of (D).

The above equality just results from the definition of @, and it
remains to prove that od is feasible for (P), i.e.,

<y T B ad> < P; i=1,...,k-1
or equivalently that
o<, - g ado/p, = o L= 1, k1 (3)
As Yy = 8y + o(gi - gk)/pi € GO (see Lemma 1) and as d is a o-Newton
direction we deduce successively for each i = 1,...,k-1 that

0<8; 8y s ad>/pi = <y, ad> - <gy» ad>,

A

< t0<gk, ad> - <8y s ad>,

= (to—l) <B» ad> |

which 1is precisely inequality (3) if we replace o and t, by their value.

(ii) Let d be a solution of (P). As <8y s d> < 0 and ty g € G0 it is suffi-

cient to prove that
<g, d> < to <Bps d> ¥g € Go'

let g ¢ GO. Then g = Z,X 8; with Ay 2 0, 1l <i <k, z, a =1 and

i + i
I, Ai P; < 0. As d is a solution of (P) we deduce successively that

<g, d> = <z, Ai g;» d> =3 2. <878 d> + <8y s d>

-1
< I_ xi P; * <g» d> <o + <g» d> (4.
On the other hand, by using Lemma 3, we obtain that
t<g , d>= (1 = —2 .y <g, d> = <g_, d> O <o, d>
o Bk’ * B> B> o B’
i_ Xi P; I i Pi
= <gk, d> + g (5).

The result follows then from (4) and (5). [ ]
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Because (P) may have several solutions there may exist several o-Newton
directions. In that case,Lemarechal and Zowe [7] suggest to select the best
hyperplane which supports G, at t_ g and separates Gc strictly from the

origin. They solve

Maximize %-ti <Bp» d>2
(M)

s.t. d ¢ .2

and show that (N) has a unique solution ; here & denotes the set of o-Newton
directions. The next result relates (N) and (P).

COROLLARY 1. Let d” be the unique solution of
g Minimize ||d||
s.t. d is a solution of (P).
Then d*/||d*||solves N.

PROOF. By theorem 1, d*/||d*|| is a g-Newton direction and it remains to
*

prove that <g , a2 < <Bpe» —dT>2 for each de &. Let deP. Then l1da]] =1
||d"]|
and by Theorem 1, od is a solution of (P) for o satisfying the relation
*
0< g = —(optimal value of (D)) _ <8y d>
¢ By s d> <g> d>
By definition of*d*, we have ||d*|| < ||ad|| = o and consequently
. |<gk’ d >|
||d*]] < , which is just the announced result. [ |
<g» 4>

In terms of problem (CP), selecting the best hyperplane means choosing,
among all the solutions x of (CP), the one which is nearest to X -

We conclude this paper with a further interpretation of ¢-Newton direc-
tions.

A way to introduce the classical Newton method is to consider the
second derivative (£"(x) d,d) as the square of a norm to compute the stee-
pest descent direction by solving

Minimize(f'(x), d)

s.t. (f"(x) d, d) <1

Here we can do the same. Taking f instead of f (in order to obtain
something implementahle) and considering the perturbed second order direc—
tional derivation fj(x, d, d) (given in [5], [1]).we are led to compute the
direction by solving
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Minimize E'(xk,d)
(" -~
s.t. f;(xk, d, d) < M2

Because of positive homogeneity, the direction thus obtained is inde-
pendent of M > 0. We claim that (P') is equivalent to (P). For this, we

need to characterize f"(x , d, d).
g

LEMMA 4. Assume O < ty < l and 0 < ¢ < py, i <k-l. Let d be such that

<gk,d> < O. Then

(1) there exists 1 < k-1 such that <gi—gk,d> >0

(1) £ (g, d) = F'(xg, &) + o/t(d)

(1i1) £10g, d, &) = (£, &) - €10, T / £(d)
. Pi

where t(d) = min £ > / <83 8> d> > 0}

<8; B> d

PROOF. If (i) were false, then (P) would have no optimal solutiom, contra-
dicting Lemma 3.

Then, drawing the graph of the functions -p; +t <gi,d>, i £k and

. - ~'
of the function -g + t fa(xk, d),
A
t(d)

1
-6 : <gj,d>
|
-p; -~ ]
=~ -~ <gj,d>

~~ f}ixk,d)
(gk,d }

-pj

it can be seen that t(d) is the smallest solution of

inf [E(xk + td) - E(xk) +0l/ t
t>0

ant that ?(xkftd) = f(xk) +to<g ,d> if 0 <t < t(d).
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This implies (ii) and then (iii) is just the definition of E;(xk,d,d).l
If d is such that <g.-g , d> < 0, | < i € k, then E;(xk,d) = E'(xk,d)

and E;(xk,d,d) = 0. Lemma 4 says that, in this case, <g_,d> 2 0.

THEOREM 2. If 0 <t <1, 0<o <p;, i =1,....,k-] and M = /G, then(P') is
®.

PROOF. Because d = 0 is feasible, we have to consider in (P') only those
d for which f'(x ,d) = <g ,d> < 0. Thus we can apply Lemma & to write @"

in the form
Minimize <gk,d>

s.t. t(d) exists
20 < MZ
t7(d)

in which the last constraint can be expressed as

VA; <8;7Bk> d> / p; < M for i such that <858y > d> > 0.

Obviously, any d satisfying this condition does satisfy the same condi-
tion for all i. In other words, (P') can be written

Minimize <By» d>
<g;mg, &> <p; M/Vo 1 <i<k

which is (P) if M

N
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THE SOLUTION OF A NESTED NONSMOOTH
OPTIMIZATION PROBLEM

Robert Mifflin
Washington State University, Pullman, WA 99164-2930, USA

1. INTRODUCTION

This paper reports on the successful solution of a
nonsmooth version of a practical optimization problem using a
recently developed algorithm for single variable constrained
minimization. The problem is a single resource allocation
problem with five bounded decision variables. The algorithm
is used in a nested manner on a dual (minimax) formulation of
the problem, i.e., a single variable dual (outer) problem is
solved where each function evaluation involves solving a five
variable Lagrangian (inner) problem that separates into five
independent single variable problems.

A sufficiently accurate solution is obtained with a very
reasonable amount of effort using the FORTRAN subroutine PQl
(Mifflin 1984b) to solve both the outer problem and inner
subproblems. PQl implements the algorithm in Mifflin (1984a)
which solves nonsmooth single variable single constraint
minimization problems. The method combines polyhedral and
quadratic approximation of the problem functions, an automatic
scale-free penalty technique for the constraint and a safe-
guard. The algorithm is rapidly convergent and reliable in

theory and in numerical practice.

Research sponsored by the Air Force Office of Scientific
Research, Air Force System Command, USAF, under Grant
Number AFOSR-83-0210. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.
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The smooth version of the problem is due to Heiner,
Kupferschmid and Ecker (1983) and is solved there and in
Mifflin (1984b). The nonsmooth version is defined in the

next section and its solution is discussed in section 3.

2. THE RESOURCE ALLOCATION PROBLEM AND ITS DUAL

The nonsmooth problem solved here is a modification of

a smooth applied problem given in detail in Heiner,
Kupferschmid and Ecker (1983).

The general problem is to find values for J decision

variables Vis Voseres Vy to
maximize Zq R.(v.)
i=1 73]
. J
subject to T _. c. v, 5 B
=1 73 73
and 0 = vj = Vj for j =1,2, yJ
where
-1 -1.1/2
R.(v.) = Y. -4S.V.[v." - (2V. ,0 - c. v.. 1
3 (vy) = max{¥;-4S;vylvym - (2V5) 7 ooy v (1)

The specific problem of interest has J = 5, a budget value

B = 150,000 and the data Yj’ Sj’ 2 Vj’ c. for j =1,2,...,5
as given in the "Hospitals'" table on page 14 of Heiner et al.
(1983). Actually, the real application requires integer
values for the variables, but rounded continuous solutions
appear to be quite adequate for this application.

The nonsmooth problem solved in this paper is the above
problem with with R, and its derivative R! replaced by P. and
Pf, respectively, w%ere for vj z 0 ! !

+

pi(vj) = Ry (v;) + Pvilvs - vy), (2)

Py(vy) = Rylyy + 1) - Ry(¥5),
and Kj is the largest whole number not exceeding v.. Note
that Pj is a piecewise affine approximatioz of R. which agrees
with Rj at integer values of v. and that P. is the derivative
of Pj at noninteger values of Vj and the right derivative at
integer values. The above defined problem is referred to as
the primal problem in the sequel.

Each Rj is not a concave function, but Rj does
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consist of two concave pieces, one of which is linear and the
other of which is strictly concave. P. inherits a piecewise
affine version of this R, structure. The fact that the
objective function is a sum of P.'s each having the above
special structure allow for attempting to solve this problem
via a dual approach.

Let x z 0 be a dual variable associated with the linear

budget constraint, define the Lagrangian function L by

. o O o5
L(vl,vz,...,vs,x) = Zj=1pj(vj) + (B Zj=1 cj Vj) X
- v _
= Zj=1 (Pj(vj) cjvjx) + Bx (3)

and define the dual function f by
f(x) = max[L(vl,vz,...,vs;x):
0 =v., =V.,, j=1,2,...,5]. 4
vis Vs, ] (4)

The associated dual or outer problem is to find a value for
X to

minimize f(x) subject to -x = 0. (5)

The Lagrangian or inner problem defined by (3) and (4)

separates into 5 independent single variable single constraint
problems indexed by j and equivalent to

minimize —Pj(vj) + cj Vj X

subject to max [-vj,vj-Vj] = 0. (6)
Note that these five inner problems could be solved in
parallel if one has the facility for parallel processing. The
nonconvexity of -Pj gives the possibility of two local mini-
mizers of the jth inner problem (6), one of which is at
v. = 0 where Pj = 0. The dual approach can be carried out on
this problem, because both local minimizers can be found and
the better one chosen. Since f is a pointwise maximum over a
compact family of affine functions f is a convex function.

Let Vj(x) c [O,Vj] be the set of minimizing solutions
to the jth inner subproblem depending on the nonnegative
parameter (outgr variable) x. Then for x =z 0 and Vj(x) € Vj(x)

f(x) = Zj=1[Pj(vj(x))-cjvj(x)x] + Bx

and a subgradient of f at x, denoted g(x), is given by

g (x) =-z§=1 ¢; v5(x) + B.
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In general, the outer problem is solved at a point of
nondifferentiability of f, say x*. Hence, there exist sub-
gradients of f at x*, say g~ and g*, and a multiplier
A* € [0,1] such that

(1-x%)g™ + A%g* = 0. (7)
From the inner subproblems
- 5 -
= -X% .v: + B
& i=1 573
and
5
o= -1 .vi + B
£ j=1 573
where
vi, v} € Vj(x*) for j =1,2,...,5.
From the convex combination in (7)
0 = -Z§=1cj[(l—k*)v3 + A%vi] + B
and a solution to the primal problem is given by
v, = (l—A*)vi + A*v} for j = 1,2,...,5
provided that for each j
1-A*)vs kvl o€ V., (x*
( V3 o+ ARV J( ) (8)

In general, (8) could be violated, because Vj(x*) is not

a convex set when the primal objective function is not concave.
Fortunately, for the particular problem considered here it
turns out that (8) is satisfied, i.e., there is no duality gap.

3. THE SOLUTION VIA NESTED OPTIMIZATION
Since the outer problem and each inner subproblem

defined above are single variable single constraint minimi-
zation problems they can be solved numerically using the
FORTRAN subroutine PQl of Mifflin (1984b) which implements the
algorithm in Mifflin (1984a).

PQl requires the user to supply a starting point and a
starting stepsize. The starting vector supplied to the
multivariable nonlinear programming algorithms used by
Heiner et al. (1983) to solve the smooth primal problem was
given by vj = % Vj for j = 1,2,...,5
(Ecker and Kupferschmid 1984).
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To determine a related starting point x and a starting

step d for the outer problem vj was set equal to % VjE where
b was chosen so that
1 .5
P c. V. b = B.
Z %j=1 ") 7j
This gave the values
(Vl’VZ""’VS) = (883.1, 240.5, 570.2, 1127.1, 54.0) (9)

that satisfy the budget constraint with equality. Then five
values for x were computed such that
-P}(vj) teyxo= 0 for j =1,2,...,5.

If these five values had been the same positive number, then
this common value and (9) would have been the solution to the
minimax problem defined by (4) and (5). This was not the case
and the starting x was set to the median value 0.57 and the
starting stepsize was set to 0.57 also, so as not to go
infeasible if g(0.57) were positive. However, g(0.57) was
negative, so the second outer point was 0.57 + 0.57 = 1.14.

For the first set of five inner subproblems, the
starting points were set as in (9). For the subsequent inner
subproblems when the outer variable was changed from x to =+d,
the previous inner solution vj(x) was used as the starting
point in the search for the next inner solution vj(x+d). Note
that the inner objective and right derivative values at the
starting point vj(x) can be updated simply by addition when x
is replaced by x+d without evaluating Pj and P; again. For
all of the inner subproblems the starting stepsizes were set
to 1.0.

The problem was solved using single precision FORTRAN
on a VAX 11/750 computer. For both the outer and inner
problems, the numerical parameters STHALF and PENLTY required
by PQl were set as in Mifflin (1984b) to the values 0.2 and
5x10_8, respectively. The termination criteria were set so
that the outer problem was solved to the point where £
appeared to be numerically stationary in single precision and
the inner subproblems were solved to a corresponding degree of

accuracy.
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The computer run terminated with two points

xp = 1.539 and Xp = 1.564 having f(xL) = 3,975,041.,
£(xp) = 3,975,051., g(x;) = -13.3, g(xp) = 833.9,
(vilxp)seove(xp))
(196.5,0.0, 409.8, 2015.0, 346.0) (10)
and
(vy (xg) v e Ve (xp))
(195.5, 0.0, 407.2, 2001.6, 346.0). (11)

To approximate the optimal multiplier A* in (7) X was defined
by

(1-M)glxp) + rglxp) = 0.
This gave A = 0.04 and the corresponding convex combination
of (10) and (11) gave the approximate primal solution
(Vys-+sVve) =(196.5, 0.0, 409.7, 2014.8, 346.0)
with corresponding primal objective value 3,975,041.

This v-solution has v, at its lower bound, Ve at its

upper bound, and is very ciose to the feasible integer
solution that is the best known integer solution to this
problem (Heiner, et. al., 1983).

The run required 6 outer iterations and, hence, a total
of 30 inner subproblems were solved. The total number of
evaluations of the Pj's and P;'s was 102. Since evaluating
Pj and P; at a point requires two evaluations of Rj, the total
number of evaluations of the Rj's was 204. This is a reason-
able amount of work, because 440 such evaluations were used to
solve the corresponding smooth primal problem by the code GRG2Z
(Lasdon et. al., 1978) with double precision arithmetic and
function value difference approximations of the partial
derivatives (Heiner et al., 1983, Ecker and Kupferschmid,1984).

The smooth version of this problem also was solved using
PQl in a nested manner on the corresponding dual formulation
with only 100 evaluations of the Rj's and Rﬁ's (Mifflin 1984b).
This result represents less work than evaluating the Rj's 204
times, because evaluating Rj and Rj at a point requires
considerably less effort than evaluating Rj twice, due
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to the same square root being used to calculate Rj and its

derivative at a point.

4. CONCLUDING REMARKS
One could imagine problems where the objective function

is only given at a finite number of points and some approxi-
mation to the function needs to be made before the optimization
problem can be solved. As observed here a problem with a
smooth approximation of the objective probably could be solved
with less effort in the optimization phase than a.problem with
a piecewise affine approximation of the objective. However,
the latter problem does not require the initial phase of set-
ting up and running some procedure to find the smooth
approximation. Hence, in terms of overall effort the piece-
wise affine version might be preferred for some problems where
the objective is described only by data points.
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VARIATIONS ON THE THEME OF NONSMOOTH ANALYSIS:
ANOTHER SUBDIFFERENTIAL

Jean-Paul Penot
Faculty of Science, Avenue de I’'Universite, 64000 Pau, France

Making one's way through various kinds of limits of differential
quotients in order to define generalized derivativesis a rather dull task :
one has to be very careful about the moving or fixed ingredients. Formulas

such as the following one [11] may be thrilling for some readers :

fé(a,x) sup sup lim sup inf E—[f(a+tu+tv) -f(a) - ts] .
weXUe QJ(x) (v,s,t) + (w,r,0,) u€U
r €R f(a)+ts f(a+ts

But for most readers and for most listeners of a lecture
with rapidly moving slides, the lure of such a limit may not resist when
compared with the clarity and attractiveness of a simple drawing. Thus we
choose to focus our attention on a more geometrical aspect of the same
problem : the study of tangent cones. It appears that this point of view
is also quite rewarding when one has to give the proofs of the calculus
rules one may hope to dispose of : these proofs are clearer and simpler
when given in geometrical terms instead of analytical calculations ; but
this advantage will not appear here. For the sake of clarity in our slides
and in this report we adopt rather unusual notations using capital letters
instead of subscripts or superscripts (although a systematic use of super-
scripts as T$,TO,TQ,...,f$,f0,f9.a, would be elegant). A general agree-
ment on notations and terminology is still ahead ; it may be difficult to

realize in a period of fast growing interest and use.

In the sequel E is a subset of a normed vector space X and e

is an element of the closure ¢l E of E . It would be useful to consider



42

the more general situation in which E 1is a vector space endowed with

two topologies but we refrain to do so here.

1 - WELL KNOWN TANGENT CONES

1-1 Definition

The contingent cone to E at e is the set K(E,e) = lim sup t:_1 (E - e)
t+0
The classical tangent cone to E at e is the set T(E,e) :ﬁjn]inf‘t_1(E—e).
t+0
The strict tangent cone to E at e is the set S(E,e) = lim inf +t-1(E—e').
t+0+e+e

This latter cone is also known as the Clarke's tangent cone and the first
one is often called the Bouligand's tangent cone or tangent cone in short.

The following two characterizations are useful and well known.

1-2 Proposition
(a) A vector v belongs to K(E,e) iff there exist sequences (tn),
(vn) in IR; = ]0,+®=[ and X with limits 0 and v respectively such

that e + tnvn €E for each n €N .

(b) A vector v belongs to T(E,e) iff for each sequence (tn) in IR;
with limit 0 there exists a sequence (vn) in X with limit v such

that e + tnvn €E for each n €N.

{c) A vector v belongs to S(E,e) iff for each sequence (tn) in ﬁR;
with limit 0 and each sequence (en) in E with limit e there exists
a sequence (vn) with limit v in X such that e+ tnvn € E for each

n €N .

1-3 Proposition
(a) A vector v belongs to T(E,e) iff there exists a curve c:[0,1]+X
with c(0)=e, c(t) €EE for t>0 and v:é+(0) := lim t-1 (c(t) -c(0)) .

t»>0

+
(b) A vector v belongs to K(E,e) iff there exists a curve c:[0,1]+X
with c(0) = e, v = é+(0) » 0 being an accumulation point of c_1(E) .

A characterization of S(E,e) in terms of curves is more delicate ([24],[25]).
A characterization of each of the preceding cones can be given in terms
of the generalized derivative of the distance function dE to E (defi-

ned by dE(x) = inf {d(x,e) : e € E}) through the equivalence :
v € C(E,e) <= dg(e,v) £0 for C=K,T,S.

Here the C-derivative fC of a function f : X »R finite at a € X is

defined through the formula
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E(f%(a,.)) = C(E(f),e) for C =K,T,S

where e = (a,f(a)) , E(f) Ef = {{x,r) € X xR : r » f(x)} is the epi-
graph of f . The introduction of generalized derivatives through concepts
of tangent cones is well established ([1],[13],[21] for instance) ; see
the lecture by K.E. Elster in these proceedings for a systematic treatment
along this line. Let us observe that a reverse procedure is possible as
long as one is able to define generalized derivatives of an arbitrary
function f : X =R finite at a € E : if iE is the indicator function
of E < X (given by iE(x) =0 if x € E,iE(x) =+ if x € X\ E) and

if some generalized derivative (iE)D(a,.) of 1 is an indicator func-

E
tion, one can define the related tangent cone D(E,a) as the set D such

that
. . D
inv) = (ip)7(a,v)
We will not pursue this line of thoughthere since we insist on the first
process we described above.
The obvious inclusions
K(E,e) > T(E,e) > S(E,e)

yield the following inequalities for an arbitrary function f : X +R fi-

nite at a
K(a,.) <« f1(a,.) € f2(a,.)

In many cases of interest the preceding inclusions and inequalities are
equalities. However they are strict inclusions in general, even if K(E,e)
and T(E,e) are seldom different. As a matter of fact K(E,e) and T(E,e)
give a closer approximation to E at e than S(E,e) as shown by the
following figures and the example X - R’ , e =(0,0) , E = {(x,y) er? :
(x - a)° + (y - B%) - 1,0,8 € {-1,0,1},|a| + |B] = 1}, for which

K(E,e) = T(E,e) =R x {0} u {0} xR, S(E,e) = {(0,0)}-

< e

R~
i

T(E,e) é
A

S(E’e) . —

%%;FEEK(E,e)

é | s
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2 - THE INTERPLAY BETWEEN THESE NOTIONS

Corresponding to the accuracy of the geometric approximation of E
near e by a (translated) cone is the precision of the approximation of f
by a translated positively homogeneous mapping. We believe this accuracy
is of fundamental importance when one is aiming at necessary conditions :
as a good detective indicts a small number of suspects, a good necessary
condition has to clear most of innocent points of the suspicion of being
a minimizer. In this respect it is easy to construct a lipschitzian func-

tion f : R >R with a unique minimizer at 0 for which one has
0ed¥(x) iff x=0,

whereas

100]

53¢ (x) = [-10190 10 for each x €R ,

- * *
where for C = K,T,5 , x = (x,f(x)) , Q° = {x € X*,<x , x> £ 0 vx € Q}

*

xex" X < fc(xy-)}

acf(x)

*

- e X (X, e ClE, %))

is the C-subdifferential of f associated with C . One cannot claim
that the relation 0 € [—10100,10100] is very 1informative, especially

from a numerical point of view.

Thus we propose to add accuracy to the list of six requirements pre-
sented by R.T. Rockafellar in this conference as the goals of subdifferen-

tial analysis. These seven goals are certainly highly desirable.

Of course if there were a proposal meeting these seven requirements,
this seventh marvel would withdraw nonsmooth analysis from most rights to
be entitled as nonsmooth analysis. Qur conclusion is that a multiplicity
of viewpoints 1is likely to be the most fruitful approach to this topic,
while the lure of a messianic, miraculous generalized derivative may lead
to delusion for what concerns necessary conditions (for other aims of
nonsmooth analysis as inverse function results, the situation may be quite
different as the strict derivative approach seems to be strictly better

than anything else).

What precedes will be more clearly understood if we add that the con-
tingential or tangential calculus for sets or functions is relatively poor
(see [13],[14] for instance) while the strict tangential calculus is more

tractable : accuracy is in balance with handability. This is due to the build-in
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convexity carried by strict tangency. Contingential or tangential calculus
cannot reach such an handability without some added assumptions. One such
assumption can be tangential convexity (i.e. KeE or TeE, fK or fT are

supposed to be convex); this is not too restrictive, as this assumption en-
compasses the convex case and the differentiable case. Another kind of as-
sumption which seems to be rather mild is presented in proposition 5,3
below. On the other hand more precise calculus rules can be achieved with
strict tangency when one adds regularity conditions in the form : fS(a,.)
coincides with fK(a,.) or fT(a,.) ; then one is able to replace inclu-

sions by equalities (see [1],[20] for instance).

Here are some more reasons why not forsaking the tangential or con-
gential points of view (see also recent works of J.P. Aubin and the au-

thor on differentiability of multifunctions) :

1) in contrast with the strict tangent cone concept these notions are
compatible with inclusion : for E € F we have K(E,e) < K(F,e) ,
T(E,e) © T(F,e) but not S(E,e) < S{F,e) ;

2) tangent or contingent concepts are easier to define as the relevant
point e is kept fixed ;

3) this fixity of the relevant point permits easier interpretations
in marginal analysis for instance or in defining natural directions of

decrease ;

4) higher order contingent or tangent cones and derivatives are easy
to define and use ([16],...) whereas no strict counter-part are known to
the author ;

5) tangent or contincent quotients are basic ingredients in more refi-
ned generalized subdifferential calculus as the "fuzzy" calculus of Ioffe
[8],[9], Kruger and Mordhukovich ;

6) there is a close link between strict tangent cones and derivatives
and contingent cones, at least if the space X 1is finite dimensional (or

reflexive, with some adaption of the preceding concepts). Let us make

clear this sixth assertion.

2-1 Proposition [22]
If f: X+R is finite at a € X and lower semi-continuous on the Banach

space X then for each v € X , denoting by B(v,e) the closed ball with
center v and radius € ,

S - . .
f7(a,v) € lim 1lim sup inf fK(x,u)s lim sup fK(x,v)slimsupr(x,v)
(-:-PO+ x > a u€B(v,e) X *> a X + a
f(x)+f(a) f(x) > f(a)
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If X 1is finite dimensional the first inequality is an equality.
If f is locally lipschitzian around a the opposite inequalities holds
and
fs(a,v) = lim sup fK(x,v) = lim sup fT(x,v) = lim sup fs(x,v)

X+ a x * a x * a

Proof
The first assertion of the preceding proposition is a consequence of
the relation
lim_ inf K(E,e) < S(E,e)

e »e,e €L
proved in [23] and [5] ; it becomes an equality if X is finite dimensio-
nal ([15] corol. 3.4 and 3.5 and [2]). Let us prove the last assertion :
let r > fs(a,v) and let k be a lipschitz constant of f on some
neighborhood X = of a . By definition of £S5 ([21]1, relation 4.6) we

have
Ve >0 38 >0 vt e ]0,8[ Vx € B(a,8) 3Ju € B(v,e) : fx+tu) - f(x) < tr
As § can be taken so small that B(a,8) + [0,8]B(v,8) c X, we get

ve >0 38§ > 0 Vx € B(a,d) sup t_1(f(x+tv) - f(x)) £+ ek
0<t<d

Thus fT(x,v) & r+ ek for each x€B(a,8) and lim sup fT(x,v) gfs(a,v).[[
X * a

3 - NEW SPECIES OF TANGENT CONES

Let us try now to conciliate the two antagonistic aims of defining

convex tangent cones and keeping these approximationsrelated to the set
as closely as possible. We incorporate our proposals in a general scheme
for obtaining tangent cones ; initially they appeared as an intermediate
step in the calculus of tangent and strictly tangent cones in singular
cases ([17]). They were preceded by [7] and followed by [6] which con-

tains applications to optimal control theory.

Let us suppose we are given a convergence C on R; x E for each sub-
set E of a n.v.s. X : this is a relation (multifunction) C from
CR; x E)]\l into R x E written ((tn,en)) § (t,e) satisfying the wusual
laws of limits ([10]) (a subsequence of a converging sequence converges to
the same limit and so on ... ). In fact we are only interested in the case
(tn) + 0, in the usual sense ; moreover supposing that (en) converges
too in X would not alter our present purposes.

Moreover we suppose that if E 1is a subset of F < X then the convergence
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C relatively to E 1is the convergence induced on R; x E by the conver-
gence C on R; x F .

The point here is that the convergences (tn) -+ O+ , (en) + e are tied to-
gether. We suppose that the following condition is satisfied for each

r eR’
o
(tn,en) § (0,e) = (rtn,en) § (0,e)

In other words the convergence Ct on E associated with a sequence
t = (tn) by
Ct ¢
e)) ~ e iff  ((t ,e )) > (0,e)
depends only on the class of (tn) up to homotheties. The case of primary
interest is the case of directional convergence i.e. the case in which
((tn,en)) § (0,e) iff (tn) > O+ and (t;1(en—e)) converges. Now we are

able to introduce our definition.
3-1 Definition
The C-tangent cone to E at e 1is the set

CEe) = ) Lim inf t (€ - ¢ )
((t e ) § (0,e) "

In other words, v € C(E,e) iff for each sequence ((tn,en)) § (0,e) there
exists a sequence (vn) in X with limit v such that e+t v, € E for
each n €N . Thanks to the condition we imposed on C above, C(E,e) is
seen to be a closed cone. It is convex in the three last examples below ;

to each example we affect a particular letter to denote the convergence C.

Example 1 :

((tn,en)) 1 (0,e) iff (tn) > O+ ;e =¢€ for n large enough ;

then C(E,e) is nothing but T(E,e)

Example 2 :

((t ,e ) 3 (0,e) iff (t)~>0_ , (e) ~>e in the topology of X ;
then C(E,e) 1is nothing but S(E,e)

Example 3 :

((tn,en)) g (0,e) iff (tn) >0, , (en) + e and (tr—]1(en - e)) converges
in X ; we denote C(E,e) by P(E,e) 1in this case and call it the pro-
totangent cone or pseudo-strict tangent cone.

Example 4 :

((tn,en)) 9 (0,e) iff (tn) > O+ y (en) + e and (t;1(en - e)) converges

to some element of T(E,e) ; the corresponding cone, denoted by Q(E,e)
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is called the quasi-strict tangent cone. Comparison of the strength of
the convergences occuring in the previous examples shows the following
inclusions :

S(Eye) c P(Eye) c Q(E,e) Cc T(E,e) C K(E,e)

4 - INTERIORLY TANGENT CONES

Up to now we have only looked at the "male" version of tangent cones.

By analogy with the concept of interiorly contingent cone (or interior
displacements or feasible directions) recalled below we intend to give an

interior partner to each of the cones we introduced above.

4-1 Definition
The interiorly contingent cone to E at e is the set
IK(E,e) = X\K(X\E,e) : v € IK(E,e) iff for any sequences (tn),(vn) in
+
Ro

n large enough.

and X with limits 0 and v respectively one has e+tnvn € E for

4-2 Definition

The interiorly C-tangent cone to E at e is the set IC(E,e) of vec-
tors v in X such that for each sequence ((tn,en)) ¢ (0,e) and each
sequence (vn) of X with limit v one has e +t v € E for n in an

infinite subset of N (or equivalently for n large enough).

For C =T we get IT(E,e) = IK(E,e) ; for C =S we find a cone
which is open and closely related to the cone of hypertangent vectors in
the sense of Rockafellar ; in fact this cone plays a key role in the
proofs of [20] and is called in [21] the hypertangent cone. The cases
c =P,0,T will also be of interest. Obviously

IC(E,e) < C(E,e)

4-3 Proposition
Suppose the convergence € 1is directionally stable in the following

sense :
if ((te)) % (0,0), if d€C(E,e) and if (d) > d with e +td <E
<
for each n €N then ((tn,en-+tndn)) (0,e) .
Then C(E,e) and I(C,e) are convex and
IC(E,e) + C(E,e) c IC(E,e) .

This occurs in particular for C = P,Q,S (but not T)

Let us prove the inclusion above ; the proof of the convexity of
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C(E,e) and IC(E,e) are similar. Let u € IC(E,e) , v € C(E,e) and let
w=uH+yvVv.Llet (wn) be a sequence with limit w in X and let
(tn,en) § (0,e) in R; x E . There exists (vn) with limit v such that
e +t v €E for each n . By assumption we have (t ,e +t v ) § (0,e)
n nn n’“n’ nn
As (u ) := (w_ - v ) converges to u =w - v we have e +t v +tu_ =
n n n n ‘nn °n

n
en+tnwn € E for n in an infinite subset of N , hence w € IC(E,e)

4-4 Corollary
When C is directionally stable and IC(E,e) 1is nonempty C(E,e)

is the closure of IC(E,e) and one has
int C(E,e) c IC(E,e) c C(E,e) .

In fact if u € IC(E,e) , for each v € C(E,e) and each t EiR; we
have v + tu € IC(E,e) and v + tu>v as t ~» O+ . On the other hand,
for each w € int C(E,e) we can write w = (w - tu) + tu with
w - tu € C(E,e) for t EiR; small enough, so that w € IC(E,e)

For a function f : X >R finite at a let us set, with e = (a,f(a))
fIC(a,v) = inf {r €R : (v,r) € IC(Ef,e)} .
4-5 Corollary

Suppose dom fIC(a,.) is nonempty and C is directionally stable.
Then

fc(a,v) = 1lim inf fIc(a,u) .
u-sv

Although T(E,e) 1is not convex in general, it enjoys a restricted

convexity property. Namely

4-6 Proposition
T(E,e) + Q(E,e) c T(E,e)
T(E,e) + IQ(E,e) c IT(E,e) .
The proof of these inclusions is nothing but a direct application of

the definitions. As above the following assertions follow :
if IQ(E,e) # @ then T(E,e) = cl IT(E,e) ;

if dom fIQ(a,.) £ 0 then fT(a,v) = lim inf fIT(a,u)
u->v
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5 - TANGENTTAL CALCULUS AND SUBDIFFERENTTAL CALCULUS

In general the correspondance E v C(E,e) 1is not isotone (i.e. does

not respect inclusions). This strong defect is partly compensated by the
following result in which E 1is said to be C-regular at e if
C(E,e) = T(E,e)

5-1 Proposition
Let D and E be two subsets of X, F=DnE, a€clF . Then

C(D,a) n IC(E,a) c C(F,a) .
If C 1is directionally stable and if C(D,a) n IC(E,a) £ ® then
C(D,a) n C(E,a) < C(F,a) .

If moreover D and E are C-regular at a , then F is C-regular at a

and
C(D,a) n C(E,a) = C(F,a) .
This result can be incorporated in the following property in which a
mapping f : D+ Y defined on some subset D of X , with values

in some n.v.s. Y 1is said to be C(C-strictly differentiable at a €D , if

there is a linear continuous mapping f'(a) : X =Y such that for each
sequence ((tn,an)) ¢ (0,a) (with respect to D) and each (vn) + v in
X , with v € C(D,e) , an«rtnvn €D for each n €N one has

(t ,f(a)) $ (0,f(a)) and

£ (fa vt v ) - Fla)) > Fr(a)(v) .

For D =X and C = T,P or Q this is just Hadamard-differentiability ;
for C =S this is exactly strict differentiability.

5-2 Proposition
Let F be a subset of Y and E = f_1(F) (=Dn f_1(F)) , where
f :D+Y 1is C-strictly differentiable at a € E . Then

C(D,a) n £'(a)” 1(IC(F,f(a))) < C(E,a) .
If C is directionally stable and if f'(a)(C(D,a)) n IC(F,f(a)) # @ then
C(D,a) n £'(a) (C(F,f(a))) < C(E,a) -

If moreover D and F are regular then equality holds and E is C-

regular.
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Similarly, if f is Q-strictly differentiable at a and if
f'(a)(Q(D,a)) n IQ(F,f(a)) # § then

T(D,a) n £'(a)" (T(F,f(a))) = T(E,a) .

One can derive chain rules from the preceding relations ; let us ra-

ther give two samples of rules for the addition (see also [6]).

5-3 Proposition
Let h = f+g . If there exists v € X such that fo(a,O) < +o
gIQ(a,G) < +® then

hT(a,x) < fT(a,x) + gT(a,x) for each x € X .
If moreover fT(a,.) and gT(a,.) are convex then
a'h(a) < a'f(a) + a'g(a) .

5-4 Proposition

Let h =f+g where f and g are conically calm at a (i.e. for
each v €X fK(a,v) > -~® gK(a,v) > -w) or such that dom fIK(a,.) =
X = dom gIK(a,.) . Then if dom fp(a,.) n dom fIP(a,-) £ 0 then

hp(a,x) < fp(a,x) + gp(a,x) for each x € X and
aph(a) c Bpf(a) + Bpg(a) .

6 - THE STAR DIFFERENCE

The following algebraic operation between two subsets of a vector

space X will provide an interesting link between the cones we introdu-
ced ; it has been used by Pontrjagin [18], Psenicnyj [19] and Giner [7]
who developped a subdifferential calculus using the star operation on
various generalized derivatives and applied by Frankowska [6].

Given two subsets A and B of X their star-difference (or alterna-

te difference) is the set
A¥B={xeX: x+BcA}.

We set A, =AXA ; when A 1is a closed cone of a n.v.s. X, it has
been shown in [4] and [7] that A, 1is the intersection of the maximal
convex subcones of A containing a boundary point of A . The two follo-

wing lemmas give connections with a more functional point of view.

6-1 Lemma [6]1,[7]

The star of the epigraph E of a positively homogeneous functional

h
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*
h : X >R is the epigraph of the sublinear functional h given by

*h(x) = sup {h{ix+w) - r : (w,r) € Eh} := sup {h(x+w) + (-h(w)) : w € x}

Proof

Let (x,s) € (Eh)* . As for each (w,r) € E,, we have (w+ x,r+s) €E

we get s 2 sup {hix+w) - r : (w,r) € Eh} . Conversely if {x,s) € X xR

h

is such that s > sup {h{x+w) - r : (w,r) € Eh} then for each (w,r) € Eh

we have r+s > h(x+w) or (x+w,r+s) € E,, and (x,s) € (Eh)* . [
6-2 Lemma
If A and B are closed convex subsets of X , the support function
* * * *
hc of C=-AXB, given by hc(x ) = sup <x ,C> for x € X , is the
greatest of the weak-star lower-semicontinuous positively homogeneous

functionals h on X* such that h + hB < hA .

This follows from the fact that for a closed convex subset D of X

one has D + B € A iff hD + hB < hA .

The star difference can be used in connection with Demyanov's theory of
bidifferential calculus (or quasi-differential calculus [2]). Suppose
f : X >R has a directional derivative h = f'(a,.) at a € X which is
the difference of two sublinear mappings p,q : h = p-q . Let

oh(0) = {x* ex i x < h} .

6-3 Proposition
One has 3h(0) = 3p(0) * 3q(0) . In particular, if f attains a local

minimum at 0 one has the following equivalent assertions :
0 € 3h(0) < 0 € 3p(0) * 3q(0) < 23q(0) c 3Ip(0) .
Our interest in the star difference stems from the following fact

6-4 Proposition
For each subset E of X and e € cl E one has Q(E,e) = T(E.e),

and
T(E,e) * K(E,e) c P(E,e) c K(E,d), ,
IK(E,e) * K(E,e) c IP(E,e) < IT(E,e) * T(E,e) = IQ(E,e), = IQ(E,e) .
It follows in particular that for any f : X >R finite at a one has
Qa,.) = t'(a,.), .

Thus, when fT(a,.) is convex, one has fQ(a,.) = fT(a,.) ; in particu-
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lar, when f 1is Hadamard-differentiable at a , one has
3%(a) = {f'(a)} = oFr(a)

In [12] a more analytical (but simple) approach to subdifferential cal-
culus 1is presented which in particular shares this enjoyable property
which does not hold with the strict subdifferential asf(a)

REFERENCES
[ 1] CLARKE F.H. : Optimization and Nonsmooth Analysis. Wiley, New-York
(1983).
[ 2] CORNET B. : Contribution a la théorie mathématique des mécanismes
dynamiques d'allocation des ressources. These Univ. Paris 9
(1981).

[ 3] DEMYANOV V.F., RUBINOV A.M. : On quasidifferentiable functionals.
Dokl. Akad. Nauk SSR 250 (1980) 21-25, Soviet Math. Dokl. 21(1)
(1980) 14-17.

[ 4] DOLECKI S. : Hypertangent cones for a special class of sets. in"Opti-
mization, theory and algorithms", J.B. Hiriart-Urruty et al.
editors, Marcel Dekker, New-York (1983) pp. 3-11.

[ 5] DOLECKI S., PENOT J.P. : The Clarke's tangent cone and limits of
tangent cones. Publ. Math. Pau (1983).

[ 6 1 FRANKOWSKA H. : The adjoint differential inclusions associated to
a minimal trajectoryof adifferential inclusion. Cahiers de Math.
de la Décision n°® 8315, Univ. Paris IX (1983).

[ 7] GINER E. : Ensembles et fonctions étoilés ; application a l'optimisa-
tion et au calcul différentiel généralisé (manuscript, Toulouse)
(1981).

[ 8] IOFFE A. : Approximate subdifferentials and applications I : the
finite dimensional theory. Trans. Amer. Math. Soc. 281(1)
(1984) 389-416. —

[ 9] IOFFE A. : Calculus of Dini subdifferentials of functions and contin-
gent coderivatives of set-valued maps. Nonlinear Anal. Th. Me-
thods and Appl. 8(5) (1984) 517-539.

[10] KURATOWSKTI K. : Topologie, I. Polish Scientific Publisher. P.W.N.
Warzaw (1958), English translation PWN - Academic Press (1966).

[11] MICHEL P., PENOT J.P. : Calcul sous-différentiel pour des fonctions
lipschitziennes et non lipschitziennes. C.R. Acad. Sc. Paris I
298(12) (1984) 269-272.

[12] MICHEL P., PENOT J.P. : A simple subdifferential calculus for locally
lipschitzian functions (to appear).

[13] PENOT 3J.P. : Calcul sous-différentiel et optimisation, J. Funct.
Anal. 27(2) (1978) 2u48-276.

[14] PENOT J.P. : On reqularity conditions in mathematical programming.
Math. Prog. Study 19 (1982) 167-199.



[15]
[16]
[17]
[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

54

PENOT J.P. : A characterization of tangential reqularity. Nonlin.
Anal. Theory, Methods and Appl. 5(6) (1981) 625-643.
PENOT J.P. : Generalized higher order derivatives and higher order

optimality conditions (to appear).

PENOT J.P., TERPOLILLI P. : Cones tangents et singularités. C.R. Acad.
Sci. Paris 296 (1983), 721-724.

PONTRJAGIN L.S. : Linear differential games II. Dokl. Akad. Nauk
175 (1967) 764-766.

PSENICNYJ B.N. : Legons sur les jeux différentiels. Cahier de 1'IRIA
n® & (1971) 145-226.

ROCKAFELLAR R.T. : Directionally lipschitzian functions and subdif-
ferential calculus. Proc. London Math. Soc. 39 (1979) 331-355.

ROCKAFELLAR R.T. : Generalized directional derivatives and subgra-
dients of nonconvex functions. Can. J. Math. 32(2) (1980)
257-280.

ROCKAFELLAR R.T. : Generalized subgradients. in "Mathematical Pro-
gramming : the State of the Art", Bonn 1982, A. Bachen, M.
Grotschel, B. Korte, editors, Springer Verlag, Berlin (1983)
368-390.

TREIMAN J. : Characterization of Clarke's tangent and normal cones
in finite and infinite dimensions. Nonlinear Anal. Th., Methods
and Appl. 7(7) (1983) 771-783.

TREIMAN J. : Generalized gradients and paths of descent, Preprint,
Univ. of Alaska (1984).

WATKINS G.G. : Clarke's tangent vectors as tangents to Lipschitz
continuous curves, J. Optim. Th. Appli. (to appear).



LIPSCHITZIAN STABILITY IN OPTIMIZATION:
THE ROLE OF NONSMOOTH ANALYSIS

R.T. Rockafellar
Department of Mathematics, University of Washington, Seattle, WA 98195, USA

ABSTRACT

The motivations of nonsmooth analysis are discussed. Applications are given to
the sensitivity of optimal values, the interpretation of Lagrange multipliers, and the

stability of constraint systems under perturbation.

INTRODUCTION

It has been recognized for some time that the tools of classical analysis are not
adequate for a satisfactory treatment of problems of optimization. These tools work
for the characterization of locally optimal solutions to problems where a smooth (i.e.
continuously differentiable) function is minimized or maximized subject to finitely many
smooth equality constraints. They also serve in the study of perturbations of such con-
straints, namely through the implicit function theorem and its consequences. As soon
as inequality constraints are encountered, however, they begin to fail. One-sided
derivative conditions start to replace two-sided conditions. Tangent cones replace
tangent subspaces. Convexity and convexification emerge as more natural than linear-

ity and linearization.

In problems where inequality constraints actually predominate over equations, as
is typical in most modern applications of optimization, a qualitative change occurs. No
longer is there any simple way of recognizing which constraints are active in a neigh-
borhood of a given point of the feasible set, such as there would be if the set were a
cube or simplex, say. The boundary of the feasible set defies easy description and may
best be thought of as a nonsmooth hypersurface. It does not take long to realize too
that the graphs of many of the objective functions which naturally arise are nonsmooth

in a similar way. This is the motivation for much of the effort that has gone into

* Research supported in part by a grant from the National Science Foundation at the University of
Washington, Seattle.
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introducing and developing various concepts of ''tangent cone”, "normal cone", "direc-
tional derivative” and ''generalized gradient’”. These concepts have changed the face
of optimization theory and given birth to a new subject, nonsmooth analysis, which is

affecting other areas of mathematics as well.

An important aim of nonsmooth anaiysis is the formulation of generalized neces-
sary or sufficient conditions for optimality. This in turn receives impetus from
research in numerical methods of optimization that involve nonsmooth functions gen-
erated by decomposition, exact penalty representations, and the like. The idea essen-
tially is to provide tests that either establish (near) optimality (perhaps stationarity)
of the point already attained or generate a feasible direction of improvement for mov-

ing to a better point.

Nonsmooth analysis also has other important aims, however, which should not be
overlooked. These include the study of sensitivity and stability with respect to pertur-
bations of objective and constraints. In an optimization problem that depends on a
parameter vector v, how do variations in v affect the optimal value, the optimal solu-

tion set, and the feasible solution set? Can anything be said about rates of change?

This is where Lipschitzian properties take on special significance. They are
intermediate between continuity and differentiability and correspond to bounds on
possible rates of change, rather than rates themselves, which may not exist, at least in
the classical sense. Like convexity properties they can be passed along through vari-
ous constructions where true differentiability, even if one-sided, would be lost. Furth-
ermore, they can be formulated in geometric terms that suit the study multifunctions
(set-valued mappings), a subject of great importance in optimization theory but for

which classical notions are almost entirely lacking.

It is in this light that the directional derivatives and subgradients introduced by
F.H. Clarke [1] [2] should be judged. Clarke’s theory emphasizes Lipschitzian proper-
ties and sturdily combines convex analysis and classical smooth analysis in a single
framework. At the present stage of development, thanks to the efforts of many indivi-
duals, it has already had strong effects on almost every area of optimization, from non-
linear programming to the calculus of variations, and also on mathematical questions

beyond the domain of optimization per se.

This is not to say, however, that Clarke’s derivatives and subgradients are the
only ones that henceforth need to be considered. Special situations certainly do
require special insights. In particular, there are cases where special one-sided first
and second derivatives that are more finely tuned than Clarke's are worth introducing.
Significant and useful results can be obtained in such manner. But such results are

likely to be relatively limited in scope.
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The power and generality of the kind of nonsmooth analysis that is based on

Clarke's ideas can be credited to the following features, in summary:

(a) Applicability to a huge class of functions and other objects, such as sets and

multifunctions.
(b) Emphasis on geometric constructions and interpretations.

(c) Reduction to classical analysis in the presence of smoothness and to convex

analysis in the presence of convexity.
(d) Unified formulation of optimality conditions for a wide variety of problems.

(e) Comprehensive calculus of subgradients and normal vectors which makes pos-

sible an effective specialization to particular cases.

(f) Coverage of sensitivity and stability questions and their relationship to

Lagrange multipliers.

(g) Focus on local properties of a "uniform” character, which are less likely to
be upset by slight perturbations, for instance in the study of directions of

descent.

(h) Versatility in infinite as well as finite-dimensional spaces and in treating the
integral functionals and differential inclusions that arise in optimal control,

stochastic programming, and elsewhere.

In this paper we aim at putting this theory in a natural perspective, first by dis-
cussing its foundations in analysis and geometry and the way that Lipschitzian proper-
ties come to occupy the stage. Then we survey the results that have been obtained
recently on sensitivity and stability. Such results are not yet familiar to many
researchers who concentrate on optimality conditions and their use in algorithms.
Nevertheless they say much that bears on numerical matters, and they demonstrate

well the sort of challenge that nonsmooth analysis is now able to meet.

1. ORIGINS OF SUBGRADIENT IDEAS

In order to gain a foothold on this new territory, it is best to begin by thinking
about functions f: R™ —R that are not necessarily smooth but have strong one-sided
directional derivatives in the sense of

SE+th) —f(x)
t

S(zh) = 1331) (1.1)

h'+h

Examples are (finite) convex functions [3] and subsmooth functions, the latter being

by definition representable locally as
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J(z) =max f.(z), 1.2)
s €S

where S is a compact space (e.g., a finite, discrete index set) and ifs ls €S| is a family
of smooth functions whose values and derivatives depend continuously on s and z
jointly. Subsmooth functions were introduced in [4]; all smooth functions and all finite

convex functions on R™ are in particular subsmooth.

The formula given here for f’(z:;h) differs from the more common one in the
literature, where the limit A’-—A is omitted (weak one-sided directional derivative).
It corresponds in spirit to true (strong) differentiability rather than weak differentia-
bility. Indeed, under the assumption that f’(z,h) exists for all A (as in (1.1)), one has
f differentiable at x if and only if f’(z;h) is linear in A. Then the one-sided limit {0
is actually realizable as a two-sided limit £ —0.

The classical concept of gradient arises from the duality between linear functions
on R™ and vectors in R™. To say that f'(xz;h) is linear in kA is to say that there is a

vector ¥ € R™ with

S'(xz:h) =y'h forall h. 1.3)

This ¥ is called the gradient of f at £ and is denoted by V7 (z).

In a similar way the modern concept of subgradient arises from the duality
between sublinear functions on R™ and convex subsets in ™. A function [ is said to be

sublinear if it satisfies
LAjh i+ .+ A hy) < MI(Ry) + 4+ A l(Ry) 1.4)

when Ay 20, " A, 20,

It is known from convex analysis [3, §13] that the finite sublinear functions [ on R™ are
precisely the support functions of the nonempty compact subsets Y of R™: each (

corresponds to a unique Y by the formula

l(h) =max yh forall h. 1.5)
yeY

Linearity can be identified with the case where Y consists of just a single vector v.

It turns out that when f is convex, and more generally when f is subsmooth [4],
the derivative f'(z,h) is always sublinear in A. Hence there is a nonempty compact

subset Y of R™, uniquely determined, such that

f'(z:h) =max y-h forall hA. 1.6)
yeyY
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This set Y is denoted by 8f(z), and its elements y are called subgradients of f at z.

With respect to any local representation (1.4), one has

Y =coiVf, (z)!ls €S, |, where S, = argmg Js(z) @7

{co = convex hull), but the set Y = 8f(z) is of course by its definition independent of

the representation used.

In the case of f convex [3, §23] one can define subgradients at z equivalently as

the vectors ¥ such that

S =r(z) +y(z'—=x) forall z" (1.8)

For f subsmooth this generalizes to

r@@Y)2rz) vy —=zx)+o(lz'=x ), 1.9)

but caution must be exercised here about further generalization to functions f that
are not subsmooth. Although the vectors ¥ satisfying (1.9) do always form a closed
convex set Y at z, regardless of the nature of f, this set Y does not yield an extension
of formula (1.6), nor does it correspond in general to a robust concept of directional
derivative that can be used as a substitute for f’(z;h) in (1.6). For a number of years,

this is where subgradient theory came to a halt.

A way around the impasse was discovered by Clarke in his thesis in 1973. Clarke
took up the study of functions f: R™ - R that are locally Lipschitzian in the sense of

the difference quotient

lif@y~r@E)l/slz -zl (1.10)

being bounded on some neighborhood of each point z. This class of functions is of
intrinsic value for several reasons. First, it includes all subsmooth functions and con-
sequently all smooth functions and all finite convex functions; it also includes all finite
concave functions and all finite saddle functions (which are convex in one vector argu-
ment and concave in another; see [3, §35]). Second, it is preserved under taking linear
combinations, pointwise maxima and minima of collections of functions (with certain
mild assumptions), integration and other operations of obvious importance in optimiza-
tion. Third, it exhibits properties that are closely related to differentiability. The
local boundedness of the difference quotient (1.10) is such a property itself. In fact
when f is locally Lipschitzian, the gradient Vf (z) exists for all but a negligible set of

points z in R™ (the classical theorem of Rademacher, see [5]).
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Clarke discovered that when f is locally Lipschitzian, the special derivative

expression

S +th) —f(z")
t

J°(z:h) =1lim sup (1.11)
ti0

h'~h
T’z

is always a finite sublinear function of A. Hence there exists a unique nonempty com-

pact convex set Y such that

F°(z:h) =max y-h for all h. (1.12)
yeY
Moreover
f(x;h)=f'(x:;h) forall h when f 1is subsmooth. (1.1.3)

Thus in denoting this set Y by 8F(x) and calling its elements subgradients, one arrives
at a natural extension of nonsmooth analysis to the class of all locally Lipschitzian
functions. Many powerful formulas and rules have been established for calculating or
estimating 8F(z) in this broad context, but it is not our aim to go into them here; see
(2] and (6], for instance.

It should be mentioned that Clarke himself did not incorporate the limit A'—h
into the definition of f°(xz:h), but because of the Lipschitzian property the value
obtained for f°(z;h) is the same either way. By writing the formula with A’ —h one is
able to see more clearly the relationship between f°(z:h) and f’'(x;kh) and also to
prepare the ground for further extensions to functions f that are merely lower sem-
jcontinuous rather than Lipschitzian. (For such functions one writes z’' — rz in place
of £’ — z to indicate that z is to be approached by z’ only in such a way that
f(z’) = f(x). More will be said about this later.)

Some people, having gone along with the developments up until this point, begin to
balk at the "coarse” nature of the Clarke derivative f°(z;h) in certain cases where f
is mnot subsmooth and nevertheless is being minimized. For example, if
f(z) = ~lzl +({z#® one has 7 °(0;R) =ln |, whereas f’(0;h) exists too but
7'O:h)=— (R 1. Thus J’ reveals that every A #0 gives a direction of descent from 0O,
in the sense of ylelding f’'(0;R)<0, but f° reveals no such thing, inasmuch as
F°(0:;hR) >0. Because of this it is feared that f° does not embody as much information
as f’ and therefore may not be entirely suitable for the statement of necessary condi-

tions for a minimum, let aione for employment in algorithms of descent.
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Clearly f ° cannot replace f’ in every situation where the two may differ, nor has
this ever been suggested. But even in face of this caveat there are arguments to be
made in favor of f° that may help to illuminate its nature and the supporting motiva-
tion. The Clarke derivative f° is oriented towards minimization problems, in contrast
to f’, which is neutral between minimization and maximization. In addition, it
emphasizes a certain uniformity. A vector A with f°(zx;2) <0 provides a descent
direction in a strong stable sense: there is an &€ >0 such that for all z’ near z, A’

near A, and positive ¢ near 0, one has

f(z'+th’) <f(z’) —te.

A vector A with f'(z;~) <0, on the other hand, provides descent only from z; at
points z’ arbitrarily near to x it may give a direction of ascent instead. This instabil-
ity is not without numerical consequences, since x might be replaced by z’ due to

round-off.

An algorithm that relied on finding an A with f'(x;2) <0 in cases where
f°(x;h) 20 for all A (such an z is said to be substationary point) seems unlikely to
be very robust. Anyway, it must be realized that in executing a method of descent
there is very little chance of actually arriving along the way at a point  that is subs-
tationary but not a local minimizer. One is easily convinced from examples that such a
mishap can only be the consequence of an unfortunate choice of the starting point and
disappears under the slightest perturbation. The situation resembles that of cycling in
the simplex method.

Furthermore it must be understood that because of the orientation of the defini-
tion of f° towards minimization, there is no justice in holding the notion of substa-
tionarity up to any interpretation other than the following: a substationary point is
either a point where a local minimum is attained or one where progress towards a
local minimum is "confused’. Sometimes, for instance, one hears cited as a failing of f°
that f’ is able to distinguish between a local minimum and a local maximum in having
S (z;h) =20 for all h in the first case, but f'(z;h) <0 for all A in the second, whereas
J%(z;h) 20 for all A in both cases. But this is unfair. A one-sided orientation in
nonsmooth analysis is merely a reflection of the fact that in virtually all applications
of optimization, there is unambiguous interest in either maximization or minimization,

but not both. For theoretical purposes it might as well be minimization.

Certainly the idea that a first-order concept of derivative, such as we are dealing
with here, is obliged to provide conditions that distinguish effectively between a local
minimum and a local maximum is out of line for other reasons. Classical analysis makes

no attempt in that direction, without second derivatives. Presumably, second
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derivative concepts in nonsmooth analysis will eventually furnish the appropriate dis-

tinctions, c¢f. Chaney [7].

A final note on the question of f° versus f' is the reminder that f°(z;h) is
defined for any locally Lipschitzian function f and even more generally, whereas

JS’(x;h) is only defined for functions f in a narrower class.

An important goal of nonsmooth analysis is not only to make full use of Lipschitz
continuity when it is present, but also to provide criteria for Lipschitz continuity in
cases where it cannot be known a priori, along with corresponding estimates for the
local Lipschitz constant. For this purpose, it is necessary to extend subgradient
theory to functions that might not be locally Lipschitzian or even continuous every-
where, but merely lower semicontinuous. Fundamental examples of such functions in
optimization are the so-called marginal functions, which give the minimum value in a
parameterized problem as a function of the parameters. Such functions can even take

on +,

Experience with convex analysis and its applications shows further the desirabil-
ity of being able to treat the indicator functions of sets, which play an essential role in

the passage between analysis and geometry.

In fact, the ideas that have been described so far can be extended in a powerful,
consistent manner to the class of all lower semicontinuous functions f: R® —» R, where
R= [—e,o] (extended real number system). There are two complementary ways of
doing this, with the same result. In the continuation of the analytic approach we have

been following until now, a more subtle directional derivative formula

Mz:h) =1im | lim sup[ ing L& *tRDZS (")] (1.12)
€40 t40 [hr—h|se t
::’-'f:

is introduced and shown to agree with f°(z;h ) whenever f is locally Lipschitzian and
indeed whenever f°(zx;h) (in the extended definition with z’ —yZ, as mentioned ear-
lier) is not +, Moreover f'(z:h) is proved always to be a lower semicontinuous, sub-
linear function of A (extended-real-valued). From convex analysis, then, it follows
that either f '(z:0) = —e or there is a nonempty closed convex set Y cR™, uniquely

determined, with

IN(=z:h) =su€g’y-h for all A. (1.15)
¥

This is the approach followed in Rockafellar [8], [9]. One then arrives at the
corresponding geometric concepts by taking f to be the indicator tSC of a closed set C.
For any z € C, the function A b 66(: k) is itself the indicator of a certain closed set



63

Tc(x) which happens always to be a convex cone; this is the Clarke tangent cone to C

at £. The subgradient set

Nc(z) = 860(3), (1.16)

on the other hand, is a closed convex set too, the Clarke normal cone to C to . The

two cones are polar to each other:

Nc(z) = Tc(z)", Tc(z) = Nc(z)". (1.17)

In a more geometric approach to the desired extension, the tangent cone Tp(z)
and normal cone Np(z) can first be defined in a direct manner that accords with the
polarity relations (1.16). Then for an arbitrary lower semicontinuous function
r: R" —& and point z at which s is finite, one can focus on Tg(z.f(zx)) and
Ng(z.f(z)), where E is the epigraph of f (a closed subset of R" +1y. The cone
Tg(z,f (z)) is itself the epigraph of a certain function, namely the subderivative h b»
R *(z ;k ). whereas the cone Np(z,f (z)) provides the subgradients:

of (z) = fy er™ | (y,-1) € Ng(z.7 (). (1.18)

The polarity between Tg(z.f (z)) and Np(z.f (z)) yields the subderivative-subgradient
relation (1.14). (Clarke's original extension of 8f to lower semicontinuous functions
{1] followed this geometric approach in defining normal cones directly and then invok-
ing (1.17) as a definition for subgradients. He did not focus much on tangent cones,
however, or pursue the idea that Tz (z.f (z)) might correspond to a related concept of

directional derivative.)

The details of these equivalent forms of extension need not occupy us here. The
main thing to understand is that they yield a basic criterion for Lipschitzian con-

tinuity, as follows.

THEOREM 1 (Rockafellar {10]). For a lower semicontinuous function f: R" —R
actually to be Lipschitzian on some neighborhood of the point z, it is syfficient
(as well as necessary) that the subgradient set 8f (z) be nonemptiy and bounded.

Then one has

| Pz —f (x|

lim su Py = max |yl 1.19
L PR yeof(z) © (119
Tz
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This criterion can be applied without exact knowledge of 8f (x) but only an esti-
mate that ¢ # 8f(x) C Y for some set Y. If Y is bounded, one may conclude that f is
locally Lipschitzian around z. If it is known that |y | < A for all v €Y, one has from
(1.19)

‘f(z“) —f(z’)|s}\[z”—z’| for ' and £’ near =z.

2. LAGRANGE MULTIPLIERS AND SENSITIVITY

Many ways have been found for deriving optimality conditions for problems with
constraints, but not all of them provide full information about the Lagrange multipliers
that are obtained. The test of a good method is that it should lead to some sort of
interpretation of the multiplier vectors in terms of sensitivity or generalized rates of
change of the optimal value in the problem with respect to perturbations. Until quite
recently, a satisfactory interpretation along such lines was available only for convex
programming and special cases of smocth nonlinear programming. Now, however, there
are general results that apply to all kinds of problems, at least in ®™*. These results
demonstrate well the power of the new nonsmooth analysis and are not matched by any-

thing achieved by other techniques.

Let us first consider a nonlinear programming problem in its canonical parameter-
ization:
Pu) minimize g(z) subject to z€ X and

gy(x)+tu; <0 for i=1,..s,
=0 for t=s+1,...,m,

where ¢.94,....0yy are locally Lipschitzian functions on R™ and X is a closed subset of
R"™; the u,’s are parameters and form a vector u €R™. By analogy with what is known
in particular cases of (P, ), one can formulate the potential optimality condition on a

feasible solution z, namely that
0 €8g(z) + Ztm=1‘Ut 8g; (z) + Ny(z) with (2.1)

vy =0 and y;[g; (x)+u;] =0 for i=1,...,s,

and a corresponding constraint qualification at z:
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the only vector y =(y,, . . ., ¥y ) satisfying the version (2.2)

of (2.1) in which the term 8g(z) is omitted is ¥ =0.

In smooth programming, where the functions g.g,,...,9, are all continuously
differentiable and there is no abstract constraint x € X, the first relation in (2.1)

reduces to the gradient equation

0=Vg(z)+ 3™y Vo, (2),

and one gets the classical Kuhn-Tucker conditions. The constraint qualification is then
equivalent (by duality) to the well known one of Mangasarian and Fromovitz.

In convexr programming, where g.94....9¢ are (finite) convex functions,
Os+1:--.9m are affine, and KX is a convex set, condition (2.1) is always sufficient for
optimality. Under the constraint qualification (2.2), which in the absence of equality

constraints reduces to the Slater condition, it is also necessary for optimality.

For the general case of (P,) one has the following rule about necessity.

THEOREM 2 (Clarke [11]). Suppose z is a locally optimal solution to (P,) at
which the consiraint qualification (2.2) is satisfied. Then there is a multiplier

vector y such that the optimality condition (2.1) is satisfied.

This is not the sharpest result that may be stated, although it is perhaps the sim-
plest. Clarke’s paper [11] puts a potentially smaller set in place of Ny (z) and provides
along side of (2.2) a less stringent constraint qualification in terms of "calmness” of
(P,) with respect to perturbations of u. Hiriart-Urruty [12] and Rockafellar [13]
contribute some alternative ways of writing the subgradient relations. For our pur-
poses here, let it suffice to mention that Theorem 2 remains true when the optimality

condition (2.1) is given in the slightly sharper and more elegant form:

0 € 8g(z) + ¥y 8G(z) + Np(z) with y eN (C(z)+ u), (2.3)

where G(z) = (g4(x),....0p, (x)) and

C = {fweRr™ |wisO for i=1,...,s and w;=0 for i=s+1,...m]. (2.4)

The notation 4G (z) refers to Clarke's generalized Jacobian {2] for the mapping G; one

has
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v 8G(z) = (L My 0 )(2). (2.5)

Theorem 2 has the shining virtue of combining the necessary conditions for smooth
programming and the ones for convex programming into a single statement. Moreover
it covers subsmooth programming and much more, and it allows for an abstract con-
straint in the form of z € X for an arbitrary closed set X. Formulas for calculating
the normal cone Ng(z) in particular cases can then be used to achieve additional spe-
cializations.

What Theorem 2 does not do is provide any interpretation for the multipliers ;.
In order to arrive at such an interpretation, it is necessary to look more closely at the

properties of the marginal function
o (u) =optimal value (infimum) in(P,). (2.6)
This is an extended-real-valued function on R™ which is lower semicontinuous when the
following mild inf-boundedness condition is fulfilled:
Foreach w € R™, a € R and &£ >0, thesetofall z €X (.7)
satisfying g(z) < «, g;(z) s u;+& for i=1,...,s, and
Uy—c<g,(z) <u;+z for i=s+1,...,m, isbounded in R".
This condition also implies that for each u with p(u) < « (i.e. with the constraints of

(P, ) consistent), the set of all (globally) optimal solutions to (£, ) is nonempty and com-
pact.

In order to state the main general result, we let
Y(u) = set of all multiplier vectors ¥ that satisfy (2.1) (2.8)

for some optimal solution z to (P,).

THEOREM 3 (Rockafellar [13]). Suppose the inf-boundedness condition (2.7) ts
satisfied. Let u be such that the constraints of (P,) are consistent and every
optimal solution z to (P, ) satisfies the constraint qualification (2.2). Then dp(u)

is a nonempty compact set with

p(u) Cco Y(u) and ext dp(u) cY(u). (2.9)
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fwhere "ext" denotes extreme points) In particular » is locally Lipschitzian
around u with

p°(u:h)= sup YA forall h. (2.10)
yeY(u)

Indeed, any A satisfytng ’-y l<a Jor all y €Y(u) serves as a local Lipschitz con-

stant:

‘p(u”)—p(u’)fs)\fu”—u’l when u’ and u’’ are near u. (2.11)

For smooth programming, this result was first proved by Gauvin [14]. He demon-
strated further that when (F,) has a unique optimal solution z, for which there is a
unique multiplier vector ¥, so that Y(u) = {y !, then actually » is differentiable at u
with Vp(u) =¥. For convex programming one knows (see [3]) that 8p(u) =Y(u)
always (under our inf-boundedness assumption) and consequently

p'(u;h) = max y-h. (2.12)
yeY(u)

Minimax formulas that give p’(u;h) in certain cases of smooth programming where
Y(wu) is not just a singleton can be for example found in Demyanov and Malozemov [15]
and Rockafellar [16]. Aside from such special cases there are no formulas known for
p'(w;h). Nevertheless, Theorem 3 does provide an estimate, because
p'(u;h) = p°(u;h) whenever p’(u;h) exists. (It is interesting to note in this connec-
tion that because p is Lipschitzian around v by Theorem 3, it is actually differentiable

almost everywhere around ¥ by Rademacher’s theorem.)

Theorem 3 has recently been broadened in [6] to include more general kinds of

perturbations. Consider the parameterized problem

@) minimize f(v,z) over all z satisfying

Flvz)eCand (v.z) €D,

where v is a parameter vector in Rd. the functions 7s: R% x R™ —R and
F: R% x R® —R™ are locally Lipschitzian, and the sets C CR™ and D c R%xR"™ are
closed. Here C could be the cone in (2.4), in which event the constraint #(v,z) € C

would reduce to

Si(v.z)=0 for i=1,..s,
=0 for i=s+1,....m,

but this choice of C is not required. The condition (v,z) € D may equivalently be
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written as z € I'(w), where I' is the closed multifunction whose graph is D. It
represents therefore an abstract constraint that can vary with v. A fixed abstract

constraint z € X corresponds to I'(v)=K, D=R% x K.

In this more general setting the appropriate optimality condition for a feasible

solution z to (@,) is
(z,0) € 8f(v,z) +yaF(v,z) + Np(v .z) (2.13)

for some ¥ and z with y eN (F(v,x)),

and the constraint qualification is
the only vector pair (¥,z) satisfying the version of (2.13) (2.14)

in which the term 8y (v,z) is omitted is (y¥,z)=(0,0).

THEOREM 4 (Rockafellar (6, §8]). Suppose that z is a locally optimal solution
to (@,) at which the constraint qualification (2.14) is satisfied. Then thereis a
multiplier pair (y.z) such that the optimality condition (2.13) is satisfied.

Theorem 4 reduces to the version of Theorem 2 having (2.3) in place of (2.1) when
(@) is taken to be of the form Py, namely when
F(v,x)=g(x), F(v,2)=CG(z)+ v, D=R™ x K (R™ =R?%), and C is the cone in (2.4).

For the corresponding version of Theorem 3 in terms of the marginal function

q (v) = optimal value in (@,,), (2.15)

we take inf-boundedness to mean:
For each ¥ €R%, a€R and £>0, thesetof all z (2.16)
satisfying for some v with (v —7 |< ¢
the constraints F(v.z)eC, (v.z)eD, and
having f(v.z) < «, is bounded in R™.
Again, this property ensures that ¢ is lower semicontinuous, and that for every v for

which the constraints of (@,) are consistent, the set of optimal solutions to (@,) is

nonempty and compact. Let
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Z(v) =set of all vectors z that satisfy the multiplier (2.17)
condition (2.13) for some optimal solution

z to (@,) and vector .

THEOREM 5 (Rockafellar [6, §8]). Suppose the inf-boundedness condition (2.16)
is satisfied. Let v be such that the constraints of (@,) are consistent and every
optimal solution z to (@,) satisfies the constraint qualification (2.14). Then 89 (v)

is a nonempty compact set with

dg(v)ccoZ(v) and ext 8g(v) CcZ(v). (2.18)

In particular g is locally Lipschitzian around v with

q(v;h)< sup z'h forall h. (2.19)
z€Z(v)

Any A satisfying lz 1< Aforall z € Z(v) serves as a local Lipschitz constant:

lq(v”)—q(v’)IS)“v”—v’| when v’ and v’ are near v. (2.20)

The generality of the constraint structure in Theorem 5 will make possible in the

next section an application to the study of multifunctions.

3. STABILITY OF CONSTRAINT SYSTEMS

The sensitivity results that have just been presented are concerned with what
happens to the optimal value in a problem when parameters vary. It turns out, though,
that they can be applied to the study of what happens to the feasible solution set and
the optimal solution set. In order to explain this and indicate the main results, we must
consider the kind of Lipschitzian property that pertains to multifunctions (set-valued
mappings) and the way that this can be characterized in terms of an associated dis-
tance function.

Let I R% 3R™ be a closed-valued multifunction, i.e. ['(v) is for each v € R% a
closed subset of R™, possibly empty. The motivating examples are, first, ['(v) taken to
be the set of all feasible solutions to the parameterized optimization problem (&,)

above, and second, ['(v) taken to be the set of all optimal solutions to (@,).

One says that I'(v) is locally Lipschitzian around v if for all v’ and v’ in some

neighborhood of v one has ['(v’) and I'(v’’) nonempty and bounded with
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T(v”) cT(w) + Alv =’ | B 3.1)

Here B denotes the closed unit ball in R® and A is a Lipschitz constant. This property
can be expressed equivalently by means of the classical Hausdorff metric on the space

of all nonempty compact subsets of R™:

haus (I'(v "), ['(v")) < A |y~»’| when v’ and v” are near v. (3.2)

It is interesting to note that this is a ""differential” property of sorts, inasmuch as it
deals with rates of change, or at least bounds on such rates. Until recently, however,
there has not been any viable proposal for "differentiation” of I' that might be associ-
ated with it. A concept investigated by Aubin [17] now appears promising as a candi-

date; see the end of this section.

Two other definitions are needed. The multifunction I' is locally bounded at v if
there is a neighborhood V of v and a bounded set SCR™ such that I'(v)CS for all
v'eV. It is closed at v if the existence of sequences {v,] and f{z;} with
v —v, 7, €'(v, ) and z, —z implies z €['(v). Finally, we introduce for I' the distance
Sunction

dy (v,w) =dist ( I'(v),w) ==ré|ri?v)!z—1u L (3.3)

The following general criterion for Lipschitz continuity can then be stated.

THEOREM 6 (Rockafellar [18]1). The multifunction I' is locally Lipschitzian
around v if and only if I is closed and locally bounded at v with I'(v) # ¢, and its

distance function dyis locally Lipschitzian around (v,z) for each z € I'(v).

The crucial feature of this criterion is that it reduces the Lipschitz continuity of
I' to the Lipschitz continuity of a function dp which is actually the marginal function
for a certain optimization problem (3.3) parameterized by vectors v and w. This prob-
lem fits the mold of (@,), with v replaced by (v,w), and it therefore comes under the
control of Theorem 5, in an adapted form. One is readily able by this route to derive

the following.

THEOREM 7 (Rockafellar [18]). Let I' be the multifunction that assigns to each
v € RY the set of all feasible solutions to prodlem (@, ):
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T(w) =z |Flv.z) €C and (v,z) €D} (3.4)

Suppose for a given v that I' is locally bounded at v, and that ['(v) is nonempty
with the constraint qualification (2.14) satisfied by every z € I'(v). Then T is

locally Lipschitzian around v.

COROLLARY. Let T:RY23R™ be any multifunction whose graph
D ={(v,x) |z €l(v)] is closed. Suppose for a given v that I is locally bounded at v,

and that ['(v) is nonempty with the following condition satisfied for every z €['(v):

the only vector z with (z,0) € Np(v,x) is z =0. (3.5)

Then I is locally Lipschitzian around v.

The corollary is just the case of the theorem where the constraint F(v.,z) € C is
trivialized. It corresponds closely to a result of Aubin [17], according to which I is

"pseudo-Lipschitzian' relative to the particular pair (v,z) with z € ['(v) if
the projection of the tangent cone Tp(v.z) C ROxR™ (3.6)

on R? isall of RY.

Conditions (3.5) and (3.6) are equivalent to each other by the duality between Np(v,z)
and Tp(v,.z). The "pseudo-Lipschitzian” property of Aubin, which will not be defined
here, is a suitable localization of Lipschitz continuity which facilitates the treatment of
multifunctions I' with I'(v) unbounded, as is highly desirable for other purposes in
optimization theory (for instance the treatment of epigraphs dependent on a parameter
vector v). As a matter of fact, the results in Rockafellar [18] build on this concept of
Aubin and are not limited to locally bounded multifunctions. Only a special case has
been presented in the present paper.

This topic is also connected with interesting ideas that Aubin has pursued towards
a differential theory of multifunctions. Aubin defines the multifunction whose graph is
the Clarke tangent cone Tp(v,z), where D is the graph of I, to be the derivative of T
at v relative to the point z € ['(v). In denoting this derivative multifunction by I';,,,,
we have, because Tp(v,z) is a closed convex cone, that r, x Is a closed convexz process
from R% to R™ in the sense of convex analysis [3, §39]. Convex processes are very
much akin to linear transformations, and there is quite a convex algebra for them (see
(3, §39], [19], and [20]). In particular, [, . has an adjoint I";,'r: R™3RY, which turns

out in this case to be the closed convex process with
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gph [, 5 = fw,z)! (z,—w) € Np(v,z)i.

In these terms Aubin’s condition (3.8) can be written as dom 1".;, x =R%, whereas the
dual condition (3.5) is 1".;",_.(0) = {0}. The latter is equivalent to I".v': being locally
bounded at the origin.

There is too much in this vein for us to bring forth here, but the few facts we have
cited may serve to indicate some new directions in which nonsmooth analysis is now
going. We may soon have a highly developed apparatus that can be applied to the study
of all kinds of multifunctions and thereby to subdifferential multifunctions in particu-
lar.

For example, as an aid in the analysis of the stability of optimal solutions and mul-
tiplier vectors in problem (@, ), one can take up the study of the Lipschitzian proper-

ties of the multifunction
['(v) =set of all (z,¥,z) suchthat z isfeasiblein (@,)

and the optimality condition (2.13) is satisfied.

Some results on such lines are given in Aubin [17] and Rockafellar [21].
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UPPER-SEMICONTINUOUSLY DIRECTIONALLY
DIFFERENTIABLE FUNCTIONS

AM. Rubinov
Institute for Social and Economic Problems, USSR Academy of Sciences,
Leningrad, USSR

1. INTRODUCTION

A generalized approximation of the subdifferential called
the (e,u)-subdifferential is introduced for upper-semicontinu-
ously directionally differentiable functions. The most attract-
ive and important property of the (g,u)-subdifferential is that
it can be taken to be a continuous mapping; this, in its turn,
allows us to construct numerical methods for finding stationary

points.

Let us consider the n~-dimensional space R" with some norm
l-l. Let X be an open set in this space, and a function f be
defined, continuous and directionally differentiable on X. We
say that the function f is upper-semicontinuously directionally

differentiable (u.s.c.d.d.) at a point x,€X if for any fixed

0
g‘EIRn the function x — f'(x,g) is upper-semicontinuous (in x)
at this point and is bounded in some neighborhood of Xg- This

last property means that there exists a number C <« such that
|£' (x,9)| < clgll (1)

for all ge;]RI1 and every X in some neighborhood of Xg. Examples
of u.s.c.d.d. functions include convex functions and maximum

functions.

We say that a function f defined on X is subdifferentiable
at a point x€X if it is directionally differentiable at x and
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if its directional derivative f; is a sublinear function (as a
function of g).
Let 3f(x) denote the subdifferential of f at x. By defini-

tion

£1(g) = max (v,9) vxeRrR" .
vegf(x)

Recall that the subdifferential is a convex compact set.

PROPOSITION 1. If a function £ is u.s.c.d.d. at a point x€X,

then it 18 also subdifferentiable at this point,

Proof. The positive homogeneity of the function f;(g) = f'(x,q9)
is obvious. Let us now check that it is subadditive. Take gqr

gze:mn. Then there exist functions w1(a) and wz(a) such that

RU.I(OL) — 0 , wz(oc) — 0
o++0 o++0

and

£'(x,9,) = = [£(x+ag,) - £(0] + v, (a)

f'(x,g1+g2) = % [f(x+ag1+ag2) - f(x)] + wz(a) .

The above equalities imply that

f'(x,g1+g2) - f'(x,g1) = 51‘- [f(x+ocg1+ag2) - f(x+ocg1)] + w3(oc) '

where

Yala) = ¥ (a) = ¢, (a) — O .
3 2 1 a++0

Fix some o > 0, put X, = X + agq, and define
M = sup f'(x +Bg,,q9,) .
o 0<B<a o 2772

It follows from the mean value theorem that

f(xa+ag2) - f(xa) S M,
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Therefore

£'(x,g9,%9,) = £'(x,9;) = & [£(x +agy) = £(x))] + ¥3(a) <M +4; ()

Since f is an u.s.c.d.d. function, the derivative f'(x,gz) is
u.s.c. (as a function of x). This means that for any € > 0 there

exists a § > 0 such that
£
f'(y,gz) < f‘(x,gz) + 5 VyGEBG(x) .
For a sufficiently small and B € (0,a) we have

x, + Bg2 = x + ag + BgZGEBG(X)

and therefore M, < f'(x,gz) + €/2. Assuming that |w3(a)| <g/2

(which is the case if a is sufficiently small), we have
£'(x,g94+g,) - £'(x+g;) < £'(x,9,) + € ,

which implies (since € is arbitrary) that the function f;(g) =

f'(x,g) is subadditive.

Let a function f defined on an open set XxcR" be u.s.c.d.d.
on this set. It follows from Proposition 1 that f is subdiffer-

entiable at every point x €X (and the subdifferential 3f(x) is

defined for every x€X). Fix any g€ R" and consider the function
qq(x) = max (v,g9) = £'(x,9) .
veldf (x)

It follows from the definition that qg is an u.s.c. function.
Inequality (1) implies that the mapping 3f is bounded in some
neighborhood of every point x €X. Thus the mapping x> 3f(x) is

u.s.c.

Using methods from the topological theory of multivalued
mappings (see, e.g., [1]) it is not difficult to show that every
point xOEEX has a neighborhood (in which the mapping x > 3f(x) is
bounded) such that for any fixed € > 0 we can find a continuous

multivalued mapping b defined in this neighborhood which has
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convex corpact sets as its images and for which
9f(x) Cb(x) C3f(B_(x)) + B_ . (2)

Here Be(x) = x+B ; B + B_(0).

For simplicity we assume that the mapping x +~3f(x) is bounded
on all of set X. Then a continuous mapping b satisfying (2) can

be defined on the entire set X.

Let ¢ and u be positive numbers. It follows directly from

(2) that there exists a continuous mapping b such that
of (x) CZ_B_f(BE(x)) + BU ¥yxeX . (3)

One example would be a mapping b which satisfies (2) for e¢' =

min{e,u}.

A continuous mapping b which satisfies (3) is called a con-
tinuous (€,u)-~subdifferential of the function f and is denoted
by geuf' Clearly, this mapping is not unique: if 0 < eg' < g,

0 < u' <y then every continuous (e',u')-subdifferential is also

a continuous (eg,yu)-subdifferential.

The definition of a continuous (g,u)-subdifferential can be
extended to the case in which one of the numbers € and p is zero.
However, in this case we cannot guarantee the existence of a
continuous (e,u)-subdifferential for an arbitrary u.s.c.d.d.
function, although continuous (¢,0)~subdifferentials do exist

for convex functions. We shall now describe one of these.

Let a function f be defined and convex on an open convex
set X. By éef(x) we denote the conditional €-subdifferential
of £ at x with respect to the ball Be(x) (see [2]):

3.£(x) = (veR" [£(2) - £(x) > (v,2-x)-e ¥z €B_(x)}

PROPOSITION 2. Let a function £ be defined and convex on an open

convexr set XER" . Then the mapping 9.t is a continuous (€,0)-
subdifferential of the function f.

Proof. It follows from [3] that gef(x) coincides with the closure
of the set
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C.f(x) = {venﬁjhax'eint Be(x):vegf(x');f(x')-f(x)2_(v,x'—x)—e}.
From the definition, we have
Cef(x) Caf (int Be(x)) Cgf(Be(x)) .

In addition, gf(x)<:cgf(x) and sets aef(x) are convex and compact
(the latter follows from [3]). Thus

af(x) c3 _f(x) Caf(B_(x)) . (4)

It is now necessary to demonstrate the continuity of the mapping
gef(x). It follows from [3] that the support function qef(x,g)

of the set Qef(x) is given by

qef(X,g) = inf % [f(x+og) —£(x) +€] .
0<q< L
=gl

Fix any vector y and consider the function

hix,a) = & [£(xtaq) —£(x) +¢]

Q

€

which is jointly continuous in both variables on X X(O,WEW].
Fix X, € X. Since
lim (hxo,a) = 4o,
a++0
there exist numbers 3 > 0 and a_ > 0 such that
inf h(x,o) = min h(x,a) VxGEBa(xO) .

O<a< _& o <o< _&
=l gl 0—"—1llgll

Since h is jointly continuous in both variables on the compact

set Ba(XO) X[ao,—g—], the function

x — g f(x,9) = min h(x,a)

A A<o< €
0—"— 114l
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is continuous at the point x Also, from (4) and the bounded-

0"
ness of the subdifferential, the mapping x — gef(x) is bounded
in some neighborhood of Xge Using results from [2], we then de-

duce that the mapping x — ggf(x) is continuous.

THEOREM 1. (0On the continuous (e,u)-subdifferential of a compo-

sition.)

Let a function £ be defined, Lipschitzian and u.s.c.d.d. on
an open set X, cr". Suppose also that for any € > 0 and u > 0
there exists a continuous (e,u)-subdifferential geuf' Let func-

tions h1""’hn be defined and continuously differentiable on an

open set X, Clﬂg where m > n.
Consider a mapping H(X) = (h1(x),...,hn(x)) such that
(i) H(X,) CX,

(i1) The Jacobian matrix

oh, 3h,
7 oeee g
ax (1) 5x (7
H! =
oh_ 5h
ax (1) 7777 ()

has a minor of n-th order which does not vanish on the closure

cl X of some bounded open subset X of the set Xy
Then the function ¢(x) = £(H(X)) Zs u.s.e.d.d. and for any
§ >0, vy >0 there exist € > 0 and u > 0 such that the mapping

x —> (1) d_ £(H(x))

18 a continuous (8,v)-subdifferential of the function ¢ on the

set X,. Here * denotes transposition.

The proof is based on the following lemma.

LEMMA 1. Under the assumptions of Theorem 1, for any § > 0 there

must exist an € > 0 such that

H(x) + BECH(X+B6) = H(BG(X)) ¥x €X
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Proof of Lemma 1. Let us first show that the image of any neigh-

borhood of a point X €X, contains a ball centered at the point
H(x). Assume for the sake of argument that the minor which does
not vanish (see condition (ii)) corresponds to the first n indices.
Let

= &M, 70 g g, €x, .
Consider the set
22 = {y==(y(1),...,y(n) e r" (y(1),...,y(n),E(n+1),...,§(m))éEXZ}
and the mapping H defined on this set by the equality ﬁ(y) = H(x),
where x = (y(1),...,y(n),;(n+1),...’§(m)).

Since the Jacobian of this mapping does not vanish at the
point y = (;(1)’._.’§(n)), it follows from the inverse function
theorem that in some neighborhood of this point there exists a
continuous mapping ﬁ_1 which is the inverse of H. The continuity
of ﬁ—1 implies that the image of every sufficiently small neigh-
borhood of ¥ (under the mapping H) contains a ball centered at
the point H(Y) = H(X). Furthermore, the image of any neighbor-
hood of the point X in the set X2 (under the mapping H) contains

a ball centered at the point Xx.

Fix some § > 0. For any xex2 let €(x) denote the supremum

of the set of numbers ¢ > 0 such that

H(x) + BECH(X+B6) ¥X E€X, .
Here ﬁé and ﬁe are open balls centered at zero with a radius
of § and e, respectively. It follows from the above definitions
that €(x) > 0 for all x. Let us show that the function €(x) is
l.s.c. Assuming the opposite, we should be able to find a se-
quence {xk} and numbers €', " > 0 such that
b €x

K" X Xy L e(x) > " > g' > e(xk) vk

The inequality ' > e(xk) implies that there exist elements {yk}
such that
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IH(x, ) =yl < e, yL@H(x +Bg . (5)

Since the sequence {H(xk)} converges, the sequence {yk} is
bounded. Without loss of generality we can assume that the limit

lim Y =Y exists. Then since

IH(x) -yl = lim HH(xk)-ka < e' <eg" <e(x) '
we have
yEH(x) + B, CH(x+Bg)
i.e., for some xiesx-+§6 the equality y = H(x') holds. Let
[x'-x|l = §' <6, and take numbers Yy and Yy' such that 0 < 2y < y' <
§ - 8'. Since the image of a neighborhood contains a neighbor-

hood and Y —> H(x'), the inclusion yk(EH(x'+§Y) holds for n suf-
ficiently large. Let numbers k be such that

Hi-xkﬂ < Iz=x'I + Ix'-xlI + Hx—ka < 2y + &' < § .
We conclude that x' + EYCZxk + ﬁd and therefore that
. -
ykEH(x +BY) CH(xk+B6) .

But this contradicts (5), showing that e(x) is l.s.c.

However, it is assumed that the set ¢l X is compact, and
therefore e(x) achieves its minimum on cl X at some point Xq and

e (x) > e(xo) > 0.

Proof of Theorem 1. Let ¢(x) = £(H(X)). Since f is Lipschitzian,
we have
o' (x,9) = £ (H! (g)) = max (v,H! (g)) =
Hox vEIE(H(x)) X
= max ((H;)*v,g) = max (v',q9) .

vesdf (H(x)) vie(H ) * (3f (H(x)))
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We conclude that ¢ is an u.s.c.d.d. function and that 3¢ (x) =
(H;)*(gf(H(x)). Let numbers § > 0, v > 0 be given. Find an

€ > 0 which corresponds to § (and whose existence is guaranteed
by Lemma 1), and choose a u such that uH(H;)*H < v. Take a
continuous (eg,u)~subdifferential geuf of the function f£. Then

éf(H(x))(:Q{uf(H(x)) C§ﬁ(Hx+BE) + uB* |
Applying the operator (H&)* to these inclusions we get
(Hy) ¥ (H(x)) C (1))*d, £ (H(x))
C (H;)*gf(H(x)+Be) + U(H;)*B*
C (H;)*gf(H(x+B5)) + vB* |
Making use of the inequalities
3 (x) = (H;)*Qf(H(x))

8¢(x+B5) = v (H}'{)*Qf(H(x')) = (H}'{)*éf(H(x+B5)) '
Ix'-xlil <8

we finally arrive at
3¢ (x) € (H;{)*geuf(H(x)) C 3¢ (x+Bg) + vB* .

Remark. If a function f has a continuous (€,0)-subdifferential
geof for every ¢ > 0, then for any § > 0 there exists an € > 0
such that the mapping (H;)(QEO(H(X)) is a continuous (tg,0)-sub-

differential of the function ¢ = £(H) on the set X.

This result follows directly from the proof of the theorem.

Theorem 1 allows us to construct a continuous (g,0)-subdifferen-

tial for one class of finite maximum functions.

THEOREM 2. Let funetions h1""’hn be defined and continuously

differentiable on an open set X ITR® (where m > n) and
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¢ (xX) = max hi(x) vx € X
i€l:n

Assume that the Jacobian matrix{&hi/ax(j); has a minor of n-th
order which does not vanish on the closure cl X of some bounded
open subset X of the set X. Then for any & > 0 there exists an
€ > 0 such that the mapping geo(x) defined below is a continuous
(8§,0)=-subdifferential of ¢.

The mapping 960 18 deseribed by the relation

=]

3h. (x) 9h. (x)
d (X)=§yEIRm)y= ZV.——l-—,...,vt—l— ,
—€0 i=1 *t Bx(1) L Bx(m)

v = (v1,...,vn)€V€(x) '

where

n
m . R
Ve(x)=3v€IR Zvi=1,v.>0,vi=01f iR, (H(x)),

$(x) < Zvihi(x) + €

R, (H(x)) = {i€1:]¢(x) -h; (x) <2e} .

2. A METHOD OF STEEPEST DESCENT

Let f be an u.s.c.d.d. function defined on R'. A point x
is called an (e,u)-stationary point of f if

0€3f(x+B_ ) + B,

Observe that if a point x is (e,u)-stationary for all € > O,
p > 0 then it is also stationary, i.e. 0e€3f(x).

Indeed, if O E§f(x+Be) + Bu then taking the limit as u »~ 0
leads to Oezgf(x+Be). But if O€E§f(x+B€) ¥e then the upper-
semicontinuity of the mapping 3f implies that 0 € 3f(x).

If gepf is a continuous (e,u)-subdifferential of the function

f and Oezgef(x), then x is an (e,u)-stationary point (by definition).
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We shall now describe a steepest descent method based on

the use of continuous (g,u)-subdifferentials.

Let

¢ (x,g) = max (v,9)
VEdEUf(X)

The function ¢ is the support function of the mapping diuf'
Consider the function

r(x) = nmnin ¢(x,q9) .
gl <1

From the minimax theoren we have

r(x) = mRin max (v,g) = max min (v,q)
lgli <1 ved  f(x) ved £ (x) gl <1
= max (-llvlly = - min vl .
ved £ (x) ved £ (x)
=€y —€u
Thus -r(x) = p(O,dEUf(x)). If r(x) = 0 then Oezgsuf(x), i.e.,

X is a stationary point.

Choose an arbitrary X er" , and assume that the set
{xeR" | £ (x) <f|xy} is bounded.

Assume that a point x

K has already been found. If r(xk) =0

then X, is an (g,u)-stationary point and the process terminates.

Otherwise, if r(xk) < 0, we find Iy such that
Hng =1

r(xk) = min ¢(xk,g) = ¢(xk,gk) .
Ihgll <1

Now let us choose oy such that

f(x,+a,qg,) = min £ (x,+0g,) .
k Tk7k 0>0 k k
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If the seguence {xk} thus constructed is finite then its last
point is (g,u)-stationary by construction. Otherwise the follow-

ing theorem is true.

THEOREM 3. Any limit point of the sequence {x,} 7s an (e,u)-

stationary point of the function £f.

Proof. We have

o
p— 1)
£(x +ag,) = £(x;) + L)f (x, +19y,9, ) AT
. (6)
< f(xk) + L)¢(xk+rgk,gk)dT .
This inequality holds because 3f(x)<:§€uf(x). Let us now prove
that 1lim r(xk) = 0.
Assuming the opposite, we can find a subsequence (xk )such
s
that
lim r(x ) = -a <90
k
S>+o s

Since the mapping QEU is continuous on the compact set {x|f(x)_§
f(xo)}, it is also uniformly continuous, i.e., for any € > 0

there exists a § > 0 such that

p(dsuf(x),dsuf(y)) < € if p(x,y) < 6§ ,

N

where § does not depend on points x and y. Take ¢ , and let

a < &8, Then

I (xk+€gk) =Xl <o <8 ¥yr e (0,a)
and therefore

¢ () +19) .9, ) < o (x,9y) + % .

It now follows from (6) that



a
a
f(x + ag ) < f(x ) + J ¢(x ,a )-+— dT =
Ks ksl ~ Ks 0 ks' kg 2
- g
= f(xk ) + a(r(xk ) +2)
S S
But for s sufficiently large we have r(xk ) < - %? , and hence
s
flx, +oag < fx -0l
k k — k 4
s S S
Therefore ,
a
f(xk +1) < f(xk ) oy .
S S
which is impossible. It follows from this contradiction that we
must have
lim r(x,) = 0
koo K
Since r is a continuous function the equality r(x*) = 0 holds

for any limit point x* of the sequence {xk}, i.e.,

oed f(x*) .
....Eu
Remark. An analogous method can be used in the case f = f1+g,
where f is an u.s.c.d.d. function and d is a concave function,

or to find a Clarke stationary point.
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A NEW APPROACH TO CLARKE’S GRADIENTS IN
INFINITE DIMENSIONS

Jay S. Treiman
Department of Mathematics, Lehigh University, Bethlehem, PA 18015, USA

1 Introduction:

One of the most useful tools developed for use in
nonsmooth optimization is the generalized gradient set of
Clarke. These gradients have been used on a variety of
problems including necessary conditions for optimality,
control theory and differential inclusions. Three different
techniques can be used to define Clarke's gradients. They
have characterizations in terms of directional derivatives
[Clarke (1975), Rockafellar (1980)], the normal cone to the
epigraph of a function [Clarke (1975)] and in terms of limits
of proximal subgradients [Rockafellar (1981)]. Some of the
strongest results involving Clarke's subgradients have been
derived using the proximal subgradient formula {Rockafellar
(1982)].

The characterization of Clarke's gradients in terms of

proximal gradients is as follows. Let f be a l.s.c. function
from Rn into ﬁ. A VvV € Rn is a proximal subgradient to f at X
if the function

f(x) - <v,x> + rllx - X||

has a minimum at X relative to some neighborhood of X for some
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r>0. Let

~ v:; 3 proximal subgradients vkﬂv to f
Of(X) = N _
at x —?~x.

and

v: 3 proximal subgradients vk to f at xk - X

with Tkvk+v with Tk\O.

The set of Clarke subgradients to f at X is given by

00

DE(R) := cl co [DE(R) + O°E£(X)]

Here the set swf(i) can be interpreted as the infinite
subgradients.

There have several generalizations of this idea. They
include the work of Thibault (1976), Kruger and Mordukhovich
(1980) and Ioffe (1981).

In this paper a characterization of Clarke's gradients
similar to the proximal subgradient formula is stated. This
formula is valid in all reflexive Banach spaces. Several

results proven using this characterization are also given.

2 The subgradient formula:
The main problem with proximal subgradients is that they

may not exist in Banach spaces. They are replaced by
* *
€-subgradients. Let E be a Banach space. A v €E 1is an

e-subgradient to a l.s.c. function f at X if
*
f(x) - <v ,x> + €llx - XI|1{ (1)

has a local minimum at X.
It will be assumed throughout the rest of this paper that
E has an equivalent norm that if Frechet differentiable off 0.

This guarantees that €-subgradients exist on a dense subset of
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the domain of f for any € > 0.

Theorem 1: [Treiman (1983)] Let f be a lower semicontinuous

function on E and X a point where f (s finite. Take

*
3 kY, K — x and €,\0 with
* K

Bf(x) := K
v an ck-subgradient to f at =x

and

v* : 3 v*k —Ji; v* tk X, T,N0 and €,\0 with
8%f(x) := L. C T Tk k
v K an ek-subgradient to ka at xk.

Then

Bf(x) = ¢l co [dE(x) + B°f(x)].

A similar result holds in Banach spaces with an equivalent
norm that is Gateaux differentiable off O. These spaces
include all separable spaces. The only differences are that
the neighborhood in (1) is replaced by a set that absorbs a
neighborhood of every element of E {0) and these absorbing
sets must be uniform when taking the limits in Theorem 1.

This set of subgradients is differs from the broad cone of
Ioffe (1981). In Ioffe's definition a similar e€-~subgradient
is used and is called the Dini yv-subdifferential. The major
differences are that Ioffe's vY-subdifferentials are taken with
respect to subspaces and he does not include infinite limits.
This means that Ioffe's subgradient set can be much larger or
smaller than Clarke's gradients.

The €-subgradients described here are more closely related
to the normals defined by Kruger and Mordukhovich (1980). A
discussion of these relationships is contained in [Treiman

(1983)1].

3 Applications:
In this section we state several applications of Theorem

1. These are generalizations of Rockafellar's work
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[Rockafellar (1985)) and will appear in [Treiman and
Rockafellar (1985)]. The first of these results enables one

to calculate Clarke's gradients in a special case.

Proposition 2: Let E and X be Banach spaces with equivalent
norms that are Frechet differentiable off O and f: E - R and
g: X > R be lower semicontinuous functions. 1§ FCy,x) = f(y)

+ g(x) and F(§,xX) {s finite then
OF(y,X) = (Of(y),08(X))

1f either f(§) or g(x) is empty then so is OF(y,X).

The next result can be interpreted as a statemant about
Lagrange multipliers. The proof of this result depends on a
result similar to the result of Dolecki and Thera (1984) in
this volume that does not require the existence of optimal
solutions to perburbed problems.

In this theorem the concept of a tightly lipschitzian map
is used. A map F: X - E is tightly Lipschitzian at ¥ if F is

Lipschitzian around X and for all h there is a compact set

H(h) € E such that for all § > 0 there is a gy > 0 with

t 1[F(x' + th) -F(x')] € H(h) + sB

when |[[|x' - X|] < § and t € (0,8).

Theorem 3: Let X be a locally optimal solution to the
problem

minimize f(x) subject to F(x) + U € C, x € D,

where f: X » R is lower semicontinuous with f(%) finite,

F: X » E is tightly Lipschitzian, E has an equivalent norm
that (s Frechet differentiable off 0 and C C E and D C X are
closed sets. Suppose that the problem is calm in the sense
that
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j(xk,uk) + (X,u) with F(xk) + uk € C, xk € D such that

£(xX) - £(%)

1w® - &l

u. # u and —_— —00,

Then

3 vY€ NL(F(X) + G) with 0 € D(f + 5) (%) + d<v ,F>(X).

Using this result several chain rules can be proven. In
these chain rules the following concept is used. An element
* A% A *K
v of © f(x) is nontrivial if there is a sequence v of

. k . *k
ck—subgrad1ents to 7,f at x - X with ||v Il > 8 > 0 for
*
*K w * .

some § > O, ck\O, Tk\O and v —_—v . These elements give

some information about the infinite behavior of the function

around x.

Theorem 4: Let g: X - R be a directionally Lipschitzian lower
semicontinuous function and G: E » X be tightly Lipschitzian
where X has an equivalent norm that is Frechet differentiable

off 0 and p(u) := g(G(d)) is finite. Assume that there are no

* ~
nontrivial elements v € O7p(u&) such that

0 € Bd<v ,6>(d)

Then for the sets

MGE) im oV B<y ™, 6> () and
y €2e(G(u))

o«

MP(E) i= W B<y ", 6> (T)
y €3%g(G(u))

one has 3p(W) C M(W) and d°p(E) C M°(W), Thus
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dp(d) C (M(T) + MT(E)]).

If one assumes that the union over all nonzero elements of
E of the H(h)'s in the definition of tightly Lischitzain is a

separable subset of X one need only assume that g is l.s.c.
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A NONDIFFERENTIABLE APPROACH TO MULTICRITERIA
OPTIMIZATION

Y. Evtushenko and M. Potapov
Computing Center, USSR Academy of Sciences, ul. Vavilova 40, Moscow, USSR

1. INTRODUCTION

Decision-making problems, the design of control systems, and the construction of
multipurpose products all require the solution of multicriteria problems. These prob-
lems can be summarized in the following way. Let £ € R™ be an n-dimensional vector of
decisions (or construction parameters), and the constraint set X cR™ to which the
vectors = belong be given. The value of each decision (or the performance of the pro-
duct) is estimated on the basis of m different scalar-valued criteria (objective func-
tions): Ft (z), i €[1:m]. We shall denote these criteria by F(z) = [F‘l(z)....,F’" (z)].

Decision makers would like to choose a feasible point £ €X such that all the com-
ponents of the vector F(z) simuitaneously take on the smallest possible values. How-
ever, this condition is usually unfulfillable: minimizing any one of the components will
usually lead to an increase in the vaiues of the others. Hence the term "solution of the
multicriteria optimization problem” requires clarification. We will write the probliem

of multicriteria minimization of F'(z) on X as follows:

LniEI}F‘(z) . 1)

Solving this problem means finding points from the Pareto set. We will say that

the point z, belongs to the Pareto set if z,€X, and there is no point £ in X such that
(1) Fi(z)<Fi(z,)forallic€[1:m]and
) Fi (z) <F1 (z,) for at least one 7€[1:m].

The points which satisfy these conditions are also called Pareto optimal points,
efficient points, or nondominated solutions. The collection of all points with the above

properties is denoted X, and called the Pareto set.



98

Introduce the images of the sets X and X, under mapping F(z):
Y=FX) ., Y.=F(XJ)
In what follows, we will consider Y to be a nonempty set in R™, and X to be a nonempty

compact set in ™.

The set Y is the Pareto set for the following elementary multicriteria problem:

min y . 2
yeyu @)

We will say that X, is the Pareto set in decision (or parameter) space and its image
Y. is the Pareto set in criteria (or objective) space.

If the inequalities ¥y = F(zy) <y, = F(xz,), ¥, # ¥ hold for two points z,,z,€X,
then we will say that the point ¥, is more efficient than the point ¥,, or that y, is less

efficient than y,.

We will assume that each component F satisfies the Lipschitz condition with the
same constant L, i.e., for any z, and z, we have
3 (zy) —Ft (.1:2)\ sL”:z:1 —.1:2\\ , t€[1:m],
which leads to the vector inequality
Flz,) -elllz, —z il s F(z,), (3

where e € R™ is the unit vector.

2. CONSTRUCTION OF THE NET

The structure of the Pareto set for even the simplest problems generally turns
out to be very complex. It often happens that this set is nonconvex and nonconnected,
so that it is difficult to approximate. Below we will attempt to construct a finite set 4,
which resembles the usual notion of an E-net of the set Y,. Take a set of points
Ay =[y4,.-- Y], where y; =F(z;), z; €X, forall i €[1:k]. We will assume that, in addi-
tion to 4, the set of points z; from the feasible set X is available or can easily be cal-

culated.

Besides feasibility we impose two other conditions on the set of points 4 :
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(1) for any ¥ .€Y,there exists a vector y; €4, such that

Yy SY.tEe; (4)

(2) for any Yy €A, there is no vector y; € 4, such that Yy S Yy i#7.

We will call the set of points 4, satisfying the above conditions an E-net of the
Pareto set, and the conditions themselves the first and second net conditions, respec-
tively.

For y, €Y define the set

M, =lyeR™:y, <y +Ee} = {yeR™: min (E+y/ —yf)=0{ .
je[1:m]

This set contains the collection of all points which are less efficient than the point
vy —FEe.

Define Z, = Uf=1Mi. This set can also be written in the form

Z, =ly€R™: max_min [E +yt —yl] =0j.
1e[1:k] Je[1:m]

The set 4, varies during the course of the calculations. If a point Y €Y is found
such that 7 < ¥y, where y, €4,, then y, is taken out of 4, and replaced by . Several
points can be removed simultaneously. Thanks to this, the second net condition of the

Pareto set holds automatically. If the previous condition is not fulfilled and 7/ does not

belong to Z,, then it is included in 4;, which is now written 4 ,,.

If as a result of the construction of the set 4 it is found that
Ycz, 5)

then 4, forms an E-net of the Pareto set. Indeed, for each ¥.€Y,CY there is at least
one point y; €4, such that (4) holds. The problem of constructing an E-net of the

Pareto set has thus been reduced to constructing a set of points 4, satisfying (5).

The solution of the initial multicriteria optimization problem is therefore reduced
to construction of the set A, which satisfies condition (5). To do this we utilize the
nonuniform space-covering technique proposed in Evtushenko (1971, 1974) for finding
the global extremum of multivariable functions. This technique involves covering the
set X with cubes inscribed in spheres of various radii. We present only the main for-

mulae which differ from those described in Evtushenko (1971).
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Let y; €4,. Then the set M, is of no interest from the viewpoint of E-net con-
struction and can be omitted from consideration. To fulfill condition (5) we have to
introduce the Lipschitz condition, or more precisely, the inequality (3).

Assume that the value ¥ = F(z) is calculated at z €X, and suppose it turns out

that ¥ €#;. From (3) it follows that
F)-elllz -zl s F(z) .
If z is such that
F(z,)—Fe <F(£)—eLllz ~zll ,
then y =F(z)€M;. Hence all points in X which satisfy
elllz -zl < F(Z) -F(z,) + Ee (6)
belong to the set M;. The set defined by (6) contains a ball

By = {zeR™: Lz -zl<E+ min IFS@E)-F" (:r:t)\]
se[1:m]
in the decision space. If £ = z; then the radius of the ball is at a minimum and is equal
to £ /L. Inthe case when A, contains several points which are more efficient than v,

introduce the index set
Iy)=liellk]l:y, =¥, vy, €4,)

This set contains the indices of vectors in 4, which are more efficient than v. If I(y)
is nonempty then after determining ¥ = F(x) one can eliminate all the points z for
which (6) holds for at least one i €I(y). It is therefore optimal to choose an i such

that the corresponding ball B; has the largest radius. This radius is computed using

p=TIE #max  min | (7%(2) ~F* )] - @)

Construction of the Z-net of the Pareto set has thus been reduced to covering the
set X with balls of the form (6). To implement this process one can use the approach
described in Evtushenko (1971, 1974) and its extension. If X is bounded, then it can be
covered in a finite number of steps, and the F-net will also be finite. Here, as in the
search for global extrema, the computations can be speeded up by using local search
methods. Such methods for determining the points in the Pareto set are now being suc-

cessfully developed.
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After the set 4, has been found, it is given to the engineer, who chooses his pre-
ferred set of design parameters. If the number of points in 4, turns out to be large, it
can be reduced by discarding points which are close together. The distance between
points can be defined in both criteria space and parameter space. The user gives a
number N determining the smallest distance between points, and a special program
"sifts" through the set A,, leaving only the points which are separated by a distance

greater than N.

We shall no w illustrate the application of the approach suggested above with a
very simple example. Consider the case where Fl(z) =z, F(z)=sinnz, 0sz <2,
E =0.001. It is easy to show that in this case the Pareto set in decision space consists
of the point z = 0 and the line segment (1,1.5]. In criteria space the Pareto set con-

sists of the point 7! = F2 = 0 and the line 72 = sin 7}, where 1 < F! <1.5.

The sequence of points at which the vector function F was computed is shown in
Figure 1. The suggested method allows us to more than halve the number of points at
which vector function 7 must be calculated in order to guarantee the accuracy
demanded in the problem, compared with the uniform covering technique. It can be
seen from the figure that the covering steps are largest far from the Pareto set; when
the Pareto set is being covered the step size is at a minimum and coincides with that
required for uniform covering.

A
£2

FIGURE 1 The sequence of points at which F~ was computed.

3. CONCLUSION

A numerical method for finding an E-approximation of a Pareto set is suggested.
This method requires the feasible set to be covered with a nonuniform mesh only once.

All other existing approaches involve global searches for multiple extrema. The
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approximate solution of the multicriteria problem is equivalent (in terms of labor) to
the problem of finding the global minimum. There is, of course, some complication con-
nected with the fact that here instead of calculating the value of f(z) it is necessary
to calculate m values of F(z), and it is also necessary to remember the set of points
Ag. However, the basic computations connected with the covering of X are roughly the

same.
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APPLICATION OF A SUBDIFFERENTIAL OF A CONVEX COMPOSITE
FUNCTIONAL TO OPTIMAL CONTROL IN VARIATIONAL
INEQUALITIES

B. Lemaire
University of Montpellier, Place E. Bataillon, 34060 Montpellier, France

INTRODUCTION

The chain rule for the subdifferential of a real convex
functional composite with an affine operator and a real convex
functional is well known (Ekeland-~Temam, 1974). Various exten-
sions of this classical case involving operators taking values
in an ordered vector space have been considered by many people,
for example Lescarret (1968), Levin (1970), Ioffe-Levin (1972),
Valadier (1972), Zowe (1974), Penot (1976), Kutateladze (1977),
Hiriart-Urruty (1980), Thera (1981) in a convex framework and
Thibault (1980) in a non-convex situation.

§ 1 and § 2 are devoted to the chain rule for a real
convex functional composite with a convex operator and a real
non-decreasing convex functional. In § 3 , 4 , 5 we consider
an optimal convex control problem with a non-differentiable
cost function, in which the state of the system is defined as
the (unique) solution of an elliptic variational inequality.
The mapping between the control and the state is also non-
differentiable but it is a convex operator. Applying the results
of § 2 we can derive, by means of an adjoint state, necessary
and sufficient optimality conditions improving the ones obtained
by Mignot (1976). In § 6 these conditions are made explicit
with an example.

1. DEFINITIONS AND NOTATION

All the vector spaces introduced in the sequel are real.
X and Y denote topological vector spaces with respective to-

pological duals X' and Y' . Y, is a convex cone in Y
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which makes Y a partially ordered topological vector space
(Perressini, 1967). We know that the ordering is defined as fol-

lows :

2< 1 12 y2 - yl _ y2 v,

Y, denotes the dual positive cone i.e. the cone of positive
linear functionals on Y . Y ° stands for the set Y U {+ «}
where + « is a greatest element adjoined to Y . We extend in
a natural way the addition and the scalar multiplication of ¥
to Y . An operator f of X into Y¥° 1is said to be convex
if £Ox + (1-0x%) Safxh) + (-0 £(x?)  for each x',x? in
X and each real x € [0,1] . Its effective domain is the set
dom f = {x € X | £(x) € Y} . As usual L(X,Y) will denote the
set of continuous linear operators of X into Y . By the sub-
differential 3f(x) of f at x € dom £ , we mean the set of

subgradients of £ at x , i.e. the set
3£(x) = {T € L(X,Y) | f(x+h) 2 £(x) + Th , v h € X)
Given a functional ¢ of Y into IR = JRU {+«} , ¢ 1is ex-

tended to Y° Dby setting ¢(+«) =+« . The effective domain

of the composite real functional ¢ o f of X into TR is
then

dom ¢ o £ = dom £ N £ (dom @)

2. THE CHAIN RULE

For an operator f of X into Y' and a real functional
¢ of Y into IR", we are going to give sufficient conditions
for calculating the subdifferential of the composite ¢ o f by

the chain rule
3(p o £)(x) = 3¢ (f(X)) o 3f(x)

{y'oT | y' € sp(£(x)) , T € 3f(x)}

The following results hold
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Lemma 1 . 1§ ¢ 48 non-decreasing then, as¢(y) C Y; , VY EY
Proof. Assume 3¢ (y) # ¢ . Then y € dom¢ and VY y' € 3p(y)
and VY 2z € Y+ , we have

p(y) = ¢(y-2) 2 o(y) ~-<y',z>

i.e. <y',z> 20
Lemma 2 .
yy' € Y; , ¥Yx € domf , o8(y' o £)(x) Dy' o 3af(x) .
Proof. Let T € 3f(x) and h € X . If x+h € dom f ,
f(x+h) - £(x) £ Th , and
<y',f(x+h) - £(x)> > <y',Th >
If x+h g dom £ , <y',f(x+h)> = <y',+=o> =+« (see § 1) ,

so y' oT e aly' o f)(x) .

Proposition 1 . If ¢ 1is non-decreasing, then V¥ x€domgpo £,
a(p o ) (x) 2 sp(f(x)) o sf(x)

Proof. By lemma 1 and lemma 2 ,

v, aly' o f) (x) D 3p(f(x)) o 3f(x)
y' € dp(f(x))
Now, let vy' € gsp(f(x)) , x' € a(y' o f)(x) and h e X . If

Xx+h € dom f ,
e(f(x+h)) 2 ¢(f(x)) + <y',f(x+h) - £({x)>
> o(f(x)) + <x'",h>

If x+h & dom £ , ¢ (f(x+h)) = $(+«) = + o and the above ine-
quality still holds, i.e. x'" € a3(p o £f) (x) .
For the converse inclusion, we have the following interme-

diate result (see also Kutateladze, 1977).

Proposition 2 . If ¢ 1is non-decreasing and convex, if f
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is a convex operator, if there exists y € R(f) N dom ¢ where

¢ 1s continuous, then

v x € domy o £, 3(p o f)(x) C U a(y' o ) (x)
v' € (f(x))

Proof. Let x' € 3(p o f)(x) . The set
S = {(f({x+h)+z,p (£(x))+<x',h>)| x+h € dom £, z € Y.}

is a convex subset of Y x IR. As ¢ 1is non-decreasing, S
and epi ¢ (the epigraph of ¢) have only boundary points in
common. Moreover epi ¢ has a non—-empty interior. So, by the
Hahn-Banach theorem, there exists ?' € Y' and o € IR, such

that (9',a) # 0 and
Vy€dome, ¥ A € R, A >¢(y) , v he€dom £f-x ,

<Y,y >+ an> <y',E(x+h)> +af ¢ (£ (x)+ <x'h>]

Taking y = f(x) and h =0, we get o > 0 . 1In fact

o >0 , otherwise
N Ny —

Vy €domge , <y',y> = <y',y> ,
and 9' =0, because dom ¢ - y is absorbing. Setting
y' = - ;'/a , we get
(i) Yy € dom ¢, taking X = ¢(y) and h =0, y'€3p(f(x))
(i1) taking y = f(x) and X = ¢o(f(x)) , x' € 3(y' o f) (%)
Remark 1. In fact, by the proof of proposition 1 , the

above proven inclusion is an equality.

Now, the question is : when the converse inclusion of
lemma 2 does hold, that is to say (Valadier, 1972) when is
f regularly subdifferentiable at x ? The answer is positive
in the following cases.

Case 1 . £ 45 continuous affine with Linean parnt A .
Then f 1is convex and 3f(x) = {A} . Moreover Vv y' € Y'

+I
y' o £ 1is continuous affine with linear part y' o A and
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3(y' o £)(x) = {y' o A} = y' o 3f(x) . 1In fact, f 1is convex
for any ordering on Y, and every ¢ is non decreasing for the
particular ordering defined by Y, = {0} . Then we recover the

case mentioned at the beginning of the introduction.

Case 2 . £ A8 Gateaux-differentiable at x with G-derivative f£'(x) ,
that is to say dom f - x is absorbing and f'(x) € L(X,Y)
such that

vhex, £ (xh = 1lim XX - £
x> 0, A
Then if y' € Y; , y' of 1is G-differentiable at x with
G-derivative (y' o f)'(x) = y' o f£'(x) . Moreover, if Y,
is closed, o f(x) = {f'(x)}. Then,
d(y' o £)(x) = {(y' o £)'(x)} = {y' o £'(x)} = y' o ¥F(x) .
Case 3 . £ 48 continuous at x , Y A& a sequentially weakly complete

Hausdong Locally convex space, which {s an ondern complete vectorn Lattice,
nonmal, with onden intervals nelatively weakly compact, and Y + closed.,
Then (Valadier, 1972) 3f (x) 1is a non-empty compact and convex
subset of LS(X,YG) the space of linear operators of X into
Y continuous for the weak topology o(Y,Y¥') , equipped with
the topology of simple convergence on X , and f 1is regular-
ly subdifferentiable at x .
Examples of such a space Y are :

(1) the euclidean space K" ordered by the order product
of 1R or more generally by a cone generated by a set of m

linearly independant vectors.

(ii) the space tPa,z,u) , 1< p <+ over a measured
space @ , ordered by the cone of | -almost everywhere non

negative functions.

Case 4 . X 48 a neflexive Banach space, £ 4is continuous at x , Y
48 a semi-neflexive Hausdonf§ Locally convex space, Y, 48 closed and has
a weakly compact base Lying in a closed hyperplane not containing the oni-

gin.
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Then (Zowe, 1974), the same conclusion as in case 3 holds.

One example of such a Y is the space of Radon measures
over a compact space, ordered by the cone of non-negative mea-
sures.

As a direct application of the chain rule we can recover
the well-known formula of the subdifferential of the maximum
of a finite family of convex functions. Namely, let fi ,
i=1,...,m , be m proper convex functions of the topological
vector space X into 1IR°. Define the operator f of X into

Y' = R"U {+«} , by

m
(fl(x),...,fm(x))t if x € N dom f

+ otherwise

Then, for the order product defined by Y+ = ]Rm, f 1is convex.

+
Now let ¢ of R"™ into IR defined by

vly) = max y;
1

Then ¢ 1is a continuous non-decreasing convex function. We have

max fi(x) = (¢ o f) (x)
i
and
m
af(x) = 1 af, (x)
. i
i=1

Then the well-known result :
14, forn each i , fi L4 continuous on G-differentiable at x€n dom £54
then *

d(max f£,)(x) = co{afi(x)|fi(x) = max £, (x)} ,

1 1

is an easy consequence of the above chain rule and the

lemma 3 . v ye R, sply) = co {e']oly) = y;} where e’ denotes

the i-th element of the canonical base of ®R".

Proof. It is a particular case of lemma 4 , § 6 , hereafter.
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3. VARIATIONAL INEQUALITIES AND ORDERING

Let V be a Hilbert space equipped with a continuous and

coercive bilinear form a , and K a closed convex subset of
V . Then (Lions-Stampacchia, 1967), for each & € V' topolo-
gical dual of V , there exists a unique y(2) € K solution

of the variational inequality :
aly,b-y) = <g2,6-y> , v6 € K, y €K (1)

or, with the notations of convex analysis,

L € Ay + aq;K(y) (2)
where A € L(V,V') 1is the linear operator associated to the
bilinear form a , and Vg denotes the indicatrice function
of K . Moreover, the mapping g¢— y(2) of V' (equipped with

the dual norm) into V is Lipschitz continuous.
Now, introducing an ordering on V , we dget the following
abstract formulation of a well-~known result of the classical

theory of potential (Moreau, 1968).

Proposition 3 . 1§ Vv 48 a vector Lattice, the bilinean form a verni-
fying a(y+,y—) <0 yyeEV; 4if K s hereditany : y+VvV,C K,
Vye€K, and 4inf-stable : inf (y,z) €K , vy,z€K, then vy(g) 4s the
Least element of the set

K(g) = {y € Kla(y,8) > <&,86> ,v8 € V]
Proof. First, vy(g) € K(g) . It is a trivial consequence of
(1) and that K is hereditary. Then, let y € K(&) , and
z = y(2) -y . We must prove z+ = 0 . Because K 1is inf-
stable, inf(y(s),y) € K . But infly(2),y) = y(2) - 2t
Putting in (1) as a & , we get

- aly(2),z7) » -<g,2t>

+ +
Moreover af(y,z ) » <%,z >

+
Then a(z,z ) < 0, and because 2z =2 -z ,

al(z ,z+) < a(z—,z+) < 0 .
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Finally the coercivity of a implies z+ =0 .

Remark 2. This minimal property has been used by J.F. Durand
(1972) in a finite dimensional context to prove the convergence
of the Gauss-Seidel process for the inequality (2) where A

is an M-matrix, with an argument of monotonicity.

Conollany 1 . Under the assumptions of proposition 3 , the mapping
Ly (2) 48 a non-decreasing convex operatorn of V' into V , V' bedng
ondened by the dual positive cone vy .

Proof. Let 21,22 eEvVvV' , x€1[0,1]1, yl =y(21) ,Y2==y(22) .
We have Ayl + (l—A)y2 € K(A£l+(l-A)£2) . Therefore
<
y(ul+(l—>\)£2) = xyl + (1—>\)y2
if zl Z 12 , then K(zl) C K(zz) . So y(nl) 2 y(22) .
4. OPTIMAL CONTROL PROBLEM

Let us introduce the Hilbert space of controfs U and the

set of admissible controls U_ g which is a non-empty closed

convex subset of U . We dgnote by b a continuous convex

operator of U into V' ordered by the dual cone V; . For
v € U, the sfatfe is defined as the solution y(b(v)) of the
variational inequality (1) for ¢ = b(v) . By corollary 1,

the mapping between the controfand the stafe is a continuous
convex operator of (I into V

Then, let us consider the ordered Hausdorf locally convex
space of observations 2 . We assume that the mapping between
the state and the observation z(v) 1is a continuous non-

decreasing convex operator ¢ of V into 2 :
z(v) = cl(y(b(v))
The cost function is defined by
1
J(v) = Jl(v) +—2— <Nv,v >

where N € L(U,U') is symmetric and coercive, and J1(v) =d(z(v)),
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with a lower-semi-continuous non-decreasing convex function ¢
of Z into IR . Finally we consider the problem : find

u € uad (optimal control) such that

J(u) = inf  J(v)
vel
ad

J 1s a lower-semi-continuous, strictly convex and coercive
function of U into 1R . So, by a classical argument (Ekeland-

Temam, 1974) the optimal control u exists and is unique.

5. OPTIMALITY CONDITIONS

In fact Jl is continuous because it is defined on the

Banach space U , and everywhere finite. So the optimal
control u 1is characterized by : Ju' € 38J4 (u)
' - >
<u' +Nu, v u>u,u 0, VY ve uad (3)

The problem is now to express u by means of an adjoint state

P . We have
Jl(v) =% ocoyob

We can apply the proposition 2 three times one after
another. Then u 1is characterized by the existence of
z' € 32(z(u)) , v' € 3(z' oc)iy(b(u))), p € 3(v' o y)(b(u))
and u' € 3(p o b) (u) such that (3) holds. We can get more
precise information if one of the four cases of § 2 holds for
the operators b and (or) ¢ . For instance, if ¢ 1is affi-
ne with linear part C and, as a space Y , V' satisfies the
conditions of case 3 or case 4 , the characterization of

the optimal control can be rewritten as

Jz'e se(z(u)), Jjp€a(z' oCoy) (b(w)) ,IBE3b(u) , s.t.
*
- >
<Bp + Nu,vVv u:>u,u 0, Vve uad (4)
Let us assume now that (V,a) is a Dirichlet space on a
locally compact space I supplied with a Radon measure vu ,

ordered by the cone of up-a.e. non-negative functions, and
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K = {v € V|lv » ¢ quasi-everywhere on &}

where ¢ : = > IR is a quasi-upper-semi~continuous given func-
tion. Proposition 3 holds and (Mignot, 1976) the operator vy
has, at each ¢ € V' , a directional derivative y'(%£:;h) in
each direction h € V' , which is the unique solution of the

variational inequality :

a(y',06-y"') = <h,e-y'>, v 8 € S, y' € s, (6)
where Sl is the closed convex cone of V defined by

Sl = {8 €V |e >0 where y(2) =% , and al{y(2),8) =<28>}

Then, for w' € V; , the real convex functional v' oy

has a directional derivative at & given by

(v! o y)'(a;h) = <<v',y'(£;h)3>v, ¥y h € v!

V r
and the subdifferential of v' oy at & 1is the set of p€evV

such that

<v',y'(2;h) > > <h,p> , Y hev' (7)

v'v

Now, using the techniques of Mignot (1976) we can derive
the

Proposition 4 . p € V satisgies (7) Aif and only Lif :

a(e,p) < <v',8> ,ve € S, + PE S,
Proof. Let S be a closed convex cone of the Hilbert space
V and o € V . The a-projection Ps(e) of 8 onto S is

defined as the unique solution of the variational inequality

a(6 -gq, w—q) <0, ywes , ge€S
* * . . *
Ps(e) denotes the a -projection of 6 onto S , where &
s ‘1 *
is the adjoint bilinear form of a . The a-polar cone of S

is defined by

sy ={a€ev]a(q0) <0, Vo€ s}
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As a consequence of the bipolar theorem, we have

*
oyo — =

(80) %= S and Pg + PS; I (8)

Because A , the linear operator associated to the bili-
near form a , 1is an isomorphism of VvV onto V' , (7) is
equivalent to

<v',y'(2:;B8)> = a(e,p) , VY 8 €V (9)
Taking S = Sl , we get y'(g;n0) = Pg0. So, by (8) , (9)

is equivalent to

*
<V',PSe> > a(PSe,p) + a(PSoe,p) , V8 €V
a

or
a(e,p) < <v',8> , V 8 €8
a(p,p) <0 , V 8 € s; ® p € (s;);*= s
6. EXAMPLE
Let @ =]a,b[ be an open bounded real interval. We choose
as V , the sobolev space Hé(Q) . We know that V is inclu-
ded, with continuous injection, in C(@) the Banach space of
continuous functions on © . We take
a(u,v) = {2 alu'v'dx + ajuvdx , ¥ u,veEV
where ag,a, € Lm(Q) ’ ao(x) =0 , al(x) 2 a >0, a.e. in Q.

Then (V,a) 1is a Dirichlet space on @ supplied with the Le-
besgue measure. Let £ € V . We take

K={y€V | y=>¢t on @}
Introducing the differential operator A

Av = — Jl(a o4

Yy =gy BoY v

we can interpret the variational inequality (1) , for

L € L2(Q) , as follows : Ay - ¢ is a positive measure on
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8 , concentrated on the closed subset of Q

R° = {x € g | y(x) = £(x)}

We take now U = U' = LZ(Q) , and, for ue U, b(u) = u+.
We can easily prove that b is a continuous convex operator of
LZ(Q) into LZ(Q) (then into V') . For each non-negative
p € U, we have

(p o b)(uw = [ puax
Q

and, as a consequence of the Lebesgue theorem of monotone con-
vergence, the directional derivative of p o b at u 1is given
by

vveUu, (pob)'(uv) =/ PV+dX + f pv dx
u=0 u>0

Moreover, the set of B8p where g 1is a measurable function

on § verifying

B(x) =0 if u(x) <0
0 < g(x) <1 if u(x) =0 (10)
B(x) =1 if u(x) > 0
is a closed convex subset of U included in 3(p o b)(u) , and,
for each v € U , the measurable function Bv defined by
Bv(x) =0 if u(x) <0 or (u(x) =0 and v(x) < 0)
Bv(x) =1 if u(x) >0 or (u(x) =0 and v(x) > 0)

is such that

f B,PVdx= (p o b)'(u;v)
Q

Therefore,
3(p o b)(u) = {Bp | 8 measurable and (10)} .
Then, we take 2 = C(Q) ordered by the cone of non negative
functions on 2 . Let zq given in Z . We take
+
z(v) = y(v ) - zq4 - The operator of observation c¢ is then

continuous affine with linear part equal to the injection of
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Hé(Q) into ¢(R) . Then, take
T 0 = |z | o)

1f z4 § y(V+) , Y v € Uad (for instance 23 s £) , then
Jl(v) = ¢(z(v)) , with ¢(z) = max 2z(x) , which is a conti-

S
nuous non-decreasing convex funcfionon 2z

Llemma 4 . For each z€ 2, 3p(z) 48 the subset 0§ Radon probabilities
on O , concentrated on

Q(z) = {xeq | ¢(z) = z(x)} .
Proof. Because ¢ 1is non-decreasing we already know (see
lemma 1) that, if z' € 3¢ (2z) , 2z' 1is a positive Radon mea-
sure on 0 . Then we have

v(g) 2v(z) + <z2',r-2> , Y r €2 (11)
Taking ¢ =z + 1, we get <z',1> =1 . So =z'E€ Mi(ﬁ) i.e.
is a Radon probability on & . Then (11) is equivalent to

<z',w(z)l=-2z> =0 or , as ¢(z)2-z= 0 ,

z' 1s concentrated on Q(2)

Finally, the cost function being
N 2
J(v) = J;(v) + 3 |v|u , N> 0,

we can make explicit the general previous results in this part-
icular situation.

There exists a unique optimal control u € uad characte-
rized by
4 z' Radon probability on @ , concentrated on the subset 9(z(u)),

1

1 peH () s.t.

a(o,p) < [edz' , Vo€ S, + PE€ S+ , where

Q - u
1 + + +

Su+={eeHo(Q)[ 8 >0 where y(u') =¢ and a(y(u ),6) =/ u edx} ,
ﬂB measurable function on @ verifying (10), @

such that

&2(Bp + Nu) (v-u)dx = 0 , vvE Uyg -
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Remark 3.

1. Taking uad =U, we get u = - %? . Because p is non-
negative, v’ = 0 and the optimal Afate is the least function
of Hé(ﬂ) majorizing ¢ and such that Ay is a positive
measure on § .

2. We can interpret, unless formally, the adjoint inequality
defining the adjoint state p as follows. Consider the parti-

tion of @ Dbetween the three subsets

+ + +
Qi={x€9|y(u)=£,Ay(u)—u > 0}
+ + +
Q% ={x€qlyu) =¢ , Ay(u) -~ u = 0}
+ +
f ={x € qfy(u)>¢}
Then
1 °
= [ = 2 o
s,* = {8 HO(Q)|6 0 on @] and 0 on af}
and p 1is characterized by
=0 [}
P on Ql
p?O ’ Ap<z'on Q;
Ap = z°' on af
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INTRODUCTION

Modern developments in nondifferentiable analysis have now
made it possible to handle nondifferentiable optimal control
problems. Maximum principles of considerable generality have
been derived by Clarke (1976), and a number of effective numer-
ical methods for minimizing nonsmooth objectives are available.
Nevertheless, nondifferentiable optimal control problems are
still difficult to solve. The reason lies in their structure,
which in the most general case may involve compositions of non-
differentiable functionals and operators.

In this paper we study special types of such problems which
can be solved with the help of a suitable bundle method. We have
used two numerical codes by Lemaréchal: CONWOL for unconstrained
minimization of convex objectives and BOREPS for minimization of
weakly semismooth objectives with constraints in the form of upper
and lower bounds, cf, Lemaréchal et al. (1980). We will use the
following general model:

J (x,u) =+ inf
subj. to (P)
A (x,u) = 8,
ueE w CU,

where x€X and u€U are the state and control variables, respec-
tively. The spaces X and U are assumed to be Banach, J[X xU=~R],
w is a closed subset of U, A[XxU->X]. Moreover, we assume that
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the equality A(x,u) = 8 defines a unique implicit function x{(u)
which is locally Lipschitz. Finally, we denote ¢(u) = J(x(u),u)
and suppose that ¢{U + R] is locally Lipschitz over u.

Section 1 explains how to solve some special types of (P)
with the help of bundle methods, or, more precisely, how to com-
pute elements of 3¢ (the Clarke's generalized gradient of ¢) for
any admissible control uew. Illustrations based on concrete
practical problems are also provided. We have no state-space
constraints in (P) since we assume that they have been included
in the cost by a suitable penalty. In Section 2 a Sobolev type
of Zangwill-Pietrzykowskil penalty is studied and applied to a
certain type of inequality state-space constraint. .

We employ the standard notation in NDO; additionally, xt is
the i-th coordinate of a vector X(ERn, B is the unit ball centered

at the origin and (X)D denotes the projection of x onto D.

1. ESSENTIALLY NONSMOOTH PROBLEMS

We confine ourselves here to those problems in which the
standard adjoint equation approach may be used to compute the
desired elements of 3¢. Unfortunately, the structure of the
problem only rarely enables us to obtain some inner approximation
of 3¢ in this way. Regularity is crucial in considerations of
this type.

Nondifferentiable objectives. In this part we will assume

that A is continuously Fréchet differentiable over X x ¥ with
A;(x,u) being continuous over X x & and utilize the chain rule II

of Clarke (1983). ¥ is an open set containing w,

Proposition 1.1. Let J be locally Lipschitz in u for all x € X
and Fréchet differentiable in x over X for all u € ¥ with
VXJ(x,u) being continuous over X x W. Let A\* be a solution of

the equation
4 -— -— ‘x — —
Ax(x,u) A¥ o+ VXJ(x,u) = 6 (1.1)

at a fixed process (x,1), U €w,., Then
- - = PR
30(u)22 J(x,u) + A (x,0) r* (1.2)

provided J is regular at (X,0).
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Proof. Due to Prop. 1 of Luenberger (1969) (Sect. 9.6) for u € w,
h&Uand v € R+

¢ (u+uh) - o(u) = J(xu,u+uh) - J(x,u) = J(x,u+uh) - J(x,u) +

+ <v*, A(x,u+uh) - A(x,u)> + o(u),

where trajectories x,xu correspond to controls u,u+ph, respective-
ly,v»* is a solution of (1.1) at the process (x,u) and

1im o(u)/u = 0. Hence, on denoting ip the trajectory correspond-
u+0
+

ing to u + uh
6°(4;h) = Tim (J(xu, u+ph) - J(x(u),u)) |y 2

u+0

+

u-+u

W

lim (J(iu, G+ph)—J(§,G))|u=J’(§,G;9,h)+<k*,A;(§,ﬁ)h>=
u=0
+

- - - b %

= 1im (J(x,u+ph) - J(x,u))|u + <Au(x,u) A*, h>
u~0
u-u

Dy the regularity of J at (x,u). o

As an example we may take the problem of operating an elec-

tric train between two stations with minimum energy losses:

T 2 +
I x(t)(u(t)) dt » inf (1.3)
0
subj.to
%x(t) = f(x(t),u(t)) a.e. in [O,T],

x(0) = a, x(T) = b,
u(t) € alx2(t)),
where f[R2 x R » R2] is continuously differentiable, a, b are

given vectors from RE , 2: R =% R is a given nonempty compact
measurable multifunction and uks» x is locally Lipschitz.
We set X = C_[0,T,R°] and A(x,u) = x(t)-a- sf(x(<),ul1))dr.

o]
If u is admissible and the corresponding trajectory x satisfies

§2(t) >0 for t € [0,T], then x2(t_)(u(t))+ is regular at (x(t),
u(t)) for each t, and, consequently

3f(X(t),a(t))T
au

%2(£)e(t) p(t) € 26(d),

where £(t)=1 if u(t)>0, g(t)=0 if u(t)<0, ¢(t) ¢ [0,1] for u(t)=0
and p is the solution of the adjoint equation
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- — T 0
6(t) af(x(t),ult)) p(t) + l J a.e.

Ix (a(en’t

backwards from a suitable terminal condition concerning the

treatment of the terminal equality constraint x(T) =b.

Proposition 1.2. Let J=J1(x)+J2(u), where Jl[X + R], J2IU + R]
are locally Lipschitz, and assume that & € 3J,(X), n € 3J2(G)

at a fizred process (X,u), Let the implicit function x(u) be con-
tinuously Fréchet differentiable on a neighbourhood of U (which
holds e.g. if A;(i,ﬁ) is a linear homeomorphism of X onto X) and

A* be a solution of the adjoint equation

. % -
A x(x,u) A p 8 =8, (1.4)

Then

AL(R, D) A% 4 T g ae(d) (1.5)

provided any of the following conditions is satisfied:

(Z) J,»J, are regular at x,u, respectively;

(£7) Jq is8 continuously Fréchet differentiable with & being its
gradient at X,

(Z272) J, ©s continuously Fréchet differentiable with N being its
gradient at U, and either -J, s regular at X or x(u) maps
every neighbourhood of U to a set which is dense in a neigh-

bourhood of X (e.g. if x (U) Zs onto).

Proof. Under condition (ii) the statement is a direct consequence
of the above mentioned result of Luenberger. Conditions (i) or
(iii) imply gue to the chain rule II that

(x" () & + n € 80(T)
taking into account the rule for generalized gradients of a finite
sum of functions. To express the operator (x (u))* by means of

the derivatives of A at (x,u), observe that
‘(X,q “(a ‘(x,0) = ©
Ax(x,u) x (u) + Au(x,u) .
Hence, for any h € U
- L, . o_ _ . ’_-*
<g,x (u)h> = <x*,—Ax(x,u) x (U)h> = <Au(x,u) 2 ¥, h>

which completes the proof. (|
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Examples of this kind may be found e.g. in "production plan-
ning" problems cf. McMaster (1970). The following "minimum over-

shoot" problem also possesses an objective of the above form:

max (<c(t),x(t)> - s)* + inf
te[0,T]

subj.to
*(t) f(x(t),u(t)) a.e. in [0,T],
x(0) = a, <c(T), x(T)> = s,
u€wetrlo,1,R"],

where f[Rnx rM Rn] is continuously differentiable, s€R,
ce c,[0,7,R"], a € R", and ur x is locally Lipschitz.

We set again X = CO[O,C,Rn] and introduce A as in the pre-
vious example. If u is admissible, X is the corresponding tra-
jectory, and <c(t),x(t)> > s for some t € [0,T], we denote

0 = {te[0,T]]<c(t),x{(t)> = max <c{1),x(1)>}.
1€(0,T]

According to Prop. 1.2 and Clarke (1983)

af (X(£), ()T
au

p(t) € 3¢(u) (1.6)

provided p is the solution of the adjoint equation

= - T
(1) L(R(E) BT

.backwards on the interval [0,T] from a terminal condition con-
cerning the treatment of the terminal state condition and with
the jump C<t1) at a time t;€6. If <c(t),x(t)> < s on [0,T],
relation (1.6) 1s still true if p is the solution of the above
adjoint equation without any Jjump.

Unfortunately, we are not able to provide any assertion of
the type of Props. 1.1, 1.2 for a general objective J(x,u). How-
ever, its special structure may sometimes help us to obtain such
statements - a problem of this sort has been investigated in
Outrata (1983). 1In other cases the objective may be replaced
by a regular one.

Nondifferentiable controlled systems. If U and X are Banach

there is, to our knowledge, no available chain rule for computing
generalized gradients of composite functionals J{(x{(u),u).

Therefore, we have to confine ourselves to the finite-
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—-dimensional case and apply the Jacobian chain rule, cf. Clarke
(1983). Nevertheless, the situation is still too complicated and
we are forced to further restrictions. Namely, we will assume
that A = Al(x)+A2(u), where Al[X + X] is continuously differenti-
able over X=R" and A2[U + X] is locally Lipschitz over w & u=r".
Furthermore, we require that J = Jl(x)+J2(u), where Jl[X + R],
J2[U + R] are continuously differentiable over X, ¥, respective-
ly.

Proposition 1.3. Let (X,U) be a fized process, Ai(i) be a linear
homeomorphism of X onto X and A* be the solution of the adjoint
equation

(AT GNT* () =0, (1.7)
Then

20(8) = vI, () + (A (@) Tax. (1.8)

Proof. On denoting v = A2(u), vV = A2(G), Eq. Al(x)+v = 8 defines

a unique implicit function x=u(v) which is continuously differen—
tiable on a neighbourhood of Vv with u (v) = —(Ai(i))_l. According
to the corollary of the Jacobian chain rule (Clarke, 1983)

3x(Q) = -(Ai(i))_laAz(G).

A direct application of the Jacobian chain rule gives now imme-
diately
=y o=yl =\\T_ . = -
ae(u) ——((Al(x)) 3A2(u)) le(x) + VJ2(u) =

= (3A2(G))TA* + VJ2(G). o]

An easy application of the above assertion is provided by the
minimum-energy control of a linear plant with a dead band. After
replacing the original control space U = Lm[O,T] by R™ the prob-

lem may attain the following form

m-1

A i 2
5z (ul)2+§||y(T)—bI|n

i=0 R
subj.to

y(t) = A(t)y(t)+wi(ul) a.e. in [ia,(i+1)a] ,i=0,1,.m-1
y(o) = a,

i i .
u € o € R, i=0,1,...,m-1,

where m>1 is a given integer, the stepsize a=T/m, r>0 is a penal-

. n : .
ty parameter, a,b are given vectors from R°, A is an [nxn] matrix
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of functions from CO[O,T] and vi(v) = (vi(v),...,v?(v))T,
Bg(v—ei) for v > €
W%(V) = o} for |v| < e.
4
J : _ s
Bi(v+ei) for v < e;» i=0,1,..,m-1, j=1,2,..,n.
Clearly,
1 2 n,T .
(Bis Bireres ei) =g if |v| > e
v, (v) = 0 if |v]| < e,
1 i
co(8, B) othervise, i=0,1,..,m-1.

To apply the preceding assertion, we set Xx=R" (the space of ter-

minal states y(T)), A.=I (unit [nxn] matrix) and observe that

1
o 1 m-1 m-1 i
A2(u ,U , ..., ) = -r(T,0)a - ¢ Si wi(u ),
i=0
(i+1)a
where Si = J 1(T,t)dt and T is the transition matrix, i.e. the

ia
solution of the matrix differential equation f(t,to) = A(t)r(t,to)
on [0,T] with the initial condition r(to,to)=I. We denote
u= ﬁo,ﬁl,..,ﬁm_l), the elements of a¢(u) by u=(uo,u1,...,um—1)

and observe that the "modified" adjoint equation attains the form

o T oo (i+l)AT _
Xy o= Sir(y(T)—b) = S (T,t)dtte(y(T)-b)), i=0,1,...,m-1
ia
x*T = (%xT 36T %xT ) (Here X*~sTa* with 2* from (1.7))
o’ M1 * “m-1 17

Using the properties of transition matrices we may rewrite it

in the usual form

* (i+1)a
~ns .
Ai = f p(t)dt, i=0,1,...,m-1,
iA

where p is the solution of the standard adjoint equation
B(t) = -AT(t)p(t)

backwards from the terminal condition p(T) = r(y(T)-b). Thus,
by Prop. 1.3
i _i _ (i+1)a
vT o= AU+ <a\v.(ui), i p(t)dt>, i=0,1,...,m-1.
* ia
To be able to derive results of the type of Prop. 1.3 for
more general cases, a deeper study of Lipschitz mappings is

necessary. It is also possible that other generalized differen-
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tiability concepts with richer calculi will prove themselves to
be more convenient with respect to different numerical methods,

cf. e.g. Demyanov, Nikulina and Shablinskaya (1984).

2. NONSMOOTHNESS INTRODUCED BY THE TREATMENT

Various dual approaches have been developed for the numer-
ical solution of optimal control problems., In this way we remove
complicated state-space or mixed constraints by incorporating
them in the objective - however, these new objectives may be non-
smooth. This is the case in Fenchel dualisation which proved
itself to be very effective in the convex case (linear systems,
convex objective and constraints), Such problems have been solved
very rapidly with the help of CONWOL especially in those cases
where the perturbation space was finite-dimensional (ordinary
linear differential equations, terminal state constraints).

Here we turn our attention to Zangwill-Pietrzykowski exact
penalties applied to inequality state-space constraints which

are in the general case usually considered in the form
_Q(X) GD,

where q[X > Z], the "constraint!" space Z is assumed to be Banach
and D is a closed convex cone with the vertex at the origin., The

exact penalty mentioned above takes the form

Pr(x) = r dist (-q(x),D). (2.1)
If Z is Hilbert, the penalty may be expressed in a more compact
way by
D*
P (x) =r I (q(x)) ”Z’ (2.2)

where D* is the positive dual cone to D. Sometimes there is a
certain freedom in the choice of Z (and hence also D) so that we
may use several different exact penalties of the type (2.1).

Let X = Hl[O,T,Rn] and let the state-space constraint attain
the form

alx(t)) < 0 for tel0,T], (2.3)
where q[R™ »R] is Lipschitz. Then we may choose the distance and

L
o’ T1°
We already have sufficient numerical experience with the choice
of C, or Ly, cf. e.g. Outrate (1983%). Therefore the rest of

the cone of nonnegative functions e.g. from spaces Hl, C
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Section 2 is devoted to the Sobolev case. The projection onto
D* in H1 has been studied in Outrata and Schindler (1981) and
the results enable us to compute it for piecewise affine func-
tions of one variable very effectively. The objective ¢ of

Section 1 is now given by

p(u) = J(x(u),u) + Pr(X(u)).

We will suppose that J is continuously Fréchet differentiable
over X x @, (x,u) is a fixed process (u € w),and the implicit
function x(u) is continuously Fréchet differentiable on a neigh-

bourhood of u.

Proposition 2.1. Let X be nonfeasitble with respect to the state-
-space constraint (2.3) and »* be a solution of the adjoint equa-
tion
PR - - 2 Pm ¥ - D* -

A (x,u) a* ¢+ v J(x,w)+rTla (x)) (a(x))7/P_(X) = ». (2.4)

Then ¢ is Fréchet differentiable at U and
— - 4 —_— - *

B = VuJ(x,u) + Au(x,u) A ¥ (2.5)

is its Fréchet derivative. If X is feasible and \* s a solution

of the adjoint equation (1.1), then B€ 3¢ (1).

In the proof it suffices to combine g slightly modified

assertion of Prop. 1.2 with the following lemma:

Lemma. Let Z be Hilbert and z € Z., Then the function g(z) =

= II(z)D*|| ig Fréchet differentiable if -z ¢ D with

vg(2) = (2)° /10 1. (2.6)
If -2€ D

ag(z) =Br\D*ﬁ{z}l. (2.7)

Proof, Concerning Eq. (2.6), we refer to Zarantonello (1971).

Eq. (2.7) can be proved by analysing the equivalence

*
£ €ag(e)=><t,h> < (NP || for al1 he z. o

The investigated penalty characterizes the violation of the
state space constraints in a very precise way. To realize it,
note the right-hand side of the adjoint equation in the following

example:
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k-1 i
z Yi(u ) + inf

i=0

subj.to
_ i - - -

Xi,q = fi(xi,u ), 1i=0,1...k-1, X, = &, (2.8)
1 .

Xy <N, i=1,2 k,

ute wlc R, i=0,1,...,k-1,

where functions Yi[Rm+ R], fi[Rnt rR™ Rn], i=0,1,...,k-1 are

continuously differentiable and a € Rn, N € R are given.
The trajectories x are vector-valued piecewise affine functions

given by sequences(a,x .,xk). The penalty (2.2) attains for

10
z = H'[0,k] in this situation the form

k-1

2 2
Pa(x) =g+ I (s5,, -8
i=0
1 D* .. .. .

where s = (so,sl...sk) = (x =-N)~ . Similarly, the adjoint vari-
able A* may be expressed by a sequence (po,pl,...,pk). On denot-
ing di = (si,O,...,O)T, Eq. (2.4) is equivalent to the difference
scheme

- =i.T
afi(xi,u )

2 = .
Piy = —x, Pyt (-dpred; g=dy p)/P (R, iel2. kel

which is to be solved backwards from the terminal condition

Py = r2(dk - d,_,)/P(x).

Thus, if (a,x;,...,X, ) 1s the trajectory corresponding to a
control (3°,al,...a% 1)
- —i.T
. af. (X.,0%)
-0 -1 ~-k-1 -1 it"ie .
Vui¢(u s, U ,...U ) = Vyi(u )+ v P10 i=0,1,..,k-1
provided X5 > N for some i1 ¢ {1,2,...,k}. Otherwise
- _1 —k—=1,,T -0 -1 k-1
(v (T°), 0y (T, ey vy L (ET7)) " € 30(T%,07, ..., 0 ).
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3. NUMERICAL EXPERIENCE

We have performed a number of numerical experiments with
the problem (1.3) solved by BOREPS. The mixed state-control con-
straints have been simplified to state constraints only by a
simple transformation and they have been included in the cost
by means of the exact Co—penalty. For sloped railroads (where
x2(t) could be negative), the objective has been regularized.
The results are published in OQutrata (1983).

The Hl—exact penalty has been tested on a rather complicated
ecological problem of the type (2.8) with 3 state variables, 1
control variable and 360 steps of time-discretization again with

the BOREPS routine. The results are encouraging.
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ON SUFFICIENT CONDITIONS FOR OPTIMALITY OF LIPSCHITZ
FUNCTIONS AND THEIR APPLICATIONS TO VECTOR OPTIMIZATION

S. Rolewicz
Institute of Mathematics, Polish Academy of Sciences, Sniadeckich 8,
00950 Warsaw, Poland

We shall start with the following numerical example concern-

ing an optimization problem involving differentiable functions.

EXAMPLE 1. We consider the following optimization problem in

three~-dimensional space
£(x,y,2) =x+2y-x2+y> -2° > inf

under conditions

(2)  a,(x,y,2) ==(x+y) +2° <0

g, (x,y,2) ==y + z* <0O.
We want to show that (0,0,0) is a local minimum of problem

(P). We shall first verify that the Kuhn-Tucker necessary con-

ditions for optimality hold. 1Indeed, taking X1 = Az = 1 and

formulating the Lagrange function

L(x,y,z,k1,X2) =f(x,y,z)-+k1g1(x,y,z)

+ )‘zgz(xly,z) =X+2y—x2 +y2_22 +

+ (—(x+y)+zz) + (-y+z4)= -x2+y2+z4

we trivially obtain that
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VL(x,vY, 0

2V (0,0,0) ~
Unfortunately the classical sufficient condition of opti-

mality (Hesteness (1947), McShane (1942)) does not hold. The

second differential of the Lagrangian at (0,0,0) is determined

bv the matrix

- 100
01O
000
and on the line orthogonal to the gradients Vg
1| (0,0,0)
= (-1,-1,0) and ng (0,0,0) = (0,-1,0), 1i.e on the axis of

z it simply vanishes.

This stimulates an approach to sufficient conditions which
is different to the classical one proposed by McShane (1942)
and Hesteness (1947).

The classical idea was based on direct approximation of the
problem by approximations of linear and gquadratic type.

Another approach is based on the idea of the implicit
function theorem and in the simplest case can be expressed by

the following:

THEOREM 1. (Rolewicz; 1980Db)

Let D be a domain contained in n~dimensional real
Euclidean space R", Let f,g1, S be continuously
differentiable functions defined on D.

We consider the following optimization problem

f(x) » inf

(P) gﬂx)io, i=1,2, ... ,m,

X €D.

We assume that onZD and that
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(1) all constraints are active at X i.e.

gi(xo) =0 1i=1,2, ...Mm.

(ii) the gradients Vg, y i=1,2, ... m,

X=X
o]

are linearlyv independent

(iii) there are A1, ...Am strictly positive,
(Ai> 0o, i=1,2, ... m) such that the gradient
at X of the Lagrange function is equal to O,
m
v(E+ 2 2.g.)]|__ = 0.
j=q1 1717 1x=xg
Then X, is a local minimum of the problem (P) if and only

if it is a local minimum of the following equality problems:

f(x) - inf

(Pe) gy (x) =

o .

Having Theorem 1, we can easily show that (0,0,0) is

a local minimum in Example 1. Indeed, g1(x,y,z) =O==g2(x,y,z)

. : 4
implies v =2z

fix,v,2) =

x=z4-z2 and

226.

Theorem 1 gives an algorithm reducing the problem of suffi-

cient conditions for a problem with inequality constraints given
by m functions of n variables, to the problem of sufficient

conditions for a function of (n-m) independent variables. The

reduction procedure requires only the inversion of one matrix

(Jacobian matrix at xo) and for this reason is not computation-

ally difficult.

Of course,

a number of natural questions arise. How will

the situation change if

(a) there are also equality constraints

(b) the Kuhn-Tucker necessary optimality conditions hold,
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but with certain li= 0

Oor more generally

(c) the functions f,g1,...,gm are defined on a Banach space
(d) the conditions gi(x)_io are replaced by a condition
G(x) <0 where G maps a Banach space X into an

ordered Banach space Y.

There is a possibility of extending Theorem 1 to the general

case, This may be done using the following theorem:

THEOREM 2. (Rolewicz, 1981a). TLet X,Y1,Y2,Z be Banach
spaces over real numbers. We assume that Y1,Y2 are ordered.
Let D be an open set in X. We assume that there are con-
tinuously Fréchet differentiable operators, F,G1,G2,H map-
ping D into real numbers (F), into Y1(G1), into Y2(G2),
into Z(H). Let xOGED. Suppose that

(i) G‘I(Xo) =G2(xo) =0

(ii) the differential V¥V of the mapping (G1,G2,H)

taken at X r maps X into the product Y1xY2xZ,

(i.e. it is a surjection)

(iii) there is a uniformly positive linear functional

m1 (i.e. such that there is C> 0 such that

Iy, 1l < coty,)
for y1 €Y1, y1 > 0)
and there are linear continuous functionals

* *
0, € Y2, @, >0, VYezZ such that the gqradient

of the Lagrange function taken at the point X

is equal to O

V(F(x) + 9, (G, (X)) +0,(G,(x)) +¥(H(x))|, =0.
@]
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Then X, is a local minimum of the problem
F(x) » inf

(P) G,(x) <0, G,(x) <0 H(x)=0

if and only if it is a local minimum of the following problemt

F(x) » inf

(Pe) G,(x) =0, G,(x) <0, HI(x)=0

Theorem 2 can be extended to the case of Lipschitz functions

in the following way.

THEOREM 3. (Rolewicz, 1981a).

Let, X,Y1,Y2,Z be Banach spaces over reals, Let the spaces
Y1, Y2 be ordered, TLet D be an open domain in X. Let F,
G1,G2,H be mappings defined on D with values being real numbers
(F), having values in Y1(G1), in Y2(G2), in Z(H). Let

xo€ D. We assume that
(i) G1(xo) =G2(xo) =0

(ii) the multifunction F(y1,y2,z)= {x€D: G1x==y1,
G2x==y2, Hx =z} 1is locally Lipschitzian at X
i.e. there is a neighbourhood @ of Xq and a

constant K> O such that
d(F(y1,Y2,Z) nQI F(§—71I§2,§) n Q)
< kv, =3,0 + Iy, =, + 1z -2

where d(A,B) denotes the Hausdorff distance of
the sets A,B

(iii) there are odd functionals, 04 defined on Y1,

©, defined on Y2, ¥ defined on Z, where # is

nonnegative, ®4 is strictly positive (i.e. there
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is C>0 such that

Iy Il < Colyy) for y,>0)
such that the Lagrange function

L(x) = F(X) +<q(G1(X))-fm2(G2(X)) + ¥ (H(x))
satisfies the Lipschitz condition with constant M.

(iv) MKC < 1.

Then X is a local minimum of the following problem:

F(x) » inf
(P)
Gi(x) <0, G, (x) <O, H(x) <0

if and only if it is a local minimum of the following problem:

F(x) » inf
(Pe)
G (x) =0, G,(x) <O, H(x) =0

Theorem 3 generalizes Theorem 2. If the hypotheses of
Theorem 2 are satisfied, then by the Ljusternik theorem
(Ljustérnik, 1934) the multifunction F(y1,y2,z) is pseudo-
-Lipschitzian with a certain constant Ko, i.e., there is a

neighbourhood QO of. X, such that
Iy r¥5,2) nQo<:P(§1,§2,E)+
+ K (ly, =50l + lly, = 7,0l + lz-Z)B
where B 1is the unit ball in the space X.

It can be shown that P(y1,y2,z) is in fact locally
Lipschitzian with a Lipschitz constant K which is an arbitrary
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number qreater than Ky (Rolewicz, 19€0a). By (i.i.i) of Theorem 2
we can find a neighbourhood Q1 such that I‘(y1,y2,z)ﬂQ1 sa-
tisfies the Lipschitz condition with constant K, and such that
the Liipschitz constant of the Lagrange function is smaller then

é%, i.e. (iv) of Theorem 3 holds.
Theorem 3 can be used for vector optimization in the fol-

lowing way.

THEOREM 4. (Rolewicz, 1983a).

Let P,X,Y1,Y2,Z be Banach spaces over real numbers. We
1,Y2 are ordered bv cones.
Let D be a domain in the space X. Let F,G1,G2,H map

assume that P,Y

D into P(F), Y1(G1),y2(G2),Z(H). We assume that all mappings
F,G1,G2,H are continuocusly Fréchet differentiable. Let xo€l).
If

(i) the constraints G,,G are active at

1772
X (i.e. G1(xo)= Gz(xo)==0).
(ii) the gradient of (G1,C2,H) at x, is a surjection
of X onto the product Y1 XYZ X Z
(iii) there are strictly positive linear functionals
@1 defined on Y1; a defined on P (i.e.

such that there are constants C, C1:>O such that

llpl| < Calp), for p€P, p>0

ly Il < cyoqty,) for y €Y, vy, >0)

and a nonnegative linear continuous functional
* *
¢1EiY and a continuous linear functional VY€ 2 ,

such that the gradient of the Lagrange function

V(a(F(x)) +©0, (G (X)) +9,(G,(x)) +¥(H(x))| =0
x=0

(iv) the space L1 = ker VF < and the space

=0
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L, =ker vG

2 1‘x=onker VH X n

=0

n # {x: vG =O(x)i(ﬂ

2‘x
have a positive gap (i.e.

d=max (inf {||x-vy||, x€L,, v€L,, [|x||=1},

inf {||x-y|l, X€L,, YEL, llyjl=1})>0

Then Xq is a local Pareto minimum of the following vector

optimization problem:

F(x) » inf
(VP)
G1(x) <0, Gz(x) <0, E(x) =0

The proof consists of three steps.

Step 1. We show that X is a local minimum of the following
scalar problem with a Lipschitzian, but nondifferentiable goal

function

a(F(x)) +g|F(x) -F(x_) || » inf
(SPe)
G,(x) =0, G,(x) <0, H(x) =Q

for all 8 >0.

Step 2. Using Theorem 3 we obtain that Xq is a local minimum

of the following scalar problem

a(F(x)) +8|[F(x) -=F(x])|| » inf
(SP)

G1 (x) <0, Gz(x) <0 H(x) =0

Step 3. Using the method of scalarisation (see for example
Wierzbicki, 1979) we show that there is 8o O such that if

X is a local minimum of (SP) for B, O<B«< Bo, then it
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is a local Pareto minimum of problem (VP).

Theorem U4 above has a serious disadvantage, namely
condition (iv).
In mathematical programming, in particular, (iv) implies that
the number of coordinates in F must not be smaller than the
difference between the dimension of the space and the number of
conditions. For the case when this is not true we use the fol-

lowing theorem:

THFEOREM 5. We consider the following vector optimization problem:

f1(x) cen fk(x) + inf.
(vP)
g,(x) <0 g (x) <0.

A point X, is a Pareto minimum (local minimum) of problem
(VvP) if and onlv if it is a minimum (local minimum) of all the

following scalar problems
fi(x) + inf

g.(x) <0, ... ;9 (x) <0
(SP;)

£,(x) <0, ... f (x) <0, £, 4(x) <0, cuv ,fp(x) 20

i-1

i=1,2, ... ,K.

In Rolewicz (1984) a simple but nontrivial numerical prob-

lem is solved using Theorem 5.
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OPTIMAL CONTROL OF HYPERBOLIC VARIATIONAL INEQUALITIES

Dan Tiba
INCREST, Department of Mathematics, Bd. Pacii 220, 79622 Bucharest, Romania

1. INTRODUCTION

Variational inequalities and free boundarvy problems arise
in a natural way in a variety of physical phenomena. The study
of their control, both from theoretical and numerical point of
view, was initiated in the works of J.P. Yvon [12] and F.Mignot
[7]1. The literature is rich in results on elliptic and parabo-
lic problems and we quote the recent book of Barbu [2] for a
survey in this respect.

Our aim is to comment some new results on the control of
hyperbolic variational inequalities based mainly on the recent
works of the author [9], [10], [11]. In section 2 optimality
conditions are obtained for the vibrating string with obstacle.
In the next sections we study hyperbolic variational inequali-
ties with unilateral conditions on the derivative of the state,
in the domain or on the boundary. For the sake of brevity we
shall give only outlines of proofs for the main results. More

details can be obtained from the mentioned papers.

2. THE VIBRATING STRING WITH OBSTACLE

This is an example of a hyperbolic variational inequali-

ty with unilateral conditions on the unknown function:

YT YyxtW=u, weB (x,v) (2.1)

X

y(O,x)=yo(X), yt(O,x)=vo(x) (2.2)
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where B(x,+) is the maximal monotone graph
0 y>o (x)
B(le)= ]—°°l 01 ~Y=<D(X) (2. 3)
® y<o (x)

and ¢ is a continuous function on R.

Therefore the string is forced to vibrate above the given
obstacle y=¢(x). The physical meaning of the term weB(x,y) is
the unknown reaction of the obstacle and we formulate the con-

trol problem

(P) Minimize {lwl+|ul}
subject to ust(B) and y, w satisfying (2.1), (2.2). Above
- = 1 2 ,
B=[0,TIxR, |-I|=| ILz(B) and yosHloc(R), voeLloc(R), yOZw are
given.

The equation (2.1), (2.2) was studied by Amerio and Prouse

[11, Schatzman [8] by the method of the lines of influence of
the obstacle.

This approach is difficult to follow here and we adopt
the point of view from the unstable systems control theory as
developed by J.L.Lions [6].

The control usL2(B) is called feasible if there are
yel?(0,T; HY _(R)), weL?(

loc
=yo(x) a.e. and

B), weB(y) a.e., such that y(0,x)=

IB(Vva+w-v—yt-vt)dxdt=fBu-vdxdt+vao(x)v(x,O)dx (2.4)

for all VeHl(B) with compact support and v(T,x)=0, xeR. The pair
[y,w] is called a generalized solution of (2.1), (2.2) and the
condition ngz(B) is a constraint on the set of admissible con-
trols. However if u is an admissible control with [y,w] the cor-
responding generalized solution, then u-w is also admissible
with [y,0] the corresponding generalized solution. Next any
greater control from L2(B) is admissible and this shows that

the feasible set is sufficiently rich for our problem to be

well posed.

Proposition 2.1. The existence of an admissible control

implies the existence of at least one optimal pair [y*,u*] for
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problem (P).

We define the approximate problem
(P.) Minimize {IB®(y)I+lul}
subject to
Vi Yy tBT (X,¥) =0 (2.5)
and (2.2). Here Be is a regularization of B:
Be(x,y)=ffm58(x,y+ez—ezr)o(r)dr , >0

where Be is the Yosida approximation of B and p is a Friedrichs
mollifier, i.e. p20, p(-T)=p(T), supp pc [-1,11, peC (R) and
IZ pltrdT=1.

(R), v L’ (R)and u L2(O T;
loc o loc an € P
(R)) then the equation (2 5) has a unique generalized solu-
tion yeL” (0,T; H c(R) and y, eL” (0, T; L o (R)).

Proposition 2.2. If Yo eH

2

Let Je and J be the cost functionals associated with (Pe)’
(P).

Theorem 2.3. Denote by [ye,uel an optimal pair for (Pe)'
Then:
i) Je(ue)SJ(u*)
ii) lim J_(u_)=J (u*)
>0
iii) on a subsequence
u, > u* strongly in L2 (8)
B®(y®) > w*eB(y*) strongly in 1 (B)
y€ » y* stronly in C(0,T; Lioc(R))'

Corollary 2.4. The problem (P) has a feasible control Zff

the sequence {J (u )} <8 bounded.

Now assume that y_ cH! (R), v, eL?(R). Then y®er™(0,T;H' (R))
n wl’ (0,T; L (R)) and it is a stronqu convergent sequence.
Denote by w:L (B) - R the norm Y (u)=|ul.

Theorem 2.5. If @eCl(R) there is an optimal pair [y*,u*]
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2( 1(R))xL2(B), an adjoint optimal state p*eLz(B) and

a distribution & on B with supp & c{(t,x)eB; y*(t,x)=¢(x)} (the

in L°(0,T; H
impact set) satisfying the optimality conditions:
* —nk = . ’
P ~Px "0 in D' (B) , (2.6)
p*ead (u*) a.e. B , (2.7)

The proof is based on the following proposition

Proposition 2.6. For every solution [ye,usl of (Ps) there

is pseLm(O,T; Hl(R))n Wl’m(O,T; L2(R)) such that:

€

Pt Phy By (v5) -pfe-au (8% (v©)) - 87 (v©)
P° (T, x)=p} (T,x) =0
pfedv(u,)

Proof of Theorem 2.5

Let y*, u*, p* be such that on a subsequence ys > y* ,
ug > u* strongly in L2(O,T; Hl(R)), L2(B) and ps > p* weakly in

L2(B). Relation (2.7) is an obvious consequence of the demi-

closedness of 3.

Concerning (2.6) we remark that y* is continuous on B
and ys > y* uniformly on compact subsets of B.

Let Q3={(t,x)eB; -n<x<n and y* (t,x)>@(x)+u} and Qo=
={(t,x)eB; y* (t,x)>0(x)} be open subsets of B.

There is so>0 such that for ESEO, ys(t,x)zw(x)+% on QE ,
SO pit—pix=0 on Qﬂ for e<e . This follows from (2.3)and the
definition of B¥ which imply Bs(x,y)=0 for yzo(x).

Passing to the limit in D’ (B) we see that the distribution

pzt—p;x vanishes on Qﬂ. But QO=L_]QE and the proof is finished.
n,u

Remark. We underline that our results and methods apply
also to higher dimensions or to finite domains. More general
cost functionals including terms of the form Iy—ydl or |y(T)-

—ydl 2 can be considered too.
L” (R)
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3. UNILATERAL CONDITIONS ON THE DERIVATIVE

Let QcRrY be an open domain and Q=10,T[xQ be a cylinder
with lateral face 1=10,T[x3Q2. We analyse the control problem

Minimize ['L(y(t), u(t))dt (3.1)
subject to:

Y~ AY+B (v )sBu(t) in q, (3.2)

y(0,x)=y_(x), y, (0,x)=v_(x) in n, (3.3)

y (t,x)=0 in r. (3.4)

Here B ¢ RXR is any maximal montone graph, B:U - Hé(Q) is
a linear continuous operator with U a Hilbert space of control,
L:Lz(ﬂ)xU > ]-»,+w] is a convex, lower semicontinuous functio-
nal and yoeHé(Q)n HZ(Q), voeLz(Q).

Equation (3.2)~(3.4) has a solution yeC(O,T;Hl(Q)), -
3y /3teC(0,T; L2 (R)) n L” (0, 7;HL (@), 32y /at%el? (0,T;L2(0)) by a
variant of a result from Barbu [3], p.279.

I1f some coercivity properties are assumed for L, then one
may infer the existence of an optimal pair [u*,y*].

Define the regularizations of B, L:

BE(y)=[Z B_(y-eT)p(T)dT (3.5)
ly-212,  +lu-vl?
LE( . L™ (R)
y,u)=inf 757e) + L(z,Vv) (3.6)

where &(g¢) -~ 0 when € - 0.

The approximate control problem is
T € LT 02
Minimize {IOL (y,u)+7folu u*| g} (3.7)

subject to (3.2)-(3.4) with B replaced by BE.
Problem (3.7) is a smooth control problem and one may ©ob-

tain in guite a standard manner the necessary conditions:

Proposition 3.1. For every approximate optimal pair
[ys,uej there is meeC(O,T;LZ(Q)) such that:

€ €_nE, E e_¢T .
m_, ~Am —By(yt) mt-ftq€ in Q, (3.8)
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E(T,x)=mE(T,x)=0 in A, (3.9)

€ (t,x)=0 in I, (3.10)
% € * _ .. E, €

qe(t),—B mt+u€(t)—u (t)1=8L" (y (t),ue(t)). (3.11)

Moreover, we have y > y* stronqu Zn C(0,T; H (), yt

> yé strongly <n C(O, T L Q)), B (yt) - B(y ) weakly in L ),
€
t

L (Q)) and q. > d weakly in L (O,T;LZ(Q)) where

ue + u* strongly in L (0,T:U), p€=—m > p weakly* in L7(0,T;
[g(t), Bg(t)]eaL(y*(t),u*(t)) in [O,T]. (3.12)

To pass to the limit in the adjoint equation (3.8) the

additional assumption that B is locally Lipshitz and satisfies
2
IBy(y)'YIsC(IB(y)Hy +1) a.e. R (3.13)
is made.
v k2,2 L2 2
Theorem 3.2. Let [y*,u*]eW (0, T;L°(0))xL"(0,T;U) be an

optimal patr for problem (3.1)-(3.4). There exist funetions

meL” (0, T; B (@) n WP 0,102 (2)), qel?(Q) and hell(Q) such that:

_(T .
M e Am h—ftq in 0,
m(T,x)=mt(T,x)=O in Q ,
Proof

Obviously {me} is bounded in Lw(O,T;Hé(Q)) and {mi} is
bounded in Lw(O,T;Lz(Q)). Fix n a natural number and consider

Ef={(x,t)eQ; ly{(x,t)Isn} ,  €>0

then IB;(yz(t,x))ISCn on Ei with C independent of €, as B is
locally Lipschitz.
Denote by E a measurable subset of . We have

€ € € € € € €
|fEmt-By(yt)dxdt|scnjE|mt|dxdt+C/njE_E€|B (yg) |- Im.ldxdt+
n

+c/n+cf  _Iypl-Im{ldxdt .

E-En
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Since {mt}, {B (yt)} are bounded in L” (0), we obtain:

€, €,._€E 1/2 €.2,1/2
'fEBy (Y) "m dxdt|SCU(E) ~“+C +C/n+C ( IE_Eelyt| ) .

n
But {yi} is bounded in L“(O,T;Hé(g)) and by the Sobolev
embedding theorem it yields {yi} bounded in LS(Q) with some s>2.
Then the last term is equicontinuous. The Dunford-Pettis crite-
rion gives
€

y(yi)-mi + h weakly in Ll(Q).

B

Combining with the results of Proposition 3.1 one can
pass to the limit in (3.8)-(3.9) to finish the proof.

Remark. If B is a continuously differentiable function,
it is easy to see that h(t,x)=By(y€(t,x))-mt(t,x) a.e. Q. In
more general situations the Clarke [4] generalized gradient 3B
will be used.

Assume that

B=y-A (3.14)
where y, A are real, convex functions.

Theorem 3.3. Under the above hypotheses, there are func-

tions meLm(O,T;Hé(Q))rle’m(O,T;Lz(Q)) and qeLz(Q) satisfying
m_, —Am=-3B (y¥*)-m fT in Q
tt t) My Je4 ’
m(T,x)=m, (T,x)=0 in Q,

t

[g(t), —B*mt(t)]eaL(y*(t),u*(t)) in [0,T].
Proof

For the sake of simplicity take B in (3.14) a real, con-

vex function. Write

m =m€—m€
+ =

where m_ , mf are the positive and the negative part of mE up to

a constant and are strictly positive. We can suppose

+ M o
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mi > v, o, m® ~ v_ weakly in L2 ()
m =V, -v_ .

By Proposition 3.1 and the Egorov theorem for every n>0,

there is Q ¢ Q, meas (O- )<n and yt - y; uniformly on Q We
study flrst the weak convergence of BE yt) mi in LZ(Qn)

Since B is locally Lipschitz after a tedious computation
involving (3.5) we reduce the problem to the study of the weak
2(Qn) convergence for the sequence mf-BB((I+eB)_l

fixed in [-1,1].

(yi-e0)), ©

Here 3P is just the subdifferential of the convex func-
tion B.

Consider the proper, closed saddle function

mB (y) m=>0
K(m,y)= (3.15)
— m<0 .

The maximal monotone operator 3K in szR2 is given by
K(m,y)=[-B(y), map(y)] (3.16)

Denote 3K the maximal monotone realization of 3K in
2 2
xL . Then
(Qn) (Qn)

-1 £

[-B((T+eB) " (yF-e0)), m-aB ((T+eB) ' (yF-€0)) e

ok (m$ , (I+eB) " (yE-c0)) ae. o -

We remark that all the terms in the above relation are

2

weakly convergent in L (Qn). Moreover the followinag condition

is satisfies:

, € -1, ¢ " -1, u
lim <[m_, (I+eB) (yt—se)]-[m+,(I+uB) (yt—ue)] ’
€,u>0

[-B ((1+eB) ' (yi-c0)), map ((T+eB) ' (yE-e0)) -

-8 ((r+up) "t (yh-ue)), mMas ((rup) Tt yH-ue)) Iy, L, =0

L(Qn)

since B((I+sB)_l(yi-se)), (I+eB)_l(yi-e®) are uniformly conver-
gent on Qn .
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Applying a wellknown property of monotone operators (Barbu
[3], p.42) we get

[-B (y}) ,hledk (v ,y})

ol —_—
where h is the weak limit in L2(Qn) of mE-aB((I+eB) l(yi—e@)%
Therefore

h(t,x)ev+(t,x)-aB(yg(t,x)) a.e. Q. (3.17)

A similar treatment can be carried out for the seguence
mE- 3B ( (1+ep) ~*

sumed. Since the sections of aB(yz(t,x)) which occur in (3.17)

(yi—ee)) and also in the case when (3.14) is as-

and in the other limits may differ then we can write h(t,x)e

eBB(yg)(t,x)-m (t,x) only by convention.

t

4. UNILATERAL CONDITIONS ON THE BOUNDARY

Now we study the distributed control problem:
Minimize fgL(y,u)dt (4.1)

subject to:

ytt—Ay=Bu in 0, (4.2)
y (0,x)=y_ (%), v, (0,x)=v_(x) in @, (4.3)
-(ay/an)eB(yt) in I. (4.'4)

Here B:U ~» Hl(Q) is a linear continuous operator and B is
a strongly maximal monotone graph in RxR, that is B=a+oI, o>0
and a ¢ RxR maximal monotone.

If yoeHz(Q), VoeHl(Q) and —(ayo/an)eB(vo) a.e. 3Q, there
exists a unique solution y to (4.2)-(4.4) satisfying yeLm(O,T;
2 (@) n C(0,7; E' (@), v L™ (0,T; HL (@) nC(0,T; L2 (2),
eL”(0,T; L2 (Q)).

Under some coercivity assumptions for L, one may infer

Yie

the existence of an optimal pair [u¥y*] in the problem (4.1)-
-(4.4).

The approximate control problem is defined by the cost
functional (3.7) and the state system (4.2)-(4.4) with B repla-
ced with Be given by:
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BE (y)=a® (y)+oI (4.5)

and a® obtained as in (3.5).
Due to the appropriate differentiability promerties, we

obtain the approximate optimality conditions:

Proposition 4.1. For every approximate optimal pair
[ys,ue] there is mEEC(O,T; Lz(ﬂ)) such that:

mit-Am€=quE in 0, (4.6)
€ € .

m (T,x)=mt(T,x)=O in n, (4.7)

-(ame/an)=B§ (yi)'mi in I, (4.8)
[q_(t), —B*,mi(t)+u€(t)—u*(t)]=aL€(y€(t),ue(t)) (4.9)

Moreover, y& » y* strongly in C(0,T; H (Q)), Yt > Yt
strongly iZn C(0,T; L2 1), ug u* strongly in 12 (0,T; U,
pe——mi > p weakly* <n L”(0,T; 12 (Q)) and 4. > g weakly in
Ll (0,T; 12 (Q)) where

[g(t), B*p(t)JledL(y*(t),u*(t)) in [0,TI]. (4.10)

To pass to the limit in (4.6)-(4.8) one has to make again
hypotheses (3.13), (3.14).

Theorem 4.2. Let [u*,y*]ewz’z(O,T; Lz(n))xLz(O,T; U) be
an optimal pair for problem (4 1)-(4.4). There exist functions
meL”(0,T; H' (n))rww “(0,T; L2 (Q)), qeL (Q) satisfying:

T .
mtt—Am=jtq in Q,
m(T,x)=mt(T,x)=0 in Q,
—(am/an)saB(y*) m, in %.

Here 3P is the generalized gradient of the locally
Lipschitz function B and the proof follows the same lines as in

the previous section.

Remark. In the paper [9] an abstract scheme is built to

obtain the results of sections 3 and 4. It allows other impor-
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tant applications to the parabolic case, to differential sys-
tems with delay.

Remark. Following the unstable systems approach, as in
section 1, it is possible to obtain necessary conditions for
hyperbolic control problems with strong nonlinearities, for
instance exponentials. In this respect we quote the forthcoming

paper [5].

REFERENCES

1. Amerio, L. and Prouse, G. (1975). Study of the motion of a
string vibrating against an obstacle. Rend. di Matematica,
2.

2. Barbu, V. (1984). Optimal control of variational inequali-
ties. Research Notes in Mathematics 100, Pitman, London.

3. Barbu, V. (1976). Nonlinear semigroups and differential
equations in Banach spaces. Noordhoff, Leyden-Ed. Acade-
miei, Bucuregti.

4. Clarke, F.H. (1975). Generalized gradients and applications.
Trans. Amer. Math. Soc. 205.

5. ZKomornik, V. and Tiba, D. Optimal control of strongly non-
linear hyperbolic systems. In preparation.

6. Lions, J.L. (1983). Controle des systemes distribués sin-
guliers. Dunod, Paris.

7. Mignot, F. (1976). Controle dans les inequations variatio-
nelles elliptiques. Journal of Funct. Anal., 22.

8. Schatzman, M. (1979). Thése, Univ. "Pierre et Marie Curie",
Paris.

9. Tiba, D. (1985). Optimality conditions for distributed
control problems with nonlinear state equaion. SIAM J.
Control and Optimization, 23.

10. Tiba, D. (1984). Some remarks on the control of the vibra-
ting string with obstacle. Rev. Roum. Math. Pures Appl.,
10.

11. Tiba, D. (1984). Ouelques remarques sur le controle de la
corde vibrante avec obstacle. C.R.A.S. Paris. In print.

12. Yvon, J.P. (1974). Report INRIA, 53.



ON DUALITY THEORY RELATED TO APPROXIMATE SOLUTIONS
OF VECTOR-VALUED OPTIMIZATION PROBLEMS

Istvan Vilyi
Bureau for Systems Analysis, State Office for Technical Development,
P.O. Box 565, 1374 Budapest, Hungary

1. INTRODUCTION

The notion of approximate solutions or &-solutions emerged early in the develop-
ment of modern convex analysis. An analogue of the well-known statement concerning
the minimum of a convex function and its subgradient also holds in the approximate
case: a convex function f has an g-approximate minimum at z if and only if 0 € 8,7 (z),
where 8,f (z) is the e-subdifferential of f at z. Particular attention has been paid to
e-subdifferentials (see Hiriart-Urruty, 1982; Demyanov, 1981). This has resulted in
the construction of a new class of optimjzation procedures, the e-subgradient
methods. The virtually complete set of calculation rules derived for the &
subdifferential has made possible the study and characterization of constrained con-
vex optimization problems in both the real-valued and vector-valued cases, as in Stro-

diot et al. (1983), or for ordered vector spaces (Kutateladze, 1978).

Relatively little effort has been devoted to duality questions in this context (but
see Strodiot et al., 1983, and the work of Loridan (1982), where duality is coupled with
a technique based on Ekeland’s maximum principle). Duality theory in the exact case
has been thoroughly investigated even for vector-valued problems in terms of both
strict optima (e.g., Ritter, 1969,1970; Zowe, 1976) and non-dominated optima (e.g., Tan-
ino and Sawaragi, 1980; Corley, 1981). However, there is so far no corresponding

theory for approximate solutions.

In this paper we intend to remedy this situation by stating some simple proposi-
tions on approximate optimal solutions; in addition we shall give some basic duality
theorems for vector-valued situations, a number of which are also of interest in the
scalar-valued case. In deriving the results we do not rely on the existence of e-
subgradients. This is important because until quite recently very little was known
(especially in the vector-valued case) about the conditions under which the set of &
subgradients is non-empty (Borwein et al., 1984). For these reasons we hope this paper

may provide useful background information for a number of nondifferentiable
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optimization problems. Finally, we should mention that a vector-valued version of
Ekeland’s principle is also available (Vdlyi, 1985), but attempts to use it in the optimi-

zation context have so far failed.

Throughout this paper we shall consider only the algebraic case, although a
parallel, topological version also exists. For details and proofs see Valyi (1984); other

related issues are treated in Loridan (1984).

2. BASIC NOTIONS AND PRELIMINARIES

For basic definitions related to ordered vector spaces we refer the reader to
Peressini (1967) or Akilov and Kutateladze (1978); for definitions related to convex
analysis see Holmes (1975). All of the vector spaces considered here are real, all
topologies are convex and Hausdorff, and the ordering cones are assumed to be con-
vex, closed and pointed. A vector lattice in which every non-empty set with a lower
bound possesses an infimum is said to be an order complete space. In order to ensure
the existence of infima (or suprema) for all non-bounded sets, we add the elements o
and —o to the order complete space Y and denote it by Y. Here we suppose that the
usual algebraic and ordering properties hold. Thus a set # € Y which is not bounded

from below has inf H = —e, where inf ¢ = o.

The algebraic dual of the space Y will be denoted by Y'. and the topological dual
by Y'. The cone of positive functionals with respect to the cone C C Y or the dual of C
is C*, and C° is the continuous dual. If both (X, X) and (Y, C) are ordered vector
spaces, then L * (X,Y) ¢ L (X.,Y) denotes the cone of positive linear maps from X to Y,

and a*(X,Y) c a(X, Y) the cone of continuous positive maps.

The sets of algebraic interior points and relative algebraic interior points of a
set H CY are referred to as core (H) and rcore (H), respectively, and lina (H) denotes
the set of linearly accessible points from H. The key tool in the theory that follows is
the Hahn—Banach theorem for the scalar-~ and vector-valued cases. As shown in, e.g.,
Tuy (1972), there are more than 10 different but equivalent forms of this theorem,

which has the following highly useful but little known corollary:
THEOREM 1. {Strict algebraic separation theorem, see Kothe (1976)]. Let H be a con-
vex subset of the real vector space Y, and let rcore (H) # ¢. If for some ¥y €Y we

have yy & lina (H), then ¥y €Y can be strictly separated from H.
In the vector case we have:

THEOREM 2 [Vector-valued separation theorem, see Zowe (1976)]. Let X be a real vec-
tor space, (Y ,C) be an order complete space, and S and S, be convex subsels of the

product space X XY. If
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and
0 €rcore [Py(S;) —Px(S2)] ., 1)

where Py: X XY — X is the projection on X, then there exist a I' € L(X,Y) and a
w €Y such that

oy —y;swsTz, —y,; V(T,,¥1) €5 and (z,,¥3) €S,

Using Theorem 2, Zowe proves a theorem concerning systems of convex inequalities,
where the universal validity of the statement is shown to be equivalent to the
Hahn—-Banach extension theorem and in fact to the order completeness of the space.
The definition of the inequality system, which is also used in defining the optimization

problem, now follows.

Let Y.,Y; be real vector spaces ordered by the cones C, (y, and X, Yy, 45 be real

vector spaces. We shall consider proper convex functions
S:X =Y Ujool
Ji:X =Y U f]

and linear maps

ImagiX =Ygy Jte€l=i12..m), j€J=112..,n}

In addition, let
D=domf n(nidomf,;:i €I}) # ¢

be the common effective domain of the functions f and f;, i €. For easy reference

to the system, we shall use the following notation:
h =X{f,:i€l] : X - X{Y:iel
h:zb [fi(x):iel]
Z=X{Y;:ie€l} and K =X{C;: 1 €1}
Here (Z ,K) is a vector space ordered by the pointed convex cone X, and
domh = n {dom f;: 1 €1}
Similarly,

L=X{fmag:d€J) 1 X = XYy 7 €J)
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L :xb ifmﬂ(z):je.fi

V=Xme+j']€J}

THEOREM 3 [(Zowe (1976)]. In addition to the notation and conditions given above,

we shall assume that (Y, C) is an order complete space, and
(0,0)€rcorei(l;.(:)+z,l(:)):z eD,zek] . ®)
Then the following statements are equivalent:
S(x)=20 Vx €efxeD: h(x) =<0, I(x) =0} ®)

R €L*(Z,Y), S €L(V,Y),such that f(z) + R-h(x) +S -l(z) =20,z €D .(4)

We shall now consider different notions of approximate (order-) extremal points

and their basic properties.

Definition 1 Let (Y, C) be an ordered vector space, HC Y, and e € CCY be a posi-
tive element. Then an element ¥ € H is said to be strict e-minimal, or y € S(e)-
min(H) if H cy —e + C. Conventionally, S(e)-min(H) = —o if H is not bounded from
below, and S (e )-min (¢) = o,

The existence of strict optima, even of strict approximate optima, is very rare,
and therefore the study of non-dominated optima is of major importance. As in the
exact case, difficulties often arise when dealing with approximate non-dominated
optima. This notion therefore has to be restricted to cases in which it can be charac-

terized by linear functionals.

Definition 2. Let (Y,C) be an ordered vector space, # €Y, and e € C CY be a posi-
tive element. Then a point ¥ € H is said to be P(e)-minimal or y € P(e)-min(H) if
(y —e —C)NH C {y —el. Conventionally, if this condition is not satisfied by any
v € H then P(e)-min(H) = —, and P(e)-min(¢) = «. Further, let ¥ € C*and £ €R*.
Then ¥y € H is P(y' ,&)-minimal or y €P(y' , &)-min (H) if <y' h>2 <y' Y>> -tV
h € H.

Now let core (C) # ¢. The element ¥y € H is said to be weakly P(e)-minimal
(WP(e)minimal) or y € WP(e)-min(H) if (y —e —core(C))nH = ¢, with the same con-
vention used earlier.

Now let us define the minimization problem (MP) and the corresponding vector-
valued Lagrangian, which will then be studied from the point of view of the different

notions of approximate optimality given in the last definition.
Definition 3. In addition to the notation and conditions given above, let us again

assume that e 20, e €Y is fixed. We define the minimization problem (MP) as

follows:
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Find elements z, € X such that
zo€lzeD:h(z)s0,Il(z) =0} 5)
S(zg) €Eminfr(z)eY:z €D h(x)s0,l(x)=0{ . (B)
The set
F=freX:z€D,h(x)<0,l(z)=0]

is called the set of feasible solutions. Points £, € X which satisfy () and (6) with min
replaced by S(e)-min will be called strict e-minimal solutions (or S (e)-solutions); if
min is replaced by P(e)-min, then the points are called non-dominated e-minimal
solutions or P(e)-solutions. P(y ", &)-solutions with y° € C and ¢ €R*, and weak

Pe)solutions (or WP (e)-solutions) can be defined in a corresponding manner.

It is important to note that the feasible set F' and the set f () + C of attainable

points are convex, a fact which is essential for our results to be valid.

Definition 4. The (algebraic) vector-valued Lagrangian ¢; corresponding to the

minimization problem is defined as follows:
¢ X XL(Z, V) XL(V,Y) > Y

¢o: (xR, S)b ¢ (z,R,S) ,

where
oo if x ¢ D
¢z, R,S)={f(z)+R -h(z)+S-l(z) ifr €eDand R € L*(Z,7)
—oo ifz €eDand R € L¥(Z.,Y)

We shall call the set
dom ¢; = {(z,R,S) € X XL(Z, V) xL(V,Y):z €D, R eL¥(Z, 1)}

the g¢ffective domain of the Lagrangian ¢ .

3. APPROXIMATE DUALITY IN THE STRICT CASE

We shall now consider approximate solutions of the minimization problem (MP).
First we shall formulate some simple relationships between approximate solutions
corresponding to different e € Y —s. Then we will turn to the strict e-approximate

Kuhn-Tucker theorem, and finally describe some applications.
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Proposition 1.
(a) The notions of strict optimum and S(e)-optimum coincide if ¢ =0.
(b) Let ey=<ey eq,e,€C and x €X be an S(ey)-solution of (MP). Then z is also an

S(ej,)-solution of (MP).

(¢c) Let (Y,C) be an ordered topological vector space and ie7€ 0;7 €l'] be a
decreasing net with lim [e7: 7€l =e. Ifx €X is an S (e,)-solution of (MP) for

all y € ', then z is also an S (e )-solution of (MP).

(d) Let (Y,C) be an order complete space with a weakly sequentially complete topol-
ogy, the ordering cone C CY be normal, and the sequence fen €C: n €NJ| be

decreasing with

e =inf e, €C:n €N|

If £ €X is an S(e,)-solution of (MP) for every n €N, then z is also an S(e)-

solution of (MP).

(¢) Let (Y,C) be an ordered topological vector space and the set
{f(x) €Y:x €F] CY be closed. Let us suppose in addition that there exist nets
{x,€X:y el{and fe, € C:y €'} with the following properties:

(1) te, € C: 7y el|isdecreasing
i) lim e, =e
(iii) z.,isan S(e7)-solut.ion of (MP)

(iv) there exists a 7, € I' such that the set
S(ey) —min {f(z)€Y:z EF]

is a compact subset of Y.

Then (MP) has an .S (e)-minimal solution.

Definition 5. The element (x,, Rj,Sp) € dom ¢ is an S(e)-saddle point of the
Lagrangian ¢, if

o (xg, R,S) —e < (29, Ry,S¢) < g (z,Ry,5p) + e V(z ,R,S) €dom ¢

We shall now establish an approximate Kuhn-Tucker theorem, i.e., a theorem
which describes the implications of an element £ € X being an approximate solution as
compared with an approximate saddle point. In the special case e =0, the theorems
become identical with the results of Zowe (1976). As in that case, one implication is
valid under fairly general conditions, while the other also requires a so-called con-

straint qualification. In this case one uses Theorem 3 (or Theorem 2), where condition
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() (or (1) in the separation theorem) must be satisfied. The requirements formulated

in the next definition are designed to do just that.

Definition 8 [Zowe (1976)]. We say that a problem satisfies the (algebraic)

Slater-Uzawa constraint qualification if either

(i) there exists an z, € rcore (D) such that

h(xy) € —rcore(X) , I(x4)=0 o

or

(ii) J =0 and there exists an z, € Dsuch that

h(xy) € —rcorelh(x)+k €Z:z €D,k €KX}

THEOREM 4. Let us suppose that, in addition to the conditions given earlier, the
cone K C Z is algebraically closed and core (K) is not empty. If (z(,Ry,S() € dom ¢,
is an S(e)-saddle point for the Lagrangian ¢;, then z, € X is an S(2e)-minimal

solution of (MP).
THEOREM 5. Let us suppose that, in addition to the conditions given earlier,
(Y,C) is an order complete space and (MP) satisfies the Slater-Uzawa constraint
gqualification. [f 5 € X is an S(e)-minimal solution of (MP), then there exists an
(Ry,Sy) € L*(Z W Y)XL({V,Y) such that (zy,R,.S,) € dom ¢; is an S(e)-saddle point
of ¢ .

We now use Theorems 1 and 2 to obtain a partial generalization of duality theorems

by Golstein and Tuy for the vector-valued case (see Tuy, 1972 or Holmes, 1975).

Definition 7. Let us suppose that, in addition to the conditions given earlier, (Y, C) is

an order complete space and e 2 0. Consider the functions
P:X—-Y
P:zb supleg(z.R.S):R€L(Z,Y),S €L(V,T7)}
and
D:L(Z,Y) xL(V,Y) =»Y
D: (R,S) —inf {¢(x,R.S): z €X]

P and D are the strict (algebraic) primal and dual functions of the problem (MP).
Let

v =inf (P(x) €eY:z €X]
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v' =sup [DR,S)EY: RelL(Z,Y),S €eL(V,.1)}

Then v and v ' are called the strict (algebraic) primal and dual values of (MP).
The problems

(P) Find elements € X for which

P(z) € S(e)-min {P(z): xz €X]

(D) Find elements (R ,S)€ L(Z,Y) X L({V,Y) for which
D(R,S) € S(e)-max {D(R,S): R €L(Z,Y),S €LV, Y)Y

are then the sirict (algebraic) primal and dual problems, respectively, for (MP).

Proposition 2. Let us suppose that, in addition to the conditions given earlier, X ¢ Z
is algebraically closed, core (K) # ¢ and (Y, C) is an order complete space. Then the
problem (P) is equivalent to (MP), or

f(zx) ifzx €F
PE)=le itzegF
Proposition 3 (Approximate weak duality). Let (Y, C) be an order complete space.

(i) The primal value of the minimization problem (MP) is greater than or equal to its

dual value, i.e., v 2v".

(ii) Let x€X be an S(e)-solution of the primal problem (P) and
(R,SYEL(Z,Y) X L({,Y)be an S(e)-solution of the dual problem (D). Then

P(z) 2 D(R,S)

(iii) Suppose that for somez € X, (R,S)Y€ L(Z,Y) X L({V,Y) we have

P(z) < D(R,S) +e

Then zx €X is an S(e)-solution of the primal problem (P) and
(R,SYeL(Z,Y)XL({V,Y)is an S(e)-solution of the dual problem (D).

Definition 8. Let us suppose that, in addition to the conditions given earlier, (Y, C) is
an order complete topological space, € = fe., € C: y €'} is a decreasing net with
lim (e.,: 7€l =0, and £ = Ez., €X: y €Ty, where z,, is an S(e,)-solution of (MP}.

Then the net £ is called a generalized strict solution of the problem (MP), and
v =inf [f(z) €Y: y€ T and {z, €X: 7y €T|a generalized solution] € Y

is the generalized strict value of (MP).
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If (z./.R.,.S./) €XXL(Z,YYXL(V,Y) isan S(e.,)-saddle point of the Lagrangian ¢;
for all ¥ €', then the net f(z.,,R.,.S.,): 7 €' is a generalized strict (algebraic)
saddle point.

Here we should point out that this definition is more restricted than that given in

Tuy (1972), as here we consider only feasible solutions while Tuy does not.

Definition 9. Let us suppose that, in addition to the conditions given earlier, (Y, C) is

an order complete topological space. The problem (MP) is well-posed if
(i) its primal and dual values are equal, i.e., v =v"

(ii) there is a net f(:c.,,R.,.S.,): 7 € '} such that
lim I¢L(z7,R7,S7): yell=v

THEOREM 6. Let us suppose that, in addition to the conditions given earlier, the
cone K € Z is algebraically closed, core (K) # ¢, (Y ,C) is an order complete topo-
logical space, where C CY is a normal cone, and (MP) satisfies the Slater-Uzawa
constraint qualification. If the problem (MP) has a generalized strict solution,

then its generalized strict value equals its dual value.

THEOREM 7. Let us suppose that, in addition fo the conditions given earlier,
(Y.C) is an order complete topological space with the normal cone C CY. Then if
(MP) has a generalized strict saddle point, the problem is well-posed.

COROLLARY 1. Let us suppose that, in addition to the conditions given earlier, K c Z
is algebraically closed, core (K) # ¢, (Y,C) is an order complete topological space
with C € Y normal, and (MP) satisfies the algebraic Slater—Uzawa constraint qualifica-

tion. If the problem (MP) has a generalized solution, then it is well-posed.

It is worth noting that the reverse implication is trivial in the scalar case, which

does not seem to be true here.

4. APPROXIMATE DUALITY IN THE NON-DOMINATED CASE

In this section we state propositions concerning the relations between the dif-
ferent types of non-dominated solutions of the problem (MP), and then give the
corresponding Kuhn—Tucker theorems. The proof relies on the scalar version of

Theorems 1 and 2.

Finally, in the case of P(y ", £)-solutions, we demonstrate the equivalence between

primal—dual pairs of solutions and saddle points.
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Proposition 2.
(@) Let e;<e, and x € X be a P(eq)-minimal, WP(ey)-minimal, or P(y", £)-minimal

solution of (MP). Then z is also a P(e,)-solution, WP(e,)-solution, or P(y",)-

solution, respectively, of (MP).

(b) Lety' € C* be strictly positive. If z € X is a P(y',0)-minimal solution, then it is

also a P-solution.

(c) Lety' € C* be strictly positive and £ 20. If z € X is P(¥ ", £)-minimal, then it is
also P(e £/ <y ' ,e >)-minimal.

(d) Lete 20 and x € X be a WP(e)-solution. Then there exists a ' € C* such that
z €Xisa P(y".,<y',e>)-solution.

(e) Assume that (Y, C) is an ordered topological vector space, the set

C+if@)eY:zeFjcY

is closed and ¥ ' € C*. We also assume that

(i) fe, €R*: n €N} is a decreasing sequence with lim fg, : n €N} =¢

(if) thereisa P(y',e,)-solution for all n €N

(iii) the set P(y ' ,&¢)-min {£(z): =z €F} is compact. Then (MP) has a P, 8-

solution.

Definition 10. The element (z,,Sy, Ry €dom ¢ is an (algebraic) P(e)-saddle point
of the Lagrangian ¢ if
(i) ¢p(x9,Rg.S¢) € P(e)min {g (x,Ry.Sp): z €X]
(i) ¢, (xg.Ry.Sg) € P(e)-max {¢g (xy.R,S): (R,S) €L(Z,Y) xL(V,1)]
and a P(y', £)-saddle point (or a WP(e)-saddle point) if (i) and (ii) hold with P(e)-
min, P(e)-max replaced by P(y "', £)-min, P(y', £)-max (or WP (e )-min, WP(e)-max).
THEOREM 8. Suppose that, in addition to the conditions given earlier, K C Z is
algebraically closed and core(K) # ¢. If (xo.Ry,Sy) € dom ¢ is a P(¥ ', &)-saddle
point, then x5 €X is a P(y ", 2&)-solution of (MP).
THEOREM 9. Suppose that, in addition to the conditions given earlier, the prob-
lem (MP) satisfies the algebraic Slater—-Uzawa constraint qualification. [fzgo€X
is @ P(y', £)-solution of (MP), then there exist (R,,So) €L*(Z.Y) XL(V.Y) such
that (x4, Ry, S¢) €dom ¢ is a P(y ', £)-saddle point of the Lagrangian L.
THEOREM 10. Suppose that, in addition to the conditions given earlier, the prob-
lem (MP) satisfies the algebraic Slater-Uzawa constraint qualification, and core
(C)=¢. Ifzy €X is a WP(e)-solution of the problem (MP) then there exist elements
(Rg.So) €L*(Z ,Y) X L(V,Y) such that (xy.Ry,S,) € dom ¢, is a WP(e)saddle point
of the Lagrangian ¢ .
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Theorems 8 and 9 reduce to the results of Corley (1981) and Tanino and Sawaragi
(1980) in the exact case.

Definition 11. The P(y',&)primal and dual functions of the problem (MP) are
defined by:

Py '.e): X — ZY
P(y',eX(z) =P(y", &)-max {¢,(z ,R,S): (R,S)EL(Z,Y)XL{¥,Y)
and
D', &): L(Z, V) xL(V,Y) — 27
D(y',eXR,S) = P(y", &)-min {g (z ,R.S): x €X]
Using these functions, we define the P(y ', £)-primal and dual problems as follows:
(P(y'.&)) Find elements z, € X such that

P(y',&)X(zg) NP(y",&)min { U Py ,e)x):xz €X}]#¢

(DY, &) Find elements (R,,Sy) € L(Z,Y) X L(V,Y) such that
D(y' . e)(Rg.So) NP(y',&)max (U DWW, e)R,S): (R,S)EL(Z.Y)XLFV V)]
Such elements x4, € X and (R,,Sy) € L(Z,Y) X L(V,Y) are called the solutions of the

problems (P(y ', ¢)) and (D(¥ ', £)), respectively.

Proposition 3. Suppose that, in addition to the conditions given above, the cone
K c Z is algebraically closed and core (K) # ¢. Then we have

() If zpeX is a P(y',&)-solution of (MP), then it is a solution of the problem

Pw' ..
(ii) If x4 €X is a solution of the problem (P(y", £)) then it is a P(y",2¢)-solution of
(MP).

Definition 12. The point (z,,R(,S¢) €X XL(Z ,Y) X L({V.Y) is a primal—dual pair
of solutions for (y ', &), if
(i) =z, €X is a solution to the problem (P(y ', €)), and
(i) fzg) €Dy ,e)Ry.Se) NPy’ ,&)max | uiDW', e)R,S) «(R.S) € L(Z, X
x LV, N}.
It is easy to see that (ii) implies that (R,,S,) is a solution to the problem
D(y ', £), and this has to be true for the element f (x,) (and perhaps also for others).



161

THEOREM 11. Suppose that, in addition to the conditions given earlier, the cone

K C Z is algebraically closed and core (K) # ¢. Then we have

(i) If(zy.Rp,Sp) €dom ¢ isa P(y ', £)-saddle point of the Lagrangian L. then it
is a primal-dual pair of solutions for (y " ,3&).

(ii) If (zy,Ry,Sy) €dom ¢, is a primal-dual pair of solutions for (¥'.¢). then it
is a P(y ', &)-saddle point for ¢y .
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SEMINORMAL FUNCTIONS IN OPTIMIZATION THEORY

E.J. Balder
Mathematical Institute, University of Utrecht, 3508 TA Utrecht, The Netherlands
and Department of Statistics and Probability, Michigan State University,
FEast Lansing, MI 48824, USA

1. SEMINORMALITY OF FUNCTIONS

Let (X,d) be a metric space and let (V,P,<*,*>) be a pair of local-
ly convex spaces, paired by a strict duality. A function e: X x V> TR =
[-»,+»] is defined to be simple seminormal (on X X V) if there exist an

l.s.c. (lower semicontinuous) function f: X +TR and p € P with
e(x,v) = f(x) + <v,p>.

A function e: X x V -+ R is defined to be seminormal (on X x V) if it is
the pointwise supremum of a collection of simple seminormal functions on
X x V., In this way we extend a classical notion in the calculus of varia-
tions, due to Tonelli (1921), McShane (1934) and Cesari (1966). The semi-
normal hull 8 of a function a: X x V> TR is defined to be the pointwise
supremum of the collection of all (simple) seminormal functions e on X x V
satisfying e < a (pointwise). We say that a: X x V » R is seminormal at
a point (x,v) € X x V if &(x,v) = a(x,v).

Example 1.1. Let f: X +R and g: VR be given functions. Then
for the functions al, ayt X xV >R, defined by

a (X,V) = f(X), a (st) = g(v)s

1 2
we have, denoting Fenchel conjugation in the usual way,
~ r
al(x,v) = 1lim inf £(y), ag(x,v) = g**(v).
Yy >rx

This shows that the seminormal hull concept straddles two important hull
concepts in optimization theory. _
Corresponding to a given function a: X x V>R we define the function
b: X x P> TR as follows:
a'(x,p) = sup [<v,p> - alx,v)].
vEY

Let b: X x P >R be the u.s.c. hull of b with respect to the variable x;
that is

b(x,p)

b(x,p) = lim sup b(y,p).
Y x
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It is easy to characterize the seminormal hull of a in terms of the function
b (proofs of all statements to follow can be found in Balder (1983).
Proposition 1.2. The seminormal hull a of the function a is given by

:(x,v) = v*(x,v) = sup [<v,p> - b(x,p)]. (1.1)

DEP

In optimal control theory the function b appears, under slightly modi-
fied circumstances, as the Hamiltonian, corresponding to a Lagrangian func-
tion a. A sufficient condition for seminormality, which can already be found
in the work of Tonelli (1921), is as follows.

Theorem 1.3. If for x € X the following holds:

a is sequentially l.s.c. at every point of {x} x V, (1.2)

a(x,*) is l.s.c. and convex on V, (1.3)
and if there exist a function h: V » (-»,+»] and & > 0 such that

h is inf-compact on V for every slope,

aly,v) 2 n(v) for every y €X, d(y,x) < 8, and every v €V,
then

a is seminormal at every point of {x} x V.

Roughly speaking, the above "superlinear" growth condition allows the
interchange of monotone limit and Fenchel conjugation in (1.1). A more
subtle result of this kind is given next, where we consider seminormality of
a function on X x V x R with respect to the framework consisting of (X,d)
and (V xR, P xR) paired by the duality

<<(v,2), (p,a)>> 2 <v,p> + Aq.

This function is as follows. Let h: V » [0,+=] and h': [0,+=) + [0,+=]
be given functions, and define the function a; .t XxVxR->R, €6 >0, by
b

a, E(x,v,)\) = max (a(x,v),A) + eh(v) + en'(max(-x,0)).

Theorem 1.4. If for x € X (1.2)-(1.3) hold and if

h is convex and inf-compact on V for every slope,

h' is nondecreasing, l.s.c. and convex on [0,+») with 1im h'(y)/y = +«,
‘Y—)OO

then

a; . 1s seminormal at every point of {x} x v x IR.
H

2. SEMINORMALITY OF MULTIFUNCTIONS

Following Cesari (1966), we say that a multifunction Q: X 2 V (which
may have empty values) has property (Q) at a point x € X if
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Qlx) = n cleco u{Qly): vy €Xx, a(y,x) < &}. (2.1)
§>0

Let XQ: X xV >+ {0,+2} be the indicator function of Q. The next result

- which is new - is a direct consequence of (1.1).
Theorem 2.1. For every x € X the following are equivalent:
Q has property (Q) at x,

X . is seminormal at every point of {x} x V

Q

In fact, the proof of this result reveals that the seminormal hull of
XQ is precisely the indicator function of the multifunction defined by the

right-hand side of (2.1). Let us illustrate the usefulness of Theorem 2.1
by an example:

Example 2.2. Suppose that P is a Banach space. Let f: P + R be a func-
tion which is locally Lipschitz near x € P. Then the generalized gradient
multifunction 3f(+) in the sense of Clarke (1975), defined in a neighborhood
N of x, has property (Q) at x. To see this, we take X = N, V = dual of P
(with weak star topology), a = indicator function of 3f(+), b = generalized
directional derivative in the sense of Clarke (1975). The desired result
then follows from Proposition 1.2 and Theorem 2.1, since b is u.s.c. on X
in the variable y (by definition) and convex and continuous in the variable
p (by the Lipschitz condition).

Our next result complements Theorem 2.1; in a more rudimentary form it
can be found in Cesari (1970).

Theorem 2.3. For every x € X the following are equivalent:
a is seminormal at every point of {x} x V,
the epigraphic multifunction Q,: X IV xR of a has property (Q) at x

(here Q_(y) = epigraph of a(y,:)).

3. SEMINORMALITY OF INTEGRAL FUNCTIONALS

We' suppose now in addition that X, V and P are Suslin spaces for their
respective topologies. Let (T,T,u) be an abstract o-finite measure space.
Let (X,d) be the space of all (T,B(X))-measurable functions from T into
X, equipped with the essential supremum metric d, and let (V,P,<-,+>) be a
pair of decomposable vector spaces of equlvalence classes of scalarly u-
integrable functions going from T into V and P respectively, such that for
every v € V, p € P the integral in

<v,p> = S, <v(t),p(t)> u(dt)

T
is well-defined and finite (cf. Castaing-Valadier (1977), Ch. VII for some
details). Let £: T x X x V +1R be a given function. By outer integration
we define the integral functional IK: X x l >R:

~

Iz(x,v) = LT L(t,x(t),v(t)) u(at).

Seminormality of IE is defined with respect to the framework consisting of
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(X,a) and (V,P,<+,+>). The main result of Balder (1983) is as follows.

Theorem 3.1. If for x € X the following holds: there exist Py €P,
09 €P> ¢, €L (T,T,u) and & > 0 such thet for p-a.e. t €T

1
2t,y,v) = <v,p0(t)> + ¢O(t) for every y € X, d(y,x(t)) < 8§,
and every v € V, (3.1)
£(t,+,+) is seminormal at every point of {x(t)} x V, (3.2)
then
T, is seminormal at every point of {x} x V. (3.3)

Conversely, if (3.1) and (3.3) hold and if

£ is T x B(X x V)-measurable,

IZ(X") is not identically equal to +» on V,
then (3.2) holds.

In the terminology of Balder (1983), Theorem 3.1 shows that seminormal-
ity in the small (3.2) and seminormality in the large (3.3) are equivalent
under broad conditions. We can use this result to shed new light on the
(sequential) lower semicontinuity properties of Il' First, in the spirit

of Balder (1984), we define a subset UO of V to be almost Nagumo tight if
there exist a sequence {Bi} in T, monotonically decreasing to a u-null set,
and a sequence of T x B(V)-measurable functions hi: T x V -+ [0,+»] such that
for every i €N

sup S by (t,v(8)) uldt) < +=,

vev i

0

and for u-a.e. t € T

hi(t,-) is convex and inf-compact on V for every slope.

Examples of almost Nagumo tight subsets of V include weakly converging or
merely uniformly L.-bounded sequences in L_(T,T,u3;V), in case V is a sep-
arable reflexive Banach space (cf. Brooks ~Chacon (1980)).

We arrive at lower semicontinuity of IK via a stronger seminormelity

property of the integral functional T, : Xx Vx5 (T,T,n) +R, defined by

1

Tp (x,v,0) = Jo max (R(t,x(t),v(t)),A(t)) ulat);
1
here seminormelity is defined with respect to the framework composed of
(X,d) and (V x Ll(T,T,u),P x L (T,T,u), <<e+,+>>), where

<<(v,A),(pya)>> = Jp Cev(t),p(t)> + A(t)al(t)T ulat).

Theorem 3.2. If for x € X, UO c V and LO c Ll(T,T,u) the following
holds: for u-a.e. t €T
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£(t,+,*) is sequentially l.s.c. at every point of {x(t)} x V,
£(t,x(t),+) is 1.s.c. and convex on V,
and also

VO is almost Nagumo tight,

{max (-A1,0): A € LO} is uniformly u-integrable,

then there exists a function J: X x V x Ll(T,T,u) +R such that

J is seminormsl at every point of {x} x V x Ll(T,T,u),
J(y,v,\) = T, (y,v,A) for every y € X, v € UO’ X €L
1

This coincident seminormality result follows from Theorem 1.L and the
implication (3.2)=(3.3) in Theorem 3.1; it immediately implies a well-known
semicontinuity result for the integral functional I£° Conversely, using the

0

implication (3.3) = (3.2) of Theorem 3.1, one can derive necessary conditions
for such lower semicontinuity. We refer to Balder (1983) for details.
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THE GENERAL CONCEPT OF CONE APPROXIMATIONS IN
NONDIFFERENTIABLE OPTIMIZATION

K.-H. Elster and J. Thierfelder
Technical University of Ilmenau, Am Ehrenberg, 6300 Ilmenau, GDR

1. INTRODUCTION

General optimization problems connected with necessary con-
ditions for optimality have been studied by many authors in
recent years. Since Clarke (1975) introduced the notion of a
generalized gradient and the corresponding tangent cone, numer-
ous papers have been published which extend standard smooth and
convex optimization results to the general case.

In this paper we show how necessary optimality conditions
may be constructed for local solutions of nonsmooth nonconvex
optimization problems involving inequality constraints.

We shall use the approach developed by Dubovitskij and
Miljutin (1965), which is closely connected with appropriate
cone approximations of sets and differentiability concepts (to
obtain multiplier conditions). Having studied the properties
of numerous published cone approximations (see Thierfelder 1984),
we propose a general definition of a local cone approximation
K and introduce the corresponding K-directional derivative and
K-subdifferential of a functional f:X—R. Using these notions
it is possible to derive general multiplier conditions which
turn out to be true generalizations of the Kuhn-Tucker theory

for smooth and convex optimization problems.

2. LOCAL CONE APPROXIMATIONS

Let [X,7] be a locally convex Hausdorff space and [x*,0*]
be the topological dual space of X endowed with the weak *

(star) topology. We consider the problem
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(P):f_(x) »>min, x€S :={x€X[£f;(x) ¢0, i€I:={1,...,m}} ,

where the fi:X-+§, i€ {0} U I, are extended real-valued functi-
onals.

The definition of an abstract local cone approximation is
fundamental to the following considerations since it can be used
to replace an arbitrary set by a simple structured set. More-
over, the K-directional derivative leads to generalized differ-

entiability for an extended real-valued functional.

Definition 2.1. The mapping K:2X><X'+2X is called a local cone

approximation if a cone K(M,x) is associated with each set

MCX and each point x € X such that

(i) K(M-x,0) = K(M,x) |,

(ii) K(MNU,x) = K(M,x) ¥ UE U(x)
(iii) K(M,x) = X if x€int M ,
(iv) KM,x) = g if xgM ,

(v) K(¢ (M) ,9(x)) = ¢(K(M,x))

(vi) otMcotkm,x) .

Here U(x) is the system of neighborhoods of x, ¢ : X>X is
any linear homomorphism, and the recession cone 0™ of a set
MCX is defined by

0"M:={y€EX|M+tycM wt>0} . ofg = x .

Condition (i) represents the invariance of the cone appro-
ximation with respect to simultaneous translations of the set
M and the point x. Without loss of generality it can be as-
sumed that the vertices of the approximation cones are located
at the origin.

Conditions (ii)-(iv) express local properties of the cone
approximation. Hence, the cones are determined completely by
the behavior of the set M on an (arbitrarily small) neighbor-
hood of x. 1In particular K(X,x) = X and K(#,x) = # for each
x € X.

Condition (v) requires invariance of the cone approxima-
tion with respect to any linear homeomorphism (such as rotation
and reflection).
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Condition (vi) gives a relation between the recession cones
of the set M and the cone K(M,x). This property is used to
prove certain propositions concerning K-directional derivatives
(cf. the proof of Theorem 3.1).

It can easily be shown that well-known cone approximations
such as the cone of feasible directions, the cone of interior
displacements, the cone of adherent displacements, Clarke's
tangent cone and others (see Clarke, 1975; Dubovitskij and
Milutin, 1965; Rockafellar, 1980; Thierfelder, 1984) satisfy
conditions (i),..., (vi) above. The set of local cone approxi-
mations defined by Definition 2.1 is therefore nonempty.

Additional local cone approximations can be constructed

using the following lemma:

Lemma 2.1. Let K(.,.) and Ki(.,.), i=1,...,2 be local cone
approximations. Then

int K(.,.), K(.,.), conv K(.,.), X\K(X\.,.) ,

£ £ £

MK pa), VKRG, ] Ki(eg)

i=1 i=1 i=1

are also local cone approximations.

Proof.

1. Let K(.,.) be a local cone approximation as specified in
Definition 2.1. To prove that int K(.,.) is also a local cone
approximation it suffices to prove (v) and (vi). Since ¢ is

continuous we have on the one hand

int K(6(M),4(x)) = int ¢(K(M,x)) C¢(int K(M,x)) ,
while on the other we conclude from the continuity of ¢~ that
int K(M,x) = int ¢~ (K(¢(M),¢(x))) Co~ ' (int(R(4(M),4(x))))
and hence

¢ (int K(M,x)) Cint K (¢ (M) ,¢(x)) .

Condition (vi) is true because
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otk M,x) cot(int K(M,x)) .

The propositions concerning K(.,.) and conv K{(.,.) can be proved

in an analogous way.

2. To prove that X\K(X\.,.) is a local cone approximation we
consider only (vi). From 0+(X\M) = —0+M we immediately obtain
otM=-0T(x\M) c-0TR(X\M,x) = 0T (X\K(X\M,x)) .

3. The proof of the other propositions is trivial. O

From Lemma 2.1 the set of all local cone approximations is
algebraically closed with respect to set operations such as
union, intersection and the sum of a finite family of cones,
and taking the interior, the closed hull and the convex hull,
and the double complement due to X\K(X\M,x).

The algebraic structure of this set will not be considered
here since the aim of the present paper is to demonstrate the
usefulness of local cone approximations in deriving general

optimality propositions for nonlinear optimization problems.

3. K-DIRECTIONAL DERIVATIVES AND K-SUBDIFFERENTIALS

Let £:X~R, x€X, |£(x)] <=, and let K:2XRx(xxr) »2**R pe
a local cone approximation as specified in Definition 2.1.
Using the fact that traditional directional derivatives are po-
sitively homogeneous and that their epigraphs can be considered
to be cone approximations of the epigraphs of the original func-
tions, we introduce a general directional derivative of a func-

tional f£f.

Definition 3.1. The mapping £%(x,.) .X>R with

£5(x,y) := inf {£€R|(y,£) €K(epi £, (x,£(x)))]}

is called a K-directional derivative of f at x.

It is known from convex analysis that the subdifferential
of a convex or a locally convex function at a point x is repre-
sented by the set of all linear continuous supporting functio-

nals of the (one-sided) directional derivative
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f(x+ty) -f (x)

f'(x,y) := lim s yEX
ti0
(see Ioffe and Tikhomirov, 1979). Using the K-directional deri-

vative we introduce the K-subdifferential of a functional f.

Definition 3.2. The set

af(x) 2= {x*ex*|x*(y) < £ x,y) vwex)

is called the K-subdifferential of f at x, and the elements of
BKf(x) are called K-subgradients of f at x.

If f:X—>R is convex and the cone of feasible directions

Z(M,x) := {yeXx|@r>0 wte& (0,)):x+ty€EM)
is used for K(.,.), then we obtain
fK(x,y) = lim f(x+t{)—f(x) = f'(x,y) ¥vyeXx ,
tio
BKf(x) = {x* e x*|x*(y) <f'(x,y) Vy€X}

This example shows that the notions introduced above are proper
generalizations of the corresponding notions from convex
analysis.

Now we shall derive some basic propositions.

Theorem 3.1. Let f:X-R, x€X, |f(x)]| <> Then
(1) epi £8(x,.) = {(y,&)|ve>0dEER:|E-E| <€ and
(v,E) EK(epi £, (x,£(x)))} ,
(2) 3y f(x) = {(x*ex*| (x*,-1) ex¥*(epi £, (x,£(x)))} .
Here the polar cone K* of K is defined as

K*:= {x*EX*|x*(y) < 0 vy €K}
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Proof.
1. Let (y,&) €epi £8(x,.). Then

inf {E€R|(y,E) €K (epi f,(x,f(x)))}<¢&
Hence for each € > 0 there exists a € < £ + ¢ such that

(v,8) €K(epi £, (x,£(x))) . (3.1)
Since

+ . + ,

(0,1) €0 (epi f) CO K(epi £, (x,f(x)))
from Definition 2.1 (vi), we deduce that for each £ > (0 there
exists a £ €R which satisfies (3.1) and |[E-&| <e. Thus one
inclusion is true. The reverse inclusion is trivial.

2. Using the first proposition of this theorem we obtain

(x*ex*| (x*,-1) (y, £(x,y)) <0 ¥yex}

aKf(x)

{x*ex™| (x*,-1) (y,8) <0 ¥(y,&) €epi £5(x,.)}

{x* ex*| (x*,-1) ek*(epi £, (x,£(x)))} . O

From the second proposition of Theorem 3.1 we conclude that the
K-subdifferential BKf(x) is convex and closed. Moreover, we
have

aKf (X) = am K f(X) .
Hence, without loss of generality, we shall assume in the
following that K(.,.) is convex and closed, i.e., fK(x,.) is a
l.s.c. convex functional.

Theorem 3.2. Let fK(x,.) be convex and l.s.c. Then
(1) £505,0) 20 = 3, 8(x) #8

(2) £5(x,0)

0 = £(x,y) = sup {x*(y)|x*eo, f(x)} vyeXx,
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(3) ®U(0):£(x,y) <1 vyeu(o) = 2 E(x) compact and

fK(x,y) =max {x*(y) |x*€ aKf (x)} ¥y €X.

Proof.

1. Let fK(x,O) >20. 1In the case when fK(x,0)==+oo we have
fK(x,.) = +» from the assumptions of the theorem. Hence

BKf(x) = x*. 1In the case when fK(x,O) = 0 the functions fK(x,.)

and thus (fK(x,.))*(.) are proper and, moreover,

aE(x) = {x*ex*|x*(y) - fK(X,y) <» ¥yeX}
= dom (£X%x,.NN* %9 ,
where (fK(x,.))* is the Fenchel conjugate function of fK(x,.).
If, conversely, BKf(x) # @, then from fK(x,.) ;x*(.), x*eBKf(x),

we obtain fK(x,O) > 0.

2. Let fK(x,O) =0, i.e., fK(x,.) is proper. Now we have

*

(¥ (x, ) F ()

sup {x" () - £¥x,y) [yex)

0 if x*eBKf(x) /

» otherwise ,

_ *
= XBKf (x) (x )
and

(50, ) (y) = R o) ) = sup v [xT e ]

Use of the Fenchel-Moreau theorem leads to assertion (2) of the
theorem.

3. If A:={yex|ff(x,y) <1}DU(0), then

L

3pf(x) C (x*ex*|x*(y) ¢ 1 vyeal

c {x*ex*|x*(y) <1 ¥yeu(o)}l .
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From the Alaoglu-Bourbaki theorem and the fact that aKf(x) is
closed, we deduce that BKf(x) is compact. Using proposition (2)
we obtain assertion (3). O

We shall now look at the connection between the generalized
int K

directional derivatives fK(x,.) and f (x,.), and between
the generalized subdifferentials BKf(x) and aint Kf(x).
Theorem 3.3. Let fK(x,.) be convex and l.s.c. Then the follow-
ing properties hold:
(1) If dom £ X(x, ) # @ then
8(x,y) = 1im inf £ K5, 5) wyex
Yy >y
gint K(x,y) = lim sup fK(x,y) vyeX ,
y v
Bint Kf(x) = aKf(x) .
(2) If yedom £7% K(x,.) then

gint K(x,y) = fK(x,y)
Proof.
1. From the assumptions of the theorem we have int K(epi £,
(x,f(x))) # #. Using

K(epi f, (x,f(x))) = int K(epi £, (x,f(x)))
we obtain assertion (1) by Theorem 3.1.
2. If yedom flnt K(x,.) then, since flnt K(x,.) is u.s.c.,
there exists a neighborhood of y such that £ int K(x,.) is
bounded above on that neighborhood. Hence flnt K(x,.) is con-

tinuous at y, and using assertion (1) we obtain assertion (2).0
To formulate multiplier conditions for problem (P) in
terms of the K-subdifferentials and the K-directional deriva-
tives of the functionals concerned, we need a relation linking
linear combinations of the K-subdifferentials and the corres-

ponding linear combinations of K-directional derivatives for
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a finite family of functionals. In convex analysis we have
such a theorem (the Moreau-Rockafellar theorem) but this is not
applicable here. As a first step in developing an appropriate
theorem we set

w4 g = x|, 0Qa =0 ¥Ya€ER P

g+M =g, 0-M= {0} YMCX (or MCX*) .

Theorem 3.4,

(1 BK(Af)(x) = A 'aKf(x) ¥YA>0 .
m m Ki
(2) 0€e J o, £.(x)= § £.7(x,y) >0 ¥ye x .
KL T N § =
i=1 7i i=1
Ry
(3) Let fi (x,.), i=1,...,m, be convex. If there Zis a
m i
Y1 € Ndom £, (x,.)
i=1 .

such that all the fil except one are continuous at
Yqr then
K.

m
£, (x,y) >0 ¥vyex=o0e J 8pf; (%) )
= . .1
1 i=1 i

I~138

i

4. OPTIMALITY CONDITIONS

To prove necessary conditions for optimality in problem (P),
we have to approximate sets which can be described in terms of
the level sets of a finite number of extended real-valued func-
tionals by cones. Since the cone approximations defined by
Definition 2.1 are determined only by the geometrical form of
the corresponding sets, we may introduce certain cones in the
same way as in smooth (or convex) optimization, where the growth
behavior of the functionals describing the sets is taken into
account by the K-directional derivatives.

Let f:X~—R, fi:X"ﬁ, ieQ, where Q@ is a finite index set.

We assume all functionals to be finite at the point x € X.
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Definition 4.1.
(1) The set

A% (x) :={ye x| £5(x,y) < 0}

is called the cone of descending directions of f at x.

(2) The set
C?(x) 1= {y€X|fK(X,Y) <0}

is called the linearizing cone of f at x.

K _ K K . K
(3) AQ(x) p—.ﬂ Afi(x), CQ(x) = N Cfi(X)

ien ieq
K _ K _
Aﬂ(X) = cﬂ(x) X

We shall now give inclusions relating these sets, making

especial use of the cone int K(.,.).
Lemma 4.1. Let fK(x,.) be convex and l.s.c., and let

A%”t Kix) # #. Then

(1) int o™ K =al™® K c o™ Ko cal™ Koo
int C?(x) C A?(x) C Cg(x) = A?(x) ,
int ¢ K(yx) = ine K, 2l Ky cafo
c%”t ) c ke, A%”t ) = 2l .

(2) All of the above sets are convex cones.
We also introduce a cone for which a dual relation holds
with respect to the linearizing cone.

Definition 4.2. The set

K . * * % .
B, (x) 1= {x" €X" |x eiégxiaKfiun, A;20, i€q}

is called the cone of K-subgradients of the functionals fi’
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ieq, at x.

Using the polar cone of Bg we obtain

(B (x)) *ccpx) .

This inclusion can be sharpened by assumptions concerning the

convexity and closure of the cone K.

Lemma 4.2. Let f?(x,.) be convex and l.s.c., and let
f1i<(x,0) =0 Vi€Q. Then
K * _ K
(1) (CQ(X)) = BQ(x) .
K ¥ K
(2) (BQ(x)) = CQ(X)

We shall assume that the following conditions are satis-
fied at x€X:

|fi(x)|<°° vie{o}uI , (4.1)
£, is u.s.c. at x ¥i€I\I(x) ’ (4.2)
where I(x) := {i€51|fi(x) = 0} is the index set of active con-

straints at x. Condition (4.1) ensures the K-directional dif-
ferentiability of f at x and (4.2) implies that only active con-
straints have to be taken into account in the local description
of the feasible set S.

Lemma 4.3. If Xx€S Zg a local solution of (P), then there

exists a neighborhood V(x) such that

N(f_,x)n(snVv(x)) = @ '
where

N(f,x) = {xeX[f_(x) <f_(x)]} .

In the approximation of the sets N(fo,x) and SNV (x) we use the
classical tangent cone
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T(M,x) :={y€X|¥U(y) YA>0Ft€ (0,A) IYEU(y) : x+ ty €M}

and the cone of interior displacements

D(M,x) :={y€X|TU(y)TA>0 ¥Vte€ (0,1) VWEU(y) : x+tyeEM} .
Theorem 4.4. Let X€S be a local solution of (P). Then
D
(1) Af (x) NT(S,x) = ﬂ ’
o
T
(2) Az (x)ND(s,x) = ¢ .
o
Proof. We shall only prove (1), since (2) may be proved in an
analogous way. Assume yEEA? (x) NT(S,x). Then on the one
hand we have °
VU(y) ¥V A>03t€ (0,\)ayEU(y):x+ty€ES , (4.3)

while on the other, by Theorem 3.1, there is a real £ < 0 such
that (YIE;) ED(ePi fol (xlfo(x)))l i.e.,

AU, (y) Ehy >0 WEE (0,1,) ¥YEU (y): (x, £ (x)) +t(y,E) Eepi £
and hence
folx+ty) Sf (x) +tE<f (x) . (4.4)

From (4.3) and (4.4) we conclude that for each neighborhood V(x)
of x there exists a point x :=x+ty€SNV(x) such that fo(§)<
<fo(x) and thus x(SN(fo,x). Then by Lemma 4.3 x is not a local
solution of (p). O

A disadvantage of the optimality conditions given in
Theorem 4.4 is that the cones which occur are in general not
convex and hence the assumptions regarding their separability
are not satisfied.

We therefore assume that the cone approximations have the

following additional properties:
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(V1) K(.,.) convex and closed,
(V2) xEM ® 0E€EK(M,x),
(V3) K(.,.) CT(.,.),
(V4) int K{(.,.) CD(.,.),
. K
(V5) AI(X)(x)<:K(S,x).

Now Theorem 4.4 leads immediately to the following result:

Theorem 4.5. Let X€S be a local solution of (P). Then
() af™ P nkes,x) =g,
o
K .
(2) Af (x) Nint K(S,x) = @
o

Since the cones under consideration are convex, we can formulate
an optimality condition in the dual space x*.

Theorem 4.6. Letv XE€S be a local solution of (P). If one of
the two conditions

(B1) dom fint K(x,-)fWK(S,X) 0 ’

(B2) dom fg(x,.) Nint K(S,x) # @

is satisfied, then OGEBKfO(x)-+K*(S,x) .
Proof.
1. Let (B1) be satisfied. Then from Theorem 4.5 (1) we have

int K
o

£ (x,y)2 0 > Yy eK(S,x) . (4.5)
Obviously aKfo(x) # @, since otherwise by Theorem 3.2 we would
have fg(x,o) = —-» and hence, using the lower-semicontinuity
property, fg(x,o) = tw, (Here fK(x,.) = +x means that fK(x,.)
has no finite values.) It follows from Theorem 3.2 that

f;nt K - 4o and hence by (4.5) we obtain

int K
£s (x,y) = +=» ¥y €eK(§5,x) ’
in contradiction to (B1).

Now we construct a set MCX xR defined as follows:
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int X

M:= (K(S,x) X R) Nepi fo

(x,.) .
From (B1) we have M# g and by Theorem 3.1
m* = (kT (s,%) x {0}) +K¥(epi £, (x,£ (x))) .  (4.6)
From (4.5) we obtain, for (0,-1) eX® xR, that
(0,-1)(y,&) = -£20 ¥(y,E)eEM ,

i.e., (0,-1) eM*.
Making use of (4.6), we can deduce the existence of an

x* €k* (s,x) such that
(-x*,-1) €K¥*(epi £, (x,f_ (x)))

i.e., —x*GEBKfO(x). This proves the assertion of the theorem
under assumption (B1).

An analogous proof can be developed taking (B2) instead
of (B1). O
Remark. Theorem 4.6 is stated for certain special cases (K is
Clarke's tangent cone; int K is the cone of epi Lipschitzian
directions) in Hiriart-Urruty (1979) and Rockafellar (1981).

Assuming an appropriate regularity condition

K

*
(RB1) (K (S,X)(:BI(X)

(x)) and (B1) or (B2),

we can deduce the existence of an optimality condition of the

Kuhn-Tucker type.

Theorem 4.7. Let X€S be a local solution of (P). If (RB1) 4is
satisfied, then there exist multipliers Ai; 0, 1i€I(x), such
that

0€d f (x)+ ]  A.3,.f.(x) p
K~ o ieT (%) 1°K1

K
£y + T r Ny 20 wyex .
ier(x) * 1 =
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The proof follows immediately from Theorem 4.6 and Theorem 3.4.
We shall now give some other regularity conditions which

are also sufficient for (RB1). Writing

(B1) or (B2) is satisfied ,

(R) dxf;x) A8 vVieIlx) ,
K _ 2K

we formulate the regularity conditions

(RB2) X*(S,x) C (Ci(x) (x))*, (R) is satisfied,
(RB3) c};(x) (x) CK(S,x) , (R) is satisfied,
(RBU) Ai‘r(l:i)x(x) A0, (R) is satisfied,
(RB5) dom fg(x,.)rﬁAi?i)K(x) 20
2 Ei(X) # 8 ¥ieT(x), By, (x) = BT () .

Note that

(RB2) is a generalized Gould-Tolle condition (see Gould and
Tolle, 1971)

(RB3) is a generalized Abadie condition (see Abadie, 1967)
(RB4) and (RB5) are generalized Slater conditions.

The proof of the following theorem is given in Elster and

Thierfelder (1985).
Theorem 4.8.

(RB5) = (RB4) = (RB3) < (RB2) = (RB1) .

Using Theorem 4.5 and assumption (V5) we obtain optimality con-
ditions of the Kuhn-Tucker type.
Theorem 4.9. Let X€S be a local solution of (P). Then

(1) A%nt Kix) na

o

K

I(x) (x) = ¢ ’
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int K

1(x) ¥ =28 .

(2) A (x) NA
(o]

We can now deduce a proposition of the John type.
Theorem 4.10. Let X€S be a local solution of (P). Then

(1) There exist multipliers

X; >0, 1ie{0}UI(x), not all of which vanish, such that

1
int K K
A f (x,y) + } A ED(x,y) 20
co ier(x) * 1 =
vye dom f(l)nt Kix,)9n( n dom f?(x,.)) )

1€T1 (x)

(2) There exist multipliers

A 20, ie{0}UI(x), not all of which vanish, such that

1
Aiay) + T e Ry o
i€l (x)
vyedomfs(x,.)n (N dom £:°F ¥(x,.))
1€TI (x)

An optimality condition can be derived using the condition

(B3) 4 ioe{o}UI(x):

dom ij<_ (x,.)n( N dom fint Kix,.)) = x

o ie{O}UI(x)\{io}
Theorem 4.11. Let XE€S be a local solution of (P). If (B3) <s
satisfied, then there exist multipliers Ay20,ie {0}UI(x),

not all of which vanish, such that

(1) oe ) X.of. (x) ,
ie{ojur(x) * K1
K
(2) L AEj(xy) 20 ¥yex .
ie{0}uI (x)

Proof. Let iO # 0. By the first assertion of Theorem 4.10
there exist multipliers xi;:o, ie{0}UI(x), not all of which

vanish, such that
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A_f

int K
ofo l

(x,y) +

)\ifljf(x,y)QO VyeX .
i€1 (x)

Since (B3) is satisfied, assumption (3) of Theorem 3.4 is satis-
fied and assertion (1) follows from Theorem 3.1.

Assertion (1) and Theorem 3.4 (2) immediately lead to as-
sertion (2).

If io==0 then the assertion can be proved in an analogous
way using Theorem 4.10 (2). O

If the regularity condition

K

(RB6) (AI(x

y (x) #2) and (B3)

is satisfied, then we obtain an optimality condition of the
Kuhn-Tucker type from Theorem 4.11.

Theorem 4.12. Let XxE€S be a local solution of (P). If (RB6)
is satisfied then Aost in Theorem 4.11.

Proof. Let us assume that AO==O. Then it follows that

X Aifli(x,y)go ¥YyeX ’
iel (x)

where the multipliers Ai; 0, ieI(x), do not all vanish. This
contradicts AII<(X) (x) ## and thus (RB6). O

5. CONCLUDING REMARKS

In this paper we give certain optimality conditions which
are true generalizations of well-known results derived for
smooth, convex and Lipschitzian optimization problems. We ob-
tain the same results if concrete cone approximations are used.

Let (P) be a convex optimization problem: we assume that
the functionals fi,iEE{O}LJI, are convex and continuous at the

point x € S.

If K(.,.) is the classical tangent cone T(.,.) and if
int K(.,.) is replaced by the cone of interior displacements
D(.,.), then we can prove

£, (x+ty) - £, ()
£ (x,y) = £5(x,y) = lim = — — = £i(x,y) Vyex
£40
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and hence
ani(x) = ani(x) = afi(x) ’

where the afi(x) are subdifferentials of the type used in con-
vex analysis.
[Note: if MCX is convex then D(M,x) is an open convex cone,
T(M,x) is a closed convex cone and D(M,x) Cint T(M,x). In the
case D(M,x) # # the equality holds.]

It is clear that (B1) is always satisfied due to 0€ T(S,x)
and dom f;(x,.) = X. Since all the functionals are subdiffer-

entiable the regularity conditions take the following form:

(RB1') T*(S,x) CB

(x) := {x*ex®|x*e ] A0f.(x) ,
T(x) ieT(x) + 1
A 20, i€T(x)} .
(RB2') T*(5,x) ClyeX|fi(x,y) 0 V¥ie I(x)}"

and BI(X)(X) is closed.
(RB3') T(S,x) D{yelei(x,y) <0 VieI(x)}
and B )(x) is closed.

I(x

In the special case when

A?(x)(x) =A¥(x)(x) = (ylf (x,y) <0 VieI(x)} # g,
we have (see Lemma 4.1)
* _ 1 *
(CI(X) (x))7 == (ie‘;(x) yEX |fi(x,y) <0})
= ( N (. (x"H*
i€l (x) 1
= 7 ef et
iel (x) 1
= ) cone Bfi(x) = BI(x)(X)

i€ (x)
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(Note that Oezafi(x) vie I(x) from our assumption of convexity
and the sets cone (Bfi(x)) are closed due to the compactness of
the subdifferentials.) Hence BI(X)(X) is closed.

Since dom fi(x,.) = X holds for all i€ {0}UI(x), condition
(B3) is satisfied. Moreover, the regularity conditions (RB4),
(RB5) and (RB6) take the form of the well-known Slater condition

HyEX:fﬁxd)<O ¥Viel(x)

Then Theorems 4.10 and 4.11,and Theorems 4.7 and 4.12, are the

theorems given by John and Kuhn and Tucker, respectively.
Similar results can be obtained in the smooth case and,

furthermore, in the Lipschitzian case if Clarke's tangent cone

is used for K(.,.).
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AN ALGORITHM FOR CONVEX NDO BASED ON PROPERTIES OF THE
CONTOUR LINES OF CONVEX QUADRATIC FUNCTIONS

Manlio Gaudioso
CRAI, Via Bernini 5, 87036 Quattromiglia de Rende, Italy

1. INTRODUCTION

The objective of the paper 1is to suggest a model algorithm for the un-
constrained minimization of a Lipsthitz convex function of several variables,
not necessarily differentiable.

The proposed algorithm stems from a property of the contour lines of the
convex quadratic differentiable functions which allows us to represent the
ordinary Newton's direction in terms of information about the gradient and
the objective function values.

This idea is extended to the nondifferentiable case by means of some re-
cent results on the approximate (or perturbed) first order directional deri-
vatives (Hiriart-Urruty 1982, Lemarechal and Zowe 1983).

Nevertheless, in order to attain to an implementable method, a number
of simplifying assumptions are to be introduced. Consequently the resulting
numerical algorithm can be considered as belonging to the family of the well
known bundle methods (Lemarechal 1977, Lemarechal Strodiot and Bihain 1981,
Gaudioso and Monaco 1982).

In section 2 the basic ideas underlying the approach are presented and
in section 3 a model algorithm, together with its convergence properties, is
outlined.

2. THE APPROACH

The following proposition provides a simple characterization of Newton's
direction for convex quadratic functions.
Proposition 1. Given a convex quadratic function £:R"—> R, any point

X € Rn and the gradient gé Vf(x), the solution a* of
the problem

R T
min g d (1)
s.t. f(x+d) = f£(x)
is a scalar multiple of Newton's direction dN at the

point x(in fact d* = 2dN)
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Proof. Straightforward application of first order optimality conditions.

A pictorial representation of the proposition is given in fig. 1

* T
x+d g d = min
YA T
g d= const
X+
T
g d=0
X
g

In order to explore the potential use of the property in the framework
of convex non smooth optimization the following proposition, proved by Hiriart-
Urruty (1982) and Lemarechal and Zowe (1983) is particularly helpful:

Proposition 2. Given £:R"— > R, f Lipschitz and convex, then, for any

n n
xe R, de R, the following holds:

f(x+d) = f(x) + max {f'e(x,d) -}
€ Z 0

where fé(x,d) is the approximate (or perturbed) directio-
nal derivative of f at the point x along the direction
d and is defined as
f(x+td) - f(x) + ¢
t

fé(x,d) = inf
t>0

It is important to note that f'(x,d) is the support function of 9 f(x),
€ €

the e-subdifferential of f at the point x, i.e.

T
£'(x,8) = max v d
€

ve of(x)
€
On the basis of proposition 2, problem (1) may be formally rewritten as

min f£'(x,d)
d (2)
s.t. max [fé(x,d) - é]= 0
Ezp

As a result of this reformulation, problem (2) appears suitable, at least
theoretically, fordefining a direction finding step in an algorithmic context
for convex non smooth optimization. On the other hand it provides Newton's di-
rection if applied to a quadratic function.

Nevertheless, in order to devise an implementable algorithm, modifications
are to be introduced in the definition of the problem (in fact it requires
complete information about the €-subdifferentials).

In this aim, consider the point x, g € 9f(x) and a bundle of points and

i i i
subgradients x( ), g( )e Bf(x(l)), i € I (x may be the current estimate of the
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(i) . . . .
minimum and the x 's are points previously obtained in some iterative de-
scent process) .

It is well known that

(i)
g Eaa f(x) where
aié f(x) - [f(x(l)) + g(l) (x—x(l))] >0

It is easy to show that the following problem

min £'({x,d)
d (3)
(1T ,
s.t. g d - ai <0 vie I
is a relaxation, in the usual sense, of problem (2). (In fact every d feasi-
ble for problem (2) is also feasible for problem (3) as consequence of the
property of the approximate (perturbed) directional derivative of being the
support function of the €-subdifferential).
Moreover, taking in consideration the properties of the ordinary deriva-

tive, problem (3) may be further modified:

min v
4d,v
i)T 4
s.t. g( ) d <v iecC (4)
(T :
d-a, <0 ierF

i =
where C and F are respectively the set of indices of subgradients related to
points "close" to x and "far" from x in the sense that will be defined later.
Obviously C U F = I.

Bounded solution of problem (4) requires dual feasibility, which implies
the existence of multipliers Xi' i € C and W,/ i € F such that:

(1) (1)
Z)Lig + Zuig oo
iec ier

IEREE
i
i€C
Xi_>_0, W;> 0
Therefore, as usual in bundle methods, some limitation on the variable

d needs to be introduced. A possible way is the following:

T
min v + 1 a4

d,v
()T .
s.t. g a < v iec (P)
()T .
d- o, <0 ieF

The dual (D) of problem (P) is obtained as



min | 2 2™ o B owg® o B o e,
iec i€F ‘P ier
ZA_=1 (D)
iect
A >0 iec
;2
pi_z 0 i€F

3. THE ALGORITHM

Before the description of the possible use of the solution of problem (P)
(oxr, equivalently, (D)) in the direction finding step of an algorithm for the
minimization of convex non smooth functions, some properties of the optimal
solutions of (P) and (D) are listed.

Primal and dual optimal solutions arerelated in the following way:

ax = —( » A:g(l)+ ) u:g(l))
iecC W, EF
2
o=l - X owla
jep 1
Note also that v is non positive and v'=0 implies that|| 2] A;g(lq[=01

i€cC
i.e. that some approximate optimality condition is satisfied.
Moreover the following proposition can be easily proved

Proposition 4. If v*z -1, n being any positive number, then

* (1) kK /1
| X a9 | < /n(1+ )
. 1 o,
iec min
where k is the upper bound on the norm of the subgradient
and y . is defined as min g,
min ) i
i€eF
The properties of the solution of the problems defined above are useful
in order to define the direction finding step in a descent algorithm for the
minimization of a Lipschitz convex function f:R"™—> R which in addition is
supposed to be not unbounded from below.
One iteration of the algorithm is summarized by the following steps,
where x is assumed to be the current estimate of the minimum, ge€ 3 f(x) and

(i
a bundle (eventually empty) of subgradients g ), i€ F is available, toge-
ther with the corresponding scalars , defined in the previous section.
i

The positive parameters E, m1 and m2 are given, 0 < m_ < m1 < 1; initial-

1
ly C= {1} and the subgradient g is conventionally indicated by g( ).

STEP 1. Solve the quadratic programming problem
. 1 T
min Vv + £ dad
v,d
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)T .
s.t. g d<v iecC
()T

d- o <0 ieFr
Y S

and obtain a&* and v*.

*
Perform a termination test on the value of v .

STEP 2. Line search. Perform a line search along a* finding t > 0 and

+
g € Jf(x + td") such that

d m v
g 1

and either

or

*
a) fix + td*) - £(x) i_mztv

)t fla"l.< %

In case a) move to the new point xt=x + td*, update the set F, and

iterate.

+
In case b) consider the point x as a point "close" to x, update the

set C, create accordingly the new quadratic programming problem and

return to Step 1.

The following propositions hold; they are similar to propositions holding
in classical bundle methods.
Proposition 5. After a finite number of "serious steps" (case a) of the

Proof.

line search) the quantity - v* is reduced below any po-
sitive fixed value, provided that f is not unbounded from
below.
Suppose that {x } is the sequence of points obtained as results
of successfully line searches, correspondent to the sequences
*
{vk} and {tk}

For any integer n the following holds

n
(x+1) (0)
f(x ) - f(x ) imz tkvk<mt2 Hd H 0
= k
Since f is bounded from below, it follows that
+ * 2
v | Vil
“d—kH— —> 0 which in turn implies that ” ||2 —> 0, but
k

|v}:| > ||d}:||2 hence v*—-> 0.

Proposition 6. At any point x which does not satisfy some prefixed stop-

Proof.

*
ping criterion on the value v , a descent direction is
found in a finite number of steps.
It is easy to verify that, as consequence of the condition
T
+ *
g a* > mlv* > v , in case of repeated failures of the line
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*
search (case b)) an increasing sequence of values {vk} is obtai-

ned. Moreover this sequence is bounded from above by zero.

* . * *|| 2 *
To prove that vk——9 0, note that, being v = —H d ” - ura,
i
L2TE i€F
also the sequence {"dkH}ls bounded.
* *
Thus consider a convergent subsequence of {vk} and {dk}

*
and let v and d,* be the successor of v}: and d}: in such subsequence.
s s

*
Assumingthatg+isthesubgradientevaluatedalongthedirectiondg
the following hold:

*
d >mv
- k

*
n *

5 v
hence
+T * * * *
(d-4da) <v-nmv
d s k — s 1 k

and, passing to the limit, the result follows.

The proposition above ensures that after a finite number of failed line

. . *
searches either a successful one is performed or the value -v is reduced be-

low any positive prefixed value.

The following proposition clarifiés the meaning of "point close to x" and

*
justifies the termination test based on the value of v as an €-optimality

condition,

Proposition 7. Any point obtained as result of case b) of the line search

Proof.

provides an €-subgradient at the current point, for
€ = 2tk (k is the upper bound on the norm of the subgra-

dient) .

Consider a point x+= X + td*, obtained as result of a line
search performed along the direction a* starting from point x.
Let g e 3 (x) and that case b) of the line search occours

(el 4" [l E) -

Any subgradient g+ at the point x+ belongs to the a-subdifferen-
tial of f at point x for o defined as

+ +T
o=f(x) - f(x) +tg a4 >0
On the other hand the following inequality holds:

+
£(x) - £(x) > tgTa”
then

+ —_—
a< ta*T(g’- g < 2kt

4. CONCLUSIONS

The paper presents some ideas to modify the bundle methods for convex

optimization. Guidelines for definition of numerical algorithms are discussed
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as well, although a number of open gquestions (deletion rules, possible restric-
ted step approach, appropriate methods for solving the gquadratic programming
subproblem) deserve some research effort in order to guarantee numerical ef-

fectiveness.
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A NOTE ON THE COMPLEXITY OF AN ALGORITHM FOR
TCHEBYCHEFF APPROXIMATION

A .A. Goldstein
Department of Mathematics, University of Washington, Seattle, WA 98195, USA

ABSTRACT

Some remarks are given concerning the complexity of an exchange algorithm
for Tchebychefl Approximation. We consider an "exchange” algorithm that con-
structs the best polynomial of uniform approximation to a continuous function
defined on a closed interval or a finite point set of real numbers. The first, and still
popular, class of methods for this problem have been called "exchange algorithms".
We shall consider the simplest method of this class, a blood relative of the dual sim-
plex method of linear programming, and a special case of the cutting plane method.
The the idea of the method was initiated by Remes, [1] and [2]. See also Cheney [3],
for further developments. Klee and Minty [4], (1972) showed by example that the
number of steps in a Simplex method can be exponential in the dimension of the
problem. Since then considerable effort has been expended trying to explain the
efficiency experienced in practice. Recently, probabilistic models have been
assumed that yield expected values for the number of steps with low order mono-
mial behaviour. See for example, Borgwardt [5], and Smale [6]. Alternatively, one
might ask can one somehow classify the good problems from the bad ones. We
believe that this may be possible for the exchange algorithm.

Let T =[0,1], or a finite subset of distinct points of [0,1] with card T > n+1. Let A{t)
= (1,t,....t""1). Assume that f isin CY(T). There exists an n-tuple 2* minimizing
the function F(x) = max}|[A(t), x]| - f(t) : t & T}, where [,] denotes the dot product.
Given £ > 0 we seek z* to minimize F within a tolerance of £. Needed in exchange
algorithms is the maximization of |[A(t).x] - f(t)| for fixed x. A novelty of the formu-
lation below is that this maximization can have an error £ 7, where 7 depends on &.
Most of the arguments however are borrowed from [1], [2] and [3]. The number of
steps k to ensure that #(z*)-F(z") < £ will be shown to be proportional to log(1,/&)
and to 19, where ¥ > 0 is a number that depends on f and n. Some remarks about
the behavior of ¥ will be made. At k=1 in the algorithm that follows we take
ti=.5(1-cos(in/n), 0<isn. See Il below.

ALGORITHM
1) At the kth iteration a positive number 7 and a set of n+1 points
osth s t%, ..., s tks1 is given. Solve the equations

i=n
(-1)'M* =Y, A;(tF)zk - £ (tF), Osisn
i=1

for (z* ,M*), where M*>0. (If M*<0, replace_(;—l)i by (=1)**1),

2) Calculate t* such that |R(*)|=|[4{%).z*]-F (@*)| 2 F(z*)-n. If
|R(t*)|=M* | stop.

3) It [R(t.)|>M* , replace one of the points t{, 0Si<n, by f, in such a way
that R(t) alternates signs on the points t§ < t%, ..., <tk

4) Return to 1) with k+1 replacing k.
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CLAIM: There exists a positive number ¥ such that given £ > 0 and a non-negative
number n < ed/(1+ B), and a positive integer k >
9 [logB®~+log (R (£1)—M")+loge~']+log (1+8) then for some s,
1sssk+1, F(z®)-F(z*)<e.

PROOF The inequalities M*sF(z')sF(z) will be wused below. If
|R(t)| =M%, F(z*)-F(z') <7 . Hence we stop. By[2, p.43] we may write:

W= FR DDA b= 3 IR ()

i=n
where Af>0, and| Af=1.

i=0
Since |R ()| >M* it follows that M¥*1>M* | because n values of |R {te,)|=M*, while
the remaining one exceeds M*. Hence for some A}, 0Sj<n, M**! = \F(|R (¢, )| -M*)
+ M*. Let ¥ = inf{A}:0Sisn;15k S=} Assume temporarily that 9>0. Deny the claim.
Then for every s =_1,2,...k+1, F(z°)-M*> F(z°)-F(z*) 2¢. Then F(z')-M* >

ME+1—M* 2(|R(t, )| -M*)w 2 (F(z*)-n~-M*F)8 2 (F(z")-M*5)02 (e~n)®
2 (s—i)ﬂ = &9 > 7.
1+9 1+

Since M* ~ME+1<—(F(z")~-M*)®,
F(z")=M*+M* - M** S(F(z*)-M*)(1-3) < (|R (&) |- M*)(1-3)

Whence F(z*)-M**1 s (|R ()| -M")(1-8)* and
Fz**l—-n-M**1)8 £ F(z")-M**' <(|R()|-MYHQ-9)%. It F(z**)—n-M**' < g¢-7,

we have our contradiction. Choose k so that (1-8)* (R (¢;)-M1) <& Then, using

1+8
—log(1-8)>¥ . we get

k> ﬂ‘l[logi+log%+log(1~? E-MV+log(1+0)]
€

It remains to show that ¥ > 0. Let £=(¢g,...,£, ) and set:
M(t)=min{max{|[A(t;,z ]-f (t;)]:08iSn}:zeR™}.

If £ = (th.t%, ... t5) then M({L)=M*. Let T =
f=(toty ..., 4, ):05tSt,S, ..., 8,51}, T is a compact subset of R™*!. We claim
that M{t) is continuous on T. This follows by the continuity of f and the Vander-
monde matrix if the components of £ are non-coalescing, i.e., if f;41#¢; for
0<isn—1. If some components coalesce then ¥ (£) = 0, since in this case x can be
chosen so that the polynomial [A{t), x] interpolates f at (¢4 ..., t,;). Suppose then
that {£°] is any sequence with_non-coalescing components converging to £ and
assume that for some index i, ¢{1=¢{;4;. There are at least 1 and at most n distinct
components of £. Choose 7 closest to the origin such that:

R(t;.7)=[4 () T]-f (£)=0, Osisn.

Since max}|[A(¢8),Z]-f (¢t§)]:0sisn} 2 M(£°) we have that im M{(¢*) =0 = M (). If
M! > 0 we define the compact set

S={teT:M'sM{t)Smin{max{|[A(¢).z]-F(t)|:£e[0,1}:xeR™}.
If M! = 0, replace M! by M2 (If M2 = 0, we havei a solution to our problem.) Let G(£)
=n
= min{(f;41—¢:):15iSn} and A(L)=min{(d:{t)/ Y, di(£)):08i5n}. Since G{L) is con-
=0
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tinuous on' S, it achieves a minimum, say at £°. Because M{t"') 2 M!, it follows that
C({')= ¥ > 0. Since ¥ > 0, A(L) is continuous; it achieves a minimum @ on S. Clearly
¥ £ ¥ . By the formula for d; in Example 1 below, it is seen that ¥ > 0.

REMARK 1 If card T = m > n, the traditional algorithm ( 7 = 0) may be employed
and the maximization of |R(t)| has a cost proportional to m.

REMARK 2 Assume R £C?[0,1], R alternates on tf, 0Si<n, and R'(¢) vanishes no more
than n+1 times on [0,1]. Given g > 0 such that [R"(t)] S for all t £[¢,2*] where ¢° is
a local maximum of |[R(t)| and ¢ is the closest point of §{t§, ...,t%} to ¢*. Thus
|t*=t| < 1/n. By Taylor's theorem 7 = |R(t)-R{t"*)| = |R"(£)|{t-t*)% Thus if

[t—t*| s % then t is a satisfactory maximizer. Using the bisection method to

find t requires k steps where 27% /n <\/_% whence

k > [.5(lag (1/n)+log,u,)+lognl]/log2

For each cycle this process would be applied n+1 times. Thus it is plausible that the
exchange algorithm can be effective.

Il Some Remarks about 8.

The weights {df: 0<i<n}, and hence ¥ depend on the distribution of the points
TR={tk~ tE}. Let T"={t1-=—21—(1—cos ‘i%): 0sisnj. For this distribution (Example 1),

971 = Kn < 2n. Thus if TP—T" is sufficiently small, 9z ' < 4n, a pleasant complexity.
Let P,_; be the polynomial of degree n-1 that best approximates f on [0,1]. The crit-
ical points of P,_; are points of [0,1] where the magnitude of the difference of f(t)
and P,_¢{(t) is maximal. By Remark 3) below, for every n there are continuous funec-
tions for which the critical points induce ¥~ !'< 4n. By a remarkable theorem of
Kadic [7], for any f belonging to C[0,1], the critical points of P,_; are asymptotically
equal to T,,. Unfortunately, it is not established whether ¥71/Kn tends to 1 as n goes
to infinity. Moreover,Remark 3 and Example 3 show that for every n there is a con-
tinuous function f such that the corresponding polynomial P,_; of best approxima-
tion has values of the weights A; = 2=+ for all but 2 values of i.

PROJECT. Given a natural number N find a family of functions Fy with the property
that if n > N and f belongs to Fiy then P, _; has critical points near T,. Likely can-
didates would be power series whose coefficients C; for k > N converged at a
sufficiently high speed. Are there others?

CLAIM 2. Suppose P, is a polynomial of best approximation to f on [0,1] Let
En=||f—Pnllo. Given &¢ > 0 assume that ~/&, /En_; = 1,/n?*¢. Then lim—]% = 1.

n+o
Proof. Consider approximating f(x/7) on [0, ] by @,-; a polynomial in cos x of
degree n-1. The points corresponding to 7T" above are now simply
{zr=(rk /n): 0sk<n]. Let T; be the critical points of @,;. Kadic [7] proves that
the following inequality holds for each n, every o, 02x%.5 and every k, k=0,1,2,...,n
En—1+En

|Ze—2k | € (ma/n )+ (na)~ V2 arcosh————"  (A)
En—l_En
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Let E, = g(n)E,_; and assume that 0 < g(n) < 1/2. Using arcosh u = log(u +

1+ 1+
(©2-1)"?) we find setting u = 1 In and u?-1= 4q,/(1-g,)? that arcosh i Z“ =
~qn ~qn
2 \/
log (1+ - dn +21—q"— ) £ 8/9,. Set a=n~(*2/9 and Vq(n)=1/(n%*). Then
9n —dn

| T~z | S (m+8),/n2* @ = (5 /n)(s(n)) 0sisn (B)
Here s (n)=(n+8),/nn?*%/3 Assume that s(n) < 1 and k > i.

Let t; = .5(1-cos T;) and t; = .5(1-cos z;). Then
[ti=t:| < [(sin($))(x s (n)/n)|

with ((i-1)n/7n) s ¢(n) s (i+1)n/n.  Also t;,—t; = —(sin(i+.5)n,/7n)(2sinn,/n),
Thus

|ti—ti| /| tisr—t:| < 7(n)s(n)
Ite=te | /| te=tia1] S g(n)s(n)

where r(n) and g(n) tend to 1 as n goes to infinity.

Since
fe—ti= et + te—t; — (ti—ti)

et (te—tp-1) (t1+1 t;)
ol s (2D g nysn) + L (s (n) g

s {r(n)tg(n))s(n)f = c(n)

For each d;! there are n products of the form # —t; and since (g{n)+r(n}) is
bounded and s{n) goes to 0 faster than 1/n, hm(lic(n))" = 1. Thus

(1-c(n)™ £ di /d; < (1+c(n))™

Similarly
(1-c(n))*= E;} s(14c(n))"
Whence
gl—cgnz) ﬁ_sfl+c§n))n
1+c(n) ” 7 N~ (1-c(n)

Thus if the estimate of the above claim is realistic, we see that the class of functions
for which %,/2n tends to 1 is quite limited.

EXAMPLE 1. Assume n is even. If the points ¢;£7" then max(d;)/min(d;) = 2, and
i=n

&/ d; >1/2n, 0sisn.
i=0

PROOF. The points {; are symmetrically spaced with respect to {, . By a formula
due to de la Valle Poussin (see [2,p.25])

Ti=(ti—to)(ti—t 1) (b=t ) (biar—ti)ses (En—t;)
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we see that do=d, d;=dy_1,.... d(n-g)2=d(n+a) e and do=d;=,....d, 5 Let
to=0and ¢, = 1. Then
ds'=(1)(.5-.5cos[(n-1)n/n ])(.5-.5cos[{(n—-2)n,/n])....,{.5),....(.5—.5cos /1)

Using cos{(n—k)m/n={(-1)cos(kn/n) we get:
dg! =(5) Y sin¥(n,/n))sin?*n,/n)),...(sin?((.5n-1),/7)). And d,7 s =
5( .5cos(n—1)r,7n),...,.5cos (.5n — 1)(7T)/'n,,...,(5cos('n/'n.))(.5)

={. 5)"(smrr/n )z(mnzrr/n) (sin( 5n—-1)m/n)*> Since d, = .5d,,s=dy and
Ndn 2 Z 2d1 we get that d;/ Zd > 1/2n.
i=0

The set 7™ is not optimal, that is there are distributions for which induce larger
values of ¥ than 7™,

EXAMPLE 2. If the points ¢; are equally spaced, the numbers d; are proportional to
the binomial coefficients and ¥~ !< 27, the value 2" being achieved at ¢y and t,.

EXAMPLE 3. Things can get worse. In the following example, all but 2 of the weights
tend exponentially to 0 as n goes to infinity. Assume n is odd and all points are
equally spaced except at the middle of the interval , that is: ¢;,,—¢; = h, if i # (n-
1)/2 and ta1),2=tn-1),2=4, with h = (t,—tg —A)/'n, = (1 - A)/n. The numbers
d(n 02 and d(n+1)2 are equal to say d* and the number A appears as a factor only
in d*. The form of d;"! is K h’(ah+6)((a+1)h+6) . Let Ky=minK;. Then d;(h,A) <
di(h, a) <1/Kgh™*\. Let d*(h,A) = (1/D°(h,A)A) 2(1/D (h.h)A) 2(1/K° h")A

CLAIM. Let 8=2"" Ky /nK"*. Assume that A/(1-A) S . Then ¥~ 1 2 2"+

PROOF. 1If d;#d’ then max di/d* =(X° h"A)/K R+ = nK*A/Ko(1-A) =
=N
2-7A/B(1-A) 27", Since 2 d;22d"*, we get that d; /2 d; < 2=+,
i=0 i=0

REMARK 3. Given a number ¢ > 0 and the set § a = ¢4 < {5 <,...,{n42 = b} there exists
a function f belonging to C[a,b] such that if P, is the best Tchebychefl approxima-
tion of f, then max § |[P,(t) - f(t)|: t £ [a,b] } = [P (}) - f(t) | = 0, 1Sizn+2.

PROOF. Let g{x) = ocosf{(n+1){x-a)n/{(b-a)} . Then g alternates sign on a, a+(b-
a)/(n+1),..., a + n{b-a)/(n+1), b. Let x(t) be the monotone piece-wise linear function
through the points: (a,a), (£, a + (b-a)/(n+ 1))....({,+1. a + n(b-a)/(n+1)), (b,b). The
function h(t) = g(x(t)) alternates on ¢yfp ...,fp4a with amplitude
o=|h(&)|, 15isn+2 Let @, be any fixed polynomial of degree n and set f =@, -h.
Let R, be any polynomial of degree n. Then max {[R(t) - f(t): t £[a,b]} achieves a
minimum at the polynomial §,, because §, - f = h, and h has the equi-oscillation
property. Hence &,=FP,.
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DESCENT METHODS FOR NONSMOOTH CONVEX
CONSTRAINED MINIMIZATION

K.C. Kiwiel
Systems Research Institute, Polish Academy of Sciences, Newelska 6,
01447 Warsaw, Poland

1. INTRODUCTION

We are concerned with methods for solving the problem

minimize £(x) over all x e RN (1.1a)
satisfying F(x) <0, (1.1b)
hi(x)so for each ieI, (l.1c)

where the (possibly nonsmooth) functions £ and F are real-
valued and convex on RN, h; are affine and |I| < ». We assume

that the feasible set S=Shn SF is nonempty, where S

~ h
{x:hi(x)so,ieI} and SE;-{x:F(x)sO}, and that F(x)<0 for

some X in Sh (the Slater condition). We suppose that for each
X €5, one can compute f(x), F(x) and two arbitrary subgra-
dients gf(x)e 3f(x) and gF(x) € 0F(x); these evaluations are
not required for x ésh.

We shall present two algorithms for problem (1.1). Their
convergence analysis will appear elsewhere (see the ref. list).
Here we wish to concentrate on the following two basic ideas.

First, we show that nondifferentiabilities of f£ and F
can be tackled by employing their polyhedral models with at
most N+3 linear pieces. This eliminates the difficulties with
increasing storage and work of earlier methods (Kelley, 1960;
Mifflin, 1982; Strodiot et al. 1983), which use k pieces at
the k-th iteration. A uniform bound on storage and work per

iteration is obtained by feollowing the subgradient selection
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strategy of Kiwiel (1983). This strategy drops irrelevant line-
ar pieces by exploiting properties of quadratic programming
subproblems that generate search directions.

Secondly, our treatment of constraints differs from that
employed in existing feasible point methods (Mifflin, 1982;
Strodiot et al. 1983). Our algorithms may approach the boundary
of S more rapidly than do the latter methods, thus attaining
faster convergence. To this end, we use exact penalty functions,
whereas Mifflin (1983) used another penalty technique. More-
over, our algorithms find a solution in a finite number of ite-
rations whenever f and F happen to be polyhedral and some
mild regularity conditions are satisfied. This attractive pro-
perty is not possessed by the existing feasible point methods.
In effect, our algorithms seem to be natural extensions to the
nonsmooth case of the widely used method of successive quadra-
tic approximations (see, e.g., Pshenichny, 1983), We hope,
therefore, that they will inherit the efficiency of its prede-
cessor.

From lack of space, we shall report elsewhere extensions
to nonconvex locally Lipschitzian problems done in the spirit
of Kiwiel (19844).

2. LINEARLY CONSTRAINED PROBLEMS

For simplicity, we start with the reduced version of (1.1)
minimize f(x) over all x eS8 . (2.1)

Our method for solving (2.1) generates a sequence of points
{xk}:C Sh with nonincreasing {f(xk)}, which is intended to
converge to the required solution, and a sequence of trial po-
ints {yk}c:Sh. The starting point xl=yls Sh is provided by

the user. Each yj defines the linearization of £

fj(x)==f(yj) +<gf(yj),x—yj » for all x. (2.2)

At the k-th iteration, f is approximated around xk by

£ (x) =max{£,(x) : je J}E} , (2.3)
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where J? c{l,...,k} and |J§|:5N+2. By convexity, f(x) z%k(x)
for all x, and f(y])=fk(y]) for all je.J?. Since we want to

A
minimize £ on Sh, we may minimize its approximation fk. The-

refore, the next trial point yk+l is chosen to
minimize fk(y)-+%[y—xk|2 over all yesS,, (2.4)

where the stabilizing term |y-xk|2/2 keeps yk+le S;, in the

A
region where fk should be close to f. Without this term, sub-

problem (2.4) would be closer to (2.1) globally {as in cutting

plane methods), but need not have a solution. If yk+1= k, the
method may stop because xk is optimal.
. . k k+1__ k+1
The algorithm makes a serious step from X to x =y

only if the objective is significantly reduced, as measured by
the test

( k+1)

f(y k

sﬂxk)+mv ' (2.5)

where me (0,1) is a fixed parameter and

VK = B8Ry - () (2.6)

is the predicted decrease (vk'<0). Otherwise, a null step

xk+l=xk occurs, but yk+l will enrich the next approximation

Fa)
FK*tl 4ith the piece f (k+l€ Jk+l),

k+1 K+2
chance of finding a better vy .

Jk+l

thus increasing the

It remains to choose

direction dk=yk+l—xk by solving for (dk,uk) the quadratic

. In practice, we find a search

programming subproblem

minimize u-k%[dlz over all (d,u)e€ gN*1

satisfying fj(xk)-+<gf(y]),d » <u for je.]k (2.7)

fl

hi(xk)+<vhi,d> <0 for iel

and find its Lagrange multipliers A?, je J?, vt, ie I, such

that
k

A . k
J}E={jEJf:Aj#O} (2.8)

Ak+1

satisfies 1J2|:5N+l. Then % (cf. (2.3)) defined by
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k+l _ 4k
Jf —qu{k+1}

contains all the pieces f. contributing to dk and yk+1=

k, .k . . k Ak

x"+d", since replacing Jf by Jf in (2.7) does not change
its sclution. The remaining "inactive" pieces are dropped. This
subgradient selection strategy ensures that ]J§|5 N+2 for all

k.

We may add that typical quadratic programming routines for
solving (2.7} will automatically produce at most N+l nonzero
Lagrange multipliers A?, since (2.7) involves N+1 variables.
In practice, it is more efficient to solve the dual of (2.7)
(see Kiwiel, 1984q).

Theorem 2.1. The algorithm described above minimizes f on Sh ’
i.e. {xk} c 8y

verges to a solution of problem (2.1) whenever this problem has

and f(xk)+inf{f(x): X€ Sh}. Moreover, {x*} con-

any solution.

It is worth adding that if f is polyhedral and problem
(2.1) satisfies some regularity condition (Kiwiel, 1983), which
is weaker than the Haar condition, then the method stops with

k after a finite number of iterations.

an optimal x
In practice one may use a stopping criterion of the form
[vk|$ e, with small positive ¢  (e.g. es=10—6), since we have

the estimate

£(xX) < £(x) + [vk|+|vk[l/2|x—xk| for all xeS,.
Then,. for bounded Sh, termination occurs with
f(xk] < min f +es+eé/2 max { lx-xkl : xeSh, f(x) ¢ f(.xk)}.

Sh

3. METHOD OF LINEARIZATION

We shall now extend the method of Section 2 to the nonli-
nearly constrained problem {(1.1).
In order to treat the nonlinear constraint (1.1b) in the

preceding algorithm, it suffices to use the linearizations of F

Fj(x) =F(yj) +<gF(yJ),x-y:l » for all x
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for defining the k-th polyhedral lower approximation to F

f‘k(x) =max{Fj(x) : ] EJ?}

with JKc{l,...,k} and |J5| <N+2. Then (2.4) is extended to

the subproblem
N

minimize %k(y)-+%ly—xk|2 over all yeR (3.1a)

. . k
satisfying F (y) <0, (3.1b)
hi(y)so for ielI. " (3.1c)

This is a local approximation to problem (1.1). It differs from
the corresponding subproblem of the cutting plane method (Kel-

ley, 1960) in that the presence of the stabilizing quadratic
term [y-xk|2/2 enables one to select J?L}Jg not necessarily
equal to {1,...,k} without impairing convergence.

Since yk+l or xk may not lie in SF'
whether yk+l is better than xk we need a certain merit

for assessing

function that combines the objective value £(x) with the (non-
linear) constraint violation F(x)+=max{F(x),0}. To this end,

we shall use the exact penalty function
e(x;c)=f(x)+cF(x)+ for all x,

where c=ck'>0 will be the penalty coefficient of the k-th
iteration. We shall choose ck large enough to ensure that
e(-;ck) has minima only at solutions to problem (1.1). More-

over, ck will be such that the following approximate deriva-

tive of e(-;ck) at xk in the direction dk=yk+l—xk

k_2k

v =f (xk

+aky + ckf‘k(xk+dk)+ - e(xF;c5)

is negative, so that dk is approximately a direction of des-

cent for e(-;ck) at xk. The algorithm will take a serious
step from xk to xk+l=yk+l=xk+dk if yk+l is better than
xk in the sense that

e(y*™ic®) se(xick) +n vk, (3.2)

where me (0,1} is a parameter. Otherwise, a null step xk+l=
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xk will occur. In this case the new subgradient information

collected at yk+l will enable the method to generate a better

next search direction dk+l.

Algorithm 3.1

Step 0 (Initialization). Select the starting point xles

hr @
final accuracy tolerance €52 0, a line search parameter me(0,1)
and an initial penalty coefficient c®50. set yl=xl and Jé=
J2={1}. set k=1.

k)

Step 1 (Direction finding). Find the solution (dk,u to the
quadratic programming subproblem
minimize u-f%]d[z over all (d,u)e rNt1 (3.3a)
e k j .k
satisfying fj(x ) +<gf(y },d» <u for jedg, (3.3b)
Fj(xk)+<gF(yj),d> <0 for jEJ}g, (3.3c¢)
hﬂxh4wvad>5O for iel (3.3d)

and corresponding Lagrange multipliers A?, je JE, p?, je.Jg,

and vk, ie I, such that the sets

k

i
S .k Ak
Jf—{jEJf.Aj#O} and J

F

. k k
-—{JGJF:]Jj#O}

satisfy IJEL,ngs N+1. Set

gk - z k“]; .
Jedg

Step 2 (Penalty updating). If Ek-<ck_l/2, set ck=ck_l;other—
wise, set ck=2max{ck_l,5k}.
Step 3 (Stopping criterion). Set vk=uk-e(xk;ck). If VkZ'-eS,
terminate; otherwise, continue.
Step 4 (Line search). Set yk+l=xk+dk. If (3.2) holds, set
xk+l=yk+l; otherwise, set xk+l=xk.
Step 5 (Linearization updating). Set J§+l=3§L:{k+l}, J§+l=3§u

{k+1} and compute
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k+l k+1 k+1 k+1 +
) ) ), xKHL_gktl,

fk+l =f(y +<gf(y ’ ’
Fyyy xk+1) - k+1)_+<gF k+l)’xk+1_yk+1 s,
fj(xk+l) =fj(xk) +<gf(yj),xk+l—xk> for 363]; ,
Fj k+l)--FJ be )+<gF y ) K1k, for je 3;.

Step 6. Increase k by 1 and go to Step 1.

A few remarks on the algorithm are in order.

Note that the sequence of penalty coefficients {ck} is
nondecreasing. The property Ek'<ck ensures that vk <0 at
Step 4. Our penalty updating rules make ck eventually cons-
tant if {yk} stays bounded. Such an automatic limitation of
penalty growth is important in practice, since large values of
ck may force the algorithm to follow closely the boundary of SF’
thus preventing fast convergence.

If the algorithm terminates at Step 3 then

1/2

£(x*) < £(x) +e  +eg |x—xk\ for all xesS,

(3.4)
F(xk)+ < es/ck.

The above estimates show that xk is approximately optimal.

Observe that replacing J? and J; by 3? and 3; in
(3.3) yields an equivalent subproblem. Thus, once again, sub-
gradient selection on the basis of Lagrange multipliers ensufes
uniformly bounded storage and work per iteration, since

IJ?LJJ;[ < N+3 for all k.

Theorem 3.2. Suppose that Algorithm 3.1 generates infinite se-
guences {xk} and {yk} such that {yk} is bounded. Then
{xk} converges to a solution of problem (1.1). Moreover, the
penalty coefficient ck stays constant after a finite number
of iterations, and Vk—+0.

Observe that the assumption of Theorem 3.2 is satisfied if
Sh is bounded, since {yk}c Sh by construction. Also for bo-
unded Sh
tisfying (3.4)) if the final accuracy tolerance e, is positive.

Theorem 3.2 implies finite termination (with xk sa-
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We may add that, under mild conditions, even with S=0
the algorithm will terminate at an optimal xk after finitely

many iterations if f and F happen to be piecewise linear.

4. EXACT PENALTY FUNCTION METHOD

Another way of solving problem (1.1) is to

minimize e(x;c)=f(x) +cF(x) over all x€ 5§, (4.1)

+

with ¢>0 large enough (see, e.g. Demyanov and Vasiliev,1985).
Since the above problem is a special case of (2.1}, we may use
the method of Section 2 and choose suitable ¢ in the course of
calculations.,

k) be

Thus let the k-th approximation to e(s;c
3k(x;ck) =max{ej(x) : jeJk} for all x,

where ch {1,...,k} satisfies |Jk| < N+1, whereas

_ k+
ej(x)-fj(x)-+c Fj(x),
F(yj)+<g (yj),x-yj if F(yj)>0,
Ff(x) = F .
3 0 if F(yd) <o

are linearizations at yj of the convex functions e(-;ck) and
F(')+l
k_; . ;| . k_;. 3 .

J =03 : F(y°)»0, 1¢j<k} and J0={]:F(y )20, 1<j<k}, we
see that F;(-)=Fj(-) if j EJE, and F;(-)=O if je Jg. We
may now proceed as in Section 2 to motivate the subproblem

respectively, and fj is given by (2.2). Introducing

minimize ak(y;ck)-+%|y—xk]2 over all ye Sh'
which gives rise to the following method.

Algorithm 4.1.

Step 0 (Initialization). Select the starting point xle.Sh and

a final accuracy tolerance €g » 0. Choose a line search para-
meter me (0,1), an initial penalty coefficient cl >0 and an
initial unconstrained minimization tolerance 51 > 0. Set yl=xl,
J}=(1} and Jy=§ if F(y')»0, 3;=p and Jy=(1} if F(y') <0,

and J={1}. Set k=1.
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Step 1 (Direction finding). Find the solution (dk,uk) to the
subproblem
minimize u-k%ldlz over all (d,u)e rNVt1
e k i .k
satisfying f.(x ) +<g.(y’),d> «u for jed,,
] £ 0 (4.2)
k k k j k j . k
fj(x ) +c Fj(x )-+<gf(y3) +c gF(led>5u for jed,,

hi(xk)+<vhi,d> <0 for iel
. . . k . k k k
and corresponding Lagrange multipliers Aj’ je JOL;J+, and vy
ieI, such that the sets
. k k ~k . k k
—{jeJO.)\j;éO} and J+—{jeJ+.Aj;é0}

. 2k 2k
satisfy |JjuJd | <N+l. set

vk==gk(xk+dk k) k;ck).
. k k k k
Step 2 (Penalty updating). If |v' | <6 and F(x')»>» |v |, set
ck+l=2ck and 6k+l=6k/2; otherwise, set ck+l=ck and 6k+l=6k.
Step 3 (Stopping criterion). If lvk[5 e, and F(xk)s egs ter-
minate. Otherwise, continue.
Step 4 (Line search). Set yk+l—xk+dk If
e(yk+1;ck+1)5 e(xk;ck+l)-+mvk,
set xk+l=yk+l (serious step); otherwise, set xk+1=xk (null
step).
Step 5 (Linearization updating). Set
k+1 _ Ak k+l _*k Si+1
J, -—J+lJ{k+l} and Iy =9, if F( ) >0,
A ~
g¥*HL 5% ana P o3KG (x+1) i P(yETL) <o
+ + 0 0
Set Jk+l=Jt+lu J§+l. Compute
K1 k+1 k+1 k+1__k+1
fp (X ) = 8yT ) Aeg(yT T )T Ty Ty,
f (xk+l)=f (xk) +<g (yj) xk+l-xk> for je&kusk

3 ) £ 4 + 0
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k+1 k+ + + +
F (x ) 1) yk 1),xk 1_yk 1, k+1)>0,

k+1 *<gpl

F

b ,xk+1—xk »> for je 3]:

=F(y if F(y

Ky Cp (oK
Fy(x777) =Fy(x7) +<gply

Step 6. Increase k by 1 and go to Step 1.

The penalty updating scheme of Step 2 is based on the relation

e(xk;ck)s e(x;ck)+]vk|+(v 1/2]x— k\ for all =xe8,.(4.3)

Thus |vk] indicates how much xk differs from being optimal

in (4.1) with o=ck. Moreover, (4.3) implies

k1/2 k

f(xk)sf(x)+ [vk|+|v |x-x7| for all xes,

so xk is an approximate solution to problem (1.1) if both
|vk| and F(x ) are small. The penalty coefficient is incre-
ased only if e(--c ) has been approximately minimized, as

k (with progressive-

indicated by relations (4.3) and |v¥| <6
ly smaller minimization tolerances {Gk}), but xk is signifi-
cantly infeasible (F(xk) >]vk]). This penalty scheme is due to
Kiwiel (1984e).

If the algorithm terminates then

f(xk)sf(xl+es+s;/2lx—xk[ for all xesS

and F(xk) sgs, so xX  is an approximate solution to problem

(1.1). Of course, <X is optimal if additionally g =0.
Observe that the algorithm does not in fact require compu-
tation of F(y)} and gF(y) if yeSp. This is useful in cer-

tain applications.

Theorem 4.2. If Algorithm 4.1 generates a bounded infinite se-
guence {xk} (e.g. if Sh is bounded}, then {xk} converges to
a solution of problem (1.1). Moreover, the penalty coefficients

{ck} stay constant for all large k, and vk-+0.

It is worth adding that, under mild conditions, Algorithm
4.1 also has the finite termination property in the polyhedral
case.

Sunming up, we observe that global convergence properties

of Algorithms 3.1 and 4.1 are essentially the same. However,
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Algorithm 3.1 exploits the structure of problem (1.1) more fu-~
lly by using the natural constraints (3.1b) and employing e(s;
ck) as a merit function only. These advantages have to be weig-
hed against additional effort involved in quadratic programming
when I=(.

5. CONCLUDING REMARKS

We have extended the widely used constraint linearization
technique to the nonsmooth case. In particular, this technique
ensures finite convergence in the polyhedral case, an important
property not possessed by the existing feasible point methods.

Let us now comment on possible modifications and exten-
sions.

For large N, we may replace subgradient selection with sub~<
gradient aggregation (Kiwiel, 1983, 1984a,1984c} to reduce the
number of constraints of the form (3.3b,c) to as few as four
without impairing global convergence. This will save storage
and work per iteration. However, convergence may be slow if too
few constraints (linear pieces) are used. Also it is easy to
include more efficient line searches in the methods (Kiwiel,
1984a, 19844, 1984f).

Additional information about the problem function structure
can be used for modifying subproblems (2.7),(3.3) and (4.2)
so as to increase the efficiency of the algorithms. Suitable
techniques may be found in (Kiwiel, 1984f) for max-type func-
tions, and in (Kiwiel, 1984b) for large-scale linearly constra-
ined problems.

We shall report elsewhere extensions of the algorithms to
the nonconvex case of locally Lipschitzian problem functions

satisfying the semismoothness condition of Kiwiel (1984a,19844).
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STABILITY PROPERTIES OF INFIMA AND OPTIMAL SOLUTIONS OF
PARAMETRIC OPTIMIZATION PROBLEMS

Diethard Klatte and Bernd Kummer
Department of Mathematics, Humboldt University, 1086 Berlin, GDR

1. INTRODUCTION

In the analysis of parametric optimization problems it is
of great interest to explore certain stability properties of
the optimal value function and of the optimal set mapping (or
gome selection function of this mapping): continuity, smooth-
ness, directional differentiability, Lipschitz continuity and
the like. For a survey of this field we refer to compre-
hensive treatments of various aspecte of such questions in
the recent works of PFiacco (1983), Bank et al. (1982) and
Rockafellar (1982).

In the present paper we consider an optimization problem
that depends on a parameter vector teT<R™:

P(1): min {f (x,t) / xeM(¥)} , terT,

n
where T is nonempty, M: T —> 2R is a closed-valued multi-
function, and fo is a real-valued function defined on R"x T.
We define the infimum function ‘P and the optimal set map "li)

by

() :=  inf {£ (x,t) / xeM(+)} , tem,

WYty = {xemt) / £ (x, )= P8}, tem.
Let 'll)loc(t) denote the set of all local minimizers for
fo(-,t) w,r. to M(t)., Por &€ > 0, the set of & -optimal

solutions is AP, (+) := {xeM(t) / £,(x,t) & P(t) + €] .
Given QCRn we set

MQ(t) t= M(t)n ¢l @,
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\PQ(t) := inf {fo(x,t) / xEMQ(t)} ’
Pot) = {xeuy(t) 7 £,0x,0) = (0 T,

where "cl" stands for closure. The symbol int X will be used to
denote the interior of a set X< R", Purther, |l + Il denotes the
Euclidean norm, Ug (t) := € -neighborhood of t, d(x,2):=

inf, {lix-zll / z2€2 § (xeR?, 2<R™), dy(¥,2) := inf {k /
d(y,2) 4k (VyeyY), d(z,Y) 4k (Vz€2) } (Hausdorff-distance
of Y,ZcR™), The closed unit ball in R® will have the standard
symbol Bn’

Adapting Rockafellar's definitions of Lipschitzian func-
tions, we shall say that a multifunction F from T<R™ to RV
is Lipschitzian on DecT if there is some constant L >0 such
that du(F(s),F(t)) & L lle-tll (Vs,t€D). F is Lipschitzian
around t*' €T 1if there are real numbers £>0 and L >0 such
that du(F(s),F(t)) £ Llls-tll (Vs,teU (t')NT). F is
upper Lipschitzian at t'€ T if there are real numbers £€>0 and
L>0 such that d(x,F(t')) £ Lllt-t'l (VteU(t')nT ,
VxePF(t)). A single-valued function g is said to be
Lipschitzian on D (resp. around t') if t — F(t) = {g(t)}
has this property.

In the present paper we shall discuss the Lipschitz sta-
bility of P(t). Above all, our attention is focused on standard
problems in parametric convex or quadratic optimization and
thereby on the derivation of conditions under which the map
or some "portion" of "'Floc exhibit a certain Lipschitz beha~
vior. In the literature, there are two approaches to these
studies. The first one has been applied in parametric linear
and quadratic programming; it makes use of the fact that a
polyhedral multifunction F from R® to R? is upper Lipschitzian
on R® (cf. Walkup and Wets 1969, Robinson 1979, 1981, Klatte
1983). The second approach is based on the application of
implicit-function theorems (for systems of nonlinear equations
and inequalities) to the parameterized Kuhn-Tucker system of
the optimization problem considered; it requires restrictive
smoothness and regularity assumptions on the objective function
and on the constraints; in particular, second-order optimality
conditions play an important role (cf. Fiacco 1983, Robinson
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1982, Hager 1979). With respect to special classes of paramet-
ric programs the question arises whether some Lipschitz
behavior of Y or quoc can be "saved" also in the absence of
second-order regularity assumptions. One aim of our paper is
to help clarifying this question by some constructive results
and simple but instructive examples of ill-~behaved parametric
programs. A particular answer will be that if second-order
conditions are dropped then, even for the class of parametric
convex programs with right-hand side perturbations only,

upper Lipschitz continuity of ﬁ) or the existence of a
(Lipschitz~) continuous selection of Y cannot be expected, in
general.

In contrast to this situation, the Lipschitz continuity
of Y holds under rather natural assumptions. We mention here
the following very simple but useful result (cf., e.g.,

Cornet 1983).

Lemma 1. Consider problem P(t). Let T'CT, and suppose that
for some QCRn and each te€T', we have M(t) CQ. If fo is Lip-
schitzian on Q xT' with modulus Bf, and if M is Lipschitzian on
T' with modulus BM’ then ¢ is Lipschitzian on T' (with modulus
Be(By+1)).

When M is defined as the solution set mapping of a system
f(x,t) %0, where f is a locally Lipschitzian vector function,
then certain constraint qualifications (for example, the Slater
condition in the convex case, and the Mangasarian-Fromovitz con-
dition in the smooth case) ensure that M is Lipschitzian in some
sense; a detailed discussion of this question can be found in
Rockafellar's (1984) paper which also covers results of
Robinson, Levitin, Aubin and other authors concerning implicit
multifunction theorems.

2. CONVEX PROBLEMS

Consider the parametric optimization problem P(t) under
the following additional requirements:
(1) M(t) := {x€R® / £,(x,1) %0 (i=1,...,8);
1 fj(x,t) = 0 (j=s+1,...,s+r)} ,

(2) fy: R"x T —» R is continuous on R%x T (Vie{0,1,...,s+r}),
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(3) £4(+,t) is convex on R® (VteT, Vie{o,1,...,83%),
fj(-,t) is affine-linear (Vte€T, V] e{s+1,...,s+r} );

we denote this perametric problem by P,(t) . If (3) is re-
placed by (3)' then we have the speclal case of convex
programs with right-hand side perturbations only:

(3)* £,(x,t) = b (x) , £y(x,t) = hy(x) - tElj (teT; 1=1,...,8),
where hy (i=0,15+4.,8) is convex on R~ and r=0, s=m,

This special parametric program will be symbolized by P,(t) .
First we state a theorem which is, in fact, a simple con-

sequence of Robinson's (1976) inversion theorem for convex

multifunctions. Using other methods of proof, Eremin and

Astafiev (19276)§27 and Blatt (1980) presented similar results.

Theorem 1. Consider the parametric convex problem P.I(t).

Suppose that for some t'€ T,

(1) Y(t') is a nonempty, bounded set,

(ii) +the Slater condition is satisfied w.r. to M(t'), i.e.,
there is a point x'€M(t') with f,(x',t')<0 (i=1,...,8)
such that the gradients V_ f_ ,(.,t'),.00, V£ (,t")
are linearly independent,

(111) there are an open convex set WD‘llJ(t') and a neighbor-
hood U of t' such that fo is Iipschitzian on Wx U,

(iv) for each x€W and each 1 € {1,2,...,84r} , £i(x,¢) 1s
Lipschitzian around t' with some modulus independent of x.

Then P is Lipschitzian around t', and there is a number €>0

such that for all 0< g<¢, Y, is Lipschitzian around t'.

Proof: Set Q:= ('LlJ(t')+Bn)r\W. Taking (1), (ii) and (iv) into

account and applying Corollary 2 in Robineon (1976), we have

that MQ is Lipschitzian around t'. Note that Y 1is upper semi-
continuous at t* (cf. Bank et al. 1982, Th. 4.3.3), hence for

t near t','l,)(t)z'lPQ(t). Lemma 1 then yields the Lipschitz

continuity of P around t'. The assumptions (2), (3), (i) and

(11) ensure that the map (t,£) —» 'l})e(t) is upper semicontinu-

ous at (t',0) (cf. Bank et al. 1982, Cor. 4.3.3.2), and so if

Ht-t'll and € are sufficiently small, say llt-t'll< &, O0< e<¢,

then ’Ipe(t)cQ. Let O ¢<g<€. Apply now Corollary 2 in Robinson

(1976) to the map t —» M (t):= {x€Up(t) / £ (x,t) - P(t)& s
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we only note that (a) Me(t') contains a Slater point,
(b) all functions describing Mg are Lipschitzian w.r. to t,
and (c) for all t near t' it holds M () =Y () cq, /

In the Examples 1 and 2 we shall point out that, under the
agssumptions of Theorem 1, a Lipschitz behavior of "’.,J cannot be
expected, in general, not even for the special problem P2(t).
Example 1 is due to B. Schwartz (private communication).

Example 1. The optimal set map of the parametric program

min {y / y2x%, ybt}, t€R,
(x,y)
is not upper Lipschitzian at t=0. Obviously, the optimal sets

are Y(t)= {(X.y)€R2 /-ATexedT , y=t}, i t 20,

Example 2. (Y is single-valued) Let G be the function
defined by

Iyl exp (-x/Iyl) if x20, y#0
G(x,y) := 0 1f x20, y=0
Iyl - x if x £o0.

G is convex (cf. Bank et al. 1982, p.52). Consider the problem
min {G(x,y) / x2 4 (y+1)2 £1, yét} , tER.

It is easy to check that Y(t)= {( (1 - (1+'|:)2 ) 1/2, t )} for

When the constraints are given by more complicated convex
functions it may even happen that there is no continuous (let
alone Lipschitzian) selection of QP, cf. §4. However, for
parametric problems in which the objective function as well as
the constraint functions are convex and quadratic (see Exam-
ple 1 above), there exists for QP a selection function which
satisfies a certain kind of Lipschitz condition (for the proof
we refer to Klatte and Kummer 1984):

Theorem 2. Consider the parametric convex problem P2(t).
For each 16{0,1,...,m} , let hi be defined as

hi(x) = xTCix + piTx+ Qy >

where Ci is a symmetric, positive semidefinite (n,n)-matrix,
piE. R® and q; € R. If 1{)(0)# ¢, and if the Slater condition is
satisfied w.r. to M(0), then for every x € Y(0),
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there are a constant L and a neighborhood U of O such that

alx, P(t)) & L Nt (Vteu).

Remark: If P2(t) has the special form min {xTC°x+ p° Tx/
Ax ¢t }, teR®, with fixed vector p°€ R"” and fixed matrices A
and C° of suitable order (C° symmetric, positive semidefinite),
then Qp is even Lipschitzian on its effective domain
dom Y= {t / W(t)# 8], cf. Klatte 1984 a.

3. NON-CONVEX QUADRATIC PROBLEMS

In this paragraph we restrict our considerations to the
study of stability of local optimal solutions to the parametric
quadratic program

Py () min {£(x,t) / xeu(t) Y,

with the parameter tuple +t=(C,p,A,b), where

f(x,t) := % xTCx + pTx , M(t) := {xERn / Ax éb‘S,

and C varies over all symmetric (n,n)-matrices, A varies over
all (m,n)-matrices, and the parameters p and b are vectors in
R® and Rm, respectively. The set of all such parameter tuples
is denoted by T. As for more general classes of parametric
problems we only refer to a few publications in which various
agpects of current research in our subject are treated.
Concerning Lipschitz properties of the infimum function:
Rockafellar (1982, 1984), Gauvin and Dubeau (1982), Fiacco
(1983). Concerning Lipschitz properties of local minimizers and
stationary points (under second-order conditions): Robinson
(1982), Fiacco (1983). Concerning continuity properties of
local minimizers (in the absence of second-order informations):
Robinson (1983), Klatte (1984a,b).

Following Robinson (1983) we shall say that a nonempty set
X<R? is a strict local minimizing set for £f(+,t) wor. to M(t),
if there is an open set Q>X such that X=Y . (t). We recall
that wQ(t)z{xeM(t)ncl Q/ f(x,t)= lPQ(t)}. Obviously, such
a strict local minimizing set is a subset of ﬂyloc(t), and it
is always closed. Typical examples of strict local minimizing
sets are the following:
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(1) X= {z} if z is a strict local minimizer for f(.,t)
w.r. to M(t);
(11) X= WY(t) if YH)I# §.

Let KT(t) denote the set of Kuhn-Tucker points of the
program Pj(t) (for fixed t): T
Cx + A'u + p = 0,
(4) KT(t) := {(x,u)éRnx R® / Ax - b £0,
uz0, uT(Ax-b)=O

The set of stationary points, denoted SP(t), is

(5) SP(t) = Trn(KT(t)) (Trn:= canonical projection to R%),

the set of Lagrange multipliers at x € SP(t) is given by
LM(x,t) = {u €R™ / (x,u) € KT(t){ .

As usual, KT(.), SP(*) and 1M(.,+) are considered to be multi-
functions. The norm 1in the parameter space T is defined by

Nty := max {Hci, Wpll , NAN , Wbl |, t=(C,p,A,b),

where [|*|l is always the Euclidean norm of the corresponding
linear space,

The next theorem covers results by Robinson (1979), who
assumes convexity of the initial problem at t=t°, and Hager
(1979), who assumes that for all t near t° the multifunction
KT is single-valued. A detailed proof of Theorem 3 is in
Klatte (1984a,b).

Theorem 3. Consider problem Pj(t). Let t%= (¢%,p°,A%,1b°)
be a given parameter tuple, and let X be a2 (nonempty)
bounded, strict local minimizing set for f(-,to) w.r., to
M(to). Suppose that the Slater condition is satisfied w.r. to
u(t°).
Then X := KT(t°)A (X xR®) is nonempty and compact, and
there are a bounded, open set D'>K and a constant L >0 such
that the following is true:
(a) If D is any open set with Ke¢D<cD', then one has, for some
neighborhood UD of t°,

g # DNKT(t) ¢ K + L llt -~ °ll (VteUD). +)

T Bn+m

+) X+Y :={x+y/ xe€X, yeY} ; BX:= {Bx/xeX} (B€R).
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(b) If Q is any open set with XcQc® (D'), then one has, for
some neighborhood UQ of t°

B4 QnY,..(t) € QnsP(t) € X + LIt =t%lly B (VEeUy).
Further, the infimum function ?b is Lipschitzian around
10,

In Klatte (1984a,b) there is an example which shows that
in Theorem 3 the assumption "X is a bounded, strict local
minimizing set" cannot be replaced by the weaker assumption
"X is a nonempty, bounded subset of ﬂyloc(to)":

Example 3. It is not difficult to verify that for the
parametric program

min{xy-x2 / x2t , yé1.$, t éR,

we have
P10o(0) = {(0,8) €R%/ 0<a 41}, but sSP(t)= # if t>o0.

A further example illustrates the fact that there is no
analogy to Theorem 3 with respect to the (global) optimal set

mapping Y
Example 4. min {x(1-%x) / X230, 1=-1tx 2-t], t2-1.
Obviously, { 0 ] if -1&t £0,
(t) =
¥ S Y

We note that all assumptions of Theorem 3 are fulfilled and,
really, ”tploc(t)n Q = {03 (Vt2=~1) with Q:= {x/—14x<1} .

Qutline of proof of Theorem 3.

1° Pirst we note that for each x € X, the set IM(x,t°) is

nonempty and bounded, since the Slater condition is satisfied

w.r. to M(t°). By Robinson (1982, Th. 2.3), the multifunction

IM(+,t°) is upper semicontinuous on X. This, together with the

compactness of X, implies that K:= KT(t°)n (X x R™ )=XxULM(x %)
C XxY, where Y is a compact subset of R™, With no loss of

generality let Y be a polyhedral convex set satisfying

Kc€int Y . Since K is obviously closed, K is a compact set.

2° The representations (4) and (5) tell us that SP(t°)
is a union of finitely many polyhedral convex sets X1,...,XN
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1(x) := {ielt,..., N} / Xnx; # 873.

If x is an arbitrary point of ani, i €I1(X), then for each
y€Xy, we obtain £'(x,t%y-x)20 and f£'(y,t%;x=y)> 0, where
f'(z,to;w) is the directional derivative of f(+,t%) at z in the
direction w (note that x,yeSP(to) and that the vectors y~x and
x-y are feasible directions for M(t°) at x resp. y). Hence,

£(x,t%) = £(3,t%) (VxeXnXi VyéXi YieI1(X)).

Since X is a strict local minimizing set, this implies that
X;eX (Vi€ I1(X)). Because of the compactness of X there is a
number g& >0 such that (X +eB¢)an = ¢ (V3 ¢ I(X)), where
Bo 18 the unit cube in R”, Setting Q' := X + int gB,, we
thues have
x= VU x = se(t®necl Q.
ie I1(X)
3°(Lipschitz property) ILet A; and Az (or by, bi) denote
the submatrix of A (or the subvector of b) which is built, for
igIlor ieI:= {1....,m}\1, by the rows a‘i of A (or the com-
ponents bi of b). Because of the special structure of KT(t) we
can split KT(t) into components FI'Y(t) as follows:
KT(t) = U g0, 000y,
(1(%),J(t))e z
where, for t=(C,p,A,b) and I,Jc{h...,m},
T
Cx+A"'u+p=0, A;x=0D
Ajx £b7,uy = 0, uj-%o

and

Z = {(I,J)e{1,...,m]x{1,...,m} / Iud = {1,...,m'5}.
Set Dy* := (Xi + intgBy) x int Y (1e€1(X)) and define

2, 2= {(Ldez / Pl ean;t 48T (1enx).
By 1° and 2°, KT(t°)n Dy'# @ and so 2,# ¢ for ell i€ I(X),
thus KT(t°)n cl Dy' has the representation

KT(t°)ncl D, ' = U @Y9(t%ncl by') (Vie (X
i i
(I,9)€ 24
Taking the compactness of cl Dy' into account and using the
fact that the multifunctions t — KT(t)ncl Dy' and

t — FI'J(t)n cl Dy' are closed (cf. Bank et al. 1982,
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The. 3 1.1), it is easy to show that, for some neighborhood Ui
of t°

k(t)nel Dt = U @19(t)nel pyt) (VieI(X) Vieu

(I,9)e z4

By Daniel (1973), the multifunctions rl» J( *Jncl Dy* are upper
Lipschitzian (note that cl Di' are convex polyhedra, by con-
struction). Then it follows that KT(*)A D' is also upper
Lipschitzian at t°, where D' := UI(X) D,'.
Because of K = KT(t°)n ((SP(t°)ncl Q') xY) (by 1° and 2°) and
hence K = KT(t Jncl D' we have obtained the Lipschitz proper-
ty of part (a) (which obviously also holds for any open set D
with Ke DeD') The Lipschitz property of assertion (b) follows
by standard arguments from the fact that SP(t) =’|Yn(KT(t)).

i)'

4° (solvability) Let Q be any open set satisfying
XcQ<€Q'. Then there is a point xQeQ such that AOxQL b° , and
hence we can find a neighborhood V of (A°,b°) such that
AxQ<b (V(@,b)e V). Thus, the sets {xécl Q/ Axéb} are non-
empty and compact for all (A,b)e V. For all t=(C,p,A,b) with
(A,b)e V, we have, by the WeierstraB theorem,

Pot) # 8.

Further, Berge's (1963) stability results provide that ’\P is
upper semicontinuous at t°. Hence, Yotreq if Ht - ¢ ll is
sufficiently small, and so there is a neighborhood UQ of

t° such that

P ¥ Y )€ Y (0N Q (Yteuy).

The Lipschitz continuity of tPQ easily follows from the
compactness of X and the Slater condition (by application of
Lemma 1. Hence (b) is shown.

Concerning the remaining assertion of part (a) we only mention
that if D is any open set with Ke¢D<D', then it is not diffi-
cult to derive that KT(t)nD is nonempty if Ht-t°ll ; 1is
sufficiently small; one has to apply part (b) which is already
shown and to take into account the upper semicontinuity of the
multifunction IM(.) on Xx{_tos (cf. again Robinson 1982,

Th. 2.3), the details are omitted here,. YA
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Remark: In the case of fixed matrices C=C° and A=AC the
(global) optimal set map Y is upper Lipschitzian on RP = Rm,
and the infimum function P is Lipschitzian on each bounded
convex subset of dom Y := {(p,b)éRnx R® / Y(p,b) ¥ Q)} ,
cf. Klatte (1983). The set dom % is, in this case, a union of
finitely many polhedral convex sets,

We further note that (for the parametric program P3(t)) the
inclusion Q n Vﬁoc(t) € QnSP(t) in part (b) of Theorem 3
may be strict (see Robinson (1982, p.213)).

4, OPTIMAL AND € -OPTIMAL SELECTIONS

In this last section we consider the existence of a con-
tinuous or Lipschitzian function s which assigns to each t €T
a single point a(t) G'Y(t) (or s(t) E‘y%(t)); such a function
8 will be called an optimal selection (or £-optimal selection).
Obviously, this question is closely related to the more general

theory of continuous selections for arbitrarily given multi-
functions F: T —> 2Rn » Where the basic results are well-
known from Michael's famous papers (cf. Michael 1956). In
particular, a continuous selection for F exists if F is lower
gemicontinuous on T, and F(t) is nonempty and convex for all
t€T. As 1t concerns Lipschitzian selections we mention here

Theorem 4. Let T be compact and F: T —> 28 be a
Lipschitzian multifunction with modulus L, and suppose that the
gets F(t), teT, are nonempty, convex and compact. Then there
is a Lipschitzian selection s for F with modulus n-L.

Two independent and different proofs have been given by
Dommisch (1983) and, for a slightly modified version of the
preceding theorem, by Aubin and Cellina (1982). Note that
Dommisch's Lipschitz modulus n+L for s (provided that F has the

modulus L) is better than the one obtained by Aubin and Cellina.

However, the existence of a Lipschitzian selection is not

a privilege of Lipschitzian multifunctions only:
n

Theorem 5. Let T be compact and F: T —» 2R be 2 multi~
function with nonempty and convex images F(t) for all te€T.
Suppose further all sets F (x):= {té T/ xeF(t)_ﬁ (x €r")
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to be open (w.r. to the induced topology).
Then there is a Lipschitzian selection s for F.
Proof: We adapt the well-known idea of the partition of
unity. Obviously,
. U  rFm.
X€ER
Since T is compact and the sets F (x) are open, there are
finitely many points X (k=1,...,N) such that
N

T = v P (x5).
k=1
The closed sets A, := T\ F(x¥) (k=1,...,N) then fulfil

N

¥ Ay = 9
Let d,: T —> R be the distance functions dk(t):z d(t,Ak) (Yk),
therefore

N
d(t) := 2= 4, (t) > 0O (Vter).

Moreover, each dk is Lipschitzian (with modulus 1). Since T is
compact, we observe that 1:= infy ., d(t) > 0, and the
function s defined by

N

o(t) 1= 3 a(#).a(t) T ogk

=1
is therefore again Lipschitzian with a modulus depending on N,
1 and maxkllxkﬂ . Because of

s(t) € conv {x¥/ Fert)}] c Rt

("conv":= convex hull) the proposition is true. V4

In the case F=7, the application of the Theorems 4 and
5 1s difficult, because its hypotheses are usually too strong.
However, if we put F(t) = Ye (t) both theorems allow imme-

diate proof of the following corollaries,

Corollary 1. Consider the parametric convex problem
P1(t) and suppose the assumptions of Theorem 1 to be satisfied
for all t'€ T', where T' is a compact convex subset of T.

Then there is a number ¢ > O such that for all O < g£< ¢ there
is a Lipschitzian g-optimal selection on T'.

Proof: Apply Theorem 1 and Theorem 4. Y/
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Corollary 2. Consider the parametric convex problem
P1(t) in the case r=0 (without equality constraints) and
suppose that for all elements t of a compact subset T' of T,
Y (t) is nonempty and bounded, and the Slater condition is
patisfied w.r. to M(t).
Then, for each € >0, there is a Lipschitzian g ~optimal selec~
tion on T'.
Proof: Apply Theorem 5 to the map F(t)::{x:/ fx,t)<p(t) + g,
g(x,t) <0 § . /

Even if we have right-hand side perturbations only, the
suppositions of Theorem 1 (or Corollary 1) do not guarantee
the existence of a continuous optimal selection:

Example 5. Consider the parametric convex program

G(1-x,y) & ty + 2
min G(x,y) + 2 / y 2t, + 2

(x,3,2) 0£x%,¥,2 £ 1 ,

where G is defined as in Example 2. For t=(0,0) there is a
Slater point (with =x= % ), but no selection of Yy is continu-
ous at t=(0,0). Indeed, setting t,=t,=q (q —> +0) one
easily verifies that the only solutions are

= 1 = = .
xq ’ yq qQ zq 0

In the case t, = q exp (-(2)"" , t, = q (g — +0),
however, the only solutions are

1
X = = VA = Oc
q 7 yq q ’ q
Thus, a selection of ¥ which is continuous at (0,0) cannot exist.

Finally, we give an example which shows that in Theoreuw 4
the convexity assumption cannot be dropped, in general. This
is an example of a closed Lipschitzian multifunction F with
nonempty and compact images, but without any continuous
selection,

Example 6. Let T = B, be the unit ball of R®, For t¥0
we put

a(t)z= ¢+ 17 and Q(t)i= {x€RZ /lx~ul(edBNtil-4].
Now, define
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F(t) := bd B, n Q(t) with bd B, ={t/utn = 1}.

Then F is Lipschitzian with modulus 31 and, since t¢ F(t) for
all t€T, there is no continuous selection s for F; otherwise
the function s would have a fixed point t = s(t) € F(t).
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ON METHODS FOR SOLVING OPTIMIZATION PROBLEMS
WITHOUT USING DERIVATIVES

K. Lommatzsch and Nguyen Van Thoai
Department of Mathematics, Humboldt University, 1086 Berlin, GDR

INTRODUCTION

'Smooth' methods have been developed and used because under
the assumption of smoothness it is possible to use the methods
of differential calculus. For example, there are a great number
of methods for solving convex optimization problems in which
both the minimized objective and the set of feasible points can
be expressed with the aid of differentiable convex functions.

In some cases, however, the problems connected with the calcu-
lation of gradients have led to the development of algorithms
which do not use derivatives. (Nevertheless, differentiability
is still necessary to prove optimality, convergence assertions,
etc.) The most successful optimization method - the well-known
simplex method of linear programming - does not use derivatives.
On the other hand, there are methods which make partial use of
gradients, linearization etc., but which do not depend on differ-

entiability assertions to prove their convergence.

In Section 1 of this note we consider two such methods and
in Section 2 we present an algorithm for concave programming

problems which is based on a branch-and-bound technique.
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1. METHODS OF CENTERS AND OF POINTS OF GRAVITY

The problem can be formulated as follows:
(P1) min{f(x)lxeM},

where f(x) is a convex function defined on R, and M is an
(n-dimensional) convex compact subset of Rn‘

The main idea of Huard's method of centers (cf. [1]) consists,
roughly speeking, in calculating the centers of the sets

M(t) ={xeMIf(x) £ t ] by using certain distance functions
d(x,t) defined on NM(t). If M = {xeR [g;(x) €0, i=1,...,m},
then the distance function can be defined as follows:

d(x,t) = max{g, (x),..., g (x), £(x) -t } .

Then the algorithm is of the following general form:

step 1: to given, set k <« 0O;

k+1

gtep 2: Compute x ags a solution of

min { d(x, %)) | xeM(t)) i
step 3: ty,, = gf(xk”) + (1-¢)t, ¢€(0,1] ;
step 4: Set k «e—k+1 and go to step 2.

Under certain agsumptions the convergence of this algorithm
can be proved. As the solution of step 2 is connected with
congiderable difficulties, P. Huard and others suggested to
replace the problem of step 2 by some other problem (e.g.
linearization of functions occurring in the description of
the set M by using gradients, cf. [1]).

The idea of the method of points of gravity is based on
computing the points of gravity in the sets M(t) mentioned
above, cf. [2]. In the algorithm described above we have to
replace only step 2 by

k+1

step 2': Compute the points of gravity x of the set M(tk).

Under certain assumptions the algorithm converges to one of
the points of golution of problem (P1). Similarly to the
preceding algorithm, the subproblems contained in step 2' are
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very difficult. Nevertheless, these subproblems can be re-
placed by computing the points of gravity of finitely many
boundary points of the sets M(tk), e.g. if <X e intM(tk) and
d”,...,dn is & given gystem of orthogonal directions on Rn,
then

n
step 2': x**1 = 24—n S (£® + 79),
g=1

where for s=1,...,n

=5 gsds, P Esds ,
i s k 8

o, = min{fae R, [x" + ad eM(tk)} ,

— . k 8

&, = max{a € Rylx + ad” e M(t)} .

0f course, if step 2" is used in the algorithm, the rate of
convergence and the numerical properties of the algorithm
depend to & high degree on the geometrical properties of the
sets M(tk) and on the position of the points %X in M(tk). On
the other hand, the algorithm needs only very simple calcu-
lations.

2., AN ALGORITHM FOR SOLVING CONCAVE OPTIMIZATION PROBLEM3

We consider the problem
(P2) min{f(x)|xeM},

where f(x) is a concave function defined on Rn end M is an
(n-dimensional) compact convex subset of R.. It is well-
known that

a) there always exists an extremal point e ¢ M such that
f(e) £ f£(x) for all x e M;

b) if £(x) is concave on the halfline H(x®) with the initial
point x° and if there exists a point x'e H(x°) where
f(xh < £(x°), then the function f£(x) decreases unbounded-
1ly along H(x°);

c) if the concave function f(x) is bounded from below along

the halflines H'(x°),...,H'(x°) with common initial point

x°, then f(x) is bounded also on the convex hull of these
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halflines and £(x°) ¢ £(x) for all x eco(E1(x°),...,H (x°)).

The main idea of the algorithm proposed by Hoang Tuy and
Nguyen Van Thoai (cf. [3], varied and implemented for a poly-
hedral set M by N.V. Thoai in [4]) consists in covering the
constraint set M by a sgystem of polyhedral cones Ki,
i=1,2,... , in computing lower bounds of the objective
function £(x) on the sets ktn M (bounding) and in bisecting
a cone Ki which belongs to one of the smallest lower bounds
(branching) and so on. In the algorithm, polyhedral cones K
having a common vertex wo, wle intM, are used. Each of these
cones has exactly n edges H'j = {x:anl b =.w°+ T(uJ—Wo),T§O},
jed(K) = {j1,...,jnf, where w%, u'' ,...,u'* is a system of
linearly independent points in Rn.

A. Computation of lower bounds of the objective function
f(x) on Kn M.

FPor j €J(K) and for a parameter y, which is characteristic of
the algorithm, we determine:

a) wd = wO+ _(u-w?), )
where Ty = max{'r;Oiw°+ T (ud-w®)e Mf 3
b) B(K,y) = min { y;£(w®); £(wd), je (K} ;
¢) m3(y) = sup {42 Olf(w°+1z(wj—w°)) > B(K,v)f;
d) G(K,v) = {jedK)| -'rzj(Y)4°°} ;
e) 'ﬁJ(Y) = min {”ZJ(Y)’C} ’

where ¢ is a given, sufficiently large number;
1) yi(n) = v (n) wl-w®),
obviously f(yd(y)) 2 B(K,Y);
g) z9(v) = wP4E(K,v) (yI(v)-w°),
where «(K,y) is the optimal value of the optimization

problem :
h) max{ = A v+ ZA(yI(r)-w)em, 220, jeIK)I;
{jCJ(K) J jel (k9 J ¥

1) - [ B(K,v) if G(K,y) = @ or &(K,y) £ 1,
»Y) = :
S min{B(K,y);f(zJ(y)), j e(I(K)} otherwise .
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Obviously g(K,Y) ¢ f(x) for all xeKnM.,

B. Bisection of the convex cone K.

We determine one of the longest edges of the (n-1);—dimensiona1

simplex which is generated by the points u:"l ,...,uJ" . Let it
have the endpoints u and u® g €J(K). With the aid of
the bisection point u’™' = 4/2(u£‘ + uls ) and the edges of K

we define two new cones K’1 and K2 with vertex w°: K1 has the

edges HY (w° ), JEJ(K ) -{jd"""]r-—1’3r+1"“’Jn+4} and

K° has the edges HY (w°), j"—‘J(K ) = {31,...,35_4,JS+1,...,3n+1},

In [3] it was shown that a sequence of cones {Ki};o=4, where
Ki+4 is constructed from Ki by the bisection process described
above, converges to a halfline with the initial point we.

Algorithm. (Step 0): Let w® ¢ intll be given and n+1 linearly
independent points v7,... ,vn'M, where w° €1int co(v7,... ,vn+4) .
Further, let 1L° = {(x1,.. .,Kn“} , where Ki, ie1° ={1,... 0+,
is a cone with vertex w° and edges HY, je J(ki) ={4,.. ey 1-1,
i+1,0.0,0+1 ).

step 1: For i eI° compute the points wl = w4 Ti(Vi—Wo)

according to formula a) above,
construct the set
wo = {wo,w",. ..,wn+ 1 }
compute the number
Y. = min{f(wi), i=0,4,...,n+1 %,

)
and determine a point x°e W° with £(x°) = T,

step 2: For i ¢ I° compute the lower bounds Q (K,yo) defined in
i) above and set u = mm{g(K,y }iel 5

step 3: ke— O
step 4: If M = Vo then stop ;
step 5: Otherwise, for an index ieT* with g(Kby)

bisect the cone K' into the cones KP12*2K gng Kn+3+2k,

(vn+2+k be the bisection point) and set

o (N fipu{n+erakfu{nedeak § ;
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step 6: Compute the point

wn+2+k o]

o
=Wt o (Tneo = W)

according to formula a) above,

construct the set WEtT = WK uf{aB*2tk}

and compute Yeeq = min {yk,f(wn+2+k)},

R S (PR (W then set xk+4<F__wn+2+k’

k+1 k

otherwise x «— X

step 7: For r=2,3 compute the lower bounds g(Kn+r+2k

and set
- i .
Myyq = min {g(Kyy ) i€T

step 8: k+1e—k and go to step 4.

s Yy 4)

k+1};

Remarks:

1.) This algorithm either yields an optimal solution after
finitely many cycles or it generates an infinite sequence of
points {xk} which converges to an optimal point of problem
(P2) (cf. [3]1,[4]). In each cycle we have to solve a convex
optimization problem (compare step 7 and k) above) with a
linear objective function (for this purpose we can use the
method of points of gravity from section 1).

2.) If in problem (P2) the set M of feasible points is poly-
hedral, then the steps 0,1 and 2 of the algorithm can be
shortened: A nondegenergated vertex of M may serve as initial
point w°, the points v7,...,v**" can be dropped and the
points w?,...,#" (cf. a) and step 6 above) can be computed
immediately as the vertices of M adjacent to w°, the start
set L° contains one cone only. The optimization problem of
step 7 is linear, For this case, in [4] an implemented algo-
rithm which is written in FORTRAN and tested on a computer
ESER 1022 is presented ; some smaller examples are also given
there.
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AN ACCELERATED METHOD FOR MINIMIZING A CONVEX
FUNCTION OF TWO VARIABLES

F.A. Paizerova
Department of Applied Mathematics, Leningrad State University,
Universiteskaya Nab. 7/9, Leningrad 199164, USSR

A method for minimizing a convex continuously different-
iable function of two variables was proposed in [1], where it
was shown that its rate of convergence is geometric with
coefficient 0.9543. We shall describe two modifications of
this method with improved convergence rates.

Let ZEEEZ, a function f be convex and continuously differ-
entiable on E2. Assume that we know that a minimum point of f
is contained in a convex quadrilateral ABCD. The area of this
guadrilateral is called the uncertainty area. Let R be the
point of intersection of the diagonals of the quadrilateral.
Let us choose four points M,N,Q,P on intervals AC and BC which

are all at the same distance ¢ from R (where ¢ > 0 is fixed).

Now let us compute the function f at these points and at
the point R (see Figure 1).

Case 1

f(Q) > £(R), f(P) > f(R) (1)

'
f(M) > £(R), £(N) > f(R) . (2)
In this case R is (within e-accuracy) a minimum point of f onAC
and BD, and then by the properties of continuously different-
iable functions the point R is a minimum point of f on ABCD (to
within the given accuracy ¢) and the process terminates.
Case 2. If inequality (1) is satisfied but inequality (2) is
not, then R is a minimum point of f on BD. If f£(M) < f£(R) then



238

B B
Fy
h
w __2 w
Q F
H 1 a
] 4
13 R ¢ 6 lr ¢
P T
= h
v v
F
D D
. Fig. 2
Fig. 1
£(z) > £(R) ¥Z2ZeBDC

and therefore a minimum point of f lies within the triangle ABD.
If £(N) < £(R) then

£f(z) > £(R) ¥YZE€EABD
and a minimum point of f lies within the triangle BDC.
Case 3. If inequality (2) is satisfied but (1) is not then we
argue analogously.

These three cases were discussed in [1] and are treated in
the same way here. The difference between our method and that
of [1] is demonstrated in the following case 4.

Case 4. Suppose that both inequalities (1) and (2) are satis-
fied. Then there exist two points (say, M and Q) such that

£(M) < £(R), £(Q) < £(R) .

It follows from the convexity of f that
£(2) > £(R) ¥YZEDRC .
Let us draw the line VW which passes through the point R and is

parallel to the line DC. On the interval VW let us choose two
points G and H at a distance ¢ from R. If f£(H) > f(R) and
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£(G) > £(R) then R is (within e-accuracy) a minimum point of
the function f£(Z) on the line VW (see [2]) and since f(M) < f(R)
then

f(z) > £(R) YZ2eVWCD .

This case was also discussed in [1]. The case left to be dis-
cussed is the one where either f(H) < f(R) or £(G) < f(R).

At this point our method diverges from the method described in
[1]. We will suggest two modifications of this method. For
the sake of argument assume that £(H) < f£(R).

1. First modification. It is assumed that

f(H) < £(R)
Then (see Figure 1)

£f(z2) > £(R) YZ&€VRCD .
Moreover,

£(2) > £(R) YZevCD .

Let us draw the line FF, which passes through the point R and
is parallel to the line VC. On the interval FF, let us choose
two points T and S at a distance € from R.
If

£(T) > £(R) and £(S) > £(R)

then R is (within e-accuracy) a minimum point of f on FF, and

£(z) > f£(R) VZEFF.I CD .
If

£f(S) < £(R) then

£(z) > £(R) YZ2€FRCD
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and furthermore,
£f(z2) > f£(R) YZ€FCD .

As a result we get the gquadrilateral ABCF which contains a mini-
mum point of the function f. Let us compute the ratio of the
areas of the quadrilaterals ABCF and ABCD.

Assume that

RD AR RC

BR %" ®Rc 2% ar "~ ¢

12 .

Let h be the height of the triangle ABC. Then

_ ] oh =1 .
Sapep = 7 (1+@)AC+h; S, = 5 alAC-h
%9
RC = W AC -
Here SABC is the area of the triangle ABC. We have
S = S = _1_ o*h*RC = 9‘_ __31_ AC+*h
VCD = ~DRC 2 2 (M+ay)
Let us define h2. Since
= 1 . - . =
Sayc = 7 ACthy and 3,0 = Spep < Syep
o a
- 14 -acen 1 _ aceh = —% ac'h
2 2(1+a1) 2(1+a1)
we have
SAVC
h = = & h
2 1 1+a
gAC 1
This leads to
1 ooy
S =S = = RC*h, = = AC+h ,
FVC VRC 2 2 2(1+0L1)2
ooy Qo
S =S + S AC+h + AC*h =
FCD VvCD FVC 2(1+a1) 2(1+a1)2
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Hence, the ratio of the area of the quadrilateral ABCF to the
area of the quadrilateral ABCD is

a~a1(2+a1)
] - - . (3)
(1+a)(1+a1)

Since
a, (2+a.,)
! 12 > a(2+a; if a, > a this reésult implies
(1+a1) (1+a)
a-a1(2+a1) a2(2+a)
1 - - 7 < 1 - - 3 (4)
(1+&)(1+a1) (1+a)

If we decrease the uncertainty area as shown in Figure 2,
similar arguments lead us again to (4).

If at some step it turns out that %% = a < a, (where aj
will be defined later) then we draw a line passing through D
and parallel to AC, and then extend AB and BD until they inter-
sect this line (see Figure 3). Instead of the quadrilateral
ABCD let us take the triangle A1BC1. In the case of a quadri-
lateral we had four lines passing through R. In the case of a
triangle we take the point of intersection of its medians

(the point R1) instead of R.

B
K
\ g Vv < W
3
A’
& D € A1 ¢
-
Fig. 3 Fig
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If a minimum point of f is not contained in the quadri-

lateral KBFR
R1 1C1. On the interval VW let us

choose two points G and H at a distance ¢ from R1.
If

1 (Fig. 3) then we draw the line VW passing through

and parallel to the line A

£(G) > £(R;) and E(H) > £(R))

then R1 is (within e-accuracy) a minimum point of f on VW and

£(z2) > f(R1) YZ2€VBW .
Consider the case f(H) < f(R1). Then we conclude that
£f(z) > f(R1) VZEVBFR.I

and furthermore,
£(2) > £(R) YZEVBF .

Thus, we have a new quadrilateral A1VFC1 which contains a mini-

mum point.
Let us define the ratio of the area of the quadrilateral
A,VFC, and the quadrilateral ABCD. Let h be the height of the

1 1
triangle ABC. We have

_ 1 . =1 .

Sacp = 2 A1Cq°hy SA1BC1 =g (T+) A Cpch

s - Y (140) a.c.+h

VBF 6 164 .
Hence,

_ 1 ..

SA1VFC1 = 3 (1+a) ACy-h
and

SA1VFC1 ,

3 =3 (1-a) . (5)
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Let us consider the case where the triangle A1R1C1 (see Fig. 4)
does not contain a minimum point of f. Let us draw the line VW

passing through the point R, and parallel to the line A1C1, and

1
argue as above. Let VBC1 be a triangle which contains a minimum

point of f. We get

S _ 1
A1VC1 =% {1+0) A1C1h

and the ratio of the area of the new triangle VBC, and the qua-

1

drilateral ABCD is % (1+a), i.e. (5) holds again.

If a < a, ~ 0.335, then we must construct a triangle since

0
it guarantees a greater decrease in the uncertainty area. The

quantity o, is then a solution of the equation

0
_ a2(2+a) —

(1+a) .
(1+a)3

win

The convergence of this modification of the method from [1]

is geometric with the rate

_ 2 ~
qQ=3 (1+u0) 0.89 .
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2. Second modification. Let us again (see Fig. 5) assume that

f(M) < £(R)
Then

£f(Z2) > £(R) ¥Y¥Z2€O0RCD .
Furthermore,

£f(z) > £(R) YZ2€VCD .

Let us draw the line FF1 passing through R and parallel to the
line VC. On the interval FFq4 let us choose two points T and S
at a distance € from R.
If
£(T) > £(R) and £(sS) > £(R)

then R is (within e-accuracy) a minimum point of f on FF, and

f(z) > £(R) VZEFF_] CD .
Let

f(s) < £(R) .
Then

£(z) > £(R) YZEFRCD

and furthermore

£(z) > £(R) YZ€FCD .

Now let us again draw the line KL passing through R and parallel
to FC and proceed as above.

As a result we get the new quadrilateral ABCK which con-
tains a minimum point of f£. Now let us compute the ratio of
the areas of the new quadrilateral ABCK and the quadrilateral
ABCD.
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Assume that

@:a .A_R.> o E:a > o
ER " RC = 7' AR 1 -
Let h be the height of the triangle ABC. It follows from the

computations above that

_ 1] . -1 4.ac-
SABCD =5 (1+a)AC*h, SACD =50 AC*h ,
o4 a-a#2+a1)
RC = AC, S = —————— AC-+h .
1+0t1 FCD 2(1+0t1)2
. L . 1
Let us find h3. Since SAFC =3 AC h3 and
1 a-a1(2+a1)
S =S - S = = ¢*AC*h - ————~ AC*h =
AFC ACD FCD 2 2 (1+0t1 ) 2
o, (2+a.)
= 15 a*AC+h (1 - A ; ) = o 5 ACh
(1+a1) 2(1+a1)
we have
o 1 0oy
h, = ————= AC*h, S = § = = RC*h, = AC+h .
3 (1+0L1)2 FKC FRC 2 3 2(1+a1)
Therefore
a-a1(1+a1)
Skep = Srep * Sekc T 7~ ACth +
2(1+a1)
asay o, 1
+ ————~ AC-h = ————— AC-h (2+a, + ) =
2(1+o¢1)3 2(1+0L1)2 1 T+oy
2
a-a1(a1+3a1+3)
= AC<h

2(1+0L1)3

The ratio of the areas of the new gquadrilateral ABCK and the
quadrilateral ABCD is
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2
_ aa1(a1+3a1+3)

1 3 - (6)
(1+a)(1+a1)
Since
2
o, (aS+30.,+3) 2
11 ; > o (a +3a;3) Va1 > a )
(1+a1) (1+a)
it follows from (6) that
a0 (a2+3a +3) 2, 4
1 - 1 1 1 < 1 - o3 (G. +30,+3) . (7)

(1+a) (1+oc1)3 - (1+a) ¥

If we decrease the uncertainty area as shown in Fig. 6, we again

obtain the same relation (7).

Let (see Fig. 7)
f(H) < £(R) .
Then
£(z) > £(R) ¥Z&€VRCD

and furthermore
£f(z) > £(R) YZeEVCD .

Let us draw the line FF1 passing through the point R and parallel

to the line VC. On the interval FF1 let us choose two points

T and S at a distance ¢ from R. If
£(T) > £(R) and £(8) > £(R)
then R is (within e—accuracy) a minimum point of f on FF, and

£(z) > £(R) VZEFF_] CD .

Let

£(T) < £(R).
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B
w
L
QfH Fq
F K
\Y
D
Fig., 7
Then
£f(z2) > £(R) VZ(EVIQF1CD
and furthermore
£(z) > f(R) ¥YZeVF.CD .

1

Let us again draw the line KL passing through R and parallel to
the line VF1

rilateral ABF1K which contains a mininunm point of f£. Find

and argue as above. As a result we get a new quad-

the ratio of the areas of the gquadrilaterals ABF1K and ABCD.

Assume that

The triangles DRC and ABR are similar since

RbD _ RC _ L =L
BR AR ay DRC = ARB .
LC _ - .
We have ap - & and DC is parallel to AB.

The line VW is parallel to the line DC by construction. Thus,
VWIAB. The triangles ABD and VRD are also similar since the
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corresponding angles are equal. Therefore
BD _ AB
RD VR -

Analogously the fact that the triangles BCD and BWR are similar
implies that

BD _ DC
RB WR

Therefore VR = WR and /. ARV = /L CRW. We have VV1 = WW1. The

line FF, is parallel to the line VC by construction. Since the
triangles VWC ana RWF1 are similar, we have

WR T WE, _ °
Hence,
WF, = F.C, F,F. = * ww, = L vv
1 1~ Fqfp T 3 MW T g VY .
We have
SKF1CD = Syep * SVF1C + SKF1V = Syep * SVF1C + SVRF1
= Syep T Svre * SRF1C .
From the computations above it follows that
%q a o
RC = Taoy ACr Wq = By = 13y v Syep T 2(Tegy 2SR
OLOL1 1
Syre = 5 AC*h, S . = 3 (1+a)AC*h .
2(1+a1)
Thus,
1 0oy
S = = RC+FF, = AC*h .
RF,C ~ 2 1 4(1+u1)2

Then
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aa1(2a1+5)
S = ————— — = AC+h .
KF1CD u(1+a1)2

The ratio of the areas of the new guadrilateral ABF1K and the

quadrilateral ABCD is

au1(2a1+5)

_ u2(2u+5) (8)

2(1+a,) % (1+a) 2 (1+a)

1)
{(since oy = a).

If we decrease the uncertainty area as shown in Fig. 8
then we again have (8). The estimate (8) is worse than (7).

In the case

RD _ 4 54
AR 1
we always have an estimate better than (8). If at some step
RD
—_— = <
BR > = %

then we enlarge the gquadrilateral to a triangle and instead of

the quaarilateral ABCD we take the triangle A1BC1 (Fig. 9).

Fig. 10
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Let R1 be the point of intersection of the medians of triangle

A4BC,. Let there be no minimum point of f in the quadrilateral
KBFR1. Then let us draw the line VW passing through the point
R1 and parallel to the line A1C1. On the interval VW choose two

points G and H at a distance € from Ry. If
£(G) > f(R1) and £f(H) > f(R1)

then R, is (within e-accuracy) a minimum point of £ on VW and

1
£(2) > £(Ry) YZEVBW .
In the case f(H) < f(R1) we have
£(2) >f(R1) VZGVBFR.I
and moreover

£(z) > f(R1) YZe€eVBF .

Let us draw the line V1F1

parallel to the line VF, and argue analogously. Let a quadri-

passing through the point R, and

lateral A1VF1C1 be obtained which contains a minimum point of f.

Let h be the height of the triangle ABC. We have

e _1 .
Sapcp = 3 MCqche SA1BC1 =3 (Wa)a.Cych
S.. =21 (1+a)A.C.*h, S =3 = - (14+0)A.C, *h
VBF _ 6 REe * >VFF, ~ “VFR, ~ 36 o)Ay '
s = L (1+a) A.C.*h
VBF 37 R Rl .

1

The ratio of the new quadrilateral A1VF1C1 and the quadrilateral
ABCD is

—_

L o(a) . (9)

7

o

If we decrease the triangle as shown in Fig. 10, then the
ratio of the areas of the new triangle FBC1 and the quadrila-



251

teral ABCD is

5
3 (1+a) . (10)
The estimate (9) is worse than the estimate (10).
If
a < ao ~ (0.3787

then it is necessary to construct a triangle. The gquantity %

is a solution of the equation

2
1 -9 2o#S) o 1 gy

2(140)> 18

This modification of the method displays geometric convergence

with a rate g =~ 0.8425.
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ON THE STEEPEST-DESCENT METHOD FOR A CLASS OF
QUASI-DIFFERENTIABLE OPTIMIZATION PROBLEMS

D. Pallaschke and P. Recht
Institute of Statistics and Mathematical Economics, University of Karlsruhe,
P.O. Box 6308, 7500 Karlsruhe 1, FRG

INTRODUCTION

In a recent paper V.F.Demyanov, S.Gamidov and T.J.Sivelina pre-
sented an algorithm for solving a certain type of quasidiffer-
entiable optimization prohlems [3].

More precisely, theyv considered the class F of all functions

given by

3? = (f:Ifl—e>HZ|f(x) = F(x,y1(x),...,ym(x»} ,
where

yi:]Rn—> i is defined by

Y. (x) = max ¢.. (x) I, =1,...,N,; i=1,...,m

i Je1, ij i i
i

and

¢ij:m“—>m for all i€{1,...,m} and all JeI,.

The functions F and ¢ij under consideraticn are assumed to be-

long to the classes C1CRn+m

) and C1(IfH resnectively.
The optimization problem consists in minimizing a function

f e £ under constraints.

In this maper we will apply the minimization algorithm of [3]
to another class of quasidifferentiable functions.
We are ahle to prove for this type of optimization problems a

convergence theorem similar to that in [3].
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1. STEEPEST-DESCENT METHOD

We will briefly recall the steepest descent algorithm for mini--

mizing a quasidifferentiable function in the unconstrained case.
Let f:IR" — IR be a quasidifferentiable function.

Then for every X€R' there exist two compact, convex sets Sf|§
and 3f|s, such, that for every ger”, llg]l, =1,the directional

derivative is given by:

To | = max <v,g> + min <wW,g> .
X ve@f]; weaf |

. \ . n
Here <,> denotes the canonical inner product in R .

In terms of these two sets, a steemest descent direction for £
at X is given by

_ vt
glg =9 = - o
o Toll,
with
||vo¥wo||= max (min ||v+w||2).

2 W€3_f|}~( V€§f|§

Now, in the steepest descent algorithm, we start with an arbit-

rary point xoemn.

Let us assume that for k >0 the point x elﬁl has already been

k
defined, then define

Xya1 35 X Ptz o,

where g(xk) is a steepest descent direction of f at Xy and the

real number o, >0 is choosen in such a way that

k
min f(xk+ag(xk)) = f(xk+akg(xk)).
a>0
Obviously, the sequence (xk) inducesa monotonously decreas-
ing segquence (f(xk)) of kEN values of the function f.

kKEW
A modification of the steepest descent algorithm is pronosed
in [3]. Therefore we define:
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Definition: Let €,u be positive real numbers and £: R'» R be
quasidifferentiable. Let N be a neighbourhood of all
points XOEJRn , where f is not differentiable. Then

for XOE N we define:

_ u
ggflx i= conv( _gph §f|X b )
lsl, se
U —
auflx := conv( g gD af|xo+s )
el s
If x € N, then §€f| 1= gfix and 3 f|x 1= Sflx
*o o S o

If 3_f|, and Euflx can be choosen in such a way,
) o

that they are compact sets, then f is called (g,u)-

quasidifferentiable in X -

With the introduction of these two sets, we now give a modified
steepest descent algorithm to find an e-inf-stationary point x*
of f.

Let us assume that f: B> R is quasidifferentiable and moreover
that, for given ¢, u>0, it is (e,u) —quasidifferentiable. Then
choose an arbitrary XOE]Rn. Suppose that Xy has already been de-
fined.

If -3f|_ < 3 f| then x, is an e-inf-stationary point and the
Xx  —€ !Xk

k
algorithm stops.

Otherwise, if -§f|Xk¢: §€f|Xk , then compute

o o .
G(Xk) = {g:= -_|-|—V+—W|.|—€]Rn‘ ma_x (mln ||V‘+W|| 2 ) =||VO+WO|| 2} .
o o weo £ VE 9
2 uo ~€ %
For g€ G(xk) let us denote
alg) := sup{a|f(xk+ Bg)s f(x,) for all 0s B sa } ,
and let
g(xk):= argmin f(xk+ a(g)°g ) 0= a(g(xk)) .
g € G(Xk)

Now, we define

X pqi= X + akg(xk)
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In this paper we want to apply this modification for finding
an e-inf stationary point for a class of quasidifferentiable

functions.

2. A MOTIVATING EXAMPLE

Let F,GﬁRn — IR be two arbitrary functions with F,GEC1(EU.
Then define the following, quasidifferentiable function

£:R"—> R by
fi= max(|G|,~-F-|G|) - |[|G] -2|F|| .

This type of function is considered in [1] and eobviously does
not belong to the class # defined in the introduction. For

illustration, Figure 1 shows the graph of a function f of this

type for
2 2
F:R* — R, F(x1,x2) = Xj-X,
G:K@ —> R, G(x1,x2) = —x?—x§+1.2

in the set Q=[-1,1.41 x [-2,1.25].

RS
-:,,",'

e
iy l:,,":,, 1y

- ARG

R aitit
R

R g

.

Figure 1

— Gl — 2IFI|

f(x1,x2) =MAX(IG| —(F + IGI))

For functions of that tyme, as well as for the class F# , the

following properties are valid, as observed in [31].

I. If for all xeR"™, the convex, compact sets af and §f‘x

are computed as in [3]

the

X —> 3f

and

are upper-semi-continuous.

two mappings

X —=> 3f X

Moreover for suitable ¢,y > 0O

the functionsgef, ﬁuf are also upper-semi-continous.
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II. If x€F" is not a stationarv noint, then there exist a
real number M >0 and a neighbourhood Uo of OEIJI, such
that for all veu

- _4af
d(g+y)

<M

af
dg

N4 .
I,

X X

3. A CONVERGENCE THEOREM

Theorer::

Let f:ﬂfl——>lﬁ be a quasidifferentiable function with the following proper-

ties:

(i) There exist real numbersc >0, u >0 such that for all z€R" f is
(e, W~-quastidifferentiable and the mappings

xb—>_'a€f\x , xr—>§uf|x
and
> §f‘x , > 5}1x

are upper semi-continuous (u.s.c.)

(it) If x€R" is not an e-inf stationary point, then there exist an
M>0 and a neighbourhood U, of 0eR" such that for all yeu, geIm

% -],

< W

yHg

Then: Every limit point of the sequence (xn)nEIV’ congtructed by the modi-

fied steepestdescentalgorithm, is an e-inf stationary point of f.

Proof:

Let x* be a limit point of (xn) and let us assume that

x* is not e-inf stationary. neN

Hence there exist a v €3 f|_ % and a w e§f| % such that
O - X (&) X

[| v +w_|| = sup inf || v+w]| =a>o.
o "oll, weﬁfyx* ve§8f|x* 2
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v_tw
. ; : . ; *
Thus g:= _HVQIGQH— is a normalized descent direction in x .

2
Dbserve that WOEBUf‘x

Since x F—e>a £ is u.s. c.,there exist a neighbourhood § of
ng % and a nelghbourhood U of x* such that for all xeU

9 f‘x < 0.
Moreover,to 9 f‘ * there ex1st a neighbourhood ¥ of F f ¥
and a neighbourhood V of x* such that for all x€v

3 £ c
u ‘x
Choose U, according to assumption (ii) of the theorem. To

*

W:=Ufﬁvr1(Uo+x ) there exists a koEm such that for all k;zko,

xkEW. (Here k isthe index of the convergent subsequence .)

Let us denote by W

€5 £ the point which is nearest to w_.
k="u Ix o

k
From the upper semicontinuity of Euf we have

lim w* = w
"k o]

Now, let Vi ED f/ be a point of minimal distance to -wir.
—c Xk k

Then lim (dlst(vk,gef\x*)=0-

The neighbourhoods of aef‘x* can be assumed to be bounded,

since aEf «* 1is compact.

Hence, there exists a subsegquence (vk) , also indexed by k,

which converges to Gezaef‘x*. keW

Thus, for a suitable subseguence and an index K we have:

ii:||wk+v =||wO+GH22 dist(wo,gsf x*) = a .

I
ks
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We see that ;=VO since the Euclidian norm is strict.
Therefore, for all k>K

a
[[w, + v > 3

>
k 2
Now, we want to show that for k large enough,

Vit
Tk T T v [

k k'
is a descent direction in x*.

For this, let o > 0. Then:

df
—_r % &
[ (x), -x ) +ag, ]

- * *, .58

x¥*

From assumption (ii) follows

daf
d[(xk—x*)+a§k]

df *
- o L 4o (Ix-x*]])
o d@k . k 5

X

and therefore

af

PO *
f(xk+agk)—f(x )+(1a§;

* A *
+o (|| x) ~x +agkw;+OQ|xk—x |L)

*
X

af
=f(x*)+ a +0 (|| x, =x¥|) +o (a) .
a3, " kL

From the definition of quasidifferentiability we have:

é;&. = min (max <w+v,§k>)
Ik < wed £ ved f|,
k H k -t k

and therefore, from the definition of Vit

= < max <w, +v,§, >
By Tver |, & k
k € %k
=1
< max (— <wk+v,wk+vk>- wk+ka )
Veéef‘x 2

k
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_ 2 -1 _ _a
o Nl 2l 3 = = vy 11, 5 - 2
Since %£ S max <v,§k> + min_ <w,§k> ,
k| .« €D wEBE, _«
X N | x
§€f+X*CU

W, €8f|x* and %—H@ Wy =W

we find for a given 6 > o an index K1 such that for all kz K1

A

£ max <v,§k> + min_ <w,g,>

d‘3"k|x* v O WEDBE

éef|x*CU

. { max <v,q,> + 8 ) + <w_,3,>
vegef‘x k o 7k
- |
< ( max <v,g.> + & ) + <w, ,9,> + W, —W
VE§€f| k k"7k k "o
*x
< 4f +28 s -2 425 .
dg 2
k|xk

-~ . » . . *
Thus, for all k zK we see that gk is a descent direction in x .

1 r

Hence there is To> o such that for all T s To

~ *
f(xk + Tgk) < fi(x) .
Now by the definition of the sequence (xk)k EN via the modi-
fied steepest descent algorithm and by condition ii.) of the

theorem we have:

f(xk+1) = f(xk + ak'g(xk)),
£ min f(x, #+ ag,) = f(x, + 38,93,)
osasay k k k k7k

A

A *
f(xk + Tgk) < f£(x)

for a suitable 1= To .
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This contradicts the facts that (f(xh)) is monotonously

decreasing and lim f(xk)=f(x*). keN

QED.

Remark: The proof also remains valid fore=o, i.e. replacing

"e-inf-stationary" by "inf-stationary".

b, NUMERICAL EXPERIENCES

The above mentioned modification of the steepest descent method
was implemented on the Siemens 7780 at the Computer Center of
the University of Karlsruhe.

Applying this procedure to the motivating example of Section 2,
e-inf stationary points could easily be found (this is also true
for problems under constraints, see [2]).

Let us now discuss a further example.

Example
let f:IR3—> R be given by
£o(x,,%,,%) =((x,+x.) + V(x,-x )2+4x2 )y /2
1 1772773 1 2 1 2 3
and
_ = V% —x) 2rax2
f2(x1,x2,x3) —((x1+x2) (x1 X,) “+4x] )/ 2
with:

£(xy0%y,%X3) = [£,(x0,%x,,x3) | = [ £, (xy,%,,%5) |

. 3
Obviously f1,f245C1(K2) .

This function occurs naturally in the investigation of the con-

dition of matrices, i.e., if we assign to any symmetric (n xn)-
matrix A:(aij)1ii,jin the difference of moduli of the maximal
and minimal eigenvalue |A | and |A_. | respectively, i.e.
max min

LR, R —— R

wn(A):=|Amax| - |>‘minl
This function is quasidifferentiable, since Amax = sup <Ax,X>

Ix =1

1s a convex function and A_. = inf <Ax,x> is a concave function.

lxll=1
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For n= 2, ¢n coincides with the above defined function fﬁR3——+IR.
Morover, the properties i) and ii) of the theorem are valid for
the sets ggf and §uf for suitable ¢ and u. Figure 2 below gives

an illustration of the graph of the function f for 4 different

values of Xa i.e. Xy = 0.3; x, = 0.2; Xy = 0.1; x, = 0.0.

3 3

=03

f(x1 'Kz,x3) for Xq

-1.33-067 0 0.67

f(x1,x2,x3) for xy =02

-1.33 -067 0 067 133 2

Tigure 2
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-2 —-1.33 -0.67 0.67 133

Figure 2

The behaviour of this function Xy = O is similar to that given

in example 2.1 of [4].

In Clarke's sense, the point (0,0,0) is stationary, but is neither
minimum or maximum, nor a saddle-point. It is a monkey-saddle point.
Moreover, O€int (3_,f|;), i.e., O is an inner point of the Clarke
subdifferential. Of course, using quasidifferentials, the algo-

rithm could find a descent direction (0,0,0).

The "cumulative character" of Clarke's subdifferential can be

clearly observed in Figure 2.
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A MODIFIED ELLIPSOID METHOD FOR THE MINIMIZATION OF
CONVEX FUNCTIONS WITH SUPERLINEAR CONVERGENCE
(OR FINITE TERMINATION) FOR WELL-CONDITIONED (3
SMOOTH (OR PIECEWISE LINEAR) FUNCTIONS

G. Sonnevend
Department of Numerical Analysis, Edtvds University,
Muzeum kérut 6—8, 1088 Budapest, Hungary

INTRODUCTION

The motivations for constructing algorithms with the prop-
erties specified in the title of this paper come from two
sources. The first is that the ellipsoid method (see e.g. Shor
(1982) and Sonnevend (1983)) has a slow (asymptotic) convergence
for functions of the above two classes. The second arises since
the popular idea (practice) that the globalization of convergence
for the asymptotically fast guasi-Newton methods should be
achieved by the application of line search strategies (these are
described in Stoer (1980); bundle methods are described
in Lemarechal et al. (1981)) becomes rather guestionable if
function and subgradient evaluations are costly and if the
function is "stiff", i.e. has badly conditioned or strongly
varying second derivatives (Hesse matrixes).

Indeed, line search uses - intuitively speaking - the local
information about the function only for local prediction, while
in the ellipsoid method the same information is used to obtain
a global prediction (based on a more decisive use of the
convexity). In the bundle (e-subgradient) methods the generation
of a "useable" descent direction (not speaking about the corre-
sponding line search) may require - for a nonsmooth f (in the
"zero-th" steps) - a lot of function (subgradient evaluations).
The important feature of the ellipsoid method, which will be
used here to obtain a method with finite termination (i.e. exact
computation of f*) for piecewise linear functions (which is
very important for the solution of general linear programming
problems), is that it provides us with (asymptotically exact)
lower bounds for the value of f*.
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Of course, for nonconvex functions or when n,the dimension
of the independent variable x, is very large and we have some
special (sparsity) structure, the "optimal" choice of a glo-
balization method may fall on another method (using line
searches or homotopy), especially if sensitivity (stability)
aspects (with respect to rounding or measurement errors) are
important. Concerning the sensitivity of a much more stable
ellipsoid method we refer to Sonnevend (1983).

The two sources mentioned above are, in fact not very
different: it is very important to understand that for Cﬁ but
"stiff" convex functions the "initial" behaviour of any algorithm
is the same as for the class of general convex functions: any
convex functions can be arbitrarily closely (uniformly)
approximated (say, over a simplex) by c” convex functions for
which the Hesse matrixes are nonsingular at their (unique)
minimum points. Concerning test results supporting the com-
petitiveness of "ellipsoid" methods we can refer e.g. to those
cited in Ech-Cherif, Ecker (1984).

Of course, when we wish to prove - for the proposed method
- the two (asymptotic) convergence properties mentioned above
it is natural (in fact, almost necessary) to assume that the
(function, near to its) minimum is "well conditioned" in
respective sense, see below.

The interest (coming from different fields of applications)
in constructing methods for the computation of the minimal
value f* of a general (nonsmooth) convex function f (over R™)
should not be stressed here, see e.g. Zowe (1984); neither is
a detailed, formal description of the allowed algorithms
necessary. It will be enough to recall that an algorithm
consists in the sequential choice of points x.ERn, 3j=1,2,...,
where the values f(xj) and g(xj)EBf(xj), i.e. one subgradient
of f at Xj’ are evaluated. A positive and important feature of
the algorithm presented below is that it provides - at each
step s - an easily computed and good (asymptotically exact)
upper bound §(s,f) for the unknown value

e(s,f):=min f(x.)~f* , (1.1)
j<s
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i.e. a lower bound ls for the value of f*. The global error of
an N-step algorithm A -over a class of functions F - is defined
by

e(N,F):=sup{e(N,f) | f€F}, (1.2)

where it is understood that in (1.1) xj=xj(A,f(xk),g(ﬁ<L k<ji, B,
for j=1,...,N.
The function f will be assumed (in Section 2) to belong

- for some, finite, known values m,M - only to the class

F=F(m,M,Ly)={hlh convex on Rn, X*(h)nL,#P,
m<h(x)<M, for x€L.}, (1.3)

where L, is a ball of radius R around the origin in Rn, and
X*(h)={z|h(z)=inf {h(x) Ix€R"}}. It is well known that a general
(finitely constrained) convex programming problem can be reduced
- via exact penalty functions - to an unconstrained problem.

The proposed method is a nontrivial, stepwise combination
of a modified, graph ellipsoid method (GEM) - presented in
section 2 - of a simple quasi - Newton method and of (a proximal
point) cutting plane method: roughly speaking one chooses - at
each step - that method of the three which leads to an
ellipsoid of smallest volume. All three "next" ellipsoids
(possible followers of the present one) are constructed to
contain all "minimumpairs" (z*,h*) - with z®*€L, - of functions
h compatible with (i.e. indistinguishable from) f based on the
information collected up to that step. It will be, in fact,
enough to update (resp. apply) the quasi-Newton (resp. cutting
plane) method only after each (consecutive) n steps. The global
(linear) rate of convergence of the method is the same as that
of the ellipsoid method (per one function and subgradient

evaluation, i.e. "step", which requires 0(n2) arithmetical
operations: in the average, over periods of n steps). We
emphasize that the proposed method is a "stationary iteration”
method which "automatically" tunes itself to the required,

asymptotic behaviour.
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2. A MODIFIED (GRAPH) ELLIPSQID METHOD

As a result of search for a (global) acceleration of the
method of centers of gravity (CGM) we proposed in Sonnevend
(1984) a graph method of centers of gravity (GCGM), whose
(global) convergence rate is exp(-n—?) and - as an easy implemen—
table approximation for the latter - we also proposed a graph
ellipsoid method (GEM) described below in a more detailed

manner.
Let us begin with a definition: we say that - for a convex
+ . , )
function h - the vector (u,V)ERn 1 is a minimumpair (of h) if

h(u)=v=h*=inf {h(2) | zeR"}. The underlying idea of GEM is to
localize the set of minimumpairs of f (which is supposed - see
(1.3) and (2.1) - to have a nonempty intersection with an

initial ellipsoid E,) into a sequence of recursively (i.e.

stepwise) updated ellipsoid Es’ s=0,1,..., of regularly decreasing
volumes. In GCGM these sets of localizations (polyhedrons in
Rn+1,if L, is assumed to be a polyhedron, e.g. a simplex) are

computed exactly and the x-projections of their, recursively
computed centers of gravity are taken as the places of the next
function evaluations. It can be proved - at least for n=1 - that
GCTM has a better (global) convergence rate than CGM, and that
the same holds for arbitrary n is indicated by the following
observation: for piecewise linear functions the asymptotic rate
of convergence of GCGM is - in the worst case - n/(n+2), while
for CGM this number is n/(n+1).

We describe the construction of Es inductively with respect
to the value of s. Let E, be the ellipsoid of smallest volume

containing the set

{(u,v)|uel,, m<vsM}, (2.1)

It is easy to prove that the vertical width of E_ =E,(m,M,L,)
is equal to (M-m)vn+7T and

Noj S

vol Eo =S VATT (1-—=)7 vol L. (2.2)

Suppose now that s21 and an ellipsoid Es_1 is known (i.e.
constructed in the previous step) to contain all minimumpairs
of functions heF (m,M,L,), for which
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)=f .), oh . .), 1<j<s-
h(xj) (xj) ) (xj);«g(xj) 1<j<s-1,

In order to define Es we first define xs,s=1,2,...,to be the

projection of the centre of E 4 to the X space:

xs:=x(c(Es ). (2.3)

-1

Having computed (measured) the values of f(xs) and g(xs) we

define the sets

H§:={(u,v)Ivzf(xs)+<u—xs,g(xs)>}=H2(xs,f(xs),g(xs))

Hf:={(u,v)|vsf(xs)}, TS:=H§0H§HES (2.4)

-1°

We shall present a simple (suboptimal) method - which will
suffice for our purposes - for the construction of an ellipsoid
Es of small (i.e. not necessarily minimal) volume containing
TS for the somewhat more general case, when TS is replaced by
T=ENH,NH,, where H, is an arbitrary "horizontal, lower" half-

space,
H,={(u,v)|v<h}, H,={(u,v)=t|<t,p>2c}, (2.5)

where p=¢g,1), gERn and the ellipsoid E is arbitrary, but non-
degenerate. The computation of a minimal volume ellipsoid,
E*(Ts) containing T, - by some rank two update formula - would
not be very difficult, for special cases this was done already,
see e.g. Eh-Cherif, Ecker (1984) or Shor (1982).

It is important to note that in the special case T=Ts, either

HfﬂE or HiﬂEs is contained in a "half ellipsoid” Es_ nH,

s-1 -1 1
where the boundary of H contains the centre of Es_1. Indeed,

if £(x )2v(c(E__,)), i.e. the last coordinate of the centre of
Eg_1v

we can choose H be parallel to H?, which amounts to moving Hg,

then we can choose H be parallel to Hi and if fO%)<QNES_D

1
resp. Hf downward, resp. upward.

We shall need first to compute the minimal "horizontal", or
parallel to H, layer(depending on the alternative defined just
above) S(E,H,,H,) containing T. This clearly amounts - say in
the case of the horizontal layer - to computing the value
m(E,H,):=min {vithere is an u such that (u,v)€EENH,}, (2.6).
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Further we have to compute the minimal volume ellipsoid
E*(E,S) containing the intersection of an ellipsoid E and a
(horizontal) layer S.

Finally Es will be defined as the ellipsoid

S

. HY, H), (2.7)

s -
S))=:E(E

E_:=E*(E S(E__ ., Hy, H
S S S

-1 -1 s-1

(and x is chosen according to (2.3) for s-=s+1).

s+1
The ellipsoids E=E(w,A) will be represented by their centers

+ +
w€Rn+1 and symmetric, positive definite matrixes A=ATEI¥? Dx(nt1)

E(w,A):={tI<t-w, A-"1(t-w)><1}. (2.8)

The value m(E,H,), thus the "width" of S(E,H,,H,), for the
data (E,H,,H,), see (2.5), (2.8), can be computed as follows
(for simplicity - but, of course, without loss of generality -

again for the case of the horizontal layer)
1
m(E,H,)=v(w)-g<Ap,e,>| |Apl |~ 1-vT=gZ<aPel,eb> /2,

-1
where e§:=e°-<eo,p>llpl|‘1)(1—<e0,p>21Ipll—z) /2, e,=(0,0,...,0,1)

aP.=a-n (Ap)!<AP,P>—1, q:=(<p,w>-cz)<Ap,P>_1/2.

The parameters of the ellipsoid E*(E,S), for E in (2.8) and
S={t|€s<y,t—w><Ay,y>_1/25n}, 0<E<n<1 are given by the following
formulae (note that the alternative stated above assures
that the chosen layers always do not ccentain the centre of

E in their interior, thus § > 0 can be assumed);
A%:=p2(A-(1-(¥/p)?)AY(AY)*<By,y>"1, (2.9)
-1 1
w*:=w-2¢ AY<AY,Y> /2, 3{:=€+W(1—(1-€2)p‘2) /2,

where

1
__(n+1)2(.  n2+g2 n2-g2 (1-n2)(1-g2)) /2
2 n2+2n[1 2t [( 2 )2+ (n+1)2

Y:=(n-£) (VT=TT-1Z)p=2 + VT-TT=E2)p=2), (2.10)

For the cases when n=1; E*(E,S)=E*(ENH,) or E*(E,S)=E*(EnH,).
Moreover the volume of E*(E,S) is equal to an. For a proof
of these formulae see e.g. Kdnig, Pallaschke (1981) or the
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references in Shor (1982). Note that in the special cases,
where ENS=ENH, or ENS=ENH,, (i.e. when n=1) these formulae are
more simple, morever they would be enough for assuring the next

fundamental inequality:
n-1

vol E*(E,S(E,H,,H,)svol E"(E,Hi)s)\n+1(1-£i)(1-£;) 2 o1 E__,

for i=1, or i=2, where
_n-t 1
2 o 2(n+1)_

.
= - 2
>‘n n+1(n 1 <

Consequently by our construction we shall have

vol ESSexpG(Z(n+2))‘1) vol E_ for all s, (2.11)

-1

We have now almost everything needed for the proof of the next
theorem.

Theorem 1. The algorithm GEM, described above by (2.9) assures
(such that 1lim k, ,=1 for n=e)

the existence of a constant k2 n
7

r

for which

e(N, £k, n(M—m)exp(—N(Z(n+1)(n+2))_1).

holds for all f€F(m,M,L.).

Proof. As for the original ellipsoid method, here also the
following Lemma will be useful. It is well known in the theory
of ellipsoid method; for the simple proof see e.g. Sonnevend
(1984).

Lemma 1. The information that a convex set L< R’ contains all
points z(of a convex set L,), where a convex function is less
than a constant ¢, implies that

\1/1’1
J (sup £ - inf f). (2.12)
Lo Lo

Vol L

-1in < —_—
c-inf f < [Vol To

Lo

We apply this Lemma with c=min{f(xj)ljSN}=: N’ L={u|(u,c)EEN}
and Lo as defined earlier. First we note that vol L £ vol KN,
where KN is the horizontal, central section of EN, and

vol Ey = 2 ., x;15(EN) vol K (2.13)

N N /
/2 1 nn/Z
where §(Eg):=<Ae,,eq,> 2 5 e(N,f),

— is the
r(§-+1)



271

volume of the unit ball in R". From (2.2), (2.13), and (2.11)
we obtain -~ for A=exp(-N(2(n+1))~1) -

vol E vol KN 6(EN) vol L

N e(N,f)
> = > !
>"‘vol Eq vol L, M-m k1,n ~vol L, M-m k1,n 1
-3/, -3/, L R
where k,n < k1 n < k,n , for some finite, positive
1

constants and from this follows that we have

y1/n

. 1/n+1_, -1 [ volL 1/n+1_, -1 e(N,f)
either A Zkz,n[volLoJ or A 2k) ' TMem
where k2 n tends to 1 for n+«., This finishes the proof by the
1

definition of A and by Lemma 1.

Remark 1. Notice that we could replace - in the definition of

H? - the value f(xs) by fS i.e. the minimum of the f values com-
puted up to step s. Since as a by-product of the update fonmlae
(2.10) we can compute the volume of Es,s=1,2,..., a lower bound
L for the value f* can be updated: JLS:=fS—k2,m(M—m)e}q>(—s(2(n+1)(n+2))‘1),
The values f_ and ls can be used for narrowing a horizontal layer
S(E__,,H7,H3).

Remark 2. Even if the volume of ES decreases regularly (if
g(xs)#O), the diameter of E, may tend to infinity for s-»«, which
then leads to amplified rounding errors in the update formulae.
It has been noted by several researchers, see e.g. Gill et al.
((1981) that - for reasons of stability - the update formulae
should be written for the matrixes Ig=Bg Qs’ where QS is an
(arbitrarily chosen) orthogonal matrix and BkB;=Ak. In Sonnevend
(1983) it is shown that these diameters can be kept bounded by
introducing "stabilization steps" in which the intersection

E_ NE, is included in an ellipsoid of (uniformly in (n,k))
k
bounded diameter and small volume (i.e. proportional to vol Eg ).

It is shown there that by a suitable stopping rule one obtainsk
thus an algorithm in which - in order to compute f* within
accuracy € - it is enough to have rounding and measurement errors
not greater than €7 const (if - for f - the existence of a finite
Lipschitz constant is assumed), moreover the sequence of
stabilizing steps (and some other safeguards) can be chosen so
that the essential complexity, convergence features of the

original ellipsoid method are maintained.
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3._MODIFICATIONS YIELDING THE REQUIRED ASYMPTOTIC BEHAVIOUR

We shall give the most simple modifications by which +the
required (asymptotic) properties can be ascertained for
functions with well conditioned minimum. Here the (usual) notion
of a well conditioned minimum for "smooth" functions is given
below; for piecewise linear functions we define this notion by
requiring the following assumption to be fulfilled for f: there
exist finite and positive numbers d, and D, such that - for the

unique minimumpair of f -
f*4d, | Ix-x*| | S£(x)<D, | Ix-x*| | +£*, (3.1)

holds in a (convex) neighbourhood of x*, V,, where there is no
point z - other than x* - for which (z,f(z)) is a vertex of the
graph of f. (Let us note that for GCGM the analogous, in fact
more simple modifications allow us to obtain finite termination
for arbitrary,piecewise linear functions).

The existence of a well-conditioned minimum for a "“smooth®
function f will be ensured by requiring that feC2, and for

its unique minimumpoint x*,

g(x*)=0, Q%%?l =: B(x), 1is nonsingular at x=x¥*, (3.2)
| IB(x)-B(x*)||<L]||x-x*||, for some, finite L, (3.3)

and for x in some convex neighbourhood vV, of x*.

Without loss of generality we can assume that
dyllz||22<B(x)z,z><D,|1zl]2, for all z in V,,

and some positive finite constants d,, D,.
Iet e1,...,en be the orthonormed system of coordinate wvectors
in the X space. We define a matrix function B(x) as the unique

solution of
~ -1
B(x)ej=(g(cj)—g(x))lIg(x))ll , J=1,...,n, (3.4)

where cj=x+||g(x)lle., j=1,...,n, for all x such that l[lg(x)llze,isa
prefixed, small number. In order to simplify the phrasing of the
proofs below, we shall set €,=0.

Now we define (the construction of)the ellipsoids E_,
s=0,1,...,In the modified GEM by induction with respeét to s.

Let 2_1:=x0, ﬁo:=Eo. Suppose that - at step s - we have already
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computed an ellipsoid ﬁs_1 and a vector 25_1 (the latter is that

point among those where f and g has been evaluated,which yields
the smallest value for f). We define xs:=x(c(ﬁs_1)), (see (2.3))

and compute

Z = 2o _4- Bs—smodn g(zs_1),where Bnq:=B(znq_1),q=O,1,..., (3.5)

if in the computation of B~'(z) for z=;nq-1 - say by a QR
factorization - we obtain an inverse whose maximal element (or
Frobenius norm) is not larger than a prefixed (large) number @,

otherwise we define Es:=xs.
Next we evaluate the functions f and g at Xg and at ES and

compute the ellipsoids, see (2.7)

E :=E(E

5 .8 ~ o _=oa S ~s
s g-1-H3,H3) and E_:=E(E__ H3 ), (3.6)

11

where Hi, i=1,2 are defined as in (2.4) but replacing x_ by

In order to define the (proximal point) cutting plane step,
which will be fulfilled only once after each n,consecutive
iterations, i.e. for s=nqg+r, g=0,1,..., r fixed (arbitrarily:
say r:=0) - we need the values of the (asymptotically exact)
lower bounds, L7 (see Remark 1 above, of course 2. can now
We fix a number A>1 and

be computed from the volume of E.).
2e,)

~ J
solve. the problem (if |lg(z _, )1

)>=2 }, (3.7)

s-1

inf{llz__ -yl |fz _)+<y-2zo_4,9(z _4

(we set 2,:=m), and evaluate f and g at its unique solution

point, X if it is defined and belongs to AL,. Suppose now

1!

- by 1nduct10n with respect to the value of k - that X =X

R TEREYE S k< n are already defined and denote the linear
14 14

functions, corresponding to these points by Lj(y):=f(xs y) +
14

+ <y=-x_ ., g(x_.)>, j=0,...,k. We define x as the unique

X,] S, ] s,k+1
solution point (if it exists and belongs to AL,) of

inf{llz__7 y!!l|min ?2§ Lj(y))— I S (3.8)

where for k=n the equality sign before QS should be replaced

-1
by the inequality sign 2. Finally we evaluate the function f at

Xg n and compute the minimal volume ellipsoid, see (2.8)-(2.10)
14
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E_:=E*(Eg_4,54), Ss:={(u,v)lhS pSvsElx 03, (3.9)

14 14
in the cases when either (3.8) or (3.9) has no solutions (inside
AL,) we set Es:=ES_1.

Now the description of the proposed algorithm is finished by
defining ﬁs to be that one among ES, Es' Es which has the
smallest volume.

Remark 3. Note that one could use - instead of the values
g(g.) and f(x_ .), g{x_ .), j=,1,...,n -the values of £ and g at
J S,] S,]

points computed earlier, say at x j=1,...,n in order to

—57
define recursively updated quadraiig (resp. piecewise linear) ap-
proximations. We did not do so both for simplicity and for reasons
of stability. What is important is that the number of arithmetical
operations per function evaluation remains in the modified method
0(n2) (in the average: over periods [s, s+n]), while-for the

volumes of ﬁs we have - as a consequence of (3.6) and (2.11)

vol ESSexp(—(Z(n+1))_1)vol E s=1,2,... . (3.10)

s-1'
Thus we have proved the first part of the following theorem.
Theorem 2. The modification of GEM described above has the
required global and asymptotic convergence properties.

Proof. From (3.10) and Lemma 1 and the assumption (3.1) follows
that - unless the algorithm is stopped: a trivial alternative,
which we shall neglect in what follows - there exists a finite
value for g,,such that Enqo—1evo, which is estimfble in terms

of the constants n,m,M,Lo,d,,D, and V,. Since f(zs_1)isnmnotonic-
ally decreasing in s, and the lower bounds ls are asymptotically
exact (with a predictable convergence rate for (f*-%s)), there
exists a go so large that for s=ngo

D1 o gogx (3.11)

* o =
(£*-2_) g+ < ,

-1

where H is the maximum of the values such that - except (x*,f*) -
no vertex (x,f(x)) of the graph of f exists for which f(x)<H.
Now (3.11) implies that the ellipsoid ﬁs has zero volume: i.e.
finite termination occurs.

The equality xs'n=x* is established by showing (inductively)
that the linear functions'Lj, j=0,1,...,n are then all different
(and defined) as a consequence of the definitions of x_ . and

S,]J
of the assumptions (3.1), (3.11).
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In order to study the asymptotic behaviour of the proposed
method for functions f satisfying (3.2), (3.3) we show first
that

| IB(x)-B*| |<K||x-x*||, if XEV, (3.12)

where V, is another neighbourhood of x*, whose size - as well
as the corresponding value of K - can be estimated from below
in terms of (d,,D,,L,V,4).

Indeed, from the identity
3£(b) _ 3f(a) , o

+
ax ax Jj

W (bl-al)ds, i=1,...,n,

axX 9x

||}

1
i)
1 o
one obtains that,for zev,
11g{z)-B*(z-x*) | <Ll [z-x*}12 , (3.13)
Therefore, if z is such that chV1 for j=1,...,n,
H(g(cj)—g(z))ﬂﬂg(z) H“-B*ejﬂséL(|ICj—X*II2+IIz-x*llz)llg(z)ll‘ﬂ
Now observe that - again from (3.13) -
[ lz=x*| [ (dy=L| |z-x*| 1)<| |g(2) | IS(D,+Ll | z—x*| | ) | |z=x*| |, (3.14)
By construction we have the inequalities
IICj-X‘IISIIg(z)ll+l|z—x*ll (3.15)

From all these the existence of V, and K with the property (3.12)
follows by simple calculations.

We now need a well known fact from the theory of quasi-Newton
methods, see e.g. Ortega, Rheinbolt (1970): suppose that for

the iteration

.= B~ i =
Z; 13725 Bi g(zi), i=0,1,...,

where g satisfies the conditions (3.2), (3.3) one has an

estimation
IIBi—B*IISKllz—x*II, for all i=0,1,...,.

Then there exists a neighborhood V, of x* and a finite number
c, whose size (resp. value) can be estimated from below (resp.
above) in terms of (d,, D,, V,, L, K) only, such that if x,€V,
then

I x,

l+1—x*||$c||xi—x*||2, for all i=0,1,... . (3.16)
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From the fact that the sequence f(z_,_,), s=1,2,... is mono-
tonically nonincreasing and tending - for s»® - to f* by (3,10),
we cbtain, in view of the conditions (3.2) and (3.3), that

zs_1 + x*, 6 for s+*», Therefore we shall have

2 €V,, if g2q,, (3.17)

ng-1

and - if Q (and g,) is chosen to be large enough - the matrixes
ﬁnq will be defined for g>g, so that the iteration (3.5)-(3.9)

assures that Es €V, for all s>nq,, (notice that the maps(I—QyQ

are contractive ;or all g large enough, in fact their norms
tend to zero).

It remains only to prove the next Lemma.
Lemma 2. Suppose that an ellipsoid E is contained in a ball of
radius bR, H, and H, are halfspaces as specified in (2.5), with
p=¢tg,1), such that the X projection of the intersection of their
boundaries has a common point with the the X projection of E,
then

n+lpny (3.18)

vol E(E,H,,H,) < llgllib n

where Wn+0 for n-w,

Proof. By the assumptions made, the minimal horizontal layer
containing the intersection EAH.AH, has a width not greater than
2bliglIR. Therefore the minimal valume ellipsoid E*(E,S) has
- see (2.2) - also a volume not greater than

n
|1g] 1bVAFT ¢ (1-(n+1)-1Z R'b",

Now we shall apply this Lemma for E=ﬁs_1 for s=nq, q2q,, in
order to estimate the volume of E(ﬁs_1,ﬁf,ﬁ§),see (3.6). Note
that if one is not making the stabilization mentioned in
Remark 2 and guaranteeing the existence of a finite constant
b (for all n uniformly) then everything remains true with b=1

if in the definition (3.6) we set

~ - ~S ~S

E :=E(E,,H,,H). (3.19)
We obtain from (3.16) - (3.18) that

volIIEanISC4 volz(Eqn_1), for g=q, (3.20)

where the constant c, is independent of g. From this by Lemma 1
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we obtain the superlinear convergence of the values of
(f(Es_1)—f*), which implies by the conditions (3.1)-(3.2) the

superlinear convergence of ||zS 1-x*||, for s-w,
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NUMERICAL METHODS FOR MULTIEXTREMAL NONLINEAR
PROGRAMMING PROBLEMS WITH NONCONVEX CONSTRAINTS

Roman G. Strongin
Gorky State University, Gorky, USSR

1. INTRODUCTION

Existing approaches to multiextremal optimization (see Evtushenko, 1971;
Ivanov, 1972; Mockus, 1977; Strongin, 1978; Zilinskas, 1978) mostly focus on
numerical methods for unconstrained problems. Constralnts are usually handled
by introducing penalty functions since other techniques (see, for example,
Demyanov and Vasiliev, 1981) require the minimizing function and the con-
straints to be convex, unimodal, or to have other properties. Below we pre~
sent a new algorithm for multiextremal problems with nonconvex constraints

which does not make use of penalties.

2, ONE-DIMENSIONAL CASE

Let us consider the problem
min{h(x) : x € [a,b], gi(x) <0, 1 €<i <m} , oY)

where the function h(x) to be minimized (denoted below by gm+l(x)) and the
left-hand sides gi(x), 1 <i <m, of the constraints are all Lipschitz func-
tions. We also assume that the functions 84 1 €1 <mtl, are defined and

computable only in the corresponding domains Qi’ where

Q = la,bl , = {x€Q:g; ()< 0}, 1<i<m ,

At
and the following inclusions obviously hold

{a,b] = Q2 Q,>... 2Q41 2,4, s

where Qm+2 # §. With each point x€ (a,b) we associate an index
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s =s(x) , 1S s<mHl (2)

defined by the requirements xEQS and xQEQS_H. The maximum value of the

index (2) over the domain [a,b] will be denoted by N, i.e.,
df
1<N== max {s(x) :x€[a,b]l} . 3)

Now we introduce the optimization problem

®
ey

I

min {gN(x) :xEQN} s (4)

which is defined for any value N from (3). If N = mt+l the solution of this
problem is simultaneously the solution of the source problem (l). If, on the
other hand, N < m+l (i.e., the constraints in (l) are incompatible) we obtain

*
the inequality gy > 0, which provides a test for this case. The function

0 , 1if s s{x) <N
H(x) = gS(X) - > (5)
s{x) = N

if s
*
is associated with the problem (4) in the following way: the point x re-
*
presenting the absolute minimum of H(x) over [a,b] is such that gN(x) = gy
* *
X EQN and H(x ) = 0, 1.e., unconstrained minimization of the function H(x),

x€ [a,b], yields the solution of problem (4).

*
Since the value denoted in (4) and (5) by gy is not known a priori, the

method described below employs an adaptive estimate of this value.

3. ALGORITHM FOR ONE-DIMENSIONAL MULTIEXTREMAL PROGRAMS

Each iteration of the proposed method at any arbitrary point x € [a,b]
involves the determination of some corresponding value f(x) = gS(x) (where
s = s(x) is the index from (2)), obtained by successive calculation of the
value of the functions gi(x), 1< i< s. It is a condition that gi+1(x) can
be calculated only if gi(x) < 0. The calculations are terminated when either
the inequality gs(x) > 0 or the equality s = m+l is satisfied. The above
process therefore results in the evaluation of both f(x) and s(x) for any

given point x.
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1
The first iteration is carried out at an arbitrary point x € (a,b). The
choice of any subsequent point xk+l, k 2 1, is determined by the following

rules:

. 1 . .
(a) points x ,...,xk from previous iterations are renumbered using sub-

scripts in the following way:
a-= x0<xl <... <Xi <... <Xk <Xk+l =b

and associated with values z, = f(xi), 1 €i <k, computed at these points

(values 2, and Zp41 are undefined);

(b) the following sets of indices are constructed:

,_.
|
—
0
™
N

= {0,k+1} , i<k,s = S(Xi)} R

s =1, U,,.UI1 T =1 U...VI 1 <s <mtl

s-1 ? s s+1 m+l

and the following values calculated:
-1 . .
= - - s i <
MS max{|zi zjl(x:L xj) .1,J€Is,1 i} ., (6)

1< s< mt+l. If |Is| < 2 or MS from (6) is equal to zero, it is assumed that
Ms = 1;
(c) for all nonempty sets I 1 <s S<mtl, the following values are

determined:
o, ifTS#(b ,
min {Zi:IEIS} , if TS=Q) ;

(d) for each interval (Xi—l’xi)’ 1< i< k+tl, the value R(i) (called the

characteristiec) is computed, where

Sy 2,2 *

ROA) = Gy )+ (zymzy ) )TMGGgmxy ) = 202ty (=22 /M
i—l,iEIS H
*

i) = - - - (S { -~ '

R(1i) Z(Xi Xi-—l) l.(z:.L zs)/rMs , 1 Is , 1 lGSs H
*

R(i) = Z(Xi—xi_l) - 4(zi_l—zs)/rMs, 1—1€IS, 1€SS
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(here r is a parameter, with a value greater than 1). The interval (Xt—l’xt)
with maximal characteristic R(t) = max {R(i) : 1< i< k+1} is then determined.

If s = S(xt—l) = s(xt) then the next iteration is carried out at a point

k+1

X = [(xt+xt—l)/2] - [(z —zt_l)/ZrMS] :

t

otherwise, i.e., if S(xt—l) # s(xt), the second term in the above formula is

omitted.

4, SUFFICIENT CONVERGENCE CONDITIONS

THEOREM 1. Assume that for N from (3) the following conditions are satis-
fied:
(a) domains Q, 1 < i SN, are the finite unions of intervals of positive

length in [a,bl;

(b) functions g, (x), 1 S1i SN, x€Q;, adnit Lipschitz extensions (with

corresponding constants Ki) over [a,bl;
* . .
(¢) point x is a solution to problem (4);

(d) the inequality ™ >'2KS, 1 <s <N, for N from (3) and for M, from

(6), is satisfied for some step in the search process.

Then:
*
(1) =x s an accumulation point of the sequence {xk} generated by the
* *
algorithm described above and convergence to x <18 bilateral if x + a and
*

x # b;

(2) any other accumulation point x' of the sequence {xk} is also a solu-

tion to problem (4).

Computer simulations of the search process for a given one-dimensional
problem with two constraints yleld the results presented in Figure 1. The
plotted curves represent functions Bys 1 €1 <3, the labels corresponding
to the values of subscript i. Vertical bars indicate the iteration points
XyseeerXgy and are arranged in three rows according to the values of indices

\)(xk), 1 <k <57,

The points marked on the broken line in the lower part of the figure
. k R k . .
represent pairs (x ,k), where k is the step number and x 1is the coordinate
of the corresponding iteration. This simulation terminated at the 58th step

-1
right-hand side of this condition is of course the required accuracy.)

when the condition xt—xy < 0.001 (the stopping rule) was satisfied. (The
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FIGURE 1 Computer simulation of the one-dimensional search process
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5. MULTIDIMENSIONAL MULTIEXTREMAL NONLINEAR PROGRAMS

Program (1) could be generalized to the multidimensional problem

min {h(y) :yGD,gi(y) <0,l <i<n} , @)

where

D={yER“;aj<yj<bj,1<j<n} ) (8)
This problem can be reduced to one dimension by employing a Peano-type space-
filling curve mapping a unit interval [0,1] on the x axis onto the n-dimen-~
sional domain (8). Thus it is possible to find the minimum in (7) by solving

the one-dimensional problem
min {h(y(x)) : x€[0,1] , g, (y(x)) <0,1 <i<m} . (9

As shown in Strongin (1978), the Peano transformation y(x) provides a
function gi(y(x)) that satisfies HYBlder's condition if the source function
gi(y) satisfies the Lipschitz condition. Thus problem (9) could he solved
by a generalized version of the above algorithm. The difference hetween these
two algorithms is that all distances of the ty?? (xi—xiel) in the original
yi/m

algorithm must be replaced by values (xi—x.

-1 in the new algorithm, for

which some analog of Theorem 1 will hold.
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A MODIFICATION OF THE CUTTING-PLANE METHOD WITH
ACCELERATED CONVERGENCE

V.N. Tarasov and N.K. Popova
Department of Physics and Mathematics, Syktyvkar State University,
Syktyvkar, USSR

1. INTRODUCTION
The cutting-plane method of J.E. Kelley [3] is widely

used in convex programming. There are some modifications of

this method (see, e.g. [4]), which in some cases accelerate its
convergence. In this paper we discuss another modification of
the Kelley method based on the idea described in [2] for solv-
ing equation f(x) = 0 with multiple roots by the Newton method.
It is well-known that if an initial approximation is close enough
to the root (and some additional conditions are satisfied) then

the Newton method is of quadratic rate of convergence. But it

is not the case if, for example, f(x) = x2 where x € El‘ Then
the multiplicity of the root x* = 0 is m = 2. The Newton method
implies

X =x, - f(x)/f'(x,) = x, - x2/2x = l-x

k+1 k k k k k k 27k

i.e. the rate of convergence is geometric (and its coefficient
is 3). But if we take
— - ]
Xpep1 = ¥y nlf(xk)/f (xk)
(where m is the multiplicity of the root of the equation f (x) =0);

then in our example we get

X = X

2 -
K+1 2xk/2xk =0

k
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Generally speaking, such a modification has quadratic rate of
convergence. This idea is behind the approach we are going to

present (a short description can be found in [6,7]).

2. AN ALGORITHM

Let f be a convex function defined and finite on the n-

dimensional Enclidean space En, QCZEn be a compact convex set.

It is necessary to find a point x* € Q@ such that

f(x*) = min £ (x)
XEQ

By 9f(u) we denote the subdifferential of £ at u, i.e.,

9f(u) = {veE |£f(x) > f(u) + (v,x-u) ¥x€E} (1)
Choose v(u) € 9 £(u) and let us introduce the function

F(x,u,e) = £f(u) + (%~+e) (v(u), x-u) (2)

Take an arbitrary point x.€ Q and puto0 = {xo}. Let

0
og = {xo,xl,...,xk} have been found. Let us choose ek==e(xk)3 0
such that

F(x*,x e ) 2 £(x*) (3)

k

Such an g, exists for any k since for € = % it follows from (1)
that

*

*y > + -
£(x7) > £(x)) (vix ), x7 -x)
Therefore we can assume that Ofiﬁkf,% . Now let us introduce the
function
$. (x) = max F(x,x.,c.) (4)
k ieo:k R
and find

Xp,1 = arg min {¢k(x) | x e} (5)
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Now take 0k+l = Oy J {xk+l} and continue in the same manner

Theorem 1. If for some k

b (Xppq) = £, )

then Xerl is a minimum point of f on Q. Otherwise any limit

point of the sequence {xk}is a minimum point of the function

f on Q.
Proof. The first part of the theorem is obvious:
* * -
Elxpy) 2 £x™) 20, (x) 2 ¢ (x 1) = £lxy )

which implies

£(x*) = £(Xpyq)

(inequality f(x*) > ¢k(x*) above follows from (3) and (4)).

To prove the rest of the theorem assume the opposite:
> X, kS + « and

then

there exists a subsequence {xk } such that X
s [

£(X) > £(x%) (6)
By construction
b, (x )= max F (x 1X.,€:) > F(X 1X, 48 ) =
kS ks+1 ig0:x ks+l e ks+l ks ks
= E(x ) + (3 +eE ) (vix ) . (X - %))
= I
ks 2 ks ks ks+l ks
— 5 f(x) .
k
S >
On the other hand, since ¢ (x) < ¢k+lh0 ¥ % > 0, ¥x then
*
) < b xD < ExY)

" *x P I % -1 (xks+l - s+1

s s+1 s+1
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i.e. £(X) < £(x*) which contradicts (6).
Remark 1. If € = % ¥ke0:~ the method becomes the Kelley
method.

Remark 2. Let f be a quadratic function
f(x) = (Ax,x) + (b,x)

where A is an nxn positive definite matrix, beEEn; Q(:En is a
* .
convex set. If X" = arg min {f(x)|X€Q}€ int Q then by the nec-

essary condition for a minimum

£'(x*) =0 (7)
Therefore
£(x) +3(£' (%) ,x* = x) = £(x*) = (Ax,x) + (b,X) + 2(2AX +b,x* = x) -

(ax*, x*) = (b,x*) = (Ax* , x-x*) + T (b, x-x*) = (ax* + b, x~x%) .

Since f'(x*) = 2Ax*-+b, then from (7)

£(x) +3(£" (x),x*-x) =~ £(x*) = (£' (x*),x-x*) = 0 ¥xeQ
l.€.

F(x*,x,0) < £(x%) ¥xe (8)

and in (3) we can choose €x = 0.

Thus, for a quadratic convex function we can always take
k=0 ¥vk.
Theorem 2. If f is a strongly convex twice continuously differ-

€

entiable function then there exists a sequence {ek} satigfying
condition (3) such that ek—+0 as k+=,

Proof. Since f is twice continuously differentiable then the
matrix of the second derivatives is strictly positive definite.
Let x* = arg min {f(x)|x€Q}. Assume that x*€int Q. Since f

is strongly convex then there exists u > 0 such that
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£ (x*) > f£(x) + (£'(x), x¥-x) + pllx"‘—xll2 VXEE,
It implies
(£'(x), x*-x < - plx*-ul? (9)

Let us introduce the function

£,00) = £(x*) + (£ (x*), x=x") +(£" (%) (x=x*), (x-x*))
Clearly

£(x) = £(x*+ (x=x*)) = £, (x) + o(lx-x*1?) (10)
where

oll x-x*1 %) = Z(£" (x*+6 (x) (x-x*)) -

- £ (x*) (x-x*), (x-x*)),6 = 08(x) € (0,1)
and

f1(x*) = f(x%) . (11)

Since f1 is a quadratic function then it follows from (8) that

£,00) +3(£1 (1), x*x) < £,(x*)  wxea . (12)
From (10)

£,(x) = £(x) + o(lx-x*I?)
Therefore

£1(x) = £ (x) + o(lx-x*I)

and (11) and (12) imply

f(x)+—o("x—x*"2)-+%(f'(x),x*-x)-+(O(Hx—x*"),x*—x)f_f1(x*) = £ (x*)
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or
f(x)-+%(f'(x), x*-x)i—O("x—x*"z)j_f(X*) . (13)
Since
* 2, _ x| 2
o(x=-x* %) = a(x)lx-x*1“ where a(x) — 0
x+x*

then from (9) it follows that

lg%%ll(f'(x), x*-x) < -|a(x) |lx=x*1% .
Moreover,
lg—(ui)—l(f'(x), x*-x) < a(x)lx-x*12 |
Hence (13) implies
£(x) + (F+e() (£ (x), x*-x)) < £(x*) (14)

where

ex) = Lol

. (15)
H XX

Thus, if in the method described above (see (5)) we choose ek==e(xk)
then
1) Xy - x* (since (14) implies (3))

2) - 0 (due to (15)). Q.E.D.

€k
Remark 3. Computational experiments have shown that the method
described is very efficient (and for a quadratic function under

some additional conditions it is even finite).
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A FINITE ALGORITHM FOR SOLVING LINEAR PROGRAMS WITH
AN ADDITIONAL REVERSE CONVEX CONSTRAINT

Nguyen Van Thuong and Hoang Tuy
Institute of Mathematics, Vien Toan Hoc, P.O. Box 631, Hanoi, Vietnam

1. INTRODUCTION

This paper presents an algorithm for solving the follow-
ing problem :

(P) Minimize cx , Sete
x € D (1)
g(x) £ 0O (2)
where D c R® is a polytope and g is a finite concave

function on R® . Problems of this kind occur in certain
economic and engineering applications.

Clearly, without the additional constraint (2) the
problem would reduce merely to the ordinary linear
program

Minimize cx , s.t. x €D . (3)

Therefore, all the difficulties of the problem arise from
the presence of the constraint (2) which is called a
reverse convex constraint, meaning that it is the reverse
of a convex constraint. ’

Linear programs with an additional reverse convex
constraint like (P) have been first studied by Bansal and
Jacobsen [3,4], Hillestad [6] and also Hillestad and
Jacobsen [7]. In [3,4] the special problem of optimizing
a network flow capacity under economies-of-scale was
discussed. In [6] a branch and bound edge search procedure
was developed for the problem (P) under the assumption
that the concave function g is differentiable. In [7] ,
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it was shown that an optimal solution for (P) lies on an
edge of the polytope D . From this basic property, a
characterization of the set of edge of D that can con-
tain such an optimal solution was given and a pivot type
algorithm for solving (P) was derived.

Problems more general than (P) have been treated by
Rosen [11], Avriel and Williams [1,2], Meyer [9],
Hillestad and Jacobsen [8], and also Hoang Tuy [13]. In
the latter paper, a finite method was developed for global-
ly minimizing a concave function under the constraints (1)
(2). As specialized to problem (P), it provides an algori-
thm different from that of Hillestad and Jacobsen [7] and
having the advantage of being still valid when D is an
unbounded polyhedral convex set.

It should be noted that the method in [13] is based
on an extension of a method of concave minimization under
linear constraints due to Vu Thien Ban. On the other hand
Hillestad and Jacobsen [7,8] have shown that cuts origi-
nally devised for concave programming could be as well
used for reverse convex programming. Thus, the problem (P)
and, more generally, the reverse convex programming
problem, is closely related to the concave minimization
problem.

The purpose of the present paper is to develop a
finite procedure for solving (P) which exploits this
relationship in a more systematic way than has been done
in the previously cited references. It turns out that a
linear program with an additional reverse convex cons-
traint can be decomposed into an alter.nating sequence of
linear programs (minimizing c¢x under constraints (1))

and concave progrems (minimizing g(x) under constraints
(1) and one additional constraint of the form c¢cx € a ) .
Roughly speaking, the proposed algorithm switches between

steps of two types: in the open region g(x) < 0, we use
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simplex pivots to improve the current feasible solutions, while
at a feasible point on the boundary g(x) = O, we must solve a
concave program in order to decide whether or not the current
feasible solution is optimal and if not to move to a better
feasible solution in the region g(x) < 0. To solve these con-
cave programs we can use any available finite algorithm, for
instance the algorithm of Thieu-Tam-Ban [12] or that of Falk and
Hoffman [5].

2. THE ALGORITHM

For the sake of convenience we shall make the following

assumptions in this section:

(i) Min {cx : xe¢D} < Min { cx : x D, g(x)=0} ;

(ii) The function g(x) is strictly concave and
does not vanish at any vertex of D .

Assumption (i) simply means that the constraint (2)
is essential : if (i) does not hold, then (P) is equiva-
lent to the linear program (3). In the sequel we shall
use this assumption in the following form :

For any feasible vertex u of D , there is a
neighbouring vertex v such that

cv <« cu .

Assumption (ii) is not a too stringent one. Later
we shall see that any concave function g can be made to
satisfy this assumption by a slight " perturbation " .
For our purpose, this assumption is convenient in that it
will allow a significant simplification of the algorithm.

Let us first explain the basic ideas of the method
to be proposed.

o]

Suppose that a vertex x of the polytope D is
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available such that
g(xo) < 0 . 4)

(We shall discuss later the case where such a vertex is not
readily available : see Remark 1)

Since the constraint (2) is not binding for x° it
is natural to first improve x° by moving only on the
polytope D . We do this by applying the simplex proce-—
dure to the linear program (3) : if a neighbouring vertex
xt to x° exists such that cxt < ¢x° and g(xl) <0
we perform a simplex pivot to move to x~ . This proce-
dure can be continued until we find a pair of vertices
u, v of D such that g(u) < 0, g(v) 2 0 . (This must
occur in view of assumption (i)). Then we can move along
the line segment [u,v] to the point X where this seg-
ment meets the boundary g(x) = O (since g is strictly
concave, and g(u) ¢« 0, g(v) 2 O , there is on the line
segment [u,v] just one point X satisfying g(x) = 0) .
Clearly X is the best feasible solution obtained so
far. Therefore, it only remains to consider the polytope

D(X) = {xeD:cx<cx} . (5)

The question to be examined now is whether D(xX) has a
vertex 2z such that g(z) <« O . For if we can find such
a vertex, then the same procedure as before can obviously
be repeated, with D(X) and that vertex replacing D and

(0]
X

The best way to check whether D(X) has a vertex =z
such that g(z) < 0 , and to find such a vertex if it
exists, is to solve the concave programming problem

Min { g(x) : x e D(X)} . (6)

It turns out that, under Assumption (ii) if the
optimal value of g in this program is zero, i.e. if
there is no =z in D(X) such that g(z) < 0, then X
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is necessarily optimal to the original problem (Theorem 1
below). Otherwise, we shall find an optimal solution =z
of (6) , i.e. a vertex of D(X) such that g(z) < O .
Using then 2z 1in place of x° , and D(X) in place of
D , we can restart the whole process in a new round.

In a formal way, the algorithm can be described as
follows.

Initialization. Take a vertex x° of D such
that g(x°) < O . Set D, =D .

Step 1. Starting from x° , pPivot via the simplex
algorithm for solving the linear program

Min { cx : x e D } (7)

until a pair of vertices u, v of D0 is found so that
g(u) <0, g(v) 20, and cv <cu £ cx® . Let X be the
(unique) point of the line segment [u,v] such that g(x)=0.

Go to Step 2.
Step 2. Solve the concave program
Min { g(x) : x € D(X)} (8)
where D(X) = {x €D : cx £ ¢cxX } .

a) If the optimal value in this concave program is
zero, stop : X is an optimal solution to (P) .

b) Otherwise, obtain an optimal solution 2z to (8),
which is a vertex of D(x) satisfying g(z) < O .

Set x° « z , D, «<— D(X) and go back to Step 1.

Remark 1. Unless the problem has no feasible solu-
tion, a vertex x° of D satisfying g(x°) ¢ 0 always
exists (for otherwise g(v) > O for every vertex v of
D, hence g(x) >0 for every x € D). If such a vertex
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is not readily available, it can be found, in any case,
by solving the concave program min{ g(x) : x € D} .

If g(x°) = 0, one can set X = x° and go direct-

ly to Step 2.

Remark 2. Since g(xo) < 0, by virtue of Assump-
tion (i) x° can not be an optimal solution of the linear
program (7). Therefore, a pair u,v satisfying the condi-
tions mentioned in Step 1 can always be found.

3. JUSTIFICATION

To justify the above algorithm we first establish
the following optimality criterion which includes
Theorem 2 in [?7] as a special case.

Theorem 1 (Optimality criterion). Under Assump-
tions (i) and (ii) a feasible solution X to (P) is
optimal if and only if the optimal value in the concave
program {(8) is zero.

Proof. Suppose that X is an optimal solution to
(P), while the optimal value in (8) is not zero. Since
g(x) € 0 , this optimal value must be < O . Then there
is an X € D such that g(X) < 0, ¢X = ¢cX . In view of
the continuity of g , one must still have g(x) ¢ O for
all x in some ball V around X . On the other hand X
being optimal to (P), one must have c¢x 2 cX = cx for
all x € DnV . The latter implies that x is an opti-
mal solution to the linear program (7). Since c% = ¢x ,
this conflicts with Assumption (i). Therefore, if X is
optimal to (P) , then

O =min { g(x) : x €D, cx € ¢X }. (9

Conversely, suppose that (9) holds and consider any
X €D satisfying g(%) € 0, cX £ ¢X . Then (9) implies
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g(%) =0 , so that ¥ 4is an optimal solution to the con-
cave program (9). But, the function g being strictly
concave (Assumption (ii)) its minimum over the polytope
D(X) ={x € D, ¢x £ ¢cx} can be achieved only at a
vertex of D(X) . Therefore X is a vertex of D(X) .
Since by Assumption (ii) the function g does not

vanish at any vertex of D , since g(X) = O, it follows
that ¥ 1is not a vertex of D , and hence, cX = cX .
Thus for any x ¢ D such that g(x) € 0, cx £ cx , one
must have c¢x = cx . This proves the optimality of X . DO

We can now prove :

Theorem 2. Under Assumptions (i) and (ii), the
algorithm described in the previous section is finite.

Proof. The algorithm consists of a sequence of
consecutive loops of execution of Steps 1 and 2. Denote
by uk, vk, the points wu, v, X obtained at the end
of Step 1 of round k . Since cxitl ¢ ¢cx1 the set D,
at round k 1is clearly

Dy = D(F 1) ={xeD:cexec®ly .

We now show that [uk, vk] is contained in some edge of
D . Indeed by construction [uk, vk] is an edge of
D(§k_1) , and since v ¢ cuf 2 ¢! it cannot be con-
tained in the face cx = ¢+ of D(X¥!) . Hence it

must be contained in some edge of D .

Now let M denote the set of all x € D such
that g(x) = 0 and x 1is contained in some edge of D .
By the above, Fe M for every k = 1,2,... . But the
number of edges of D is finite and by the strict con-
cavity of the function g there can be on each edge of
D at most two points where g(x) = O . Therefore, the
set M 1is finite. The finiteness of the algorithm follows
then from the finiteness of the set M and the fact that
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each round generates a point F e M and c§k+l.< XX
(k = 1,2,...) (indeed Tt ¢ ocxPK = ¢ where x°0F
is the point x° at round k ) . O

4. DISCUSSION

1. In Step 2 of round k , we have to solve the
concave program

()  Min { g(x) : x € D(ED )}
But, since F ¢ ! , it is clear that
D(F*) = {x € D(FLY ¢ ox £ XX }

Thus (Qy) can be obtained by adding to (Q,_;) the
constraint
X

(which, by the way, makes the previous constraints

cx € ¢x- , i=1,...,k-1 , redundant). In view of this
fact, to economize the computational effort, one should
use for solving (Qk) an algorithm which could take
advantage of the information obtained in solving (Qk—l)'
For example, the algorithm given by Thieu-Tam-Ban in [12]
satisfies this requirement (see e.g. [14] for details).

IN

cX

2. The point X obtained at the completion of Step 1
is always a vertex of D(X) (since X lies on an edge
[u, v] of D ). Therefore, it can be used to start the
process of solving the concave program (8).

Also note that it is not always necessary to solve (Qy)
to the end. In fact, we can take as 2z any vertex of D(XX)
such that g(z) < 0 , and not necessarily an optimal solu-
tion of D(X) . It is easily seen that with this modifi-
cation the algorithm will still be finite.

3. Let D be defined by the system of linear
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inequalities :
hi(x) £ 0 (1=1,...,m)
An alternative variant of the algorithm is the following:
Pick a polytope Sl o> D whose vertices are known.

Stage k = 1,2,... . Apply the basic algorithm to the
problem
Min{cx:xesk,g(x)é()} s
obtaining an optimal solution ik .

If ¥ €D , stop : # is an optimal solution to (P).

Otherwise, h; (§k) = max hi(ik) > 0 . Let
k i
Spe1 = Sy N {x e hik(x) < 0}

and go to stage k+1 .

It seems that for large problems this variant should
work more efficiently than the basic algorithm.

4. So far we assumed that condition (ii) is fulfilled.
To deal with the general case where this condition may not
hold, we use the following propositions.

Proposition 1. Let

SE(X) = g(x) - e Ix!I 2 4.1 )

There is €, > O such that for all e ¢ (O,eo) the

func tion 8¢ is strictly concave and does not vanish at
any vertex of D .

Proof. Denote by Vo the set of vertices x of D
such that g(x) = 0 , and by V, the set of remaining
vertices of D . Let & = min{1g(x)l ¢ x ¢ vV} > 0, and

pick E, SO small that so(|x|2 + 1) « & for all x € Vl.
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Then for every € € (O,so) we have
g(x) - E(lx|2 +1) € -e <O Yx € v,

fg(x) - s(lxl2 + 1)1 2 & - eo(|x12 +1)> O
Vx e v,

Thus the function 8¢ does not vanish at any vertex of D.
Since the strict goncavity of g is obvious, the
Proposition is proved.

Proposition 2. Consider the problem

(Pe) Minjcx : x € D, ge(x) €0} (0« e <« so).

It x is an optimal solution to (PE) and x 1s an accumulation

point of X as € ~+0+ then X 1s an optimal solution to (P).

Proof. For all x € D satisfying g(x) £ 0 we
have gs(x) < g(x) € 0 , hence cx. € cx , hence cX € cx.
But clearly ¥ € D, g(%X) € O, hence X is optimal to

(P) . O

On the basis of these Propositions, if condition (ii)
fails to hold, we can solve (Ps) with € > O arbitrarily
small and then make € = 0O in the result.

5. The algorithm given by Hillestad and Jacobsen in
[7] can also be described as consisting of consecutive
rounds requiring each two steps. The first step of that
algorithm is exactly the same as Step 1 of the algorithm
presented above, so the main difference between the above
algorithm and that of Hillestad and Jacobsen 1s in the
second step.

5. ILLUSTRATIVE EXAMPLE

Minimize —2x1 + X5 , Ssubject to

X] + X - 10 € O
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-X; + 2x2 -8 £ 0
X - Xy -~ 4 € 0
-2xl - 3x2 +6 £ O

(@]

X, 20, X5 2
—x% + X X5 = xg + 6xl € 0
The algorithm begins at the vertex x° = (034).

Iteration 1. Step 1 finds the vertices u° = (032),
v® = (3;0) and the point X° = (0.4079356 ; 1,728049) .
Step 2 solves the concave program max{g(x) : x € D(Z°)} ,
and finds the point z+ = (235) .

Iteration 2. Here x' = (2;5) . Step 1 finds the
vertices uI = (436) , vl = (?33) and the point
FL = (4.3670068 ; 5.6329334) . Since the optimal value of
the concave program max {g(x) : x € D(El)} is 0,
Step 2 concludes that ¥ is the optimal solution of the
problem.
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SOME REMARKS ON QUASI-RANDOM OPTIMIZATION

Walter Bayrhamer
Institute of Mathematics, University of Salzburg, Austria

1. INTRODUCTION

In the theory and practice of optimization it often happens that the
objective function has a very low degree of regularity or that it is defined
only empirically. Another critical point in optimization is that many algo-
rithms deliver only local convergence. So for these two reasons it is advise-
able to analyze methods of direct search like random and quasi-random search
techniques. In this paper we consider error estimates for deterministic ana-

logues of random search.

2. ERROR ESTIMATES FOR THE FUNCTION VALUES

Let (K,d) be a compact, metric space and let f be a continous function
from K into the real numbers. Then we are interested in the maximum of f£ and
in one point where this maximum is attained. Such a point exists by the com-
pactness of K and the continuity of f., As the exact computation of these
values is in most of the cases very complicated or impossible we try to ap-
proximate them. Define M:=max{f (x) /x€K} and x=argmax{f (x)/x€K} for the re-
quested values. For the approximation take a sequence of finite subsets of K:
Al' A2,... where Ak has k elements and let them have the property that then
lim h(AN,K)=O for N + =, where h is the Hausdorff-metric in the space of com-
pact subsets of K. For example take a segquence Xy x2,... which is dense in
K and take for Ay the first N elements of this sequence. In x=[0,1]° for such
a sequence we can take xn=({n81},...,{nes}) n=1,2,... where {x} is the frac-

tional part of x and 61,...,65 are real numbers so that 1, 6 ceey es form

1’
a basis of a real algebraic number field of degree s+1 over the rationals.
(See Niederreiter 1983b)

By the above mentioned limit-property of AN we can interprete it as an ap-

proximation to the space K. So we conclude that the extrema of f on AN will
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approximate the extrema of f on K. For the approximation of M we take MN:=

max{f(xi)/ 1SisN } and for x we take x, = argmax{f(xi)/ISiSN }. From the

kN
definition of h we receive h(K,A ) = sup min d(x,x,) and similarily we have
N N 1
XEK 15isN
h(f(K),f(AN)) = sup min If(x)-f(x.)l . Before establishing an error estimate
X i
XEK 15isN
we must define the modulus of continuity of £ by w(t):= sup|f(x)-f(y)| .
d{x,y)st
Now the following error estimate can be proved:
OsM-M s hff(K),f(AN)) S w(h(K,A)) 8y
. <M— = - = 3 -
Proof: OsM-M = £(x) - £(x ) l;l;rilgN\f(x) £(x) ]S hEW,EA)) S
sup min w(d(x,xi)) = w(sup min d(x,xi)) = w(h(K.AN)).

x€K 112N XEK 1517N
(For this result see also Niederreiter 1983 a,b and Sobol 1982)

The quantity h(K,AN) is often denoted by dN(x .,xN) and is called the dis-

)
persion of the points.
By using terms of levelsets we can establish another plain error estimate.

The set L(a):= {x€K/ f(x)zalis called the levelset of f at level qa,where

a is a real number. If asinf f(x), then L(a)=K and ifa>supf (x) then L{(a)=g@.

Another important term that we need is the diameter-function v(a):=sup{d(x,y)

x,y€L(a) } and it is the diameter of the levelset L{da). Then we can show the
following error estimate:
Lo ddx,x ) S VM) (2a)
2, OSM - MN s w(v(MNl) ) (2b)
Proof: As f(ka)=MN and f(x)=MZMN it follows that kaG L(MN) and x € L(MN)
which implies (2a) and this implies (2b) by the definition of w.
For the special case where K = [o,l]s, where s is a natural number, we can
derive another error estimate from the paper of Hellekalek (1979) by the use
of Lebesgue-measure. let A be the Lebesgue-measure and assume f20. Then he
defines the function r(e):=inf {6>0: A(L(M-8))2e¢}. He proved that r(e) <
s w(el/S). If we set e= A(L(M)) we obtain:
r(A(LM))) = inf {6>0: A (L(M-6))ZA(L(M))} and A(L(M-6))2A(L(M)) <=
L(M-6) 2 L(M) <= MyZM-G <= M-MS6 = r(ALiM)) zM-M =
M- M S Wl @))%,

3. SOME PROPEKRTIES OF LEVELSETS

So far we described error estimates for the function values. For a re-
fined procedure and for a more accurate analysis of the problem we will need
some error estimate for the argument. But this question is closely connected

with the theory of levelsets. So we like to consider some theorems resp.:
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Theorem 1: Let (an) be a monotonically increasing sequence of real numbers
converging to a. Then for a continous function f follows:

h(L(a ),L(a))>0 for n>® (3)
Proof: As it is easily seen, the sets L(a), L(an) are compact for all n

o

and L(a) = ﬂn=1 L(an) and L(al) > L(a2)> ... » It is known from topology that
in a compact, metrical space the topological convergence of nonempty point-
sets is equivalent to the convergence in the metrical sense and so statement

(3) follows. (See for example: Alexandroff-Hopf 1935)

Theorem 2: asSa' implies

05 v(a) - v(a') £ 2 h(r(a),L(a")) (&)
for L{a), L(a') are nonempty.
Proof: Take x,y € L(a) arbritrarily and choose z and z' so that d(x,z) =

inf d(x,u) , d(y,z') = inf d(y,u') and z, z' € L{a').
ueL{a') u'€L(a')

Then by the triangle-inequality we obtain:

d{x,y)sd(x,z)+d (z,z')+d (2',y) Ssup d(z,z')+inf d(x,u)+inf d(y,u)
z,z'€L(a') u€L (a') u€L (a')
and this implies sup d(x,y)=v(a)Sv(a')+ 2 sup inf d(x,u)sv(a') +
x,yEL (a) x€EL (a) u€EL(a')
+ 2 h(L(a) ,L(a')).

So we have proved the right-handpart of (4) and the left-handpart is ob-
vious.
* * .
Theorem 3: L(a) € BN(a), where BN(a)— U B(xi,dN) for i with f(xi)2a—w(dN)
and B(x,t)= {y/d(x,y)st}
Proof: Take x € L(a), so by the definition of dN there exists Xy, SO that
d(x,xi)SdN , and so f(x) - f(xi) < w(dN) and this implies f(x)—w(dN)S f(xi)

and so f(xi)Z a -w(dN) and so our statement follows.

4, ERROR ESTIMATES FOR THE ARGUMENT

By the definition of dN it is clear that the balls B(xl’dN)""’B(xN’dN)
cover the whole space K. So we consider the following idea: Take xX€ X, and
let x EB(xi,dN) and by using the modulus of continuity of £ we obtain
£f(x) - f(xi) s w(dN) and so f(x) = f(xi) + w(dN). so if f(xi)+w(dN)<MN then
it follows that the extremal point x cannot lie in such a ball and there-
fore x lies in B;(MN). For theorem 4 let us assume that there is exactly one

index KN with f(ka)=MNand LM)={x}.If we define pN(AN,f)= max{d(ka,xk)/

k €1, } ,where L= {J./f(xi)ZMN - w(dN)} then the following theorem results:
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Theorem 4:

1od0x, x,) S dy + py (5a)
2. lim py =0 for N + (5b)
- * -
Proof': 1.-For x € Bg(MN) there exists an index i € IN with d(x,xi) s dN
and so d(x,ka) s d(x,xi) + d(xi, ka) s dN + pN.

2. Consider now the increasing sequence aN:= MN - w(dN), converging to M

and that for all iEIN values f(xi)zaN, so xiEL(aN) for all i€ IN and that
implies Py s v(aN) . But the last term converges to v(M) and v(M) equals O

by the assumptions, and theorems 1 and 2. Thus statement (5b) holds.

Theorem 5:

1/2 v(MN)SdN+pNSv(MN) + 2 h(L(aN).L(MN)) + dN (6)
Proof: From Py s v(aN) follows by theorem 2 that pNs v(MN)+2h(L(aN),L(MN))

and so the right-hand side of (6) is proved. From theorem 3 we have L(MN)
BEM) => V x,y ELM) => 3 1i,] € I d(x,xi) S d(y,xj) sd, =

dix,y) s d(x,xi) + d(xi,xj) + d(xj,y) < 2dN + d(xi,ka) + d(ka,xj) =2
d(x,y) s 2(dN + pN) = v(MN)S 2(dN+pN) = 1/2 v(MN) < dN+pN and so the

statement (6) is proved.

Remark: The error estimate (5a) and its behaviour partially depends on the
behaviour of the function ¢(a,e):= h(L(a-€),L(ax)), which can be interpreted
as an index of flatness of the objective function f£. It indicates the beha-
viour of the function f with respect to flat regions and local extrema which
are both bad for global optimization. The study of ¢ is closely connected

with the theory of parametric optimization.

5. SOME REMARKS ON ADAPTIVE PROCESSES

The rate of convergence of error estimates depends partially on the
magnitude of the dispersion and so can be rather slow. Therefore it is
adviseable to study algorithms which deliver a better convergence rate.

This can be reached by adapting the search-area to the function. From esti-
mate (S5a) we know that it suffices to search in the ball with center_ka

and radius dN+ Py If this radius is acceptable small then we restrict our
search to this ball and we can repeat the preceding error estimates. But if
we think that there are more than one point in L(M) we should prefer another
adaptive algorithm. Take each of the balls B(xi,dN) with iGIN to perform the

global search there. So if I does not contain a large number of indices

N
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then the number of additional function-evaluations will still be acceptable.
You can also use the global search for determining a starting point for a
gradient method or another local optimization technique to search a local

maximum point.
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OPTIMAL SATELLITE TRAJECTORIES: A SOURCE OF DIFFICULT
NONSMOOTH OPTIMIZATION PROBLEMS

L.C.W. Dixon, S.E. Hersom and Z. Maany
Numerical Optimization Centre, Hatfield Polytechnic, College Lane, Hatfield, UK

1. INTRODUCTION

In this paper we will show that optimal satellite trajectory problems
can be posed as difficult nonsmooth optimisation problems. The aim is not
to advocate solving satellite trajectory problems by using nonsmooth opti-
misation algorithms; they can be solved more simply by other means. The
aim is simply to challenge the designers of nonsmooth optimisation codes to
test them on these problems; which we believe will prove to be very diffi-
cult. We look forward to hearing the results of such tests.

2. THE SATELLITE TRAJECTORY PROBLEM

In this paper our intention is to define a set of N.S5.0. problems by
reformulating a particular satellite trajectory problem.

The problem we will consider is a rendezvous with the asteroid VESTA;
the details of Vesta's orbit are given in Appendix 1. In the problem we
will asume that the satellite is launched from earth on a particular day
and that the trajectory to be optimised commences at a point sufficiently
removed from the earth for earth's gravity to be ignored. The time, posi-
tion and velocity of the satellite at that starting point are also given in
Appendix 1; starting from these values of to, Eo’ !o the satellite's tra-

jectory is then integrated by fourth order Runge Kutta with a standard step
size of 24 days.

The satellite's motion is governed by gravity and controlled by a low
thrust motor, so that

é =v ; r(t) =r (1)

He
- ; + I/M; o v(t)) = v

1]
<
n

v
where T is the thrust and at any point is constrained by
< < .
o< |lzll= T (3)
The mass flow equation for the fuel used is then

m=- [T |l/gl (m(to) =m given) (4)
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and the thrust level is restricted by power considerations

T = 2nP0/(gIrk). (5)

Two values of k are of interest, k = 0 corresponds to conventional RTG motors
but k = 1.7 is more appropriate for solar powered motors.
The problem is then to determine that trajectory r(t) that rendezvous

with Vesta's trajectory while using least fuel. Assuming the rendezvous
takes place at time tR then Vesta's trajectory specifies the values of EV(tR)
and !V(tR).

The optimal control problem is therefore:-

Maximise m(tr) (6)
s.t. r(tR) = EV(tR) (7)
vite) = v (tp) (8)

and equations 1 - 5 by varying tR, r(t), T(t).

There are a number of specialised codes for solving optimal satellite
trajectory problems butit is not our intention to discuss them in this paper.
Instead we wish to show that this problem can be posed in different ways that
lead to N.S.0. problems. The solution to the problem has been obtained by

other means and is also given in Appendix 1.

3, THE INDIRECT PONTRYAGIN FORMULATION

Pontryagin [3] showed that the optimal control problem could be con-
verted to an optimisation problem by the introduction of adjoint variables
and a Hamiltonian function.

We will denote the adjoint variables for equations (1), (2) and (4) by
M, L and p respectively and will let the Lagrange multiplier for (5) be
represented by A. Also we will denote the thrust T by ||T||f where T is a
unit vector, then the Hamiltonian is given by

r T
H=Mv+ L.(-ugs + |IZIIT) - pllT | /eI

k
+ >\(Tm - 2nP0/(gIr ) (9)
uL 2kAinP_ r
y - LJL-r o —
where M = — - 37T + o — (10)
r
L=- (11)

.
|
+
=
=]
| L—‘
IH)
[any
N

T=1 (13)

and as H is linear in || T ||, then the optimal values of || T || is either 0
or T for all t. A period during which I T|| =0 will be termed a coast



312

arc; if || T = T it will be termed a thrust arc, theni = p/gl - ||L|[/m

on a thrust arc and 0 on a coast arc.
The optimal trajectory consists of a thrust arc, followed by a coast
arc, followed by a final thrust arc which we can express as

Hril =T by <t <t
HT]|l =o0 t, <t <ty (14)
il =T b, <t <ty

with implied constraints to < tl < t2 < tR. (15)
Given the values of L = L(t ); M = M(t); p, = p(t ), t;, t, and

tR then equations (1), (2), (4), (10), (11), (12) can be integrated forward
in time sufficiently accurately using RK4 with a step of 24 days (with
suitable modifications at tl, t2 and tk). In integrating these equations
the constraints (5), (13) and (14) are automatically applied, so at tR the
values of m(tR), E(tR) and !(tR) that correspond to these variables can be

computed.
We may then pose the NLP problem

FORMULATION 1

Max m(tR) )

)

_ )
s.t. E(tR) = Ev(tR) ) (16)

)

vity) = v (t) ;

< < <
0 tl t2 tR
where the optimisation variables are

Lo’ Mo’ P tl’ t2 and tR. (17)

This is of course a standard NLP problem but our experience reported
in [1] is that it is too difficult for most codes, even when the adjoint-
variable transformation [2] is applied. For completeness the transform-
ation used is given:-

cos a_ cos B
e} o}
L = |sin a_cos B
o o)
sin B
o}

.
S cosa cos B -~a sina cos B -B cos a_ sin B
o} o o o) o o o) o) o
. o . .
M =L ={S sina_ cos B +a cosa_ cos B -B_ sin o_ sin B (18)
o} o o o o o o) [} o
o .

S sinB_ + 8 cos B
o o o o
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FORMULATION 1b

is therefore to solve (16) using the optimisation variables

Sgr @y @o» By B, %, t, and tr- (19)

The NLP problem (16) could be solved by minimizing the exact nonsmooth
penalty function, so our first NSO problem consists of

FORMULATION 2

Min - m(tR) + o ?Iri(tR) -~ rvi(tR)l +c, ilvi(tR) - vvi(t
i

Dl (20

< < <
0 tl t2 tR

with respect to variables (17).
In FORMULATION 2b variables (19) would be used.

As Formulation 1 is an NLP and Formulation 2 its EPF; then Formulation
2 has a rather special structure as an NSO and codes have been written for

NSO problems with this structure. It is therefore interesting to find that
we can pose the problem as an NSO without this structure.

4. THE DOCKING FORMULATION

As Pontryagin's path is optimal if we were to replace part of the path
by an alternative feasible stategy the solution must be worse. In parti-
cular if we were to stop the second thrust arc at t3 > to, and were to replace
the thrust strategy in t3 <t < tR by a nonoptimal feasible strategy that

-~

ensures

r(tg) = r (tp)
and X(tR) = !v(tR)
and then maximise m(t3) - my (21)
where mD is the mass used in this manoeuvre, then the optimum must occur
with t3 = tR and mD = 0. But we have converted the NLP (16) into the

simpler problem
FORMULATION 3

Maximise m(t3) -m

D
s.t. 0 < tl < t2 < t3 < tR.
w.r.t. either LO, MO, po, tl, t2 and t3
or S+ as o, B, B, P, ), £, and t,.

The method proposed for the final manoeuvre is described in Appendix 2. The

function mD is nonsmooth, so Formulation 3 is an unstructured NSO, which will

we believe prove difficult if not impossible for most NSO codes.
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5. THE POSITION SPACE FORMULATION

A very different approach to the same problem also leads to a difficult NSO
problem. Let us consider the following approximate problem. Let us divide

the range O < t < tR into a number of intervals by grid points tl, e ti’

(for convenience let tR = tlo). Let us take the position r; = E(ti)

and velocity v, = X(ti) as optimisation variables; then in the interval
ti <t < ti+l we may approximate the trajectory r(t) by a cubic variation in
each component, for instance, if we represent r = (x, ¥, z)T then each of x,
y and z can be matched by a cubic to the values at ti, ti+l'

As r is cubic in t, v is quadratic and E linear, we have an implied
thrust from equation (2) of

Ko
T =mnr+ 3) (22)

ur
so fITll =m [z + = (23)

and constraint (3) becomes
ur 2nP
2k - <]
2 - 2 < 2 .
0 <m*r IR+ 5 1P < (50) (24)
Due to the smooth nature of the function it is probably sufficient to apply
these constraints only at the endpoints of the intervals ti, t

i+l”

For any value of t_ we can ensure that the initial and final positions
and velocities are correct so we now need only consider the objective func-
tion which is governed by (4)

ur

. Tl m||£+'r_3||
m= — 1L§fl = - P (25)
. ur
m .. —
S=-lE+ |l /el

ro. PE gt
[10gm]=-j|£-p||gf
Mi+1 f

r
= exp{- Jllg - ;:lldt/gl}. (26)
i

For the given values of ri, ri we can therefore compute the values of mi,
m. .1 given m, and therefore both the objective function and the m, to be

used in (24). The problem is nonsmooth due to the square roots in (26).
For simplicity we will standardise the formulation by approximating the
integral in (26) by
ritl p t. - t, r, r.
I - g ot = (R (g - S, - ot
= 2 =i rd i+l rd
i i+l
ti

(27)
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FORMULATION 4

Maximise me calculated via (26) and (27) subject to the constraints (24)

using the variables tR, oy v, i=1, ..., 9.

In this paper we have posed 7 formulations of a satellite trajectory
problem. The purpose of the paper is unusual, namely to challenge the
designers of NSO codes to apply their codes to Formulations 2-4. We will
be interested to hear the results.
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APPENDIX 1. TRAJECTORY DETAILS

Characteristics of Target Orbit

Semi major axis 2.361680 Au

Aphelion 2.573452 Au

Perihelion 2.149908 Au

Eccentricity 0.089670

Inclination 7.144 Deg

Right Ascension 103.489 Deg

Arg of Perihelion 150.618

True Anomaly at launch 16.377 (Launch Feb 1st 1993)

Constants Used

Po = 20 KW, n = 68%, I = 3900 secs
g = 9.81 m/sec?, u = 1.32715 x 10'! Km?®/sec?.
(These should be converted to AU/DAY/Kg units).

Trajectory Details. The trajectory commences on February 1lst 1993 at

r = (-.661201, .730588, 0.000)Au

o
v, = (=24.04952, -21.395403, .371891)Km/sec
m, = 2000 Kg

where the optimal values of the optimisation variables for Formulation 1b
are

S0 = -.01990306; o = -64.774°; ao = 4.553824 Deg/Day
So = 86.88414°; So = -1.109517 Deg/Day; p0 = 1.388167 secs
t. = 474.5221 Days; t, - t, = 237.4531 Days

2 1
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tR - t2 = 202.3659 Days.

The final mass at rendezvous is 1537.414 Kg. From this point a 10 day
coast arc is prescribed before optimisation commences, the values after the
coast arc are

r_ = (-.789214, .596415, 0.002137)
v_ = (-20.174716, -24.941806, 0.366192)

The starting point we used for our optimisation run Formulation 1b was

S = = -~ ° . = = 3 =
S =0, a, = 137.854°, ay 1 Deg/Day, By o, Bo 0,
o 10,000 secs, tl = 20 days, t2 - tl = 50 days, tR - t2 = 40 days.

O
1}

APPENDIX 2. DOCKING

We take x(t), v(t) to be the relative distance and velocity vectors of
the S/C with respect to the target where t is the time after the end of
normal thrusting. "Docking'" is defined as attaining, after a time T, x(T) =
0 and v(T) = 0. The manoeuvre is to apply an acceleration of constant
amplitude in each co-ordinate but, in each, the direction is reversed at some
time ti(i =1,2,3 and 0 < ti <T).

It is assumed that the magnitude of the acceleration is equal to the
ratio of the maximum thrust/mass at the end of normal thrusting, i.e. change
in thrust due to change in the power available and change in mass due to the
loss of propellant are ignored. Further, it is assumed that the S/C and
target are in a uniform gravitational field. The motion in each co-ordinate
direction can therefore be considered independently.

If a is the acceleration up to the switching time, t, and -a is the
acceleration from t to T, then if x and v are the values in one co-ordinate
of x(0) and v(0) respectively, the final values are

x(T) = x + vt + at?/2 + (v + at)(T - t) - a{T - t)2?/2
and v(T) v + a(2t - T).

Since both must always be zero, these can be written as:

x + VT + a(2tT - t%2 - T2/2) = 0 (1)
2at = - v + aT. (2)

Eliminating t between (1) and (2) we obtain

a?T? + 2a[2x + vT] - v2 =0 (3)
or aT? = - D + /[D? + v?T?]
where D = 2x + VvT.
Since 0 £ t < T, it is readily shown from (2) that T > |v/a]
or aT?® > vi,
From (3), therefore, we obtain aD < O
i.e. SIGN(a) = - SIGN(D) = S, say.
Hence aT? = - D + S/[D?* + v2T?]. (4)
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This expression, for a given x, v and T, gives the value of the accel-
eration required. If this is ai for the ith co-ordinate, then docking is
achieved when a value of T is found such that /E(a;) is equal to the accel-

eration available. In the program this is achieved by an iterative proce-
dure. The propellant used is calculated as the flow-rate at the end of
normal thrusting multiplied by the docking time, T.



A REDUCED SUBGRADIENT ALGORITHM FOR NETWORK FLOW
PROBLEMS WITH CONVEX NONDIFFERENTIABLE COSTS

M.A . Hanscom!, V.H. Nguyen? and J.J. Strodiot?
YIREQ, Varennes, Canada
2FNDP, Rempart de la Vierge 8, 5000 Namur, Belgium

1. PROBLEM FORMULATION

Consider a single-commodity directed network with m nodes and n
arcs, The general nonlinear network flow problem (Dembo et al. 1981)

consists in finding a vector flows X = (X{,...,Xp) solution of
Minimize f(x)

(P) s.t. Ax=0DL

where f : RM » R, A is the mxn node-arc incidence matrix of the
network, A x = b expresses the flow conservation constraints and x and
x denote the lower and upper bound on the flow x .

An important class of problems of this type is the hydrogeneration
scheduling problem. This problem consists in the maximization of the profit
obtained by producing hydroenergy along a time horizon (one year) in a
multi-reservoir power system as, for example, that of Hydro-Québec (Hanscom
et al. 1980). The decision variables are the amount of water to be released
from and stored in each reservoir and in each time period (one week). Let
K be the number of periods and L the number of reservoirs. The
associated network is a temporally expanded arborescence (Kennington et al.
1980). Each node corresponds to a time period-reservoir pair and has two
outgoing arcs : the storage sy ; of reservoir 1 at the end of period Kk
and the release ry; of reservoir 1 at period k .

Several types of differentiable objective functions have been used for

this problem. In this paper we consider a nondifferentiable function f
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(to be minimized) of the following type

K
L

Cx (W (xK)) - Rr(xK
W k (We(x¥)) - R(xR)

where xK = (rpq,...,PkL,SK1s--+ SkL) » 1 S k S K, W) is the energy
deficit at week Kk , Cyi(<) 1is the cost of generating energy deficit Wy

at period k and R(+) 1is the economic value associated with the final
storage of the reservoirs. The functions Wy and -R are convex and
differentiable. Here Ck is modeled as a nondecreasing piecewise-linear
function from R to R to take into account an energy market structure.

Under these assumptions, f 1is a convex nondifferentiable function. If we
denote by Ek , 1 sk £ K, the gradient of Wi(-) at xX by Hk the
gradient of -R(-) at xK and by ug and Ek respectively the left-hand
side and the right-hand side derivative of Cyp(*) at W.(xK) , then the

subdifferential of f at x can be expressed as follows :
K —
af(x) = {kZ1 ug 8k * hyg |ug Sug Sue, k=1,...,K} (1)

T = =T
where gy = (O,...,O,gE,O,...,O) and hE = (0,...,0,hg)

2. A REDUCED SUBGRADIENT ALGORITHM

For solving this special scheduling problem a reduced subgradient
strategy 1s adopted (Bihain et al. 1984). As usual the matrix A is
partitioned into two submatrices B and H so that B 1is of full rank m.
Let (xp,Xy) be the corresponding partitioning of x in basic and out-of-
basis arcs. We recall (Kennington et al. 1980) that the basic arcs form a
spanning tree in the network and that each out-of-basis arc forms a unique
cycle with basic arcs. Once the classical reduction 1is performed, the
reduced problem becomes :

Minimize f{xy)

(RP)
s.t. XH§XHSXH ’

where f(xy) = £(B~1b-B THxy , xy)
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—p-1
If we denote by Zy the nx(n-m) matrix ( BI H) then the
subdifferential of the convex function f is given by : af(xy) = {ZE gleg
€ 3f(x)} and is called the reduced subdifferential of f at x . A

feasible descent direction dy (if it exists) in the space of out-of-basis
arcs can be obtained by checking the optimality conditions of problem (RP).
More precisely, using (1) we have to solve the following linear

least-squares problem :
s e . T K 2
Minimize % ||zy (kZ1 ug 8k * hg) = Ag + uyl

(Qy) S.t. ug Sug Sy, k=1,...,K,

AMz20, w20,

AE{(XH‘XH)=O, uE[(;H—xH)=O.

Let u; , Aﬁ and uﬁ be a solution to (Qg) . Then set
dy = M- wh - Zh (Zuf g+ hy .

If dy = 0 , then xy 1is a solution to (RP) and (xg,xy) is a solution
to (P) . If dy# 0, then set dg = -B~1 Hdy and dT = (df,d) . It is
easy to see that d is a descent direction which is feasible with respect
to the bounds if : (xg)i < (xg)j < (xg)j 1is satisfied for each basic arc.
If it is not satisfied, dp need not to be feasible with respect to the
bounds on the basic arcs. This is known as the degeneracy problem.

As dg depends on dy , the degeneracy problem can be solved by
partitioning the matrix H into two submatrices (Murtagh et al. 1978) : S
and N so that if we set dy = O then dp is feasible. Let H, S and
N be the arc index sets corresponding to matrices H , S and N . The
arcs corresponding to S and N are called the superbasic and nonbasic
arcs respectively. The problem is to decide for each 1 € H if we put i
in § or not. Two cases are possible : the variable corresponding to arc
i is free or it is at its bound. If i € H is free and if each arc of
the cycle associated with arc i 1is also free, then we put i in S . As
we want to have the set S as large as possible, we try to obtain a basis
B containing the maximum number of free arcs. Such a basis B is called a
maximal basis (Dembo et al. 1981) and has the property that there can only
be free basic arcs in the cycle associated with a free out-of-basis arc. If
i € H is at its bound, we have to examine the cycle associated to arc i ,

arc by arc in order to see if the flow can be changed on arc i without
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violating the bounds on the basic arcs of the cycle. The arc i € H will
be called blocked and put in N if a basic arc of the cycle is in the same
orientation as arc 1 but at the opposite bound or if a basic arc of the
cycle is in the opposite orientation with respect to arc 1 but at the same
bound.

Now we have H = (S N) and we want to compute dg (we know already

that dy = O ) by solving :
A T K 2
Minimize % ||Zg (kz1 ug 8k + hg) - Ag + ug|l

(Qg) s.te ug Sug Sug, k=1,...,K,

Ag

|\
(@]
%
[\
(@]

T —
Ag (xg - xg) = 0, ug (xg - xg) = 0.

Ir u; ’ A§ , u§ denote a solution of (Qg) then

T K
dg = A§ - w§ - Zg (L uf g + hg) .

Observe that EE=1 can be replaced by Ikgjq where Jg is the set of time
periods covered by the cycles associated with S and that (As)i =0 |if
(xg)j 1s free or at its upper bound and (pg)j = O if (xg)j is free or at
its lower bound. The number of variables of (Qg) is then the number of
time periods k € Jg such that uyg < Gk plus the number of superbasic
variables at their bound.

If dg = O , we check

Zt (Zub g+ hg) 20, tEN, (X =(x)g.,
T * -
Zyg (z ug 8k + hK) <0, t€EN, (x)t = (X)t .
If these conditions are satisfied, then dgy = O and X is optimal.

Otherwise we have to solve (Qg) to obtain dy . If dy =0 then x Iis
optimal; otherwise we have to check the feasibility of dg . If it is the
case we perform a line search along d ; in the other case we find a

feasible descent direction d by solving :
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Minimize f'(x;d)

(PL) 0sdys1 if (x)3= (x5,
-1 $dj S0 if (x5 = (X,

Slsdy s if ()5 < ()5 <Xy,

where

T —
f'(x;d) = bhg d + max {uy gE d, uy gE d}

x
e
—_—

An experimental FORTRAN code implementing this algorithm has been
written and tested on two scheduling problems related to the medium term
energy generation planning problem for the Hydro-Québec multireservoir
system.

The first test problem is a small-scale problem : it involves 8
reservoirs and 10 time periods and represents a network of 80 nodes and
168 arcs. The second test problem is a medium-scale problem : it also
involves 8 reservoirs but 52 time periods. Here the network has U416
nodes and 840 arcs. The numerical results will appear in a forthcoming

paper.
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AN ALGORITHM FOR SOLVING A WATER-PRESSURE-CONTROL
PLANNING PROBLEM WITH A NONDIFFERENTIABLE
OBJECTIVE FUNCTION

Yoshikazu Nishikawa and Akihiko Udo
Department of Electrical Engineering, Kyoto University, Kyoto 606, Japan

1. INTRODUCTION

In this paper we develop an algorithm for a nondifferenti-
able optimization problem arising in pressure-control planning
of water distribution networks (WDN).

Although the problem is of the nonlinear programming type,
it is solved by iterating solutions of linear programs and de-
scents along V-shaped ravines caused by the nondifferentiability
of the objective function. The equations of the V-shaped ravines
are derived from the physical law governing the steady-state
flow of WDN. The resulting solution procedure is then widely
applicable to large-scale networks.

Our early work on this problem has already been reported
(Nishikawa and Udo, 1982). In this paper, the problem is re-
formulated in a mathematically more refined manner, the charac-
ter of the V-shaped ravine is clarified, and a revised algorithm

is constructed.

2. FORMULATION

The problem is to minimize the total energy, or equival-
ently the cost, expended in pumping while keeping the water
heads (pressures) at all nodes in an allowable range. Every

pipe link where a pump or a valve is introduced is considered.
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This enables us to find desirable locations for pumps and/or
valves as well as their scheme of operation, which is especially
useful in the planning stage.

Let z denote a pressure gap due to a pump or a valve. Then
the characteristic equation of pipe link 7 equipped with a pump

or a valve is written as

p=rpaglag1®e%%a, (1)
where hi is the head differential (the difference of the heads
at both ends of a link), r. is the resistance factor deter-
mined by the diameter, length and smoothness of the pipe, and
q; is the flow rate, all of link <.

If qizi>0, 2 denotes the pressure gap given by the pump,
while if qi2i<0, that by the valve.

Then our problem is formulated as follows:
(P1) minimize f=2i(qizi+|qizi|)/2 (Pumping cost) (2)

subject to
Lz, Qc)=(z¢)é(Linear function of Z)
+ (Nonlinear function of Qc)
(Head-differential loop law: HDLL) (3)

Ejépj(z, Qc)é(Linear function of Z)
+ (Nonlinear function of Qc) and

Pj ?j (Node-head condition) (4)

IA

Here Zé(zi), Qc is the vector of the flow rates of cotree links,
i.e., a set of necessary and sufficient variables to describe
all q,'s. The HDLL is equivalent to Kirchhoff's voltage law and
implies that the total head differential around any loop is
zero. £j=(2u) and ?j=(5u) are the vectors denoting the lowest
and the highest allowable values of Pj=(pu), the heads at the
consumption nodes.

By way of example, the problem (P1) is formulated as

follows for Network-1 of Fig. 1.
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minimize q1z1+|q1z1|+q222+|q222|+(2‘q1‘qz)23

] (2=q =g )z, |+ (1=q,) 2, +[ (1-q,)z |

subject to r1q1lq1’0'85—21—r3(2—q1-q2),2—q1—q2,°-85+z3=0
ry@pa, |0 "t may e Umay) [1-q, |00 0 e

1, (2-q,=q,) | 2=q,=q,| "+ "% +z,=0

< = - 0,85 + __—
Tree PSP Ty lay ] 34=Py
~ ——e— Cotree

< = - 0,85 <
P,5P, P 7T, 14, ] T2,5P,

Fig. 1. Diagram of Network-1.

3. BASIC ALGORITHM

(P1) is obviously a nonlinear programming problem.
However, if Qc is fixeda at some value, and if 2, is written as
3,3T.7Y (xi, inO), (P1) is reduced to a linear programming
problem (LPP) whose unknowns are X=(xi) and Y=(yi)' Let us
denote the optimal value of the LPP with Qc fixed by f*(Qc) and
the optimal point by (X¥#*, ¥Y#*). Then the gradient of f*(Qc) with
respect to Qc can be calculated using the shadow prices of the

LPP as follows;

_ar* 0/*0 pu Bf*0 pu, 00l
N Q=0 230 TuB05, 000 5 01y 0Q0

AP (X* Y* Q)dQ:IT
:%@Yt@c) +| AP (X*, Y* Q0)oQ.T | A (5)
¢ AL(X*, Y* Qc)/0QcT

I': Transposition of a vector/matrix

SL and SU denote the set of active lower node-head constraints
and that of active higher node-head constraints at (X*, Y*),
respectively. A is the vector of the shadow prices at (X*, Y¥)
and its size is equal to the number of constraints (3) and (4).
Suppose that Vf*(Qc) is always defined. If Vf*(Qc)xo, then

there is a positive number § (step size) which satisfies
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_f*@QG—GVf*(QC))<f*(Qc) (6)

Hence, the optimal solution of (P1) can be found by iterating
solutions of the LPP and computing the gradient, Eg. (5).

Since a pump or a valve can be located on every link, the
head at every node can be set arbitrarily for any Qc' Hence, the
LPP is always solvable.

It is difficult to know how best to determine the step size
§. One-dimensional search is far from efficient because of the
time needed to compute f*(Qc). In fact, this involves the solu-

tion of an LPP. We therefore use the following algorithm:

Basic Algorithm (Algorithm 1).

Suppose that Qg and §°>0 are given.
(Step 1) Set k=0.

(Step 2) Set Qk=Q° and set §

¢ Ck'_ k_ Kk k k

(Step 3) Compute @ =q -6"Vr*(,)/|VFf*(q)
: BEuclid norm of a vector

(Step 4) If £*(@°)<f*(@%), go to step 5;

otherwise, go to Step 7.

! ﬁ', and set 6k+1={ 1.58

k kygh=1,5k=2y

(Step 5) Set Q§+ =Q (if &
Gk (except the above)

(Step 6) Set k=k+1, and go to Step 3.
(Step 7) Set 6k=6k/2.
(Step 8) 1If & <e stop; otherwise, return to Step 3.
e: a reference small positive quantity for stopping

the algorithm.

4. V-SHAPED RAVINE

The basic algorithm stops on the subspace of Qc—space where
Vf*(Qc) is not defined. Let us call such a subspace a V-shaped
ravine.

The V-shaped ravine 1is caused by the nondifferentiability
of the objective function f: f is nondifferentiable with respect

to q; and 3. at qi=0 and Zi=o’ respectively. 1In fact, if the
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sign of q;3; switches, the objective function of the LPP changes,
and consequently the V-shaped ravine is formed. It should be
noted that the sign of zi(zé) cannot be known until the LPP is
solved.

The subspace of qi=0 is a hyperplane in Qc—space, because
a; is a linear function of the components of Qc' Zi=0 is the
subspace where the basis (the set of basic variables) of the LPP
changes, i.e., at least one of x; and yé switches between zero
and positive.

The V-shaped ravine can also be explained through Eq. (5).
The first term of Eg. (5) is discontinuous at the subspace of
qi=0 and z;=0. The second term is also discontinuous at the
subspace of z§=0, because some components of A change discon-
tinuously there due to the change. in the basis of the LPP.
(Note: a V-shaped ravine can thus emerge even if the objective
function is smooth.)

Now let us consider the subspace of z£=0 in detail. It
must be noted that we use the linear graph £ where inflows from
sources and outflows from consumption nodes are represented by
the flow rates of the reference-node connected links. Figure 2
shows E of Network-1. Consider the
neighbourhocd of 50, a point on a
V-shaped ravine. First, if neither
the upper constraint nor the lower

constraint on Py is active at @c’ and

the constraints are also not active in
Reference node the proper neighbourhood of @c, then
Fig. 2. £ of Network-1. the consumption link u is not in-

volved in the change in basis of the
ILPP. Second, if x§>0 holds for pipe link <, xf remains
positive for a small change in a; and also for the small change
in hi caused by small changes in the flow rates in other links,
as far as such changes are in the proper neighbourhood of Qc.
The same is valid for the case when y;>0 holds for pipe link <¢.
Thus, a change in basis is possible only on the subgraph Eb
obtained by deleting the above mentioned consumption links and
pine links from E.

Consider the consumption link U in Epe Since its node head
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is constrained to the lowest or the highest allowable value,

the node-head condition is equivalent to the HDLL. By way of
example, in Network-1, the HDLL of the loop of links 1 and 3,
and the node~head condition at node 1 (assumed to be active) are

written as follows:

0,85

K gy ke Koy k) = 0,85_ -y = - -

2=y i-(z3-y %) r*1cz1|q?)|85 ry(2=q,-q,) [2-q,-q,]
Aoy kmpy = .

zi=yi=p,-py*r q,la, |

where the components of ¥ and Y are collected on the left sides
of the equations, and the components of Qc and constants on the
left sides.

Find a full set of independent loops in By and write
down the HDLL of those loops. Let us denote the set of the
right sides of these equations by G(Qc)=(gi(Qc)), which are
called loop head-loss terms.

Now, since the left sides of the equations are all zero,

G(QC)=0 (7)

is satisfied at 50. If some gi(Qc) becomes positive or
negative, at least one of z;=x;—yg switches its sign. That is
to say, Eg. (7) describes a V~-shaped ravine.

If Qc, i.e., the flow pattern, is changed along the
V-shaped ravine, a new descent of f*(QC) becomes possible. The
descent along the ravine does not put a pump or valve in any

pipe link in Eb'

5. REVISED ALGORITHM

Based on the foregoing discussion, an algorithm which de-

scends along the bottom of a ravine is constructed in this section.

5.1 Algorithm for the Search of Ravine Equations (Algorithm 2}
Consider the k-th iteration of the basic algorithm. Let
LP(QC) denote the LPP at QC, and let Gr be a small positive

value for judging an encounter with a V-shaped ravine.
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a (k' % (nK k' k_ ka4 %
(Step 0) TIf f£*(q, )>f*(Q)), for @, =@ _-&"vf*(Q )/ |vf*(@ )|
with 5k<5p, that is, if the cost cannot be improved even if the
step size 5k is small, go to (Step 1); otherwise, iterate the

basic algorithm.

(Step 1) Flnd the subgraph Eb based upon the solutlons
X —(x ) and Y —(y ) of LP(Q ), and the solutions X —(x ) and
k'—(x 1) of LR (@X").
a) Let all the source links be included in By
b} Consider pipe link 7. If (xi—yi)(xé—yé)>0, since link <
is not involved in the change of basis, let link iéEb;
otherwise, let link <€=

R2 _ ,
c) Consider consumption link u. If Bu<p§<pu and Bu<pﬁ <p
4

I

u
since the constrainits are not active both at Py and at pu s let

link ué_b, otherwise, let link pe= g,. Here, pﬁ and pk denote
the heads at node u in the solutions of LP(Q ) and LP(Q ),

respectively.

(Step 2) 1In Eb’ find a full set of independent loops by
spanning a tree, and construct their loop head-loss terms
gi(Qc)(i=1, 2,000 T4)

f

(Step 3) If the sign of qa; at Qﬁ differs from that at Qi the

equation of qi=0 is added to the ravine equations as g; )

(i=T0+1,..., T).

5.2 Algorithm for Descent along a V-shaped Ravine
(Algorithm 3)
Suppose that the flow pattern is now Qé and is close to a

V-shaped ravine. Further, suppose that, by Algorithm 2, the

ravine equations +turn out to be
G(Qc)é{gi(Qc)=0 (z=1, 2, ..., 1)1} (8)
(Step 1) Let v be the projected vector of —Vf*(Qc) on the

tangential hyperplane of the V-shaped ravine of Eg. (8). Change
1
the flow pattern to Q? which is in the direction of p by a step
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size §
k' k_ K
9% =0%-6 /v | (9)
where
v=-0" @0") " 'p) (-vp* @5y, patse” (Qc)/an)Tm -g*
c c

(Step 2) By use of the Newton-Raphson method, change the flow

14 !
pattern from QS to Qil which satisfies Eg. (8) (see Fig. 3).

I ‘
g=0 Qk{r k+1

Fig. 3. Descent along the
V-shaped ravine. Fig. 4. V-shaped ravines.

It must be noted that more than one ravine at a time may
be found by Algorithm 2 (see Fig. 4). 1In such a case, Eq. (8)
denotes the intersection of those ravines. 1In general, the
ravines terminate at an intersection and a new ravine starts
there. (Note: If the intersection is a point, it may be the
ontimal point.) Then the nearest point on the intersection from
Qi is chosen as Q§+1 §+1
Algorithm 1. The following step is appended for this purpose.

and descent is restarted from @ by using

(Step 3) If f*(Qi)<f*(Q§"), then execute Step 1 and Step 2 for
a smaller step size, 0.168k, If f* does not decrease even for
this step size, find the nearest point on the subspace of Eq.

(8) from Q? and let the point be Q§+1.
5.3 Revised Algorithm
Algorithms 1 through 3 are combined as follows.

(1) Start minimization by using Algorithm 1, the basic
algorithm.

(2) When the cost cannot be improved even if step size 6k is
made smaller than §r as in the Step 0 of Algorithm 2, switch
into Algorithm 2 and find the ravine equations.

(3) The descent along the ravine bottom may be stopped at some
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point by an encounter with another V-shaped ravine. If it is
stopped, restart minimization by using Algorithm 1 from that
point. This is because the equations of the present ravine are
not necessarily included in the set of equations of the new
ravinej . iy

Since the step size § becomes smaller and smaller as Qc
approaches the optimal point, we halve 6r on the application of

Algorithm 2, bearing in mind the balance between Gk and dr.

Finally, the procedure is stopped when both 6k<€ and 6r<€
hold.

6. EXAMPLE

The revised algorithm was applied to some networks of
practical size. For each network, computations were started
from some different initial values of Qc, and the unique
minimum-cost solution was obtained. It is practical to use the
steady-state flow without use of any pumps and valves as the

initial value.

In the case of the network of 36 nodes, 42 links and &
sources presented in our earlier paper, the solution is obtained
by solving a chain of 80 linear programs which consist of 84
unknowns and 42 constraints (only the lower constraint for each
node head), with some extra time for descent along the V-shaped
ravines.
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QUASI-DIFFERENTIABLE FUNCTIONS IN THE OPTIMAL
CONSTRUCTION OF ELECTRICAL CIRCUITS

E.F. Voiton
Department of Applied Mathematics, Leningrad State University,
Universiteskaya Nab. 7/9, Leningrad 199164, USSR

When considering the optimization problems which arise in
the design of technical devices, it is clear that a central role

is played by minimax problems, i.e., the problem of finding

min ¢ (X) (1)
Xef

where ¢ (X) = max f£(X,y) is a maximum function, Q(IEn, G(:Em.
YEG
The minimax formulation of the problem is in many cases

preferable to other models and in some cases is crucial.

Problems of form (1) appear, in particular, in the design
of electric circuits if it is necessary to find either the
values of components of a circuit of given structure (parametric
synthesis) or the values of parameters of a circuit function of
given type (the approximate synthesis problem).

In what follows we consider some examples of problems based
on the structural synthesis of electrical circuits which contain
linear elements with constant parameters, linear elements with
variable (so-called controlled) parameters and non~inertial
nonlinear elements.

We consider the possibility of stating a wide class of op-
timization problems of form (1) and suggest a unified approach

to solving these problems.
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1. Analytical methods for solving (1) can be applied only
to a limited number of one-dimensional approximation problems
where the function f(X,y) is an algebraic or trigonometric poly-
nomial or a rational function with a given polynomial in the de-
nominator.

These functions describe characteristics of certain classes
of electrical circuits, the most sophisticated of them being the
so-called frequency filter, i.e., a device with different proper-
ties on two nonintersecting sets of some variable.

2. A wider class of devices is described by functions
f(X,y) which are continuous with éfiéizl jointly in both vari-
ables on a set § x G. It is necessary to use a more complicated
criterion function since in many circuits there exist elements
with fixed values of parameters, and additional constraints to
be satisfiea by the circuit.

If £ is a linear function then one can apply the Remez
polynomial algorithm [1,2]. But in general the function f(X,y)
is nonlinear in X therefore we cannot use this algorithm.

Some effective minimization methods are based on the direc-

tional aifferentiability of a maximum function [2]. Since
39 (X) - gy $(Xtog@)-9(xX) _ (af(x,p 5
- ’
ag a++0 o YER (X) aX
where R(X) = {X€G | £(X,y) = ¢(X)}. Then the necessary condi-

tion of an unconstrained minimum

; *
22 >0 Vg (2)

is equivalent to the condition

0 € 3¢ (x*) (3)

df(X,y)

where 3¢ (X) = co X yGR(X)E .

If at XOEEEn condition (3) is not satisfied then the direc-

tion



334

Z(XO)
where
Hz(xO)H = min Izl
Ze3¢(Xy)

is the direction of steepest descent (of f at XO)'

Problem (1) can be discretized (i.e., the set G can be re-
placed by a finite number of points) and we shall have a discrete
minimax problem which can be solved by well-known methods.
There are different approaches to discretize G. The "direct"
method (to replace G by a "thick" grid) is too "expensive" from
the computational standpoint. Much more effective is "the ex-
tremal basis method" which uses only n+ 2 points (where n is
the dimensionality of the space) at each step, but these points
("a basis") are being adjusted at each step (see [5]).
Computational experiments showed that the extremal basis method
is highly effective, especially if the method of equalizing

maxima (see [7]) is applied at the final stage of computations.

EXAMPLE 1. (The Mandelshtam problem).
Let
15
f(X,t) = cos t + ) cos ((k+1)t+xk)) .
k=1
It is required- to find x* = (x:,...,x?S)EEEn such that
¢(x*) = max £(x*,t) = min max f£(X,t) . (4)
te[-m,m] XEEn te[-m,n]

This is the problem of finding the "phase" shifts in the circuits

of 16 harmonic generators (it is assumed that Xy = 0) which
guarantee the resulting signal with the minimal value of the
"maximal” level.

Note that the maximal possible value is 16 (it is achieved
if X; = 0 vie1:15). After solving problem (4) (by any avail-

able minimax technique) we get the following optimal solution
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X* = (1.57625; 1.99774, -2,91176; -2.00577
0.35074, 2.60184, -1.13237; 2.83581
0.55282, =-1.3L677, 2.19116; 2.26278
0.75618, 0.97112, 0.06332).

This peak value of the total signal was reduced from 16 to
3.89755 = ¢ (x%).
The function h(t) = f(X*,t) achieves its maximal value

(with respect to t) at 16 points.

t1 = =2.2295; t2 = -1.8311, t3 = ~1,5243; tu = -1,1755
t5 = -0.5162; t6 = 0.1445; t7 = 0.3655, t8 = 0.7931
t9 = 1.0087; t10 = 1.2297; t11 = 1.4687; t12 = 1.8025
ty3= 2.1754; t14 = 2.3969; t15 = 2.7671; t16 = 3.1318

The signs of £(x*,t) were as follows
L i e A P R e N il A el

This fact shows that there is no "alternance" property (as was
the case in linear minimax problems).
3. 1In solving practical problems it is often necessary to
minimize a function which is a composition of max-type functions.
Let a function F(a1,a2,...,ap) be continuously differenti-
able on Ep, and ¢k(x)A<€1:p, be functions of the form ¢k =
= max fk(X,y) (or ¢k = min fk(X,y)), where Gk are compact in Em,
YEG)
and function fk(X,y) as before are continuous together with

afk(X,y)
—x — on En><Gk. Let ¢ (X) = F(¢1(X),...,¢p)x)) be a super-

position of functions ¢1(x),...,¢p(x). Without loss of general-
ity we assume that ¢k(X) are max-type functions.

Since ¢k are directionally differentiable then ¢ is also
directionally differentiable and
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where

then

Putting

P
o0 _ 5 ar 36, (X)
59 Ly 36, g
39y (X) ( 2%, (X,y) )
— = max ;g
99 yeRk(X) oX
R, (X) = {yezck |fk(X,y) = ¢k(x)}
39 (X) _ § . (afk(x,y)
99 k=1 %% y R_(X) 90X
3F (¢, (X),.u.,0 (X))
! P =y (x)
30, k

we can rewrite (5) in the form

where

3 (X) _ ‘f
%9 k=1

= Z y
ked, (X)

+ ) y
keT_ (X)

J, (X) = U<e1;p|wk(x) >0}, J_(X) ={ke

¥ (X)

(X)

(X)

max
YER, (X)

max
yGRk(X)

max
yERk(X)

|
|

X

Bfk(X,Y)

X

afk(x,y)

X

(afk(x,y)

7

g

x

,g)"'

»

1

kel:p ’

(5)

:p|‘Pk(X) < 0} ’
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TE
|

of, (X,y)
A = max Wk(x) — g
k€J (X) YER, (X)
af, (X,y,)
= max Doy (x) XK g)
y1€R1(x) keJ (X) k X
YZERZ(X)
YpERp(X)
B = Z Y (X) max (afk(x’y) g) -
k€J_ (X) YER, (X) X!
Bfk(X,y)
KEJ_(X) yER, (X)
of, (X,y,)
Y4€R, (X)\keT_ (X)
Y,€R, (X)
YPERP(X)
Thus,
(X)) _ . ¢ ) of (Xyyy)
%9 ¥ 1€R, (X) (k€T (X) k ERS
ypeRp(X)
of, (X,y,)
+ min ¥, (X) kax k
Y1€R, (X) \k&J_(X)

(6)

Recall (see [5]) that a function f is called quasidifferentiable

at a point XéEEn if it is differentiable at the point X in any

direction g(EEn and if there are convex compacts éf(X)CEn and

§f(X)CEn such that
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ag(x) = lim f(X+aggx—f(X) = max (v,9) + min (w,q).
g a>+0 VeI £ (X) wED £ (X)
The pair of sets Df(X) = [3f(X),0f(X)] is called a quasidif-

ferential of the function f at the point X, and sets 3f(X) and
f(X) are respectively called a subdifferential and a superdif-
ferential of the function f at the point X.

Now it is easy to see that the function ¢ is quasidiffer-
entiable.

We say that a quasidifferentiable function f has a vertex-
type quasidifferential at a point X, if the subdifferential
3f(X) and the superdifferential 3f(X) may be represented as con-
vex hulls of a finite number of points. In the case of a
vertex-type quasidifferential the formulas of quasidifferential
calculus are readily applicable in practice.

For example, let f£(X) = max fi(X), where XeEEn, and func-
tions fi are quasidifferentiagfé, and

= - i i
3f, (X) = co A;(X) = co {a1,...,ami} '
= _ _ i i
afi(x) = ¢co Bi(x) = co {b1,...,bn.} .

1

Here each of Ai(X) and Bi(x) consists of a finite number of

points 1in En.

Let
R(X) = {i€I|f(x) = £,(X)}. Then
3f(X) = co A(X),9f(X) = co B(X) ,

where

A(X) = la=al . - bl |i'€R(X),3(i') € T:m, k(i) €1:n, |,

j(i'") {1ER(X) k(i) i i
i#i!

B(X) = %b= pl |k (i) € 1:n, .

ier(x) ¥ +
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It is easy to see that the number of points in the set A(X)

is equal to ) (m,, x I n.) and in the set B(X) is equal
i'€R(X) ' ier(X)
i#i
to II n..
ier(x) 1

A simple structure of vertex-type quasidifferentials enables
one to apply well-known methods for finding the distance bet~
ween sets 3f(X) and -3f(X) and at the same time to check whether

the necessary condition for an unconstrained minimum
-3f(X) C 3f (X) (7)

is satisfied and to deternine a direction of steepest descent.

It is easy to see from (6) that ¢ has a vertex-type quasi-
differential, if the sets Rk(X), k€1:p, are finite.
4. Let XeQCEn, yGGCEm,ZEwCES. Here G and w are

compact sets in proper spaces, @ is a convex compact set. Let

¢(le) = min f(XIYIZ) ’
Zew
Q(X,y) = {z2€uw|f(X,y,2) = ¢(X,¥)}

Consider the function

¢ (X) max ¢ (X,y)

yEG

and the set

R(X) = {y€G|¢(X,y) = ¢(X)} .

The problem of minimizing ¢ on 2 C E is reduced to that of
finding parameters X € Q and determining the relation Z(y), which
provide the minimal values of f£(X,y,2) on the set G i.e., to the

problem:

max min f£(X,y,2) — min
YEG ZEw Xen
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By discretizing sets G and w, we have the problem of mini-

mizing the function

¢ (X) = max min fi.(X) .
ier jeg *?

It is easy to see that this function is qguasidifferentiable.

Consider the following example.

Let
1 2 2,
f(X,y,2z) = EET?E {(z+x1y) +[x1z(1+y )
—(22+x$y2)] cosz(x2¢x1z)} -1
where

It is necessary to find min ¢ (X) where
XGE2

o (X) = max min £f(X,y.2) .

vely,,¥,] 2€1Z,,2,]
This is the problem of optimizing the operational attenuation of
a ferrite impedance transformer by choosing the proper values of
parameters XX, (the dielectrical permeability and the elec-
trical length) and determining an optimal rule for controlling
the magnetic permeability z(y) if the transformer load changes
on the interval [§1,§2].

Fix numbers N1,N and put

2

Yo7¥q = 2,72
s, - Z
1; Zj 1+ N

j;ieom1£ I, jEMNziJ .
2

The initial function Y can be approximated by the function

¢ (X) = max min fi.(X)
ier jeg

where fij(x) = f(x,yi,Zj).
The function ¢ is quasidifferentiable. Find its quasi-
differential.
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We have

¢ (X) = max fi(X)
ie1
where

£.(X) = £(X,y,) = min £,. (X) .
1 i jET 1]

Since the functions fij are continuously differentiable, we can
take

af. . (X)

BF;5(X) = {0}, () = 3——%%———%

Using the rules of quasidifferential calculus [5] we obtain

_ Bfij(x) af(x,yi,zj)
gfi(x)==0, Bfi(X) = co % = X Zje Qi(X)
where
Qi(X) = Q(X,yi) = {Zj|j G.J,fi(x) = fij(x)} .
Finally we get
3¢ (X) = - co ) §fk(x)|yiezR(x)} .
YkGR(X)
Y#Y;
(X)) = ] TE, (X)
inR(X)
where
R(X) = {y;[1€1,¢(X) = £,(X)} .

It is clear that the function ¢ has a vertex-type quasidiffer-
ential.

5. Let us now consider the problem of designing smoothly
tuning frequency filters. Mathematically this can be stated as

the following problem :



342

F(X) = max min max f(X,y,2) — min (8)
tela,b] z(t)ew yelt,t+§] XEN

where a,b are constants, § < < b-a, w is some class of functions
defined on [a,b]. Replacing each of the intervals [a,b] and
{t,t+8] by a finite number of points and a function Z(t) by the
corresponding vector we shall approximate the function F by

the function

F1(X) = max min max fi.(X)
i€0:N jEJ kei: (i+n) I

where

fiy (%) = £(Xyy,29) .

Clearly, F, is a quasidifferentiable function and has a
vertex-type quasidifferential.

The problem of designing discrete controllable frequency
band filters is of particular interest. The returning of these
filters within the workable frequency band, for example, by the
passband is performed in steps by switching filter element
groups. Capacities are often used as components of such groups.

The problem of optimal synthesis (in the Chebyshev sense)
of the discretized controllable filter may be presented as
follows:

max min max f(X,Z,t) — min

iel Zewi tESi XEQ
where Si is the set of workable band frequencies, Si C E1;
I 1is an index set, I = 1:p;
p 1is a number of filter subbands
Wy is a set of groups of discretized tunable elements,
wi C Em;

0 1is a set of unvariable filter elements, O C En'

6. Now let us discuss the problem of synthesising non-
linear circuits. Mathematically this can be stated as the prob-

lem of minimizing the function
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$(X) = max |£(X,t) - F(t)]
tel0,T]

where

m
£(x,t) = E(X,u(t)),E(X,u) = ] £, (X,u) ;
i=1

F(t) is a given function; xEEEn, u(t) is a periodic function of
a given period T; fi(X,u) are so-called module functions. The
function f(X,t) is the result of transforming the function u(t)
by a nonlinear element, the volt/ampere characteristics of which
are given by the module function f(X,u).

Consider two examples of solving practical problems.

Let

f(X,u) = (u—x0+|u—x0|), u = x, cos t, X = (x1,x2)

14

F(t) = a0-+a1 cos t+a, cost 2t +a, cos 3t

2 3

The problem is to find

min max X, cos t--x0 + x,cos t--x0 ~-F(t)
XO’X1 te[0, m]
or in the discrete form
min ¢ (X)
Xth
where
¢(x,,x,) = max | x,cos t,-x,+ | x,cost.-x -F(t.)
m o,
tj=ﬁj,J=0:N,

N is a fixed natural number.
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The problem is reduced to that of finding a cosinusoidal

pulse x and a level for the cut-off of cosinusoid X4, which

’
guarant;e that the periodic pulse constructed is approximated

in the best way by a polyharmonic oscillation with given ampli-
tudes of the first, second and third harmonics and a constant
component.

For the initial approximation let us choose the solution
obtained via Fourier Series. Let X, = 1, Xg = 0.5 (the cut-off
angle 6 = 600) to which Berg coefficients ay = 0.218, a, = 0.391,
oy, = 0.276, oy = 0.%33 correspond. Thus

F(tj) = 0.218+0.391 cos tj+0.276cos 2tj+0.138005 3tj ,
¢ (xg,xy) = max | x, cos ty =%yt | x, cos ty - X, | —F(tj)| .
Jjed
The initial value ¢(0,5;1) = 0.12074.

For computational reasons we introduce an e-subdifferential

and an e-superdifferential of the functions (they are approxi-

mations of a subdifferential and a superdifferential)
r(xo,x1,t)=x1cost—x0+\x1cost—x0|—F(t) ,
s(xo,x1,t)=fr(x0,x1,t)| .

Here € > 0. We obtain (see [5])

(2cos t, ~2), if X,cos t-x,>

[=}
N|m
<

ger(xo,x1,t) = 7/(0,0), if x1cost--x0 < -

| m
<

{(2cos t, -2),(0,0)], if S <xcos t=x, <5 ,

ger(xo’x1 s£) = (0,0);
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éer(xo,x1,t), if r(xo,x1,t) > % ’

=3.r(xg.%q,t), if r(xg,%,,t) < -£

Ees(xo,x1,t) 5

co{zger(xo,x1,t),—2§ér(x0,x1,t)},

if-% < r(xo,x1,t) <

N ™

Eer(xo,x1,t), if r(xo,x1,t) > % ’

I8 (xq,xy,t) = =3, .r(xg,x,t), if r(xg,xq,t) <..% ,
Eer (XO'X1 ’t)—-a'Er(XO'X‘] ,t),

; €

if -5 < rixg,x ,t) < %
Then

9 ¢(x4,x%x,) =cof{d _s(x,,x,,t, )~ ] J.s(x
€ 0’1 € 0’1"k tiGR €

ti#t

e x°§X1'ti) |thR€(x0,x1)},
e 0" ™M

k

? o(xyx,) = ] T s(X.,%X4,t) ,
3 0’ ™ € 0’"1’ "k
thRE(xo,x1)

where

m .
R_(x5,%4) = {tx=tj=§3|¢(x0,x1)-s(x0,x1,tj) <e}

At the initial point —5€¢(0.5,1) ¢ 3.4(0.5,1), therefore
X0 = (0.5;1) is not a stationary point. When using the method
of €-steepest descent after 13 steps on a grid having N =50,
we obtained point X; = (0,347541, 0.822896). At this point
L I * ok _ * oy
¢(x0,x1) = s(xo,x1, 1.134724) = 0.072292. Assume Re(xo,x1) =

- * Ky * % :

= {t t € HLW]|¢(x0,x1) S(XO’X1’tk) < e}, where t, is a local
maximum of function s(xs,x:,ﬂ with respect to t (between grid
points) and take € =0,0001. Then Re(xs,x’;) = {£,=0,t,=0.760555,

2
t3=1.13u72u}. Finally we get

* % * % = * Uk _= * %
3.0 (xgsxq) = cold _s(xy,xq,ty) =3 _s(xy,xq,t,) =3 _8(xy,%q,t3)
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* % - * X = * %
ges(xo,x1,t2) Bes(xo,x1,t1)— Bes(xo,x1,t3) ,

X % = X % - X %
ges(xo,x1,t3) Ses(xo,x1;t1)— Bes(xo,x1,t2)} =

co{[(0.844765,-2.0),(0.0)], (3.448907,-4.0) +
+[(0.844765,-2.0),(0.0)1, (+2.0,-2.0)}

r

= * * _ = * * * * = * *
Ipgb(xg,xq) = 03 s(xp,x1,ty) + 3€s(x0,x1,t2) + B s (xg,xq,t5)

(-2.0,+2.0) + [(-0.844765,+2.0),(0,0)]1 ;

—§€¢(x;,x:) = (2.0,-2.0) + [(0.844765,-2.0),(0,0)]
Thus at the point x* = (0.347541,0.822896) we have
—_ * %k
"3€¢)(X0,X1) C §_E¢(XSIX:) ’

i.e. at this point the necessary condition for a minimum of the
function ¢(x0,x1) (condition (7)) is satisfied (up to es-accur-
acy (Fig. 1)).

It is interesting to note that the solution of the inverse
proklem of finding amplitudes of the three harmonics and a con-
stant component which provide the best approximation of the periodic
cosinusoidal pulse of the same form (x1= 1, Xy = 0.5) leads to
1= 0.37849,
=0.18398; ¢(a) being 0.077876. The comparison

the following values of coefficients: a0==0.20918, o
u2==0.27542, a3
shows that the solution given differs essentially from the co-
efficient determined by applying the Fourier Series and provides
a better (in the Chebyshev sense) approximation of the initial
function.

Another example relates to the problem of designing ampli-
tude harmonic filters. Let some signal be of the form u(t) =
= b,cost + b2 cos2t, 0 < b

1 1
has the first and second harmonics. It is required to reduce

<1, 0« b2 < 1, i.e. the signal

the level of the second harmonic with respect to the first one

in the output signal spectrum by choosing the proper transducer
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parameters. The transducer consists of n diode nonlinear ele-
ments and its output signal is

n
£(GE) =5 L agut)—a + ult) —a [ +4
i=1

The problem of synthesis is formulated as follows. Deter-—

mine a vector X = (a1,...,an,a1,...,an,A) which minimizes the
function
¢$(X) = max |£(X,t)-F(t)| ,
te[0,1]
where F(t) = b0 cost,cxi is the characteristic curvature of the

i-thdiode, oy is the current cut-off angle of the i-th diode, A
is the constant component of the output signal. Let n=3,

b0==-1, b1-1, b2==0.2. The initial approximation was the

. 0 0 0 0_ 0_
following: a1=—0.9, ag=—0.7, a3=0, a1=—2.5, (12—1.5, ag=
= 0.3, A0==1. The maximum signal slope for the given case was
o (X) =0.25.

By using the e-steepest descent method the vector x* =
(aT=-0.822, a3 =-0.624, ay=-0.054, o} =-2.608, o} =1.416,
a§==0.505, A¥ = 1.031) was obtained and the max-type function was
¢(X*)= 0.027. At this point the sets of sub- and superdiffer-
entials §E¢(X*) and §€¢(X*) represent convex polyhedra having
respectively 23 and 4 vertices in 7-dimensional space.

Since the distance between the sets §E¢(X*) and —§E¢(X*) is
small (pE(X*) =0.002), the point x* can be regarded as an e-

stationary one.

The resulting suppression of the second harmonic is easy to
determine by representing the found signal F(t) as a Fourier
Series. 1In this example the suppression value amounts to 24 dB.
So the transducer considered is in fact a nonlinear harmonic
filter. Within the interval where the frequency of the nonlinear
element operates, the suppression level does not depend on a

frequency.
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however, it is necessary to underline that unlike the charac-

teristics of frequency filters the characteristics of amplitude

filters are sensitive to the input signal level.

Thus, the examples discussed show that Quasidifferential

Calculus enables one to greatly extend the class of electrical

circuit problems which can be successfully solved.

5 6
—+ ——p X-I
-74¢
v
XO
Fig. I
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