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PREFACE

The International Institute for Applied Systems Analysis (IIASA) in Laxenburg,
Austria, has been involved in research on nondifferentiable optimization since 1976.
IIASA-based East-West cooperation in this field has been very productive, leading to
many important theoreticaL algorithmic and applied results. Nondifferentiable optimi
zation has now become a recognized and rapidly developing branch of mathematical
programming.

To continue this tradition, and to review recent developments in this field, IIASA
held a Workshop on Nondifferentiable Optimization in Sopron (Hungary) in September
1984.

The aims of the Workshop were:

1. To discuss the state-of-the-art of nondifferentiable optimization (NDO). its origins
and motivation;

2. To compare various algorithms;
3. To evaluate existing mathematical approaches, their applications and potential:

4. To extend and deepen industrial and other applications of NDO.

The following topics were considered in separate sessions:

General motivation for research in NDO: nondifferentiability in applied problems,
nondifferentiable mathematical models.

Numerical methods for solving nondifferentiable optimization problems, numerical
experiments, comparisons and software.

Nondifferentiable analysis: various generalizations of the concept of subdifferen
tials.

Industrial and other applications.

This volume contains selected papers presented at the Workshop. It is divided
into four sections. based on the above topics:

I. Concepts in Nonsmooth Analysis

II. Multicriteria Optimization and Control Theory

III. Algorithms and Optimization Methods

IV. Stochastic Programming and Applications

We would like to thank the International Institute for Applied Systems Analysis,
particularly Prof. V. Kaftanov and Prof. A.B. Kurzhanski, for their support in organiz
ing this meeting.

We would also like to thank Helen Gasking for her help In preparing this volume.

V. Demyanov
D. Pallaschke
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ATTEMPTS TO APPROXIMATE A SET-VALUED MAPPING

V.F. Demyanov1 , C. Lemarechal2 and 1. Zowe3

1International Institute for Applied Systems Analysis, Laxenburg, Austria
and Leningrad State University, Leningrad, USSR
2INRIA, P.O. Box 105,78153 Le Chesnay, France

3 University ofBayreuth, P.O. Box 3008, 8580 Bayreuth, FRG

Abstract. Given a multi-valued mapping F, we address the problem of finding
another multi-valued mapping H that agrees locally with F in some sense.
We show that, contrary to the scalar case, introducing a derivative of F is
hardly convenient. For the case when F is convex-compact-valued, we give
some possible approximations, and at the same time we show their limitations.
The present paper is limited to informal demonstration of concepts and mech
anisms. Formal statements and their proofs will be published elsewhere.

1. INTRODUCTION

Consider first the problem of solving a nonlinear system:

f(x) = 0 (1)

where f is a vector-valued function. If we find a first order approximation
of f near x, i. e. a vector-valued bi-function h such that

h(x;d) = f(x+d) + o(d)

(where 0 (d) /lIdll -+ 0 when d -+ 0) then we can apply the Newton principle:
given a current iterate x, solve for d

h(x;d) = 0

(2)

(3)

(supposedly simpler than (1)) and move to x+d.
Everybody knows that if f is differentiable and if, in addition to sat

isfying (2), h is required to be affine in d, then it is unambiguously
defined by

h (x;d) := f (x) + f' (x)d (4)

Merging (2) and (4) and subtracting f (x) gives also a nonarnbiguous defi
nition of f' (the jacobian operator of f) by:

ft (x)d := f(x+d) - f(x) + o(d).

Part of this research was performed at the Mathematics Research Center of
the University of Wisconsin under Contract"" DAAG 29-80-c-0041
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Supp::lse now that we have to solve

o E F(x) (5)

where F is a multi-valued mapping, i. e. F(x) eRn. A p::lssible application
of (5) is in nonsmooth optimization, when F is the (approximate) subJ.iffer
ential of an objective function to be minimized. To apply the same pr inciple
as in the single valued case, F(x+d) must be approximated by some set

H(Xid) eRn. Continuing the parallel and requiring H to be affine in d
(whatever it means), we must express it as a sum of tux! sets: H(x,d) = F (x) + G.
In summary, we want to find a set G such that, for all E > 0 and ~dl small
enough:

and

F(x+d) C F(x) + G + EUdll U

F(x) + G C F(x+d) + E~dl U

(6.a)

(6.b)

where U is the unit ball of R
n

• Unfortunately, such a writing is already
worthless. First, it does not help defining the "linearization" G: just
because the set of subsets is not a group, F(x) cannot be substracted in (6).
Furthermore, (6) is extremely restrictive: for n = 1, consider the innocent
mapping F(x) := [O,3x] (defined for x ~ 0). Take x = 1, E = 1 and d < O.
It is imp::lssible to find a set G satisfying (6.b), i. e. [0,3] + Gc [d,3+2d].
For example, G = {d} is already too "thick".

A conclusion of this section is that a first order approximation to a
multivalued mapping cannot be readily constructed by a standard lineari
zationi the definition of such an approximation is at present ambiguous.
For a deep insight into differentiability of sets, we refer to [6] and its
large bibliography. Here, for want of a complete theory, we will give in
the next sections two p::lssible proposals. None of them is fully satisfactory,
but they are rather complementary, in the sense that each one has a chance
to be convenient when the other is not. We will restrict ourselves to the
convex compact case. Furthermore, as is usual in nondifferentiable optimi
zation, we will consider only directional der ivatives. Therefore we adopt
simpler notations: x and the direction d being fixed, we call F(t) the image
by F of x + td, t :;:. o. We say that H approximates F to 1st order near t = 0+
if for every E > 0, there is 6 > 0 such that t E [0,6] implies

F (t) c H (t) + Et U and H(t) c F (t) + Et U

Note that, among others, F approximates itself!

2. MAPPINGS DEFINED BY A SET OF CONSTRAINTS

As a first illustration, supp::lse F is defined by:

F(t) := {z ERn I c.(t,z) ..,.: 0 for j = l, ... ,m}
J

(7)

where the "constraints" c
j

are convex in z. Assume the existence of cj (O,z),

the right derivative of c.(·,z) at t = 0 (c'.(o+,z) would be more suggestive).
J J

Then it is natural to consider approximating F (t) by

H(t) := {z I c,(O,z) + t c',(O,z) ..,.: 0
J J

for j = 1, •.. , m}. (8)
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An algorithm based on this set would then be quite in the spirit of [7].
It is possible to prove that the H of (8) does satisfy (7), provided

some hypotheses hold, for example

(i) [c. (t, z) - c. (0, z) ] / t -+ c '. (0, z) unifoY'l7lly in z, when t -j. 0,
J J J

(ii) there exists z such that c. (O,z ) < 0 for j = 1, .•• ,m.
o J 0

A weak point of (8) is that it is highly non-canonical. For example, per
turbing the constraints to (1 +a.t)c. (t,z) gives the same F but does
change H. J J

3. A DIRECT SET-THEORETIC CONSTRUCTION

If we examine (6) again, we see that there would be no difficulty if
F(x) were a singleton: then (6) would always be consistent because F(x+d)
would never be less thick than F(x), and F(x) could be subtracted. This
leads to differentiating F at an arbitrary but fixed y E F(O). Define

F' (0) := lz f there exist t n and Yn E F(tn ) for n E :IN}
Y 1 with t -j. 0 and (y -y) / t -+ z

n n n

or, in a set-theoretic notation (see [2], Chapter VI):

F' (0) := lim sup [F(t)-y]/t
Y do

This set is called the contingent derivative in [1], the (radial) upper Dini
derivative in [6] and the feasible set of first order in [3]. We refer to [1]
for an extensive study of F', but some remarks will be useful:

a) F' (0) depends on the behaviour of F near y only. If we take an arbi
y

trary a> 0 and set G(t) := F(t) n {Y+ au}, then G' (0) = F' (0).
y y

b) If F(t) = F(O) does not depend on t, F' (0) is just the tangent cone
to F(O) at y. y

c) Let A be a convex set in Rn , and f: [0,1] Rn a differentiable
mapping (with f(O) = 0 for notational simplicitYl. Consider F(t) :={f(t)} + A.
Given y E F(O) = A, call T the tangent cone to F(O) = A at y. Then it can

y
be shown that F' (0) = {f' (O)} + T . This is the situation when F is the

y y
approximate subdifferential of a convex quadratic function (see [4]).

d) Let n = 2. Given r E R, consider F(t) := P(t) n U with the halfspace
P(t) := {y (Yl'Y2) I Y2 ~ rtYl}' It can be shown that, for y = 0 E F(O),

F~ (0) = {z = (zl' z2) I z2 ~ oJ; F~ (0) is the same as it would be if r were 0

(in which case F (t) would be fixed), and does not predict the rotation of
F(t) around y = o.

Because a convex set is the intersection of the cones tangent to it,
our remark b) above suggests to approximate F(t) by

H(t) := n {y + tF' (0) lyE F(O)}
o

(9)

Of course, this will be possible only under additional assumptions (not only
due to the mul ti-valuedness of F; for example F (t) : = {t sin log t } has

Ii



6

(10)

tional) der ivative s' (0), the
p

G(t) := {y I <p,y> ~ s (0) + t s' (0)
p p

F(O) = {O}, F' (0) = [-1,+1] and H(t) = [-t,+t]).
o

Before mentioning the assumptions in question, we introduce another

candidate to approximate F: for p € R
n

, denote by s (t) :=sup {<p,y>ly€F(t)}
p

the support function of F(t). It is known that F can be described in terms

of s, namely F(t) = {y I <p,y> ~ s (t) V p € R
n

}. The~ if s has a (direc-
p p

following set is natural (see [5]):

'Ib assess these candidates (9) and (10), the following assumptions can
be considered:

(i) [s (t) - s (0)] / t -+ S' (0) uniformly for p € V, when t {- 0;
p p p

(ii) F(O) has a nonempty interior.

They allow to prove:

If (i) holds, then H(t) = G(t); if (ii) also holds, then (7) holds.

We remark that (i) alone suffices to prove the second half of (7), which
is the important one for (5) (solving 0 € H(t) gives some among the possible
Newton iterates); however H(t) may be void if (ii) does not hold. It is also
interesting to remark that, if s' (0) is assumed to be convex in p (in which

p
case (ii) is not needed), then it is the support function of a convex set
th:lt we are entitled to call F' (0) d because there holds H (t) = F (0) + t F' (0) d
(due to additivity of support functions). In other words, convexity of s' (0)
gives the "easy" situation in which (6) holds. p

The role of assumption (i) is more profound. It is natural to require
that F' (0) does predict the behaviour of F(t) near y; this behaviour is

y
trivial when y € int F(O) (then F(t) must contain y for all t small enough);
if y is on the boundary of F(O) then there is a normal cone N (0) to F(O)

y
at y, and s (0) = <p,y> for p € N (0); hence the behaviour of F(t) near y is

p y
naturally related to the behaviour of s (t) for these normal p'S (inciden

p
tally, a key result is that F ' (0) = {z I <P,z> ~ S' (0) V p € N (O)}; (i) is

Y P Y
essential for this). However, it is not only some technicalities in the
proof that require the uniformity stated in (i), but rather the deficiency
of F' suggested by d) above: consider the innocent mapping

F(t) := {y

Given a € Rand p = (a,-l), sp(t) max {(a-t)Yl I 0 ~ Yl ~ 1} and thUs,

(i) is violated: when a {- 0, s' (0) jumps from -1 to O. For this example,
p

H (t) = G (t) = [0,1] x [t, 1.], which is a poor approximation of F (t). This is
rather disappointing, but observe that Section 2 is well-suited for the
present F.
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MISCELLANIES ON NONSMOOTH ANALYSIS AND OPTIMIZATION

I.-B. Hiriart-Urruty
Paul Sabatier University, 118 route de Narbonne, 31062 Toulouse, France

People who work in the area of research concerned with the analy~~

and optimization 06 no~mooth 6unctio~ know they now have a panoply of
"generalized subdifferentials" or "generalized gradients" at their disposal

to treat optimization problems with nonsmooth data. In this short paper,
which we wanted largely introductory, we develop some basic ideas about how

no~moothn~~ ~ handled by the various concepts introduced in the past

decade.
For the sake of simplicity, we assume that the functions f considered throu
ghout are defined and iocalty Lip~chitz on some finite-dimensional space X
(take X = mn for example). To avoid technicalities, we suppose moreover that
the (~uai) cLUr.ectional dvUvative

d -+ f'(x;d) = lim
A-+O+

f(x+Ad) - f(x)
A

(0.1 )

(0.2)

e~~ for f at all x and for all d. As the reader easily imagines, all these

assumptions have been removed in the different generalizations proposed by
the mathematicians, but this is not our point here.

Clearly, f'(x;d) can also be expressed as :

lim f(x+Av) - f(x)
A-+O+ A
v-+d

f'(x;d) is a genuine approximation of f around x. The graph of the function



9

d + f'(x;d) is, roughly speaking, the tangent cone to the graph of f at
(x,f(x)). So, we have our "primal" mathematical object for approximating f,

f' : X x X + IR

(x,d) + f' (x;d),
(0.3)

which plays the role of a substitute for the linear mapping d + <Vf(x),d>.
The "dua1" corres pondi ng concept is some mu ltifunct ion, denoted generi ca11y
by Clf,

Clf Xt x*

x t Clf(x),

(0.4)

which, hopefully, will act as the gradient mapping does for differentiable
functions.

1. NEEDS

Any primal object, denoted generically by fV(x;d) (i .e., f'(x;d)
or some generalization of it), and the corresponding dual object Clf(x)
should satisfy the following properties:

To p~~ easily from the p~al object to the dual one; the support
function of Clf(x) has to be built up, in some manner, from f'(x;d) .

. To allow 6~t-ond~ deveiopment6 and mean-value theon~. For the
directional derivative f', we do have:

f (x+Ad) = f(x) + Af'(x;d) + O(A).

What is expected for Clf to verify is :

f(y) - f(x) E <Clf(z) ,y-x> for some z E ]X,y[ .

(1.1 )

(1. 2)

(1. 3)

. In view of the properties of (x,d) + f'(x;d) or x + Clf(x) , one should
be able to necognize the function f, and to necov~ it through some ~nte9nal

nepn~en:ta.:Uon of f(y) - f(x). We have that

1
f(y) = f(x) + f

o
f'(x+t(y-x) y-x) dt,

and we expect

I
II
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(1. 4)+ f~ <af(x+t(y-x)),y-x> dt.f(y) f(x)
(or E)

SemiQontinuity properties of the function (x,d) + fV(x;d) and of the
multifunction x ~ af(x). These requirements are of a particular importance
for algorithmic purposes .

. fV(x;d) and af(x) should be tnactabte from the computational view
point; in effect, elements of af(xn) are used to devise xn+1 in all first
order methods.

Consider for example the case of Qonvex functions f. f'(x;d) is itself a
Qonvex function of d so that the concept af(x), dual of f'(x;d), is the so
called ¢ubdi66~entiat of f at x,

af(x) = {x* I <x*,d> :$ f'(x;d) for all dE X}. (1. 5)

af enjoys all the properties listed above. One is able to recognize a convex
function when f' is at our disposal since : 6~ Qonvex i6 and only i6
6' (x;y-x) + 6' (y;x-y) :$ 0 6o~ all x and y. If, instead, the generalized gra
dient af of f is considered (cf. section 2), ~ ~ Qonvex i6 and only i6 a6
~ mono.tone, that is

<af(x) - af(y), x-y> ~ 0 for all x,y. (1. 6)

Mean-value theorems, integral representations, semi continuity properties
of f' and af are basic facts in Convex Analysis.
Another class of functions which has played an important role in the develop
ment of nonsmooth analysis and optimization is that of maximums of C1

functions :

f = 1max f i ' fiE C (X).
i=l, ... ,k

f'(x;d) is a convex function of d ; it is the support function of

af(x) = cO{\7fi (x) I f i (x) = f(x)}.

Actually, f behaves locally like a convex function, so that handling such
functions brings us back to Convex Analysis.
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2. SOME ASPECTS OF THE EVOLUTION OF IDEAS (1974-1984)

Our 1977 survey paper on the various "diconvexifying" processes
([12J) remains of the present day. We will schematize here the enlightenments
which have been brought up since.
Typically, dealing with nonconvex nonsmooth functions leads to the following:

G"+ f' (X;0~1 convexifyier I~ Convex
- - . Analysis

With the linear mapping d + ~(d) = <x* ,d> is associated the dual element x*
In a similar way, with the positively homogeneous convex function d + h(d)
is associated the dual set of x* for which <x*,d> ~ h(d) for all d. But,
since d + f'(x;d) is not convex for general nonsmooth functions f, some
convexifying process has firstly to be devised for building up a positively
homogeneous convex function fV(x;d). Once this step is carried out, defining
af(x) and deriving calculus rules for it belong to the realm of Convex
Analysis. So, treating of nonconvex functions relies heavily, in fine, on
techniques from Convex Analysis ; that explains why researches in nonsmooth
analysis and optimization are prominent in countries where there is a long
standing tradition in Convex Analysis.

2.1 - Generalized subdifferentials (J.-P. PENOT, 1974)

Roughly speaking, the approach of PENOT consisted in skipping over
the "convexifying operation" on f' (x;d) so that the primal object fV (x;d) is
f'(x;d) itself. That led to the gen~zed ~ubd{66~ential of f at x,

a:5 f (x) = {x* I <x* ,d> ~ f' (x;d) for all d},

and to the generalized ~up~d{66~ential of f at x,

> * I *a-f(x) = {x <x ,d> ~ fl(x;d) for all d},

(2.1 )

(2.2)

Evidently a~f(x) = -a:5(-f)(x). The support function of a:5f (x) is the bi
conjugate function of d + f' (x;d) and, therefore, may "slip" to -00 for all d.
If f(x) ~ g(x) in a neighborhood of Xo and f(xo) = g(xo)' we then have that

a~f(xo) c a:5g(xo)' The vocable "general i zed subdifferenti al" is appropri ate

for a~f(xo) here since one is looking for the x* such that the linear map
ping <x* ,d> is a minorant of f'(x;d).
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f is said to be tangentially convex at x if d + fl(x;d) is convex, that is

to say the tangent p~obiem at x is convex [Following B.N. PSHENICHNYI's
terminology [21J, f is quasidifferentiable at xJ. Tangential convexity is a

property which allows to develop calculus rules on d~f.

As we will do it for each concept, we list some advantages and drawbacks of
d~f.

Advan-tageo

sharp necessary conditions for

optimality, keeping apart conditions

forminimality (O€d~f(x)) and condi
tions formaximality (O€a~f(x)).

. nice relationship with the classical

conical approximations of a set; for
example, the contingent cone to epi f

(resp. hyp f) at (x,f(x)) is the epi
graph (resp. hypograph) of fl(X;.).

. mean-value theorems ; integral

representations of f(y) - f(x)
(under some additional assumptions

on f).

VlLaWbadu;

d~f(x) is empty too often,

due to the lack of convexity of

f'(x;.).

necessity of imposing
assumptions like tangential conve

xity for the calculus to be robust.

lack of semicontinuity of

f'(x;d) as a function of x.

2.2 - Generalized gradients (F.H. CLARKE, 1973, 1975)

The "convexifyier" of CLARKE can be described shortly as

fO (x;d) = 1i m sup f' (XI ; d) .
x'+x

(2.3)

fO(x;d) is therefore a regularized version of f'(x;d). fO(x;.) is convex so

that the gen~zed g~d£ent of f at x, af(x), is the dual object associa
ted, in a natural way, to fO(x;d) :

df(x) = {x* I <x* ,d> ~ fO(x;d) for all d},
(2.4)

fO(x;d) = max <x*,d>.
x* € af(x)
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By setting fo(x;d) = lim inf f'(x' ;d), we get nothing else than
x '-+x

- (-f)o(x;d). Thus, the set of x* for which <x* ,d> ~ fo(x;d) boilds down to
af(x) [a fact apparently missed by some authorsJ.
Various appellations have been proposed for af : epidifferential or peri

differential of f, multigradient of f, etc. "Peri differential of f at x" is
not so bad since it reminds us of the information on f we are looking for
aAow1.d x. "Generalized subdifferential" should be proscribed [af is the

superdifferential for a concave function fJ. Anyway, we stand by the origi

nal appellation "generalized gradient of f".
af(x) is conceptually close to the notion of derivative of f ; af(x) reduces

to {Df(x)} whenever f is h~ctty d£66~~~ab!~ at x. A function f for
which fO(x;d) = fl(x;d) for all d is called h~ctty tang~ntia!!y convex

at x [there is between "strict tangential convexity" and "tangential conve
xity" the same kind of gap there exists between "strict differentiability"

and "differentiability"J. If one could rewrite mathematical history, one
would say "f is tangentially linear at x" for "f is differentiable at x"

[i.e., the tangent problem at x is linear] and "f is strictly tangentially
linear at x" for "f is strictly differentiable at x".

Note that if f(x) $ g(x) in a neighborhood of Xo and f(xo) = g(xo)' we only
have that af(xo) n ag(xo) f </>.

Advantag~ Vttawbac.fv.,

af(x) is nonempty at all x for af(x) is sometimes too large
a very large class of functions. a set.

the calculus is robust;

virtually all the results holding
for Of have their counterparts in

terms of af .

. the function (x,d) -+ fO(x;d)

as well as the multifunction

x ~ af(x) are upper-semicontinuous

the associated geometrical

concepts (like the tangent cone) are
not well adapted for nonsmooth

manifolds.

. calculating effectively e
lements of af(xn) at the nth step

of an algorithm might be difficult.
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Note incidentally there is an integral estimate of f(y) - f(x) via af since

1
f(y) - f(x) E f0 <af(x+t(y-x)), y-x> dt. (2.5)

This representation is however loose, since the right-hand side may be too
large and the resulting estimate not much informative.
A final remark to mention is there is a generalization of the concept of gene

ralized gradient to vector-valued functions F : (f1, ... , fm)T : ffin +ffim.

The so-called gen~zed Jaeobian m~x of F at x is a nonempty convex set

of (n,m) matrices which take into account the possible relationships between
the component functions f i . All the othermconcepts extended to vector-valued

F = (f1, ... , fm)T amount to considering X af.(x), that is the generalized
i =1 1 0

derivatives of the components f i taken separately. This possibility of hand

ling globally all the f i is definitely an advantage for CLARKE's generalized

derivatives. Its consequences are conspicuous in what can be called
"mul ti di fferenti a1 cal cul us".

2.3 - The *-generalized derivatives (E. GINER, 1981)

Given f'(x;d), we are looking for a eonvex, positively homogeneous
function h such that

h(d) ~ f' (x;d) for all d, (2.6)

what B.N. PSHENICHNYI calls "an uppVt eonvex appJtodma.ti..on 06 6 a:t x" ([23J).
CLARKE's generalized directional derivative fO(x;.) is an example of such h.

There is another automatic way of selecting an upper convex approximation
of f at x, initiated by GINER (1981). When I moved to TOULOUSE in october 1981,
GINER showed me the following way of "convexifying" a positively homogeneous
function p :

h(d) = sup {p(d+u) - p(u)}.
UEX

(2.7)

h is a positively homogeneous eonvex function which majorizes p. h is moreo
ver Lirschitz whenever p is Lipschitz over X. The functional operation
p_h has a geometrical interpretation by means of the so-called *-difference

of sets (of cones, in the present case). Given two subsets A and B, the
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*-difference of A and B, denoted by A: B is defined as the set of x for
which x + Be A. This operation was introduced by PONTRYAGIN (1967) when
dealing with linear differential games and further exploited by
PSHENICHNYI (1971) in the context of Convex Analysis. It now comes clearly
that :

epi h * .epi p - epl p

{x E XI x + epi pc epi p}

{x E epi p I x + epi pc epi p}.

(2.8)

That is the reason why the convex function h built up from p in (2.7) bears
the name *p. Needless to say, there is a c.onc.a.ve. counterpart *p bui It up
from p mutatis mutandis.
In a certain sense, *p is the "minimal convex function majorizing p".

To be more precise, given do EX,

(2.9)

and h *~ p for any positively homogeneous convex function h satisfying

---------
~----------~!!::tp(d)

---

------------- ~, - ,. ...;r
...~--- ... .-- ",- ----------- /

... ~.. .. h(d)'.. ,.- /........- ,.
-<:;"- ,.

<~-

....--------t:::- -
~- - --~
~-------
~
~

.......""
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We denote by *fO(x;d) what should be written as [*(fO(x;.)J(d). The corres
ponding *-generalized derivative of f at x is defined by :

a*f(x) = {x* I <x*,d> s *fO(x;d) for all d}. (2.10)

H. FRANKOWSKA (1983) got independently at the same concepts she called
asymptotic directional derivative of f (= *fO) and asymptotic gradient of f

(= a*f) respectively. The terminology comes from the fact that the asymptotic
(or recession) cone of a closed convex set C is precisely C~ C.

A wonderful thing about a*f and the generalized gradients in CLARKE's sense
is the following:

THEOREM: The gen~zed g~adient 06 d + 6' (Xid) at 0 ~ exactly a*6txJ.

That means, among other things, that the generalized directional derivative
(in CLARKE's sense) of a positively homogeneous function p can be calculated
via the formula (2.7). Furthermore, calculus rules on generalized gradients
may be used for deriving calculus rules on *-generalized derivatives.
The proof of the theorem above is based upon the following geometrical re
sult : CLARKEls tangent cone to a cone K at its apex is K~ K (cf. [5J for
examp 1e) .
As expected, the advantages and drawbacks of a*f are pretty much alike those

of the generalized gradient af.

Advantagu

a*f(x) is nonempty at all x for
a large class of functions ;
a*f(x) c af(x).

. a*f(x) reduces to {Df(x)}
whenever f is differentiable at x.

. good calculus; mean-value
theorems ,integral representations
(without any further assumption
on f).

lack of upper-semicontinuity
of x + *fO(x;d) [and therefore of
x:t a*f(x)J .

. difficulties of calculating
*f' (x;d) when f (or fO (x;d)) is at
our disposal .
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If f(x) ~ g(x) in a neighborhood of Xo and f(xo) = g(xo)' we have that

a*f(xo) n a*g(xo) # <p (and not a*f(xo) c a*g(xo)!)'

2.4 - Bidifferentials of tangentiall~ d.c. functions (V.F. DEMYANOV and
A.M. RUBINOV, 1980)

DEMYANOV and RUBINOV consider the class functions f for which
fl(x;d) can be written as a di66~ence of two positively homogeneous convex
functions :

f' (x;d) = p(d) - q(d). (2.11)

The so-called d.c. functions (differences of convex functions) belong to this
class as well as functions whose directional derivatives fl(x;d) can be ex
pressed as a minimum of two positively homogeneous convex functions.
DEMYANOV and RUBINOV use the vocable quasidifferentiable for the functions
for which (2.11) holds true, a term borrowed from PSHENICHNYI ([21J). In
accordance with the terminology used earlier in this paper, we call these
functions tange~y d.c. (i .e., the tangent problem is d.c.).
fl(x;d) is thus the difference of two support functions p and q,

f' (x;d) = max <x* ,d> - max <x* ,d> (2.12)
x*EA x*EB

= max <x* ,d> + min <x*,d>. (2.13)
x*EA x*E-B

The sets A and B are not uniquely determined since one could add a support
function to the support function of A and cut if off from the support func
tion of B, without altering f'(x;d). However, provided a relation of equi
valence is used, the sets A and B are associated with fl(x;d) and the pair
(A,B) [actually (A,-B) in the formulation (2.13) used by DEMYANOV and
RUBINOVJ, is the bidi66~e~al of f at x. This bidifferential, denoted as
(~f(x), af(x)), includes a subdifferential ~f(x) (taking into account the
convex part of f'(x;d)) and a superdifferential af(x) (reflecting the conca
ve contribution of fl(x;d)).
Now, calculus on (~f(x), af(x)) amounts to using Convex Analysis twice!
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Adva.n.ta.9U

conceptually close to the usual
directional derivative f'(x;d).

. separates the "convex part"
and the "concave part" of f'(x;d)
sharp optimality conditions.

. mean-value theorems, etc.

VILa.wba.c.k..6

. the bidifferential is actual
ly a class of equivalence; there is
no automatic way of selecting a re
presentative of it.

heavy calculus rules.

no geometrical interpreta
tion for (If(x), af(x)) .

. lack of upper-semi continuity
of x ~ (If(x), af(x)).

A way of taking something which is unambiguously associated with the class
of equivalence (~f(x), af(x)) is to consider If(x) ~ af(x) and af(x) ~ ~f(x).

It is an easy exercise to verify that

~f(x) ~ af(x) = a$f(x)

af(x) ~ ~f(x) =-a~f(x).

(see §2.1)

So, for tangentially d.c. functions, necessary conditions for optimality
become :

(necessary condition for minimality)

o€ a~f(x) <~> 0 € af(x) ~ ~f(x) <='> 2.f(x) c af(x)

(necessary condition for maximality).

The problem of selecting a representative of (~f(x), af(x)) is related to
that of finding the "best" decomposition of f' (x;d) as a difference of two
support functions p and q ; the same problem arises in decomposing d.c. func
tions ([6, 14J).
When we say there is no geometrical base for (~f(x), af(x)), we are actually
posing a question: is there some tangent "bicone" around?
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3. RECOGNIZING FUNCTIONS f AND RECOVERING THEM FROM f', af

Given a multifunction r : X~ X*, is r the generalized derivative
(in some sense) of a function f : X ~ffi ? There is no full answer to this
question, whatever the kind of generalized derivative we are considering. In
particular, the generalized gradient multifunction (in CLARKE's sense) may
be very "bizarre". A more sensible question is : knowing that r is a genera
lized derivative multifunction of a function f, what kind of properties of r
could serve to characterize f ?

r = af is.... I <~>I f is ....

A strongly related question is : how to recover f from af ?

f(y) - f(x) = f~ <af(x+t(y-x)), y-x> dt ? (3.1 )

Recovering f from the directional derivative offers no problem but pro
perties of "derivatives" are better expressed in terms of af, so that the
question (3.1) arises.
Classifying nonsmooth functions can be splitted up into two parts:

(1) Having the definition of a class of functions, what is the charac
terization of such functions in terms of af or f ' (.,.) ?

(2) Defining a class of functions via af, what is an equivalent defi
nition in terms of the function f itself?

Let us mention some classes of functions used in nonsmooth optimization

Conv(X)

QC(X)

LCk(X)

SS(X)

DC(X)

We have that :

convex functions on X ;

quasi-convex functions on X

lower - Ck functions on X

semi-smooth functions on X ;

differences of convex functions on X.

conv(x)} 2
2 c LC (X) c DC(X) c SS(X).

C (X)
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Convex or 10wer-C2 functions enjoy a characterization via f or CLARKE's

generalized gradient af of f :

f is convex if and only if af is monotone;

f is 10wer-C2 if and only if af is strictly hypomotone ([25J).

D.c. functions are, by deni~on, differences of convex functions. To cha

racterize them in terms of af is a difficult task; see [6, Ch. IIJ for the
first fruits in that respect. Even for d.c. functions, it may happen that
a*f differs from af ; see [14, §lJ for an example of d.c. function for which

a*f(xo) = {Df(xo)} and af(xo) contains other elements than Df(xo)'

Semi smooth functions are, on the contrary, denined through a property of af

or f'(.,.) ; what such properties mean equivalently on f is unclear.

Quasi-convex functions are defined analytically,

f(Ax+(l-A)y) ~ max{f(x),f(y)} for all x,y and AE [O,lJ,

or geometrically

{XE XI f(x) ~ cd is convex for all adR.

A characterization of quasi-convex functions, similar to the one known for
differentiable quasi-convex functions, is a follows:

THEOREM ([10, Ch. IIIJ) : Let n be m~ety locally LLp6chitz on X. Then 6~
qUMi-convex on X in a.nd only in :the noUowing pJtopVtty holM .tJtue.

IIx, x' E X nix') < nix) ==> <x'-x, an(x» ~ o.

Unfortunately, this characterization uses both f and af. It is desirable
to find a characterization based upon af only; this has been done by

HASSOUNI ([10, Ch. IIIJ).
Following HASSOUNI, a multifunction r: X t X* is said to be qUMi-monotone

in the direction dEX if, for all XEX, there exists Id~: such that

sign(A-I) . <r(xHd), d> cJR+ for all AEJR,

where sign u 1 if u > 0, -1 if u<O, 0 if u = O.
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Observe that I may be +00 or -00 in the requirement above. Also all the x' on

the line xo+lRd give rise to the same condition; only the direction d is
relevant.
r is called quasi-monotone if it is quasi-monotone in all directions of X.
As expected, a monotone r is quasi-monotone.

THEOREM ([10, Ch. IIIJ) A~ocally Lip~chLtz 6 i¢ qua¢l-convex 16 and

o~y 16 the genvr.aLi.zed gltad1en:t muU16u.net1on ()6 i¢ qua¢l-monotone.

The proof reduces to the one-dimensional case since quasi-convexity is a
"radial" notion; it has however to overcome the difficulty that the gene
ralized gradient of f d: A~ f(x+Ad) does not necessarily equalx,
<()f(x+Ad), d>.

IV. CONCLUSION AND CURRENT TRENDS

The presentati on we have made here is somewhat sketchy. Vi rtua 11y
all the mathematicians who have contributed substantially to the area of
nonsmooth analysis and optimization have proposed their own "generalized
derivative" or "generalized subdifferential". The reader interested in going
more deeply in the subject will find in the bibliographies [9J and [18J
most of the appropriate references.

Concerning the first-order generalized differentiation of nonsmooth func
tions, we think the golden age is over for researches in this area, even if
several problems remain unsolved. Theories are now solidifyied at least for
~~-v~u.ed functions. The researches which are pursued can be described in
the following manner:

. c~~161ca.t1on of nonsmooth functions and optimization problems, this
classification using in most of the cases the various concepts of generalized
derivatives we discussed about .

. app~ca.t1o~ of the new tools and methods to problems which are nons
mooth "by nature" : problems from Mathematical Economy, Optimal Control and
Calculus of Variations, as also Mechanics. In spite of continuous efforts,
the studies in view of dealing with vedM-v~u.ed functions (i .e., functions
taking values in an infinite-dimensional space) are neither quite satis
factory nor complete. There is a strong demand from Nonlinear Analysis
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(bifurcation theory, etc) for tools like implicit function theorems, inverse
function theorems for nonsmooth data .

. Fall-out ~n NOn6mooth Analy~~ and Geom~y. New geometrical notions
of "tangency" and "normality" are associated with the generalized gradients.
For "thin" sets like Lipschitz manifolds, all the c.onvex normal cones deri
ved. from first-order differentiation are too small (they reduce to {O} at
the corners of the manifold). Attempts by the author to defi ne a "normal
s ubcone" to the set S = {x I h(x) = O}, h Lips chitz functi on, depend on the
function h used for representating S as an equality constraint.
It is clear that much more work should be done to better understand the
geometrical structure of Lipschitz manifolds.

A very promising area of research is now the gen~zed ~ec.ond-o~d~

di66~e~on of nonsmooth functions. Various generalized second-order di
rectional derivatives have been studied in the literature, some of them
quite recently. It remains that no satisfactory (= tractable) definition of
a2f(x) has come out as yet.
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1. INTRODUCTION

{gk} and

that 0 f- G ,
a

of norm 1

Recently Lemarechal and Zowe [7] have introduced a theoretical second
order model for minimizing a real, not necessarily differentiable, convex
function defined on ~n. This model approximates the convex function f along
any fixed direction d and is based on the variation with respect to a of
the perturbed directional derivative f~(x,d) (all definitions in convex ana
lysis used in this paper can be found in the classical book by Rockafallar
[9J). With this help, a second-order expansion of f(x+d) - f(x), depending
on a ~ 0, is obtained at the current iterate x and a a-Newton direction is
naturally defined as a direction which minimizes this expansion (when f is
twice continuously differentiable on a neighborhodd of x and a = 0, then
this direction coincides with the classical Newton direction).

If the subdifferential af(x) is approximated by a singleton

the a-subdifferential a f(x) by some convex compact set G such
a a

then a a-Newton direction (relative to gk and G ) is a vector d
satisfying : a

*max <g ,d>

g\:G
a

(I)

where < , > denotes the usual scalar product and t
a

the smallest number

(1) means that the hyperplane defined

separates G strictly from the origin.
a

really interesting when t a < 1, in the

t > 0 such that t gk E Ga' Condition

by d in lRn supports G at t gk and
a a

As observed in [6J, the model is

sequel it will be assumed that 0 < t < I.
a

Our purpose in this paper is to prove that if G
a

is the usual polyhe-

dral approximation of many bundle methods (see, e.g. [6J, [4J, [8J, [3J)
then finding a a-Newton direction is equivalent to solving a variant of
the cutting plane problem, in which one of the linear pieces is imposed to
be active. We also show that a a-Newton direction can be interpreted in
terms of the perturbed second order derivative given in [5J, [IJ.
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2. PRELIMINARY RESULTS

Let xI' ... , ~ be the iterates generated by the algorithm and let

gl' ... , ~ be the corresponding subgradients. As usual, at each subgradient

g. ,.1 :'0: i :'0: k, is associated a weight p. [6] defined by
L L

Pi = f(~) - f(x i ) - <gi' ~-xi>' For a ~ 0, dcrf(~) is approximated by the

convex compact polyhedron

k
{ L A. g. I A. ~ 0, I
i= ILL L

k
:'0: i :'0: k, L

i=1
A.

L

k
I , L

i=1
A. p. :'0: a}

L L

Ga
k-I

L ).
i=1

; observe:'0: k-I:'0: i

extreme points of
k

L+ for L and L for
i=1

Throughout, we will assume that Pk = ° and Pi > 0,

that gk belongs to Ga' The following lemma gives the

when a is small (throughout, we use the notation

LEMMA I. If a ~ Pi' I ~ i ~ k-I, then

G
a

{L ).l. Y·I ).l. ~ 0, I ~ i ~ k, L ).l. = I}
+ L L L + L

where Yi

PROOF. Let g I. Then

g [ I - L a ).l./p.] gk + a L ).l. g. /p ..L L L L L

Set A I - L ).l. a/Pi ~ I - L ).l. p. /p. ).lk ~ ° and A. ).l. alp. ~ 0,
0 L L L L L L L

to observe that L+ A. = I andL

L+ A. p. = ° + L A. p. = L ).l. a = (I - ).lk)a ~ a, so g E GL L L L L a

The converse inclusion is proved through a similar calculation. •
The next lemma relates G

a
and the function used in the cutting plane

algorithm.

LEMMA 2

where

£(x) max {f(xk) - Pi + <gi' x-xk>}
I~i~k

PROOF. Set fi(X) = f(xk) - Pi + <gi' x-xk> and observe that f(x)

for all a ~ 0, da fi(x) = {gi} and fi(xk) = f(xk) - Pi'

max fi(x);
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Then use a result of Hiriart- Urruty ([2J, s.ee also [IOJ) to obtain the desi
red result. •

In a bundle algorithm, the direction is computed by minimizing

f(x) +} u Ilx - ~112 for given u~O. Choosing u=o gives the cutting plane

algorithm. Here, a variant of the cutting plane algorithm is considered, in
which the last linear function is imposed to be active at the optimum. More
precisely, consider the problem.

( Min~~," f(x)

~ s.t. f(x) = f(~) + <gk' x-~>,
or equivalently

i = I, ... ,k-I.

Eliminating v, this problem is nothing else than finding d= x - xk solution
of the following program

(p)

Minimize <gk' d>
d

i = I, ... ,k-I.

It is a linear programming problem whose dual is

(D)

A. ~ 0
~

o

i = I, ... ,k-I.

When 0 < a ~ Pi' 1 '" i ~ k-I, then, using the definition of Yi in

Lemma 1 and setting Ai Pi a ~i' one sees that (D) can be written:

~i ~ 0, i = I, ... ,k-I.

The following lemma characterizes the length t a in terms of the solu
tion of (D) or (D').



28

LEMMA 3. If 0 < to < I and 0 < OS:Pi' I s: i s: k-1. then (D) and (D") are fea

sible and there exists at least one solution to probleIIJs (P). (D) and (D').

Moreover if d* denotes a solution to (P). A* ~ (Ai ••.•• A~_I) a solution to
* "* * *(D) and ~ = (~I' .•• '~k-I) a solution to (D') then d ~ 0 •

*~.
~

and

* * *<gk. d > = - L_ Ai Pi = -0 L_ ~i·

PROOF. Take t < I such that tgk E Go. By Lemma I. there exist vi ~ O.

I s: i s: k such that L+ vi = I and

L v.(y. - gk) + gk·- ~ ~

Hence {vi/(l-t)} is feasible in (D'). which has an optimal solution

{~~} satisfying:
~

so that

t L *~i - L V. ~ L ~~ - 1.
~ - ~

(2)

Now let {~i} be feasib Ie in (D'). Then

Because we have assumed 0 ~ Go' this implies that L ~i > I and. divi

ding by L_ ~i' we obtain

(1 - IlL ~;)gk=L ~.y.IL ~.EG .•
~ - ~ ~ - ~ 0

THEOREM I . If

Hence t s: I - IlL ~. ; equality follows from (2). and the rest of
o - ~

the Lemma is a consequence of duality theory. •

3. CHARACTERIZATION OF o-NEWTON DIRECTIONS

The next theorem makes precise the relationship between o-Newton direc
tions and solutions of problem (P).

o < to < I and 0 < 0 s: Pi' I s: i s: k-I, then

(i) for each O-Newton direction d. ad is a solution of (P) where

a = - optimal value (D) > 0
<gk' d>
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(ii) for each solution d of (P), the direction d/ lid II is a a-Newton direc
tion.

PROOF.

(i) By the strong duality theorem in linear programming and Lemma 3, it is
sufficient to prove that ad is feasible for (P) and <gk' ad> = 1:_ A; Pi

where A* is a solution of (D).

The above equality just results from the definition of a, and it
remains to prove that ad is fe as ib le for (P), i. e. ,

or equivalently that

i = I, ... ,k-I,

i = I, ... ,k-I (3)

As Yi = gk + a(gi - gk)/Pi E Ga (see Lemma I) and as d is a a-Newton

direction we deduce successively for each i = I, ... ,k-l that

which is precisely inequality (3) if we replace a and t a by their value.

(ii) Let d be a solution of (P). As <gk' d> < ° and t a gk E Ga it is suffi

cient to prove that

Let g E Ga Then g = I:+Ai gi with Ai ;> 0, lsi s k, 1:+ Ai = I and

1:+ Ai Pi s a· As d is a solution of (P) we deduce successively that

<g, d>

(4) •

On the other hand, by using Lemma 3, we obtain that

<~, d> + a

The result follows then from (4) and (5).

(5) •

•
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Because (P) may have several solutions there may exist several a-Newton
directions. In that case,Lemarechal and Zowe [7J suggest to select the best
hyperplane which supports G at t gk and separates G strictly from thea a a

(N)

origin. They solve

l
" 1 2 2

Max~m~ze :2" t a <gk' d>

. s.t. d E:IJ

and show that (N) has a unique solution ; here.$ denotes the set of a-Newton
directions. The next result relates (N) and (P).

COROLLARY I. Let d*,be the unique solution of

\ Minimize Ildll

I s.t. d is a solution of (P).

Then d* / II d* II solves (N).

for each dE~. Let dE1J. Then Ildll

is a a-Newton direction and it remains to

-(optimal value of (D))

<gk' d>
o < a

d*/lld*11

2 d* 2
prove that <gk' d> ~ <gk' >

II d* II
and by Theorem I, ad is a solution of (P) for a satisfying the relation

d*>

!'ROOF. By theorem I,

By definition of d*, we have Ild*11 :$ Iladll = a and consequently
I<gk' d*>1

II d* II ~ I<gk' d> I ' which is just the announced result. •
In terms of problem (CP), selecting the best hyperplane means choosing,

among all the solutions x of (CP), the one which is nearest to~.

We conclude this paper with a further interpretation of a-Newton direc
tions.

A way to introduce the classical Newton method is to consider the
second derivative (f"(x) d,d) as the square of a norm to compote the stee'
pest descent direction by solving

\ Minimize(f'(x), d)

( s. t. (f"(x) d, d) ~

Here we can do the same. Taking f instead of f (in order to obtain
something implementable) and considering the perturbed second order direc
tional derivation f~(x, d, d) (given in [5J, [IJ).we are led to compute the
direction by solving
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(p ')
~ Minimize fl (~,d)

( s.t. f~(~, d, d) ~ ;

Because of positive homogeneity, the direction thus obtained is inde
pendent of M > o. We claim that (pI) is equivalent to (P). For this, we

need to characterize f~(xk' d, d).

LEMMA 4. Assume 0 < to' < I and 0 < a ~ Pi' i <;k-l. Let d be such that

<gk,d> < O. Then

where t (d)

(i) there exists i ~ k-l such that <gi-gk,d> > 0

(ii) f~ (~, d) = f' (~, d) + a/t (d)

(iii) f~(~, d, d) = [f~(~, d) - f'(~,d)J / ted)

p.
min {: 1 d> / <g1'-gk' d> > O}

<gi gk'

PROOF. If (i) were false, then (P) would have no optimal solution, contra
dicting Lemma 3.

Then, drawing the graph of the functions -Pi + t <gi,d>, i ~ k and

of the function -a + t f'(~ d),a K'

<gj ,d>

---

tld)
t

I
-(f I

I
- Pi I

- Pj

it can be seen that ted) is the smallest solution of

inf cf(Xk + td) - f(~) +aJ/ t
t>O

ant that f(~ttd)
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This implies (ii) and then (iii) is just the definition of £~(~,d,d) .•

If d is such that <gi-gk' d> <; 0, <; i <; k, then f~(xk,d) fl(~,d)

and f~(~,d,d) = O. Lemma 4 says that, in this case, <gk,d> ~ O.

TIiEOREM 2. If 0 < t(J < 1,0 < (J <; Pi' i = 1, ... ,k-1 and M =;cr, then(P') is
(P) •

PROOF. Because d = 0 is feasible, we have to consider in (pI) only those
d for which f' (~,d) = <gk,d> < O. Thus we can apply Lemma 4 to write (pI)

in the form

Minimize <gk ,d>

s.t. t(d) exists

(J <;i
t

2
(d)

in which the last constraint can be expressed as

vcr <gi-gk' d> / Pi <; M for i such that <gi-gk' d> > O.

Obviously, any d satisfying this condition does satisfy the same condi
tion for all i. In other words, (pI) can be written

~ Minimize <gk' d>

( <gCgk' d> <; Pi M / V;;

which is (P) if M
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THE SOLUTION OF A NESTED NONSMOOTH
OPTIMIZATION PROBLEM

Robert Mifflin
Washington State University, Pullman, WA 99164-2930, USA

1. INTRODUCTION

This paper reports on the successful solution of a

nonsmooth version of a practical optimization problem using a

recently developed algorithm for single variable constrained

minimization. The problem is a single resource allocation

problem with five bounded decision variables. The algorithm

is used in a nested manner on a dual (minimax) formulation of

the problem, i.e., a single variable dual (outer) problem is

solved where each function evaluation involves solving a five

variable Lagrangian (inner) problem that separates into five

independent single variable problems.

A sufficiently accurate solution is obtained with a very

reasonable amount of effort using the FORTRAN subroutine PQl

(Mifflin 1984b) to solve both the outer problem and inner

subproblems. PQl implements the algorithm in Mifflin (1984a)

which solves nonsmooth single variable single constraint

minimization problems. The method combines polyhedral and

quadratic approximation of the problem functions, an automatic

scale-free penalty technique for the constraint and a safe

guard. The algorithm is rapidly convergent and reliable in

theory and in numerical practice.

Research sponsored by the Air Force Office of Scientific
Research, Air Force System Command, USAF, under Grant
Number AFOSR-83-02l0. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.
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version of the problem is due to Heiner,

Ecker (1983) and is solved there and in

The nonsmooth version is defined in the

next section and its solution is discussed in section 3.

2. THE RESOURCE ALLOCATION PROBLEM AND ITS DUAL

The nonsmooth problem solved here is a modification of

a smooth applied problem given in detail in Heiner,

Kupferschmid and Ecker (1983).

The general problem is to find values for J decision

variables vI' v 2' ... , vJ to

maximize J R. (v.)~. 1J= J J

subject J Bto ~. 1 c. V. ~
J= J J

where

and a ~ V. ~ V. for j = 1,2, ... , J
J J

R.(v.) max{Y.-4S.V.[v~1 - (2V.)-1]1/2,0}_ c. v.. (1)
J J J JJ J J J J

The specific problem of interest has J = 5, a budget value

B = 150,000 and the data Y., S., 2 V., c. for j = 1,2,.,.,5
J J J J

as given in the "Hospitals" table on page 14 of Heiner et al.

(1983). Actually, the real application requires integer

values for the variables, but rounded continuous solutions

appear to be quite adequate for this application.

The nonsmooth problem solved in this paper is the above

problem with with R. and its derivative R! replaced by P. and
+ J J J

P" respectively, where for v. ~ a
J + J

P.(v.) R.(v.) + P.(v.)(v. - v.), (2)
J J J -J J J J -J
+P.(v.) R.(v. + 1) - R.(v.),
J J J -J J -J

and v· is the largest whole number not exceeding v .. Note
~ J

that P. is a piecewise affine approximation of R. which agrees
J J

with R. at integer values of v. and that P~ is the derivative
J J J

of P. at noninteger values of v· and the right derivative at
J J

integer values. The above defined problem is referred to as

the primal problem in the sequel.

Each Rj is not a concave function, but Rj does
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(S)

by (3) and (4)
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consist of two concave pieces, one of which is linear and the

other of which is strictly concave. P. inherits a piecewise
J

affine version of this R. structure. The fact that the
J

objective function is a sum of P.'s each having the above
J

special structure allow for attempting to solve this problem

via a dual approach.

Let x ~ 0 be a dual variable associated with the linear

budget constraint, define the Lagrangian function L by
S S

L(v l ,v 2 , •.. ,v S ;x) Lj=lPj(v j ) + (B - Lj=l c j v j ) x

Sl:. 1 (P.(v.)-c.v.x) + Bx (3)
J= J J J J

and define the dual function f by

f(x) = max[L(v l ,v2 , .•. ,v
S

;x):

o ~ v j ~ Vj ' j = 1,2, ... ,S]. (4)

The associated dual or outer problem is to find a value for

x to

minimize f(x) subject to -x ~ O.

The Lagrangian or inner problem defined

separates into S independent single variable single constraint

problems indexed by j and equivalent to

minimize -Po (v.) + c. v· x
J J J J

subject to max [-v.,v.-V.] ~ O.
J J J

Note that these five inner problems could be solved in

parallel if one has the facility for parallel processing. The

nonconvexity of -po gives the possibility of two local mini-
J

mizers of the jth inner problem (6), one of which is at

v j = 0 where Pj = O. The dual approach can be carried out on

this problem, because both local minimizers can be found and

the better one chosen. Since f is a pointwise maximum over a

compact family of affine functions f is a convex function.

Let Vj (x) C [O,V j ] be the set of minimizing solutions

to the jth inner subproblem depending on the nonnegative

parameter (out~r variable) x. Then for x ~ 0 and v j (x) E Vj (x)

f(x) = 1:. l[P,(v.(x))-c.v.(x)x] + Bx
J= J J J J

and a subgradient of f at x, denoted g(x), is given by
S

g(x) =-Lj=l c j vj(x) + B.
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In general, the outer problem is solved at a point of

nondifferentiability of f, say x*. Hence, there exist sub

gradients of f at x*, say g- and g+, and a multiplier

A* E [0,1] such that
(l-A*)g- + A*g+ 0. (7)

From the inner subproblems
5 c.v: Bg - L:. 1 +
J= J J

and
g+ 5

c.v~ B- L:. 1 +
J= J J

where

v:, v~ E V.(x*) for j = 1,Z, ... ,5.
J J J

From the convex combination in (7)

° = -L:~ c. [(1-A*)V~ + A*V~] + B
J=l J J J

and a solution to the primal problem is given by

v. = (1-A*)V: + A*V~ for j = 1,Z, ... ,5
J J J

provided that for each j

(1-A*)v 7 + A*V: E V. (x*) (8)
J J J

In general, (8) could be violated, because V. (x*) is not
J

a convex set when the primal objective function is not concave.

Fortunately, for the particular problem considered here it

turns out that (8) is satisfied, i.e., there ~s no duality gap.

3. THE SOLUTION VIA NESTED OPTIMIZATION

Since the outer problem and each inner subproblem

defined above are single variable single constraint minimi

zation problems they can be solved numerically using the

FORTRAN subroutine PQl of Mifflin (1984b) which implements the

algorithm in Mifflin (1984a).

PQl requires the user to supply a starting point and a

starting stepsize. The starting vector supplied to the

multivariable nonlinear programming algorithms used by

Heiner et al. (1983) to solve the smooth primal problem was

given by v. = !z V. for j = 1,Z, ... ,5
J J

(Ecker and Kupferschmid 1984).

.1
.I
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B.

To determine a related starting point x and a starting
1

problem v j was set equal to 2 VjD wherestep d for the outer

D was chosen so that
1 5
~ 1:. 1 c. V. D
l. J = J J

This gave the values

(v
l

,v 2 , ... ,v 5) = (883.1,240.5,570.2,1127.1,54.0) (9)

that satisfy the budget constraint with equality. Then five

values for x were computed such that

-p~(v.) + c. x = 0 for j 1,2, ... ,5.
J J J

If these five values had been the same positive number, then

this common value and (9) would have been the solution to the

minimax problem defined by (4) and (5). This was not the case

and the starting x was set to the median value 0.57 and the

starting stepsize was set to 0.57 also, so as not to go

infeasible if g(0.57) were positive. However, g(0.57) was

negative, so the second outer point was 0.57 + 0.57 = 1.14.

For the first set of five inner subproblems, the

starting points were set as in (9). For the subsequent inner

subproblems when the outer variable was changed from x to ~+d,

the previous inner solution v.(x) was used as the starting
J

point in the search for the next inner solution v.(x+d). Note
J

that the inner objective and right derivative values at the

starting point v j (x) can be updated simply by addition when x

is replaced by x+d without evaluating p. and Pt again. For
J J

all of the inner subproblems the starting stepsizes were set

to 1.0.

The problem was solved using single precision ForrTRAN

on a VAX 11/750 computer. For both the outer and inner

problems, the numerical parameters STHALF and PENLTY required

by PQl were set as in Mifflin (1984b) to the values 0.2 and
-8

5xlO , respectively. The termination criteria were set so

that the outer problem was solved to the point where f

appeared to be numerically stationary in single precision and

the inner subproblems were solved to a corresponding degree of

accuracy.



39

The computer run terminated with two points

xL = 1.539 and x R = 1.564 having f(x L) 3,975,041.,

f(x R) = 3,975,051., g(x
L

) = -13.3, g(x R
) = 833.9,

(vI (xL) , ... ,v 5 (x L))

(196.5,0.0,409.8, 2015.0, 346.0) (10)

and

(V l (x R),···,V 5 (xR)) =

(195.5, 0.0, 407.2, 2001.6,346.0). (11)

To approximate the optimal multiplier A* in (7) A was defined

by

(l-A)g(xL) + Ag(X R) = O.

This gave A = 0.04 and the corresponding convex combination

of (10) and (11) gave the approximate primal solution

(vI"" ,v 5 ) =(196.5, 0.0, 409.7, 2014.8, 346.0)

with corresponding primal objective value 3,975,041.

This v-solution has v 2 at its lower bound, v 5 at its

upper bound, and is very close to the feasible integer

solution that is the best known integer solution to this

evaluating

Rj , the total

is a reason-

and, hence, a total

total number of

P. and
]

number

problem (Heiner, et. al., 1983).

The run required 6 outer iterations

of 30 inner subproblems were sOlved. The

evaluations of the P.'s and P:'s was 102. Since
] ]

Pj at a point requires two evaluations of

of evaluations of the R. 's was 204. This
]

able amount of work, because 440 such evaluations were used to

solve the corresponding smooth primal problem by the code GRG2

(Lasdon et. al., 1978) with double precision arithmetic and

function value difference approximations of the partial

derivatives (Heiner et al., 1983, Ecker and Kupferschmid,1984).

The smooth version of this problem also was solved using

PQl in a nested manner on the corresponding dual formulation

with only 100 evaluations of the R.'s and R! 's (Mifflin 1984b).
] ]

This result represents less work than evaluating the Rj 's 204

times, because evaluating R. and R! at a point requires
] ]

considerably less effort than evaluating Rj twice, due
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to the same square root being used to calculate R. and its
J

derivative at a point.

4. CONCLUDING REMARKS

One could imagine problems where the objective function

is only given at a finite number of points and some approxi

mation to the function needs to be made before the optimizatio~

problem can be solved. As observed here a problem with a

smooth approximation of the objective probably could be solved

with less effort in the optimization phase than a.problem with

a piecewise affine approximation of the objective. However,

the latter problem does not require the initial phase of set

ting up and running some procedure to find the smooth

approximation. Hence, in terms of overall effort the piece

wise affine version might be preferred for some problems where

the objective is described only by data points.

5. REFERENCES

Ecker, J.G. and Kupferschmid, M. (1984). Private communication.

Heiner, K.W., Kupferschmid, M., and Ecker, J.G. (1983)
Maximizing restitution for erroneous medical payments
when auditing samples from more than one provider.
Interfaces, 13(5): 12-17.

Lasdon, L.S., Waren, A., Jain, A., and Ratner, M.W. (1978).
Design and testing of a generalized reduced gradient
code for nonlinear programming. ACM Transactions on
Mathematical Software, 4(1): 34-50.

Mifflin, R. (1984a). Stationarity and superlinear
convergence of an algorithm for univariate locally
Lipschitz constrained minimization. Mathematical
Programming, 28: 50-71.

Mifflin, R. (1984b). An implementation of an algori thm for
univariate minimization and an application to nested
optimization. Dept. of Pure and Applied Mathematics,
Washington State University, Pullman, WA, to appear in
Mathematical Programming Studies.



VARIATIONS ON THE THEME OF NONSMOOTH ANALYSIS:
ANOTHER SUBDIFFERENTIAL

Jean-Paul Penot
Faculty ofScience, A venue de I'Universite, 64000 Pau, France

Making one's way through various kinds of limits of differential

quotients in order to define generalized derivativesis a rather dull task :

one has to be very careful about the moving or fixed ingredients. Formulas

such as the following one [11J may be thrilling for some readers:

fO(a,x) = sup sup lim sup inf -t [f(a+tu+tv) - f(a) - tsJ
w E X U E 'U'(x) (v,s,t) + (w,r,O+) u EU
r E R f(a)+ts ~ f(a+ts)

But for most readers and for most listeners of a lecture

with rapidly moving slides, the lure of such a limit may not resist when

compared with the clarity and attractiveness of a simple drawing. Thus we

choose to focus our attention on a more geometrical aspect of the same

problem the study of tangent cones. It appears that this point of view

is also quite rewarding when one has to give the proofs of the calculus

rules one may hope to dispose of : these proofs are clearer and simpler

when given in geometrical terms instead of analytical calculations ; but

this advantage will not appear here. For the sake of clarity in our slides

and in this report we adopt rather unusual notations using capital letters

instead of subscripts or superscripts (although a systematic use of super-
. t 0 ~ t 0 ~scrlpts as T ,T ,T , ... ,f ,f ,f .'.. would be elegant). A general agree-

ment on notations and terminology is still ahead; it may be difficult to

realize in a period of fast growing interest and use.

In the sequel E is a subset of a normed vector space X and e

is an element of the closure cl E of E. It would be useful to consider
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the more general situation in which E is a vector space endowed with

two topologies but we refrain to do so here.

1 - WELL KNOWN TANGENT CONES

1-1 Definition
-1The contingent cone to E at e is the set K(E,e) = lim sup t (E - e) .

t -+ Q

The classical tangent cone to E at e is the set T(E,e) =+lim inf t -1 (E-e).
t -+ 0

The strict tangent cone to E at e is the set S(E,e) = lim inf +t-1(E-e').
t-+O e-+e

+
This latter cone is also known as the Clarke's tangent cone and the first

one is often called the Bouligand's tangent cone or tangent cone in short.

The following two characterizations are useful and well known.

1-2 Proposition

(a) A vector v belongs to

(v) in :R+ = ]O,+CD[ and X
n 0

that e + t veE for each
n n

K(E,e) iff there exist sequences (tn),

with limits 0 and v respectively such

nEll

(b) A vector v belongs to T(E,e) iff for each sequence (tn) in :R+
0

with limit 0 there exists a sequence (v ) in X with limit v suchn
that e + t v E E for each nEll.n n

(c) A vector

with limit

a sequence

nEll .

v belongs to S(E,e) iff for each sequence (t ) in Jl+
n 0

0 and each sequence (e ) in E with limit e there existsn
(v ) with limit v in X such that e + t v EE for eachn n n n

([24],[25]).in terms of curves is more delicate

T(E,e) iff there exists a curve c: [0,1] -+ X

t > 0 and v = C (0) : = lim t -1 (c ( t) - c(0» .
+ t -+ 0

+
a curve c: [O,l]-+X

-1point of c (E).

(b) A vector v belongs to K(E,e) iff there exists

with c(0) = e, v = C (0) , 0 being an accumulation
+

A characterization of S(E,e)

1-3 Proposition

(a) A vector v belongs to

with c(O)=e, c(t)EE for

A characterization of each of the preceding cones can be given in terms

of the generalized derivative of the distance function dE to E (defi

ned by dE(x) inf {d(x,e) : e E ED through the equivalence

Cv E C(E,e) ~ dE(e,v) ~ 0 for C = K,T,S .

Here the C-derivative fC of a function f: X +F finite at a E X is

defined through the formula
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CE(f (a,.)) C(E(f) ,e) for C K,T,S

where e (a,f(a)), E(f) Ef = {(x,r) E X x Jl r ~ f(x)} is the epi

graph of f. The introduction of generalized derivatives through concepts

of tangent cones is well established ([1],[13],[21] for instance) ; see

the lecture by K.E. Elster in these proceedings for a systematic treatment

along this line. Let us observe that a reverse procedure is possible as

long as one is able to define generalized derivatives of an arbitrary

function f : X~~ finite at a E E if i E is the indicator function

of E c X (given by iE(x) = ° if x E E,iE(x) = +"" if x EX \ E) and

if some generalized derivative (iE)D(a,.) of i E is an indicator func

tion, one can define the related tangent cone D(E,a) as the set D such

that

iD(v) = (iE)D(a,v) .

We will not pursue this line of thought here since we insist on the first

process we described above.

The obvious inclusions

K(E,e) ~ T(E,e) ~ S(E,e)

yield the following inequalities for an arbitrary function f

nite at a

x ~ ~ fi-

K T Sf (a,.) ~ f (a,.) ~ f (a,.)

1 S(E,e)

~K(E,e)

S(E,e) •

T(E,~

In many cases of interest the preceding inclusions and inequalities are

equalities. However they are strict inclusions in general, even if K(E,e)

and T(E,e) are seldom different. As a matter of fact K(E,e) and T(E,e)

gi ve a closer approximation to E at ethan S(E, e) as shown by the

following figures and the example X = Jl2, e = (0,0) , E {(x,y) EJl2 :

(x - a)2 + (y - S2) = 1,a,S E {-l,O,n,lal + lsi = 1}, for which

K(E,e) = T(E,e) = Jl x {O} u {O} x Jl, S(E,e) {(O,O)}·

+ •••
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2 - THE INTERPLAY BETWEEN THESE NOTIONS

Corresponding to the accuracy of the geometric approximation of E

near e by a (translated) cone is the precision of the approximation of f

by a translated positively homogeneous mapping. We believe this accuracy

is of fundamental importance when one is aiming at necessary conditions :

as a good detective indicts a small number of suspects, a good necessary

condition has to clear most of innocent points of the suspicion of being

a minimizer. In this respect it is easy to construct a lipschitz ian func

tion f: F ~ F with a unique minimizer at 0 for which one has

o E aKf(x) iff x o ,

whereas

aSf(x) [ _10100 , 10100 ] for each x EF ,

QO * * *where for C K,T,S x = (x,f(x)) , {x E X ,<x ,x> ~ 0 'tJx E Q}

aCf(x) * * * C{x E X X ~ f (x,.)}

* * * - 0{x E X (x ,-1) E C(Ef,x) }

is the C-subdifferential of f associated with C. One cannot claim

that the relation 0 E [_10100,10100] is very informative, especially

from a numerical point of view.

Thus we propose to add accuracy to the list of six requirements pre

sented by R.T. Rockafellar in this conference as the goals of subdifferen

tial analysis. These seven goals are certainly highly desirable.

Of course if there were a proposal meeting these seven requirements,

this seventh marvel would withdraw nonsmooth analysis from most rights to

be entitled as non smooth analysis. Our conclusion is that a multiplicity

of viewpoints is likely to be the most fruitful approach to this topic,

while the lure of a messianic, miraculous generalized derivative may lead

to delusion for what concerns necessary conditions (for other aims of

nonsmooth analysis as inverse function results, the situation may be quite

different as the strict derivative approach seems to be strictly better

than anything else).

What precedes will be more clearly understood if we add that the con

tingential or tangential calculus for sets or functions is relatively poor

(see [13],[14] for instance) while the strict tangential calculus is more

tractable: accuracy is in balance wi th handabili ty. This is due to the build-in
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convexity carried by strict tangency. Contingential or tangential calculus

cannot reach such an handability without some added assumptions. One such

assumption can be tangential convexity (i.e. K E or T E, fK or fT aree e
supposed to be convex); this is not too restrictive, as this assumption en-

compasses the convex case and the differentiable case. Another kind of as

sumption which seems to be rather mild is presented in proposition 5.3

below. On the other hand more precise calculus rules can be achieved with

strict tangency when one adds regularity conditions in the form: fS(a,.)
K Tcoincides with f (a,.) or f (a,.) ; then one is able to replace inclu-

sions by equalities (see [1],[20] for instance).

Here are some more reasons why not forsaking the tangential or con

gential points of view (see also recent works of J.P. Aubin and the au

thor on differentiability of multifunctions) :

1) in contrast with the strict tangent cone concept these notions are

compatible with inclusion: for E c F we have K(E,e) c K(F,e) ,

T(E,e) c T(F,e) but not S(E,e) c S(F,e)

2) tangent or contingent concepts are easier to define as the relevant

point e is kept fixed

3) this fixity of the relevant point permits easier interpretations

in marginal analysis for instance or in defining natural directions of

decrease ;

4) higher order contingent or tangent cones and derivatives are easy

to define and use ([ 16], ... ) whereas no strict counter-part are known to

the author

5) tangent or contin~ent quotients are basic ingredients in more refi

ned generalized subdi fferential calculus as the "fuzzy" calculus of Ioffe

[8],[9], Kruger and Mordhukovich ;

6) there is a close link between strict tangent cones and derivatives

and contingent cones, at least if the space X is finite dimensional (or

reflexive, with some adapt ion of the preceding concepts). Let us make

clear this sixth assertion.

2-1 Proposition [22]

If f: X -+fl is finite at a E X and lower semi-continuous on the Banach

space X then for each v EX, denoting by B(v,E) the closed ball with

center v and radius E

fS(a,v) ~ lim lim sup inf fK(x,u) ~ lim sup fK(x,v) ~ lim sup f T(x,v)
E -+ 0 X -+ a u E B( v, E) X -+ a x -+ a

+ f(x) -+ f(a) f(x) -+ f(a)
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If X is finite dimensional the first inequality is an equality.

If f is locally lipschitzian around a the opposite inequalities holds

and

Sf (a,v) Klim sup f (x,v)
x -+- a

Tlim sup f (x,v)
x -+- a

Slim sup f (x,v)
x -+- a

Proof

The first assertion of the preceding proposition is a consequence of

the relation

lim inf K(E,e) c S(E,e)
e + e,e E E

proved in [23J and [5J ; it becomes an equality if X is finite dimensio

nal ([15J corol. 3.4 and 3.5 and [2J). Let us prove the last assertion:

let r > fS(a,v) and let k be a lipschitz constant of f on some

neighborhood X of a. By definition of fS ([ 21], relation 4.6) we
o

have

~£ > ° 30 > ° ~t E JO,o[ ~x e B(a,o) 3u E B(v,£) : f(x+tu) - f(x) ~ tr

As 0 can be taken so small that B(a,o) + [O,oJ B(v,o) eX we get
0

> ° 30 > ° ~x E B(a,o) -1
~£ sup t (f(x+tv) - f(x)) ~ r + £k

O<t<o

Thus T
~ r + £k for each xEB(a,o) T S 0f (x,v) and lim sup f (x ,v) ~ f (a,v).

x + a

3 - NEW SPECIES OF TANGENT CONES
Let us try now to conciliate the two antagonistic aims of defining

convex tangent cones and keeping these approximations related to the set

as closely as possible. We incorporate our proposals in a general scheme

for obtaining tangent cones ; initially they appeared as an intermediate

step in the calculus of tangent and strictly tangent cones in singular

cases ([ 17] ). They were preceded by [7] and followed by [6 J which con

tains applications to optimal control theory.

are given a convergence C on :R+ x E for each sub
o

X : this is a relation (multifunction) C from

written ((t,e)) ~ (t,e) satisfying the usual
n n

subsequence of a converging sequence converges to

Let us suppose we

set E of a n.v.s.

(R+ x E)J.l into :R x E
o

laws of limits ([ 10 J) (a

the same limit and so on ... ). In fact we are only interested in the case

(t ) + 0+ in the usual sense ; moreover supposing that (e) converges
n n

too in X would not alter our present purposes.

Moreover we suppose that if E is a subset of F C X then the convergence
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C relatively to E is the convergence induced on F+ x E by the convero
gence C on F+ x F

o
The point here is that the convergences (t) -+ a , (e) -+ e are tied to-

n + n
gether . We suppose that the following condition is satisfied for each

r E F+
o

(t ,e ) ~ (O,e)
n n

==> (rt ,e ) ~ (O,e) .
n n

((t ,e )) ~ (O,e)
n n

iff
Ct(e ) -+ e

n

In other words the convergence Ct on E associated with a sequence

t = (t) by
n

depends only on the class of (t) up to homotheties. The case of primary
n

interest is the case of directional convergence i. e. the case in which

((t ,e )) ~ (O,e) iff (t) -+ a and (t- 1(e -e)) converges. Now we aren n n + n n
able to introduce our definition.

3-1 Definition

The C-tangent cone to E at e is the set

C(E,e) r-J lim inf t-1(E - e )
«t ,e » ~ (O,e) n n

n n

In other words, v E C(E,e) iff for each sequence

exists a sequence (v) in X with limit v such
n

each n E~ • Thanks to the condition we imposed on

((t ,e )) ~ (O,e) there
n n

that e + t vEE forn n n
C above, C(E,e) is

seen to be a closed cone. It is convex in the three last examples below ;

to each example we affect a particular letter to denote the convergence C.

-+ a e e for n large enough
+ n

T(E,e)

-+ a (e ) -+ e in the topology of X
+ n

S(E,e)

-1(t ) -+ a , (e) -+ e and (t (e - e)) convergesn + n n n
C(E,e) by P(E,e) in this case and call it the pro-

iff (t)
n

is nothing but

Example 1

((t ,e )) r (O,e)
n n

then C(E,e)

Example 2

((t ,e )) ~ (O,e) iff (t)
n n n

then C(E,e) is nothing but

Example 3

((t ,e )) ~ (O,e) iff
n n

in X ; we denote

(t ) -+ a (e ) -+ e and (t- 1(e - e)) convergesn + n n n
T(E,e) ; the corresponding cone, denoted by Q(E,e)

totangent cone or pseudo-strict tangent cone.

Example 4

((t ,e )) 2 (O,e) iff
n n

to some element of
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is called the quasi-strict tangent cone. Comparison of the strength of

the convergences occuring in the previous examples shows the following

inclusions :

S(E,e) c P(E,e) C Q(E,e) c T(E,e) c K(E,e) .

4 - INTERIORLY TANGENT CONES

Up to now we have only looked at the "male" version of tangent cones.

By analogy with the concept of interiorly contingent cone (or interior

displacements or feasible directions) recalled below we intend to give an

interior partner to each of the cones we introduced above.

4-1 Definition

The interiorly contingent cone to E at e is the set

IK(E,e)

:R+ and
o

n large

= X\K(X \E,e) : v e IK(E,e)

X with limits ° and v

enough.

iff for any sequences (tn),(vn)

respectively one has e + tnvn e E

in

for

4-2 Definition

The interiorly

tors v

sequence

infinite

in X

(v )
n

subset

C-tangent cone to E at e is the set IC(E,e) of vec-

such that for each sequence «t ,e » ~ (O,e) and each
n n

of X with limit v one has e + t v e E for n in an
n n n

of ~ (or equivalently for n large enough).

For C = T we get IT(E,e) = IK(E,e) for C = S we find a cone

which is open and closely related to the cone of hypertangent vectors in

the sense of Rockafellar ; in fact this cone plays a key role in the

proofs of [20] and is called in [21] the hypertangent cone. The cases

C = P,Q,T will also be of interest. Obviously

IC(E,e) c C(E,e) .

4-3 Proposition

Suppose the convergence C is directionally stable in the following

sense :

if «t e » ~ (O,e) , if d e C(E,e) and if (d ) -+- d with e + t deEnn n n nn

for each n e~ then «t ,e + t d » ~ (O,e) .
n n n n

Then C(E,e) and I(C,e) are convex and

IC(E,e) + C(E,e) c IC(E,e)

This occurs in particular for C = P,Q,S (but not T) .

Let us prove the inclusion above ; the proof of the convexi ty of
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and let

and letx
V E C(E,e)

with limit v such that

(t ,e + tv) ~ (O,e) .n n n n
we ha ve e + t v + t un n n n n

w E IC(E,e) .

(v )
n

By assumption we have

v) converges to u = w - v
n

n in an infinite subset of ~ , hence

w = u + v

C(E,e) and IC(E,e) are similar. Let u E IC(E,e) ,

Let (w) be a sequence with limit w in
n

(t ,e ) ~ (O,e) in R+ x E . There exists
n n 0

e + t vEE for each nn n n
As (u) : = (w -

n n
e + t wEE forn n n

4-4 Corollary

When C is directionally stable and IC(E,e) is nonempty

is the closure of IC(E,e) and one has

C(E,e)

int C(E,e) c IC(E,e) c C(E,e)

In fact if u E IC(E,e) , for each v E C(E,e) and each t E R+ we
0

have v + tu E IC(E,e) and v + tu .... v as t .... a On the other hand,+
for each w E int C(E,e) we can write w = (w - tu) + tu with

w - tu E C(E,e) for t E R+ small enough, so that w E IC(E,e)
0

For a function f X .... 'H finite at a let us set, with e (a,f(a))

ICf (a,v) = inf {r ER : (v,r) E IC(Ef'e)} .

4-5 Corollary

Suppose

Then

IC
dOlll f (a,.) is nonempty and C is directionally stable.

IClim inf f (a,u) .
u .... v

Although T(E,e) is not convex in general, it enjoys a restricted

convexity property. Namely

4-6 Proposition

T(E,e) + Q(E,e) c T(E,e)

T(E,e) + IQ(E,e) c IT(E,e)

The proof of these inclusions is nothing but a direct application of

the definitions. As above the following assertions follow:

if

if

IQ(E,e) # 0 then

IQdam f (a,.) # 0

T(E,e) = cl IT(E,e)

T ITthen f (a,v) = lim inf f (a,u) .
u .... v



50

5 - TANGENTIAL CALCULUS AND SUBOIFFERENTIAL CALCULUS

In general the correspondance E ~ C(E,e) is not isotone (i.e. does

not respect inclusions). This strong defect is partly compensated by the

following result in which E is said to be C-regular at e if

C(E,e) = T(E,e) .

5-1 Proposition

Let D and E be two subsets of X, F = D n E, a e cl F • Then

C(D,a) n IC(E,a) C C(F,a) •

If C is directionally stable and if C(D,a) n IC(E,a) i 0 then

C(D,a) n C(E,a) c C(F,a)

If moreover D and E are C-regular at a, then F is C-regular at a

and

C(D,a) n C(E,a) = C(F,a) .

This result can be incorporated in the following property in which a

mapping f: D -> Y defined on some subset D of X wi th values

in some n.v.s. Y is said to be C-strictly differentiable at a ED, if

there is a linear continuous mapping fl(a) : X -> Y such that for each

sequence ((t ,a » ~ (O,a) (with respect to D) and each (v) -> v inn n n
X ,with v E C(D,e), a +t v ED for each n Ell one hasn n n
(( t ,f (a » ~ (0, f (a) ) and

n n

t- 1(f(a + tv) - f(a » -> f'(a)(v) .n n n n

For

for

D = X

C = S

and C = T,P or Q this is just Hadamard-differentiability

this is exactly strict differentiability.

5-2 Proposition

Let F be a subset of Y and E = f- 1(F) (= D n f- 1(F» , where

f D + Y is C-strictly differentiable at a e E • Then

C(D,a) n f'(a)-l(IC(F,f(a») c C(E,a)

If C is directionally stable and if f'(a)(C(D,a» n IC(F,f(a» i 0 then

C(D,a) n f'(a)-l(C(F,f(a») c C(E,a) •

If moreover D and F are regular then equality holds and E is C

regular.
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Similarly, if f is Q-strictly differentiable at a and if

f'(a)(Q(D,a)) n IQ(F,f(a)) t 0 then

T(D,a) n f'(a)-1(T(F,f(a))) = T(E,a) .

One can derive chain rules from the preceding relations let us ra

ther give two samples of rules for the addition (see also [6]).

5-3 Proposition

Let h = f + 9 • If there exists v E X such that fQ{a ,v) < + m ,

gIQ{a,v) < + m then

T T Th (a,x) ~ f {a, x) + 9 (a,x) for each x EX.

T Tf (a,.) and 9 (a,.) are convex then

aTh{a) c aTf{a) + aTg{a) .

5-4 Proposition

and 9 are conically calm at a (I.e. for
K lKg {a, v) > _m) or such that dom f- (a,.)

dom fP(a,.) n dom fIP{a,.) ~ 0 then

Let h = f + 9 where f
Keach v E X f (a,v) > - m

X = dom gIK{a,.) . Then if

P Ph (a,x) ~ f (a,x) P
+ g (a,x) for each X EX and

aPh{a) c aPf{a) + aPg{a) .

6 - THE STAR DIFFERENCE

The following algebraic operation between two subsets of a vector

space X will provide an interesting link between the cones we introdu

ced ; it has been used by Pontrjagin [18], Psenicnyj [19] and Giner [7]

who developped a subdifferential calculus using the star operation on

various generalized derivatives and applied by Frankowska [6].

Given two subsets A and B of X their star-difference (or alterna

te difference) is the set

A ~ B = {x EX: x + B c A} •

We set A* = A ~ A when A is a closed cone of a n.v.s. X, it has

been shown in [4] and [7] that A* is the intersection of the maximal

convex subcones of A containing a boundary point of A. The two follo

wing lemmas give connections with a more functional point of view.

6-1 Lemma [6],[7]

The star of the epigraph Eh of a positively homogeneous functional
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..
h : X -+ 'it is the epigraph of the sublinear functional h given by

..
h(x) sup {h(x + w) - r : (w,r) E Ehl :O' sup {h(x + w) t (-h(w» : w E xl

positively homogeneous

x , the support function.. ..
for x EX, is the

Proof

Let (x,s) € (E h)* . As for each (w,r) E Eh we have (w + x, r+s) E E
h

we get s ~ sup {h(x+w) - r : (w,r) E: E
h

} . Conversely if (x,s) E X xR

is such that s ~ sup {h(x+w) - r : (w,r) € Eh} then for each (w, r) E E
h

we have r+s ~h(x+w) or (x+w,r+s) E: Eh and (x,s) E (E h)* D
6-2 Lenma

If A and B are closed convex subsets of.. ..
he of C = A~ B , given by he(x) = sup <x ,C>

greatest of the weak-star lower-semicontinuous..
functionals h on X such that h + hB ~ hA •

This follows from the fact that for a closed convex subset D of X

one has D + B c A iff hD + hB ~ hA .

The star difference can be used in connection with Demyanov I s theory of

bidifferential calculus (or quasi-differential calculus [2]). Suppose

f : X +R has a directional derivative h = f'(a,.) at a E X which is

the difference of two sub linear mappings p,q: h = P - q . Let
* * *ah(O) = {x EX: x ~ h} .

6-3 Proposition

One has 3h(O) = 3p(O) ~ 3q(O) . In particular, if f attains a local

minimum at 0 one has the following equivalent assertions

o E 3h(O) ~ 0 € 3p(O) ~ 3q(O) ~ 3q(O) c 3p(O)

Our interest in the star difference stems from the following fact

6-4 Proposition

For each subset E of X and e E cl E one has

and

Q(E,e) T(E,e) ..

T(E,e) ~ K(E,e) C P(E,e) C K(E,d) .. ,

IK(E,e) ~ K(E,e) C IP(E,e) C IT(E,e) ~ T(E,e) = IQ(E,e) .. =IQ(E,e)

It follows in particular that for any f: X +F finite at a one has

Thus, when Tf (a,.)

Q T
f (a,.) = f (a,.)* .

Qis convex, one has f (a,.) Tf (a,.) in particu-
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lar, when f is Hadamard-differentiable at a , one has

In [12] a more analytical (but simple) approach to subdifferential cal

culus is presented which in particular shares this enjoyable property

which does not hold with the strict subdifferential aSf(a) .
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LIPSCHITZIAN STABILITY IN OPTIMIZATION:
THE ROLE OF NONSMOOTH ANALYSIS

R.T. Rockafellar
Department ofMathematics, University of Washington, Seattle, WA 98195, USA

ABSTRACT

The motivations of nonsmooth analysis are discussed. Applications are given to

the sensitivity of optimal values, the interpretation of Lagrange multipliers. and the:

stability of constraint systems under perturbation.

INTRODUCTION

It has been recognized for some time that the tools of classical analysis are not

adequate for a satisfactory treatment of problems of optimization. These tools work

for the characterization of locally optimal solutions to problems where a smooth (i.e.

continuously differentiable) function is minimized or maximized subject to finitely many

smooth equality constraints. They also serve in the study of perturbations of such con

straints, namely through the Implicit function theorem and its consequences. As soon

as inequality constraints are encountered, however, they begin to fail. One-sided

derivative conditions start to replace two-sided conditions. Tangent cones replace

tangent subspaces. ConveXity and convexification emerge as more natural than linear

ity and linearization.

In problems where inequality constraints actually predominate over equations, as

is typical in most modern applications of optimization. a qualitative change occurs. No

longer is there any simple way of recognizing which constraints are active in a neigh

borhood of a given point of the feasible set, such as there would be if the set were a

cube or simplex, say. The boundary of the feasible set defies easy description and may

best be thought of as a nonsmooth hypersurface. It does not take long to realize too

that the graphs of many of the objective functions which naturally arise are nonsmooth

in a similar way. This is the motivation for much of the effort that has gone into

• Research support.ed in part. by a grant. from t.he Nat.1onal Science Foundation at t.he University of
Washington, Seat.tle.
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inlroducing and developing various concepls of "langenl cone", "normal cone", "direc

tional derivative" and "generalized gradienl". These concepls have changed lhe face

of optimization lheory and given birlh lo a new subjecl, nonsmooth analysis, which is

affecting olher areas of malhematics as well.

An imporlanl aim of nonsmoolh anaiysis is lhe formulation of generalized neces

sary or sufficienl conditions for optimalily. This in lurn receives impelus from

research in numerical melhods of optimization lhal involve nonsmooth functions gen

eraled by decomposilion, exacl penally represenlalions, and lhe like. The idea essen

lially is lo provide lesls lhal eilher eslablish (near) oplimalily (perhaps slationarily)

of lhe poinl already allained or generate a feasible direclion of improvemenl for mov

ing lo a beller poinl.

Nonsmoolh anaiysis also has olher imporlanl aims, however, which should nol be

overlooked. These include lhe sludy of sensilivily and slabilily wilh respecllo perlur

bations of objective and conslrainls. In an optimizalion problem lhal depends on a

parameler veclor v, how do varialions in v affecllhe oplimal value, lhe oplimal solu

tion sel, and lhe feasible solulion sel? Can anything be said aboul rales of change?

This is where Lipschilzian properties lake on special significance. They are

inlermediale belween conlinuily and differenliabilily and correspond to bounds on

possible rales of change, ralher lhan rales lhemselves, which may nol exisl, at leasl in

lhe classical sense. Like convexily properties lhey can be passed along lhrough vari

ous conslrucllons where lrue differenliabilily, even if one-sided, would be losl. Furlh

ermore, lhey can be formulaled in geomelric lerms lhal suil lhe sludy multifunclions

(sel-valued mappings), a subjecl of greal imporlance in optimizalion lheory bul for

whi<;h classical notions are almosl entirely lacking.

Il is in lhis lighl lhal lhe direclional derivatives and subgradienls inlroduced by

F.H. Clarke [1] [2] should be judged. Clarke's lheory emphasizes Lipschilzian proper

lies and slurdily combines convex analysis and classical smoolh analysis in a single

framework. Al lhe presenl slage of developmenl, lhanks lo lhe efforls of many indivi

duals, il has already had slrong effecls on almosl every area of optimizalion, from non

lin~ar programming lo lhe calculus of variations, and also on malhematical queslions

beyond lhe domain of oplimization per se.

This is nol lo say, however, lhal Clarke's derivatives and subgradienls are lhe

only ones lhal henceforlh need to be considered. Special silualions cerlainly do

require special insighls. In parlicular, lhere are cases where special one-sided firsl

and second derivatives lhal are more finely luned lhan Clarke's are worlh inlroducing.

Significanl and useful resulls can be oblained in such manner. Bul such resulls are

likely lo be relatively limiled in scope.
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The power and generality of the kind of nonsmooth analysis that is based on

Clarke's ideas can be credited to the following features, in summary:

(a) Applicability to a huge class of functions and other objects, such as sets and

multifunctions.

(b) Emphasis on geometric constructions and interpretations.

(c) Reduction to classical analysis in the presence of smoothness and to convex

analysis in the presence of convexity.

(d) Unified formulation of optimality conditions for a wide variety of problems.

(e) Comprehensive calculus of subgradients and normal vectors which makes pos

sible an effective specialization to particular cases.

(f) Coverage of sensitivity and stability questions and their relationship to

Lagrange multipliers.

(g) Focus on local properties of a "uniform" character, which are less likely to

be upset by slight perturbations, for instance in the study of directions of

descent.

(h) Versatility in infinite as well as finite-dimensional spaces and in treating the

integral functionals and differential inclusions that arise in optimal control,

stochastic programming, and elsewhere.

In this paper we aim at putting this theory in a natural perspective, first by dis

cussing its foundations in analysis and geometry and the way that Lipschitzian proper

ties come to occupy the stage. Then we survey the results that have been obtained

recently on sensitivity and stability. Such results are not yet familiar to many

researchers who concentrate on optimality conditions and their use in algorithms.

Nevertheless they say much that bears on numerical matters, and they demonstrate

well the sort of challenge that nonsmooth analysis is now able to meet.

1. ORIGINS OF SUBGRADIENT IDEAS

In order to gain a foothold on this new territory, it is best to begin by thinking

about functions f : R n -.R that are not necessarily smooth but have strong one-sided

directional derivatives in the sense of

f'(z;h) = lim f (z +th ') - f (z)
uo t

It. ... It.

(1.1)

Examples are (finite) convex functions [3] and subsmooth functions, the latter being

by definition representable locally as



I(z) = max I,,(z),
" £oS
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(1.2)

where S is a compacl space (e.g., a finile, discrele index sel) and II" Is €S I is a family

of smoolh functions whose values and derivatives depend continuously on sand z

Jointly. Subsmoolh functions were inlroduced in [4]; all smoolh functions and all finile

convex functions on R n are in particular subsmoolh.

The formula given here for I '(z;h) differs from lhe more common one in lhe

lileralure, where lhe limil h '--+h is omitted (weak one-sided directional derivative).

Il corresponds in spirillo lrue (slrong) differentiabilily ralher lhan weak differentia

bilily. Indeed, under lhe assumption lhal !,(z,h) exisls for all h (as in (1.1», one has

I differentiable al z if and only if !,(z;h) is linear in h. Then lhe one-sided limil t..o
is aclually realizable as a lwo-sided limil t --+0.

The classical concepl of gradient arises from lhe dualily belween linear functions

on R n and veclors in R n . To say lhal !,(z;h) is linear in h is lo say lhallhere is a

veclor y ERn wilh

!,(z;h) = y'h for all h.

This y is called lhe gradienl of I al z and is denoled by V/(z).

(1.3)

In a similar way lhe modern concepl of subgradient arises from lhe dualily

belween sublinear functions on R n and convex subsels in R n . A function l is said lo be

sublinear if il satisfies

(1.4)

Il is known from convex analysis [3, §13] lhallhe finile sublinear functions l on R n are

precisely lhe supporl functions of lhe nonemply compacl subsels Y of R n : each l

corresponds lo a unique Y by lhe formula

l(h) = max y'h for all h.
ye:Y

(1.5)

Linearily can be identified wilh lhe case where Y consisls of jusl a single veclor y.

Il lurns oUl lhal when I is convex, and more generally when I is subsmoolh [4],

lhe derivalive I '(z ,h) is always sublinear in h. Hence lhere is a nonemply compacl

subsel Y of R n , uniquely delermined, such lhal

!,(z;h) = max y'h for all h.
ye:Y

(1.6)
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This set Y is denoted by iJ/(z:), and its elements yare called subgradients of I at z:.

With respect to any local representation (1.4), one has

Y =co!V/ Ii (z:) Is ESz l. where Sz =argmax Is (z:)
sES

(1.7)

(co = convex hull), but the set Y = iJ/(z:) is of course by its definition independent of

the representation used.

In the case of I convex [3, §23] one can define subgradients at z: equivalently as

the vectors y such that

I(z:') ~/(z:) + y'(Z:'-z:) for all z:'.

For I subsmooth this generalizes to

I(z:') ~/(z:) + y.(z:,-z:) + 0 (I z:'-z: I),

(1.8)

(1.9)

but caution must be exercised here about further generalization to functions I that

are not subsmooth. Although the vectors y satisfying (1.9) do always form a closed

convex set Y at z:, regardless of the nature of I. this set Y does not yield an extension

of formula (1.6), nor does it correspond in general to a robust concept of directional

derivative that can be used as a substitute for I'(z:;h) in (1.6). For a number of years,

this is where subgradient theory came to a halt.

A way around the impasse was discovered by Clarke in his thesis in 1973. Clarke

took up the study of functions I : R n ... R that are locally Lipschitzian in the sense of

the difference quotient

II (z:") -I (z:') i I Iz: "- z: ' I (1.10)

being bounded on some neighborhood of each point z:. This class of functions is of

intrinsic value for several reasons. First, it includes aU subsmooth functions and con

sequently all smooth functions and all finite convex functions; it also includes all finite

concave functions and all finite saddle functions (which are convex in one vector argu

ment and concave in another; see [3, §35]). Second. it is preserved under taking linear

combinations, pointwise maxima and minima of collections of functions (with certain

mild assumptions), integration and other operations of obvious importance in optimiza

tion. Third, it exhibits properties that are closely related to differentiability. The

local boundedness of the difference quotient (1.10) is such a property itself. In fact

when I is locally Lipschitzian, the gradient V/(z:) exists for all but a negligible set of

points z: in R n (the classical theorem of Rademacher, see [5]).
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Clarke discovered that when f is locally Lipschitzian, the special derivative

expression

f (:z: '+th ') f (:z: ')
fO(:z:;h) = lim sup

t~O t
/1.'-./1.
:Z;'-o:z;

(1.11)

is always a finite sublinear function of h. Hence there exists a unique nonempty com

pact convex set Y such that

f O(:z:;h) = max "!I'h for all h.
liEY

Moreover

f O(:z:;h) =f '(:z:;h) for all h when f is subsmooth.

(1.12)

(1.13)

Thus in denoting this set Y by lJf(:z:) and calling its elements subgradients, one arrives

at a natural extension of nonsmooth analysis to the class of all locally Lipschitzian

functions. Many powerful formulas and rules have been established for calculating or

estimating lJf(:Z:) in this broad context, but it is not our aim to go into them here; see

(2] and (6], for instance.

It should be mentioned that Clarke himself did not incorporate the limit h'--h

into the definition of f O(:z:;h), but because of the Lipschitzian property the value

obtained for fO(:z: ;h) is the same either way. By writing the formula with h'-+h one is

able to see more clearly the relationship between f O(:z:;h) and f '(:z:;h) and also to

prepare the ground for further extensions to functions f that are merely lower sem

icontinuous rather than Lipschitzian. (For such functions one writes :z:' ->f :z: in place

of :z:' ->:z: to indicate that :z: is to be approached by :z:' only in such a way that

f (:z: ') -- f (:z:). More will be said about this later.)

Some people, having gone along with the developments up until this point, begin to

balk at the "coarse" nature of the Clarke derivative f O(:z:;h) in certain cases where f

is not subsmooth and nevertheless is being minimized. For example, if

f(:z:) = -!:z: \ + I:z: 12 one has fO(O;h) =!h I. whereas f'(O;h) exists too but

f'(O;h) = -I h I. Thus f' reveals that every h ¢() gives a direction of descent from 0,

in the sense of yielding f '(O;h )<0, but f ° reveals no such thing, inasmuch as

fO(O;h) > O. Because of this it is feared that fO does not embody as much information

as f' and therefore may not be entirely suitable for the statement of necessary condi

tions for a minimum, let alone for employment in algorithms of descent.
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Clearly 1 ° cannot replace I' in every situation where the two may differ, nor has

this ever been suggested. But even in face of this caveat there are arguments to be

made in favor of 1 ° that may help to illuminate its nature and the supporting motiva

tion. The Clarke derivative 1 ° is oriented towards minimization problems, in contrast

to I', which is neutral between minimization and maximization. In addition, it

emphasizes a certain uniformity. A vector II. with 1 O(x;h) < 0 provides a descent

direction in a strong stable sense: there is an e > 0 such that for all x' near x, h.'

near 11., and positive t near O. one has

I(x' + til. ') < I(x') - t e.

A vector II. with 1 '(x;h.) < 0, on the other hand, provides descent only from x; at

points x' arbitrarily near to x it may give a direction of ascent instead. This instabil

ity is not without numerical consequences, since x might be replaced by x' due to

round-off.

An algorithm that relied on finding an II. with I'(x;h.) < 0 in cases where

1 O(x; h) ~ 0 for all II. (such an x is said to be substationary point) seems unlikely to

be very robust. Anyway, it must be realized that in executing a method of descent

there is very little chance of actually arriving along the way at a point x that is subs

talionary but not a local minimizer. One is easily convinced from examples that such a

mishap can only be the consequence of an unfortunate choice of the starting point and

disappears under the slightest perturbation. The situation resembles that of cycling in

the simplex method.

Furthermore it must be understood that because of the orientation of the defini

tion of 1 ° towards minimization, there is no justice in holding the notion of substa

tionarity up to any interpretation other than the following: a substationary point is

either a point where a local minimum is attained or one where progress towards a

local minimum is "confused". Sometimes, for instance, one hears cited as a failing of 1 °

that I' is able to distinguish between a local minimum and a local maximum in having

1'(:;11.) ~ 0 for all II. in the first case, but 1'(:;11.) sO for all II. in the second, whereas

1°(:;11.) ~ 0 for all II. in both cases. But this is unfair. A one-sided orientation in

nonsmooth analysis is merely a reflection of the fact that in virtually all applications

of optimization, there is unambiguous interest in either maximization or minimization,

but not both. For theoretical purposes it might as well be minimization.

Certainly the idea that a first-order concept of derivative, such as we are dealing

with here, is obliged to provide conditions that distinguish effectively between a local

minimum and a local maximum is out of line for other reasons. Classical analysis makes

no attempt in that direction, without second derivatives. Presumably, second
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derivative concepts in nonsmooth analysis will eventually furnish the appropriate dis

tinctions. cf. Chaney [7].

A final note on the question of f ° versus f' is the reminder that f O(z:; h) is

defined for any locally Lipschitzian function f and even more generally, whereas

r(z:;h) is only defined for functions f in a narrower class.

An important goal of nonsmooth analysis is not only to make full use of Lipschitz

continuity when it is present, but also to provide criteria for Lipschitz continuity in

cases where it cannot be known a. priori, along with corresponding estimates for the

local Lipschitz constant. For this purpose, it is necessary to extend subgradient

theory to functions that might not be locally Lipschitzian or even continuous every

where, but merely lower semicontinuous. Fundamental examples of such functions in

optimization are the so-called ma.rginal functions. which give the minimum value in a

parameterized problem as a function of the parameters. Such functions can even take

on ±oo.

Experience with convex analysis and its applications shows further the desirabil

ity of being able to treat the indicator functions of sets, which play an essential role in

the passage between analysis and geometry.

In fact, the ideas that have been described so far can be extended in a powerful,

consistent manner to the class of all lower semicontinuous funclionsf: R Tl
- ii, where

ii = [_,00] (extended real number system). There are two complementary ways of

doing this, with the same result. In the continuation of the analytic approach we have

been following until now, a more subtle directional derivative formula

f'(z:;h) = lim [lim sup [ inf f(z:' +th') -f (z:') J]
.:.0 uo Ih'-hl,.;.: t

x'-+Jx

(1.14)

is introduced and shown to agree with f O(z:;h) whenever f is locally Lipschitzian and

indeed whenever fO(z:;h) (in the extended definition with z:' -+/z:, as mentioned ear

lier) is not +00. Moreover f'(z:;h) is proved always to be a lower semicontinuous, sub

linear function of h (extended-real-valued). From convex analysis, then, it follows

that either f '(z: ;0) = -00 or there is a nonempty closed convex set Y eRTl
• uniquely

determined, with

f'(Z:;h) = sup trh for all h.
lI EY

(1.15)

This is the approach followed in Rockafellar [6], [9]. One then arrives at the

corresponding geometric concepts by taking f to be the indicator lie of a closed set c.

For any z: E: C, the function h f-+ lil:(Z::h) is itself the indicator of a certain closed set
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TC(%) which happens always to be a convex cone; this is the Clarke tangent cone to C

at %. The subgradient set

NC(%) =BcSc (%), (1.16)

on the other hand, is a closed convex set too, the Clarke normal cone to C to %. The

two cones are polar to each other:

NC(%) =Tc(%)O, Tc (%) =Nc(%)o. (1.17)

In a more geometric approach to the desired extension, the tangent cone Tc (% )

and normal cone Nc(%) can first be defined in a direct manner that accords with the

polarity relations (1.16). Then for an arbitrary lower semicontinuous function

I: R n -R and point % at which 1 is finite, one can focus on TE(%,/(%» and

NE(%,/(%», where E is the epigraph of 1 (a closed subset of Rn +1). The cone

TE (% ,I (%» is itself the epigraph of a certain function, namely the subderivative h ~

I'(%;h), whereas the cone NE(%,/(%» provides the subgradients:

(1.18)

The polarity between TE(%,J(%» and NE(%,/(%» yields the subderivative-subgradient

relation (1.14). (Clarke's original extension of BI to lower semicontinuous functions

[1] followed this geometric approach in defining normal cones directly and then invok

ing (1.17) as a definition for subgradients. He did not focus much on tangent cones,

however, or pursue the idea that TE(%.I (%» might correspond to a related concept of

directional derivative.)

The details of these equivalent forms of extension need not occupy us here. The

main thing to understand is that they yield a basic criterion for Lipschitzian con

tinuity, as follows.

THEOREM 1 (Rockafellar [10]). Fbr a lower semicontinuous Junction I: R n -R
actually to be Lipschitzian on some neighborhood 01 the point %, it is suJ'.f£cient

(as well as necessary) that the subgradient set BI (%) be nonempty and bounded.

Then one has

I1 (% ") :f (% ') I
lim sup H-; = max Iy I.

:1:' "':1: I% -:z: I y EO! (:I: )
2:" ...%

(1.19)
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This criterion can be applied without exact knowledge of IJf(%) but only an esti

mate that q, ~ IJf (%) c Y for some set Y. If Y is bounded. one may conclude that f is

locally Lipschitzian around %. If it is known that IY I < X for all Y e:Y. one has from

(1.19)

If(%") -f(%') I,s; X!%"-%' I for %' and %" near %.

2. LAGRANGE JroLTIPLIERS AND SENSITIVITY

Many ways have been found for deriving optimality conditions for problems with

constraints. but not all of them provide full information about the Lagrange multipliers

that are obtained. The test of a good method is that it should lead to some sort of

interpretation of the multiplier vectors in terms of sensitivity or generalized rates of

change of the optimal value in the problem with respect to perturbations. Until quite

recently. a satisfactory interpretation along such lines was available only for convex

programming and special cases of smooth nonlinear programming. Now. however. there

are general results that apply to all kinds of problems. at least in Rn. These results

demonstrate well the power of the new nonsmooth analysis and are not matched by any

thing achieved by other techniques.

Let us first consider a nonlinear programming problem in its canonical parameter

ization:

(Pu ) minimize fl (%) subject to %e: K and

flt (% )+Ut ,s; 0 for i =l s.

=0 for i=s+l m.

where fl .fl 1.... •flm are locally Lipschitzian functions on R n and K is a closed subset of

R n : the Ut' s are parameters and form a vector U ERm . By analogy with what is known

in particular cases of (Pu )' one can formulate the potential optimality condition on a

feasible solution %. namely that

(2.1)

Yt i1eOandYt[flt(%)+ud =0 for i=l .....s.

and a corresponding constra.int qual'iJ'i,ca.tion at %:
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the only vector y =(Y1' ...• Ym ) satisfying the version

of (2.1) in which the term Bg(:r) is omitted is Y =0.

(2.2)

In smooth programming. where the functions g.g 1- ••• _gm are all continuously

differentiable and there is no abstract constraint :r E: K. the first relation in (2.1)

reduces to the gradient equation

and one gets the classical Kuhn-Tucker conditions. The constraint qualification is then

equivalent (by duality) to the well known one of Mangasarian and Fromovitz.

In conve:r programming. where g.g 1 •... •gs are (finite) convex functions,

gs +i ... ·'gm are affine, and K is a convex set. condition (2.1) is always sufficient for

optimality. Under the constraint qualification (2.2), which in the absence of equality

constraints reduces to the Slater condition. it is also necessary for optimality.

For the general case of (Pu ) one has the following rule about necessity.

THEOREM 2 (Clarke [11]). Suppose:r is a locally optimal solution to (Pu ) at

which the constraint qualification (2.2) is satisj'i.ed. Then there is a multiplier

vector y such that the optimality condition (2.1) is satisfied.

This is not the sharpest result that may be stated. although it is perhaps the sim

plest. Clarke's paper [11] puts a potentially smaller set in place of NK(:r) and provides

along side of (2.2) a less stringent constraint qualification in terms of "calmness" of

(Pu) with respect to perturbations of u. Hlriart-Urruty [12] and Rockafellar [13]

contribute some alternative ways of writing the subgradient relations. For our pur

poses here, let it suffice to mention that Theorem 2 remains true when the optimality

condition (2.1) is given in the slightly sharper and more elegant form:

o E: og(:r) + yoG(:r) + NK(:r) with y ENC(G(:r)+ u).

where G (:r) =(g 1(:r), ... ,gm (:r)) and

C = Iw ~m IWt sO for i =1, ...•s and Wt =0 for i =s +l.....m I.

(2.3)

(2.4)

The notation BG (:r) refers to Clarke's generalized Jacobian [2] for the mapping G; one

has
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(2.5)

Theorem 2 has the shining virtue of combining the necessary conditions for smooth

programming and the ones for convex programming into a single statement. Moreover

it covers subsmooth programming and much more, and it allows for an abstract con

straint in the form of :z: E: K for an arbitrary closed set K. Formulas for calculating

the normal cone NK(:z:) in particular cases can then be used to achieve additional spe

cializations.

What Theorem 2 does not do is provide any interpretation for the multipliers lIt.

In order to arrive at such an interpretatiol). it is necessary to look more closely at the

properties of the marginal function

p (u) =optimal value (infimum) in(Pu)' (2.6)

This is an extended-real-valued function on R JR which is lower semicontinuous when the

following mild inl-boundedness condition is fulfilled:

For each it E: R JR
• a E: Rand £ > O. the set of all :z: E: K

satisfying 11 (:z:) :SO a, I1t (:z:) :SO Ut +£ for i =l•...•s. and

(2.7)

This condition also implies that for each u with p (u) < 00 (1.e. with the constraints of

(Pu ) consistent). the set of all (globally) optimal solutions to (Pu ) is nonempty and com

pact.

In order to state the main general result, we let

Y(u) = set of all multiplier vectors 11 that satisfy (2.1)

for some optimal solution :z: to (Pu ).

(2.8)

THEOREM 3 (Rockafellar [13]). Suppose the inJ-boundedness condition (2.7) ts

satisfied. Let u be such that the constraints 0/ (Pu) are consistent and everll

optimal solution:z: to (Pu) satisfies the constraint qualifLcation (2.2). Then 8p(u)

is a nonemptll compact set with

8p(u) cco Y(u) and ext Bp(u) c Y(u). (2.9)
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(where "ext" denotes eztreme points). In parttcular p is locall1/ Lipschitda.n

around u wtth

pO(u;h)~ sup 1/'h foraLL h.
yeY(u)

(2.10)

Indeed, an1/ ~ satisj'ytng '1/ I< ~ for all 1/ e:Y(u) serves as a local Lipschitz con

stant:

Ip(u")-p(u')I~~lu"-u'1when u' and u" are near u. (2.11)

For smooth programming. this result was first proved by Gauvin [14]. He demon

strated further that when (Pu) has a unique optimal solution z. for which there is a

unique multiplier vector 1/. so that Y(u) =11/l. then actually p is differentiable at u

with Vp (u) =1/. For convex programming one knows (see [3]) that IJ:p (u) =Y(u)

always (under our inf-boundedness assumption) and consequently

p'(u;h) = max 1/·h.
yeY(u)

(2.12)

Minimax formulas that give p'(u;h) in certain cases of smooth programming where

Y(u) is not just a singleton can be for example found in Demyanov and Malozemov [15]

and Rockafellar [16]. Aside from such special cases there are no formulas known for

p '(u;h). Nevertheless. Theorem 3 does provide an estimate. because

p'(u;h) ~ pO(u;h) whenever p'(u;h) exists. (It is interesting to note in this connec

tion that because p is Lipschitzian around u by Theorem 3. it is actually differentiable

almost everywhere around u by Rademacher's theorem.)

Theorem 3 has recently been broadened in [6] to include more general kinds of

perturbations. Consider the parameterized problem

(Qv ) minimize f (v .z) over all z satisfying

F(v .z) e: C and (v .z) e: D.

where v is a parameter vector in RtI.. the functions f: Rti. X R n -R and

F: Rti. X R n _Rm are locally Lipschitzian. and the sets C cRm and D c Rti. xRn are

closed. Here C could be the cone in (2.4). in which event the constraint F(v.z) e: C

would reduce to

ft(v .z) 5: 0 for i =l s.

=0 for i=s+l m.

but this choice of C is not required. The condition (v.z) e: D may equivalently be
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written as z e: f(v), where r is the closed multifunction whose graph is D. It

represents therefore an abstract constraint that can vary with v. A fixed abstract

constraint z e: K corresponds to f(v)-;;K, D=Rd. x K.

In this more general setling the appropriate optimality condition for a feasible

solution z to (Qv ) is

(z ,0) e: BJ(v,z) + y iJF(v ,z) + ND(v ,z)

for some y and z with ye:Nc(F(v,z»,

and the constraint qualification is

the only vector pair (y,z) satisfying the version of (2.13)

in which the term BJ(v,z) is omitted is (y,z)=(O,O).

(2.13)

(2.14)

THEOREM 4 (Rockafellar [6, §8». Suppose that z is a locaLLy optimal solution

to (Qv ) at which the constraint qualiJ'ication (2.14) is satisj'ied.. Then there is a

multiplier pair (y ,z) such that the optimality cond.ition (2.13) is satis.fied..

Theorem 4 reduces to the version of Theorem 2 having (2.3) in place of (2.1) when

(Qv ) is taken to be of the form (Pu )' namely when

J(v,z)=g(z), F(v,z)=G(z)+ v, D=Rfn x K (Rfn=Rd.), and C is the cone in (2.4).

For the corresponding version of Theorem 3 in terms of the marginal function

q(v) = optimal value in (Qv)'

we lake inf-boundedness to mean:

For each ve:Rd., a e:R and f: >0, the set of all z

satisfying for some v with Iv -V I :s; f:

the constraints F(v ,z )e:C, (v ,z )e:D, and

having J (v ,z) :s; a, is bounded in R n .

(2.15)

(2.16)

Again, this property ensures that q is lower semicontinuous, and that for every v for

which the constraints of (Qv ) are consistent, the set of optimal solutions to (Qv ) is

nonempty and compact. Let
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Z(v) =set of all vectors % that satisfy the multiplier

condition (2.13) for some optimal solution

z to (Qv ) and vector y.

(2.17)

THEOREM 5 (Rockafellar [6, §a]). SUppose the inf-boundedness condition (2.16)

is satisfied. Let v be such that the constraints oj (Qv ) are consistent and every

optimal solution z to (Qv ) satisfies the constraint qualij'ication (2.14). Then Bq (v)

is a nonempty compact set with

Bq (v) c co Z(v) and ext Bq (v) c Z(v).

In particular q is locally Lipschit%ian around v with

qO(v;h):!iO sup %·h.tor all h.
% e:Z(v)

Any" satis.!'llingl % I < ".tor all % e: Z(v) serves as a local Lipschit% constant:

Iq(v")-q(v')I:!iO "lv"-v'1 when v' and v" are near v.

(2.16)

(2.19)

(2.20)

The generality of the constraint structure in Theorem 5 will make possible in the

next section an application to the study of multifunctions.

3. STABILITY OF' CONSTRAINT SYSTEMS

The sensitivity results that have just been presented are concerned with what

happens to the optimal value in a problem when parameters vary. It turns out, though,

that they can be applied to the study of what happens to the feasible solution set and

the optimal solution set. In order to explain this and indicate the main results, we must

consider the kind of Lipschitzian property that pertains to multifunctions (set-valued

mappings) and the way that this can be characterized in terms of an associated dis

tance function.

Let f: RrI.::Rn be a closed-valued multifunction, I.e. f(v) is for each v e: RrI. a

closed subset of R n , possibly empty. The motivating examples are, first, f(v) taken t.o

be the set of all feasible solutions to the parameterized optimization problem (QlI)

above, and second, f(v) taken to be the set of all optimal solutions to (Qv)'

One says that f(v) is locally Lipschitzian around v if for all v' and v" in some

neighborhood of v one has f(v') and f(v ") nonempty and bounded with
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(3.1)

Here B denotes the closed unit ball in Rn and ). is a Lipschitz constant. This property

can be expressed equivalently by means of the classical Hausdorff metric on the space

of all nonempty compact subsets of R n :

haus (r(v ").r(v'» :s ). Iv" -v'! when v' and v" are near v. (3.2)

It is interesting to note that this is a "differential" property of sorts, inasmuch as it

deals with rates of change, or at least bounds on such rates. Until recently, however,

there has not been any viable proposal for "differentiation" of r that might be associ

ated with it. A concept investigated by Aubin [17] now appears promising as a candi

date; see the end of this section.

Two other definitions are needed. The multifunction r is locally bounded at v if

there is a neighborhood V of v and a bounded set ScRn such that r(v')CS for all

v'e:V. It is closed at v if the existence of sequences IVt I and IZt I with

Vt -v, Zt e:f(vt ) and Zt -+z implies Z e:f(v). Finally, we introduce for r the distance

j'unction

d r (v,w) = dist ( f(v),w) = min !Z--W
:I: Er(V)

The following general criterion for Lipschitz continuity can then be stated.

(3.3)

THEOREM 6 (Rockafellar [18]). The multi,f'unction r is locally Lipschitzian

around v fJ' and only fJ'r is closed and locally bounded at v with f(v) ¢ I/J, and its

distancej'unction d r is locally Lipschitzian around (v ,z) lor each Z e: f(v).

The crucial feature of this criterion is that it reduces the Lipschitz continuity of

r to the Lipschitz continuity of a function d r which is actually the marginal function

for a certain optimization problem (3.3) parameterized by vectors v and w. This prob

lem fits the mold of (Qv)' with v replaced by (v ,w), and it therefore comes under the

control of Theorem 5, in an adapted form. One is readily able by this route to derive

the following.

THEOREM 7 (Rockafellar [18]). Let r be the multij'unction that assigns to each

v e: Rd. the set 01 all.teasible solutions to problem (Qv):
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r(v) = f% IF(v,%) EC and (v,%) ED!. (3.4)

S'u.ppose for a given v that r is locally bounded at v, and that r(v) is nonempty

with the constraint qualij'i.cation (2.14) satisj'i.ed by every % E f(v). Then r is

locally Lipschitzian around v.

COROLLARY. Let r: Rd. :::Rn be any multij'unction whose graph

D = f(v ,%) i% Er(V)! is closed. S'u.ppose for a given v that r is locally bounded at v,

and that r(v) is nonempty with the following condition satisj'i.edfor every % Er(V):

the only vector z with (z ,0) E ND(v ,%) is z = o.

Then r is locally Lipschitzian around v.

(3.5)

The corollary is just the case of the theorem where the constraint F(v .%) E C is

trivialized. It corresponds closely to a result of Aubin [17], according to which r is

"pseudo-Lipschitzian" relative to the particular pair (v,%) with % E r(v) if

the projection of the tangent cone TD(v ,%) c Rd. xRn (3.6)

Conditions (3.5) and (3.6) are equivalent to each other by the duality between ND(v,%)

and TD(v ,%). The "pseudo-Lipschitzian" property of Aubin, which will not be defined

here, is a suilable localization of Lipschitz continuity which facilitates the treatment of

multifunctions r with f(v) unbounded, as is highly desirable for other purposes in

optimization theory (for inslance the treatment of epigraphs dependent on a parameter

vector v). As a matter of fact, the results in Rockafellar [lB] build on this concept of

Aubin and are not limited to locally bounded multifunctions. Only a special case has

been presented in the present paper.

This topic is also connected with interesting ideas that Aubin has pursued towards

a differential theory of multifunctions. Aubin defines the multifunction whose graph is

the Clarke tangent cone TD(v,%), where D is the graph of r, to be the derivative of r
at v relative to the point % E r(v). In denoting this derivative multifunction by r~,3:'

we have, because TD(v ,%) is a closed convex cone, that r~,% is a closed conve% process

from Rd. to Rn in the sense of convex analysis [3, §39J, Convex processes are very

much akin to linear transformations, and there is quite a conve% algebra for them (see

[3, §39], [19], and [20]). In particular, r~.::t has an adjoint r~.~: Rn:::Rd., which turns

out in this case to be the closed convex process with
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r '· - (I Igph V,:z: -«w,z).(z,-w) END(v,:z:).

In these terms Aubin's condition (3.6) can be written as dom r~,% = Rd., whereas the

dual condition (3.5) is r~,~(O) = fOl. The latter is equivalent to r~,: being locally

bounded at the origin.

There is too much in this vein for us to bring forth here, but the few facts we have

cited may serve to indicate some new directions in which nonsmooth analysis is now

going. We may soon have a highly developed apparatus that can be applied to the study

of all kinds of multifunctions and thereby to subdifferential multifunctions in particu

lar.

For example, as an aid in the analysis of the stability of optimal solutions and mul

tiplier vectors in problem (Qv)' one can take up the study of the Lipschitzian proper

ties of the multifunction

nv)=setofall (:Z:,y,z) such that :z: isfeasiblein (Qv )

and the optimality condition (2.13) is satisfied.

Some results on such lines are given in Aubin [17] and Rockafellar [21].
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UPPER-SEMICONTINUOUSLY DIRECTIONALLY
DIFFERENTIABLE FUNCTIONS

A.M. Rubinov
Institute for Social and Economic Problems, USSR Academy ofSciences,

Leningrad, USSR

1. INTRODUCTION

A generalized approximation of the subdifferential called

the (E,~)-subdifferential is introduced for upper-semicontinu

ously directionally differentiable functions. The most attract

ive and important property of the (E,~)-subdifferential is that

it can be taken to be a continuous mapping; this, in its turn,

allows us to construct numerical methods for finding stationary

points.

Let us consider the n-dimensional space :mn with some norm

\1·11. Let X be an open set in this space, and a function f be

defined, continuous and directionally differentiable on X. We

say that the function f is upper-semicontinuously directionally

differentiable (u.s.c.d.d.) at a point X o EX if for any fixed

g E:mn the function x ----+ fO (x,g) is upper-semicontinuous (in x)

at this point and is bounded in some neighborhood of x O• This

last property means that there exists a number C < 00 such that

If' (x,g) I < Cllgll ( 1 )

for all g E:mn and every x in some neighborhood of x
O

• Examples

of u.s.c.d.d. functions include convex functions and maximum

functions.

We say that a function f defined on X is subdiffer~ntiable

at a point x E X if it is directionally differentiable at x and
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if its directional derivative f' is a sublinear function (as ax
function of g).

Let af(x) denote the subdifferential of f at x. By defini-

tion

f' (g)
x max (v,g)

VE.£.f (x)

Recall that the subdifferential is a convex compact set.

PROPOSITION 1. If a function f is u.s.c.d.d. at a point xEX,

then it is aZso subdifferentiabZe at this point.

Proof. The positive homogeneity of the function f~(g) = f' (x,g)

is obvious. Let us now check that it is subadditive. Take g"
n

g2 E JR Then there exist functions 1)J, (a) and 1)J2 (a) such that

and

__ 0

a ....+O
1)J2 (a)

__ 0

a ....+O

f'(x,g,)

The above equalities imply that

where

o
a""+ 0

Fix some a > 0, put x
a x + ag" and define

It follows from the mean value theorem that

f (x +ag2 ) - f (x ) < M • aa a a
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Therefore

Since f is an u.s.c.d.d. function, the derivative f' (x,g2) is

u.s.c. (as a function of x). This means that for any E > 0 there

exists a 0 > 0 such that

\/y E B
o

(x)

For a sufficiently small and 6 E (0,0.) we have

and therefore 1-1a < fO (x,g2) + E/2. Assuming that 11JJ 3 (a) 1< E/2

(which is the case if a is sufficiently small), we have

which implies (since E is arbitrary) that the function fO (g)x
f' (x,g) is sUbadditive.

nLet a function f defined on an open set xcm be u.s.c.d.d.

on this set. It follows from Proposition 1 that f is subdiffer

entiable at every point x E X (and the subdifferential ~f (x) is

defined for every x E X). Fix any g E mn and consider the function

q (x)
g

max (v,g)
vEaf (x)

fO (x,g)

It follows from the definition that q is an U.s.c. function.
g

Inequality (1) implies that the mapping £f is bounded in some

neighborhood of every point x EX. Thus the mapping x + £f (x) is

u.s.c.

Using methods from the topological theory of multivalued

mappings (see, e.g., [1]) it is not difficult ~o show that every

point X o E X has a neighborhood (in which the mapping x + ~f (x) is

bounded) such that for any fixed E > 0 we can find a continuous

multivalued mapping b defined in this neighborhood which has
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convex conpact sets as its inages and for which

elf (x) C b (x) C ~f (BE (x)) + BE (2 )

Here B (x) = x+B i B + B (0).E E E E

For sinplici ty we assune that the mapping x ..... ~f (x) is bounded

on all of set X. Then a continuous napping b satisfying (2) can

be defined on the entire set X.

Let E and ~ be positive numbers. It follows directly from

(2) that there exists a continuous mapping b such that

elf (x) C af (B (x)) + B
- - E ~

"Ix E X (3 )

One example would be a mapping b which satisfies (2) for E'

min{ E, ~}.

A continuous mapping b which satisfies (3) is called a con

tinuous (E,~)-subdifferentialof the function f and is denoted

by d f. Clearly, this mapping is not unique: if 0 < E' < E,
-E~ -

o < ~' < ~ then every continuous (E' ,~')-subdifferential is also

a continuous (E,~)-subdifferential.

The definition of a continuous (E,~)-subdifferentialcan be

extended to the case in which one of the nunbers E and ~ is zero.

However, in this case we cannot guarantee the existence of a

continuous (E,~)-subdifferential for an arbitrary u.s.c.d.d.

function, although continuous (E,O)-subdifferentials do exist

for convex functions. We shall now describe one of these.

Let a function f be defined and convex on an open convex

set X. By a f(x) we denote the conditional E-subdifferential
-E

of f at x with respect to the ball B (x) (see [2]):
E

a f(x)
-E:

n{VEIR If(z) - f(x) > (v,Z-X)-E 'izEB (x)}
E

PROPOSITION 2. Let

convex set X E IR
n

•

subdifferential of

a function f be defined

Then the mapping a f is
-E

the function f.

and convex on an open

a continuous (E,O)-

Proof. It follows from [3] that a f(x) coincides with the closure
-E

of the set
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From the definition, we have

C f (x) c af (int B (x)) c af (B (x))
~ - ~ - ~

In addition, af(x) CC f(x) and sets a f(x) are convex and compact
- ~ ~

(the latter follows from [3]). Thus

at (x) c a f (x) c af (B (x))- ~ - ~

(4 )

It is now necessary to de~onstrate the continuity of the mapping

~~f(x). It follows from [3] that the support function q~f(x,g)

of the set a f(x) is given by
-~

inf
~

o<a.::. jfgjf

- [f (x+ag) - f (x) + ~]a

Fix any vector y and consider the function

h(x,a) - [f (x+aq) - f (x) + E]a

~which is jointly continuous in both variables on X x (0 'IT9iI] .

Fix X o EX. Since

liM (hxO,a) +00
a-++O

there exist numbers a > 0 and a > 0 such that00

inf h(x,a)

O<a< -~-
-II gil

min h(x,a)

a <a< -~-
0- -II gil

Since h is jointly continuous in both variables on the compact

x - q f(x,g)
~

min h(x,a)

a <a< -~-
0- -II gil
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is continuous at the point x O' Also, from (4) and the bounded

ness of the subdifferential, the mapping x -- a f(x) is bounded
-E:

in some neighborhood of x O' Using results from [2], we then de-

duce that the mapping x -- a f(x) is continuous.
-E:

THEOREM 1.

sition. )

(On the continuous (E:,~)-subdifferentialof a compo-

Let a function f be defined~ Lipschitzian and u.s.c.d.d. on
n

an open set X
1
em. Suppose also that for any E: > 0 and ~ > 0

there exists a continuous (E:,~)-subdifferential d f. Let func
-E:~

tions h 1 , •.. ,h be defined and continuously differentiable on an
n

open set X 2 e m~ where m .:. n.

Consider a mapping H(x) (h
1

(x) , ••• ,h
n

(x)) such that

(ii) The Jacobian matrix

H'
x

I ••• ,

, ... ,

has a minor of n-th order which does not vanish on the closure

cl X of some bounded open subset X of the set X2 .

Then the function ¢(x) = f(H(x)) is u.s.c.d.d. and for any

6 > 0, Y > 0 there exist E: > 0 and ~ > 0 such that the mapping

*x -- (H') d f(H(x))
X -E:~

is a continuous (6,v)-subdifferential of the function ¢ on the

set X
1

• Here * denotes transposition.

The proof is based on the following lemma.

LEMMA 1. Under the assumptions of Theorem 1~ for any 6 > 0 there

must exist an E: > 0 such that

Vx EX
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Proof of Lenma 1. Let us first show that the image of any neigh

borhood of a point XEX 2 contains a ball centered at the point

H(x). Assume for the sake of argument that the minor which does

not vanish (see condition (ii)) corresponds to the first n indices.

Let

-x -(1) -(n) -(n+1) -(rn))(x , ... ,x,x , ... ,x EX 2

this mapping does not vanish at the

it follows from the inverse function

Consider the set

~ (1) (n) n I (1) (n) -(n+1) -(m) }X2 = {y= (y , ... ,y ElR (y ,.",y,x , ... ,x) EX2

and the mapping Hdefined on this set by the equality H(y) = H(x),
(1) (n) -(n+1) -(m)where x = (y , ... ,y,x , ... ,x).

Since the Jacobian of

Point -y = (x(1) -x (n)), ... , ,
theorem that in some neighborhood of this point there exists a

continuous mapping B- 1 which is the inverse of B. The continuity

of li- 1 implies that the image of every sufficiently small neigh

borhood of y (under the mapping H) contains a ball centered at

the point H(y) = H(x). Furthermore, the image of any neighbor

hood of the point x in the set X2 (under the mapping H) contains

a ball centered at the point x.

Fix SOQe <5 > O. For any x E X2 let E (x) denote the supremum

of the set of nUQbers E > 0 such that

Vx E X 2 •

Here B<5 and BE are open balls centered at zero with a radius

of <5 and E, respectively. It follows from the above definitions

that E(X) > 0 for all x. Let us show that the function E(X) is

l.s.c. Assuming the opposite, we should be able to find a se

quence {xk } and numbers E', E" > 0 such that

xk-- x, xk E X2' E (x) > E" > E I > E (xk ) Vk

The inequality E' > E(Xk ) implies that there exist elements {Yk}

such that
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(5)

Since the sequence {II(xk )} converges, the sequence {Yk} is

bounded. Without loss of generality we can assume that the limit

lim Yk = Y exists. Then since

II H (x) -yll

we have

- -yEH(x) + BE" CH(x+Ba)

-Le., for some x' EX+Ba the equality y = H(x') holds. Let

II x I -xII = a I < a, and take numbers y and y I such that 0 < 2y < y' <

a - a'. Since the image of a neighborhood contains a neighbor

hood and Yk - H(x'), the inclusion YkEH(X'+i\) holds for n suf

ficiently large. Let numbers k be such that

II x-xkll .2. II x-x I II + II x I -xII + II x-xkll < 2y + a I < a

We conclude that x I + i\ C x k + Ba and therefore that

But this contradicts (5), showing that E(X) is l.s.c.

~owever, it is assumed that the set cl X is compact, and

therefore E(X) achieves its minimum on cl X at some point Xo and

E (x) ~ E (x
O

) > O.

Proof of Theorem 1. Let ¢(x)

we have

f(H(x». Since f is Lipschitzian,

<j>'(x,g) fl(H'(g»
H x

max (v , H' (g) )
VE~f(H(X» x

max ( (H ') *v, g)
VElf(H(x» x

max (v' , g) .
v'E(H')*(3f(H(x»)x -
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We conclude that ~ is an u.s.c.d.d. function and that ~~(x) =

(H')*(af(H(x)). Let numbers 0 > 0, \! > ° be given. Find anx -
E > ° which corresponds to 0 (and whose existence is guaranteed

by Lemma 1), and choose a II such that llil (H~) *11 :5: \!. Take a

continuous (E,ll)-subdifferential d f of the function f. Then
-Ell

Applying the operator (H ' )* to these inclusions we getx

(H')*df(H(x)) c (H')*d f(H(x))x - x -Ell

C (H')*af(H(x)+B) + 1l(H')*B*x - E X

Making use of the inequalities

~~(x) (H')*af(H(x))x -

U (H')*af(H(x'))
II x'-xII <0 x -

we finally arrive at

Remark. If a function f has a continuous (E,O)-subdifferential

d Of for every E > 0, then for any 0 > ° there exists an E > °
-E
such that the mapping (H') (d O(H(X)) is a continuous (E,O)-subx -E

differential of the function ¢ = f(H) on the set X.

This result follows directly from the proof of the theorem.

Theorem 1 allows us to construct a continuous (E,O)-subdifferen

tial for one class of finite maximum functions.

THEOREM 2. Let functions h
1

, ••• ,hn be defined and continuously

differentiable on an open set X lRm (where m > n) and
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\Ix E X

Assume that the Jacobian matrix 1ahi/ax (j)I has a minor of n-th

order which does not vanish on the closure cl X of some bounded

open subset X of the set X. Then for any 6 > 0 there exists an

E > 0 such that the mapping d O(x) defined below is a continuous
-E

(6,O)-subd i fferential of cp.

The mapping d 0 is described by the relation
-E

where

~EO(X) ~
n ah.(x) ah.(x)

y E lR
m Iy = . I vi \ 1) , ••• , I v r ~ (m)

~=1 ax ax

VE(x) j v E lR
m I I v. = 1 , v. > 0 , ViI i=1 ~ ~ -

CP(x) < Iv.h. (x) + E t
~ ~ \

o if i ~ R2E (II (x) ) ,

R
2E

(H (x) )

2. A METHOD OF STEEPEST DESCENT

Let f be an u.s.c.d.d. function defined on lR
n

. A point x

is called an (E,~)-stationary point of f if

o E df (x+B ) + B
- E ~

Observe that if a point x is (E,~)-stationary for all E > 0,

~ > 0 then it is also stationary, i.e. OE~f(x).

Indeed, if 0 E~f (x+B E) +

leads to 0 E ~f (x+B E). But if

semicontinuity of the mapping

B~ then taking the limit as ~ + 0

o E af (x+B ) liE then the upper-
- E

~f implies that 0 E ~f (x) .

If ~E~f is a continuous (E,~)-subdifferentialof the function

f and 0 Ed f(x), then x is an (E,~)-stationary point (by definition).
-E
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We shall now describe a steepest descent method based on

the use of continuous (E,W)-subdifferentials.

Let

q;(x,g) max (v,g)
VEd f (x)

EW

The function q; is the support function of the mapping d f.
EW

Consider the function

r(x) minq;(x,g)
II gil.::.'

From the minimax theorem we have

r(x) max (v, g)
vEd f (x)

-EW

max
vEd f (x)

-EW

min (v,g)
II gil.::.'

max (-II vii) =
VEd f (x)

-EW

min Ilvll
VEd f (x)

-EW

o then 0 Ed f (x), i. e. ,
-EW

Thus -r(x) = p(O,d f(x)). If r(x)
EW

x is a stationary point.

Choose an arbitrary Xo E IRn , and assume that the set

{XEIR
n

[f(x) .::.flxo} is bounded.

Assume that a point x k has already been found. If r (xk ) = 0

then xk is an (E,w)-stationary point and the process terminates.

Otherwise, if r(xk ) < 0, we find gk such that

Now let us choose a k such that

min f(xk+agk )
a>O
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If the sequence {xk } thus constructed is finite then its last

point is (E,~)-stationary by construction. Otherwise the follow

ing theorem is true.

THEOREM 3. Any Zimit point of the sequence {xk } is an (E,~)

stationapy point of the function f.

Proof. We have

(6)

Let us now proveThis inequality holds because ~f (x) Cd f (x) .
-E~

that lim r(xk ) = O.

Assuming the opposite, we can find a subsequence (Xks)SUCh

that

lim r (Xk )
s ....+oo s

-a < 0

is continuous on the compact set {xlf(x) <Since the mapping d
-E~

f(x O)}' it is also uniformly continuous,

there exists a 6 > 0 such that

i.e., for any E > 0

p (d f (x),d f (y)) < E
E~ E~

if p(x,y) < 6

where 6 does not depend on points x and y. Take E

a. < 6. Then

a
'2 ' and let

\IT E (0, a.)

and therefore

It now follows from (6) that
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f(XkS +CXgkJ < f(XkJ + I
o

cx
[¢ (Xks,qkJ +~]dT

= f (XkJ + cx (r (xkJ + ~)

But for s sufficiently large we have r(x
ks

)

f (Xks + cxgkJ :5.. f (xkJ - cx ~

Therefore

3a
< - LI ' and hence

which is impossible. It follows from this contradiction that we

must have

Since r is a continuous function the equality r(x*)

for any limit point x* of the sequence {xk }, i.e.,

OEd f (x*)-ql

o holds

Remark. An analogous method can be used in the case f = f 1+g,

where f is an u.s.c.d.d. function and d is a concave function,

or to find a Clarke stationary point.
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A NEW APPROACH TO CLARKE'S GRADIENTS IN
INFINITE DIMENSIONS

Jay S. Treiman
Department ofMathematics, Lehigh University, Bethlehem, PA 18015, USA

Introduction:

One of the most useful tools developed for use in

non smooth optimization is the generalized gradient set of

Clarke. These gradients have been used on a variety of

problems including necessary conditions for optimality,

control theory and differential inclusions. Three different

techniques can be used to define Clarke's gradients. They

have characterizations in terms of directional derivatives

[Clarke (1975). Rockafellar (1980)]. the normal cone to the

epigraph of a function [Clarke (1975)] and in terms of limits

of proximal subgradients [Rockafellar (1981)]. Some of the

strongest results involving Clarke's subgradients have been

derived using the proximal subgradient formula [Rockafellar

(1982) ].

The characterization of Clarke's gradients in terms of

proximal gradients is as follows. Let f be a l.s.c. function

from ~n into iR.
if the function

A v E ~n is a proximal subgradient to f at x

f(x) - <v,x> + rllx - xii

has a minimum at x relative to some neighborhood of x for some
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r>O. Let

3 proximal subgradients vk~v to f
k _

at x -rx.

and

3 proximal subgradients v k to f at x k -r x

with 7kvk~v with 7k~0.

The set of Clarke subgradients to f at x is given by

""'00
Here the set a f(x) can be interpreted as the infinite

subgradients.

There have several generalizations of this idea. They

include the work of Thibault (1976), Kruger and Mordukhovich

(1980) and Ioffe (1981).

In this paper a characterization of Clarke's gradients

similar to the proximal subgradient formula is stated. This

formula is valid in all reflexive Banach spaces. Several

results proven using this characterization are also given.

2 The Bubgradient formula:

The main problem with proximal subgradientB is that they

may not exist in Banach spaces. They are replaced by

E-subgradients. Let E be a Banach space. " "A vEE is an

E-subgradient to a l.s.c. function f at x if

"f(x) - <v ,x> + Ellx - xii

has a local minimum at x.

(1)

It will be assumed throughout the rest of this paper that

E has an equivalent norm that if Frechet differentiable off O.

This guarantees that E-subgradients exist on a dense subset of
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the domain of f for any £ > O.

Theorem 1: [Treiman (1983)] Let f be a lower semicontinuous

function on E and X a point where f is finite. Take

*v...
Of (x)

3 v*k

v*k an
x

k -r
£k-sUbgradient

x and £k\'O with

to f at x k

and

x. Tk\'O and £k\'O with
kto Tkf at x •

*v x
k -r

£k-subgradient

*.....!!L..
"'00o f(x)

Then

Of (x) *• c I co
... "'00

[Of (x) + 0 f(x)] .

A similar result holds in Banach spaces with an equivalent

norm that is Gateaux differentiable off O. These spaces

include all separable spaces. The only differences are that

the neighborhood in (1) is replaced by a set that absorbs a

neighborhood of every element of E {O} and these absorbing

sets must be uniform when taking the limits in Theorem 1.

This set of subgradients is differs from the broad cone of

loffe (1981). In loffe's definition a similar £-subgradient

is used and is called the Dini Y-subdifferential. The major

differences are that loffe's Y-subdifferentials are taken with

respect to subspaces and he does not include infinite limits.

This means that Ioffe's subgradient set can be much larger or

smaller than Clarke's gradients.

The £-subgradients described here are more closely related

to the normals defined by Kruger and Mordukhovich (1980). A

discussion of these relationships is contained in [Treiman

(1983)).

3 Applications:

In this section we state several applications of Theorem

1. These are generalizations of Rockafellar's work
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and will appear in [Treiman and

The first of these results enables one

to calculate Clarke's gradients in a special case.

Proposition 2: Let E and X be Banach spaces with equivalent

norms that are frechet differentiable off 0 and f: E ~ ~ and

g: X ~ ~ be lower semicontinuous functions.

+ g(x) and f(V,x) is finite then

11 f(lI,x) • f(lI)

If either f(v) or g(x) is emptll then so is of (V, x).

The next result can be interpreted as a statemant about

Lagrange multipliers. The proof of this result depends on a

result similar to the result of Dolecki and Thera (1984) in

this volume that does not require the existence of optimal

solutions to perburbed problems.

In this theorem the concept of a tightly lipschitzian map

is used. A map F: X ~ E is tightlll Lipschitzian at it if F is

Lipschitzian around it and for all h there is a compact set

H(h) C E such that for all 5 > 0 there is au> 0 with

t- 1 [F(x' + th) -F(x'») E H(h) + 58

when I I x' - it I I < 5 and t E (0,11).

Theorem 3:

problem
Let x be a localill optimal solution to the

minimize f(x) subject to F(x) + u E C, xED,

where f: X ~ ~ is lower semicontinuous with f(x) finite,
f: X ~ E is tightlll Lipschitzian, E has an equivalent norm
that is frechet differentiable off 0 and C C E and D C X are
closed sets. Suppose that the problem is calm in the sense
that

I
• I

I

Ii
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Then

and f(x k ) - f(x)

luk - iii
~ -00.

• •3 v e NC(F(x) + ii) with 0 e a(f + ~D)(x) + a<v .F>(x).

Using this result several chain rules can be proven. In

these chain rules the following concept is used. An element

•v of aoof(x) is nontrivial if there is a sequence v· k of

some
•

~ > O. £k~O. Tk~O and v· k ~ •v • These elements give

some information about the infinite behavior of the function

around x.

Theorem 4: Let g: X ~ ~ be a directionallV Lipschitzian lower

semicontinuous function and G: E ~ X be tightlV Lipschitzian

where X has an equivalent norm that is frechet differentiable

off 0 and p(ii) :'" g(G(ii» is finite. Assume that there are no
• ....00

nontrivial elements v e a p(u) such that

•o e a<v .G>(ii)

Then for the sets

•M(ii) ... V a<y .G>(ii). ....

y eag(G(ii»

•... V a<y .G>(ii)
• ....00y ea g(G(ii»

and

Thus
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If one assumes that the union over all nonzero elements of

E of the H(h)'s in the definition of tightly Lischitzain is a

separable subset of X one need only assume that g is l.s.c.
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II. MULTICRITERIA OPTIMIZATION AND CONTROL THEORY





A NONDIFFERENTIABLE APPROACH TO MULTICRITERIA
OPTIMIZATION

Y. Evtushenko and M. Potapov
Computing Center, USSR Academy ofSciences, ul. Vavilova 40, Moscow, USSR

1. INTRODUCTION

Decision-making problems, the design of control systems, and the construction of

multipurpose products all require the solution of multicriteria problems. These prob

lems can be summarized in the following way. Let z ERn be an n-dimensional vector of

decisions (or construction parameters), and the constraint set X eRn to which the

vectors z belong be given. The value of each decision (or the performance of the pro

duct) is estimated on the basis of m different scalar-valued criteria (objective func

tions): rt (z), i E [l:m]. We shall denote these criteria by F(z) = [F1(z ), ... ,m (z)].

Decision makers would like to choose a feasible point z EX such that all the com

ponents of the vector F(z) simultaneously take on the smallest possible values. How

ever, this condition is usually unfulfillable: minimizing anyone of the components will

usually lead to an increase in the values of the others. Hence the term "solution of the

multicriteria optimization problem" requires clarification. We will write the problem

of multicriteria minimization of F(z) on X as follows:

min F(z) .
:rEX

(1)

SolVing this problem means finding points from the Pareto set. We will say that

the point z. belongs to the Pareto set if z .EX, and there is no point z in X such that

(1) F(z) sF'(z.) for all i E[l:m] and

(2) Fi (z) <Fi (z.) for at least one j E [l:m].

The points which satisfy these conditions are also called Pareto optimal points,

efficient points, or nondominated solutions. The collection of all points with the above

properties is denoted X. and called the Pareto set.
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Inlroduce lhe images of lhe sels X and X. under mapping F(z):

Y =F(X). Y. =F(X.) .

In whal follows. we will consider Y lo be a nonemply sel in R frl
• and X lo be a nonemply

compacl sel in R n .

The sel Y is lhe Parelo sel for lhe following elemenlary mullicrileria problem:

min Y .
yEY

(2)

We will say lhal X. is lhe Parelo sel in decision (or parameler) space and ils image

Y. is lhe Parelo sel in crileria (or objective) space.

If lhe inequalilies Yl =F(zl) s Yz =F(zz). Y1 # Yz. hold for lwo poinls zl.zZe:X.

lhen we will say lhallhe poinl Yl is more efficienllhan lhe poinl Yz. or lhal Yz is less

efficienllhan Y 1.

We will assume lhal each componenl F salisfies lhe Lipschilz condition wilh lhe

same conslanl L. I.e .. for any z 1 and z Z we have

which Leads lo lhe veclor inequalily

(3)

where e e:Rn is lhe unil veclor.

2. CONSTRUCTION OF THE NET

The slruclure of lhe Parelo sel for even lhe simplesl problems generally turns

oullo be very complex. It oflen happens lhallhis sel is nonconvex and nonconnecled.

so lhal il is difficuillo approximale. Below we will allempl lo conslrucl a finite sel At

which resembles lhe usual notion of an E-nel of the sel Y.. Take a set of poinls

At =[Y1 ... ·.Yt]. where Yt =F(zt), Zt e:X. for all i e:[l:k]. We will assume lhal, in addi

lion lo At. lhe sel of poinls Zt from lhe feasible sel X is available or can easily be cal

culated.

Besides feasibility we impose lwo olher conditions on lhe sel of poinls At:
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(1) for any y.E Y. there exists a vector Yt EAt such that

Yt S; y.+Ee ; (4)

(2) for any YJ EAt there is no vector Yt EAt such that YJ S; Yt' i 'l!j.

We will call the set of points At satisfying the above conditions an E-net of the

Pareto set, and the conditions themselves the first and second net conditions, respec

tively.

For Yt E Y define the set

Mt =lyERm:Yt:s;y+Eel=lyERm : min (E+yJ-yb~OI.
J E[l:m]

This set contains the collection of all points which are less efficient than the point

Yt -Ee.

Define Zt = uf=lMt. This set can also be written in the form

Zt = ly ERm: max min [E +yJ -y/l ~ 01.
t E[l:t] J E[l:m]

The set At varies during the course of the calculations. If a point ii E Y is found

such that ii :S; Yt' where Yt EAt, then Yt is taken out of At and replaced by ii. Several

points can be removed simultaneously. Thanks to this, the second net condition of the

Pareto set holds automatically. If the previous condition is not fulfilled and ii does not

belong to Zt' then it is included in At. which is now written At +1'

If as a result of the construction of the set At it Is found that

(5)

then At forms an E-net of the Pareto set. Indeed, for each y.E Y. c Y there is at least

one point Yt EAt such that (4) holds. The problem of constructing an E-net of the

Pareto set has thus been reduced to constructing a set of points At satisfying (5).

The solution of the initial mUlticriteria optimization problem is therefore reduced

to construction of the set At which satisfies condition (5). To do this we utilize the

nonuniform space-covering technique proposed in Evtushenko (1971, 1974) for finding

the global extremum of multivariable functions. This technique involves covering the

set X with cubes inscribed in spheres of various radii. We present only the main for

mulae which differ from those described In Evtushenko (1971).
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Let Yt EAt. Then the set Mt is of no interest from the viewpoint of E-net con

struction and can be omitted from consideration. To fulfill condition (5) we have to

introduce the Lipschitz condition, or more precisely, the inequality (3).

Assume that the value if = F(ii) is calculated at ii EX, and suppose it turns out

that if EMt . From (3) it follows that

F(ii) -eLll% -ii11 ~ F(%)

If % is such that

F(Zt) -Ee ~F(x) -eLllz -xii ,

then Y = F(%)EMt . Hence all points in X which satisfy

(6)

belong to the set Mt . The set defined by (6) contains a ball

B t = 1% ERn: L liz -%11 ~ E + min if.s (%) _Fs (Zt )11
S E[l:m]

in the decision space. If % =Zt then the radius of the ball is at a minimum and is equal

to E / L. In the case when At contains several points which are more efficient than if,

introduce the index set

This set contains the indices of vectors in At which are more efficient than if. If [(if)

is nonempty then after determining if =F(%) one can eliminate all the points Z for

which (6) holds for at least one i EI(Y). It is therefore optimal to choose an i such

that the corresponding ball Bt has the largest radius. This radius is computed using

(7)

Construction of the E-net of the Pareto set has thus been reduced to covering the

set X with balls of the form (6). To implement this process one can use the approach

described in Evtushenko (1971, 1974) and its extension. If X is bounded, then it can be

covered in a finite number of steps, and the E-net will also be finite. Here, as in the

search for global extrema, the computations can be speeded up by using local search

methods. Such methods for determining the points in the Pareto set are now being suc

cessfully developed.
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After the set Ai: has been found, it is given to the engineer, who chooses his pre

ferred set of design parameters. If the number of points in Ai: turns outle be large, it

can be reduced by discarding points which are close together. The distance between

points can be defined in both criteria space and parameter space. The user gives a

number N determining the smallest distance between points, and a special program

"sifts" through the set Ai:' leaving only the points which are separated by a distance

greater than N.

We shall no w illustrate the application of the approach suggested above with a

very simple example. Consider the case where Fl(:z;) =:z;. F2(:z;) =sin 7T:Z;. 0 :S:z; :S 2,

E = 0.001. It is easy le show that in this case the Pareto set in decision space consists

of the point :z; = 0 and the line segment (1,1.5]. In criteria space the Pareto set con

sists of the point Fl = F2 = 0 and the line F2 = sin Fl, where 1 <Fl :S 1.5.

The sequence of points at which the vector function F was computed is shown in

Figure 1. The suggested method allows us to more than halve the number of points at

which vector function F must be calculated in order to guarantee the accuracy

demanded in the problem, compared with the uniform covering technique. It can be

seen from the figure that the covering steps are largest far from the Pareto set; when

the Pareto set is being covered the step size is at a minimum and coincides with that

required for uniform covering.

2

FIGURE 1 The sequence of points at which F was computed.

3. CONCLUSION

A numerical method for finding an E-approximation of a Pareto set is suggested.

This method requires the feasible set to be covered with a nonuniform mesh only once.

All other existing approaches involve global searches for multiple extrema. The
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approximate solution of the multicriteria problem is equivalent (in terms of labor) to

the problem of finding the global minimum. There is, of course, some complication con

nected with the fact that here instead of calculating the value of f (:z:) it is necessary

to calculate m values of F(:z:), and it is also necessary to remember the set of points

At. However, the basic computations connected with the covering of X are roughly the

same.
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APPLICATION OF A SUBDIFFERENTIAL OF A CONVEX COMPOSITE
FUNCTIONAL TO OPTIMAL CONTROL IN VARIATIONAL

INEQUALITIES
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INTRODUCTION

The chain rule for the subdifferential of a real convex

functional composite with an affine operator and a real convex

functional is well known (Ekeland-Temam, 1974). Various exten

sions of this classical case involving operators taking values

in an ordered vector space have been considered by many people,

for example Lescarret (1968), Levin (1970), Ioffe-Levin (1972),

Valadier (1972), Zowe (1974), Penot (1976), Kutateladze (1977),

Hiriart-Urruty (1980), Thera (1981) in a convex framework and

Thibault (1980) in a non~convex situation.

§ 1 and § 2 are devoted to the chain rule for a real

convex functional composite with a convex operator and a real

non-decreasing convex functional. In § 3 , 4 , 5 we consider

an optimal convex control problem with a non-differentiable

cost function, in which the state of the system is defined as

the (unique) solution of an elliptic variational inequality.

The mapping between the control and the state is also non

differentiable but it is a convex operator. Applying the results

of § 2 we can derive, by means of an adjoint state, necessary

and sufficient optimality conditions improving the ones obtained

by Mignot (1976). In § 6 these conditions are made explicit

with an example.

1. DEFINITIONS AND NOTATION

All the vector spaces introduced in the sequel are real.

X and Y denote topological vector spaces with respective to-

pological duals X' and Y' Y is a convex cone in Y
+



to Y· . An operator f of

if f(;\x 1 2 < ;\f(x1 )+ (1-;\)x )

X and each real ;\ E [ 0,1]

dom f = {x E X I f(x) E Y}
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which makes Y a partially ordered topological vector space

(Perressini, 1967). We know that the ordering is defined as fol

lows

Y~ denotes the dual positive cone i.e. the cone of positive

linear functionals on Y Y· stands for the set Y u {+oo}

where + 00 is a greatest element adjoined to Y. We extend in

a natural way the addition and the scalar multiplication of Y

X into Y· is said to be convex
2 1 2+ (l-;\)f(x) for each x,x in

Its effective domain is the set

As usual L(X,Y) will denote the

set of continuous linear operators of X into Y. By the sub-

differential af(x) of f at x E dom f we mean the set of

subgradients of f at x, i.e. the set

af(x) = {T E L(X,Y) f(x+h) ~ f(x) + Th, ~ hEX}

Given a functional ~ of Y into m· mu {+ oo} ~ is ex-

tended to Y· by setting ~(+oo) + <X> The effective domain

of the composite real functional ~ 0 f of X into lR· is

then

dom ~ 0 f -1dom f n f (dom~)

2. THE CHAIN RULE

For an operator f of X into Y· and a real functional

~ of Y into m·, we are going to give sufficient conditions

for calculating the subdifferential of the composite ~ 0 f by

the chain rule

a (~ 0 f) (x) a~ (f (x)) 0 at (x)

= { y , 0 T I y' E a~ ( f (x)) , TEa f (x) }

The following results hold
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Proof.
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16 .p ,u., YlO Yl-decJteaJ.;-tYlg theYl, a.p (y) c y ~ , "i Y E Y

Assume a.p (y) 'f r/J • Then y E dom.p and "i y I E a.p (y)

and "i z E Y+, we have

.p (y) ~ .p (y- z ) ~ .p (y) - < y' , z >

i.e. <y',z> ~ 0

Lemma. 2.

"iY' E Y~, "ix E domf , a(y' 0 f) (x) :J y' 0 df(x)

Proof. Let T E af(x) and hEX. If x+h E dom f ,

f(x+h) - f(x) ~ Th, and

<y',f(x+h) - f(x» ~ <y',Th>

If x+h f::- dom f <y' ,f(x+h»

so y' 0 TEa (y I 0 f) (x) .

<y',+ 00> +00 (see § 1),

Proposi tion 1. If.p is non-decreasing, then "i x E dom .p 0 f,

a (.p 0 f) (x) :J a.p (f (x)) 0 df (x)

Proof. By lemma 1 and lemma 2,

u a(y' 0 f) (x) :J a.p(f(x)) 0 af(x)
y'Ea.p(f(x))

Now, let y' E a.p(f(x)) , x' E a (y' 0 f) (x) and hEX. If

x+h E dom f ,

.p(f(x+h)) ~ .p(f(x)) + <y' ,f(x+h) - f(x»

~ .p (f (x)) + < x' , h >

If x+h f/ dom f, .p (f (x+h)) = .p (+ 00) = + 00 and the above ine

quali ty still holds, i. e. x' E a (.p 0 f) (x) •

For the converse inclusion, we have the following interme

diate result (see also Kutateladze, 1977) •

Proposition 2. If .p is non-decreasing and convex, if f
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is a convex operator, if there exists y E R(f) n dom ~ where

~ is continuous, then

'rj X E dom ~ 0 f , a (~ 0 f) (x) C u a (y' 0 f) (x)
y' E a~ ( f (x) )

Proof. Le t x' E a (~ 0 f) (x) The set

s {(f(x+h)+z,~(f(x))+<x',h»1 x+h E dom f, z E Y+}

is a convex subset of Y x ill. As ~ is non-decreasing, S

and epi ~ (the epigraph of ~) have only boundary points in

common. Moreover epi ~ has a non-empty interior. So, by the

Hahn-Banach theorem, there exists y' E Y' and 0: E ill, such

that (y' ,0:) ~ 0 and

'rj Y E dom ~, 'rj A E lR, A ;;;. ~ (y) , 'rj h E dom f-x ,

'\, '\,

<y',y>+ O:A;;;' <y',f(x+h» +o:[~(f(x)+<x~h>l

Taking y = f(x) and h = 0, we get 0:;;;' O. In fact

0: > 0, otherwise

II Y E dom ~ <Y',y> ;;;. <y',y>

'\,

and y' = 0
'\,

y' = - y'/o:

because dom ~ - y is absorbing. Setting

we get

(i) IfyEdom~, taking A=~(Y) and h=O, y'Ea~(f(x))

(ii) taking y = f(x) and A = ~(f(x)) , x' E a(y' 0 f) (x)

Remark 1. In fact, by the proof of proposition 1, the

above proven inclusion is an equality.

Now, the question is : when the converse inclusion of

lemma 2 does hold, that is to say (Valadier, 1972) when is

f regularly subdifferentiable at x ? The answer is positive

in the following cases.

CMe 7. f -u., c.on-t{J1uow.. a66-<-ne wLth uneaJt paJtt A •

y' 0 f is continuous affine with linear part y' 0 A

Then f is convex and af(x) = {A} Moreover If y' E Y'+'
and
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Cl(y' 0 f) (x) =' {y' 0 A} y' 0 Clf(x) In fact, f is convex

for any ordering on Y, and every ~ is non decreasing for the

particular ordering defined by Y+ {a} Then we recover the

case mentioned at the beginning of the introduction.

C£t6e. 2. f -iA Ga..:te.aux-di..66eJte.ntiable. a..:t x wLth G-deM.va.:ti..ve. f' (x) ,

that is to say dom f - x is absorbing and f' (x) E L(X,Y)

such that

V hEX , f' (x) h f (x+Ah) - f (x)
A

is G-differentiable at xThen if y' E Y~, y' 0 f

G-derivative (y' 0 f) , (x)

is c£of.>e.d, Clf(x) =' {f'(x)}.

y' 0 f' (x)

Then,

Moreover, if

Cl (y' 0 f) (x) {(y' 0 f)' (x)} =' {y' 0 f' (x)} =' y' 0 Clf(x)

equipped with

f is regular-

a(Y,Y')

X, and

C£t6e. 3. f -iA c.ontinu.ow.. a..:t x , Y -iA a f.>e.que.ntia.f.f.y we.ak1.y c.ompie.te.

Haw.. dolt6 loc.a.f.f.y c.onve.x f.> pac.e., wfUc.h -iA an oltdeJt c.omple.te. ve.c.toIt la.:t:ti-c.e.,

noftmaf., wU:h oltdeJt in.te.ltvaif.> Ite.f.a.:ti..ve.f.y we.ak1.y c.ompau, and Y+ -iA c£Of.> e.d.

Then (Valadier, 1972) Clf(x) is a non-empty compact and convex

subset of L (X,Y) the space of linear operators of X intos (J

Y continuous for the weak topology

the topology of simple convergence on

ly subdifferentiable at x.

Examples of such a space Yare:

(i) the euclidean space If' ordered by the order product

of m or more generally by a cone generated by a set of m

linearly independant vectors.

(ii) the space LP (n ,E, ~) 1" P < + <Xl over a measured

space n ordered by the cone of ~ -almost everywhere non

negative functions.

C£t6e. 4. X -iA a 1te.6f.e.uve. Banac.h f.>pac.e., f -iA c.ontinu.ow.. a..:t x, Y

-iA a f.> e.m[-Ite.6f.e.uve. Haw..dolt6 loc.a.f.f.y c.onve.x f.> pac.e., Y+ -iA c£Of.> e.d and h£t6

a we.ak1.y c.ompau b£t6e. lying in. a c£of.>e.d hypeJtplane. not c.o~ng :the. ofti

gin.
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Then (Zowe, 1974), the same conclusion as in case 3 holds.

One example of such a Y is the space of Radon measures

over a compact space, ordered by the cone of non~negative mea

sures.

As a direct application of the chain rule we can recover

the well-known formula of the subdifferential of the maximum

of a finite family of convex functions. Namely, let f i ,

i = 1, ... ,m, be m proper convex functions of the topological

vector space X into m·. Define the operator f of X into

Y' = mm u {+ oo} by

m
if x E n dom f.

i=l 1

otherwise

Then, for the order product defined by Y+

Now let I{) of mm into m defined by

I{)(y) = max Yi
i

mm+, f is convex.

Then I{) is a continuous non-decreasing convex function. We have

and

max
i

f. (x) = (I{) 0 f) (x)
1

af(x)
m
IT

i=l
at. (x)

1

Then the well-known result :

16, 60Jt eac.h i, f. .u., c.aY!.tinua(L6 0Jt G-cU66eJtentiable at
1

then

x En dam f. ,
i 1

i
a (max f.) (x) = co{af. (x) If. (x)

1 1 1
max

i
f.(x)} ,

1

is an easy consequence of the above chain rule and the

Lemma 3. 'V Y E ~, al{)(Y) = co {ei II{)(Y) = Yi}

the i-th element of the canonical base of

where
mm.

i
e denotes

Proof. It is a particular case of lemma 4 , § 6 , hereafter.
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3. VARIATIONAL INEQUALITIES AND ORDERING

Let V be a Hilbert space equipped with a continuous and

coercive bilinear form a, and K a closed convex subset of

V. Then (Lions-Stampacchia, 1967), for each ~ E V'

gical dual of V, there exists a unique y(~) E K

of the variational inequality :

topolo

solution

a(y,S-y) ;;;. <~,S-y> V'SEK, yEK (1)

or, with the notations of convex analysis,

(2 )

where A E L(V,V') is the linear operator associated to the

bilinear form a, and WK denotes the indicatrice function

of K. Moreover, the mapping ~ 0->- Y (~) of V I (equipped with

the dual norm) into V is Lipschitz continuous.

Now, introducing an ordering on V, we get the following

abstract formulation of a well-known result of the classical

theory of potential (Moreau, 1968).

PIWp0-6ilion 3. 16 V .u., a Ve.C..tOlL la.t:tic.e., .the. b-Uine.aJt 6o!Lm a veJL.i.-
+ -

6ying a (y , y ) <;; 0 V' Y E V; i6 K .u., heJte.di:taJr.y: y + V+ C K ,

'r/ Y E K, a.nd in6--6.table. : .<.n6 (y, z) E K , 1/ y, Z E K, .the.n y ( ~) .u.,.the.

le.a}.,.t e.le.me.n.t 06 .the. -6 e..t

K(~) = {y E Kla(y,s);;;. <~,s> , V'S E V+}

Proof. First, y (~) E K (~) It is a trivial consequence of

(1) and that K is hereditary. Then, let y E K (~) and

2 = Y (~)
+

0 Because K is inf--y . We must prove z =
stable, inf(y(~) ,y) But inf(y(~) ,y) = y (~)

+E K - z

Putting in (1) as a S , we get

+ +- a(y(~),z);;;. -<~,z >

+ +Moreover a (y, 2 ) ;;;. < ~, z >
+ +Then a(z,z ) <;; 0, and because z = z - 2

+ + - +a(z ,2 ) <;; a(z ,z ) <;; 0 .
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Finally the coercivity of a implies +z o •

Remark 2. This minimal property has been used by J.F. Durand

(1972) in a finite dimensional context to prove the convergence

of the Gauss-Seidel process for the inequality (2) where A

is an M-matrix, with an argument of monotonicity.

CoJtoUaJty UYldeA the MJ.lumptioYlJ.l 06 pMpOJ.lilioYl 3,

£~y(£) -u., a YloYl-deCJr.eMiYlg C.OYlvex opeJtatoJt 06 v'in.:to

oJtdeAed by the dual. pOJ.lilive c.OYle V ~ •

the mappiYlg

v, V I bUYlg

Proof.

We have

1 2 1 1 2 2Let £ ,£ E V I , ;\ E [0,1], Y = Y(£ ) ,y = y (£ )

;\yl + O_;\)y2 E K(U 1+(I_;\)£2) • Therefore

1 2 < 1 2y(U +(1-;\)£ ) = Ay + (1-;\)y

If £1 ~ £2, then K (£ 1) C K ( £2)

4. OPTIMAL CONTROL PROBLEM

Let us introduce the Hilbert space of C.OYltnotJ.l U and the

set of adm-<..6J.libte c.oYltnoa Uad which is a non-empty closed

convex subset of U. We denote by b a continuous convex

operator of U into V' ordered by the dual cone V~. For

v E U, the J.l:ta:te is defined as the solution y (b (v) ) of the

variational inequality (1) for £ b(v) By corollary 1,

the mapping between the c.oYltnot and the J.l:ta:te is a continuous

convex operator of U into V

Then, let us consider the ordered Hausdorf locally convex

space of obJ.leAvatioYlJ.l Z. We assume that the mapping between

the state and the obJ.leAvatioYl z (v) is a continuous non

decreasing convex operator c of V into Z:

z (v) = c (y (b (v) )

The cost function is defined by

1
J (v) = J 1 (v) +"2 < Nv, v>

where N E L(U,U') is symmetric and coercive, and J
1

(v) =<!J(z(v)),
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with a lower-semi-continuous non-decreasing convex function ~

of Z into lR. Finally we consider the problem : find

u E Uad (optimal control) such that

J(u) inf J(v)
v E Uad

J is a lower-semi-continuous, strictly convex and coercive

function of U into lR. So, by a classical argument (Ekeland

Temam, 1974) the optimal control u exists and is unique.

5. OPTIMALITY CONDITIONS

In fact J 1 is continuous because it is defined on the

Banach space U, and everywhere finite. So the optimal

control u is characterized by Ju' E aJ 1 (u)

< U I + Nu , v - u>U' U ;;;. 0, I;J V E Uad (3 )

The problem is now to express u' by means of an adjoint state

p. We have

We can apply the proposition 2 three times one after

another. Then u is characterized by the existence of
z I E a~(z(u)) v' E a (z' o c)(y(b(u))), p E a(v' 0 y) (b (u))

and u ' E a (p o b) (u) such that ( 3) holds. We can get more

precise information if one of the four cases of § 2 holds for

the operators b and (or) c. For instance, if c is affi

ne with linear part C and, as a space Y, V' satisfies the

conditions of case 3 or case 4, the characterization of

the optimal control can be rewritten as :

jz'E a~(z(u)), jpEa(z'oCoy)(b(u)) 'lBEab(u) , s.t.

*< B P + Nu , v - u > U'U ;;;. 0, I;J V E Uad (4 )

Let us assume now that (V,a) is a Dirichlet space on a

locally compact space _ supplied with a Radon measure ~

ordered by the cone of ~-a.e. non-negative functions, and
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K {v E Vlv ~ ~ quasi-everywhere on ~}

where ~: ~ + m is a quasi-upper~semi~continuous given func~

tion. Proposition 3 holds and (Mignot, 1976) the operator y

has, at each t E V' a directional derivative y' (tih) in

each direction h E V' , which is the unique solution of the

variational inequality

a (y' , a - y') ~ < h, a - y' > , \/ a ESt ' Y I ESt

where St is the closed convex cone of V defined by :

(6)

S = {a E V I a ~ 0 where y(t) = ~ , and a(y(t) ,a) = <t,a>}
t

Then, for v' E V~' the real convex functional v' 0 y

has a directional derivative at t given by

(v' 0 y)'(tih) = <v',y'(tih) >v'V ' \/ hE V'

and the subdifferential of v' 0 y at t is the set of p E V

such that

<v' ,y' (tih) > ~ <h,p>v,v \/ h E V' (7)

Now, using the techniques of Mignot (1976) we can derive

the

PJtopo!.lilion 4. p E V M,ti.J.>MeA (7) -£6 a.nd only 1.6

a(a,p)';;; <v',a> , \/a E St' pESt

Proof. Let S be a closed convex cone of the Hilbert space

V and a E V The a-projection PS(a) of a onto S is

defined as the unique solution of the variational inequality

a(a -q, w-q) .;;; 0 , \/ w E S q E S

P* (a) d h * . t . fS enotes tea -proJec lon 0

*is the adjoint bilinear form of a.

is defined by

a onto S, where c!
The a-polar cone of S
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As a consequence of the bipolar theorem, we have

and I (8 )

Because A the linear operator associated to the bili-

near form a, is an isomorphism of V onto V'

equivalent to

(7) is

< v' , Y I (R,; AS) > ~ a (S , p) 1/ S E V (9 )

Taking S = SR,

is equivalent to

we get y' (R,;A8) = PSS. So, by (8) (9 )

or

*<Vi ,PSS > ~ a(PSS'p) + a(PSoS,p) , 'V S E V
a

<v', S >

{

a(s,p) .;;;

a(s,p) .;;; 0

6. EXAMPLE

, 'V S E S

'V S E S ° ~ P E (S 0) 0. = S, a a a

Let ~ = ]a,b[ be an open bounded real interval. We choose

as V, the sobolev space Hl(O) We know that V is inclu-
o

ded, with continuous injection, in C(n) the Banach space of

continuous functions on o. We take

a (u , v) = J a 1u I v' dx + J a uv dx , 1/ u, V E V
o ~ 0

where ao,a
l

E Loo(~) ao(x) ~ 0 , a
l

(x) ~ ex > 0 , a.e. in ~.

Then (V,a) is a Dirichlet space on ~ supplied with the Le

besgue measure. Let ~ E V. We take

K = {y E V I y ~ ~ on O}

Introducing the differential operator A

we can interpret the variational inequality (l) for
2R, E L (0) , as follows: Ay - R, is a positive measure on
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n, concentrated on the closed subset of n

n° = {x E n I y(x) = ~(x)}

We take now U = U' = L2 (n) and, for u E U, btu) = u+

We can easily prove that b is a continuous convex operator of

L2
(n) into L2

(n) (then into V') For each non-negative

p E U, we have

(p 0 b) (u) = J
n

and, as a consequence of the Lebesgue theorem of monotone con

vergence, the directional derivative of p 0 b at u is given

by

11 v E U , +(p 0 b) '(u;v) = J pv dx +
u=O

J pv dx
u>O

Moreover, the set of Sp where S is a measurable function

on n verifying

S (x) = 0 if u(x) < 0

o 0;;;; S (x) 0;;;; 1 if u (x) o (10 )

S (x) = 1 if u(x) > 0

is a closed convex subset of U included in a(p 0 b) (u) and,

for each v E U, the measurable function Sv defined by

Sv (x)

S (x)
v

is such that

o if u(x) < 0 or (u(x)

1 if u(x) > 0 or (u(x)

o and v(x) ~ 0)

o and v(x) > 0)

J S p v dx = (p 0 b) , (u; v)
n v

Therefore,

a (p 0 b) (u)

Then, we take Z

functions on n.
+z(v) = y(v ) - zd

continuous affine

{Sp I S measurable and (10)}.

C(n) ordered by the cone of non negative

Let zd given in Z We take

The operator of observation c is then

with linear part equal to the injection of
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HI un into
a Then, take

J 1 (v) = Iz(v) I C(rl)

< + <If zd = y(v ) , V V E Uad (for instance zd = s) , then

J
1

(v) ~(z(v)), with ~(z) = max z(x) which is a conti-
x E TI

nuous non-decreasing convex function on Z

Lemma 4 FOf1. eae.h z E Z , 31{) (z) JA the J.;ubMt 06 RadoYl p!1.obabiliilu

aYl n, e.oYle.en..tJw.:ted aYl

n(z) = {x E rl I I{)(Z) z (x)} •

lemma 1) that, if

Proof. Because I{) is non-decreasing we already know (see

z' E 31{)(Z) z' is a positive Radon mea-

sure on n. Then we have

.,0(1;) ;;;'I{)(z) + <Z',I;-Z> V I; E Z ( 11)

Taking I; = Z ± 1, we get

is a Radon probability on n

< Z I , ~ > 1 80 Z' E M~ (rl) i. e.

Then (11) is equivalent to

< Z I ,I{) (z) ] - Z> = 0 or, as I{) (z) 1 - Z ;;;. 0 ,

ZI is concentrated on n(z)

Finally, the cost function being

N > 0 ,

n , concentrated on the subset n (z(u)) ,

whereP E 8 +
u

+a(y(u ) ,6)

( 10) ,

6 E 8 +
u

+y (u ) = sand

n verifying

we can make explicit the general previous results in this part

icular situation.

There exists a unique optimal control u E U
ad

characte

rized by

j z' Radon probability on

:1 p E H;(n) s.t.

a(6,p)";; J6dz' , 'V
n

8 + = {6 E HI (n) I 6 ;;;. 0 where
u a

]B measurable function on

such that

J (BP + Nu) (v-u)dx ;;;. 0 ,
n

II v E Uad .



u = u , we get u = - ~ Because p is non-
+

ad N
u = 0 and the optimal .6:ta-te is the least function

majorizing S and such that Ay is a positive

n .
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Remark 3.

1. Taking

negative,

of HI un
o

measure on

formally, the adjoint inequality

as follows. Consider the parti

subsets

u+ > O}

2. We can interpret, unless

defining the adjoint state p

tion of n between the three

n° {x E +
1 n y(u ) S

n° {x E +n y(u ) = S2

+ {x E
+n n y (u ) > 0

+Ay (u )

+Ay (u ) +u O}

Then

5 + = { e E Hl(n)le = 0 on n° and ;;;. 0 on nO}
u 0 1 2

and p is characterized by

p 0 on n°1

p ;;;. 0 Ap ~ Zl on n°2

Ap z I
+= on n
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ON SOME NONDIFFERENTIABLE PROBLEMS IN OPTIMAL CONTROL

J.V. Outrata and Z. Schindler
Institute of Information Theory and Automation, Czechoslovakian Academy ofSciences,

Pod vodarensku ve114, 18208 Prague 8, Czechoslovakia

INTRODUCTION

Modern developments in nondifferentiable analysis have now

made it possible to handle nondifferentiable optimal control

problems. Maximum principles of considerable generality have

been derived by Clarke (1976), and a number of effective numer

ical methods for minimizing nonsmooth objectives are available.

Nevertheless, nondifferentiable optimal control problems are

still difficult to solve. The reason lies in their structure,

which in the most general case may involve compositions of non

differentiable functionals and operators.

In this paper we study special types of such problems which

can be solved with the help of a suitable bundle method. We have

used two numerical codes by Lemarechal: CONWOL for unconstrained

minimization of convex objectives and BOREPS for minimization of

weakly semismooth objectives with constraints in the form of upper

and lower bounds, cf. Lemarechal et al. (1980). We will use the

following general model:

J (x,u) + inf

subj. to (7))

A (x,u) e,

u Ewe U,

where x E X and u E U are the state and control variables, respec

tively. The spaces X and U are assumed to be Banach, J[X xU .... Rl ,

w is a closed subset of U, A[X xU .... Xl. Moreover, we assume that
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the equality A(x,u) = e defines a unique implicit function x(u)

which is locally Lipschitz. Finally, we denote ~(u) = J(x(u),u)

and suppose that ~[U + R] is locally Lipschitz over w.

Section 1 explains how to solve some special types of (p)

with the help of bundle methods, or, more precisely, how to com

pute elements of o¢ (the Clarke's generalized gradient of ¢) for

any admissible control u Ew. Illustrations based on concrete

practical problems are also provided. We have no state-space

constraints in (P) since we assume that they have been included

in the cost by a suitable penalty. In Section 2 a Sobolev type

of Zangwill-Pietrzykowski penalty is studied and applied to a

certain type of inequality state-space constraint.
iWe employ the standard notation in NDO; additionally, x is

the i-th coordinate of a vector x ERn, B is the unit ball centered

at the origin and (x)D denotes the projection of x onto D.

1. ESSENTIALLY NON SMOOTH PROBLEMS

We confine ourselves here to those problems in which the

standard adjoint equation approach may be used to compute the

desired elements of 3¢. Unfortunately, the structure of the

problem only rarely enables us to obtain some inner approximation

of 3¢ in this way. Regularity is crucial in considerations of

this type.

Nondifferentiable objectives. In this part we will assume

that A is continuously Frechet differentiable over X x ~ with

A~(X,u) being continuous over X x ~ and utilize the chain rule II

of Clarke (1983). ~ is an open set containing w.

Proposition 1.1. Let J be locally Lipschitz in u for all x £. X

and Frechet differentiable in x over X for all u ~ ~ with

~xJ(x,u) being continuous over X x ~. Let A* be a solution of

the equation
-)(

A'(x,u) A* + ~ J(x,u) = e (1.1)x x

at a fixed process (x,u), u e w. Then

*a~(uba J(x,u) + A'(x,u) A* (1.2)u u

provided J is regular at (x,u).
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~~oot. Due to Prop. 1 of Luenberger (1969) (Sect. 9.6) for u 6 w,

h e. U and J.l e R
+

CP(u+J.lh) - cp(u) J(x ,u+J.lh) - J(x,u) = J(x,u+J.lh) - J(x,u) +
J.l

+ <u*, A(x,u+J.lh) - A(x,u» + 0(J.l),

where trajectories x,x correspond to controls u,u+J.lh, respective-
J.l

ly,~* is a solution of (1.1) at the process (x,u) and

lim 0(J.l)/J.l = O. Hence, on denoting x the trajectory correspond-
J.l+0 J.l

+ -ing to u + J.lh

-
U+U

~ lim (J(x , u+J.lh)-J(x,u)) 1J.l=J'(x,u;6,h)+<A*,A'(x,u)h>=
J.l+0 J.l u

+

lim (J(x,u+J.lh) - J(x,u))IJ.l + <A~(X,U)*A*, h>
J.l+Q
U+U

~y the regularity of J at (x,u). CJ

(1. 3)

As an example we may take the problem of operating an elec-

tric train between two stations with minimum energy losses:

T
/ x 2(t)(u(t))+dt + inf
a

subj.to
x(t) f (x ( t ) ,u ( t)) a. e. in [0, T] ,

x(O) a, x(T) = b,

u(t) e n(x 2 (t)),

where f[R 2
x R + R2 ] is continuously differentiable, a, bare

given vectors from R;, n: R ~ R is a given nonempty compact

measurable multifunction and u~ x is locally Lipschitz.

We set X = C [0,T,R2 ] and A(x,u) = x(t)-a- /tf(x(T),u(T))dT.
o 0

If u is admissible and the corresponding trajectory x satisfies

x2 (t) > a for t € [O,T], then x 2 (tXu(t))+ is regular at (x(t),

u(t)) for each t, and, consequently

x 2 (t)i,;(t) _ af(X(;~,U(t))T p(t) Eo acp(u),

where i,;(t)=1 if u(t»O, i,;(t)=O if u(t)<O, i,;(t) Eo [0,1] for u(t)=O

and p is the solution of the adjoint equation
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af(X(t),U(t))T p(t) + [0 ]
ax (u(t))+

a.e.

backwards from a suitable terminal condition concerning the

treatment of the terminal equality constraint x(T) eb.

Proposition 1.2. Let J=J 1 (x)+J 2 (u), where J 1 [X • R], J21U • R]

are locally Lipschitz, and assume that ~ 6 aJ 1 (x), ~ ~ aJ 2 (u)

at a fixed process (x,u). Let the implicit function x(u) be con

tinuously Frechet differentiable on a neighbourhood of u (which

holds e.g. if A'(x,u) is a linear homeomorphism of X onto X) and
x

A* be a solution of the adjoint equation

Then

, - - *A (x u) A* + ~ = e
x '

*A~(X,u) A* + ~ 6 a~(u)

(1. 4)

(1. 5)

provided any of the following conditions is satisfied:

(i) J 1 ,J 2 are regular at x,u, respectively;

(ii) J
1

is continuously Frechet differentiable with ~ being its

gradient at X.
-

(iii) J 2 is continuously Frechet differentiable with n being its

gradient at U, and either -J
1

is regular at x or x(u) maps

every neighbourhood of u to a set which is dense in a neigh

bourhood of x (e.g. if x'(u) is onto).

Proof. Under condition (ii) the statement is a direct consequence

of the above mentioned result of Luenberger. Conditions (1) or

(iii) imply due to the chain rule II that
*(x'(u)) ~ + ~ £ a~(u)

taking into account the rule for generalized gradients of a finite

sum of functions. To express the operator (x'(u))* by means of

the derivatives of A at (x,u), observe that

A~(X,u) x'(u) + A~(x,u) = e.

Hence, for any h € U

<~,x'(u)h> = <A*,-A'(x,u) x'(u)h>
x

which completes the proof. o
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Examples of this kind may be found e.g. in "production plan

ning" problems cf. McMaster (1970). The following "minimum over

shoot" problem also possesses an objective of the above form:

max «c(t),x(t» - s)+ • inf
tt.[O,T]

sUbj.to

x(t) f(x(t),u(t)) a.e. in [O,T],

x(O) a, <c(T), x(T» s,

u € we Loo[O,T,RmJ,

where f[Rnx Rm• Rn ] is continuously differentiable s£ R,

c € Co[O,T,RnJ, a € Rn , and u.- x is locally Lipschi tz.

We set again X = Co[O,C,Rn ] and introduce A as in the pre

vious example. If u is admissible, x is the corresponding tra

jectory, and <c(t),x(t» > s for some t £ [O,T], we denote

o = {t G [0, T] I <c ( t) ,x ( t ) > = max <c ( T ) ,x ( T ) > } •
T£[O,T]

According to Prop. 1.2 and Clarke (1983)

_ af(x(t~~u(t))T p(t) £ a~(u)

provided p is the solution of the adjoint equation

p(t) = _ af(x(t),u(t))T p(t)
ax

(1. 6)

.backwards on the interval [O,TJ from a terminal condition con

cerning the treatment of the terminal state condition and with

the jump c(t 1 ) at a time t 1'E6. If <c(t),x(t» ~ son [O,T],

relation (1.6) is still true if p is the solution of the above

adjoint equation without any jump.

Unfortunately, we are not able to provide any assertion of

the type of Props. 1.1, 1.2 for a general objective J(x,u). How

ever, its special structure may sometimes help us to obtain such

statements - a problem of this sort has been investigated in

Outrata (1983). In other cases the objective may be replaced

by a regUlar one.

Nondifferentiable controlled systems. If U and X are Banach

there is, to our knOWledge, no available chain rule for computing

generalized gradients of composite functionals J(x(u),u).

Therefore, we have to confine ourselves to the finite-
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-dimensional case and apply the Jacobian chain rule, cf. Clarke

(1983). Nevertheless, the situation is still too complicated anc

we are forced to further restrict~ons. Namely, we will assume

that A = A1 (x)+A2 (U), where A1 [X + X] is continuously differenti

able over X=Rn and A
2

[U + X] is locally Lipschitz over w C U=Rm
.

Furthermore, we require that J = J 1 (x)+J 2 (u), where J 1 [X + R],

J
2

(U + R] are continuously differentiable over X, w, respective

ly.

Proposition 1.3. Let (x,u) be a fixed process, A~(x) be a Zinear

homeomorphism of X onto X and A* be the 8o"'lution of the adjoint

equation

Then

e • (1. 7)

a$(U) = VJ 2 (U) + (aA2 (u))T A *. (1.8)

Proof. Or. denoting v = A2 (U), v = A2 (U), Eq. A1 (X)+V = e defines

a unique implicit function x=~(v) which is continuously differen

tiable on a neighbourhood of v with ~'(v) = _(A~(x))-l. According

to the corollary of the Jacobian chain rule (Clarke, 1983)

ax(u) = -(A~(x))-laA2(u),

A direct application of the Jacobian chain rule gives now imme

diately

a$(u) =-((A~(x))-laA2(u))TVJ1(x)+ VJ 2 (u) =

= (aA
2

(u))T A* + VJ
2

(u). CJ

An easy application of the above assertion is provided by the

minimum-energy control of a linear plant with a dead band. After
mreplacing the original control space U = Lm[O,T] by R the prob-

lem may attain the following form

m-1 .
II E ( U 1 ) 2 + £ II y ( T ) _ b II 2
"2 i=O 2 Rn

subj.to

a.e.

a,

wiC R, i=0,1, ... ,m-1,

in [ill, (i+l) ll] ,i=O, 1 ,.. jn-1

where m>l is a given integer, the stepsize ll=T/m, r>O is a penal

ty parameter, a,b are given vectors from Rn , A is an (nxn] matrix
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o~

i=O.l, .. ,m-l, j=1.2 •..• n.

othervise, i=O.l •..•m-l.

Clearly.

a 1/1 • (v)
1

L (Bi·=" 0co(El, B)

B if Ivl

if Ivl

> £:
i

< £:
i

where S.
1

nTo apply the preceding assertion, we set X=R (the space of ter-

minal states y(T)). A1=I (unit [nxn] matrix) and observe that

(
0 1 m-l () m-l .

A2 u ,u ..... u ) = - r T, 0 a - r S. 1/1. (u1) ,
i=O 1 1

( i+l)lI
f r(T.t)dt and r is the transition matrix. i.e. the
ill

solution of the matrix differential equation r(t.t ) = A(t)r(t.t )o 0

on [O.T] with the initial condition r(t .t )=1. We denote
- -0 -1 -m-l - 0

0 0 1 m-l
u=(u .u •..• u ). the elements of a~(u) by v=(v ,v , ...• v )

and observe that the "modified" adjoint equation attains the form

,.,,*
A •

1

T (-S.r y(T)-b)
1

(1+1 )1I
f rT(T.t)dttdY(T)-b)). i=O.l, ...• m-l
ill

(~ *T I'V *T IV T ) (H l'* ST A* Wl' th A * from (1. 7) )A0 ' Ai'.... A * . ere .• "" .m-l 1 l.

Using the properties of transition matrices we may rewrite it

in the usual form

,.,,*
A.

1

( i+ 1 )1I
f p(t)dt.
ill

i=O.l •...• m-l,

where p is the solution of the standard adjoint equation

p(t) = -AT(t)p(t)

backwards from the terminal condition p(T)

by Prop. 1.3

r(y(T)-b). Thus,

i -i
(i+l)lI

v = lIu + <a1/li(U i )' f p(t)dt>. i=O,l •... ,m-l.
ill

To be able to derive results of the type of Prop. 1.3 for

more general cases. a deeper study of Lipschitz mappings is

necessary. It is also possible that other generalized differen-
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tiability concepts with richer calculi will prove themselves to

be more convenient with respect to different numerical methods,

cf. e.g. Demyanov, Nikulina and Shablinskaya (1984),

2. NONSMOOTHNESS INTRODUCED BY THE TREATMENT

Various dual approaches have been developed for the numer

ical solution of optimal control problems. In this way we remove

complicated state-space or mixed constraints by incorporating

them in the objective - however, these new objectives may be non

smooth. This is the case in Fenchel dualisation which proved

itself to be very effective in the convex case (linear systems,

convex objective and constraints). Such problems have been solved

very rapidly with the help of CONWOL especially in those cases

where the perturbation space was finite-dimensional (ordinary

linear differential equations, terminal state constraints).

Here we turn our attention to Zangwill-Pietrzykowski exact

penalties applied to inequality state-space constraints which

are in the general case usually considered in the form

-q (x) ED,

where q [X + Zl, the "constraint" space Z is assumed to be Banach

and D is a closed convex cone with the vertex at the origin. The

exact penalty mentioned above takes the form

Pr(x) = r dist (-q(x),D). ( 2 .1)

If Z is Hilbert, the penalty may be expressed in a more compact

way by

D*
Pr ( x) = r II (q ( x) ) II Z ' (2.2)

where D* is the positive dual cone to D. Sometimes there is a

certain freedom in the choice of Z (and hence also D) so that we

may use several different exact penalties of the type (2.1).

Let X = H
1

[O,T,Rn l and let the state-space constraint attain

the form

q(x(t)) < 0 for t E [O,Tl, ( 2 .3)

where q[Rn+Rl is Lipschitz. Then we may choose the distance and

the cone of nonnegative functions e.g. from spaces H1 , Co' L1 .

We already have sufficient numerical experience with the choice

of Co or L1 , cf. e.g. Outrata (1983). Therefore the rest of
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Section 2 is devoted to the Sobolev case. The projection onto

D* in HI has been studied in Outrata and Schindler (1981) and

the results enable us to compute it for piecewise affine func

tions of one variable very effectively. The objective ¢ of

Section 1 is now given by

q,(u) = J(x(u) ,u) + P (x(u)).
r

We will suppose that J is continuously Frechet differentiable

over X x ~, (x,u) is a fixed process (u ~ w),and the implicit

function x(u) is continuously Frechet differentiable on a neigh

bourhood of u.

-
Proposition 2.1. Let x be nonfeasibLe with respect to the state-

-space constraint (2.3) and A* be a soLution of the adjoint equa

tion

e. (2.4)

Then q, is Frechet

13 = V J(x,u)
u

differentiabLe at u and

, - - *+ A (x,u) A*
u

(2.5)

is its Frechet derivative. If x is feasibLe and A* is a soLution

of the adjoint equation (1.1). then 13 € aq, (u).

In the proof it suffices to combine a slightly modified

assertion of Prop. 1.2 with the following lemma:

Lemma. Let Z be HiLbert and z e z. Then the function g(z)

II (z)D*11 is Frechet differentiabLe if -z ¢ D with

D* D*
Vg(z) = (z) /11(z) II. (2.6)

If -:<, € D

ag(z) = B n D* n{zr-. ( 2.7)

o

Proof. Concerning Eq. (2.6), we refer to Zarantonello (1971).

Eq. (2.7) can be proved by analysing the equivalence

E; £ ag(e)( ><E;,h>,:, II(h)D*1I for all he: Z.

The investigated penalty characterizes the violation of the

state space constraints in a very precise way. To realize it,

note the right-hand side of the adjoint equation in the following

example:
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k-1 i
E Yi (u ) -. inf

i=O

subj.to

a, (2.8)

x~ < N i
1 - '

1,2 ... k,

2
o +P (x) = rr

where functions yo [Rm• R], fo [Rn ... Rm -. Rn ], i=O,l, ... ,k-1 are
1 1

continuously differentiable and a ~ Rn , N e R are given.

The trajectories x are vector-valued piecewise affine functions

given by sequences(a,x1 , ... ,xk ). The penalty (2.2) attains for

Z = H1 [0,k] in this situation the form

k-1 2
E (si+1 - si)

i=O

where s

able A*
ing d i
scheme

(SO,Sl ... Sk) = (x1 _N)D*. Similarly, the adjoint vari

may be expressed by a sequence (Po,P1, ... ,Pk). On denot
T(si'O' ... 'O) , Eq. (2.4) is equivalent to the difference

2 - .p.+r (-d.+2d. 1-do 2)/P (x), 1=1,2 ... k-11 1 1- 1- r

which is to be solved backwards from the terminal condition

Thus, if (a, Xl' ,Xk )

control (~0,~1, ~k-1)

is the trajectory corresponding to a

( -0 -1 -k-1)IJ 4> u ,u , ... u
U.

1

i=0,1, .. ,k-1

provided xi > N for some i £ {1,2, ... ,k}. Otherwise

( -0 -1 -k-1 T -0 -1 -k-1(IJY o u ),IJY 1 (u ), ... ,IJYk _1 (u )) e 34>(U ,u , ... ,u ).
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3. NUMERICAL EXPERIENCE

We have performed a number of numerical experiments with

the problem (1.3) solved by BOREPS. The mixed state-control con

straints have been simplified to state constraints only by a

simple transformation and they have been included in the cost

by means of the exact Co-penalty. For sloped railroads (where

x 2 (t) could be negative), the objective has been regularized.

The results are published in Out rata (1983).

The HI-exact penalty has been tested on a rather complicated

ecological problem of the type (2.8) with 3 state variables, 1

control variable and 360 steps of time-discretization again with

the BOREPS routine. The results are encouraging.
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FUNCTIONS AND THEIR APPLICATIONS TO VECTOR OPTIMIZATION
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Institute ofMathematics, Polish Academy ofSciences, Sniadeckich 8,

00950 Warsaw, Poland

We shall start with the following numerical example concern

ing an optimization problem involving differentiable functions.

EXAMPLE 1. He consider the following optimization problem in

three-dimensional space

2 2 2f (x, y , z) = x + 2y - x + y - z -+ inf

under conditions

(? )
2Cf1(x,y,z) =-(x+Y) +z .::.0

4
g 2 (x, y , z) = -y + Z .::. 0.

We want to show that (0,0,0) is a local minimum of problem

(P). We shall first verify that the Kuhn-Tucker necessary con

ditions for optimality hold. Indeed, taking A1 = A2 = 1 and

formulating the Lagrange function

L(X,y,Z,A 1 ,A 2 ) = f(x,y,z) + A19 1 (x,y,z)

2 4+ (- (x + y) + Z ) + (- y + Z )

we trivially obtain that

2 2 4-x +y +z
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VL(x,y,z) 1 (0,0,0) = 0

Unfortunately the clnssicaJ. sufficient condition of opti

mality (Hesteness (1947), rlcShane (1942)) does not hold. 'l'he

second differential of the Lagrangian at (0,0,0) is determined

b~' the matrix

(-OO~)
\ 0 0 0

and on the line orthogonal to the gradients vg 1 1 (0,0,0) =

(-1,-1,0) and V<]21 (0,0,0) = (0,-1,0) ,

z it simply vanishes.

i. e on the axis of

This stimulates an approach to sufficient conditions which

is different to the classical one proposed by ~1cShane (1942)

and Hesteness (1947).

The classical idea was based on direct approximation of the

problem by approximations of linear and quadratic type.

Another approach is based on the idea of the implicit

function theorem and in the simplest case can be expressed by

the following:

THEOREM 1. (Rolewiczi 1980b)

Let D be a domain contained in n~dimensional real

Euclidean space R
n . Let f, '1 1 , ... g be continuouslym

differentiable functions defined on D.

~'1e consider the following optimization problem

f(x) -+ inf

( P) g.(x) <0,
-1 -

xED.

i=1,2, ... ,m,

\'le assuMe that xED and thato
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(i) all constraints are active at x o ' i.e.

g i (x
o

) = 0 i = 1,2, ••. m.

( ii) the gradients vgi[x=x
o

'

are linearly independent

i=1,2, ... m,

( iii) there are Al' Am

(Ai>O' i=1,2, m)

strictly positive,

such that the gradient

at X
o

of the Lagrange function is equal to 0,

m
V(f+ E A.g.)1 _ =0.

i=1 1 1 x-xo

Then x is a local minimum of the problem (P) if and only
o

if it is a local minimum of the following equality problems:

fly) .... inf

(Pe) ° .
naving Theorem 1, we can easily show that (0,0,0) is

a local minimum in Example 1. Indeed, g,(x,y,z) =0=g2(x,y,z)
4 4 2implies ~T = Z X = Z - z and

6f(x,y,z) = 2z .

Theorem 1 gives an algorithm reducing the problem of suffi

cient conditions for a problem with inequality constraints given

by m functions of n variables, to the problem of sufficient

conditions for a function of (n-m) independent variables. The

reduction procedure requires only the inversion of one matrix

(Jacobian matrix at xo ) and for this reason is not computation

ally difficult.

Of course, a number of natural questions arise. How will

the situation change if

(a) there are also equality constraints

(b) the Kuhn-Tucker necessar~ optimality conditions hold,
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but 1r,i th certain A. = 0
~

or more generally

(c) the functions f,g" ... ,gm are defined on a Banach space

(d) the conditions gi (x) .s. 0 are replaced by a condition

G(x) .s. 0 where G maps a Banach space X into an

ordered Banach space Y.

There is a possibility of extending Theorem , to the general

case. This may be done using the following theorem:

THEOREM 2. (Rolewicz, ,98'a). Let X'Y"Y2'Z be Banach

spaces over real numbers. We assume that Y"Y2 are ordered.

Let D be an open set in X. We assume that there are con

tinuously Fr~chet differentiable operators, F,G"G 2 ,H map

ping D into real numbers (F), into Y,(G,), into Y2 (G 2),

into Z0"'). Let X o ED. Suppose that

(ii) the differential ~ of the mapping (G"G2 ,H)

taken at xo ' maps X into the product Y,xY 2xZ,

(i.e. it is a surjection)

(iii) there is a uniformly positive linear functional

(1), (Le. such that there is C>O such that

for }', E Y" y,.::. 0)

and there are linear continuous functionals

* *\0 2 E Y2' \0 2 '::' 0, If E Z such that the crradient

of the Lagrange function taken at the point Xo
is equal to 0

~ (F (x) + \P, (G, (x)) + \P 2 (G 2 (x)) + If (H (x)) I = O.
Xo
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Then x is a local minimum of the problem
0

F(x) -+ inf

(P) G1 (x) 2 0 , G2 (x) < 0 H(x) = 0

if and only if it is a local minimum of the following problem:

F(x) -+ inf

(Pe) G1 (x) = 0, G2 (x) 20, H(x) = 0

Theorem 2 can be extended to the case of Lipschitz functions

in the following way.

THEOREt1 3. (Rolewicz, 1981a).

Let, X'Y1'Y2'Z be Banach

Y1 , Y2 be ordered, Let 0 be

\'1,G 2 ,H be mappings defined on

(F), having values in Y1 (G 1 ) ,

xED. We assume that
o

spaces over reals. Let the spaces

an open domain in X. Let F,

D with values being real numbers

in Y2 (\'2) , in Z(H). Let

(ii) the multif.unction r(Y1'Y2'z) ={xED: G1x=Y1'

G2x = y 2' Hx = z} is locally Lipschi tzian at X o
i.e. there is a neighbourhood Q of X o and a

constant K > 0 such that

where d(A,B) denotes the Hausdorff distance of

the sets A,B

(iii) there are odd functionals, ~1 defined on Y1 ,

('l2 def ined on Y2' If def ined on Z, where CP2 is

nonnegative, ~1 is strictly positive (i.e. there
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is C > ° such that

such that the Lagrange function

L (x) = F (x) + 1!1 ((;1 (x» + t::r
2

((;2 (x» + '!' (H (x»

satisfies the Lipschitz condition with constant M.

(iv) HKC < 1.

Then x is a local minimum of the following problem:o

F(x) -+ inf

(P)

(;1(x):::..0, r.
2

(x):::..0, H(x):::..O

if and only if it is a local minimum of the following problem:

F(x) -+ inf

(Pe)

G
1

(x) = 0, G
2

(x) :::..0, H(x) = °

~heorem 3 generalizes Theorem 2. If the hypotheses of

Theorem 2 are satisfied, then by the Ljusternik theorem

(Ljusternik, 1934) the multifunction f(Y1'Y2'z) is pseudo

-Lipschitz ian with a certain constant K, i.e., there is ao
neighbourhood 0 of x such that

-0 0

where R is the unit ball in the space x.
It can be shown that f(y 1 ,y2 ,z)

Lipschitzian with a Lipschitz constant

is in fact locally

K which is an arbitrary
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nU1'1.ber <]rea.ter than ~ (Rolewicz, 19fOa). By (i. i. i) of Theorem 2

we can find a neighbourhood 01 such that r(Y1'Y2'z) nQ1 sa

tisfies the Lipschitz condition with constant K, and such that

the Lipschitz constant of the Lagrange function is smaller then

1
KC'

Le. ( iv) of Theorem 3 holds.

Theorem 3 can be used for vector optimization in the fol

lowing way.

THEOREM 4. (Rolewicz, 1983a).

constraints G1 ,G 2 are active at

(Le. G
1

(x
o

) =G
2

(x
o

) =0).

gradient of (G 1 '(.;2,H) at X o is a surjection

of X onto the product Y1 x Y2 x Z

F ,G 1 '(.;2,I-l are

If

(i) the

Xo

( ii) the

Let P,X'Y1'Y2'Z be Banach spaces over real numbers. We

assu~e that P'Y 1 'Y 2 are ordered by cones.

Let D be a domain in the space X. Let F,G 1 ,G 2 ,H map

D into P(F), Y1 (G,), Y2(G 2 ) ,Z("). We assume that all mappings

continuously Frechet differentiable. Let X o ED.

(iii) there are strictly positive linear functionals

~, defined on Y1 ; a defined on P (i.e.

such that there are constants C, C1 > 0 such that

Ilpll.s.Ca(p), for pEP, p.::.O

and a nonnegative linear continuous functional
* *~1 E Y and a continuous linear functional '!' E Z ,

such that the gradient of the Lagrange function

'l (a (F ( x)) + (~1 (G 1 (x)) + t;) 2 (G 2 (x)) + '!' (H ( x) ) I = 0
x=O

(iv) the space L1 = ker 'IF I x=O and the space
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L 2 = ker \7<;11 x=o n ker \7HI x=O n

n ., {x: \7l,2!x=O(x) .::.O}

have a positive gap (i.e.

d=max (inf {Ilx-yll, xEL 1 , yEL 2 , Ilxll= 1},

Then Xo is a local Pareto minimum of the following vector

optimization problem:

F (x) + inf
(VP)

The proof consists of three steps.

Step 1. We show that X o is a local minimum of the following

scalar problem with a Lipschitzian, but nondifferentiable goal

function

(SPe)
cdF(x)) + SIIF(x) -F(x ) II + info

for all S > o.

step 2. Using Theorem 3 we obtain that Xo is a local minimum

of the following scalar problem

(SP)
a(F(x)) +sl\F(x) -F(xo)11 + inf

Step 3. Using the method of scalarisation (see for example

Wierzbicki, 1979) we show that there is So > 0 such that if

X o is a local minimum of (SP) for S, 0 < S < So' then it
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F must not be smaller than the
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is a local Pareto minimum of problem (VP).

Theorem 4 above has a serious disadvantage, namely

condition (ivl.

In mathematical programming,

the number of coordinates in

difference between the dimension of the space and the number of

conditions. For the case when this is not true we use the fol

lowing theorem:

TP,EORE~1 5. We consider the following vector optimization problem:

fk(x) -+ info
(VP)

g (xl < o.IYI

A point Xo is a Pareto minimum (local minimum) of problem

(VP) if and only if it is a minimum (local minimum) of all the

following scalar problems

fi(x) -r inf

(SP. )
l

,g (x) < 0
m -

i= 1,2, ... ,R.

In Rolewicz (1984) a simple but nontrivial numerical prob

lem is solved using Theorem 5.
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OPTIMAL CONTROL OF HYPERBOLIC VARIATIONAL INEQUALITIES

Dan Tiba
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1. INTRODUCTION

Variational inequalities and free boundarv problems arise

in a natural way in a variety of physical phenomena. The study

of their control, both from theoretical and numerical point of

view, was initiated in the works of J.P. Yvon [12J and F'.r~.ignot

[7J. The literature is rich in results on elliptic and parabo

lic problems and we quote the recent book of Barbu [2J for a

survey in this respect.

Our aim is to comment some ne,,) results on the control of

hyperbolic variational inequalities based mainly on the recent

works of the author [9J, [10J, [llJ. In section 2 optimality

conditions are obtained for the vibrating string with obstacle.

In the next sections we study hyperbolic variational inequali

ties with unilateral conditions on the derivative of the state,

in the domain or on the boundary. For the sake of brevity we

shall give only outlines of proofs for the main results. More

details can be obtained from the mentioned papers.

2. THE VIBRATING STRING WITH OBSTACLE

This is an example of a hyperbolic variational inequali

ty with unilateral conditions on the unknown function:

Ytt-Yxx+w=u,

y (0 , x) =y0 (x) ,

wd3(x,y)

Yt(O,x)=vo(x)

(2. 1 )

(2.2)
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where ~(x,·) is the maximal monotone graph

°
~(x,y)= ]-00,0]

<!l

y>q>(x)

y=<p (x)

y<<p(x)

(2.3)

given.

and <p is a continuous function on R.

Therefore the string is forced to vibrate above the given

obstacle y=<p(x). The physical meaning of the term WE~(X,y) is

the unknown reaction of the obstacle and we formulate the con

trol problem

(P) Minimize (Iwl+lull

2subject to uEL (B) and y, w satisfying (2.1), (2.2). Above
1 2

B=[O,T]xR, 1·1=1·1 and y EHl (R), v ELl (R), Y ~<p are
L2(B) 0 oc 0 oc 0

The equation (2.1), (2.2) was studied by Amerio and Prouse

[1], Schatzman [8] by the method of the lines of influence of

the obstacle.

This approach is difficult to follow here and we adopt

the point of view from the unstable systems control theory as

developed by J.L.Lions [6].

The control UEL2 (B) is called feasible if there are
2 1 2yEL (O,T; Hloc(R)), wEL (B), WEI3(y) a.e., such that y(O,x)=

=y (x) a.e. ando

fB(VyVV+W.V-Yt·Vt)dxdt=fBU.vdxdt+fRVo(X)V(x,O)dx (2.4)

1for all VEH (B) with compact support and v(T,x)=O, xER. The pair

[y,w] is called a generalized solution of (2.1), (2.2) and the

condition WEL 2 (B) is a constraint on the set of admissible con

trols. However if u is an admissible control with [y,w] the cor

responding generalized solution, then u-w is also admissible

with [y,O] the corresponding generalized solution. Next any

greater control from L2 (B) is admissible and this shows that

the feasible set is sufficiently rich for our problem to be

well posed.

Proposition 2.1. The existence of an admissible control

implies the existence of at least one optimal pair [y*,u*] for
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problem (P).

We define the approximate problem

(P) Minimize {1~E(Y)I+lul}
E

subject to

(2.5)

and (2.2). Here ~E is a regularization of ~:

E>O

where ~E is the Yosida approximation of ~ and p is a Friedrichs

mollifier, i.e. p~O, p(-e)=p(-r), supp pc [-1,1], PEC<Xl(R) and

J:,p(e) de=l.

122Proposition 2.2. If Y EH I (R), v ELI (R)and uEL (O,T;
2 - 0 oc 0 oc

LI (R)) then the equation (2.5) has a unique generalized solu-
oc <Xl 1 <Xl 2

tion yEL (O,T;HI (R)) and YtEL (O,Ti LI (R)).oc oc

Let J E and J be the cost functionals associated with (P g ),

(p) •

g
Theorem 2.3. Denote by [y ,u

E
] an optimal pair for (P E).

Then:

i) JE(uE):SJ(u*)

ii) lim Jg(UE)=J(U*)
E-+-O

iii) on a subsequence

* t 7' L2 (B)UE -+- U S rong&y ~n

~E(yg) -+- W*E~(Y*) strongly in L2 (B)

E 2
Y -+- y* stronly in C(O,T; Lloc(R)}.

Corollary 2.4. The problem (p) has a feasible control iff

the sequence {J (u )} is bounded.
E E

1 2 E <Xl 1Now assume that y EH (R), v EL (R). Then y ED (O,TiH (R))
1 <Xl 2 0 0

~ W ' (O,T; L (R)) and it is a strongly convergent sequence.

Denote by ~:L2(B) -+- R the norm ~(u)=lul.

Theorem 2.5. If ~EC1(R) there is an optimal pair [y*,u*]
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in L
2

(0,T; H
1

(R))XL2 (B), an adjoint optimal state P*EL
2

(B) and

a distribution 6 on B with supp 6 c{(t,x)EB; y*(t,x)=cp(x)} (the

impact set) satisfying the optimality conditions:

p* -p* =6tt xx in V' (B)

a.e. B ,

(2.6)

(2.7)

The proof is based on the following proposition

proposition 2.6. For every solution [yE,u ] of (P
E

) there
E 00 1 1002 E

is pEL (O,T; H (R))nW' (O,T; L (R)) such that:

E E
p (T'X)=Pt(T,x)=O

pEdl/J (u )
E

Proof of Theorem 2.5

Let y*, u*, p* be such that on a subsequence yE + y* ,

u* strongly in L2 (0,T; H1(R)), L2 (B) and pE + p* weaklyu
E

+

L2 (B). Relation (2.7) is an obvious consequence of the demi-

in

closedness of al/J.

Concerning (2.6) we remark that y* is continuous on B

and yE + y* uniformly on compact subsets of B.
n

Let Qu={(t,X)EB; -n<x<n and y*(t,x»cp(x)+U} and Qo =

={(t,x)EB; y*(t,x»cp(x)} be open subsets of B.

There is Eo>O such that for E~Eo' yE(t,x)~cp(x)+1 on Q~

so ptEt- pE =0 on Qn for E~E . This follows from (2.3)and the
xx U 0

definition of ~E which imply ~E(x,y)=O for y~cp(x).

Passing to the limit in V' (B) we see that the distribution

P~t-P~x vanishes on Q~. But Qo=LJQ~ and the proof is finished.
n,u

Remark. We underline that bur results and methods apply

also to higher dimensions or to finite domains. More general

cost functionals including terms of the form IY-Ydl or ly(T)-

-Ydl 2 can be considered too.
L (R)
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3. UNILATERAL CONDITIONS ON THE DERIVATJVE

Let Q c RN be an open domain and Q= J 0 , T[ xC be a cy linde r

with lateral face r=JO,T[xaQ. We analyse the control problem

Minimize J~L(y(t), u(t))dt

subject to:

y(t,x)=O

in Q,

in n,

in L

( 3 • 1 )

(3.2)

(3.3)

(3.4)

Here ~ c RxR is any maximal montone graph, B:U ..... H1 (Q) is
o

a linear continuous operator with U a Hilbert space of control,

L:L 2 (O)xU ..... J-oo,+ooJ is a convex, lower semicontinuous functio

nal and y £H 1 (Q) () H2
(n), v £L2 (Q).

o 0 0 1
Equation (3.2)-(3.4) has a solution y£C(O,TiH (~)),

2 00 1 2 2 2 2ay / at £C (0 , TiL (Q)) () L (0, T i H0 (Q) ), a y / at £L (0, T ; L (Po)) by a

variant of a result from Barbu [3J, p.279.

If some coercivity properties are assumed for L, then one

may infer the existence of an optimal pair [u*,y*J.

Define the regularizations of ~, L:

+ L(z,v) t

(3.5)

(3.6)

(3.7)

where 6(£) ..... 0 when £ ..... O.

The approximate control problem is

Minimize (J~L£(y,u)+iJ~,u-U*I~}

subject to (3.2)-(3.4) with ~ replaced by ~£.

Problem (3.7) is a smooth control problem and one may ob

tain in quite a standard manner the necessary conditions:

Proposition 3.1. For every

[y£,u£J there is m££C(O,TiL2 (C))

£ £ £ £ £ JT
mtt-~m -~y(Yt)·mt= t q £

approximate optimal pair

such that:

in Q, (3.8)



£ £m (T,x)=mt(T,x)=O

m£(t,x)=O
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in n,

in E,

(3.9)

(3.10 )

£ £ £[q (t) ,-B*mt+u (t) -u* (t) J=aL (y (t),u (t)).£ £ £
(3.11 )

Moreover, we have y£ + y* strongly in C(O,TiH;(Q)), y~ +

+ Yt strongly in ~(O'~iL2(Q)), ~:(Y~~ + ~(Yt) weak~y i: L
2

(O),

u£ + u* strongly ~n L (O,T;U), p =-m
t

+ p weakly* ~n L (O,T;

L2 (Q)) and q + q weakly in L1 (O,T;L
2

(Q)) where
£

[q (t), B~ (t) haL (y* (t) ,u* (t) ) in [0 ,T]. (3.12)

To pass to the limit in the adloint equation (3.8) the

additional assumption that ~ is locally Lipshitz and satisfies

2I~ (y). y I ::;C ( I~ (y) I+y + 1 )
Y

is made.

a. e. R (3.13 )

222 2Theorem 3.2. Let [y*,u*hW ' (O,T;L (rl))xL (O,T;U) be an

optimal pair for problem (3.1)-(3.4). There exist functions
co 1 1 co 2 2 1

mEL (O,T;H
o

(0)) () W ' (O,T;L (Q)), qEL (Q) and hEL (0) such that:

m(T,x)=mt(T,x)=O

in 0

in 0 ,

Proof

Obviously {mE} is bounded in Lco(O,T;H;(Q)) and {m~} is

bounded in L
co

(O,T;L2 (0)). Fix n a natural number and consider

£ £ £
then l~y(Yt(t,x)) I::;Cn on En with Cn independent of £, as ~ is

locally Lipschitz.

Denote by E a measurable subset of Q. We have
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1 JE13£ (y~) 'm£tdxdt I ~ClJ.(E) 1/2. C +C/n+C ( J I Yt£ 1
2 ) 1/2

Y n E-E£
n

But {y~} is bounded in Loo(O,TiH;(Q)) and by the Sobolev

embedding theorem it yields {y~} bounded in LS(Q) with some s>2.

Then the last term is equicontinuous. The Dunford-Pettis crite

rion gives

weakly in L1 (Q).

Combining with the results of Proposition 3.1 one can

pass to the limit in (3.8)-(3.9) to finish the proof.

it is

more

will

Remark. If 13 is a continuously differentiable function,

easy to see that h(t,x)=13y(y~(t,x)).mt(t,x) a.e. Q. In

general situations the Clarke [4] generalized gradient a13

be used.

Assume that

13=y->.. (3. 14)

in Q,

where y, >.. are real, convex functions.

Theorem }.3. Under the above hypotheses, there are func-
00 1 1m 2 2 ..

tions meL (O,TiHo (0)) n W ' (O,TiL (0)) and qeL (Q) sat7-sfWl-ng

mtt-~m-a13(Yt)'mt J~q

m(T,x)=mt(T,x)=O in 0,

[q(t), -B*mt(t)]eaL(y*(t),u*(t)) in [O,T].

Proof

For the sake of simplicity take 13 in (3.14) a real, con

vex function. Write

£ £ £m =m -mt + -

£ £ £where m+ ,m are the positive and the negative part of mt up to

a constant and are strictly positive. We can suppose



146

e:m .... v

mt=v+-v_ .

By Proposition 3.1 and the Egorov theorem for every n>O,

there is Qnc Q, meas(O-Qn)<n and y~ .... y~ uniformly on Qn. We

study first the weak convergence of ~~(Y~) .m~ in L
2

(Qn).

Since ~ is locally Lipschitz after a tedious computation

involving (3.5) we reduce the problem to the study of the weak
2 e: -1 E:

L (Qn) convergence for the sequence m+·a~((I+e:6) (Yt-e:B)), B

fixed in [-l,lJ.

Here a~ is just the subdifferential of the convex func

tion ~.

Consider the proper, closed saddle function

K(m,y)=

m6(y) m~O

(3.15 )

a.e.

m<O .

The maximal monotone operator aK in R2 xR2 is given by

aK(m,y)=[-6(y), ma6(y)J (3.16)

Denote aR the maximal monotone realization of aK in

L2 (Q )XL2 (Q ). Then
n n

-1 e: e: -1 e:
[-6((I+e:6) (Yt-e:B)), m+·a6((I+e:6) (Yt-e:B))JE

- e: -1 e:
EaK(m+ ' (I+e:6) (Yt-E:B))

We remark that all the terms in the above relation are

weakly convergent in L2 (Qn). Moreover the followinq condition

is satisfies:

-1 e: -1 e:
since 6((I+e:6) (Yt-e:B)), (I+e:6) (Yt-E:B) are uniformly conver-

gent on Q
n

.
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Applying a wellknown property of monotone operators (Barbu

[3], p.42) we get

[-~(y~),~]Eai(v+,y~)

... 2 E -1 E
where h is the weak limit in L (QT]) of m+.a13((I+E~) (Yt-E8)).

Therefore

h (t,x) EV-t- (t,x)· a~ (Y~ (t,x)) a.e. Q (3.17)

A similar treatment can be carried out for the sequence
E -1 E

m_·a~((I+E13) (Yt-E8)) and also in the case when (3.14) is as-

sumed. Since the sections of a13(y~(t,x)) which occur in (3.17)

and in the other limits may differ then we can write h(t,x)E

Ea13 (Y~) (t,x) ·mt (t,x) only by convention.

4. UNILATERAL CONDITIONS ON THE BOUNDARY

Now we study the distributed control problem:

Minimize fTL(y,u)dt
o

subject to:

(4. 1 )

in 0,

in bl,

in l:.

(4.2)

(4.3)

(4.'4 )

Here B:U + H1 (n) is a linear continuous operator and 13 is

a strongly maximal monotone graph in RxR, that is 13=a+oI, 0>0

and a c RxR maximal monotone.
2 1If Y EH (g), v EH (0.) and -(ay /an)E13(v ) a.e. ag, there

o 0 0 0

exists a unique solution y to (4.2)-(4.4) satisfying YELoo(O,T;
2 1 00 1 2H (g))n C(O,T; H (g)), YtEL (O,T: H (Q)) nC(O,T: L (g)),

00 2
YttEL (O,T: L (0)).

Under some coercivity assumptions for L, one may infer

the existence of an optimal pair [u~y*] in the problem (4.1)

- (4.4) •

The approximate control problem is defined by the cost

functional (3.7) and the state system (4.2)-(4.4) with 13 repla

ced with 13 E given by:
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aE(y)=aE(y)+oI (4.5)

and a E obtained as in (3.5).

Due to the appropriate differentiability properties, we

obtain the approximate optimality conditions:

Proposition 4.1. For every approximate optimal pair

[yE,u] there is mEe:C(O,T; L2
(f:))) such that:

E

E E fTm -t.m = q
tt t E

E E
m (T,x)=mt(T,x)=O

in li,

in n,

(4.6)

(4.7)

y*
t

V) ,

E E E E
-(Clm /Cln)=ay(Yt)·mt in L,

[qE (t), -B*m~ (t)+u
E

(t)-u* (t) ]=ClLE (yE (t) ,u
E

(t))

Moreover, yE + y* strongly in C(O,T; H1 (0)), y~ +

strongly in C(O,T; L2 (0)), u + u* strongly in L2 (0,T;
E E .00 E 2P =-mt + p weakly* ~n L (O,T; L (0)) and qE + g weakly in

L
1 (0,T; L

2
(Q)) where

[q(t), B*p(t)]e:dL(y*(t),u*(t)) in [O,T].

(4.8)

(4.9)

(4.10)

To pass to the limit in (4.6)-(4.8) one has to make again

hypotheses (3.13), (3.14).

2 2 2 2
Theorem 4.2. Let [u*,y*]e:W ' (O,T; L (O))xL (O,T; V) be

an optimal pair for problem (4.1)-(4.4). There exist functions
00 1 1 00 2 2

me:L (O,T; H (0)) ()W ' (O,T; L (0)), ge:L (Q) satisfying:

mtt-t.m=f~q in Q,

m(T,x)=mt(T,x)=O in 0,

-(Clm/Cln)e:Cla(yt)·mt
in L.

Here Cla is the generalized gradient of the locally

Lipschitz function a and the proof follows the same lines as in

the previous section.

Remark. In the paper [9] an abstract scheme is built to

obtain the results of sections 3 and 4. It allows other impor-
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tant applications to the parabolic case, to differential sys

tems with delay.

Remark. Following the unstable systems approach, as in

section 1, it is possible to obtain necessary conditions for

hyperbolic control problems with strong nonlinearities, for

instance exponentials. In this respect we quote the forthcoming

paper [5].
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ON DUALITY THEORY RELATED TO APPROXIMATE SOLUTIONS
OF VECTOR-VALUED OPTIMIZATION PROBLEMS

Istvan Vitlyi
Bureau for Systems Analysis, State Office for Technical Development,

P. O. Box 565, 1374 Budapest, Hungary

1. INTRODUCTION

The notion of approximate solutions or l:-solutions emerged early In the develop

ment of modern convex analysis. An analogue of the well-known statement concerning

the minimum of a convex function and Its subgradlent also holds in the approximate

case: a convex function f has an l:-approximate minimum at :z: If and only if 0 E: IJrI (:z:),

where IJrI (:z:) Is the l:-subdlfferenllal of f at :z:, Parllcular attention has been paid to

l:-subdifferentlals (see Hlrlart-Urruty, 1982; Demyanov, 1981). This has resulted in

the construction of a new class of optimlzallon procedures, the l:-su.bgradient

method.s. The virtually complete set of calculation rules derived for the l:

subdifferential has made possible the study and characterization of constrained con

vex opllmization problems in both the real-valued and vector-valued cases, as in Stro

dlot et a1. (1983), or for ordered vector spaces (Kutateladze, 1978).

Relatively little effort has been devoted to duality questions In this context (but

see Strodlot et aI., 1983, and the work of Loridan (1982), where duality is coupled with

a technique based on Ekeland's maximum principle). Duality theory in the exact case

has been thoroughly Invesllgated even for vector-valued problems in terms of both

strict optima (e.g., Ritter, 1969,1970; Zowe, 1976) and non-dominated opllma (e.g., Tan

ino and Sawaragi, 1980; Corley, 1981). However, there is so far no corresponding

theory for approximate solullons.

In this paper we Intend to remedy this situallon by stating some simple proposi

tions on approximate optimal solutions; in addition we shall give some basic duality

theorems for vector-valued situations, a number of which are also of Interest in the

scalar-valued case. In deriving the results we do not rely on the existence of l:

subgradients. This is important because until quite recently very little was known

(especially in the vector-valued case) about the condillons under which the set of l:

subgradlents is non-empty (Borwein et aI., 1984). For these reasons we hope this paper

may provide useful background Informallon for a number of nondlfferentiable
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optimization problems. Finally, we should mention that a vector-valued version of

Ekeland's principle is also available (V~lyl, 1965), but attempts to use it in the optimi

zation context have so far failed.

Throughout this paper we shall consider only the algebraic case, although a

parallel. topological version also exists. For details and proofs see V~lyi (1964); other

related issues are treated in Loridan (1964).

2. BASIC NOTIONS AND PIn:LIMINARIES

For basic definitions related to ordered vector spaces we refer the reader to

Peressini (1967) or Ak1lov and Kulateladze (1976); for definitions related to convex

analysis see Holmes (1975). All of the vector spaces considered here are real, all

topologies are convex and Hausdorff, and the ordering cones are assumed to be con

vex, closed and pointed. A vector lattice in which every non-empty set with a lower

bound possesses an infimum is said to be an ord.er complete space. In order to ensure

the existence of infima (or suprema) for all non-bounded sets, we add the elements 00

and -00 to the order complete space Y and denote it by Y. Here we suppose that the

usual algebraic and ordering properties hold. Thus a set HeY which is not bounded

from below has inf H =-00, where inf !/J = 00.

The algebraic dual of the space Y will be denoted by y', and the topological dual

by y'. The cone of positive functionals with respect to the cone C c Yor the dual of C

is C +, and C· is the continuous dual. If both (X, K) and (Y, C) are ordered vector

spaces, then L + (X, Y) c L (X , Y) denotes the cone of positive linear maps from X to Y,

and a +(X , 11 c a(X, 11 the cone of continuous positive maps.

The sets of algebraic interior points and relative algebraic interior points of a

set HeY are referred to as core (H) and rcore (H), respectively, and lina (H) denotes

the set of linearly accessible points from H. The key tool in the theory that follows is

the Hahn-Banach theorem for the scalar- and vector-valued cases. As shown in, e.g.,

Tuy (1972), there are more than 10 different but equivalent forms of this theorem,

which has the following highly useful butlitlle known corollary:

THEORElll. [Strict algebraic separation theorem, see Kothe (1976)]. Let H be a con

va: subset of the real vector space Y, and. let rcore (If) "" !/J. If ./br some Yo E: Y we

have Yo ~ Una (H), then Yo E: Y can be strictly separated./rom H.

In the vector case we have:

THEOREM 2 [Vector-valued separation theorem, see Zowe (1976)]. Let X be a real vec

tor space, (Y, C) be an ord.er complete space, and. 8 1 and. 8 2 be convex subsets qf the

prod.uct space X x Y. If
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and

(1)

where Px: X x Y - X is the projection on X, then there e:ri.st aTE L (X •Y) and a

w E Y such that

Using Theorem 2, Zowe proves a lheorem concerning syslems of convex inequalilles.

where lhe universal validily of lhe slalemenl is shown lo be equivalenl lo lhe

Hahn-Banach exlension lheorem and in facl lo lhe order compleleness of lhe space.

The definillon of lhe inequalily syslem. which is also used in defining lhe opllmizalion

problem, now follows.

Lel Y. It be real veclor spaces ordered by lhe cones C. q. and X. Y", +1 be real

veclor spaces. We shall consider proper convex funclions

I: X - Y u 1001

It: X -It u 1001

and linear maps

I", +1 : X - Y", +1 • tEl = 11.2•...• mi. j E J =11,2•...• n I .

In addillon. lel

D = dom I n (n Idomlt :i EII) ~ !/J

be lhe common effecllve domain of lhe funclions I and It. i E I. For easy reference

lo lhe syslem. we shall use lhe following nOlalion:

h: x,..... fIt (x): i Ell

Z =X[Yt: i Ell and K = XICt : i Ell

Here (Z •K) is a veclor space ordered by lhe poinled convex cone K. and

dom h = n Idom It: i E II

Similarly,
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v = XIYm +!: j EJI

THEOREM 3 [Zowe (1976)]. In addition to the notation and conditions given above,

we shall assume that (Y , C) is an order complete space, and

(0,0) E rcore l(h(z) +z ,l(z»: zED, z EKl

'1hen the lollowing statements are equivalent:

(2)

I(z) ~O V'z E lz ED: h(z) ~O, l(z) =01 (3)

3R EL +(Z, Y), S EL(V, Y), such that/(z) +R' h(z) +S 'l(z) ~O, zED .(4)

We shall now consider different notions of approximate (order-) extremal points

and their basic properties.

Definition 1. Let (Y. C) be an ordered vector space, He Y, and e E ce Y be a posi

tive element. Then an element y E H is said to be strict e-minimal, or y E S(e)

min (H) if Hey - e + C. Conventionally, S(e)-min (H) = -00 if H is not bounded from

below, and S (e )-min (4)) =00.

The existence of strict optima. even of strict approximate optima, is very rare,

and therefore the study of non-dominated optima is of major imporlance. As in the

exact case. difficulties often arise when dealing with approximate non-dominated

optima. This notion therefore has to be restricted to cases in which it can be charac

terized by linear functionals.

Definition 2. Let (Y, C) be an ordered vector space, Hey, and e E C e Y be a posi

tive element. Then a point y E H is said to be P(e)-minimal or yEP (e )-min (H) if

(y -e -C) nH ely -el. Conventionally. if this condition is not satisfied by any

y E H then P(e)-min(H) = -00. and P(e)-min(4» = 00. Further, let y E C+ and f: ElR+.

Then y E H is P(y' ,e)-minimal or y E P(y' • e)-min (H) if <y' ,h > ~ <y' ,y > - e V

h E H.

Now let core (C) '" 4>. The element y E H is said to be weakly P(e)-minimal

(WP(e}-minimal) or y E WP(e)-min(H) if (y -e -core(C»nH =4>. with the same con

vention used earlier.

Now let us define the minimization problem (MP) and the corresponding vector

valued Lagrangian. which will then be studied from the point of view of the different

notions of approximate optimality given in the last definition.

Definition 3. In addition to the notation and conditions given above. let us again

assume that e ~ 0, e E Y is fixed. We define the minimization problem (MP) as

follows:
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Find elements % 0 e: X such that

%0 e: 1% e: D: h (%) SO. l (%) = 01

f(%o) e: min If (%) e: Y: % e: D • h (%) SO, l (%) =01

The set

F = 1% e:X: % e: D • h (%) SO, l (%) = 01

(5)

(6)

Is called the set of feasible solutions. Points % 0 e: X which satisfy (5) and (6) with min

replaced by S(e)-min will be called strict e-minimal solutions (or S(e)-solulions); if

min Is replaced by P(e)-mln, then the points are called non-dominated e-minimal

solutions or P(e)-solutlons. P(y'. ,;)-solutions with y' e: C and,; e:1R+, and weak

P(e)-solutions (or WP(e )-solulions) can be defined In a corresponding manner.

It Is important to note that the feasible set F and the set f (}i') + C of attainable

points are convex, a fact which is essential for our results to be valid.

Definition 4. The (algebraic) vector-valued Lagrangian tpL corresponding to the

minimization problem Is defined as follows:

tpL: X x L (Z , Y) x L (V. Y) .-. y

1fJL: (%, R , S) ~ tpL (% , R , S) ,

where

.,,(z ,R ,S) =~) +R . h(z) +S· t(z)

We shall call the set

if%ttD

if % e: D and R E L +(Z , Y)

if % E D and R E L +(Z , Y)

dom tpL = I(%,R,S) EX XL(Z, Y) XL(V, Y): % ED, R EL+(Z, y)i

the effective domain of the Lagrangian tpL .

3. APPROXIMATE DUALITY IN THE STRICT CASE

We shall now consider approximate solutions of the minimization problem (MP).

First we shall formulate some simple relationships between approximate solutions

corresponding to different e E Y - s. Then we wl11 turn to the strict e-approxlmate

Kuhn-Tucker theorem, and finally describe some applications.
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Proposition 1.

(a) The notions of strict optimum and S(e)-optimum coincide if e = O.

(b) Lete 1 :s e2' el,e2 E: C and x E:X be an S(el)-solution of (MP). Then x is also an

S(e2)-solution of (MP).

(c) Let (Y, C) be an ordered topological vector space and Ie -y E: C:, 7 E:rl be a

decreasing net with lim Ie -y: 7 E: fI = e. If x E: X is an S (e -y)-solution of (MP) for

all 7 E: r, then x is also anS(e )-solution of (MP).

(d) Let (Y, C) be an order complete space with a weakly sequentially complete topol

ogy, the ordering cone C c Y be normal, and the sequence len E: C: n E: Nl be

decreasing with

e = inf Ien E: C : n E: N I

If x E: X is an S (en )-solution of (MP) for every n E: lN, then x is also an S (e )

solution of (MP).

(e) Let (Y, C) be an ordered topological vector space and the set

If (x) E: Y: x E: FIe Y be closed. Let us suppose in addition that there exist nets

Ix -y E: X : 7 E: r I and Ie -y E: C : 7 E: r I with the following properties:

(i) Ie -y E: C: 7 E: fI is decreasing

(ii) lim e-y = e

(iii) x -y is an S (e -y)-solution of (MP)

(iv) there exists a 70 E: r such that the set

S(e-yJ -min If(x) E: Y: x E:FI

is a compact subset of Y.

Then (MP) has an S (e )-minimal solution.

Definition 5. The element (xo, Ro,So) E: dom /PL is an S(e)-saddle point of the

Lagrangian Ij)L if

We shall now establish an approximate Kuhn-Tucker theorem, Le., a theorem

which describes the implications of an element x E: X being an approximate solution as

compared with an approximate saddle point. In the special case e = 0, the theorems

become identical with the results of Zowe (1976). As in that case, one implication is

valid under fairly general conditions, while the other also requires a so-called con

straint qualification. In this case one uses Theorem 3 (or Theorem 2), where condition
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(2) (or (1) in the separation theorem) must be satisfied. The requirements formulated

in the next definition are designed to do Just that.

Definition 6 [Zowe (1976)]. We say that a problem satisfies the (algebraic)

S1.ater-Uzawa constraint qualification if either

(1) there exists an :z: 1 E rcore (D) such that

or

(it) J = 0 and there exists an :z: 1 E D such that

h (:z: 1) E -rcore lh (:z:) + Ie E Z ::z: ED. Ie E K I

THEOREM 4. Let us suppose that, in addition to the conditions given earlier. the

cone K c Z is algebraically closed and core (K) is not empty. If (:z: 0 •R 0 •So) E dom 'ilL

is an S(e)-saddle point jbr the Lagrangian 'ilL' then :z:o EX is an S(Ze)-minimal

solution of (MP).

THEOREM 5. Let us suppose that, in addition to the conditions given earlier.

(Y, C) is an order complete space and (MP) satisfies the S1.ater-Uzawa constraint

qualification. 1f:Z: 0 E X is an S(e)-minimal solution oj (MP). then there e:z:ists an

(Ro.S o) EL +(Z ,Y) xL(V.y) such that (:Z:o.Ro.So) E dom 'ilL is an S(e)-saddle point

of 'ilL .

We now use Theorems 1 and 2 to obtain a partial generalization of duality theorems

by Golstein and Tuy for the vector-valued case (see Tuy. 1972 or Holmes. 1975).

Definition 7. Let us suppose that. in addition to the conditions given earlier. (Y. C) is

an order complete space and e ~ O. Consider the functions

P: X -. Y

P : :z: f-+ sup I'IlL (:z: , R •S): R E L (Z • Y) , S E L (V. Y) I

and

D: L(Z. Y) x L(V, Y) -. y

D: (R. S) -. inf I 'ilL (:z: •R •S): :z: E X I

P and D are the strict (algebraic) primal and dual Junctions of the problem (MP).

Let

v = inf lp(:z:) E Y::z: E X I
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v· = sup ID(R ,S) E: Y: R E L(Z, y) , S E: L(V, Y)l

Then v and v' are called the strict (algebraic) primal and dual values of (MP).

The problems

(P) Find elements:z: E X for which

P(:z:) E:S(e)-min IP(:z:)::z: EXl

(D) Find elements (R ,S) E: L (Z , Y) x L (V, y) for which

D(R,S) ES(e)-max ID(R,S):R EL(Z,Y),S EL(V,Y>!

are then the strict (algebraic) primal and dual problems, respectively, for (MP).

Proposition 2. Let us suppose that, in addition to the conditions given earlier, K c Z

is algebraically closed, core (K) Jl. rP and (Y, C) is an order complete space. Then the

problem (P) is equivalentlo (MP), or

_ {f(:z:) if:z: €oF
P(:z:) - 00 if :z: ~ F

Proposition 3 (Approximate weak duality). Let (Y, C) be an order complete space.

(1) The primal value of the minimization problem (MP) is greater than or equal to its

dual value, I.e., v ~ v' .

(ii) Let :z: E X be an S (e )-solution of the primal problem (P) and

(R ,S) E L (Z ,Y) x L (V, Y) be an S(e)-solution of the dual problem (D). Then

P(:z:) ~ D(R ,S)

(iii) Suppose that for some:z: EX, (R ,S) E: L (Z , Y) x L (V, Y) we have

P(:z:) :s; D(R, S) + e

Then :z: E X is an S(e )-solution of the primal problem (P) and

(R ,S) E L (Z , Y) x L (V, Y) is an S(e )-solution of the dual problem (D).

Definition 8. Let us suppose that, in addition to the conditions given earlier, (Y, C) is

an order complete topological space, e = Ie')' E C: 7 E n is a decreasing net with

lim Ie')': 7 E: n = 0, and Ii = I:z:')' EX: 7 E n, where :z:')' is an S(e')')-solution of (MP).

Then the net Ii is called a generalized strict solution of the problem (MP), and

v· = inf If (:z:) E Y: 7 €orand I:z: ')' EX: 7 E r l a generalized solution lEY

is the generalizea strict value of (MP).
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If (:z: 7' R 7 ,S7) € x xL (Z , Y) xL (V, Y) is an S (e 7)-saddle point of the Lagrangian filL

for all 7 € r, then the net !<:Z:7,R7 ,S7): 7 € rj is a generalized strict (algebraic)

saddle point.

Here we should point out that this definition is more restricted than that given in

Tuy (1972), as here we consider only feasible solutions while Tuy does not.

Definition 9. Let us suppose that, in addition to the conditions given earlier, (Y, C) is

an order complete topological space. The problem (MP) is well-posed if

(1) its primal and dual values are equal, Le., v = v·

THEOREM 6. Let us suppose that, in addition to the conditions given earlier, the

cone K c Z is algebraically closed, core (K) ~ c/J, (y, C) is an order complete topo

logical space, where C c Y is a normal cone, and (MP) satisfies the Slater-Uzawa

constraint qualiftcation. If the problem (MP) has a generalized strict solution,

then its generalized strict value equals its dual value.

THEOREM 7. Let us suppose that, in addition to the conditions given earlier,

(y, C) is an order complete topological space with the normal cone C c Y. Then 1.1

(MP) has a generalized strict saddle point, the problem is well-posed.

COROLLARY 1. Let us suppose that, in addition to the conditions given earlier, K c Z

is algebraically closed, core (K) ~ c/J, (Y, C) is an order complete topological space

with C c Y normal, and (MP) satisfies the algebraic Slater-Uzawa constraint qualifica

tion. If the problem (MP) has a generalized solution, then it is well-posed.

It is worth noting that the reverse implication is trivial in the scalar case, which

does not seem to be true here.

4. APPROXIMATE DUALITY IN THE NON-DOMINATED CASE

In this section we slate propositions concerning the relations between the dif

ferent types of non-dominated solutions of the problem (MP). and then give the

corresponding Kuhn-Tucker theorems. The proof relies on the scalar version of

Theorems 1 and 2.

Finally, in the case of P(y' ,l:)-solutions. we demonstrate the equivalence between

primal-dual pairs of solutions and saddle points.
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Proposition 2.

(a) Let e1 s; ez and % E X be a P(e1)-minimal, WP(e1)-minimal, or P(y' ,I:)-minimal

solution of (MP). Then % is also a P(ez)-solution, WP(e z)-solution, or P(y' , 1:)

solution, respectively, of (MP).

(b) Let y' E C+ be strictly positive. If % E X is a P(y' ,O)-minimal solution, then it is

also a P-solution.

(c) Let y' E C+ be strictly positive and I: ~ O. If % E X is P(y' , I:)-minimal, then it is

also P (e . I: I <y' ,e >)-minimal.

(d) Let e O!: 0 and % E X be a WP(e )-solution. Then there exists a y' E C+ such that

% E X is a P(y' , <y' , e »-solution.

(e) Assume that (Y, C) is an ordered topological vector space, the set

C +f!(%)EY:% EF! cY

is closed and y' E C'. We also assume that

(i) fl:n ER+: n E N!is a decreasing sequence with lim fl:n : n EN! = I:

(Ii) there is a P(y • , I:n )-solution for all n EN

(iii) the set P(y • ,1:1)-min U (%): % e: F! is compact. Then (MP) has a P(y' , 1:)

solution.

Definition 10. The element (%o,So.Ro) e:dom ~ is an (algebraic) P(e)-saddle point

of the Lagrangian 'PL if

(i) 'PL(%o,Ro,So) e:P(e)-min f~(%,Ro,So):% e:X!

(ii) 'PL(%o,Ro.So) e:P(e)-max f~(%o,R,S): (R,S) e:L(Z,y> xL(V,y>!

and a P(y' • E)-saddle point (or a WP(e )-saddle point) if (i) and (ii) hold with P(e)

min. P(e)-max replaced by P(y', E)-min, P(y' ,I:)-max (or WP(e)-min, WP(e)-max).

THEOREM: 8. Suppose that. in addition to the conditions given earlier, K c Z is

algebraically closed and core(K) '# t/J. If (% 0 ,R0 ,S0) e: dom 'PL is a P (y' ,I:)-saddle

point, then %0 e: X is a P(y' ,21:)-solution oj (MP).

THEOREM: 9. Suppose that. in addition to the conditions given earlier, the prob

lem (MP) satisfies the algebraic Slater-Uzawa constraint qual'ification. If % 0 EX

is a P(y' , I:)-solu tion oj (MP), then there e:t:ist (R 0 ,S0) E L +(Z ,Y) x L (V ,Y) such

that (%0' R o' So) e: dom ~ is a P(y' , E)-saddle point oJ the Lagrangian 'PL'

THEOREM: 10. Suppose that, in addition to the conditions given earlier, the prob

lem (MP) satisfies the algebraic Slater-Uzawa constraint qualf,fication, and core

(C) =t/J. /J %0 e: X is a WP(e)-solution oj the problem (MP) then there e:z:ist elements

(Ro ,So) e: L +(Z ,y) x L (V, Y) such that (%0 ,Ro ,So) e: dom 'PL is a WP(e)-saddle point

of the Lagrangian 'PL'
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Theorems 6 and 9 reduce lo lhe resulls of Corley (1961) and Tanino and Sawaragl

(1960) in lhe exacl case.

Definition 11. The P(y' ,l:)-primal and dual functions of lhe problem (MP) are

defined by:

P(y' ,l:): X -+ Z'I

P(y' , l:}(%) = P(y' ,l:)-max I~L (% ,R ,S): (R .S) E L (Z ,Y) x L (V, Y)!

and

D(y' ,l:): L(Z, Y) x L(V, Y) -+ zY

D(y' ,l:}(R,S) =P(y' .l:)-min I~L(%.R,S):% EXI

Using lhese funclions, we define lhe P(y' ,l:)-primal and dual problems as follows:

(P( y' , l:» Find elemenls % 0 E X such lhal

P(y' , l:}(%o) n P(y' , l:)-min I u IP(Y' .l:}(%): % E XI! "" I/J

(D(y' ,l:» Find elemenls (Ro,So) E L(Z, Y) x L(V, Y) such lhal

D(y' , l:}(Ro ,So) n P(y' ,l:)-max I u ID(y' ,l:}(R ,S): (R ,S) E L (Z ,y) x L (V, Y>l1 "" I/J.

Such elemenls %0 EX and (Ro,So) EL(Z. Y) XL(V, Y) are called lhe solutions of lhe

problems (P(y' ,l:» and (D(y' ,l:», respeclively.

Proposition 3. Suppose lhal, in addition lo lhe conditions given above, lhe cone

K c Z is algebraically closed and core (K) "" I/J. Then we have

(I) If % 0 E X is a P(y' ,l:)-solulion of (MP), lhen il is a solulion of lhe problem

(P(y' ,l:».

(Ii) If %0 EX is a solution of lhe problem (P(y' ,l:» lhen il is a P(y' ,Zl:)-solulion of

(MP).

Dermition 12. The poinl (%o.Ro,So) E X xL (Z, y) x L (V, y) is a primal-dual pair

ofsolutions for (y' , l:), if

(I) %0 E X is a solulion lo lhe problem (P(y' , l:», and

(Ii) f (% 0) E D(y' ,l:}(Ro ,So) n P(y' ,l:)-max I u ID(y' • l:}(R ,S) :(R ,S) E L(Z. Y)x

xL(V, Y)II.

Il is easy lo see lhal (it) implies lhal (Ro ,So) is a solution lo lhe problem

D(y' ,l:). and lhis has lo be lrue for lhe elemenl f(%o) (and perhaps also for olhers).
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THEOREJII 11. Suppose that, in addition to the conditions given earlier, the cone

K c Z is algebraically closed and core (K) #' f/J. 7hen we have

(i) If (z: 0' R 0' So) E: dom fIlL is a P(y' , I:)-saddle point oj the Lagrangian 'ilL' then it

is a primal-dual pair of solutions jbr (y' ,31:).

(ii) If (Z:o,Ro,So) E: dom 'ilL is a primal-dual pair oj solutions for (y' ,1:), then it

is a P(y' ,I:)-saddle point for 'ilL'
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SEMINORMAL FUNCTIONS IN OPTIMIZATION THEORY

EJ. Balder
Mathematical Institute, University of Utrecht, 3508 TA Utrecht, The Netherlands

and Department ofStatistics and Probability, Michigan State University,
East Lansing, !vJI 48824, USA

1. SEMINORMALITY OF FUNCTIONS

Let (X,d) be a metric space and let (V,P,<','» be a pair of local
ly convex spaces, paired by a strict duality. A function e: X x V + JR 
[_oo,+ooJ is defined to be simple seminormal (on X x V) if there exist an
1. s. c. (lower semi continuous ) function f: X + JR and pEP with

e(x,v) f(x) + <v,P>.

A function e: X x V + ~ is defined to be seminormal (on X x V) if it is
the pointwise supremum of a collection of simple seminormal functions on
X x V. In this way we extend a classical notion in the calculus of varia
tions, due to Tonelli (1921), McShane (1934) and Cesari (1966). The semi
normal hull ~ of a function a: X x V + ~ is defined to be the pointwise
supremum of the collection of all (simple) seminormal functions e on X x V
satisfying e 5: a (pointwise). We say that a: X x V + Ii is seminormal at
a point (x,v) E X x V if ~(x,v) = a(x,v).

Example 1.1. Let f: X+~ and g: V +E be given functions. Then
for the functions a l , a

2
: XXV+'iR, defined by

al(x,v) - f(x), a
2

(x,v) - g( v) ,

we have, denoting Fenchel conjugation in the usual way,

I';; "'" **~ (x,v) = lim inf f(y), a
2
(x,v) = g (v).

y+x
This shows that the seminormal hull concept straddles two important hull
concepts in optimization theory.

Corresp~nding to a given function a: X x V +R we define the function
b: X x P + ~ as follows:

*b(x,p) = a (x,p) = sup [<v,p> - a(x,v)J.
vEV

Let b: X x P +R be the u.s.c. hull of b with respect to the variable x;
that is

b(x,p) _ lim sup b(y,p).
y+x
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It is easy to characterize the seminormal hull of a in terms of the function
b (proofs of all statements to follow can be found in Balder (1983).

""Proposition 1.2. The seminormal hull a of the function a is given by

~(x,v) = b*(x,v) = sup [<v,p> - b(x,p)J.
pEP

( 1.1)

In optimal control theory the function b appears, under slightly modi
fied circumstances, as the Hamiltonian, corresponding to a Lagrangian func
tion a. A sufficient condition for seminormality, which can already be found
in the work of Tonelli (1921), is as follows.

Theorem 1.3. If for x E X the following holds:

a is sequentially l.s.c. at every point of {x} x V,

a(x,·) is l.s.c. and convex on V,

and if there exist a function h: V ~ (_oo,+ooJ and 0 > 0 such that

h is inf-compact on V for every slope,

a(y,v) ~ h(v) for every y EX, d(y,x) < 0, and every v EV,

then

a is seminormal at every point of {x} x V.

(1.2)

(1. 3)

Roughly speaking, the above "superlinear" growth condition allows the
interchange of monotone limit and Fenchel conjugation in (1.1). A more
subtle result of this kind is given next, where we consider seminormality of
a function on X x V x E with respect to the framework consisting of (X,d)
and (V x E, P x E) paired by the duality

«(v,A), (p,q»> = <v,P> + Aq.

This function is as follows. Let h: V ~ [0,+001 and h': [0,+00) ~ [O,+ooJ
be given functions, and define the function a

l
: X x V x E ~E, £ > 0, by

,£

a l (x,v,A) = max (a(x,v),A) + £h(v) + £h'(max(-A,O)).
,£

Theorem 1.4. If for x EX (1.2)-(1.3) hold and if

h is convex and inf-compact on V for every slope,

h' is nondecreasing, l.s.c. and convex on [0,+00) with lim h'(y)/y +00,
y~

then

a l ,£ is seminormal at every point of {x} x V x JR.

2. SEMINORMALITY OF MULTIFUNCTIONS

Following Cesari (1966), we say that a multifunction Q: X t V (Which
may have empty values) has property (Q) at a point x E X if
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Q(x) = n cl co u{Q(y) : y EX, d(y,x) < O}.
0>0

Let XQ: X x V + {O,+oo} be the indicator function of Q. The next result

- which is new - is a direct consequence of (1.1).

Theorem 2.1. For every x E X the following are equivalent:

Q has property (Q) at x,

X
Q

is seminormal at every point of {x} x V

In fact, the proof of this result reveals that the seminormal hull of
XQ is precisely the indicator function of the multifunction defined by the

right-hand side of (2.1). Let us illustrate the usefulness of Theorem 2.1
by an example:

Example 2.2. Suppose that P is a Banach space. Let f: P +m be a func
tion which is locally Lipschitz near x E P. Then the generalized gradient
multifunction af(') in the sense of Clarke (1975), defined in a neighborhood
N of x, has property (Q) at x. To see this, we take X = N, V = dual of P
(with weak star topology), a = indicator function of af('), b = generalized
directional derivative in the sense of Clarke (1975). The desired result
then follows from Proposition 1.2 and Theorem 2.1, since b is u.s.c. on X
in the variable y (by definition) and convex and continuous in the variable
p (by the Lipschitz condition).

Our next result complements Theorem 2.1; in a more rudimentary form it
can be found in Cesari (1970).

Theorem 2.3. For every x E X the following are equivalent:

a is seminormal at every point of {x} x V,

the epigraphic multifunction Qa : X ::: V x m of a has property (Q) at x
(here Q (y) = epigraph of a(y,.)),

a

3. SEMINORMALITY OF INTEGRAL FUNCTIONALS

w~ suppose now in addition that X, V and Pare Suslin spaces for their
respective topologies. Let (T,T,~) be an abstract a-finite measure space.
Let (X,d) be the space of all (T,B(X))-measurable functions from T into
X, equipped with the essential supremum metric d, and let (V,P,<-,-» be a
pair of decomposable vector spaces of equivalence classes of scalarly ~

integrable functions going from T into V and P respectively, such that for
every v E V, pEP the integral in

<v,P> = IT <v(t),p(t» ~(dt)

is well-defined and finite (cf. Castaing-Valadier (1977), Ch. VII for some
details). Let.e: T x X x V +JR be a given function. By outer integration
we define the integral functional I.e: X x V + m:

I.e(x,v) = IT .e(t,x(t) ,v(t)) ~(dt).

Seminormality of I.e is def:i.ned with respect to the framework consisting of
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(X,d) and (V,P,<·,·». The main result of Balder (1983) is as follows.

Theorem 3.1. If for x E X the following holds: there exist Po E P,

¢O E P, ¢O E Ll(T,T,~) and 6 > 0 such that for ~-a.e. t E T

i(t,y,v) ~ <v,PO(t» + ¢O(t) for every y EX, d(y,x(t)) < 6,

and every v E V,

i(t,·,·) is seminormal at every point of {x(t)} x V,

then

Ii is seminormal at every point of {x} x V.

Conversely, if (3.1) and (3.3) hold and if

i is T x B(X x V)-measurable,

Ii(X,.) is not identically equal to +00 on V,

then (3.2) holds.

In the terminology of Balder (1983), Theorem 3.1 shows that seminormal
ity in the small (3.2) and seminormality in the large (3.3) are equivalent
under broad conditions. We can use this result to shed new light on the
(sequential) lower semicontinuity properties of Ii' First, in the spirit

of Balder (1984), we define a subset Vo of V to be almost Nagumo tight if

there exist a sequence {B.} in T, monotonically decreasing to a ~-null set,
J.

and a sequence of T x B(V)-measurable functions h.: T x V ~ [O,+ooJ such that
J.

for every i E]'J'

sup IT'B h.(t,v(t)) ~(dt) < +00 ,
vE V

o
i J.

and for ~-a.e. t E T

composed of

Ii (x,v,A)
1

here seminormality is defined with respect to the framework
(X, d) and (V x L

l
(T ,T , ~ ) , P x Loo (T ,T ,~), «.,.»), where

h. (t, .) is convex and inf-compact on V for every slope.
J.

Examples of almost Nagumo tight subsets of V include weakly converging or
merely uniformly Ll-bounded sequences in Ll(T,T,~;V), in case V is a sep
arable reflexive Banach space (cf. Brool~s - Chacon (1980)).

We arrive at lower semicontinuity of Ii via a stronger seminormality

property of the integral functional Ii: X x V x Ll(T,T,~) ~E, defined by
1

:: IT max (f.(t,x(t),v(t)),A(t)) f.l(dt);

«(v,A),(p,q»> :: IT [<v(t),p(t» + A(t)q(t)l ~(dt).

Theorem 3.2. If for x EX, Vo c V and LOc Ll(T,T,~) the following

holds: for ~-a.e. t E T
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i(t,·,·) is sequentially l.s.c. at every point of {x(t)} x V,

i(t,x(t),') is l.s.c. and convex on V,

and also

Vo is almost Nagumo tight,

{max (-A,O): A E LO} is uniformly ~-integrable,

then there exists a function J: X x V x Ll(T,T,~) +~ such that

J is seminormal at every point of {x} x V x Ll(T,T,~),

J(y,V,A) = Ii (y,V,A) for every y E X, v E VO' A E LO .
1

This coincident seminormality result follows from Theorem 1.4 and the
implication (3.2)=(3.3) in Theorem 3.1; it immediately implies a well-known
semicontinuity result for the integral functional Ii' Conversely, using the

implication (3.3) = (3.2) of Theorem 3.1, one can derive necessary conditions
for such lower semicontinuity. We refer to Balder (1983) for details.

REFERENCES

Balder, E.J. (1983). On Seminormality of Integral Functionals and Their
Integrands, Preprint No. 302, Mathematical Institute, Utrecht. To
appear in SIAM J. Control Optim.

Balder, E.J. (1984). A general approach to lower semicontinuity and lower
closure in optimal control theory. SIAM J. Control Optim. 22:570-598.

Brooks, J.K. and Chacon, R.V. (1980). Continuity and compactness of mea
sures. Adv. Math. 37:16-26.

Castaing, C., and Valadier, M. (1977). Convex Analysis and Measurable
Multifunctions. Springer-Verlag, Berlin.

Cesari, L. (1966). Existence theorems for weak and usual optimal solutions
in Lagrange problems with unilateral constraints. I. Trans. Amer. Math.
Soc. l24:369-412.

Cesari, L. (1970). Seminormality and upper semicontinuity in optimal con
trol. J. Optim. Theory Appl. 6:1l4-137.

Cesari, L. (1983). Optimization-Theory and Applications. Springer-Verlag,
Berlin.

Clarke, F.R. (1975). Generalized gradients and applications. Trans. Amer.
Math. Soc. 205:247-262.

McShane, E.J. (1934). Existence theorems for ordinary problems of the cal
culus of variations. Ann. Scuola Norm. Sup. Pisa (2) 3:181-211, 287
315.

Tonelli, L. (1921). Fondamenti di Calcolo delle Variazioni. Zanichelli,
Bologna.



THE GENERAL CONCEPT OF CONE APPROXIMATIONS IN
NONDIFFERENTIABLE OPTIMIZATION

K.-H. Elster and J. Thierfelder
Technical University of Ilmenau, Am Ehrenberg, 6300 Ilmenau, CDR

1. INTRODUCTION

General optimization problems connected with necessary con

ditions for optimality have been studied by many authors in

recent years. Since Clarke (1975) introduced the notion of a

generalized gradient and the corresponding tangent cone, numer

ous papers have been published which extend standard smooth and

convex optimization results to the general case.

In this paper we show how necessary optimality conditions

may be constructed for local solutions of nonsmooth nonconvex

optimization problems involving inequality constraints.

We shall use the approach developed by Dubovitskij and

Miljutin (1965), which is closely connected with appropriate

cone approximations of sets and differentiability concepts (to

obtain multiplier conditions). Having studied the properties

of numerous published cone approximations (see Thierfelder 1984),

we propose a general definition of a local cone approximation

K and introduce the corresponding K-directional derivative and

K-subdifferential of a functional f:X -+ R. Using these notions

it is possible to derive general multiplier conditions which

turn out to be true generalizations of the Kuhn-Tucker theory

for smooth and convex optimization problems.

2. LOCAL CONE APPROXIMATIONS

Let [X,T] be a locally convex Hausdorff space and [x*,a*]

be the topological dual space of X endowed with the weak *
(star) topology. We consider the problem
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where the f. :X ..... R, iE {a} tJ I, are extended real-valued functi
1

onals.

The definition of an abstract local cone approximation is

fundamental to the following considerations since it can be used

to replace an arbitrary set by a simple structured set. More-

over, the K-directional derivative leads to generalized differ

entiability for an extended real-valued functional.

Defini tion 2.1. The mapping K: 2X
x X ..... 2X is called a local cone

approximation if a cone K(M,x) is associated with each set

Me X and each point x E X such that

(i) K(M-x,O) = K(M,x)

(ii) K(MnU,x) = K(M,x) \j UE U(x)

(iii) K(M,x) X if xE int M

(iv) K(M,x) f3 if x~M

(v) K(Ij>(M),Ij>(x)) = Ij>(K(M,x))

(vi) O+M C O+K(M,x)

Here U (x) is the system of neighborhoods of x, Ij> : X -+ X is

any linear homomorphism, and the recession cone O+M of a set

Me X is defined by

O+M : = {y E X1M + ty eM lit> O} X

Condition (i) represents the invariance of the cone appro

ximation with respect to simultaneous translations of the set

M and the point x. Without loss of generality it can be as

sumed that the vertices of the approximation cones are located

at the origin.

Conditions (ii)-(iv) express local properties of the cone

approximation. Hence, the cones are determined completely by

the behavior of the set M on an (arbitrarily small) neighbor

hood of x. In particular K(X,x) = X and K(f3,x) = f3 for each

x EX.

Condition (v) requires invariance of the cone approxima

tion with respect to any linear homeomorphism (such as rotation

and reflection).
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Condition (vi) gives a relation between the recession cones

of the set M and the cone K(M,x). This property is used to

prove certain propositions concerning K-directional derivatives

(cf. the proof of Theorem 3.1).

It can easily be shown that well-known cone approximations

such as the cone of feasible directions, the cone of interior

displacements, the cone of adherent displacements, Clarke's

tangent cone and others (see Clarke, 1975; Dubovitskij and

Milutin, 1965; Rockafellar, 1980; Thierfelder, 1984) satisfy

conditions (i) , ... , (vi) above. The set of local cone approxi

mations defined by Definition 2.1 is therefore nonempty.

Additional local cone approximations can be constructed

using the following lemma:

Lemma 2.1. Let K(.,.) and K.(.,.), i
1

approximations. Then

1, ..• ,£ be local cone

int K(.,.), 1«.,.), conv K(.,.), X\K(X\.,.)

£ £ £
nK.(.,.), UK.(.,.), LK.(.,.)

i=1 1 i=1 1 i=1 1

are also local cone approximations.

Proof.

1. Let K(.,.) be a local cone approximation as specified in

Definition 2.1. To prove that int K(.,.) is also a local cone

approximation it suffices to prove (v) and (vi). Since ¢ is

continuous we have on the one hand

int K(¢(M) ,¢(x» = int ¢(K(M,x» C¢(int K(M,x»)

while on the other we conclude from the continuity of ¢-1 that

int K(M,x)

and hence

-1 -1
int ¢ (K(¢ (M),¢ (x») C ¢ (int(K(¢ (M),¢ (x»)))

¢ (int K(M,x» C int K (¢ (M) ,¢ (x»

Condition (vi) is true because
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O+K (M,x) C 0+ (int K (M,x))

The propositions concerning K(.,.) and conv K(.,.) can be proved

in an analogous way.

2. To prove that X\K(X\ .,.) is a local cone approximation we

consider only (vi). From O+(X\M) = -O+M we immediately obtain

O+M=-O+(X\M) C-O+K(X\M,x) = O+(X\K(X\M,x))

3. The proof of the other propositions is trivial. D
From Lemma 2.1 the set of all local cone approximations is

algebraically closed with respect to set operations such as

union, intersection and the sum of a finite family of cones,

and taking the interior, the closed hull and the convex hull,

and the double complement due to X\K(X'M,x) .

The algebraic structure of this set will not be considered

here since the aim of the present paper is to demonstrate the

usefulness of local cone approximations in deriving general

optimality propositions for nonlinear optimization problems.

3. K-DIRECTIONAL DERIVATIVES AND K-SUBDIFFERENTIALS

Let f:X-+R, xEX, If(x) I <00, and let K:2 XXRx(xxR) -+2 XXR be

a local cone approximation as specified in Definition 2.1.

Using the fact that traditional directional derivatives are po

sitively homogeneous and that their epigraphs can be considered

to be cone approximations of the epigraphs of the original func

tions, we introduce a general directional derivative of a func

tional f.

Definition 3.1. The mapping fK(x,.) ,X-+R with

fK(X,y) := inf U~ERI (y,Sl EK(epi f, (x,f(x)))}

is called a K-directional derivative of f at x.

It is known from convex analysis that the subdifferential

of a convex or a locally convex function at a point x is repre

sented by the set of all linear continuous supporting functio

nals of the (one-sided) directional derivative
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:= lim f(x+ty)-f(x)
HO t

yEX

(see Ioffe and Tikhomirov , 1979). Using the K-directional deri

vative we introduce the K-subdifferential of a functional f.

Definition 3.2. The set

is called the K-subdifferential of f at X, and the elements of

dKf(x) are called K-subgradients of f at x.

If f: X-+ R is convex and the cone of feasible directions

Z(M,x) := {yExl3:A>O liftE(O,A):X+tyEM}

is used for K(",) I then we obtain

fK(x,y) lim f (x+ty) -f (x)
Ho t

f I (x I y) lify E X

dKf (x) = {x * E X* Ix * (y) ;, f' (x I Y) lify EX}

This example shows that the notions introduced above are proper

generalizations of the corresponding notions from convex

analysis.

Now we shall derive some basic propositions.

Theorem 3.1. Let f:X-+R , xEX , !f(x) 1< 00. Then

(y ,"E;) E K (epi f I (x I f (x) ) ) }

(2) dKf(x) = {x*Ex*l(x*,-1)EK*(epi f , (x,f(x)))}

Here the polar cone K* of K is defined as

K*:= tx*Ex*lx*(y) ;, ° lifyEK}
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Proof.

1. Let (y,~) E epi fK(x,.). Then

inf {~ERI(y,~)EK (epi f,(x,f(x)))};,~

Hence for each E: > 0 there exists a "F: < ~ + E: such that

(y,"F:) EK(epi f, (x,f(x)))

Since

(0,1) EO+(epi f) CO+K(epi f, (x,f(x)))

(3.1)

from Definition 2.1 (vi), we deduce that for each E: > 0 there

exists a ~ E R which satisfies (3.1) and I~ - ~ I < E:. Thus one

inclusion is true. The reverse inclusion is trivial.

2. Using the first proposition of this theorem we obtain

{x* E X* \ (x* ,-1) (y,~) ;, 0 V(y,~) E epi fK(x,.)}

{x*Ex*I(x*,-1)EK*(epi f,(x,f(x»))} . 0

From the second proposition of Theorem 3.1 we conclude that the

K-subdifferential dKf(x) is convex and closed. Moreover, we

have

dKf(x) = d---- K f(x)conv

Hence, without loss of generality, we shall assume in the

following that K(.,.) is convex and closed, i.e., fK(x,.) is a

l.s.c. convex functional.

Theorem 3.2. Let fK(x,.) be convex and l.s.c. Then

o ~ fK(x,y) = sup {x*(y) IX*E dKf(x)} VyEX,
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K
:3:U(O):f (x,y);;,1 VyEU(O) => dKf(x) compact and

fK(X,y) =max {x*(y) IX*E dKf(x)} VyEX.

Proof.

1. Let
Kf (x,.)

dKf (x) =

and thus

K K
f (x,O) ~ O. In the case when f (x,O) = +00 we have

= +00 from the assumptions of the theorem. Hence

X*. In the case when fK(x,O) 0 the functions

K *(f (x,.)) (.) are proper and, moreover,

Kf (x,.)

where (fK(x,.))* is the Fenchel conjugate function of fK(x,.).

If, conversely, dKf(x) t- ro, then from fK(x,.) ~x*(.), X*EdKf(x),

we obtain fK (x, 0) ~ o.
K - K

2. Let f (x,O) 0, i.e., f (x,.) is proper. Now we have

and

K * *(f (x,.)) (x) * Ksup {x (y) - f (x, y) lyE X}

100

0 if x* E dKf (x)

otherwise ,

*X d f(x) (x )
K

K ** * * I *(f (x,.)) (y) = (X
dKf

(x)) (y) = sup {x (y) x E dKf(x)}.

Use of the Fenchel-Moreau theorem leads to assertion (2) of the

theorem.

3. If A:= {yExlfK(x,y).::: 1} :JU(O), then

C {x*Ex*lx*(y) < 1 VyEU(O)}
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From the Alaoglu-Bourbaki theorem and the fact that dKf(x) is

closed, we deduce that dKf(x) is compact. Using proposition (2)

we obtain assertion (3). 0

We shall now look at the connection

directional derivatives fK(x,.) and fint

~he generalized subdifferentials dKf(x) and dint Kf(x).

Theorem 3.3. Let fK(x,.) be convex and l.s.c. Then the follow

ing properties hold:

(1) If dom fint K(x,.) t ~ then

fK (x,y) = lim inf fint K(x,y) ¥ Y E X
Y -+ Y

(2) If y E dom fint K(x,.) then

int K Kf (x,y) = f (x,y)

Proof.

1. From the assumptions of the theorem we have int K(epi f,

(x,f(x))) t~. Using

K(epi f, (x,f(x))) int K(epi f, (x,f(x)))

we obtain assertion (1) by Theorem 3.1.
int K . int K2. If yEdom f (x,.) then, Slnce f (x,.) is u.s.c.,

there exists a neighborhood of y such that f int K(x,.) is

bounded above on that neighborhood. Hence fint K(x,.) is con

tinuous at y, and using assertion (1) we obtain assertion (2).0

To formulate multiplier conditions for problem (P) in

terms of the K-subdifferentials and the K-directional deriva

tives of the functionals concerned, we need a relation linking

linear combinations of the K-subdifferentials and the corres

ponding linear combinations of K-directional derivatives for
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a finite family of functionals. In convex analysis we have

such a theorem (the Moreau-Rockafellar theorem) but this is not

applicable here. As a first step in developing an appropriate

theorem we set

oo+a

.0'+M

Theorem 3.4.

o . a o \l'aER

{O} \I'M C X (or Me x*)

( 1 ) \1'>">0

(2)
m m K.

OE I dK f. (x) ~ I f.l(x,y)::: 0 \l'yE X
i=1 i 1 i=1 1 -

(3 )
K.

Let f. 1 (x,.), i = 1, ... ,m, be convex.
1

m Ki
Y1 E n dom f. (x,.)

i=1 1

If there is a

K.
such that all the f i

l except one are continuous at

Y1' then

m K.
I f.l(x,y) > 0

i=1 1

m
\l'YEX~OE I dKf.(x)

i=1 i l

4. OPTIMALITY CONDITIONS

To prove necessary conditions for optimality in problem (p),

we have to approximate sets which can be described in terms of

the level sets of a finite number of extended real-valued func

tionals by cones. Since the cone approximations defined by

Definition 2.1 are determined only by the geometrical form of

the corresponding sets, we may introduce certain cones in the

same way as in smooth (or convex) optimization, where the growth

behavior of the functionals describing the sets is taken into

account by the K-directional derivatives.

Let f:X-+R, f.:X-+R, iEIl, where 11 is a finite index set.
1

We assume all functionals to be finite at the point x EX.
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Definition 4.1.

(1) The set

is called the cone of descending directions of f at x.

(2) The set

is called the linearizing cone of f at x.

(3 ) A~(X) := n A~. (x), C~(X) := n C~. (x)
iE~ 1 iE~ 1

A~(X) C~(X) x

We shall now give inclusions relating these sets, making

especial use of the cone int K(.,.).
KLemma 4.1. Let f (x,.) be convex and l.s.c., and let

A~nt K(x) ~~. Then

( 1 ) int C
int K(x) = Aint K(x) C c~nt K(x) C Aint K(x)
f f f

int K K K A~(X)Cf (x) C Af (x) C Cf (x) =

int Cint K(x) = int K A~nt K(x) K
f Cf (x) , c Af(X)

Cint K(x) K Aint K(x) K
C Cf(x), = Af (x)f f

(2) All of the above sets are convex cones.

We also introduce a cone for which a dual relation holds

with respect to the linearizing cone.

Definition 4.2. The set

B~(X) :={x*Ex*lx*E L A.dKf.(x), A. >0, iE~}
" iE~ 1 1 1 =

is called the cone of K-subgradients of the functionals f.,
1
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Kf. (x, 0) = 0
~
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iErl,atx.

Using the polar cone of B~ we obtain

(B~(X))*CC~(X)

This inclusion can be sharpened by assumptions concerning the

convexity and closure of the cone K.
KLet f. (x,.) be convex and L s. c .• and let
~

ViErl. Then

( 1 )

(2)

(C~ (x)) *

K *(B
rl

(x) )

K
Brl (x)

We shall assume that the following conditions are satis

fied at xEX:

If.(x)l<oo ViE{O}UI
~

f i is u.s.c. at x ViEI\I(x)

( 4 • 1 )

(4.2)

where I(x) := {iEI[f. (x) = O} is the index set of active con-
~

straints at x. Condition (4.1) ensures the K-directional dif-

ferentiabili ty of f at x and (4.2) implies that only active con

straints have to be taken into account in the local description

of the feasible set S.

Lemma 4.3. If xES is a local solution of (P), then there

exists a neighborhood V(x) such that

where

:= {xExlf (x)<f (x)}o 0

In tne approximation of the sets N (fo ,x) and S n V (x) we use the

classical tangent cone
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T(M,x} :={yExIVU(y} VA>03:tE (O,A) 3:yEU(y} X+tyEM}

and the cone of interior displacements

D(M,x} :={yEXI3:U(y}3:A>O VtE(O,A}VyEU(y} :X+tyEM}

Theorem 4.4. Let xES be a local solution of (P). Then

analogous way.

hand we have

( 1 )

(2 )

Proof.

D
A

f
(x) n T (S ,x)

o

TAf (x) nD(S,x}
o

We shall only prove (1), since (2) may be proved in an
DAssume YEAf (x) nT(S,x}. Then on the one

o

\TU (y ) V A > ° 3: t E (0, A) 3: YE U(y) : x + t yES (4.3)

while on the other, by Theorem 3. 1, there is a real t;, < 0 such

that (y,t;,) ED(epi f , (x,f (x}}), Le.,o 0

and hence

(4.4 )

<f (x) and thus XEN(f ,x}.o 0
solution of (P). 0

From (4.3) and (4.4) we conclude that for each neighborhood V(x}

of x there exists a point x := x + ty E S n V (x) such that f (x) <
o

Then by Lemma 4.3 x is not a local

A disadvantage of the optimality conditions given in

Theorem 4.4 is that the cones which occur are in general not

convex and hence the assumptions regarding their separability

are not satisfied.

We therefore assume that the cone approximations have the

following additional properties:



(V1 )

(V2 )

(V3 )

(V4)

(V5 )

K(.,.) convex and closed,

x E M ~ 0 E K (M , x) ,

K(.,.) CT(.,.),

int K( . , .) C D( . , . ) ,
K

AI (x) (x) C K (S,x) .
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Now Theorem 4.4 leads immediately to the following result:

Theorem 4.5. Let xE S be a local solution of (P). Then

(1)

(2)

Aint K(x) nK(S,x)
f o

KAf (x) nint K(S,x)
o

Since the cones under consideration are convex, we can formulate

an optimality condition in the dual space x*.

Theorem 4.6. Let xES be a local solution of (P). If one of

the two conditions

(B1) dom fint K(x,.) nK(S,x) t- ~
o

K(B2) dom f o (x,.) n int K (S,x) t- fJ

is satisfied. then 0 E dKf
o

(x) + K* (S ,x)

Proof.

1. Let (B1) be satisfied. Then from Theorem 4.5 (1) we have

fint K(x,y) ~ 0 > VYEK(S,x)
o

(4.5)

and hence, using the lower-semicontinuity

::: too. (Here fK (x, .) ::: too means that fK (x, .)

Obviously dKfo(x) t- fJ, since otherwise by Theorem 3.2 we would

have fK(x,O) = -00
o 1<

property, f (x,O)
o

has no finite values.) It follows from Theorem 3.2 that

fint K _ too and hence by (4.5) we obtain
o

+00 VYEK(S,x)

in contradiction to (B1).

Now we construct a set MC X x R defined as follows:
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M:= (K(S,x) x R) nepi fint K(x,.)
o

From (B 1) we have M:} 13 and by Theorem 3.1

(K*(S,x) x {a}) +K*(epi f ,(x,f (x)))
o 0

From (4.5) we obtain, for (0,-1) E x* x R, that

(4.6)

(0,-1) (y,s) -s~O "i(y,s)EM

Le,., (0,-1) EM*.

Making use of (4.6), we can deduce the existence of an

x* E K* (S ,x) such that

(-x* ,-1) E K* (epi f , (x,f (x)))o 0

i. e., -x* E dKf o (x). This proves the assertion of the theorem

under assumption (B1).

An analogous proof can be developed taking (B2) instead

of (B1). 0

Remark. Theorem 4.6 is stated for certain special cases (K is

Clarke's tangent cone; int K is the cone of epi Lipschitzian

directions) in Hiriart-Urruty (1979) and Rockafellar (1981).

Assuming an appropriate regularity condition

(RB1 ) * K(K (S,X)CB1(x)(X)) and (B1) or (B2),

we can deduce the existence of an optimality condition of the

Kuhn-Tucker type.

Theorem 4.7. Let xES be a local so lution of (P). If (RB1) is

satisfied, then there exist multipliers Ai?' 0, i E I (x), such

that

OEdKfo(x) + L A,dKf.(x)
iEI (x) 1 1

fK(x,y)+ L A.f~(x,y),;O
o iEI(x) 1 1

"iyEX
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The proof follows immediately from Theorem 4.6 and Theorem 3.4.

We shall now give some other regularity conditions which

are also sufficient for (RB1). Writing

(B1) or (B2) is satisfied

(R)

K
BI (x) (x)

'V i E I (x)

K
BI (x) (x)

we formulate the regularity conditions

(RB2) K* (S,x) c (C~ (x) (x)) *, (R) is satisfied,

(RB3 )

(RB4)

K
CI (x) (x) C K(S,x) , (R) is satisfied,

(R) is satisfied,

(RB5) K int K
dom f o (x, .) n AI (x) (x) I' ~

K
BI (x) (x)

Note that

(RB2) is a generalized Gould-Tolle condition (see Gould and

Tolle, 1971)

(RB3) is a generalized Abadie condition (see Abadie, 1967)

(RB4) and (RB5) are generalized Slater conditions.

The proof of the following theorem is given in Elster and

Thierfelder (1985).

Theorem 4.~.

( RB 5 ) => ( RB 4 ) => ( RB 3) ~ (RB 2 ) => ( RB 1 )

Using Theorem 4.5 and assumption (V5) we obtain optimality con

ditions of the Kuhn-Tucker type.

Theorem 4.9. Let xES be a local solution of (P). Then

( 1 ) int K K
A

fo
(x) n AI (x) (x)
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We can now deduce a proposition of the John type.

Theorem 4.10. Let xES be a local solution of (P). Then

(1) There exist multipliers

Ai ~ 0, iE {a} UI(x), not all of which vanish, such that

\ fint K( ) \' K()
1\ x,y + L A.f. x,Y':::O

o 0 iEI (x) 1 1 -

VyE dom fint K(x,.) n ( n dom f~(x,.))
o iEI(x) 1

(2) There exist multipliers

Ai~O, iE{O}UI(x), not all of which vanish, such that

K \' int KA f (x,y) + L Lf. (x,y) ~ 0
o 0 iEI(~) 1 1

KVy E dom f (x,.) n
o

( n dom f~nt K(x,.))
iEI(x) 1

An optimality condition can be derived using the condition

domf~ (x,.)n( n domf~ntK(x,.)) X
o iE{ O} U I (x) \ Ii } 1

o

Theorem 4.11. Let xES be a local solution of (P), If (B3) is

satisfied, then there exist multipliers Ai ~ 0, i E {O} U I (x) ,

not all of which vanish, such that

(1) OE L A.dKf.(x)
iE{O}UI(x) 1 1

( 2 ) LA. f~ (x, y) ~ 0
iE{O}UI(x) 1 1

VyEX

proof. Let i
o

f O. By the first assertion of Theorem 4.10

there exist multipliers A. > 0, i E { O} U I (x), not all of which
1=

vanish, such that
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int K \' KA f (x,y) + l. A.f.(x,y)~O
o 0 iEI (x) ~ ~ -

VyEX

Since (83) is satisfied, assumption (3) of Theorem 3.4 is satis

fied and assertion (1) follows from Theorem 3.1.

Assertion (1) and Theorem 3.4 (2) immediately lead to as

sertion (2).

If i o = 0 then the assertion can be proved in an analogous

way using Theorem 4.10 (2). 0

If the regularity condition

(RB6) K
(AI (x) (x) ~~) and (B3)

is satisfied, then we obtain an optimality condition of the

Kuhn-Tucker type from Theorem 4.11.

Theorem 4.12. Let xES be a local solution of (P). If (RB6)

is satisfied then A ~ 0 in Theorem 4.11.o
Proof. Let us assume that A = O. Then it follows that

o

L A.f~(x,y) ~O VyEX
iEI(x) ~ ~ -

where the multipliers Ai ~ 0, i E I (x), do not all vanish. This

contradicts A~ (x) (x) ~ ~ and thus (RB6). 0

5. CONCLUDING REMARKS

In this paper we give certain optimality conditions which

are true generalizations of well-known results derived for

smooth, convex and Lipschitzian optimization problems. We ob

tain the same results if concrete cone approximations are used.

Let (P) be a convex optimization problem: we assume that

the functionals f., i E {O} U I, are convex and continuous at the
~

point xES.

If K(. ,.) is the classical tangent cone T(.,.) and if

int K(.,.) is replaced by the cone of interior displacements

D(.,.), then we can prove

T
fi(x,y) lim

UO

f. (x+ty) - f. (x)
~ ~

t
I

fi(x,y) VyEX
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and hence

dTf. (x) = dDf. (x) = dt. (x)
1 1 1

where the df. (x) are subdifferentials of the type used in con-
1

vex analysis.

[Note: if McX is convex then D(M,x) is an open convex cone,

T(M,x) is a closed convex cone and D(M,x) C int T(M,x). In the

case D(M,x) I ~ the equality holds.]

It is clear that (B1) is always satisfied due to 0 E T (S ,x)

and dom f~(x,.) = X. Since all the functionals are subdiffer

entiable the regularity conditions take the following form:

(RB1 ') T*(S,x) CBI(x) (x) := {x*Ex*lx*E L A.df. (x)
iEI(x) 1 1

A. > 0, i E 1.( x) }
1

(RB 2 I ) T* (S, x) C {y E X If ~ (x, y) ~ 0

and BI(x) (x) is closed.

(RB3') T(S,x) :::>{YExlf~(x,y) ~O

and BI (x) (x) is closed.

In the special case when

ViE I(X)}*

ViE I (x)}

D
AI (x) (x)

T
AI (x) (x) {y I f ~ (x, y) < 0

1
ViE I (x)} I ~ ,

we have (see Lemma 4.1)

* I I } *(C I (x) (x) ) : = (n y EX f i (x, y) ~ 0 )
iEI(x)

(n (df.(x))*)*
iEI (x) 1

L (df.(x))**
iEI (x) 1

L cone Hi (x)
iEI (x)

BI (x) (x)
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(Note that 0 E df. (x) ~iE I(x) from our assumption of convexity
l

and the sets cone (af. (x)) are closed due to the compactness of
l

the subdifferentials.) Hence BI(x} (x) is closed.

Since dom f~(x,.) = X holds for all iE{O}UI(x), condition
l

(B3) is satisfied. Moreover, the regularity conditions (RE4),

(RE5) and (RB6) take the form of the well-known Slater condition

3yEX: f~(x,y) < 0 ~iEI(x}

Then Theorems 4.10 and 4.11,and Theorems 4.7 and 4.12, are the

theorems given by John and Kuhn and Tucker, respectively.

Similar results can be obtained in the smooth case and,

furthermore, in the Lipschitzian case if Clarke's tangent cone

is used for K ( . , . ) .
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AN ALGORITHM FOR CONVEX NDO BASED ON PROPERTIES OF THE
CONTOUR LINES OF CONVEX QUADRATIC FUNCTIONS

Manlio Gaudioso
CRAI, Via Bernini 5,87036 Quattromiglia de Rende, Italy

1. INTRODUCTION

The objective of the paper is to suggest a model algorithm for the un

constrained minimization of a Lipsehitz convex function of several variables,

not necessarily differentiable.

The proposed algorithm stems from a property of the contour lines of the

convex quadratic differentiable functions which allows us to represent the

ordinary Newton's direction in terms of information about the gradient and

the objective function values.

This idea is extended to the nondifferentiable case by means of somere

cent results on the approximate (or perturbed) first order directional deri

vatives (Hiriart-Urruty 1982, Lemarechal and Zowe 1983).

Nevertheless, in order to attain to an implementable method, a number

of simplifying assumptions are to be introduced. Consequently the resulting

numerical algorithm can be considered as belonging to the family of the well

known bundle methods (Lemarechal 1977, Lemarechal Strodiot and Bihain 1981,

Gaudioso and Monaco 1982).

In section 2 the basic ideas underlying the approach are presented and

in section 3 a model algorithm, together with its convergence properties, is

outlined.

2 . THE APPROACH

The following proposition provides a simple characterization of Newton's

direction for convex quadratic functions.

Proposition 1. Given a convex quadratic function f:R
n

_ > R, any point

x E R
n

and the gradient g A Vf (x), the solution d* of

the problem

T
min g d (1)

d

s.t. f(x+d) = f(x)

is a scalar multiple of Newton's direction d at the
N

point x(in fact d* = 2d
N

)
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Proof. Straightforward application of first order optimality conditions.

A pictorial representation of the proposition is given in fig. 1

T
-----::;;:"'"'2......:------g d min

T
--~'-----f-,---;,---\----- g d= const

T
--""""'~=-- g d= 0

x

g

In order to explore the potential use of the property in the framework

of convex non smooth optimization the following proposition, proved by Hiriart

Urruty (1982) andLemarechalandZowe (1983) is particularly helpful:
Proposition 2. Given f:Rn--> R, f Lipschitz and convex, then, for any

n n
x e R , d e R , the following holds:

f (x+d) = f (x) + max {f' (x,d) -d
E

E > 0

where f~(x,d) is the approximate (or perturbed) directio

nal derivative of f at the point x along the direction

d and is defined as

f(x+td) - f(x) + E
f~(x,d) = inf t

t>O

maxf' (x,d)
E

ve d f (x)
E

On the basis of proposition 2, problem (1) may be formally rewritten as

It is important to note that f' (x,d) is the support function of d f(x),
E E

the E-subdifferential of f at the point x, i.e.

T
v d

min f' (x,d)
d

s.t. max

E >0

o
(2)

As a result of this reformulation, problem (2) appears suitable, at least

theoretically,fordefining a direction finding step in an algorithm~c context

for convex non smooth optimization. On the other hand it provides Newton's di

rection if applied to a quadratic function.

Nevertheless, in order to devise an implementable algorithm, modlfications

are to be introduced in the definition of the problem (in fact it requires

complete information about the E-subdifferentials).

In this aim, consider the point x, g e df(x) and a bundle of points and

(i) (i) (i)
subgradients x g e df(x ), i e I (x may be the current estimate of the
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(i)
x 's are points previously obtained in some

known that

where

[
(i) (i)T (i)]

- f (x ) + 9 (x-x ) > 0

iterative de-

It is easy to show that the following problem

min f' (x,d)
d ( 3)

(i)T
< 0 Vi Es.t. 9 d - a, I

~

is a relaxation, in the usual sense, of problem (2). (In fact every d feasi
ble for problem (2) is also feasible for problem (3) as consequence of the
property of the approximate (perturbed) directional derivative of being the
support function of the S-subdifferential) .

Moreover, taking in consideration the properties of the ordinary deriva
tive, problem (3) may be further modified:

min v

d,v
(i)T

i
(4)

s.t. 9 d < v e C

(i) T
0 i9 d - a < e F

i

where C and F are respectively the set of indices of subgradients related to
points "close" to x and "far" from x in the sense that will be defined later.
Obviously C U F = I.

Bounded solution of problem (4) requires dual feasibility, which implies

the existence of multipliers Ai' i e C and ~i' i e F such that:

L
' (i) ~ (i)
"-.g + ~ ~,g =0
~ ~

ieC ieF

LA, = 1
~

iec

Therefore, as usual in
d needs to be introduced. A

min
d,v

bundle methods, some limitation on the variable
possible way is the following:

v + ..!. dTd
2

(i)T
(p)s.t. 9 d < v i ec

(i)T
0 ie9 d - a < F

i
The dual (D) of problem (p) is obtained as
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(il L ~ ,g (i) II
L

min II L A,g + + L ~, ex
l. l. L l. i

i e C i e F i e F

L A = (D)
i

i e C

3. THE ALGORITHM

\ > 0

~i > 0

i e C

i e F

Before the description of the possible use of the solution of problem (P)

(or, equivalently, (D)) in the direction finding step of an algorithm for the

minimization of convex non smooth functions, some properties of the optimal

solutions of (P) and (D) are listed.

Primal and dual optimal solutions are related in the following way:

d* = -(

i e C

* (il
A,g +

l.

*v *~ ex
i i

i e F

Note also that v* is non positive and v*=O implies that II L
i e C

i.e. that some approximate optimality condition is satisfied.

Moreover the following proposition can be easily proved

Proposition 4. *If v >

II L
i e C

- n ' n being any positive number, then

<g(il ll < In (1 +~)
ml.n

where k is the upper bound on the norm of the subgradient

and ex, is defined as min ex
ml.n i

ieF

The properties of the solution of the problems defined above are useful

in order to define the direction finding step in a descent algorithm for the

minimization of a Lipschitz convex function f:Rn---~R which in addition is

supposed to be not unbounded from below.

One iteration of the algorithm is summarized by the following steps,

where x is assumed to be the current estimate of the minimum, ge df(x) and

(i)
a bundle (eventually empty) of subgradients g , i E F is available, toge-

ther with the corresponding scalars ex. defined in the previous section.
l.

The positive parameters t, m
1

and m
2

are given, 0 < m
2

< m
1

< 1; initial

(1)
ly c= {1} and the subgradient g is conventionally indicated by g

STEP 1. Solve the quadratic programming problem

1 T
min v + '2 d d

v,d
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(i) T
i e Cs.t. g d < v

(i)T
0 ig d - Ct. < e F

~

and obtain d* and v*.
*Perform a termination test on the value of v .

STEP 2. *Line search. Perform a line search along d finding t > 0 and

such that

*> m v
1

and either

a) f(x + td*) - f(x) < m
2
tv*

or

b) t Ild*112 ~ t
In case a) move to the new point x+= x + td*, update the set F, and

iterate.
+

In case b) consider the point x as a point "close" to x, update the

set C, create accordingly the new quadratic programming problem and

return to Step 1.

The following propositions hold; they are similar to propositions holding

in classical bundle methods.

Proposition 5. After a finite number of "serious steps" (case a) of the

line search) the quantity - v* is reduced below any po

sitive fixed value, provided that f is not unbounded from

below.

Proof. Suppose that {x(k)} is the sequence of points obtained as results

of successfully line searches, correspondent to the sequences

{v*} and {t}.
k k

For any integer n the following holds

(x+1) (0)
f (x ) - f (x ) <

n
m ~ t v*

2 ~ k k
k=O

n

< m/ ~
k=O

*v
k

< 0

Since f is bounded from below, it follows that

{
+ I 1<1

2

II:~II -;> 0 which in turn implies that -:-:-lld--:;:;-:-11:-::2:- --;> 0, but

* * 2
Ivkl ~ Ildkll hence v~-> O.

stop-

line

Proof.

Proposition 6. At any point x which does not satisfy some prefixed
*ping criterion on the value v , a descent direction is

found in a finite number of steps.

It is easy to verify that, as consequence of the condition

+T * *g d* > m v > v , in case of repeated failures of the
1
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search (case b)) an increasing sequence of values {v:} is obtai

ned. Moreover this sequence is bounded from above by zero.

To prove that v:---~ 0, note that, being v*=

also the sequence {II d* 11}'is bounded .
. k'

Thus consider a convergent subsequence of {v:} and {d:~

and let v * and d* be the successor of v* and d* in such subsequence.
s 5 k k

Assuming that g+ is the subgradient evaluated along the direction d *,
k

the following hold:

+T *
d*g k > m1vk

+T * *g d < v
s s

hence

+T * *g (d - d )
s k

< v*- m v*
s 1 k

the meaning of "point close to x" and
*the value of v as an E-optimality

and, passing to the limit, the result follows.

The proposition above ensures that after a finite number of failed line

searches either a successful one is performed or the value -v* is reduced be

low any positive prefixed value.

The foillowing proposition clarifies

justifies the termination test based on

condition.

Proposition 7. Any point obtained as result of case b) of the line search

provides an £~subgradient at the current point, for

E = 2tk (k is the upper bound on the norm of the subgra~

dient) .

Proof. + *Consider a point x = x + td , obtained as result of a line

search performed along the direction d* starting from point x.

Let g e ()f (x) and that case b) of the line search occours

(t II d* 112~ t) .
+ +

Any subgradient g at the point x belongs to the ex-subdifferen-

tial of f at point x for ex defined as

+ +T
ex = fix) - fix ) + tg d* > 0

On the other hand the following inequality holds:

then

*T +
ex~ td (g - g) < 2kt

4. CONCLUSIONS

The paper presents some ideas to modify the bundle methods for convex

optimization. Guidelines for definition of numerical algorithms are discussed
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as well, although a number of open questions (deletion rules, possiblerestric

ted step approach, appropriate methods for solving the quadratic programming

subproblem) deserve some research effort in order to guarantee numerical ef

fectiveness.
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A NOTE ON THE COMPLEXITY OF AN ALGORITHM FOR
TCHEBYCHEFF APPROXIMATION

A.A. Goldstein
Department ofMathematics, University of Washington, Seattle, WA 98195, USA

ABSTRACT

Some remarks are given concerning the complexity of an exchange algorithm
for Tchebycheff Approximation. We consider an "exchange" algorithm that con
structs the best polynomial of uniform approximation to a continuous function
defined on a closed interval or a finite point set of real numbers. The first. and still
popular. class of methods for this problem have been called "exchange algorithms".
We shall consider the simplest method of this class, a blood relative of the dual sim
plex method of linear programming. and a special case of the cutting plane method.
The the idea of the method was initiated by Remes. [1] and [2]. See also Cheney [S].
for further developments. Klee and Minty [4], (1972) showed by example that the
number of steps in a Simplex method can be exponential in the dimension of the
problem. Since then considerable effort has been expended trying to explain the
efficiency experienced in practice. Recently, probabilistic models have been
assumed that yield expected values for the number of steps with low order mono
mial behaviour. See for example. Borgwardt [5]. and Smale [6]. Alternatively, one
might ask can one somehow classify the good problemS from the bad ones. We
believe that this may be possible for the exchange algorithm.

Let T = [0,1]. or a finite subset of distinct points of [0,1] with card T > n+ 1. Let A(t)
= (l,t ..... t n - 1). Assume that f is in C 1(T). There exists an n-tuple x· minimizing
the function F(x) = max!I[A(t), xJI - f(t) : t g Tj, where [,] denotes the dot product.
Given g > 0 we seek x k to minimize F within a tolerance of g. Needed in exchange
algorithms is the maximization of I[A(t),x] - f(t)1 for fixed x. A novelty of the formu
lation below is that this maximization can have an error ~ TJ, where TJ depends on g.
Most of the arguments however are borrowed from [1]. [2] and [S]. The number of
steps k to ensure that F(xk)-F(x·) < g will be shown to be proportional to 10g(1/g)
and to 1/19. where 19 > 0 is a number that depends on f and n. Some remarks about
the behavior of 19 will be made. At k= 1 in the algorithm that follows we take
ti1=.5(1-cos(i7T/n). D:::;i~n. See II below.

ALGORITHM
1) At the kth iteration a positive number TJ and a set of n+ 1 points

D~t~ ~ tt, ...• ;;; t~~l is given. Solve the equations
j=n

(-l)iM k = ~AJ(mx} - f(m, D~i~n
j=1

for (xk .Mk ), where Mk >0. (If Mk<0, replacek 1}i by (_l)i+l ) .
2) Calculate P' such that IR (t ) I= I[A (p' ),xk ]-f (p') I ~ F (x k )-TJ. If

IR (p') I=M k
, stop.

S) If IR(4)!>Mk , replace one of the points t/, D~i~n, by "4 in such a way
that R(t) alternates signs on the points t~ < t~ . ... , < t~.

4) Return to 1) with k+1 replacing k.

Supported in part by NIH Grant RROI243 at the University of Washington.
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CLAIM: There exists a positive number 19 such that given t: > 0 and a non-negative

number T) < t:19/{1+ 19), and a positive integer k >
19- I[log19- I+log {R (ll)-M1)+logt:-I]+log (1+19) then for some s,
1~s~k+1, F{xS)-F(x·)<t:.

PROOF The inequalities Mk~F(x·)~F{x) will be used below. If
IR(4)I=Mk , F{xk)-F{x·) ~T). Hence we stop. By [2, p.43] we may write:

i=n i=n i=n
Mk = I L: R (tt)dt{ -1)i I/{ L: dt)= L: At' IR (tt) I

i=O i=O i=O

i=n
where A,t>O, an£ At'=l.

i=O

Since IR (4) I>Mk ,it follows that Mk+I>Mk , because n values of IR (it.> I=Mk , while

the remainjpg one exceedsMk . Hence for some Af. O~j~n, Mk~1 = A}(IR{4)I-Mk )

+ Mk . Let 19 = inflAt':0~i~n;1~k~ool Assume temporarily that 19>0. Deny the claim.
Then for every s =_1.2, ... ,k+1, F{xS)-M s > F{xS)-F{x·) ::?: t:. Then F{x·)-Mk >
Mk+I-Mk ~{IR(tk)I-Mk)19 ::?: {F{x k )-T)-Mk )19 ::?: (F{x·)-Mk )19::?: {E-T)19

( E19) t:19::?: E--- 19 =-- > T).
1+19 1+19

Since M k-Mk+I~_{F{x·)-Mk )19,

F{x· )-Mk+Mk-Mk+1 ~(F{x·)-Mk){l-19) ~ (IR (4) I-Mk )(l-19)

Whence F{x·)-Mk+1 ~ {IR(ll)I-M 1){1-19)k and
F{xk+I -T)-Mk+I)19 ~ F{x·)-Mk+1 ~(IR (ll) I-M 1)(1-19)k. If F{xk+I)_T)-Mk+1 < E-T),

we have our contradiction. Choose k so that {1-19)k (R (ll)-M 1) <~. Then, using
1+19

-log{l-19»19 ,we get

k > 19- I[log-.l+logl.-+log(R (T1-M1)+log{1+19)]
E 19

It remains to show that ~ > O. Let.I=(to, ... ,t,,) and set:

M (..t..)=minlmaxll [A (ti,x]- f (t i ) I:O~i~n l:uR" l·

If .I = (tttL ... , t~) then M (..t..)=M k
• Let I. =

!.t.=(to,t l.... ,t,,):O~tO~tl~"" ,t,,~ll. I. is a compact subset of R"+I. We claim
that M(L) is continuous on I.. This follows by the continuity of f and the Vander
monde matrix if the components of .I are non-coalescing, i.e., if ti+l;tti for
O~i~n-l. If some components coalesce then M(..t..) = 0, since in this case x can be
chosen so that the polynomial [A{t), x] interpolates f at (to. . , . ,t,,). Suppose then
that l.Is l is any sequence witl:.!.. n2...n-coalescing components converging to l: and
assume that for some index i, t 1= ti + l . There are at least 1 and at most n distinct
components ofl:. Choose x closest to the origin such that:

R {l.,x)=[A {l.),x]- f (l.)=0, O~i~n.

Since maxI I[A {tf),x]- f (tDi :O~i ~n l ::?: M (LS) we have that lim M (..t..S) = 0 = Jvl (i). If
M 1 > 0 we define the compact set

S =lLET:M'~M(..t..)~minlmaxll [A (t ),x]-f (t) I:t E[O,j]l:uR" l.

If M 1 = 0, replace M 1 by M 2 . (If M 2 = 0, we have a solution to our problem.) Let G(L)
i="

= minl(ti+l-td:1~i~nl and A(..t..)=minl{di(L)/L:di(L»:O~i~nl.Since G(L) is con-
i=O
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tinuous on S, it achieves a minimum, say at i'. Because M u.') <':; MI. it follows that
Cu.:l= -y > D. Since -y > D. AU.) is continuous; it achieves a minimum of} on S. Clearly
of} ;§; of} . By the formula for d.; in Example 1 below. it is seen that of} > D.

REMARK 1 If card T = m > n, the traditional algorithm (11 = D) may be employed
and the maximization of IR(t)1 has a cost proportional to m,

REMARK 2 Assume R l:C 2[D,l], R alternates on tt, D;§;i;§;n, and R'(t) v.!!,.nishes no more
than n+1 times on [D.1]. Given JL > D such that IR"(t)1 ;§;J.L for all t l:[t,t'] where t' is
a lo~l maximum of IR(t)1 and t is the closest point of !t~, ' , , . t~l to t', Thus
ItO-t I < 1/n. By Taylor's theorem 11 = IR(t)-R(t')1 = IR"WI(t-t')2, Thus if

It -t 0 I ;§;~ then t is a satisfactory maximizer. Using the bisection method to
Jio

find t requires k steps where 2-k /n <v.!l. whence
Jio

k > [.5(log(1/n)+logJio)+log-.l]/log2
11

For each cycle this process would be applied n+ 1 times. Thus it is plausible that the
exchange algorithm can be effective,

II Some Remarks about of},

The weights !cit D~i~nl. and hence of} depend on the distribution of the points

Tk'=!t~..··.t~l, Let rn=!ti=1..(1-cos i~): D;§;i~nl, For this distribution (Example 1).
2 n

of}-I = Kn < 2n . Thus if Tk'-rn is sufficiently small. of}k'i < 4n. a pleasant complexity,
Let p .. - 1 be the polynomial of degree n-1 that best approximates f on [D,t]. The crit
ical points of p .. _1 are points of [D.1] where the magnitude of the difference of f(t)
and p .. - 1(t) is maximal. By Remark 3) below. for every n there are continuous func
tions for which the critical points induce of}-l~ 4n. By a remarkable theorem of
Kadic [7]. for any f belonging to C[D.l], the critical points of p .. - 1 are asymptotically
equal to T... Unfortunately. it is not established whether of}-I/Kn tends to 1 as n goes
to infinity. Moreover.Remark 3 and Example 3 show that for every n there is a con
tinuous function f such that the corresponding polynomial p ..- 1 of best approxima
tion has values of the weights r..; ;§; 2-(.. +1) for all but 2 values of i.

PROJECT. Given a natural number N find a family of functions FN with the property
that if n > Nand f belongs to FN then p .. - 1 has critical points near T... Likely can
didates would be power series whose coefficients Ck for k > N converged at a
sufficiently high speed. Are there others?

CLA1M 2. Suppose p .. is a polynomial of best approximation to f on [D,l] Let

E.. =llf-p.. II~. Given l: > D assume that -)E../E.._1 = 1/n2+<. Then lim ~ = 1.
n-+ CID nn

Proof. Consider approximating f(x/n) on [D. n] by Q..-l a polynomial in cos x of
degree n-1. The points corresponding to T" above are now simply
!Xk =( nk /n) : D~k;§;n l. Let Xk be the critical points of Q..-l' Kadic [7] proves that
the following inequality holds for each n. every ex, D;§;ex~.5 and every k. k=D, 1,2..... n

1/2 E ..- 1+E..IXi-Xk I ~ (nex/n )+ (nex)- arcosh E -E (A)
n-l n
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Let En = g {n }En _ 1 and assume that 0 < q{n} < 1/2. Using arcosh u = log{u +

{u 2-1}1/'2} we find setting u = l+gn and u 2-1 = 4gn/{1-gn }2 that arcosh l+gn =
l-gn l-gn

log { 1 + 2gn +2.Jg;: } ~ B~. Set o:=n -(1+2./3) and .Jg {n }= l/{n2+.}. Then
l-gn l-gn

IXk-Xk I ~ {rr+B}/n2+(2/3)t = (rr/n)(s{n» O~i~n {B}

Here s {n }={rr+B}/rrn2+2./3. Assume that sen} < 1 and k > i.

Let ~ = .5{1-cos Xi} and ti = .5{1-cos xd. Then

It:-til ~ l{sinW)(rrs{n}/n}1

with «i-l}rr/n) ~ Hn} ~ {i+l)rr/n. Also ti+l-t i = -{sin{i+.5}rr/n)(2sinrr/n},
Thus

I~-ti 1/1 ti+l-ti I ~ r{n}s{n}

1"4-tk l/jtk-tk+11 ~ g{n}s{n}

where r{n} and g{n} tend to 1 as n goes to infinity.

Since

4-~= "4-tk + tk-ti - {4-t i }

{tk-tk _l } {ti+l-t i }
J.I ~! (tk-ti) g{n}s{n} + {tk-td r{n}s{n} l

~ ! {r{n}+g{n}}s{n)l =c{n}

For each d.;-I there are n products of the form t k -ti, and since (g{n}+r{n)} is
bounded and sen} goes to 0 faster than 1/n, lim{l±c{n»n = 1. Thus

n-+~

Similarly

Whence

{l-c {n}}n = i\; s: {1+c en} }"-
1+c{n} '~ - {l-c{n}

Thus if the estimate of the above claim is realistic, we see that the class of functions
for which ~/2n tends to 1 is quite limited.

EXAMPLE 1. Assume n is even. If the points tiET" then max{d.;}/min{d.;} = 2, and
t=n

d.;/ L: d.; > 1/2n, O~i ~n.
i=O

PROOF. The points ti are symmetrically spaced with respect to tn / 2 . By a formula
due to de la Valle Poussin (see [2,p.25])

d.;-1= (t i - t 0)( t i - t I},'" ,{ti - ti-I)(ti+l- t i }, ... , {t n - t i }
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we see that do=dn dl=dn-I..... d(n-2)/2=d(n+2)/2: and do~dl~..... dn/2' Let
to=O and tn = 1. Then

diil = (1)(. 5-. 5eos [{n -1)rr/n D{.5-. 5eos [{n -2)rr/n D ..... (. 5) ..... (.S-. Seos rr/n)

Using eos{n-k)rr/n={-1)eos{krr/n) we get:
diil =(.S)n-l{sin 2{rr/n»{sin 2{2rr/n» ..... {sin 2«.Sn-1)/rr». And d.,;,\ =
.5{-.Scos{n -1)rr/n ) 5eos (.Sn -1)(rr)/n {Seos (rr/n) )(.5)

={.5)n{sinrr/n)2{sin2rr/n)2..... {sin{.Sn-1)rr/n)2. Since dn = .Sdn/2=d o and
i=n i=n

ndn/2 ~ ~ d.;. we get that d.;/ ~ di > 1/20..
i=O i=O

The set Tn is not optimal. that is there are distributions for which induce larger
values of ,j than Tn.

EXAMPLE 2. If the points tt are equally spaced. the numbers d.; are proportional to
the binomial coefficients and ,j-I~ 2n • the value 2n being achieved at to and tn.

EXAMPLE 3. Things can get worse. In the following example. all but 2 of the weights
tend exponentially to 0 as 0. goes to infinity. Assume 0. is odd and all points are
equally spaced except at the middle of the interval. that is: ti+l-ti = h. if i ;tf. {n
1)/2 and t(n+I)/2-t(n-I)/2=11. with h = (tn -to -11 )/n = (1 - l1)/n. The numbers
d(n-I)/2 and d(n+I)/2 are equal to say dO and the number 11 appears as a factor only
in dO. The form of di- I is Ki h r {ah+o)«a+1)h+o) .... Let Ko=minKi . Then di {h.l1) <
di{h,a) < 1/Koh n +!. Let dO{h,l1) = (1/DO{h.11)11) ~(1/DO{h.h)11) ~{1/K·hn)11.

CLAIM. Let (1=2-n K o/nK°. Assume that 11/{ 1-11) ~ {1. Then ,j-I ~ 2n+1.

PROOF. If d.;;tf.do then max di/do ~(K·hnl1)/Kohn+1 = nK°l1/Ko{1-l1) =
\=n t=n

2-n l1/{1{1-11) ~2-n. Since ~ d.;~2do. we get that d.; /~ d.;~ 2-(n+l).
i=O i=O

REMARK 3. Given a number a > 0 and the set! a = t I < t 2 <..... tn +2 = b l there exists
a function f belonging to C[a.b] such that if Pn is the best Tchebycheff approxima
tion of f. then max! /Pn{t) - f{t)1 : t f: [a,b] l = IPn{t) - f{t) 1= a. 1~i~n+2.

PROOF. Let g{x) = acos!{n+ 1)(x-a)rr/{b-a)l . Then g alternates sign on a. a+{b
a)/{n+ 1) .... , a + n{b-a)/{n+ 1), b. Let x{t) be the monotone piece-wise linear function
through the points: (a,a). {t 2• a + (b-a)/{n+1» ..... {tn +l . a + n{b-a)/{n+1». (b.b). The
function h{t) = g{x{t» alternates on t l .t 2•... , tn + 2 • with amplitude
a= Ih(ti) I. 1~i~n+2. Let Qn be any fixed polynomial of degree 0. and set f = Qn - h.
Let R n be any polynomial of degree n. Then max !IR{t) - f{t): t f:[a.bB achieves a
minimum at the polynomial Qn. because Qn - f = h. and h has the equi-oscillation
property. Hence Qn=Pn '
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DESCENT METHODS FOR NONSMOOTH CONVEX
CONSTRAINED MINIMIZATION

K.C. Kiwiel
Systems Research Institute, Polish Academy ofSciences, Newelska 6,

01447 Warsaw, Poland

1. INTRODUCTION

We are concerned with methods for solving the problem

minimize f( x) over all x ERN

satisfying F(x) ~ 0,

hi(x) oS 0 for each i E I,

(lola)

(LIb)

( 1. lc)

where the (possibly nonsmooth) functions f and Fare real

valued and convex on RN, hi are affine and II I < ex>. We assume

that the feasible set S=Shn SF is nonempty, where ~Sh =

{x: hi(x):< O,i e I} and S:?{x: F(x) oS O}, and that F(x) < 0 for

some x in Sh (the Slater condition). We suppose that for each

x E Sh one can compute f(x), F(x) and two arbitrary subgra

dients gf(X)E 3f(x) and gF(x) E 3F(x); these evaluations are

not required for x t Sh .

We shall present two algorithms for problem (1.1). Their

convergence ~nalysis will appear elsewhere (see the ref. list).

Here we wish to concentrate on the following two basic ideas.

First, we show that nondifferentiabili ties of f and F

can be tackled by employing their polyhedral models with at

most N+3 linear pieces. This eliminates the difficulties with

increasing storage and work of earlier methods (Kelley, 1960;

Mifflin, 1982; Strodiot et al. 1983), which use k pieces at

the k-th iteration. A uniform bound on storage and work per

iteration is obtained by following the subgradient selection
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strategy of Kiwiel (1983). This strategy drops irrelevant line

ar pieces by exploiting properties of quadratic programming

subproblems that generate search directions.

Secondly, our treatment of constraints differs from that

employed in existing feasible point methods (Mifflin, 1982;

Strodiot et al. 1983). Our algorithms may approach the boundary

of S more rapidly than do the latter methods, thus attaining

faster convergence. To this end, we use exact penalty functions,

whereas Mifflin (1983) used another penalty technique. More

over, our algorithms find a solution in a finite number of ite

ra tions whenever f and F happen to be polyhedral and some

mild regularity conditions are satisfied. This attractive pro

perty is not possessed by the existing feasible point methods.

In effect, our algorithms seem to be natural extensions to the

nonsmooth case of the widely used method of successive quadra

tic approximations (see, e.g., Pshenichny, 1983), We hope,

therefore, that they will inherit the efficiency of its prede-

cessor.

From lack of space, we shall report elsewhere extensions

to nonconvex locally Lipschitzian problems done in the spirit

of Kiwiel (1984d).

2. LINEARLY CONSTRAINED PROBLEMS

For simplicity, we start with the reduced version of ~.1)

minimize f( x} over all x E Sh. ( 2.1 )

Our method for solving (2.1) generates a sequence of points

{xk}~C Sh with nonincreasing {f(xk )}, which is intended to

converge to the required solution, and a sequence of trial po

ints {yk} c Sh. The starting point x 1 =y1 E: Sh is provided by

the user. Each yj defines the linearization of f

( 2.2)

At the k-th iteration, f is approximated around x k by

( 2.3)
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where J~ c: {I, ••• ,k} and IJ~I s N+2. By convexity, f(x) ~ fk(x)

for all x, and f(yj )=tk(yj) for all j £ J~. Since we want to

its approximation fk. The

is chosen to

"k 1 k 2minimize f (y) +2"ly-x lover all yeSh , (2.4)

k 2 k+lwhere the stabilizing term Iy-x I /2 keeps y E Sh in the
"kregion where f should be close to f. Without this term, sub-

problem (2.4) would be closer to (2.1) globally (as in cutting

plane methods), but need not have a solution. If yk+l=xk , the
kmethod may stop because x is optimal.

k k+l k+lThe algorithm makes a serious step from x to x =y

only if the objective is significantly reduced, as measured by

the test

( 2 .5)

where mE (0,1) is a fixed parameter and

is the predicted decrease
k+l k k+lx =x occurs, but y

fk+l with the piece f k+
1

chance of finding a better

It remains to choose
direction dk=yk+l_xk by

programming subproblem

( 2.6)

(vk < 0). Otherwise, a null step

will enrich the next approximation

(k+l E Jk+l), thus increasing the
k+2y

Jk+l. In practice, we find a search

solving for (dk,ukl the quadratic

minimize u+~ldj2 over all (d,U)ERN+l

iEI

satisfying
k .

fj(x ) +<gf(yJ),d> ~u

h. (xk ) +< Vh.,d > < 0 for
1 1-

for . Jk
J E f' ( 2.7)

and find its Lagrange multipliers

that

k k k
Aj' j e J f' vi' i E I, such

"k . k k
Jf={JEJf:Aj"O}

satisfies IJ~ I :S N+l. Then
"'k+l
f

( 2.8)

(cf. (2.3)) defined by
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k k+lcontains all the pieces f. contributing to d and y

xk+dk , since replacing J~J by J~ in (2.7) does not change

its solution. The remaining "inactive" pieces are dropped. This

subgradient selection strategy ensures that IJ~ I ~ N+2 for all

k.

We may add that typical quadratic programming routines for

solving (2.7) will automatically produce at most N+1 nonzero

Lagrange multipliers ~~, since (2.7) involves N+1 variables.
]

In practice, it is more efficient to solve the dual of (2.7)

(see Kiwiel, 1984g).

Theorem 2.1. The algorithm described above mlnlmizes f on Sh'

Le. {xk } c Sh and f(xk)+inf {f(x) : XE Sh}. Moreover, {xk } con

verges to a solution of problem (2.1) whenever this problem has

any solution.

It is worth adding that if f is polyhedral and problem

(2.1) satisfies some regularity condition (Kiwiel, 1983), which

is weaker than the Haar condition, then the method stops with

an optimal x k after a finite number of iterations.

In practice one may use a stopping criterion of the form

lvkl ~ &s with small positive £s (e.g. £s=10- 6 ), since we have

the estimate

k k I k 1/2 kf (x ) ~ f( x) + lv I+ v I Ix-x I for all x e Sh.

Then,. for bounded Sh' termination occurs with

f(xk ) ~min f +Es+E~/2max {Ix-xkl : x E Sh' f(x):s f(xk )}.
Sh

3. METHOD OF LINEARIZATION

We shall now extend the method of Section 2 to the nonli

nearly constrained problem (1.1).

In order to treat the nonlinear constraint (1.1b) in the

preceding algorithm, it suffices to use the linearizations of F

for all x
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for defining the k-th polyhedral lower approximation to F

~k k
F (x) = max {F j ( x) : j e J F}

with J~ c {I, ••• ,k} and iJ~1 ~ N+2. Then (2.4) is extended to

the subproblem

"k 1 k 2 yE R
N (3.1a)minimize f (y) +"2!y-x I over all

satisfying Fk (y} ~ 0, (3.1b)

hi(Y)~O for i E I. (3.1c)

This is a local approximation to problem (1.1). It differs fram

the corresponding subproblem of the cutting plane method (Kel

ley, 1960) in that the presence of the stabilizing quadratic

term !y_xkI2/2 enables one to select J~UJ~ not necessarily

equal to {l, ... ,k} without impairing convergence.

Since yk+l or xk may not lie in SF' for assessing
k+l kwhether y is better than x we need a certain merit

function that combines the objective value f(x) with the (non

linear) constraint violation F(x)+=max{F(x),O}. To this end,

we shall use the exact penalty function

e(x;c) = f(x) + C F(x)+ for all x,

where c=ck > 0 will be the penalty coefficient of the k-th

iteration. We shall choose c k large enough to ensure that

e(.;ck ) has minima only at solutions to problem (1.1). More-
kover, c will be such that the following approximate deriva-

tive of e( o;ck ) at x k in the direction dk =yk+l_ xk

k "k k k k"k k k k kv = f (x +d ) + c F (x +d ) + - e (x ; c )

is negative, so that d k is approximately a direction of des

cent for e( o;ck ) at xk . The algorithm will take a serious

step from x k to xk+1=yk+l=xk+dk if yk+l is better than

x k in the sense that

( 3 • 2)

where me (O,l) is a parameter. Otherwise, a null step k+lx
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kx will occur. In this case the new subgradient information
k+1collected at y will enable the method to generate a better

next search direction d k+1 •

Algorithm 3.1

Step 0 (Initialization). Select the starting point x 1 e Sh' a

final accuracy tolerance E
S

~ 0, a line search parameter me.( 0,1)

and an initial penalty coefficient CO > o. Set y1=x 1 and J1=
1 f

JF={l}. Set k=l.

Step 1 (Direction finding). Find the solution (dk,uk ) to the

quadratic programming subproblem

minimize u+ild~2 over all (d,u)e R
N+1

k 0 , k
satisfying fj(x ) +<gf(yJ),d> ~ u for JE.J f ,

k 0

o JkFj(X )+<gF(yJ),d> ~ 0 for J e F'

k
~ 0 for i E Ih 0 (x ) + < "lh 0 , d >

1 1

(3.3a)

( 3 . 3b)

(3.3c)

( 3. 3d)

and corresponding Lagrange multipliers

and \l~' i E I, such that the sets

"'k 0 k k '10k. k
J f = { J E J f : A j t- 0 } and J F = {J E J F

satisfy IJ~ u J~ I S N+l. Set

~k k
c = L kilo

jEJ J
F

Step 2 (Penalty updating). If
k k-1 ~kwise, set c =2max{c ,c}.

~k k-1c < c /2, set k k-1c =c other-

Step 3 (Stopping criterion). Set

terminate; otherwise, continue.

Step 4 (Line search). Set
k+1 k+l ,x =y ; otherwlse, set

Step 5 (Linearization updating). Set

{k+1} and compute
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f (k+l) f( k+l) (k+l) k+l k+lk+l x = Y + < gf y ,x -y > ,

F (Xk +1 ) =F( k+l) +< (k+l) k+l_ k+lk+l Y gF Y ,x Y > ,

fj(xk+l)=fj(xk)+<gf(yj),xk+l-xk> for jE.J~,

F j (xk+1 ) = Fj (xk ) + < gF( y j ) ,xk+1_xk > for j e :r; .
Step 6. Increase k by 1 and go to Step 1.

A few remarks on the algorithm are in order.

Note that the sequence of penalty coefficients {C
k } is

d . h c~k < c k h vk < 0non ecreaslng. T e property ensures t at at

Step 4. Our penalty updating rules make c k eventually cons

tant if {yk} stays bounded. Such an automatic limitation of

penalty growth is important in practice, since large values of

c k may force the algorithm to follow closely the boundary of SF'

thus preventing fast convergence.

If the algorithm terminates at Step 3 then

f(Xk)~f(X)+e:S+£~/2 Ix-xk [ for all XE.S,

k k
F(x 1+:5 £s/c .

(3.4)

The above estimates show that x k is approximately optimal.

J k Jk Ak ~kObserve that replacing f and F by J f and J F in

(3.3) yields an equivalent subproblem. Thus, once again, sub

gradient selection on the basis of Lagrange multipliers ensures

uniformly bounded storage and work per iteration, since
k k

]Jfu JFl ~ N+3 for all k.

Theorem 3.2. Suppose that Algorithm 3.1 generates infinite se

quences {xk } and {yk} such that {yk} is bounded. Then

{xk } converges to a solution of problem (1.1). Moreover, the

penalty coefficient c k stays constant after a finite number
kof iterations, and v -+ O.

Observe that the assumption of Theorem 3.2 is satisfied if

Sh is bounded, since {yk} c Sh by construction. Also for bo

unded Sh Theorem 3.2 implies finite termination (with x k sa

tisfying (3.4» if the final accuracy tolerance £s is positive.
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We may add that, under mild conditions, even with £ =0s
the algorithm will terminate at an optimal x k after finitely

many iterations if f and F happen to be piecewise linear.

4. EXACT PENALTY FUNCTION METHOD

Another way of solving problem (1.1) is to

minimize e(x;c) = f(x) +cF(X)+ over all XE Sh (4.1)

with c> 0 large enough (see, e.g. Demyanov and Vasiliev,I985).

Since the above problem is a special case of (2.1), we may use

the method of Section 2 and choose suitable c in the course of

calculations.

Thus let the k-th approximation to e(o;ck ) be

where

hk k) ) . ke (x; c = max{e j ( x : J E J }

kJ c {I, .•. ,k} satisfies

for all x,

kIJ I oS N+l, whereas

if r'( y j) )0 0,

if F(yj) ~ 0

are linearizations at yj of the convex functions e(o;ck ) and

F( 0)+, respectively, and f. is given by (2.2). Introducing
k' J k .

J+={j:F(yJ»O, I~j~k} and JO={j:F(yJ)~O, l~j~k}, we

see that F;(.)=Fj(o) if j EJ~, and F;(.)=O if je J~. We

may now proceed as in Section 2 to motivate the subproblem

hk k 11 k 2minimize e (y; c ) +"2 y-x I over all y e Sh'

which gives rise to the following method.

Algorithm 4.1.

Step 0 (Initialization). Select the starting point xl E. Sh and

a final accuracy tolerance £s ~ O. Choose a line search para

meter mE (0,1), an initial penalty coefficient c
I > 0 and an

initial unconstrained minimization tolerance Ci 1 > O. Set yl=xl ,

J~={l} and J~=11 if F(yl) > 0, J~=11 and J~={I} if F(yI) ~ 0,

and J={I}. Set k=I.
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step 1 (Direction finding). Find the solution

subproblem

minimize u+~ldI2 over all (d,u) e R
N+1

k k(d ,u ) to the

k .
satisfying fj(x) +<gf(yJ) ,d > ~ u for

k k k ' k '
fj(x ) +c Fj(X ) +<gf(yJ) +c gF(yJ),d>~u

h,(xk)+<Vh.,d> <0 for ieI
~ ~-

. k
J E J O '

f ' Jkor J e +'

( 4 .2)

and corresponding Lagrange multipliers

i e. I, such that the sets

k . Jk Jk d k
Aj' J E 0 U + ,an vi'

and

"'k Ak
satisfy IJ OU J+ I ~ N+.1. Set

v k = ~k(xk+dkiCk) _ e(xk;ck ).

Step 2 (Penalty updating). If Ivkl ~ok
k+l k k+l k ,c =2c and 0 =0 /2; otherw~se, set

and F(xk ) > Ivkl, set

ck+1=ck and ok+l=ok.

Step 3 (Stopping criterion). If

minate. Otherwise, continue.

Step 4 (Line search). Set yk+l=xk+dk If

k+l k+l k k+l k
e ( y ; c ) ~ e (x ; c ) + mv ,

and k
F (x ) ~ e: s' ter-

set xk+1=yk+l (serious step); otherwise, set

step) .

Step 5 (Linearization updating). Set

k+l kx =x ( null

Set

Jk+1 = J-k {k+l} and Jk+1 = Jk if F(yk+l) > 0 I

+ + U 0 0

J~+l=J~ and J~+l=J~U{k+1} if F(yk+l)~O.

Jk+l_Jk+l Jk+l C t- + U 0 . ompu e

f ( k+l) _ f( k+l) + (k+l) k+l_ k+l
k+l x - Y < gf Y ,x Y > ,

fj(Xk +1 ) =fj(xk ) +<gf(yj),xk+1-xk > for jEJ~UJ~,
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F (k+1, _ F( k+1) + (k+1) k+1_ k+1 ifk+1 x J- Y <gF Y ,x Y >

F j (Xk +1 ) =Fj(xk}+<gF(yj),xk+1-xk> for jeJ~.

Step 6. Increase k by 1 and go to Step 1.

The penalty updating scheme of Step 2 is based on the relation

k k k I k k 1/2/ ke(x iC ) ~ e(x;c )+ v 1+lv I x-x \ for all Xl: Sh. (4.3)

Thus Iv k j indicates how much x k differs from being optimal
- kin (4.1) with c=c. Moreover, (4.3) implies

f(xk } ~ f(x} + Ivkl+lvkll/2Ix_xkl for all x E.S,

kso x is an approximate solution to problem (I.I) if both

Ivkl and F(Xk )+ are small. The penalty coefficient is incre

ased only if e(. ;ck ) has been approximately minimized, as

indicated by relations (4.3) and Ivkl ~ ok (with progressive

ly smaller minimization tolerances {ok}}, but x k is signifi

cantly infeasible (F(xk ) > jvkl). This penalty scheme is due to

Kiwiel (1984e).

If the algorithm terminates then

k 1/2 k!f(x ):!! f(x) + £s + E: s jx-x for all x E. S

is an approximate solution to problem

is optimal if additionally £s=o.

algorithm does not in fact require compu

gF(y} if yeSF • This is useful in cer-andF(y}tation of

and F(xk ) ~ e; , so x k
s

(1.1). Of course, x k

Observe that the

tain applications.

Theorem 4.2. If Algorithm 4.1 generates a bounded infinite se

quence {xk } (e.g. if Sh is bounded), then {xk } converges to

a solution of problem (~.1). Moreover, the penalty coefficients

{ck } stay constant for all large k, and vk + o.

It is worth adding that, under mild conditions, Algorithm

4.~ also has the finite termination property in the polyhedral

case.

Summing up, we observe that global convergence properties

of Algorithms 3.1 and 4.1 are essentially the same. However,
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Algorithm 3.1 exploits the structure of problem (1.1) more fu

lly by using the natural constraints (3.Ib) and employing e(o;

c k ) as a merit function only. These advantages have to be weig

hed against additional effort involved in quadratic programming

when I=~.

5. CONCLUDING REMARKS

We have extended the widely used constraint linearization

technique to the nonsmooth case. In particular, this technique

ensures finite convergence in the polyhedral case, an important

property not possessed by the existing feasible point methods.

Let us now comment on possible modifications and exten

sions.

For large N, we may replace subgradient selection with sub~

gradient aggregation (Kiwiel, 1983, 1984a,I984c) to reduce the

number of constraints of the form (3.3b,c) to as few as four

without impairing global convergence. This will save storage

and work per iteration. However, convergence may be slow if too

few constraints (linear pieces) are used. Also it is easy to

include more efficient line searches in the methods (Kiwiel,

1984a, 1984d, 1984f)~

Additional information about the problem function structure

can be used for modifying subproblems (2.7), (3.3) and (4.2)

so as to increase the efticiency of the algorithms. Suitable

techniques may be found in (Kiwiel, 1984f) for max-type func

tions, and in (Kiwiel, 1984b) for large-scale linearly constra

ined problems.

We shall report elsewhere extensions of the algorithms to

the nonconvex case of locally Lipschitzian problem functions

satisfying the semismoothness condition of Kiwiel (1984a,1984d).
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STABILITY PROPERTIES OF INFIMA AND OPTIMAL SOLUTIONS OF
PARAMETRIC OPTIMIZATION PROBLEMS

Diethard Klatte and Bernd Kummer
Department ofMathematics, Humboldt University, 1086 Berlin, GDR

1. INTRODUCTION

In the analysis of parametric optimization problems it is
of great interest to explore certain stability properties of
the optimal value function and of the optimal set mapping (or
some selection function of this mapping): continuity, smooth
ness, directional differentiability, Lipschitz continuity and
the like o For a survey of this field we refer to compre
hensive treatments of various aspects of such questions in
the recent works of Fiacco (198), Bank et ale (1982) and
Rockafellar (1982)0

In the present paper we consider an optimization problem
that depends on a parameter vector t eTc: Rm:

P ( t ) : min [f0 ( x , t) / x e M( t) 1 ' t e T ,

Rn
where T is nonempty, M: T --+ 2 is a closed-valued multi-
function, and f o is a real-valued function defined on Rn • T.
We define the infimum function 'f and the optimal set map "f
by

, tEo T.

t E T,inf {f0 (x, t) / x E. M(t )1'
{XEoM(t) / fo(x,t)= '{'(t)}

If (t) :=

"jJ(t) :=

Let ~loc(t) denote the set of all local minimizers for
f (.,t) w.r. to M(t). For & > 0, the set of E.-optimal
6~lution6 is "t' E (t) := {x EM(t) / fo(x,t) f tr(t) + £.1 .
Given Q c RO we set

M( t)" cl Q ,



216

f Q( t) : = inf {f0 (x , t) / x € MQ( t )1 ,
"f' Q( t ) :. {x E MQ( t) / f 0 (x, t) ., y:'Q( t) 1,

where "cl" stands for closure. The symbol int X will be used to
denote the interior of a set XC: Rn• Further, II • II denotes the
Euclidean norm, UE. (t) := £ -neighborhood of t, d(x,Z):=
infz fUx-zll / zE.Z 3 (XE.Rn , Zc:Rn ), dH(Y,Z):= infk {k /
d(y,Z)'-k (VyEY), d(z,Y)!:k (YZEZ)} (Hausdorff-distance
of Y, Z eRn). The closed unit ball in Rn will have the standard
symbol Bn •

Adapting Rockafellar's definitions of Lipschitzian func
tions, we shall say that a multifunction F from T c: Rm to Rn

is Lipschitzian on Dc: T if there is some constant L > 0 such
that dH(F(s),F(t)) '= L lis-til (Vs,te.D). F is Lipschitzian
around t' E T if there are real numbers £ > 0 and L > 0 such
that dH(F(s),F(t)) f L \Ie-til (Ys,t~U£(t')nT). F is
upper Lipschitzian at tiE T if there are real numbers e>O and
L>O such that d(x,F(t')) ~ L IIt-t'll (Vt€Uf(t')nT ,
Vx EF(t)). A single-valued function g is said to be
L1pschitzian on D (resp. around t') if t --. F(t) :: {g(t)}
has this property.

In the present paper we shall discuss the Lipschitz sta
bility of P(t). Above all, our attention is focused on standard
problems in parametric convex or quadratic optimization and
thereby on the derivation of conditions under which the map
or some "portion" of 1fJloc exhibit a certain Lipschitz beha
vior. In the literature, there are two approaches to these
studies. The first one has been applied in parametric linear
and quadratic programming; it makes use of the fact that a
polyhedral multifunction F from Rm to Rn is upper Lipschitzian
on Rm (cf. Walkup and Wets 1969, Robinson 1979,1981, Klatte
1983). The second approach is based on the application of
implicit-function theorems (for systems of nonlinear equations
and inequalities) to the parameterized Kuhn-Tucker system of
the optimization problem considered; it requires restrictive
smoothness and regularity assumptions on the objective function
and on the constraints; in particular, second-order optimality
conditions play an important role (cf. Fiacco 1983, Robinson
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1982, Hager 1919). With respect to special classes of paramet
ric programs the question arises whether some Lipschitz
behavior of 'If or 'lflloc can be "saved" also in the absence of
second-order regularity assumptions. One aim of our paper is
to help clarifying this question by some constructive results
and simple but instructive examples of ill-behaved parametric
programs. A particular answer will be that if second-order
conditions are dropped then, even for the cl~ss of parametric
convex programs with right-hand side perturbations only,
upper Lipschitz continuity of ~ or the existence of a
(Lipschitz-) continuous selection of ~ cannot be expected, in
general.

In contrast to this situation, the Lipschitz continuity
of \f' holds under rather natural assumptions. We mention here
the following very simple but useful result (cf., e.g.,

Cornet 1983).

Lemma 1. Consider problem p(t). Let T' CT, and suppose that
for some QCRn and each t ET', we have M(t) CQ. If f is Lip-o
schi tzian on Q x T' with modulus Sf' and if M is Lipschi tzian on
T' with modulus SM' then <P is Lipschitzian on T' (with modulus

Sf(SM+1))·

When M is defined as the solution set mapping of a system
f(x, t) ~ 0, where f is a locally Lipschitzian vector function,
then certain constraint qualifications (for example, the Slater
condition in the convex case, and the Mangasarian-Fromovitz con
dition in the smooth case) ensure that M is Lipschitzian in some
sense; a detailed discussion of this question can be found in
Rockafellar's (1984) paper which also covers results of
Robinson, Levitin, Aubin and other authors concerning implicit
multifunction theorems.

2.

the
(1)

(2)

CONVEX PROBLEMS

Consider the parametric optimization problem P(t) under
following additional requirements:

M(t) : = {x ~ Rn / f i (x, t) ~ 0 (i= 1, ••• ,s) ;
fj(x,t) = 0 (j=s+1, ••• ,s+r) 1,

f i: RnJ( T --. R is continuous on Rn x T (Yi E fo, 1, ••• , s+r}),
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(Vte:T. Vi e[0,1, •.• ,s3).
( V t E T, V j E {s+1, ••• , s+r J );

() fi(·,t) is convex on Rn

f.(.,t) is affine-linear
J

we denote this parametric problem by P1(t) • If () is
placed by (), then we have the special case of convex
programs with right-hand side perturbations only:

re-

(J)' fo(x,t) = ~o(x) , fi(x,t) = hi(x) - t a (t~T; i=1, ... ,s),
where hi (1=0,1, ••• ,s) is convex on Rand r=O, s=m.

This special parametric program will be symbolized by P2(t) •
First we state a theorem which is, in fact, a simple con

sequence of Robinson's (1976) inversion theorem for convex
multifunctions. Using other methods of proof, Eremin and

Astafiev (1976)§27 and Blatt (1980) presented similar results.

Theorem 1. Consider the parametric convex problem P1(t).
Suppose that for some t'~ T,
(i) ~(t') is a nonempty, bounded set,
(ii) the Slater condition is satisfied w.r. to M(t'), i.e.,

there is a point x'E:M(t') with fi(x'.t')~O (i=1, ... ,s)
such that the gradients Vx f s+1(·,t'), •••• Vx fs+r(·,t')
are linearly independent,

(iii) there are an open convex set w=>rv(t') and a neighbor
hood D of t' such that f o is lipschitzian on WX D,

(iv) for each x€W and each i €[1,2, ... ,s+r3 , fi(x,.) is
Lipschitzian around t' with some modulus independent of x.

Then ~ is Lipschitzian around t', and there is a number E>°
such that for all °~ £ ~ E, 'lfJ£ is Lipschitzian around t'.
Proof: Set Q:= (rty(t')+Bn)f"\W. Taking (i), (it) and (iv) into
account and applying Corollary 2 in Robinson (1976), we have
that MQ is Lipschitzian around t'. Note that ~ is upper semi
continuous at t' (cf. Bank et ale 1982, Th. 4.).), hence for
t near t', "fJ (t) = 'If Q(t). Lemma 1 then y ie Ids the Lipschitz
continuity of f around t'. The assumptions (2), (), (i) and
(ii) ensure that the map (t,E) ~ ~(t) is upper semicontinu-

£
ous at (t',O) (cf. Bank et ale 1982, Cor. 4.).).2). and so if
IIt-t'lI and e are sufficiently small, say IIt-t'I/<: E, °~ £,'" £,
then ~(t)CQ. Let O£E.",E. Apply now Corollary 2 in Robinson
(1976) Eto the map t ~ ME.(t):= {X€MQ(t) / fo(x,t) - \f'(t)f E.L
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we only note that (a) Mf(t') contains a Slater point,
(b) all functions describing ME are Lipschitzian w.r. to t,
and (cl for all t near t' it holds ME(t) = 'tfJE(t) c: Q. II

In the Examples 1 and 2 we shall point out that, under the
assumptions of Theorem 1, a Lipschitz behavior of 1P cannot be
expected, in general, not even for the special problem P2(t).
Example 1 is due to B. Schwartz (private communication).

Example 1. The optimal set map of the parametric program

min f y I y ~ x2 y ~ t 1, t E R,
(x,y)

is not upper Lipschitzian at t-O. Obviously, the optimal sets
are 'tfJ(t) = {(x,y)ER2 I -1tfx~-rt, y=t}, if t~O.

Example 2. (¥ is single-valued) Let G be the function
defined by

{

I y I exp (-xl Iy I ) if x ~ 0, y -I 0

G( x ,y) : = 0 if x ~ 0, y. 0

'y I - x if x ~ o.
G is convex (cf. Bank et ale 1982, p.52). Consider the problem

min [G(x,y) I x2 + (y+1)2 f 1 , Y l:t 1, t ER.

It is easy to check that '\fJ(t)- f( (1 - (1+t)2) 1/2 , t)l for

-1~t'O.

When the constraints are given by more complicated convex
functions it may even happen that there is no continuous (let
alone Lipschitzian) selection of 1Y' cf. §4. However, for
parametric problems in which the objective function as well as
the constraint functions are convex and quadratic (see Exam
ple 1 above), there exists for ~ a selection function which
satisfies a certain kind of Lipschitz condition (for the proof
we refer to Klatte and Kummer 1984):

Theorem 2. Consider the parametric convex problem P2(t).
For each iEtO,1, ••• ,m} , let hi be defined as

( T i iThi x). x C x + P x + qi '

where Ci is a symmetric, positive semidefinite (n,n)-matrix,
pieRn and qiER. If '\P(O)-I ¢, and if the Slater condition is
satisfied w.r. to M(O), then for every xe,,(O),
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there are a constant L and a neighborhood U of 0 such that

d(x, l'(t)) ~ L n til ( VtEU).

Remark: IfP2(t) has the special form min[xTcOx+pOTx /
Ax ~t 3, teRm, with fixed vector pOE Rn and fixed matrices A
and CO of suitable order (Co symmetric, positive semidefinite),
then ~ is even Lipschitz ian on its effective domain

dom 1f:= ft / 1.p(t) " ¢ 3 , cf. Klatte 1984 a.

3. NON.-CONVEX QUADRATIC PROBLEMS

In this paragraph we restrict our considerations to the
study of stability of local optimal solutions to the parametric
quadratic program

min ff(x,t) / XEM(t)1,

with the parameter tuple t= (C,p,A,b), where

f(x,t) := ~ xTCx + pTx M(t):= {XERn / AX!:b~,

and C varies over all symmetric (n,n)-matrices, A varies over
all (m,n)-matrices, and the parameters p and b are vectors in
Rn and Rm, respectively. The set of all such parameter tuples
is denoted by T. As for more general classes of parametric
problems we only refer to a few publications in which various
aspects of current research in our subject are treated.
Concerning Lipschitz properties of the infimum function:
Rockafellar (1982, 1984), Gauvin and Dubeau (1982), Fiacco
(1983). Concerning Lipschitz properties of local minimizers and
stationary points (under second-order conditions): Robinson
(1982), Fiacco (1983). Concerning continuity properties of
local minimizers (in the absence of second-order informations):
Robinson (1983), Klatte (1984a,b).

Following Robinson (1983) we shall say that a nonempty set
XC.Rn is a strict local minimizing set for f(·,t) w.r. to M(t),
if there is an open se t Q:::> X such that X='lfJQ( t). We recall
that "fJQ(t) = {XEM(t)/lCl Q / f(x,t) .. 'PQ(t)l. Obviously, such
a strict local minimizing set is a subset of ~lQC(t), and it
is always closed. Typical examples of strict local minimizing
sets are the following:
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(i) x={zl if z is a strict local minimizer for f(.,t)
w.r. to M(t);

(11) x= ¥(t) if '\f(t)':; 0.

of Kuhn-Tucker points of theLet KT(t) denote the set
program P3(t) (for fixed t):

(4) KT(t):= [(X,U)ERnXRm /
Cx + ATu + P • 0,

Ax - b ~ 0,
Tu ~ 0, u (Ax-b)=O ].

Let to. (Co,po,Ao,bo)

a (nonempty)
f(.,to) w.r. to
is satisfied w.r. to

The set of stationary points, denoted SP(t), is

(5) SP(t) '" 'ir n(KT(t» ('il"n:= canonical projection to Rn ),

the set of Lagrange multipliers at x E Sp(t) is given by

1M(x,t) = {u €Rm / (x,u) € KT(t) ~ •

As usual, KT(.), SP(·) and 1M(.,.) are considered to be multi
functions. The norm in the parameter space T is defined by

/I t liT := max {IIC II , II p II , IIAII , IIbll I, t=(C,p,A, b),

where n·1I is always the Euclidean norm of the corresponding
linear space.

The next theorem covers results by Robinson (1979), who
assumes convexity of the initial problem at t=tO, and Hager
(1979), who assumes that for all t near to the multifunction
KT is single-valued. A detailed proof of Theorem 3 is in
Klatte (1984a,b).

Theorem 3. Consider problem P3(t).
be a given parameter tuple, and let X be
bounded, strict local minimizing set for
M(to). Suppose that the Slater condition
M(to).
Then K:= KT(tOln (X)( Rm) is nonempty and compact, and
there are a bounded, open set D'::> K and a constant L >Osuch
that the following is true:
(al If D is any open set with Kc DeD', then one has, for some

neighborhood UD of to,
¢.:; D" KT( t) C K + L 1\ t - tOUT Bn+m

+) X+ Y : = f x+y / x E X, Y € Y3 a X : '" {ax / x £ X1 (a € R) •
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(b) If Q is any open set with Xc QC1l"'n(D'), then one has, for
some neighborhood UQ of to,
0~ Q""fJloc(t) C QflSP(t) eX + Lilt-tOUT Bn (Vt€UQ).
Further, the infimum function ~Q is Lipschitzian around
to.

In Klatte (1984a,b) there is an example which shows that
in Theorem 3 the assumption "X is a bounded, strict local
minimizing set" cannot be replaced by the weaker assumption
"X is a nonempty, bounded subset of "floc (to)":

Example 3. It is not difficult to verify that for the
parametric program

min {xy - x2 / x ~ t , Y ~ 1 ~ , t c R,
we have

"Ploc(O)= {(O,a)€R2 /O£a "13 ' but Sp(t)= ¢ if t>O.

x ~O , 1 - tx ~ -t 3, t ~ -1.

if -1 f.t fO,

there is no
optimal set

t >0if

min {X(1-tX) /

'W(t) = { {OS
T (1T!}

A further example illustrates the fact that
analogy to Theorem 3 with respect to the (global)
mapping '0/ I

Example 4.
Obviously,

We note that all assumptions of Theorem 3 are fulfilled and,
really, "flloc(t) f'\ Q :: {o3 (Vt ~ -1) with Q:= {x / -1 ~ x <'1} •

Outline of proof of Theorem 3.

1° First we note that for each xEX, the set LM(x,to) is
nonempty and bounded, since the Slater condition is satisfied
w.r. to M(to). By Robinson (1982, Th. 2.3), the multifunction
LM(.,to) is upper semicontinuous on X. This, together with the
compactness of X, implies that K:= KT(to)" (X >c Rm) = XxULM(x. to)

m reX
C X)C Y, where Y is a compact subset of R • With no loss of
generality let Y be a polyhedral convex set satisfying
Kc int Y • Since K is obviously closed, K is a compact set.

2° The representations (4) and (5) tell us that SP(to)
is a union of finitely many polyhedral convex sets X1 , ••• ,XN
(Xk ~ ¢ V k ). De fine
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I(X) := {i£(1, •••• N~ / XflXi ' lZl}.

If X is an arbitrary point of X fl Xi' i £ I(X), then for each

y€Xi' we obtain f'(x.tO;y-x)~O and f'(y,tO;x-y)~O. where

f'(z.tO;w) is the directional derivative of f( •• to) at z in the

direction w (note that x.y E SP(to) and that the vectors y-x and

x-yare feasible directions for M(to) at x resp. y). Hence,

f(x.to) '" f(y.to) (VxEXnXi Vy€Xi Vie:I(X».

Since X is a strict local minimizing set, this implies that

Xi c:: X ( Vie: I(X». Because of the compactness of X there is a

number £ >0 such that (X + £ BGD)I\ Xj :or ¢ (V j 4 I(X». where

Boo is the unit cube in Rn • Setting Q' : = X + int £ BoO' we

thus have

X:or U Xi '" SP(to)n cl Q'.
i€ I(X)

30 (Lipschitz property) Let AI and Ai (or bI ' bi) denote

the eubmatrix of A (or the eubvector of b) which is built, for

iEI or ie-I:: {1 •••• ,m}' I. by the rowe a i of A (or the com

ponents b i of b). Because of the special structure of KT(t) we

can split KT(t) into components FI,J(t) as follows:

KT(t) = ,V FI(t),J(t)(t).
(I(t).J(t»e Z

where, for t= (e, p,A , b) and I, J C {1 •••• ,m1 ,

I J t ex + ATu + P = O. AIX = b I 1
F • (t):= (x.u) / ~

AiX ~bI • U J .. 0, UJ ~ 0
and

Z : .. {( I, J ) E [1 •••• ,m1 x {1 • 0 •• ,m3 / I u J = {1, ••••m~ ~ •

Set Di ':- (Xi + inteB~) )( int Y (iEI(X» and define

Zi:= [(I,J)E.Z / FI,J(to)f\ cl Di ' , ¢ } (iEI(X».

By 1° and 2°, KT(to)nDi" ¢ and eo Zi' lZl for all iEI(Xl.

thus KT(to)n cl Di ' hae the representation

KT(to)f\cl Di '.. U (FI,J(to)ncl Di ') (ViE:I(X».
(I,J)€ Zi

Taking the compactness of cl Di ' into account and using the

fact that the multifunctions t ~ KT(t)f\ cl Di ' and

t -~ FI·J(t)f\ cl Di ' are closed (cf. Bank et a1. 1982,
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Th. 3.1.1), it is easy to show that, for some neighborhood Ui
of to,

KT ( t ) n c1 Di' = U (FI, J ( t ) n c1 Di ' ) (V i € I (X) V t eUi ).
(I,J)e Zi

By Daniel (1973), the multifunctions F1,J(·)n cl Di ' are upper
Lipschitzian (note that cl Di ' are convex polyhedra, by con
struction). Then it follows that KT(·)n D' is also upper
Lipschitzian at to, where D' := i~I(X) Di '.
Because of K = KT(to)f\ «SP(to)n cl Q')xY) (by 1° and 2°) and
hence K = KT(to)n cl D' we have obtained the Lipschitz proper
ty of part (a) (which obviously also holds for any open set D
with Kc DcD'). The Lipschitz property of assertion (b) follows
by standard arguments from the fact that SP(t) = 1rn(KT(t)).

4° (solvability) Let Q be any open set satisfying
Xc Q C Q'. Then there is a point xQE: Q such that A°XQ~ bO , and
hence we can find a neighborhood V of (Ao,bo) such that
AXQ~b ('v'(A,b)E:V). Thus, the sets [X€'CI Q / Axfb3 are non
empty and compact for all (A,b)€ V. For all t=(C,p,A,b) with
(A,b)€. V, we have, by the Weierstra6 theorem,

'lfJQ(t) " ¢.

Further, Berge's (1963) stability results provide that 'fQ is
upper semicontinuous at to. Hence, 'lfQ(t)CQ if lit - tOUT is
sufficiently small, and so there is a neighborhood UQ of
to such that

¢ " " Q( t) C 'tf 1oc ( t) n Q ( Vt £ UQ) •

The Lipschitz continuity of fQ easily follows from the
compactness of X and the Slater condition (by application of
Lemma 1. Hence (b) is shown.
Concerning the remaining assertion of part (a) we only mention
that if D is any open set with KeDeD', then it is not diffi
cult to derive that KT(t)n D is nonempty if II t-to/l T is
sufficiently small; one has to apply part (b) which is already
shown and to take into account the upper semicontinuity of the
multifunction 1M(.) on X)({tO~ (cf. again Robinson 1982,
Th. 2.3), the details are omitted here. U
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Remark: In the case of fixed matrices C=C o and A=A o the
(global) optimal set map '1tJ is upper Lipschitzian on Rn )( Rm,
and the infimum function f is Lipschitzian on each bounded
convex subset of domllf := {(p,b)ERnXRm / I1f(p,b) ,,¢3,
cf. Klatte (198)). The set dom 'If' is, in this case, a union of
finitely many po~edral convex sets.
We further note that (for the parametric program p)(t)) the
inclusion Q f\ "t'loc(t) C QflSP(t) in part (b) of Theorem)
may be strict (see Robinson (1982, p.213).

4. OPTIMAL AND e -OPTIMAL SSLECTIONS

In this last section we consider the existence of a con

tinuous or Lipschitzian function s which assigns to each t e T
a single point s(t) € '¥(t) (or s(t) € '¥£(t)); such a function
s will be called an optimal selection (or E-optimal selection).
Obviously, this question is closely related to the more general
theory of continuous selections for arbitrarily given multi
functions F: T --+ 2

Rn
, where the basic results are well

known from Michael's famous papers (cf. Michael 1956). In
particular, a continuous selection for F exists if F is lower
semicontinuous on T, and F(t) is nonempty and convex for all
t E: T. As it concerns Lipschitzian selections we mention here

n
Theorem 4. Let T be compact and F: T~ 2R be a

Lipschitzian multifunction with modulus L, and suppose that the
sets F(t), teT, are nonempty, convex and compact. Then there
is a Lipschitzian selection s for F with modulus n·L.

Two independent and different proofs have been given by
Dommisch (198)) and, for a slightly modified version of the
preceding theorem, by Aubin and Cellina (1982). Note that
Dommisch's Lipschitz modulus n'L for s (provided that F has the
modulus L) is better than the one obtained by Aubin and Cellina.

However, the existence of a Lipschitzian selection is not
a privilege of Lipschitzian multifunctions only:

Rn
Theorem 5. Let T be compact and F: T~ 2 be a multi-

function with nonempty and convex images F(t) for all tE T.
Suppose further all sets F-(x):= [t€T / XEF(t)~ (xERn )
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to be open (w.r. to the induced topology).
Then there is a Lipschitzian selection s for F.
Proof: We adapt the well-known idea of the partition of
unity. Obviously,

::

=

T

T u
x ERn

Since T is compact and the sets F-(x) are open, there are
finitely many points xk (k=1, ••• ,N) such that

N
U

k=1
The closed sets Ak := T \ F-(xk ) (k=1, ••• ,N) then fulfil

N
k';1 Ak = ¢

Let dk : T~ R be the distance functions dk(t):= d(t,Ak ) (Vk),
therefore

N
d(t) : = L dk (t ) > 0 ( V t E: T) •

k=1
Moreover, each dk is Lipschitzian (with modulus 1). Since T is
compact, we observe that 1:= inft € T d(t) > 0, and the
function s defined by

N
s ( t ) : = L d

k
( t ) •d ( t )-1 xk

k=1
is therefore again Lipschitzian with a modulus depending on N,

1 and maxk II xkn • Because of

s (t) E conv [xk / xk € F( t)1 C F( t)

("conv":= convex hull) the proposition is true. 1/

In the case F s 'tp, the application of the Theorems 4 and
5 is difficult, because its hypotheses are usually too strong.
However, if we put F(t):: 'If£ (t) both theorems allow imme
diate proof of the following corollaries.

Corollary 1. Consider the parametric convex problem
P1(t) and suppose the assumptions of Theorem 1 to be satisfied
for all t' E T', where T' is a compact convex subset of T.
Then there is a number € ~ 0 such that for all 0 ~ e"" € there
is a Lipschitzian £-optimal selection on T'.
Proof: Apply Theorem 1 and Theorem 4. #
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Corollary 2. Consider the parametric convex problem
P1(t) in the case r=O (without equality constraints) and
suppose that for all elements t of a compact subset T' of T,
"fl (t) is nonempty and bounded, and the Slater condition is
satisfied w.r. to M(t).
Then, for each E: > 0, there is a Lipschitzian £ -optimal selec
tion on T'.
Proof: Apply Theorem 5 to the map F(t):=[x I f(x,t)~tp(t) + E)

g(x,t) <: ° 3 • II

Even if we have right-hand side perturbations only, the
suppositions of Theorem 1 (or Corollary 1) do not guarantee
the existence of a continuous optimal selection:

Example 5. Consider the parametric convex program

{

G(1-x,y) f t 1 + z}
min G(x,y) + z I y ~ t 2 + z

(x,y,z) O!:x,y,z ~ 1

where G is defined as in Example 2. For t=(O,O) there is a
Slater point (with x= ~ ), but no selection of ~ is continu
ous at t=(O,O). Indeed, setting t 1=t2=q (q ~ +0) one
easily verifies that the only solutions are

yq := q Zq :: 0.

q exp (_(2q)-1) ,

solutions are
In the case t 1 =
however, the only

1xq • ~, yq = q Zq = 0.

Thus, a ~election of ~ wnich is continuous

(q ----+ +0),

at (0,0) cannot exist.

Finally, we give an example which shows that in Theorem 4
the convexity assumption cannot be dropped, in general. This
is an example of a closed Lipschitzian multifunction F with
nonempty and compact images, but without any continuous
selection.

Example 6. Let T := B2 be the unit ball of H2 • For t'o
we put

u(t):= t· IItll- 1 and Q(t):=[xE.H2/I1x-u(t)II~lItll-~J.

Now, define
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F(t):= bd B2 f\ Q(t) with bd B2 = [t / /It 1/ = 1 J.
Then F is Lipschitzian with modulus 31T and, since t 4. F( t) for
all t e: T, there is no continuous selection s for F; otherwise
the function s would have a fixed point t = s(t) € F(t).
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ON METHODS FOR SOLVING OPTIMIZATION PROBLEMS
WITHOUT USING DERIVATIVES

K. Lommatzsch and Nguyen Van Thoai
Department ofMathematics, Humboldt University, 1086 Berlin, GDR

INTRODUCTION

'Smooth' methods have been developed and used because under

the assumption of smoothness it is possible to use the methods

of differential calculus. For example, there are a great number

of methods for solving convex optimization problems in which

both the minimized objective and the set of feasible points can

be expressed with the aid of differentiable convex functions.

In some cases, however, the problems connected with the calcu

lation of gradients have led to the development of algorithms

which do not use derivatives. (Nevertheless, differentiability

is still necessary to prove optimality, convergence assertions,

etc.) The most successful optimization method - the well-known

simplex method of linear programming - does not use derivatives.

On the other hand, there are methods which make partial use of

gradients, linearization etc., but which do not depend on differ

entiability assertions to prove their convergence.

In Section 1 of this note we consider two such methods and

in Section 2 we present an algorithm for concave programming

problems which is based on a branch-and-bound technique.
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1. METHODS OF CENTERS AND OF POINTS OF GRAVITY

The problem can be formulated as follows:

(P1) min if (x) Ix c:. M1'
where f(x) is a convex function defined on Rn and M is an
(n-dimensional) convex compact subset of Rn •
The main idea of Huard's method of centers (cf. [1]) consists,
roughly speaking, in calculating the centers of the sets
M(t) = {x E:M If(x) :f t} by using certain distance functions
d(x,t) defined on M(t). If 1'1 = {XERn!gi(x) ~ 0, i=1, ••• ,mj,
then the distance function can be defined as follows:

d(x,t) = maxfg1(x), ••• ,~(x), f(x) - t 1 .
Then the algorithm is of the following general form:

step '" : to given, set k +- 0;

step 2: k+1 ofCompute x as a solution

min f d(x, t k ) I x/; M(t k ) J
step ): t k+1

( k+-f
~€(O,1]= ~f x ) + (1 - g )tk'

step 4: Set k ~k+1 and go to step 2.

Under certain assumptions the convergence of this algorithm
can be proved. As the solution of step 2 is connected with
considerable difficulties, P. Huard and others suggested to
replace the problem of step 2 by some other problem (e.g.
linearization of functions occurring in the description of
the set M by using gradients, cf. [1]).

The idea of the method of points of gravity is based on
computing the points of gravity in the sets M(t) mentioned
above, cf. [2]. In the algorithm described above we have to
replace only step 2 by

step 2': Compute the points of gravity xk+1 of the set M(tk ).

Under certain assumptions the algorithm converges to one of
the points of solution of problem (P1). Similarly to the
preceding algorithm, the subproblems contained in step 2' are
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very difficult. Nevertheless, these subproblems can be re
placed by computing the points of gravity of finitely many
boundary points of the sets M(tk ), e.g. if xke intM(tk ) and
d1

, ••• ,dn is a given system of orthogonal directions on Rn ,
then

2'1 "step -s)+ r ,

where for s=1, ••• ,n

r S xk + dS -s!:s ' r =
!:s = min {a: r: R1 1xk +

(Is maxfa: € R11 x
k

+

xk
+ asds

a:ds t: M(t
k
)]

a:ds G M(tk )]

Of course, if step 2" is used in the algorithm, the rate of
convergence and the numerical properties of the algorithm
depend to a high degree on the geometrical properties of the
sets M(tk ) and on the position of the points xk in M(tk ). On
the other hand, the algorithm needs only very simple calcu
lations.

2. AN ALGORITHM FOR SOLVING CONCAVE OPTIMIZATION PROBLEMS

We consider the problem

(P2) min{f( x) Ix G M} ,

where f(x) is a concave function defined on Rn and M is an
(n-dimensional) compact convex subset of Rn • It is well
known that

a) there a.lways exists an extremal point e _ M such that
f(e) ~ f(x) for all xc M;

b) if f(x) is concave on the halfline H(xo ) with the initial
point XO and if there exists a point x~e H(xo ) where
f(x1)~ f(xo ), then the function f(x) decreases unbounded
ly along H(xo );

c) if the concave function f(x) is bounded from below along
the halflines H1 (xO

), ••• ,Hr (xo ) with common initial point
xO

, then f(x) is bounded also on the convex hull of these
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The main idea of the algorithm proposed by Hoang Tuy and
Nguyen Van Thoai (cf. [3], varied and implemented for a poly
hedral set M by N.V. Thoai in [4]) consists in covering the
constraint set M by a system of polyhedral cones Ki ,
i=1,2, ••• , in computing lower bounds of the objective
function f(x) on the sets Kin M (bounding) and in bisecting
a cone Ki which belongs to one of the smallest lower bounds
(branching) and so on. In the algorithm, polyhedral cones K
having a common vertex wQ

, WO
€: intM, are used. Each of these

cones has exactly n edges Hj = {XER I x = wo+ 1(Uj-WO),1~O},. n .
. J ( K) { . .} h 0 j 1 j.". • t fJ E: = J1 , ••• ,Jn , were w ,u , •.. ,ll :LS a sys em 0

linearly independent points in Rn •

A. Computation of lower bounds of the objective function
f(x) on K f'l M.

For j e J(K) and for a parameter y, which is characteristic of
the algorithm, we determine:

a)

b)

c)

d)

e)

f)

g)

h)

i)

.(uj_wo ) ,
J 0 j 0 •

T j = max[1~Olw + 1 (u -w )€ Mj

~(K,y) = min t y;f(wo)jf(wj ), jeJ(K)j

"1,j(Y) = sup {1l,~ O!f(wo+'l (wLwo )) ~ ~(K,y)l;

G( K, y) { j E J ( K) I ''''2/ y) .... 0Cl 1 i

or[ / y) = min { ~/ y) , c J'
where c is a given, sufficiently large number;

yj(y) = wo+ ~j(:) (uj_wo ),
obviously f(yJ(y)) ~ ~(K,y);

zj(y) = wO+a(K,y) (yj(y)_wo ),

where a(K,y) is the optimal value of the optimization
problem :

max { L. Ajlwo+~).}yj(Y)_WO)€M, >'j~O, j€J(K)};
jeJ(K) j.:::J(K)

{

" ~(K,y) if G(K,y) = li1 or a(K,y) 6 1 )
g (K, y) = .

min{~(K,Y);f(zJ(y)), j E-J(K)] otherwise.
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Obviously ,g(K,y) ~ f(x) for all xcKnM.

B. Bisection of the convex cone K.

We determine one of the longest edges of t~e (n-1)~dimensional

simplex which is generated by the points U
l1

, ••• ,uln • Let it
have the endpoints u:ir and u i , , j , j E J(K). With the aid of. :r s.
the bisection point u)n.. 1 = "/2(uJ'r + u 1S ) and the edges of K

we define two new cones K1 and K2 with vertex wo : K~ has the

edges Hj(w
o
), jEJ(K1) ={ j", ••• ,jr-1,jr+1, ••• ,jn+"J, and

K2 has the edges Hj(wo ), jeJ(K2 ) = {j1, ••• ,js--1,js+1, ••• ,jn+1J.

[ ] j i}OOIn 3 it was shown that a sequence of cones lK i=1' where
Ki+~ is constructed from Ki by the bisection process described

above, converges to a halfline with the initial point woo

Algorithm. (Step 0): Let wO€intM be given and n+1 linearly
1 n+1 0 ( '" n+1independent points v , ••• , v , where w e int co v , ••• , v ).

Further, let LO = {K", ••• ,Kn +
A

} , wh~re Ki , i€ 10 ={ 1 , ••• ,n+11,

is a cone with vertex wO and edges HJ, je J(Ki ) =t", ••• , i-1,
i+1, ••• ,n+1].

step 1: For i € 10 compute the points wi = wO+ 1. (vi_wo )
~

according to formula a) above,

construct the set
o (0 1 n+ " Jw ="w,w, ••• ,w ,

compute the number

Yo = min~f(wi), i=0,1, ••• ,n+" J,
and determine a point xO

Eo WO with f(xo ) = y .
0)

step 2: For i € 10 compute the lower bounds 9 (K~yo) defined in

i) above and set ;U-o = min f g (K~Yo} ,i G 10 5;
step 3: k~ 0 ;

step 4: If ftk = Yk' then stop
k .

step 5: Otherwise, for an index i € I with S (K~Yk) f"-k

bisect the cone Ki into the cones ~+2+2k and ~+3+2k,
(vn+2+k be the bisection point) and set

I k + '" = (Ik, Ii1) u { n+2+2k} LI {n+3+2k j ;
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step 6: Compute the point

~+2+k = wo+ 'n+2+k(vn+2+k _ wo)
according to formula a) above,
construct the set wk+1 = wk v ~ ~+2+k }

I ( n+2+k)}and compute Yk+~ = min t Yk,f w ,
if Yk+~ <. Yk' then set xk+1~ ~+2+k,
otherwise xk+1

t<'- xk

step 7: For r=2,3 compute the lower bounds
and set

( i. k+l
~+-t = min {q K'Yk+1) ,lE I };

step 8: k+ 1~ k and go to step 4.

Remarks:

(Kn+r +2k Y )
~ , k+ 1

1.) This algorithm either yields an optimal solution after
finitely many cycles or it generates an infinite sequence of
points txk} which converges to an optimal point of problem
(P2) (cf. [3],[4]). In each cycle we have to solve a convex
optimization problem (compare step 7 and k) above) with a
linear objective function (for this purpose we can use the
method of points of gravity from section 1).
2.) If in problem (P2) the set M of feasible points is poly
hedral, then the steps 0,1 and 2 of the algorithm can be
shortened: A nondegenerated vertex of M may serve as initial
point wO

, the points v1 , ••• ,vn+1 can be dropped and the
points w1, ••• ,~ (cf. a) and step 6 above) can be computed
immediately as the vertices of M adjacent to wO, the start
set LO contains one cone only. The optimization problem of
step 7 is linear. For this case, in [4] an implemented algo
rithm which is written in FORTRAN and tested on a computer
ESER 1022 is presented; some smaller examples are also given
there.
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AN ACCELERATED METHOD FOR MINIMIZING A CONVEX
FUNCTION OF TWO VARIABLES

F.A. Paizerova
Department ofApplied Mathematics, Leningrad State University,

Universiteskaya Nab. 7/9, Leningrad 199164, USSR

A method for minimizing a convex continuously different

iable function of two variables was proposed in [1], where it

was shown that its rate of convergence is geometric with

coefficient 0.9543. We shall describe two modifications of

this method with improved convergence rates.

Let Z E E 2 , a function f be convex and continuously differ

entiable on E 2 . Assume that we know that a minimum point of f

is contained in a convex quadrilateral ABCD. The area of this

quadrilateral is called the uncertainty area. Let R be the

point of intersection of the diagonals of the quadrilateral.

Let us choose four points M,N,Q,P on intervals AC and BC which

are all at the same distance E from R (where E > 0 is fixedl.

Now let us compute the function f at these points and at

the point R (see Figure 1).

Case 1

f(Q) > f(R),

f (M) > f (R) ,

f(P) > f(R)

f(N) > f(R)

( 1 )

(2)

In this case R is (within E-accuracy) a minimum point of f onAC

and BD, and then by the properties of continuously different

iable functions the point R is a minimum point of f on ABCD (to

within the given accuracy E) and the process terminates.
Case 2. If inequality (1) is satisfied but inequality (2) is

not, then R is a minimum point of f on BD. If f(~1) < f(R) then
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Fig. 1

f(Z) > f(R)

c
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"ZEBDC

Fig. 2

D

B

and therefore a minimum point of f lies within the triangle ABD.

If f(N) < f(R) then

f(Z) > f(R) "ZEABD

and a minimum point of f lies within the triangle BDC.

Case 3. If inequality (2) is satisfied but (1) is not then we

argue analogously.

These three cases were discussed in [1] and are treated in

the same way here. The difference between our method and that

of [1] is demonstrated in the following case 4.

Case 4. Suppose that both inequalities (1) and (2) are satis

fied. Then there exist two points (say, M and Q) such that

f(M) < f(R), f(Q) < f(R)

It follows from the convexity of f that

f (Z) > f (R) "ZEDRC

Let us draw the line VW which passes through the point R and is

parallel to the line DC. On the interval VW let us choose two

points G and H at a distance E from~. If f{H) > f{R) and
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f(G) ~ f(R) then R is (within ~-accuracy) a minimum point of

the function f(Z) on the line VW (see [2]) and since f(M) < f(R)

then

f(Z) > f(R) "ZEVWCD

This case was also discussed in [1]. The case left to be dis

cussed is the one where either f(H) < f(R) or f(G) < f(R).

At this point our method diverges from the method described in

[1]. We will suggest two modifications of this method. For

the sake of argument assume that f(H) < f(R).

1. First modification. It is assumed that

f (H) < f (R)

Then (see Figure 1)

f(Z) > f(R)

Moreover,

f (Z) > f (R)

"ZEVRCD

"ZEVCD

Let us draw the line FF 1 which passes through the point Rand

is parallel to the line VC. On the interval FF 1 let us choose

two points T and 8 at a distance ~ from R.

If

f(T) > f(R) and f(8) > f(R)

then R is (within ~-accuracy) a minimum point of f on FF
1

and

If

f (Z) > f (R)

f(8) < f(R) then

f (Z) > f (R)

" Z E F'F 1 CD

"ZEF'RCD
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and furthermore,

f (Z) > f (R) r"rZEF'CD

As a result we get the quadrilateral ABCF' which contains a mini

mum point of the function f. Let us compute the ratio of the

areas of the quadrilaterals ABCF' and ABCD.

Assume that

RD AR RC _
= a, > a, AR - a, > aBR RC -

Let h be the height of the triangle ABC. Then

SABCD
,

(' +a) AC - hi SACD
,

a ]I.C - h"2 "2

RC
a,

AC
(Ha, )

Here SABC is the area of the triangle ABC. We have

Let us define h
2

. Since

SACD - SVCD

, a-a,
-2 a -AC-h - 2(' ) AC-h+a,

we have

h =
2

'I'his leads to

S
AVC-,-

2AC
h

a-a,
----2 AC-h
2 (' +a, )

SVCD + SF'VC

a-a,(2+a,)

2
2(Ha,)

AC-h

a-a,
--------2 AC-h
2 ( , +a, )
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Hence, the ratio of the area of the quadrilateral ABCF to the

area of the quadrilateral ABCD is

Since

, - 0:' 0:, (2+0:,)

2
(1+0:) (1+0:, )

(3 )

0:, (2 +0:, )

2
('+0:,)

>
0:(2+0:)

('+0:)2
if 0:, > 0: this result implies

, -
0:'0:, (2+0: 1 )

2( , +0:) (1+0:, )
<

0: 2 (2+0:), -
(' +0:) 3

(4 )

If we decrease the uncertainty area as shown in Figure 2,

similar arguments lead us again to (4).

If at some step it turns out that ~~ = 0: 2 0: 0 (where 0: 0
will be defined later) then we draw a line passing through D

and parallel to AC, and then extend AB and BD until they inter

sect this line (see Figure 3). Instead of the quadrilateral

ABCD let us take the triangle A,BC 1 , In the case of a quadri

lateral we had four lines passing through R. In the case of a

triangle we take the point of intersection of its medians

(the point R,) instead of R.

B

A, ......---....;::..DIIl:::::---.....::t.. C,

Fig, 3

B

Fig. 4
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If a minimum point of f is not contained in ~he quadri

lateral KBFR, (Fig. 3) then we draw the line VW passing through

R, and parallel to the line A,C,. On the interval VW let us

choose two points G and H at a distance E from R,.

If

then R, is (within E-accuracy) a minimum point of f on VW and

f (Z) > f (R, ) "'ZEVBW

Consider the case f(H) < f(R,). Then we conclude that

f (Z) > f (R, )

and furthermore,

." Z E VB F R,

."ZEVBF

Thus, we have a new quadrilateral A,VFC, which contains a mini

mum point.

Let us define the ratio of the area of the quadrilateral

A,VFC, and the quadrilateral ABCD. Let h be the height of the

triangle ABC. We have

SABCD
,

A,C,·h, S
,

(' +a ) A,C, ·h"2 A,BC, "2

SVBF
,

( , +a) A, C, ·h
6

Hence,

S
,

( , +a) A C ·h
A,VFC, 3" , ,

and

S
A,VFC, 2

( '-a) ( 5 )
SABCD 3"
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Let us consider the case where the triangle A,R,C, (see Fig. 4)

does not contain a minimum point of f. Let us draw the line VW

passing through the point R, and parallel to the line A,C" and

argue as above. Let VBC, be a triangle which contains a minimum

point of f. We get

and the ratio of the area of the new triangle VBC, and the qua

drilateral ABCD is ~ (' +0.), i. e. (5) holds again.

If a ~ 0.0 N 0.335, then we must construct a triangle since

it guarantees a greater decrease in the uncertainty area. The

quantity 0.0 is then a solution of the equation

2'3 ('+0.)

The convergence of this modification of the method from [']

is geometric with the rate

B

D

Fig. 5

B

A~--------..,...-I-"'M.J.Ir.l~~

D

Fig. 6

c
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2. Second modification. Let us again (see Fig. 5) assume that

f(M) < f(R)

Then

f (Z) > f (R)

Furthermore,

f (Z) > f (R)

VZEORCD

VZEVCD

Let us draw the line FF 1 passing through R and parallel to the

line VC. On the interval FF, let us choose two points T and S

at a distance E from R.

If

f(T) > f(R) and f(S) > f(R)

then R is (within E-accuracy) a minimum point of f on FF
1

and

f(Z) > f(R)

Let

f(S) < f(R)

Then

f(Z) > f(R)

and furthermore

f (Z) > f (R)

v Z E FF 1 CD

VZEFRCD

VZEFCD

Now let us again draw the line KL passing through R and parallel

to FC and proceed as above.

As a result we get the new quadrilateral ABCK which con

tains a minimum point of f. Now let us compute the ratio of

the areas of the new quadrilateral ABCK and the quadrilateral

ABCD.
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Assume that

RD AR > RC >BH a, a, AR - a, aHC - -

Let h be the height of the triangle ABC_ It follows from the

computations above that

+('+a)AC-h, S -' aoACoh.. ACD - "2

RC
a,

AC, SPCD

aoa,(2+a,)
ACoh

'+a, 2 (' +a, ) 2

Let us find h 3 - Since SAPC
,

ACoh
3

and"2

SAPe SACD - SPCD
,

aoAC-h -
a-a,(2+a,)

ACoh"2 2
2 (' +a, )

,
aoAC-h (, _ a, (2+a

i
)) a ACoh"2 2

(' +a,) 2 (' +a, )

we have

a
---=--~2 AC-h, SpKC
(' +a, )

Therefore

+
o.°a,

-------'-----,,3 AC ° h
2 (' +a, )

a-a, ('+a,)
--------~2- AC ° h +

2 ('+a,)

ACoh

The ratio of the areas of the new quadrilateral ABCK and the

quadrilateral ABCD is



Since

, -
2

cw., (a,+3a, +3)

3
('+a) ('+a,)
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(6 )

2
a, (a,+3a,+3)

3
(' +a,)

a(a2+3a+3)
>

(' +a) 3

it follows from (6) that

, -
2

aa, (a, + 3a, +3 )

3
(' +a) ('+a,)

~ ~
< , _ a (a +3a+3)

(' +a) 4
(7 )

If we decrease the uncertainty area as shown in Fig. 6, we again

obtain the same relation (7).

Let (see Fig. 7)

f(H) < f(R)

Then

f (Z) > f (R)

and furthermore

f (Z) > f (R)

"ZEVRCD

"ZEVCD

Let us draw the line FF1 passing through the point R and parallel

to the line VC. On the interval FF, let us choose two points

T and S at a distance € from R. If

f(T) > f(R) and f(S) > f(R)

then R is (within €-accuracy) a minimum point of f on FF, and

Let

f(Z) > f(R)

f (T) < f (R) •

" Z E FF, CD
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D

Fig. 7

Then

f(Z) > f(R)

and furthermore

f(Z) > f(R)

247

B

A~-----------1~~W<::~WC

D

Fig. 8

v Z E V R F 1 CD

v Z E V F 1CD

Let us again draw the line KL passing through R and parallel to

the line VF
1

and argue as above. As a result we get a new quad

rilateral ABF 1K which contains a :ninimun point of f. Find

the ratio of the areas of the quadrilaterals ABF
1

K and ABCD.

Assume that

RD RD AR >a, = 0.
1

a, aBR AR RC

The triangles DRC and ABR are similar since

RD RC L DRC L ARBBR AR
a,

We have DC = a and DC is parallel to AB.
AB

The line VW is parallel to the line DC by construction. Thus,

\iWIIAB. The triangles ABD and VRD are also similar since the
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corresponding angles are equal. Therefore

BD AB
RD VR

Analogously the fact that the triangles BCD and BWR are similar

implies that

BD DC
RB WR

Therefore VR WR and L ARV = L CRW. We have VV, = ww,. The

line FF, is parallel to the line VC by construction. Since the

triangles VWC ana RWF, are similar, we have

Hence,

We have

VW
WR = 2

,
"2 ww,

From the computations above it follows that

RC

~ (1+a)AC'h

Thus,

aa,
---'-----"""2 AC' h
4('+a,)

Then



aa
1

{2a
1

+5)

24 (Ha
1

)

249

AC'h

The ratio of the areas of the new quadrilateral ABF 1K and the

quadrilateral ABCD is

1 -
aa

1
(20.

1
+5)

:l
2 ( 1+0. 1) ( 1+a )

2
1 _ a (20.+5)

2(Ho.)3
(8 )

(since 0.
1

= a).

If we decrease the uncertainty area as shown in Fig. 8

then we again have (8). The estimate (8) is worse than (7).

In the case

RD
AR a 1 > a

we always have an estimate better than (8). If at some step

RD = a < a
BR - 0

then we enlarge the quadrilateral to a triangle and instead of

the quaarilateral ABCD we take the triangle A1BC 1 (Fig. 9).

B

A 1&<..----......;;;::lI
D
t::::.---......::ll C

1

Fig. 9

B

Fig. 10



Let R,

A,BC,.

KBFR,.

R, and

points
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be the point of intersection of the medians of triangle

Let there be no minimum point of f in the quadrilateral

Then let us draw the line VW passing through the point

parallel to the line A,C,. On the interval VW choose two

G and H at a distance E from R,. If

fIG) ~ fIR,) and f(H) > fIR,)

then R, is (within E-accuracy) a minimum point of f on VW and

f (Z) > f (R, )

In the case f(H) < fIR,) we have

f (Z) > f (R,)

and moreover

f (Z) > f (R, )

VZEVBW

v Z E V B F R,

VZEVBF

Let us draw the line V,F
1

passing through the point R1 and

parallel to the line VF, and ~rgue analogously. Let a quadri

lateral A,VF,C, be obtained which contains a minimum point of f.

Let h be the height of the triangle ABC. We have

SABCD

,
37 (Ha) A, C, ·h

,
"2 (Ha)A,C,'h

,
36 ('+a)A,C,'h ,

The ratio of the new quadrilateral A,VF 1C, and the quadrilateral

ABCD is

"..,--s (Ha) (9 )

If we decrease the triangle as shown in Fig. '0, then the

ratio of the areas of the new triangle FBC, and the quadrila-
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teral ABCD is

59" (Ha)

The estimate (9) is worse than the estimate (10).

If

(10)

then it is necessary to construct a triangle. The quantity a O
is a solution of the equation

2
1 _ a (2a+5)

2 (1 +a) 3

1 118 (1+a)

This modification of the method displays geometric convergence

with a rate q ~ 0.8425.
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ON THE STEEPEST-DESCENT METHOD FOR A CLASS OF
QUASI-DIFFERENTIABLE OPTIMIZATION PROBLEMS

D. Pallaschke and P. Recht
Institute ofStatistics and Mathematical Economics, University ofKarlsruhe,

P.O. Box 6308, 7500 Karlsruhe 1, FRG

INTRODUCTION

In a recent paper V.F.Demyanov, S.Gamidov and T.J.Sivelina pre

sented an algorithm for solving a certain type of quasidiffer

entiable optimization prohlems [3J.

~-1.ore precisely, they considered the class J:' of all functions

given b~r

F (x,y 1 (x) , ••• 'Y
m

(x))}

where

is defined by

and

Max cp •• (x)
. I lJ
JE i

1, ... ,N i ; i=1, ... ,m

for all iE{1, ... ,m} and all JET..
1

The functions F and CP., under consideraticn are assumed to be-
lJ n+m n

long to the classes C
1

(lR ) and C
1

(]F, ) res!Jectivel,!.

The optimization nroblem consists in minimizing a function

f E g;- under constraints.

In this Darer "le Hill apply the minimization algorithm of [3 J

to another class of quasidifferentiable functions.

've are ahle to prove for this type of optimization problems a

convergence theorem similar to that in [3J.
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1. STEEPEST-DESCENT METHOD

We will briefly recall the steepest descent algorithm for mini-

mizing a quasidifferentiable function in the unconstrained case.

Let f:IRn
--7 IR be a quasidifferentiable function.

Then for every XEIRn there exist blO compact, convex sets 'af Ix

and .£. f I x' such, that for every gE:m.
n

, II g 11 2 = 1 , the directional

derivative is given by:

~~:I x- = max
VEdfl- x

<v,g> + min
wEaf Ix

<w,g>

Here <, > denotes the canonical inner product in lR
n .

In terms of these two sets, a stee~est descent direction for f

at x is given by
V +wo 0

- Ilv +w II
o 0 2

with

II v +w II = max (min II v+w II 2 ) .
o 0 2 WEdflx VE~flx

NO~ in the steepest descent algorithm, we start with an arbit
nrary point xoElR .

nLet us assume that for k> 0 the point xkElR has already been

defined, then define

where g(x k ) is a steepest descent direction of f at x k and the

real number a k ~ 0 is choosen in such a \olay that

min f(xk+ag(x k ))
a>O

Obviously, the sequence (xk ) inducesa monotonously decreas-

ing sequence (f(x
k

)) of kElli values of the function f.
kElli

A modification of the steepest descent algorithm is pronosed

in [3]. Therefore \ole define:
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Definition: Let E,~ be positive real numbers and f: ]Rn-+]R be

quasidifferentiable. Let N be a neighbourhood of all

points X
o

E lR
n , where f is not differentiable. Then

for x E N we define:
o

d fl : =
-E X

o

U
conv ( E]Rn df I +s - x s

o
II sll z ~E

U -
conv ( s E]Rn d f I x +s

o

If x £ N, then
o

II sll z~ ~

d fl : =
-E X

o
dfj- x

o
and a f

l~ x o
:=

a fl can be choosen in such a way,
~ X o

that they are compact sets, then f is called (E,~)

quasidifferentiable in x .
o

With the introduction of these two sets, we now give a modified
*steepest descent a1gorithm to find an E-inf-stationary point x

of f.

Let us assume that f: ~ ]R is quasidifferentiable and moreover

that, for given E, ~ > 0, it is (E,~)-quasidifferentiable.Then

choose an arbitrary XoE]Rn. Suppose that x k has already been de

fined.

If -'3 fie d f I then x k is an E-inf-stationary point and the
xk -E xk

algorithm stops.

Otherwise, if -'3 f I <t. d f I , then compute
xk - E xk

v+w
Ilvo+woIIE:nfI~ (min 11v+wllz)=llv+wll z }

v.Ed f vE d f 0 0
o 0 Z ~ Ixk -E IXk

For g E G(xk ) let us denote

a(g) := sup{a.lf(xk + Sg):ii f(x k ) for all O~ S ~a. } ,

and let

argmin f(x k+ a(g)·g
g E G (x

k
)

Now, we define
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In this paper we '....ant to apply this modi£ication for finding

an E-inf stationary point for a class of ~uasidifferentiable

functions.

2. A MOTIVATING EXAMPLE

Let F, G: IRn
~ IR be two arbi trary functions wi th F, GEC, (IR) .

Then define the following, ~uasidifferentiahle function

f: IRn
----7 IR by

f; = max ( IGI ,-F-I G I) - II G I - 2[ F II

This type of function is considered in [,] and obviously does

not belong to the class g:- defined in the introduction. For

illustration, Figure , shows the graph of a function f of this

type for

F:lR2
------7 IR , F (x, ,x2 )

2
x,-x 2

G:IR2 --7 IR , G(x, ,x 2 ) ? 2, 2-x,-x 2+ •

in the set [2= [ - , , , • 4 J x [- 2, , .25] .

-
Q
+
~ 2
I u.

Na- I
x a- D
«
::. I
II
-N -2
X.

~ -2 -1

Figure'

For functions of that tyne, as \vell as for the class ~, the

follOlving properties are valid, as observed in [3].

I. If for all XEIR
n

, the convex, compact sets 2flx and 3flx

are computed as in [3] the two mappings

x r-.--) 2 f Ix and x 1----> af Ix

are upper-semi-continuous. Horeover for suitahle E'll > ()

the functionsd f, a f are also upper-semi-continous.
-E II
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II. If xEJPn is not a stationary noint, then there exist a

real number M > 0 and a neighbourhood U of OE:rn.n , sucho
that for all vEU

~ 0

3. A CONVERGENCE THEOREM

Theorem:

n
Let f:JR -;,JR be a quasidifferentiable function with the following proper-

ties:

(i) There exist real numbers E > 0, \l > 0 such that for all xEJRn f is

(E,\l)-quasidifferentiable and the mappings

and

are upper semi-continuous (u.s.c.)

(ii) If xEIRn is not an r:-inf stationary point, then there exist an

M>O and a neighbourhood U of OEJRn such that for all yEU, gEJRn
o

Then: Every limit '[,oint of the sequence (x ) E1N' constructed by the modi--- nn
fi ed steepest descent algorithn, is an E-inf stationary point of f.

Proof:

Let x* be a limit point of (x ) and let us assume that
n

x* is not E-inf stationary. nEID

Hence there ex.i.st a v ECl fl .)(- and a W Eafl * such thato --E x 0 X

II vo+woll = suE. (inf II v+wI1 2) = a>0.
2 WEClf! * VECl fl *x -E X



is a normalized descent direction in x*.Thus g:=

Observe
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V +',V'
o 0

-llv +~V' II
o 0 2

that'" E;) f Io ~ x

Since x ~ d fl is u.s.c. ,there exist a neighbourhood U of
-10 x

d fl * and a neighbourhood U of x* such that for all XEU
-10 x

~Efl x cU.

Moreover,to 3~flx* there exist a neighbourhood V of d~flx*

and a neighbourhood V of x* such that for all xEV

Choose Uo acco~ding to assumption (ii) of the theorem. To

W: =U n V n (U +x ) there exists a k E:r-J such that for all k > k
o 0 - 0'

XkEW. (Here k isthe index of the convergent subsequence .)

Let us denote by W~E3~flxk the point which is nearest to Woe

From the upper semicontinuity of 3 f we have
~

l' *lm ~"k = l·"O

be a point of minimal distance to -w~.Now, let

Then lim
k

VkEd fl-10 xk

(dist(vk,a fl *)=0.
-10 x

Tne neighbourhoods of a fl * can be assumed to be bounded,
-10 x

since a fl * is comnact.
-10 x -

Hence, there exists a subsequence (vk ) , also indexed by k,

which converges to v E a f I *. kE:JN
-10 x

Thus, for a suitable subsequence and an index K we have:

lim 11~V'k+vkll = Ilw +vll ~ dist(~V' ,a £1 *) = a
k+oo 2 0 2 0 -10 X
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-We see that v=vo since the Euclidian norm is strict.

Therefore, for all k > K

Now, we want to show

a
2

that for k large enough,

is a descent direction in x*.

For this, let a > O. Then:

From assumption (ii) follows

df I

and therefore

f (xk +a91 ) =f (x*) + a dd,..f I +0 q1x k -x*+a9 1.-11 ) +0 qI x k -x* II )
c gk * - -, 2 - 2

x

From the definition of quasidifferentiability we have:

min
wEa f/]J xk

and therefore, from the definition of v k :
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Since df
<v,gk> min.. <w,gk>-=""" :;; max +

dgkl vtU w E3 f I x*x*
d ft *cU-£ X

w Ea f Ix* and Mm w
k

w
0 0

we find for a given 0 > 0 an index K, such that for all k<;: K,

df s; max
dgkl - vEU

x*
d fl *cU-E x

max
vE d fl-E x

k

.u- + 20
dgklxk

a
:0 - "2 + 26

II wk-w II
o 2

*Thus, for all k <;:K" we see that gk is a descent direction in x ,

Hence there is T > 0 such that for all T :0 To 0

Now by the definition of the sequence (xk)k E~ via the modi

fied steepest descent algorithm and by condition ii.) of the

theorem we have:

f (xk+' ) f(x
k + ok 'g (xk ))

:0 min f(x
k

.f. ag
k

)
o;i;a:oak

:0 f(xk + Tg
k

) < f(x*)

for a suitable T:O T
o
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This contradicts the facts that (f(x~)) is monotonously
.'- kE]iI

decreasing and lim f(xk)=f(x*).

QED.

Remark~ The proof also remains valid forE=o, i.e. replacing

"E-inf-stationary" by "inf-stationary".

4. NUMERICAL EXPERIENCES

The above mentioned modification of the steepest descent method

was implemented on the Siemens 7780 at the ComDuter Center of

the University of Karlsruhe.

Applying this procedure to the motivating example of Section 2,

E-inf stationary points could easily be found (this is also true

for problems under constraints, see [2]).

Let us now discuss a further example.

Example

let be qiven bv

and

with:

f, (x',x 2 ,x3 ) = ((x,+x;J.) + !ix,-X 2)2+4X ; /2

f 2 (x"x 2 ,x 3 ) =((x,+x 2 ) - !(X,-X2)2+4X;) / 2

is a convex function and A ,
mln

3
Obviously f" f 2 $ C, (lR )

This function occurs naturally in the investigation of the con

dition of matrices, i.e., if we assign to any symmetric (n x n)

matrix A=(a .. ),<, '< the difference of moduli of the maximallJ _l,J_n

and minimal eigenvalue IA I and IA . I respectively, i.e.max mln

<; : L (lRn , lR n) -------7 lR

(jl n (A) : = IAmax I - IAmin I

This function is quasidifferentiable, since \ - sup <Ax >"max - ,x
IIxll='

inf <Ax,x> is a concave function.
IIxll='
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For n = 2, <p coincides with the above defined function f:lR 3
-+ JR.

n
Morover, the properties i) and ii) of the theorem are valid for

the sets d f and 3 f for suitable E and~. Figure 2 below gives
-E ~

an illustration of the graph of the function f for 4 different

values of x 3 ' i.e. x 3 = 0.3; x 3 = 0.2; x 3 = 0.1; x 3 = 0.0.

M

ci
II
M

"
2

-2 -1.33 -0.67 0 0.67 1.33

-M

"N
". -1
.,(

N
ci
II
M

"

2

o

-1 .33 -0.67 0 0.67 1.33

Pigure 2
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2
c:i
II
M

)(

)(

-1.33 -0.67 0 0.67 1.33

q
o
II
M

)(

2

-1.33 -0.67 0 0.67 1.33

Figure 2

The behaviour of this function x 3 = a is similar to that given

in example 2.1 of [4].

In Clarke's sense, the point (0,0,0) is stationary, but is neither

minimum or maximum, nor a saddle-point. It is a monkey-saddle point.

Moreover, OEint (dclfla)' Le., a is an inner point of the Clarke

subdifferential. Of course, using quasidifferentials, the algo

rithm could find a descent direction (0,0,0).

The "cumulative character" of Clarke's subdifferential can be

clearly observed in Figure 2.
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A MODIFIED ELLIPSOID METHOD FOR THE MINIMIZATION OF
CONVEX FUNCTIONS WITH SUPERLINEAR CONVERGENCE
(OR FINITE TERMINATION) FOR WELL-CONDITIONED C3

SMOOTH (OR PIECEWISE LINEAR) FUNCTIONS

G. Sonnevend
Department ofNumerical Analysis, E6tv6s University,

Muzeum k6rut 6-8,1088 Budapest, Hungary

INTRODUCTION

The motivations for constructing algorithms with the prop

erties specified in the title of this pape~ come from two

sources. The first is that the ellipsoid method (see e.g. Shor

(1982) and Sonnevend (1983)) has a slow (asymptotic) convergence

for functions of the above two classes. The second arises since

the popular idea (practice) that the globalization of convergence

for the asymptotically fast quasi-Newton methods should be

achieved by the application of line search strategies (these are

described in Stoer (1980); bundle methods are described

in Lemarechal et al. (1981)) becomes rather questionable if

function and subgradient evaluations are costly and if the

function is "stiff", i.e. has badly conditioned or strongly

varying second derivatives (Hesse matrixes).

Indeed, line search uses - intuitively speaking - the local

information about the function only for local prediction, While

in the ellipsoid method the same information is used to obtain

a global prediction (based on a more decisive use of the

convexi ty). In the bundle (s-subgradient) methods the generation

of a "useable" descent direction (not speaking about the corre

sponding line search) may require - for a nonsmooth f (in the

"zero-th" steps) - a lot of function (subgradient evaluations).

The important feature of the ellipsoid method, which will be

used here to obtain a method with finite termination (Le. exact

computation of f-) for piecewise linear functions (which is

very important for the solution of general linear programming

problems), is that it provides us with (asymptotically exact)

lower bounds for the value of f-.
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Of course, for nonoonvex functions or when n,the dimension

of the independent variable x, is very large and we have some

special (sparsity) structure, the "optimal" choice of a glo

balization method may fallon another method (using line

searches or homotopy), especially if sensitivity (stability)

aspects (with respect to rounding or measurement errors) are

important. Concerning the sensitivity of a much more stable

ellipsoid method we refer to Sonnevend (1983).

The two sources mentioned above are, in fact not very

different: it is very important to understand that for C~ but

"stiff" convex functions the "initial" behaviour of any algorithm

is the same as for the class of general convex functions: any

convex functions can be arbitrarily closely (uniformly)

approximated (say, over a simplex) by COO convex functions for

which the Hesse matrixes are nonsingular at their (unique)

minimum points. Concerning test results supporting the com

petitiveness of "ellipsoid" methods we can refer e.g. to those

cited in Ech-Cherif, Ecker (1984).

Of course, when we wish to prove - for the proposed method

- the two (asymptotic) convergence properties mentioned above

it is natural (in fact, almost necessary) to assume that the

(function, near to its) minimum is "well conditioned" in

respective sense, see below.

The interest (coming from different fields of applications)

in constructing methods for the computation of the minimal

value f- of a general (nonsmooth) convex function f (over Rn )

should not be stressed here, see e.g. Zowe (1984); neither is

a detailed, formal description of the allowed algorithms

necessary. It will be enough to recall that an algorithm

consists in the sequential choice of points x.ERn , j=1,2, ••. ,
]

where the values f(x.) and g(x.)Eaf(x.), i.e. one subgradient
] ] ]

of f at x., are evaluated. A positive and important feature of
]

the algorithm presented below is that it provides - at each

step s - an easily computed and good (asymptotically exact)

upper bound o(s,f) for the unknown value

ECs,f):=min f(x.)-f- ,
j:S;s ]

( 1.1)
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i.e. a lower bound t for the value of f-. The global error of
s

an N-step algorithm A - over a class of functions F - is defined

by

dN,F):=sup{dN,f) IfEF} I ( 1 .2)

where it is understood that in (1.1) Xj=Xj(A,f(xk),g(~),k~j, F),

for j=1, ... ,N.

The function f will be assumed (in Section 2) to belong

- for some, finite, known values m,M - only to the class

F=F(m,M,Lo)={h\h convex on Rn , X-(h)nLof~,

m~h(x)~M, for xEL o}' (1.3)

where Lo is a ball of radius R around the origin in Rn , and

X*(h)={zlh(z)=inf{h(x)lxERn }}. It is well known that a general

(finitely constrained) convex programming problem can be reduced

- via exact penalty functions - to an unconstrained problem.

The proposed method is a nontrivial, stepwise combination

of a modified, graph ellipsoid method (GEM) - presented in

section 2 - of a simple quasi - Newton method and of (a proxUreU

point) cutting plane method: roughly speaking one chooses - at

each step - that method of the three which leads to an

ellipsoid of smallest volume. All three "next" ellipsoids

(possible followers of the present one) are constructed to

contain all "minimumpairs" (z-,h-) - with z-EL o - of functions

h compatible with (i.e. indistinguishable from) f based on the

information collected up to that step. It will be, in fact,

enough to update (resp. apply) the quasi-Newton (resp. cutting

plane) method only after each (consecutive) n steps. The gldxU

(linear) rate of convergence of the method is the same as that

of the ellipsoid method (per one function and subgradient

evaluation, i.e. "step", which requires 0 (n 2 ) arithmetical

operations: in the average, over periods of n steps). We

emphasize that the proposed method is a "stationary iteration"

method which "automatically" tunes itself to the required,

asymptotic behaviour.
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2. A MODIFIED (GRAPH) ELLIPSOID METHOD

As a result of search for a (global) acceleration of the

method of centers of gravity (CGM) we proposed in Sonnevend

(1984) a graph method of centers of gravity (GCGM), whose

(global) convergence rate is exp(-n- 1 ) and - as an easy implsren

table approximation for the latter - we also proposed a graph

ellipsoid method (GEM) described below in a more detailed

manner.

Let us begin with a definition: we say that - for a convex

function h - the vector (U,V)ERn + 1 is a minimumpair (of h) if

h(u)=v=h-=inf{h(z)IZERn }. The underlying idea of GEM is to

localize the set of minimumpairs of f (which is supposed - see

(1.3) and (2.1) - to have a nonempty intersection with an

initial ellipsoid Eo) into a sequence of recursively (i.e.

stepwise) updated ellipsoid E , s=0,1, ... , of regularly decreasing
s

volumes. In GCGM these sets of localizations (polyhedrons in

Rn + 1/ if Lo is assumed to be a polyhedron, e.g. a simplex) are

computed exactly and the x-projections of their, recursively

computed centers of gravity are taken as the places of the next

function evaluations. It can be proved - at least for n=1 - that

GCTM has a better (global) convergence rate than CGM, and that

the same holds for arbitrary n is indicated by the following

observation: for piecewise linear functions the asymptotic rate

of convergence of GCGM is - in the worst case - n/(n+2), while

for CGM this number is n/(n+1).

We describe the construction of E inductively with respect
s

to the value of s. Let Eo be the ellipsoid of smallest volume

containing the set

{( u, v) IUE:L o ' m:S;v:S;M} (2 • 1 )

It is easy to prove that the vertical width of Eo=Eo(m,M,Lo )

is equal to (M-m)Vn+l and

n
M-m - 1 2"

vol Eo = 2Rvnn (1- n +1) vol Lo . (2.2)

Suppose now that s~1 and an ellipsoid E 1 is known (i.e.s-
constructed in the previous step) to contain all minimumpairs

of functions hEF (m,M,L o )' for which
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h(x . ) =f (x . ), dh (x . ) ~ g (x . ), 1$ j $s-1
J J J J

In order to define Es we first define X s I s= 1,2, ..., to be the

projection of the centre of E 1 to the X space:s-

x : =x (c (E 1 )) .s s-
(2.3)

Having computed (measured) the values of f(x ) and g(x ) wes s
define the sets

H~:={(u,v)lv?:f(x )+<u-x ,g(x »}=H 2 (x ,f(x ),g(x ))s s s s s s

s s s
H1 : = {(u, v) Iv$f (x )}, T : =H 1 nH 2 nE 1·s s s- (2.4)

(2.5)

if f(x )«c(E 1))s s-
sto moving H21

We shall present a simple (suboptimal) method - which will

suffice for our purposes - for the construction of an ellipsoid

E of small (i.e. not necessarily minimal) volume containing
s

T for the somewhat more general case, when T is replaced bys s
T=EnH 1 nH 2 , where H1 is an arbitrary "horizontal, lower" half-

space,

H1 ={(U,v) IV$h} , H2 ={(u,v)=tl<t,p>?:c},

nwhere p=0g,1), gER and the ellipsoid E is arbitrary, but non-

degenerate. The computation of a minimal volume ellipsoid,

E-(T ) containing T - by some rank two update formula - woulds s
not be very difficult, for special cases this was done already,

see e.g. Eh-Cherif, Ecker (1984) or Shor (1982).

It is important to note that in the special case T=T , either
ss sH1 nE

s
_ 1 or H2 nE

s
_

1
is contained in a "half ellipsoid" E

s
_

1
nH,

where the boundary of H contains the centre of Es _ 1 . Indeed,

if f(x )?:v(c(E 1))' i.e. the last coordinate of the centre ofs s- sEs - 1 ' then we can choose H be parallel to H2 and

we can choose H be parallel to H~, which amounts
sresp. H1 downward, resp. upward.

We shall need first to compute the minimal "horizontal", or

parallel to H2 layer(depending on the alternative defined just

above) S(E,H 1 ,H 2 ) containing T. This clearly amounts - say in

the case of the horizontal layer - to computing the value

m(E,H 2 ):=min{vlthere is an u such that (U,V)EEnH 2 }. (2.6).
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Further we have to compute the minimal volume ellipsoid

E-CE,S) containing the intersection of an ellipsoid E and a

Chorizontal) layer S.

Finally Es will be defined as the ellipsoid

C2. 7 )

Cand x s + 1 is chosen according to C2.3) for s+s+1).

The ellipsoids E=ECw,A) will be represented by their centers

R
n + 1 d ' "d f' 't t' T RCn+1)xCn+1)wE an symmetrlc, posltlve e lnl e rna rlxes A=A E :

ECw,A):=(tl<t-w, A-1Ct-W»:51}. C2.8)

The value mCE,H 2 ), thus the "width" of SCE,H 1 ,H 2 ), for the

data CE,H 1 ,H 2 ), see C2.5), C2.8), can be computed as follows

Cfor simplicity - but, of course, without loss of generality 

again for the case of the horizontal layer)

mCE,H 2 )=VCw)-q<Ap,e o>1 IApl 1-1_~<APe~,e~>1/2,

where e~:=eo-<eo,p>llpll-1)C1-<eo,p>21IPII-2)-1/2,eo=CO,O, ... ,O,n

AP:=A-A CAp)-<A'p,p>-1, q:=C<p,w>-C 2 )<Ap,p>-1/ 2 .

The parameters of the ellipsoid E-CE,S), for E in C2.8) and
-1/

S=(tls:5<y,t-W><Ay,y> 2:5n}, 0:5s<n:51 are given by the following

formulae Cnote that the alternative stated above assures

that the chosen layers always do not contain the centre of

E in their interior, thus ~ ~ 0 can be assumed);

C2.9 )

-1/
W-:=W-~Ay<Ay,y> 2,

where

\jJ : = Cn- s)Cv'T=-tT'=n"2"""J]5=-2' + v'~TI=P)'p - 2 ) , C2.10)

For the cases when n=1; E-CE,S)=E-CEnH 1 ) or E-CE,S)=E-CEnH 2 ).

Moreover the volume of E-CE,S) is equal to \jJ~n. For a proof

of these formulae see e.g. Konig, Pallaschke (1981) or the



270

references in Shor (1982). Note that in the special cases,

where EnS=EnH 1 or EnS=EnH 2 , (i.e. when n=1) these formulae are

more simple, morever they would be enough for assuring the next

fundamental inequality:
n-1

vol E-(E,S(E,H1,H2):S;vol E-(E,H. ):S;A +1(1-~. )(1_~~)2vol E 1
1 n 1 1 s-,

for i=1, or i=2, where

n-1
n

An = ~(n2-1) 2
n+1

2 (n+1 )< e

Consequently by our construction we shall have

vol E
s

:s;exp(-(2(n+2»-1) vol E
s

_
1

' for all s. (2.11)

We have now almost everything needed for the proof of the next

theorem.

Theorem 1. The algorithm GEM, described above by (2.9) assures

the existence of a constant k 2 (such that lim k 2 =1 for n=oo),n ,n
for which

dN, f):S;k
2

(M-m)exp(-N(2ln+1) (n+2) )-1).,n

holds for all fEF(m,M,L o )'

Proof. As for the original ellipsoid method, here also the

following Lemma will be useful. It is well known in the theory

of ellipsoid method; for the simple proof see e.g. Sonnevend

(1984).

Lemma 1. The information that a convex set Lc:: R
n

contains all

points z(Of a convex set Lo},where a convex function is less

than a constant c, implies that

< [VOl L ') 1/n
C-i';:of f - Vol Lo J (SLu: f - i'::of f). (2.12)

We apply this Lemma with c=min{f(xj)lj:S;N}=:f
N

, L={ul(u,C)EE
N

}

and L o as defined earlier. First we note that vol L :s; vol K
N

,

where KN is the horizontal, central section of EN' and

n/2
?-e = _1T _

n r(~+1)
2

(2.13)

is the
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volume of the unit ball in Rn . From (2.2), (2.13), and (2.11)

we obtain - for A=exp(-N(2(n+1»-1)-

vol KN (HEN) k ~ vol L e(N,f) k
vol Lo M-m 1,n vol Lo M-m 1,n

where k n-
3/2 ~ k < k n- 3/2 for some finite, positive

1 1,n - 2 ,

constants and from this follows that we have

[

~ 1 In
either A1/n+1~k2-1 VOIILL

J
or A1/n+1~k-1

,n vo 0 2,n
e (N, f)

M-m

the minimum of the f values com-

where k 2 tends to 1 for n+oo . This finishes the proof by the,n
definition of A and by Lemma 1.

Remark 1. Notice that we could replace - in the definition of
sH1 - the value f(x ) by f i.e.

s s
puted up to step s. Since as a by-product of the update fonmliae

(2.10) we can compute the volume of E ,s=1,2, ... , a lower bounds
.R, for the value f- can be updated: .R,:=f -k

2
(!V.t-m)e:xp(-s(2(n+1)(n+2»-1)s s s ,m .

The values f and.R, can be used for narrowing a horizontal layer
s ss sS(E

s
_

1
,H 1 ,H 2 )·

Remark 2. Even if the volume of E decreases regularly (if
s

g(x )to), the diameter of E may tend to infinity for s+oo, which
s s

then leads to amplified rounding errors in the update formulae.

It has been noted by several researchers, see e.g. Gill et al.

((1981) that - for reasons of stability - the update formulae

should be written for the matrixes Is=Bs Qs' where Qs is an

(arbitrarily chosen) orthogonal matrix and BkB~=~. In Sonnevend

(1983) it is shown that these diameters can be kept bounded by

introducing "stabilization steps II in which the intersection

E nEo is included in an ellipsoid of (uniformly in (n,k»
sk

bounded diameter and small volume (i.e. proportional to vol E ).
s

It is shown there that by a suitable stopping rule one obtainsk

thus an algorithm in which - in order to compute f- within

accuracy E - it is enough to have rounding and measurement errors

not greater than E 7 const (if - for f - the existence of a finite

Lipschitz constant is assumed), moreover the sequence of

stabilizing steps (and some other safeguards) can be chosen so

that the essential complexity, convergence features of the

original ellipsoid method are maintained.
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3. MODIFICATIONS YIELDING THE REQUIRED ASY~2TOTIC BEHAVIOUR

We shall give the most simple modifications by which the

required (asymptotic) properties can be ascertained for

functions with well conditioned minimum. Here the (usual) notion

of a well conditioned minimum for "smooth" functions is given

below; for piecewise linear functions we define this notion by

requiring the following assumption to be fulfilled for f: there

exist finite and positive numbers d 1 and D1 such that - for the

unique minimumpair of f -

( 3 • 1 )

holds in a (convex) neighbourhood of x·, Vo ' where there is no

point z-other than x*-for which (z,f(z)) is a vertex of the

graph of f. (Let us note that for GCGM the analogous, in fact

more simple modifications allow us to obtain finite termination

for arbitrary/piecewise linear functions).

The existence of a well-conditioned minimum for a "smooth"

function f will be ensured

its unique minimumpoint x·,

by requiring that fEC2, and for

aa(x)
g(x·)=O,~ =: B(x), is nonsingular at x=x·,

IIB(x)-B(x·) II:5Lllx-x·ll, for some, finite L,

and for x in some convex neighbourhood V1 of x·.

Without loss of generality we can assume that

(3.2)

(3.3)

and some positive finite constants d 2 , D2 .

Let e 1 , ... ,e be the orthonormed system of coordinate vectors
n

in the X space. We define a matrix function B(x) as the unique

solution of
_ -1
B(x)e j =(g(l;;j)-9(x))lIg(x)) I I , j=1, ... ,n, 0.4)

where I;; .=x+ I Ig(x) I Ie., j=1, ... ,n, for all x such that Ilg(x) II ~£1 is a
J J

prefixed/small number. In order to simplify the phrasing of the

proofs below, we shall set £1=0.

Now we define (the construction of)the ellipsoids E ,s
s=0,1, ... ,in the modified GEM by induction with respect to s.

Let Z_1: =X o ' Eo: =E o • Suppose that - at stefl S - we have already
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computed an ellipsoid Es - 1 and a vector zs-1 (the latter is that

point among those where f and g has been evaluated/which yields

the smallest value for f). We define x :=x(c(E 1))' (see (2.3))s s-
and compute

"'- -
zs:= zs_1- Bs-smodn g(zs_1),where Bnq :=B(Znq_1),q=0,1, ... , C3.5)

if in the computation of B- 1 (z) for z=~ 1 - say by a QRnq-
factorization - we obtain an inverse whose maximal element (or

Frobenius norm) is not larger than a prefixed (large) number ~,

"'-
otherwise we define z :=x .

s s "'-
Next we evaluate the functions f and g at x and at z and

s s
compute the ellipsoids, see (2.7)

C3.6 )

C3.7 )

k - that x =x ,s s,O
denote the linear

-s
~here Hi' i=1,2 are defined a~ in (2.4) but replacing X s by

z .
s

In order to define the (proximal point) cutting plane step,

which will be fulfilled only once after each n,consecutive

iterations, i.e. for s=nq+r, q=0,1, ... , r fixed (arbitrarily:

say r:=O) - we need the values of the (asymptotically exact)

lower bounds, £s-1' (see Remark 1 abovejof course £j can now

be computed from the volume of E.). We fix a number A>1 and_ ]

solve the problem (if Ilg(zs_1) II~E1)

in f {I I~ 1-y I I If( z 1 ) +<y-; l' g ( ~ 1) >= £ 1}'s- s- s- s- s-

(we set £o:=m), and evaluate f and g at its unique solution

point, x l' if it is defined and belongs to AL o ' Suppose nows,
- by induction with respect to the value of

x 1" .. ,x k' k< n are already defined ands, s,
functions, corresponding to these points by L.(y):=f(x ) +] s,y
+ <y-x ., g(x . », j=O, ... ,k. We define x k+1 as the uniqu=

X,] S,] s,
solution point (if it exists and belongs to AL o ) of

inf{llz -1 yilimin max L.(y))=:h k=£ 1}'s- .<k] s, s
]-

C3.8 )

where for k=n the equality sign before £ 1 should be replaceds-
by the inequality sign ~. Finally we evaluate the function f at

x and compute the minimal volume ellipsoid, see (2.8)-(2.10)s,n
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one among E , E , E which has the
s s s
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ES :=EII(ES_ 1 ,SS)' SS:={(U,V) Ihs,n;S;V;S;f(xs,n)}' 0.9)

in the cases when either (3.8) or (3.9) has no solutions (inside

AL o ) we set E :=E 1.s s-
Now the description

defining E to be that
s

smallest volume.

Remark 3. Note that one could use - instead of the values

g(Z;;.) and f(x .), g(x -,), j=,1, ... ,n -the values of f and g at
J s,J S,j

points computed earlier, say at x 0' j=1, ... ,n in order to
s-J

define recursively updated quadratic (resp. piecewise linear) ap-

proximations. ~']e did not do so both for simplicity and for reasons

of stability. What is important is that the number of aritlmetical

operations per function evaluation remains in the modified rnethod

0(n 2 ) (in the average: over periods [s, s+n]), while-for the
A

volumes of Es we have - as a consequence of (3.6) and (2.11)

vol E ;s;exp(-(2(n+1))-1)vol E l' s=1,2, ...s s- 0.10)

Thus we have proved the first part of the following theorem.

Theorem 2. The modification of GEM described above has the

required global and asymptotic convergence properties.

Proof~ From (3.10) and Lernrna 1 and the assumption (3.1) follows

that - unless the algorithm is stopped: a trivial alternative,

which we shall neglect in what follows - there exists a finite

value for qO/such that z -1EVo ' which is estimable in termsnqo _
of the constants n,m,M,Lo,d 1 ,D1 and Vo' Since f(zs_1) is monotonic-

ally decreasing in s, and the lower bounds t
s

are asymptotically

exact (with a predictable convergence rate for (fll-£s))' ilie~

exists a qo so large that for s=nqo

0.11)

where H is the maximum of the values such that - except (x·, f·) 

no vertex (x,f(x)) of the graph of f exists for which f(x)<H.
A

Now (3.11) implies that the ellipsoid E has zero volume: i.e.
s

finite termination occurs.

The equality x =x· is established by showing (inductively)s,n
that the linear functions L., j=O, 1 , ... ,n are then all different

J
(and defined) as a consequence of the definitions of x . and

s,J
of the assumptions (3.1), 0.11).
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In order to study the asymptotic behaviour of the proposed

method for functions f satisfying (3.2), (3.3) we show first

that

C3.12)

where V2 is another neighbourhood of x·, whose size - as well

as the corresponding value of K - can be estimated from below

in terms of (d2 ,D2 ,L,V1).

Indeed, from the identity

of (b)

----;T
n
'" f":"o=.f...:..(=.a_+7.-s ...:..(b=---,..-a=....:...)..:..) (b j -a j )ds ,
6 • i=1 , ... ,n ,

j=1 0 oxiox J

one obtains that/for ZEV1

Therefore, if z is such that ~.EV1 for j=1, ... ,n,
J

lI(g(~j)-g(z))lIl1g(z) 1I-1-Blfejll~L( II~j-x·112+llz-xWI12) Ilg(z)II-1,

Now observe that - again from (3.13) -

By construction we have the inequalities

I I ~ . -xw, I~ I Ig( z) I I + I Iz-x·1 I
J

(3.14)

C3.15)

From all these the existence of V2 and K with the propertyC3.12)

follows by simple calculations.

We now need a well known fact from the theory of quasi-Newton

methods, see e.g. Ortega, Rheinbolt (1970): suppose that for

the iteration

z. + 1: =z. _B-:- 1g (z. ), i=O, 1, ... ,
~ ~ ~ ~

where g satisfies the conditions (3.2), (3.3) one has an

estimation

I IBi -Bw I I~K I Iz-x· I I, for all i=O, 1, .•. , •

Then there exists a neighborhood

c, whose size (resp. value) can be

above) in terms of (d2 , D2 , V2 , L,

then

V3 of x· and a finite number

estimated from below (resp.

K) only, such that if x OEV3

IIXi+1-xWII~cllxi-x·112, for all i=0,1, •••• (3.16)



276

From the fact that the sequence fez 1)' s=1,2, ... is mono-s-
tonically nonincreasing and tending - for s~oo - to f* by (3.10),

we obtain, in view of the conditions (3.2) and (3.3), that

zs_1 ~ x*, for s~oo. Therefore we shall have

C3.17)

and - if n Cand qo) is chosen to be large enough - the matrixes

B will be defined for q>qo so that the iteration C3.5)-C3.9)nq _ _
assures that zs_1EV3 for all s~nqo' Cnotice that the maps CI-Bqn)

are contractive for all q large enough, in fact their norms

tend to zero).

It remains only to prove the next Lemma.

Lemma 2. Suppose that an ellipsoid E is contained in a ball of

radius bR, H1 and H2 are halfspaces as specified in C2.5), with

p=~g,1), such that the X projection of the intersection of their

boundaries has a common point with the the X projection of E,

then

1 E-CE H H ) <_ Ilgllbn + 1Rn
\lJ

nvo , l' 2 I C3.18)

where If' ~O for n~oo.
n

E=E 1 for s=nq, q~q , ins- 0

- A -s-sorder to estimate the volume of ECEs _ 1 ,H 1 ,H 2 ), see C3.6). Note

that if one is not making the stabilization mentioned in

Remark 2 and guaranteeing the existence of a finite constant

b (for all n uniformly) then everything remains true with b=1

if in the definition (3.6) we set

Proof. By the assumptions made, the minimal horizontal layer

containing the intersection EAH 1AH
2

has a width not greater than

2bl Igi IR. Therefore the minimal valume ellipsoid E-(E,S) has

- see (2.2) - also a volume not greater than
n

Ilgllbt/n+T'~ C1-(n+1)-1)2' Rnbn .
n

Now we shall apply this Lemma for

C3.19)- - -s-sEs :=E(E o ,H
1

,H
2

)·

We obtain from (3.16) - ~3.18) that

volllE II$c 4 vo12(]~ 1)' for q~qo (3.20)qn qn-

where the constant c 4 is independent of q. From this by Lemma 1
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we obtain the superlinear convergence of the values of

(f(z 1)-f·), which implies by the conditions (3.1)-(3.2) thes- _
superlinear convergence of liz 1-x*1 I, for s+oo.s-
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NUMERICAL METHODS FOR MULTIEXTREMAL NONLINEAR
PROGRAMMING PROBLEMS WITH NONCONVEX CONSTRAINTS

Roman G. Strongin
Gorky State University, Gorky, USSR

1. INTRODUCTION

Existing approaches to multiextremal optimization (see Evtushenko, 1971;

Ivanov, 1972; Mockus, 1977; Strongin, 1978; Zilinskas, 1978) mostly focus on

numerical methods for unconstrained problems. Constraints are usually handled

by introducing penalty functions since other techniques (see, for example,

Demyanov and Vasiliev, 1981) require the minimizing function and the con

straints to be convex, unimodal, or to have other properties. Below we pre~

sent a new algorithm for multiextremal problems with nonconvex constraints

which does not make use of penalties.

2. ONE-DIMENSIONAL CASE

Let us consider the problem

min{h(x) : x E [a,b], gi (x) ";;;;0, 1 ,,;;;; i ,,;;;; m} (1)

where the function h(x) to be minimized (denoted below by g l(x» and the
m+

left-hand sides g. (x), 1 ,,;;;; i ,,;;;; m, of the constraints are all Lipschitz func
l

tions. We also assume that the functions g., 1 ,,;;;; i ,,;;;; m+1, are defined and
l

computable only in the corresponding domains Qi' where

and the following inclusions obviously hold

where ~+2 -I 0. With each point x E (a, b) we associate an index



s = s(x) 1~s~m+1
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(2)

defined by the requirements xEQs and x$Qs+1' The maximum value of the

index (2) over the domain [a,b] will be denoted by N, i.e.,

1~N df max {s(x) : xE [a,b]}

Now we introduce the optimization problem

(3)

min (4)

which is defined for any value N from (3). If N = m+1 the solution of this

problem is simultaneously the solution of the source problem (1). If, on the

other hand, N < m+1 (i.e., the constraints in (1) are incompatible) we obtain

*the inequality gN > 0, which provides a test for this case. The function

H(x)

o if s s(x) < N

(5)

if s s (x) N

*is associated with the problem (4) in the following way: the point x re~

*presenting the absolute minimum of H(x) over [a,b] is such that gN(x) = gN'

* *x EQ
N

and H(x ) = 0, Le., unconstrained minimization of the function H(x),

x E [a, b], yields the solution of problem (4).

*Since the value denoted in (4) and (5) by gN is not known a priori, the

method described below employs an adaptive estimate of this value.

3. ALGORITHM FOR ONE-DIMENSIONAL MULTIEXTREMAL PROGRAMS

Each iteration of the proposed method at any arbitrary point xE [a,b]

involves the determination of some corresponding value f(x) = gs(x) (where

s = s(x) is the index from (2», obtained by successive calculation of the

value of the functions gi (x), 1~ i ~ s. It is a condition that gi+l (x) can

be calculated only if g. (x) ~ O. The calculations are terminated when either
l.

the inequality g (x) > 0 or the equality s = m+1 is satisfied. The above
s

process therefore results in the evaluation of both f(x) and s(x) for any

given point x.
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The first iteration is carried out at an arbitrary point xl E (a,b). The
k+lchoice of any subsequent point x ,k > 1, is determined by the following

rules:

(a)
1 kpoints x , ... ,x from previous iterations are renumbered using sub-

scripts in the following way:

and associated with values zi = f(x i ), 1 ~ i ~k, computed at these points

(values Zo and zk+1 are undefined);

(b) the following sets of indices are constructed:

{O,k+l} I s
{i l~i~k,s s (x.) }

1.

Ts

and the following values calculated:

M = max {lz.-z.l(xi -x.)-l: i,jEls ' i<j}
s 1. J J

(6)

1~ s~ m+1. If II I < 2 or M from (6) is equal to zero, it is assumed thats s

(c) for all nonempty sets I , 1 ~ s ~m+1, the following values ares
determined:

*z
s

° ifT",0s

min {z. : i E I }
1. S

ifT
s

(d) for each interval (x i _
1

,xi ), 1 ~ i ~ k+1, the value R(i) (called the

characteristic) is computed, where

22*
R(i) = (x.-x. 1) + (z.-z. 1) /M (xi-x. 1) - 2(z.+z. 1","2z )/rM ,

1. 1.- 1. 1.- S 1.- 1. 1.- S S

i-1, iEls

R(i) 2(x.-x. 1)
1. 1.-

*4(z.-z )/rM
1. s s

iEI
s

i-I E S
s

R(i) iES
s
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(here r is a parameter, with a value greater than 1). The interval (x
t

_
1

,x
t

)

with maximal characteristic R(t) = max {R(i): 1~ i~ k+1} is then determined.

If s = s(x
t

_
1

) = s(x
t

) then the next iteration is carried out at a point

x
k

+
1

[(xt+x 1)/2] - [(z -z 1)/2rM]
t- t t- s

otherwise, i.e.,

omitted.

if s(x 1) f s(x ), the second term in the above formula is
t- t

4. SUFFICIENT CONVERGENCE CONDITIONS

domains Q., 1 ~ i ~ N, are the finite unions of intervals of positive
l

in [a,b];

THEOREM l.

fied:

(a)

length

Assume that for N from (3) the following conditions are satis-

(b) functions gi(x), 1 ~i ~N, xEQi' admit Lipschitz extensions (with

corresponding constants K
i

) over [a,b];

*(c) point x is a solution to problem (4);

(d) the inequality rM > 2K, 1 ~ s ~ N, for N from (3) and for M from
s s s

(6), is satisfied for some step in the search process.

Then:

(1) x* is an accumulation point of the sequence {x
k

} generated by the

* *algorithm described above and convergence to x is bilateral if x f a and

*x f b;

(2) any other accumulation point x' of the sequence {x
k

} is also a solu

tion to problem (4).

Computer simulations of the search process for a given one-dimensional

problem with two constraints yield the results presented in Figure 1. The

plotted curves represent functions gi' 1 ~ i ~ 3, the labels corresponding

to the values of subscript i. Vertical bars indicate the iteration points

x
1

, ... ,x
57

and are arranged in three rows according to the values of indices

V(x
k
), 1 ~ k ~ 57.

The points marked on the broken line in the lower part of the figure

represent pairs (xk,k), where k is the step number and x
k

is the coordinate

of the corresponding iteration. This simulation terminated at the 58th step

when the condition X
t

-X
y

_
1
~ 0.001 (the stopping rule) was satisfied. (The

right-hand side of this condition is of course the required accuracy.)
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FIGURE 1 Computer simulation of the one-dimensional search process
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5. MULTIDIMENSIONAL MULTIEXTREMAL NONLINEAR PROGRAMS

Program (1) could be generalized to the multidimensional problem

where

min {h(y) : yED, g.(y) ,,;;;; 0,1 ,,;;;; i ";;;;m}
1.

(7)

D (8)

This problem can be reduced to one dimension by employing a Peano-type space

filling curve mapping a unit interval [0,1) on the x axis onto the n-dimen

sional domain (8). Thus it is possible to find the minimum in (7) by solving

the one-dimensional problem

min {h(y(x» : xE [0,1] ,g.(y(x» ,,;;;; 0,1 ,,;;;; i";;;; m}
1.

(9)

As shown in Strongin (1978), the Peano transformation y(x) provides a

function gi(y(x) that satisfies HBlder1s condition if the source function

gi(y) satisfies the Lipschitz condition. Thus problem (9) could be solved

by a generalized version of the above algorithm. The difference between these

two algorithms is that all distances of the type (x i -xi _1) in the original

algorithm must be replaced by values (x.-x. l)l/n in the new algorithm, for
1. 1.-

which some analog of Theorem 1 will hold.
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A MODIFICAnON OF THE CUTTING-PLANE METHOD WITH
ACCELERATED CONVERGENCE

V.N. Tarasov and NX. Popova
Department ofPhysics and Mathematics, Syktyvkar State University,

Syktyvkar, USSR

1. INTRODUCTION

The cutting-plane method of J.E. Kelley [3] is widely

used in convex programming. There are some modifications of

this method (see, e.g. [4]), which in some cases accelerate its

convergence. In this paper we discuss another modification of

the Kelley method based on the idea described in [2] for solv

ing equation f(x) = 0 with multiple roots by the Newton method.

It is well-known that if an initial approximation is close enough

to the root (and some additional conditions are satisfied) then

the Newton method is of quadratic rate of convergence. But it
2is not the case if, for example, f(x) = x where x EEl. Then

the multiplicity of the root x* = 0 is m = 2. The Newton method

implies

i.e. the rate of convergence is geometric (and its coefficient

is }). But if we take

(where m is the multiplicity of the root of the equation f(x) =0):

then in our example we get

x 
k

o
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Generally speaking, such a modification has quadratic rate of

convergence. This idea is behind the approach we are going to

present (a short description can be found in [6,7]).

2. AN ALGORITHM

Let f be a convex function defined and finite on the n

dimensional Enclidean space E , Il C E be a compact Convex set.
n n

It is necessary to find a point x* Ell such that

f(x*) = min f(x)
xEIl

By af(u) we denote the subdifferential of f at u, i.e.,

df(u) = {VEE I f(x) > f(u) + (v,x-u)n -
'Ii x E E }

n
(1)

Choose v (u) E a f (u) and let us introduce the function

F(X,U,E) = f(u) + (i+ E) (v(u), x-u) (2)

Take

o =
K

such

an arbitrary point XOE Il and put 0
0

= {xC}. Let

{xO,xl, ••• ,X
k

} have been found. Let us choose Ek=E(X
k

)':: 0

that

* *F(x ,Xk,E
k

) ~ f(x ) (3)

Such an E:.k exists for any k since for E = ~ it follows from (1)

that

1
Therefore we can assume that 0..:: f.:: k ":: 2"
function

max F (x, x. , E . )
iEo:k 1 1

and find

arg min {¢k (x) I x E Il}

Now let us introduce the

(4)

(5)
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Now take 0k+l = ok IJ {xk+l } and continue in the same manner

Theorem 1. If for some k

then xk +l is a minimum point of f on~. Otherwise any limit

point of the sequence {xk}is a minimum point of the function

f on ~.

Proof. The first part of the theorem is obvious:

f( ) f(x *) ,j, ( *) ( )x k+ l ~ > ~k x > ¢k x k+l

which implies

(inequality f(x*) ~ ¢k(x*) above follows from (3) and (4».

To prove the rest of the theorem assume the opposite: then

there exists a subsequence {~ } such that x
k

~ x, k ~ 00 and
s s s

- *f (x) > f (x )

By construction

¢ k (xk ) = max F (xk ' x. , E: • )
s s+1 iEO:x s+l 1 1

(6)

---+ f (x) •
k
s~oo

(v( x
k

)
s

On the other hand, since 4k (x) ~ ¢k+£ (x) TV £ > 0, TV:n. then

(x k )
s+l

< < ¢ *ks+l-l (x )
< f( x *)
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i.e. f(x) < f(x*) which contradicts (6).
- 1

Remark 1. If E: k 2" VkEO: "" the method becomes the Kelley

method.

Remark 2. Let f be a quadratic function

f (x) (Ax,x) + (b,x)

where A is an n x n positive definite matrix, bE E ; n CE is an n
convex set. If x* = arg min {f (x) Ix En} E int n then by the nec-

essary condition for a minimum

Therefore

f I (x*) o ( 7 )

1, * * 1 *f (x) + 2"(f (x),x - x) - f (x ) = (Ax,x) + (b,x) + 2"(2Ax + b,x - x) -

- (Ax*, x*) - (b,x*) = (Ax*,x-x*) +~ (b, x-x*)

Since f' (x*) = 2Ax* + b, then from (7)

1, * * 1**f(x) +2"(f (x),x -x) - f(x ) = (f (x ),x-x )

i. e.

F(x*,x,O) < f(x*) (8 )

and in (3) we can choose E: k = O.

Thus, for a quadratic convex function we can always take

E: k = 0 V k.

Theorem 2. If f is a strongly convex twice continuously differ

entiable function then there exists a sequence {E: k } satilfying

condition (3) such that E: k -+ 0 as k -+ "".

Proof. Since f is twice continuously differentiable then the

matrix of the second derivatives is strictly positive definite.

Let x* = arg min {f (x) Ix En}. Assume that x* E int n. Since f

is strongly convex then there exists ~ > 0 such that
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f(x*) > f(x) + (fl (X), X* -x) + flllx*-xI1 2

It implies

(fl (x), x* - x .:: - fl11x*-uI12

Let us introduce the function

VXEEn

(9 )

clearly

* * * 1 "* * *f 1 (x) = f(x ) + (fl (x ), x-x) +2"(f (x ) (x-x), (x-x)) •

where

f (x) f (x* + (x-x*)) = f
1

(x) + o( IIx-x* 11
2 ) ( 10 )

and

o(llx-x*11 2 ) =~(f"(x*+e(x) (x-x*))-

- f" (x*) (x-x*) , (x-x*) ) , e = e (x) E (0,1)

( 11 )

Since f 1 is a quadratic function then it follows from (8) that

1 1 * *f 1 (x) +'2(f
1

(x), x -x) < f 1 (x )

From (10)

( 1 2)

f 1 (x)

Therefore

f'(x) = f'(x) + o(lIx-x*lI)
1

and (11) and (12) imply

f(x) +o(lIx-x*1I 2 ) +~(f'(X)'X*-X) + (o(lIx-x*II),x*-X)'::f 1 (x*) = f(x*)
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or

f(x) +~(f' (X), X*-X) + o(lIx-x*1I 2 ) < f(x*)

Since

( 1 3 )

o(lI x - x *1I 2) = a(x) IIx-x*1I 2 where a(x)

then from (9) it follows that

-+ 0
x+x*

la(x) I (f' (x), x*-x) < -Ia(x) IlIx-x*1I 2
I.l

Moreover,

la~x) I (fl (x), x*-x) < a(x)llx-x*1I 2

Hence (13) implies

1 '* *f (x) + (2 + E: (x) ) (f (x), x -x)) < f (x )

where

(1 4 )

dx) I a (x) [

I.l
--0
x+x*

(1 5)

Thus, if in the method described above (see ( 5) ) we choose E: k = E: (x
k

)

then

1 ) -+x* (since ( 1 4 ) implies ( 3) )x k

2) E: k
-+ 0 (due to (15)). Q.E.D.

Remark 3. Computational experiments have shown that the method

aescribed is very efficient (and for a quadratic function under

some additional conditions it is even finite).
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A FINITE ALGORITHM FOR SOLVING LINEAR PROGRAMS WITH
AN ADDITIONAL REVERSE CONVEX CONSTRAINT

Nguyen Van Thuong and Hoang Tuy
Institute ofMathematics, Vien Toan Hoc, P.O. Box 631, Hanoi, Vietnam

1. INTRODUCTION

This paper presents an algorithm for solving the follow
ing problem :

(P) Minimize ex, s.t.

xED

g(x) ~ 0

(1)

(2)

where D c Rn is a polytope and g is a finite concave
function on Rn • Problems of this kind occur in certain
economic and engineering applications.

Clearly, without the additional constraint (2) the
problem would reduce merely to the ordinary linear
program

Minimize ex, s.t. x ED (3)

Therefore, all the difficulties of the problem arise from
the presence of the constraint (2) which is called a
reverse convex constraint, meaning that it is the reverse
of a convex constraint.

Linear programs with an additional reverse convex
constraint like (P) have been first studied by Bansal and
Jacobsen [3,4J, Hillestad [6J and also Hillestad and
Jacobsen [7J. In [3,4J the special problem of optimizing
a network flow capacity under economies-of-scale was
discussed. In [6J a branch and bound edge search procedure
was developed for the problem (P) under the assumption
that the concave function g is differentiable. In [7J ,
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it was sbown tbat an optimal solution for (P) lies on an
edge of the polytope D. From this basic property, a
cbaracterization of the set of edge of D that can con
tain such an optimal solution was given and a pivot type
algorithm for solving (P) was derived.

Problems more general tban (P) have been treated by
Rosen [llJ, Avriel and Williams [1,2J, Meyer [9J,
Hillestad w1d Jacobsen [8J, and also Hoang Tuy [13J.-In
the latter paper, a finite method was developed for global
ly minimizing a concave function under the constraints (1)
(2). As specialized to problem (P), it provides an algori
tbm different from that of Hillestad and Jacobsen [7J and
baving the advantage of being still valid wben D is an
unbounded polyhedral convex set.

It should be noted that the metbod in [13J is based
on an extension of a method of concave minimization under
linear constraints due to Vu Thien Ban. On the other hand
Hillestad and Jacobsen [7,8J have shown that cuts origi
nally devised for concave programming could be as well
used for reverse convex programming. ThUS, tbe problem (P)
and, more generally, the reverse convex programming
problem, is closely related to the concave minimization
problem.

The purpose of the present paper is to develop a
finite procedure for solving (P) wbich exploits this
relationship in a more systematic way than has been done
in tbe previously cited references. It turns out tbat a
linear program witb an additional reverse convex cons
traint can be decomposed into an alter-nating sequence of
linear programs (minimizing cx under constraints (1))
and concave programs (minimizing g(x) under constraints
(1) and one additional constraint of the form cx ~ ~ ) •
Rougbly speaking, the proposed algorithm switChes between

steps of two types: in the open region g(x) < 0, we use
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simplex pivots to improve the current feasible solutions, while

at a feasible point on the boundary g(x) = 0, we must solve a

concave program in order to decide whether or not the current

feasible sOlution is optimal and if not to move to a better

feasible solution in the region g(x) < o. To solve these con

cave programs we can use any available finite algorithm, for

instance the algorithm of Thieu-Tam-Ban [12] or that of Falk and

Hoffman [5].

2. THE ALGORITHM

For the sake of convenience we shall make the following

assumptions in this section:

The function g(x) is strictly concave and
does not vanish at any vertex of D.

( i)

(ii)

Min { cx : x Eo- D} <: Min { cx : x D I g(x)=O}

Assumption (i) simply means that the constraint (2)
is essential : if (i) does not hold, then (P) is equiva
lent to the linear program (3). In the sequel we shall
use this assumption in the following form :

For any feasible vertex u of D, there is a
neighbouring vertex v such that

cv <:: cu

Assumption (ii) is not a too stringent one. Later
we shall see that any concave function g can be made to
satisfy this assumption by a slight " perturbation " .
For our purpose, this assumption is convenient in that it
will allow a significant simplification of the algorithm.

Let us first explain the basic ideas of the method
to be proposed.

Suppose that a vertex XO of the polytope D is
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available such that
(4)

(We shall discuss later the case where such a vertex is not
readily available : see Remark 1)

Since the constraint (2) is not binding for xO it
is natural to first improve xO by moving only on the
polytope D. We do this by applying tbe simplex proce
dure to the linear program (3) : if a neigbbouring vertex
xl to xO exists sucb that cxl < cxo and g(xl ) < 0
we perform a simplex pivot to move to xl. This proce
dure can be continued until we find a pair of vertices
u ,v of D such tbat g(u) < 0 , g(v) ~ 0 • (This must
occur in view of assumption (i)). Then we can move along
the line segment [u,v] to the point x where this seg
ment meets the boundary g(x) = 0 (since g is strictly
concave, and g(u) < 0 , g(v) ~ 0 , tbere is on the line
segment [u,v] just one point x satisfying g(i) = 0) .

-Clearly x is the best feasible solution obtained so
far. Therefore, it only remains to consider the polytope

D(i) = { x ~ D : cx ~ cx } (5)

The question to be examined now is whether D(i) bas a
vertex z such that g(z) < 0 • For if we can find such
a vertex, then the same procedure as before can obviously
be repeated, with D(i) and that vertex replacing D and

ox

The best way to check whether D(i) has a vertex z
such that g(z) < 0 , and to find such a vertex if it
exists, is to solve tbe concave programming problem

Min { g(x) : x E D(i) } (6)

It turns out that, under Assumption (ii) if the
optimal value of g in this program is zero, i.e. if
there is no z in Dei) such that g(z) < 0 , then i
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is necessarily optimal to the original problem (Theorem 1
below). Otherwise, we shall find an optimal solution z
of (6) , i.e. a vertex of D(i) such that g(z) < 0 •

Using then z in place of xO and D(i) in place of
D , we can restart the whole process in a new round.

In a formal way, the algorithm can be described as
follows.

Initialization.
that g(xo) < 0 • Set

Take a vertex X
O

Do = D .

of D such

Step 1. Starting from xO
, pivot via the simplex

algorithm for solving the linear program

Min { cx : x E Do } ( 7)

until a pair of vertices u, v of Do is found so that
g(u) < 0 , g(v) ~ 0 ,and cv < cu ~ cxo . Let x be the
(unique) point of the line segment [u,v] such that g(i)=o.
Go to Step 2.

Step 2. Solve the concave program

Min { g(x) : x E D(i)} (8)

where D(i) = {x ED: cx ~ cx} •

a) If the optimal value in this concave program is
-zero, stop: x is an optimal solution to (P) •

b) Otherwise, obtain an optimal solution z to (8),
which is a vertex of D(i) satisfying g(z) < 0 •

Set X
O

+- Z , Do ~ D(i) and go back to Step 1.

Remark 1. Unless the problem has no feasible solu
tion, a vertex xO of D satisfying g(xo) ~ 0 always
exists (for otherwise g(v) > 0 for every vertex v of
D ,hence g(x) > 0 for every x E D). If such a vertex
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is not readily available, it can be found, in any case,

by solving the concave program min t g(x) : x E D}

If g(xo) = 0 one can set 0 and go direct-, x = x
ly to Step 2.

Remark 2. Since g(xo) < 0 , by virtue of Assump
tion (i) XO can not be an optimal solution of the linear
program (7). Therefore, a pair u,v satisfying the condi
tions mentioned in Step I can always be found.

3. JUSTIFICATION

To justify the above algorithm we first establish
the following optimality criterion which includes
Theorem 2 in [7] as a special case.

Theorem I (Optimality criterion). Under Assump
tions (i) and (ii) a feasible solution x to (P) is
optimal if and only if the optimal value in the concave
program (8) is zero.

Proof. Suppose that x is an optimal solution to
(P), while the optimal value in (8) is not zero. Since
g(x) =0 , this optimal value must be < 0 • Then there
is an xED such that g(x) < 0 , cx = cx • In view of
the continuity of g , one must still have g(x) =0 for
all x in some ball V around x. On the other hand x
being optimal to (P), one must have cx ~ cx = cx for
all xED n V • The latter implies that x is an opti
mal solution to the linear program (7). Since cx = cx ,
this conflicts with Assumption (i). Therefore, if x is
optimal to (P) , then

o = min { g(x) xED , cx =cx } . (9)

Conversely, suppose that (9) holds and consider any
xED satisfying g(i) ~ 0 , ci ~ cx . Then (9) implies
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g(x) =0 , so that x is an optimal solution to the con
cave program (9). But, the function g being strictly
concave (Assumption (ii)) its minimum over the polytope
D(x) = l x E- D , cx f cx} can be achieved only at a
vertex of D(x) • Therefore x is a vertex of D(x).
Since by Assumption (ii) the function g does not
vanish at any vertex of D, since g(x) = 0 , it follows
that x is not a vertex of D, and hence, cx = cx .
Thus for any x ~ D such that g(x) f 0 , cx ~ cx , one
must have cx = cx • This proves the optimality of x. 0

We can now prove :

Theorem 2. Under Assumptions (i) and (ii), the
algorithm described in the previous section is finite.

Proof. The algorithm consists of a sequence of
consecutive loops of execution of Steps 1 and 2. Denote
by uk, vk , xk the points u, v'.x obta~ned at the end
of Step 1 of round k. Since cxHl <: cxl. the set Do
at round k is clearly

Do = D(xk- l ) = { xED : cx ~ cxk-l }

We now show that [uk, ~J is contained in some edge of
D • Indeed by construction [uk, vkJ is an edge of
D(xk- l ) , and since c~ <: cuk ~ cxk- l it cannot be con
tained in the face cx = cxk-l of D(xk-l ) • Hence it
must be contained in some edge of D.

Now let M denote the set of all xED such
that g(x) = 0 and x is contained in some edge of D.
By the above, xk E M for every k = 1,2, •••• But the
number of edges of D is finite and by the strict con
cavity of the function g there can be on each edge of
D at most two points where g(x) = 0 • Therefore, the
set M is finite. The finiteness of the algorithm follows
then from the finiteness of the set M and the fact that
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each round generates a point x:k E M
(k = 1,2, ••• ) (indeed cxk+ l < cxo,k
is the point X

O at round k) • 0

4. DISCUSSION

and
= c?<

-k+lcx <
where

1. In Step 2 of round k , we have to solve the
concave program

(Qk) Min { g(x) : x E D(xk ) }

But, since cx:k <: cx:k-l , it is clear that

D(~) = {x E D(~-l) : CX £ cxk }

Thus (Qk) can be obtained by adding to (Qk-l) the
constraint

cx ~ cik

(Which, by the way, makes tbe previous constraints
cx ~ cxi , i = 1, •.• ,k-l , redundant). In view of this
fact, to economize the computational effort, one should
use for solving (~) an algoritbm which could take
advantage of tbe information obtained in solving (Qk-l).
For example, the algorithm given by Tbieu-Tam-Ban in [12J
satisfies this requirement (see e.g. [14J for details).

2. The point x obtained at the completion of Step 1
is always a vertex of D(i) (since x lies on an edge
[u, vJ of D). Therefore, it can be used to start the
process of solving the concave program (8).

Also note that it is not always necessary to solve (Qk)

to tbe end. In fact, we can take as z any vertex of D(ik)
such that g(z) < 0 , and not necessarily an optimal solu
tion of D(x:k) • It is easily seen that with this modifi
cation the algoritbm will still be finite.

3. Let D be defined by the system of linear
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inequalities

bi(x) ~ 0 (i = l, .•• ,m)

An alternative variant of the algorithm is the following:

Pick a polytope Sl ~ D whose vertices are known.

Stage k = 1,2, •••• Apply tbe basic algorithm to the
problem

Min { cx : x E ~ , g( x) ~ O} ,

obtaining an optimal solution ~ •

If xl<: E D stop : ~k is an optimal solution to (P)., x

Otberwise, hi (~) = max bi(~) > 0 • Let
k i

Sk+l = Sk n { x bi (x) ~ o }
k

and go to stage k+l .
It seems that for large problems this variant should

work more efficiently than tbe basic algoritbm.

4. So far we assumed tbat condition (ii) is fulfilled.
To deal with the general case where this condition may not
hold, we use the following propositions.

Proposition 1. Let

= g(x) - E( Ixl 2 + 1 )

There is EO > 0 such that for all E EO (O,EO) the
function gE is strictly concave and does not vanisb at
any vertex of D.

Proof. Denote by Vo tbe set of vertices x of D
sucb tbat g(x) = 0 , and by VI the set of remaining
vertices of D. Let 0 = min { I g(x)1 : x E VI} > 0 , and
pick EO so small tbat EO(IXI

2 +1) <: 5 forallxEV l ,
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Tben for every £ E (0'£0) we have

g(x) _ £(IXI 2 + 1) ~ -£ <0 "Ix E Vo

I g(x) _ £(IX,2 + 1) I ~ 5 - £o( Ix,2 + 1) ). 0

Vx E: VI

Tbus the function g£ does not vanisb at any vertex of D.
Since tbe strict ooncavity of g£ is obvious, tbe
Proposition is proved.

Proposi tion 2. Consider tbe problem

(P£) Min t cx : xED , g£( x) ~ O} (0.( £ .( £0) •

If x
E

is an optimal solution to (P
E

) and x is an accumulation

point of x as E + 0+ then x is an optimal solution to (P).

Proof.---
have g£(x)
But clearly
(P) • 0

For all xED
~ g(x) ~ 0 , hence
xED , g(x) ~ 0

satisfying
cx£ ~ cx ,

, hence x

g(x) ~ 0 we
hence cx ~ cx.
is optimal to

On the basis of these Propositions, if condition (ii)
fails to bold, we can solve (P£) with £ > 0 arbitrarily
small and tben make £ = 0 in the result.

5. Tbe algorithm given by Hillestad and Jacobsen in
[7] can also be described as consisting of consecutive
rounds requiring eacb two steps. The first step of that
algorithm is exactly the same as Step 1 of the algorithm
presented above, so tbe main difference between the above
algorithm and tbat of Hillestad and Jacobsen is in the
second step.

5. ILLUSTRATIVE EXAMPLE

Minimize subject to
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-Xl + 2x2 - 8 ~ 0

xl - x2 - 4 ~ 0

-2xl - 3x2 + 6 ~ 0

xl ~ 0 , x2 ~ 0

-xI +
2 6xl ~ 0xl x2 - x2 +

The algorithm begins at the vertex XO = (0;4).

Iteration 1. Step 1 finds the vertices U
O = (0;2),

vO = (3;0) and the point i O = (0.4079356 ; 1,728049) •
Step 2 solves the concave program maxlg(x) : x E D(io)} ,
and finds the point zl = (2;5) •

Iteration 2. Here xl = (2;5) • Step 1 finds the
vertices u1 = (4;6) , vI = (7;3) and the point
i l = (4.3670068 ; 5.6329334) . Since the optimal value of
the concave program max {g(x) : x E D(il )} is 0,
Step 2 concludes that i l is the optimal solution of the
problem.



302

REFERENCES

[1] M. Awriel and A.C. Williams. Complementary geometric
programming, SIAM, J. App1. Math., 19(1974), 125-141.

[2] M. Awriel and A.C. Williams. An extension of geometric
programming with applications in engineering optimiza
tion, J. Eng. Math., 5(1971), 187-194.

[3] P.P. Bansal and S.E. Jacobsen. Characterization of
basic solutions for a class of nonconvex program, J.
Optim. Theory and Applications, 15(1975), 549-564.-

[4] P.P. Bansal and S.E. Jacobsen. An algorithm for optimi
zing network flow capacity under economies-of-scale.
J. Optim. Theory and Applications, 15(1975), 565-586.

[5] J. Falk and K.L. Hoffman. A successive underestimation
method for concave minimization problem, Math. of Opere
Research, N~l, 1976, 251-259.

[6] R.J. Hillestad. Optimization problems subject to a
budget constraint with economies of scale, Operations
Research 23, No.6, Nov-Dec 1975.

[7] R.J. Hillestad and S.E. Jacobsen. Linear program with
an additional reverse-convex constraint, Appl. Math.
Optim., 6(1980),257-269.

[8] R.J. Hillestad and S.E. Jacobsen. Reverse-convex
programming, App1. Math. Optim., 6(1980), 63-78.

[9] R. Meyer. The validity of a family of optimization
methods, SIAM, J. Control, 8(1970), 41-54.

[10] R.T. Rockafellar. Convex Analysis, Princeton Univ.
Press, 1970.

[11] J.B. Rosen. Iterative solution of non-linear optimal
control problems, SIAM, J. Control, 4(1966), 223-244.

[12] T.V. Thieu B.T. Tam and V.T. Ban. An outer approxi
mation metfiod for globally minimizing a concave func
tion over a compact convex set, IFIP worki~ Conference
on Recent Advances on System Modelling and ptimization,
Hanoi, January 1983.

[13] H. Tuy. Global minimization of a concave function
subject to mixed linear and reverse-convex constraints,
IFIP Worki Conference on Recent Advances on S stem

ode l~ng and pt~mizat~on, Hano~, anuary
[14] H. Tuy: On outer approximation methods for solving

concave minimization problems, Report N£108, Fors
chu werk unkt namische S stem SUniv. Bremen, 1983,

c a athematica ~e namica to appear •



IV. STOCHASTIC PROGRAMMING AND APPLICATIONS





SOME REMARKS ON QUASI-RANDOM OPTIMIZATION

Walter Bayrhamer
Institute ofMathematics, University ofSalzburg, Austria

1. INTRODUCTION

In the theory and practice of optimization it often happens that the

objective function has a very low degree of regularity or that it is defined

only empirically. Another critical point in optimization is that many algo

rithms deliver only local convergence. So for these two reasons it is advise

able to analyze methods of direct search like random and quasi-random search

techniques. In this paper we consider error estimates for deterministic ana

logues of random search.

2. ERROR ESTIMATES FOR THE FUNCTION VALUES

Let (K,d) be a compact, metric space and let f be a continous function

from K into the real numbers. Then we are interested in the maximum of f and

in one point where this maximum is attained. Such a point exists by the com

pactness of K and the continuity of f. As the exact computation of these

values is in most of the cases very complicated or impossible we try to ap

proximate them. Define M:=max{f(x)/xeK} and x=argmax{f(x)/xEK} for the re

quested values. For the approximation take a sequence of finite subsets of K:

A1 , A2 , ••• where A
k

has k elements and let them have the property that then

lim h(AN,K)=O for N ~ ~, where h is the Hausdorff-metric in the space of com

pact subsets of K. For example take a sequence xl' x 2 ' ••• which is dense in

K and take for ~ the first N elements of this sequence. In K=[O,l]s for such

a sequence we can take x =({nS 1}, ••• ,{nS }) n=1,2, ••• where {x} is the frac-n s
tionaI part of x and Sl' ••• 'Ss are real numbers so that 1, a 1 , ••• , as form

a basis of a real algebraic number field of degree s+l over the rationals.

(See Niederreiter 1983b)

By the above mentioned limit-property of AN we can interprete it as an ap

proximation to the space K. So we conclude that the extrema of f on ~ will
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approximate the extrema of f on K. For the approximation of M we take M
N

:=

~ we take x
kN

= argmax{f(xi)/l~i~N }. From the

h(K,A
N

) = sup min d(x,x.) and similarily we have
xEK l~i:>N ~

h(f(K) ,f(~» = sup min If(x)-f(x.) I . Before establishing an error estimate
xEK l~i:ON ~

we must define the modulus of continuity of f by w(t):= suplf(x)-f(y) I
d(x,y):ot

Now the following error estimate can be proved:

o ~ M - MN ~ h(f(K) ,f(A
N

» ~ w(h(K,~»

Proof: O~-M = f(~) - f(x ) = min If(x)
N kN l~i~N

sup min w(d(x,x.» = w(sup min d(x,x.»
xEK I~~~N ~ xEK l~i~ ~

(For this result see also Niederreiter 1983

f (xi) I:;; h (f (K),f (~» :0

w(h(K,~».

a,b and Sobol 1982)

(1)

(2a)

(2b)

and A(L(M-O»~A(L(MN» <~

r(~(L(~)) ~ M - ~ -?

The quantity h(K,A
N

) is often denoted by dN(x1' •.. '~) and is called the dis

persion of the points.

By using terms of levelsets we can establish another plain error estimate.

The set L(a):= {xEK/ f(x)~a}is called the levelset of f at level a,where

a is a real number. If a:;;inf f(x), then L(a)=K and ifa>supf(x) then L(a)=¢.

Another important term that we need is the diameter-function v(a):=sup{d(x,y)

x,yEL(a)} and it is the diameter of the levelset L(a). Then we can show the

following error estimate:

1. d(~,XkN) :0 v(~)

2. O~M - ~ ~ W(V(M
N

»

Proof: As f(xkN)=M
N

and f(X)=M~MN it follows that xkNE L(MN) and x E L(~)

which implies (2a) and this implies (2b) by the definition of w.

For the special case where K = [o,l]s, where s is a natural number, we can

defines the function r(£) :=inf {o>O: A(L(M-O»~£}.

~ w(£l/s). If we set £= ~(L(~» we obtain:

r(~(L(~») = inf {o>O: >'(L(M-O»;o;~(L(~»}

L(M-o) ;2 L(~) <=.> ~~M-O <=.> M-~~O =.>

M _ ~ ~ W((A(L(~»)l s).

3. SOME PROPERTIES OF LEVELSETS

So far we described error estimates for the function values. For a re-

fined procedure and for a more accurate analysis of the problem we will need

some error estimate for the argument. But this question is closely connected

with the theory of levelsets. So we like to consider some theorems resp.:
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Theorem 1: Let (an) be a monotonically increasing sequence of real numbers

converging to a. Then for a continous function f follows:

h(L(a
n

) ,L(a»-+o for n-- (3)

Proof: As it is easily seen, the sets L(a), L(a
n

) are compact for all n

and L(a) = n:=l L(an ) and L(a 1) :» L(a2 )":> •••• It is known from topology that

in a compact, metrical space the topological convergence of nonempty point

sets is equivalent to the convergence in the metrical sense and so statement

(3) follows. (See for example: Alexandroff-Hopf 1935)

Theorem 2: a:>a.' implies

O~ v(a) - v(a') ~ 2 h(L(a),L(a'))

for L(a), L(a') are nonempty.

Proof: Take x,y E L(a) arbritrarily and choose z and z' so that d(x,z)

inf d(x,u), d(y,Z') = inf d(y,u') and z, z' E L(a').
uEL( a' ) u I EL( a' )

(4)

Then by the triangle-inequality we obtain:

d(x,y)~(x,z)+d(z,z')+d(z',y)~sup d(z,z')+inf d(x,u)+inf d(y,u)
z,z'EL(a') uEL(a') uEL(a')

and this implies sup d(x,y)=v(a)~v(a')+2 sup inf d(x,u)~v(a') +
x,yEL (a) xEL (a) uEL (a')

+ 2 h(L(a),L(a'».

So we have proved the right-handpart of (4) and the left-handpart is ob-

vious.

* *Theorem 3: L(a) C BN(a), where BN(a)= U B(xi,dN) for i with f(xi)~a-w(dN)

and B(x,t)= {y/d(x,y)~t}

Proof: Take x E L(a), so by the definition of d
N

there exists Xi' so that

d(x,xi)~ , and so f(x) - f(x i ) ~ w(~) and this implies f(x)-w(dN)~ f(xi )

and so f(xi)~ a -w(d
N

) and so our statement follows.

4. ERROR ESTIMATES FOR THE ARGUMENT

By the definition of d
N

it is clear that the balls B(x
1

,dN), ... ,B(x
N

,d
N

)

cover the whole space K. So we consider the following idea: Take xE K, and

let x EB(xi'~) and by using the modulus of continuity of f we obtain

f(x) - f(x i ) ~ w(~) and so f(x) ~ f(x i ) + w(~). so if f(xi)+w(dN)<~ then

it follows that the extremal point x cannot lie in such a ball and there-

- *fore x lies in BN(~). For theorem 4 let us assume that there is exactly one

index IN with f(~N)=~and L(M)={x}.If we define PN(~,f)= max{d(xkN,x
k
)/

k EIN },where I
N

= {i/f(xi)~MN - w(~)} then the following theorem results:
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Theorem 4:

1. d(i, ~~) ~ ~ + PN

2. lim PN = 0 for N
(Sa)
(Sb)

Proof: 1. For x

and so d(X,x
kN

)

*E BN(~)

~d(i,x.)
~

there exists an index i E IN with d(x,x
i

) ~ d
N

+ d(xi , ~N) ~ dN + PN"

(6)

2. Consider now the increasing sequence aN:= ~ - w(~), converging to M

and that for all iEIN values f(xi)~aN' so xiEL(aN) for all iE IN and that

implies PN ~ v(~) . But the last term converges to v(M) and v(M) equals 0

by the assumptions, and theorems 1 and 2. Thus statement (Sb) holds.

Theorem 5:

1/2 v(~)~dN+PN~v(~) + 2 h(L(~),L(~» + dN

Proof: From PN ~ v(aN) follows by theorem 2 that PN~ V(MN)+2h(L(aN),L(~»

and so the right-hand side of (6) is proved. From theorem 3 we have L(~)

B~(~) ~ V x,y E L(~) ~ 3 i,j E IN: d(X'Xi) ~ ~, d(y,xj ) ~ ~ ~

d(x,y) ~ d(x,xi ) + d(x.,x.) + d(x.,y) ~ 2d + d(x.,~ ) + d(x
k

,x
j

) ~
~J J N ~j{N N

d(x,y) ~ 2(dN + PN) ~ v(~)~ 2(~+PN) ~ 1/2 v(~) ~ dN+PN and so the

statement (6) is proved.

Remark: The error estimate (Sa) and its behaviour partially depends on the

behaviour of the function ~(a,£):= h(L(a-£),L(a», which can be interpreted

as an index of flatness of the objective function f. It indicates the beha

viour of the function f with respect to flat regions and local extrema which

are both bad for global optimization. The study of ~ is closely connected

with the theory of parametric optimization.

5. SOME REMARKS ON ADAPTIVE PROCESSES

The rate of convergence of error estimates depends partially on the

magnitude of the dispersion and so can be rather slow. Therefore it is

adviseable to study algorithms which deliver a better convergence rate.

This can be reached by adapting the search-area to the function. From esti

mate (Sa) we know that it suffices to search in the ball with center .x
kN

and radius dN+ PN • If this radius is acceptable small then we restrict our

search to this ball and we can repeat the preceding error estimates. But if

we think that there are more than one point in L(M) we should prefer another

adaptive algorithm. Take each of the balls B(xi,dN) with iEI
N to perform the

global search there. So if IN does not contain a large number of indices



309

then the number of additional function-evaluations will still be acceptable.

You can also use the global search for determining a starting point for a

gradient method or another local optimization technique to search a local

maximum point.
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OPTIMAL SATELLITE TRAJECTORIES: A SOURCE OF DIFFICULT
NONSMOOTH OPTIMIZATION PROBLEMS

L.C.W. Dixon, S.E. Hersom and Z. Maany
Numerical Optimization Centre, Hatfield Polytechnic, College Lane, Hatfield, UK

1. INTRODUCTION

In this paper we will show that optimal satellite trajectory problems
can be posed as difficult nonsmooth optimisation problems. The aim is not
to advocate solving satellite trajectory problems by using nonsmooth opti
misation algorithms; they can be solved more simply by other means. The
aim is simply to challenge the designers of nonsmooth optimisation codes to
test them on these problems; which we believe will prove to be very diffi
cult. We look forward to hearing the results of such tests.

2. THE SATELLITE TRAJECTORY PROBLEM

In this paper our intention is to define a set of N.S.O. problems by
reformulating a particular satellite trajectory problem.

The problem we will consider is a rendezvous with the asteroid VESTA;
the details of Vesta's orbit are given in Appendix 1. In the problem we
will asume that the satellite is launched from earth on a particular day
and that the trajectory to be optimised commences at a point sufficiently
removed from the earth for earth's gravity to be ignored. The time, posi
tion and velocity of the satellite at that starting point are also given in
Appendix 1; starting from these values of to' ~o' ~o the satellite's tra-

jectory is then integrated by fourth order Runge Kutta with a standard step
size of 24 days.

The satellite's motion is governed by gravity and controlled by a low
thrust motor, so that

£ v r(t ) r- - 0 0

J.l~

v + YM; v(t0) v-
r'

-0

where T is the thrust and at any point is constrained by

o < liT II < T .- - m

The mass flow equation for the fuel used is then

(1)

(2)

(3)

m = - II 1: II/gI m
o

given) (4)
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and the thrust level is restricted by power considerations

(5)

H

Two values of k are of interest, k = 0 corresponds to conventional RTG motors
but k = 1.7 is more appropriate for solar powered motors.

The problem is then to determine that trajectory r(t) that rendezvous
with Vesta's trajectory while using least fuel. Assuming the rendezvous
takes place at time t

R
then Vesta's trajectory specifies the values of ~v(tR)

and ~)tR)'

The optimal control problem is therefore:-

Maximise m(t ) (6)
r

s.t. ~(tR) ~)tR) (7)

~(tR) ~)tR) (8)

and equations 1 - 5 by varying t R, ~(t), !(t).

There are a number of specialised codes for solving optimal satellite
trajectory problems butit is not our intention to discuss them in this paper.
Instead we wish to show that this problem can be posed in different ways that
lead to N.S.O. problems. The solution to the problem has been obtained by
other means and is also given in Appendix 1.

3. THE INDIRECT PONTRYAGIN FORMULATION

Pontryagin [3J showed that the optimal control problem could be con
verted to an optimisation problem by the introduction of adjoint variables
and a Hamiltonian function.

We will denote the adjoint variables for equations (1), (2) and (4) by
M, Land p respectively and will let the Lagrange multiplier for (5) be
~ep~esented by A. Also we will denote the thrust! by II! II! where T is a
unit vector, then the Hamiltonian is given by

~ T A

M.v + L.(-IJ-, + II-liT) - piiT II/gI
- r m -

A(Tm
k

+ - 2nPo/(gIr ))

. IJ~
3~.!:.r

2kAnP r
0 -

where M ? r S -
+ gI k+2

r

(9)

(10)

L

p

- M

+ ll--;J ~·I·

(11)

(12)

Again the maximum principle implies that on an optimal trajectory

A

T
A

L (13)

and as H is linear in II T II, then the optimal values of II! II is either 0
or T for all t. A period during which II! II = 0 will be termed a coast

m
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on a

arc,
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if II T II = T it will be termed a thrust arc, then A = plgI - II L" 1m- m
thrust arc and 0 on a coast arc,
The optimal trajectory consists of a thrust arc, followed by a coast
followed by a final thrust arc which we can express as

liT II T t < t < \m 0

"T II 0 \ < t < t 2

liT II = T t 2 < t < t
Rm

with implied constraints t < \ < t 2 < t
R

,
0

(14)

(15)

Given the values of Lo = L(to ); Mo = M(to ); Po = p(to )' t l , t 2 and

~R then equations (1), (2), (4), (10), (11), (12) can be integrated forward
1n time sufficiently accurately using RK4 with a step of 24 days (with
suitable modifications at t

1
, t

2
and t

k
). In integrating these equations

the constraints (5), (13) and (14) are automatically applied, so at t
R

the

values of m(tR), ~(tR) and ~(tR) that correspond to these variables can be

computed.
We may then pose the NLP problem

FORMULATION 1

Max m(tR)

s,t. ~(tR) ~)tR)

~(tR) = ~)tR)

where the optimisation variables are

~o' ~o' Po' t 1 , t 2 and t R,

(16)

(17)

This is of course a standard NLP problem but our experience reported
in ll] is that it is too difficult for most codes, even when the adjoint
variable transformation [2'] is applied, For completeness the transform
ation used is given:-

[
C~S ao cos 80 ]

L Sln a cos 8
o 0 0

sin 8
0

·S cos a cos 8 - a sin a cos 8 -8 cos a sin 8
0 0 0 0 0 0 0 0 0

· .
M L S sin a cos 8 + a cos a cos a - 8 sin ex sin 8 (18)

0 0 0 0 0 0 0 0 0 0 0

· ~S sin 8 + cos 8
0 0 0 0
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FOR~JULATION lb

is therefore to solve (16) using the optimisation variables

. .
So' (lo' (lo' 80 ,

The NLP problem
penalty function, so

FORMULATION 2

.
8

0
, t

l
, t

2
and t

R
,

(16) could be solved by minimizing
our first NSO problem consists of

(19)

the exact nonsmooth

Min - m(tR) + cR Elr.(t ) - r .(tR)! +
. l R Vl
l

(20)

o < t
l

< t
2

< t
R

with respect to variables (17).

In FORMULATION 2b variables (19) would be used.

As Formulation 1 is an NLP and Formulation 2 its EPF; then Formulation
2 has a rather special structure as an NSO and codes have been written for
NSO problems with this structure. It is therefore interesting to find that
we can pose the problem as an NSO without this structure.

4. THE DOCKING FORMULATION

As Pontryagin's path is optimal if we were to replace part of the path
by an alternative feasible stategy the solution must be worse. In parti
cular if we were to stop the second thrust arc at t3 > t2 and were to replace
the thrust strategy in t

3
< t < t

R
by a nonoptimal feasible strategy that

ensures

and then maximise m(t
3

) - m
D

(21)

where mD is the mass used in this manoeuvre, then the optimum must occur

with t 3 = t
R

and m
D

= O. But we have converted the NLP (16) into the

simpler problem

FORMULATION 3

Maximise m(t
3

) - m
D

s.t. 0 < \ < t 2
< t 3

< t
- R.

w.r.t. either L , M , Po' t
l

,
-0 -0.

or S
0'

0.o'
(l
o' 8

0
,

The method proposed for the final manoeuvre is described in Appendix 2. The
function m

D
is nonsmooth, so Formulation 3 is an unstructured NSO, which will

we believe prove difficult if not impossible for most NSO codes.
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5. THE POSITION SPACE FORMULATION

A very different approach to the same problem also leads to a difficult NSO
problem. Let us consider the following approximate problem. Let us divide
the range 0 < t < t

R
into a number of intervals by grid points t

l
, ... , t

i
,

... (for convenience let t
R

= t IO )' Let us take the position ~i = ~(ti)

and velocity ~i = ~(ti) as optimisation variables; then in the interval

t i < t < t i +
l

we may approximate the trajectory ~(t) by a cubic variation in

each component, for instance, if we represent ~ = (x, y, z)T then each of x,
y and z can be matched by a cubic to the values at t i , t i +

l
.

As r is cubic in t, v is quadratic and r linear, we have an implied
thrust f~om equation (2) of

IJr
T m(r + ~ ) ( 22 )

- r

So
IJ~

II T II = m IIi:: + ? (23)

and constraint (3) becomes
IJr

2k ll ·• - 11 2o ~ m2 r ~ + ? < (24)

Due to the smooth nature of the function it is probably sufficient to apply
these constraints only at the endpoints of the intervals t i , t

i
+

l
.

For any value of t
R

we can ensure that the initial and final positions
and velocities are correct so we now need only consider the objective func
tion which is governed by (4)

IJr

lltl mil f + r~ II
m

gI gI

!!!
IJ~

- II i:: + ? /gI
m

r IJ~ dt
[log m] -

J IIi:: ? gI

mi +l r r
exp{- J IIi:: --= Ildt/gI}.m. rl

(25)

(26)

(27)
IJ r.
~lll+llr. Ir. l+
l

t. - t.
(HI l) (Ilr.

2 -l

For the given values of r i , r
i

we can therefore compute the values of m
i

,

mi +l given mo and therefore both the objective function and the m
i

to be

used in (24). The problem is nonsmooth due to the square roots in (26).
For simplicity we will standardise the formulation by approximating the
integral in (26) by

t.
r l+l IJ r

J
II r - ~ II dt =- r
t.

l
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FORMULATION 4

Maximise m
R

calculated via (26) and (27) subject to the constraints (24)

using the variables t
R

, ~i' ~i i = 1, ... , 9.

In this paper we have posed 7 formulations of a satellite trajectory
problem. The purpose of the paper is unusual, namely to challenge the
designers of NSO codes to apply their codes to Formulations 2-4. We will
be interested to hear the results.
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APPENDIX 1. TRAJECTORY DETAILS

Characteristics of Target Orbit

Semi major axis
Aphelion
Perihelion
Eccentricity
Inclination
Right Ascension
Arg of Perihelion
True Anomaly at launch

Constants Used

2.361680 Au
2.573452 Au
2.149908 Au
0.089670
7.144 Deg
103.489 Deg
150.618
16.377 (Launch Feb 1st 1993)

Po = 20 KW, ~ = 68%, I = 3900 secs

g = 9.81 m/sec~, ~ = 1.32715 X lOll Km 3 /sec 2
•

(These should be converted to AU/DAY/Kg units).

Trajectory Details. The trajectory commences on February 1st 1993 at

optimal values of the optimisation variables for Formulation lb

(-.661201, .730588, O.OOO)Au

(-24.04952, -21.395403, .37l89l)Km/sec

2000 Kg

r
o

v
o

m
o

where the
are

-.01990306; Cl
• 0

86.88414°; 8
0

=

474.5221 Days;

.
-64.774°; Cl = 4.553824 Deg/Day

o
-1.109517 Deg/Day; Po = 1.388167 secs

t
2

- t
l

= 237.4531 Days



t -
R

The final
coast arc
coast arc
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t 2 = 202.3659 Days.

mass at rendezvous is 1537.414 Kg. From this point a 10 day
is prescribed before optimisation commences, the values after
are

the

r
o

(-.789214, .596415, 0.002137)

v (-20.174716, -24.941806, 0.366192).
o

The starting point we used for our optimisation run Formulation Ib was

.
Deg/Day,

.
S 0, () = -137.854°, ()o = 1 So = 0, So = 0,0 0

Po 10,000 sees, t 1 = 20 days, t 2 - t 1 = 50 days, t - t 2 40 days.
R

APPENDIX 2. DOCKING

We take x(t), v(t) to be the relative distance and velocity vectors of
the siC with respect to the target where t is the time after the end of
normal thrusting. "Docking" is defined as attaining, after a time T, ~(T)

o and ~(T) = O. The manoeuvre is to apply an acceleration of constant
amplitude in each co-ordinate but, in each, the direction is reversed at some
time t.(i = 1,2,3 and 0 < t. < T).

1 - l-

It is assumed that the magnitude of the acceleration is equal to the
ratio of the maximum thrust/mass at the end of normal thrusting, i.e. change
in thrust due to change in the power available and change in mass due to the
106s of propellant are ignored. Further, it is assumed that the SiC and
target are in a uniform gravitational field. The motion in each co-ordinate
direction can therefore be considered independently.

If a is the acceleration up to the switching time, t, and -a is the
acceleration from t to T, then if x and v are the values in one co-ordinate
of ~(O) and ~(O) respectively, the final values are

x(T)

and v(T)

x + vt + at 2/2 + (v + at)(T - t) - a{T - t)2/2

v + a(2t - T).

Since both must always be zero, these can be written as:

x + vT + a(2tT - t 2 - T2/2) = 0

2at = - v + aT.

Eliminating t between (1) and (2) we obtain

a 2T2 + 2a[2x + vT] - v 2 = 0

or aT 2 = - D ± I[D 2 + v 2T2
]

where D = 2x + vT.

Since 0 < t < T, it is readily shown from (2) that T > Iv/al

or a 2 T2 > v 2
•

From (3), therefore, we obtain aD < 0

i.e. SIGN(a) = - SIGN(D) = S, say.

Hence aT 2 = - D + S/[D 2 + v 2 T2 ].

(1)

( 2)

(3 )

(4)
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This expression, for a given x, v and T, gives the value of the accel
eration required. If this is a. for the ith co-ordinate, then docking is
achieved when a value of T is foQnd such that Ir(a~) is equal to the accel-

1

eration available. In the program this is achieved by an iterative proce
dure. The propellant used is calculated as the flow-rate at the end of
normal thrusting multiplied by the docking time, T.



A REDUCED SUBGRADIENT ALGORITHM FOR NETWORK FLOW
PROBLEMS WITH CONVEX NONDIFFERENTIABLE COSTS

M.A., Hanscom! , V.H. Nguyen2 and J.J. Strodiot2

! IREQ, Varennes, Canada
2 FNDP, Rempart de la Vierge 8,5000 Namur, Belgium

1. PROBLEM FORMULATION

Consider a single-commodity directed network with m nodes and n

arcs. The general nonlinear network flow problem (Dembo et al. 1981)

consists in finding a vector flows x = (x1 •...• xn) solution of

(P) j:~:~mi:ex f(:)

x ::; x ::> x

where f JRn ... :R , A is the mxn node-arc incidence matrix of the

network, A x = b expresses the flow conservation constraints and x and

x denote the lower and upper bound on the flow x.

An important class of problems of this type is the hydrogeneration

scheduling problem. This problem consists in the maximization of the profit

obtained by producing hydroenergy along a time horizon (one year) in a

multi-reservoir power system as. for example. that of Hydro-Quebec (Hanscom

et al. 1980). The decision variables are the amount of water to be released

from and stored in each reservoir and in each time period (one week). Let

K be the number of periods and L the number of reservoirs. The

associated network is a temporally expanded arborescence (Kennington et al.

1980) . Each node corresponds to a time period-reservoir pair and has two

outgoing arcs the storage skI of reservoir I at the end of period k

and the release rkl of reservoir I at period k

Several types of differentiable objective functions have been used for

this problem. In this paper we consider a nondifferentiable function f
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(to be minimized) of the following type

where xk = (rk1, .... rkL'sk1 ••.•• skL)' 1:> k :> K. Wk(') is the energy

deficit at week k. Ck(') is the cost of generating energy deficit Wk

at period k and R(') is the economic value associated with the final

storage of the reservoirs. The functions Wk and -R are convex and

differentiable. Here Ck is modeled as a nondecreasing piecewise-linear

function from lR to :R to take into account an energy market structure.

Under these assumptions. f is a convex nondifferentiable function. If we

denote by gk , :> k :> K . the gradient of Wk (. ) at xk , by hK the

gradient of -R( • ) at xK and by uk and uk respectively the left-hand

side and the right-hand side derivative of Ck( • ) at Wk(xk ) , then the

subdifferential of f at x can be expressed as follows

K
af(x) { I: uk gk + hK I uk :> uk ::; uk k=1, •.•• K}

k=1

T -T
h~

-T
where gk (O •...• O'gk. O••••• O) and (O, •.. ,O.hK)

2. A REDUCED SUBGRADIENT ALGORITHM

(1 )

For

strategy

solving this special scheduling

is adopted (Bihain et al. 1984).

problem a reduced subgradient

As usual the matrix A is

partitioned into two submatrices Band H so that B is of full rank m.

Let (xB,xH) be the corresponding partitioning of x in basic and out-of

basis arcs. We recall (Kennington et al. 1980) that the basic arcs form a

spanning tree in the network and that each out-of-basis arc forms a unique

cycle with basic arcs.

reduced problem becomes :

Once the classical reduction is performed, the

(RP)
{

Minimize

s. t. xH

where f( xH)
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If we denote by ZH the nx(n-m) matrix

subdifferential of the convex function r is given by

e af(x)} and is called the reduced 8ubdifferential of

(-B-1 H)
I

ar(XH)

f at

then the

(Z~ gig

x. A

feasible descent direction dH (if it exists) in the space of out-of-basis

arcs can be obtained by checking the optimality conditions of problem (RP).

More precisely, using (1) we have to solve the following linear

least-squares problem :

Minimize

AH ~ 0, ~H ~ 0 ,

T T -
AH (xH - xH) 0 ~H (xH - xH) = 0 .

Let *~H be a solution to Then set

If dH 0 then xH is a solution to (RP) and (xB' xH) is a solution

to (P) If dH!- 0 , then set dB = -B-1 H dH and dT = (d~,d~) It is

easy to see that d is a descent direction which is feasible wi th respect

to the bounds if : (xB)i < (xB)i «XB)i is satisfied for each basic arc.

If it is not satisfied, dB need not to be feasible with respect to the

bounds on the basic arcs. This is known as the degeneracy problem.

As dB depends on dH' the degeneracy problem can be solved by

partitioning the matrix H into two submatrices (Murtagh et al. 1978) S

and N so that if we set dN = 0 then dB is feasible. Let H, Sand

N be the arc index sets correspond ing to rna tr ices H, Sand N. The

arcs corresponding to Sand N are called the superbasic and nonbasic

arcs respectively. The problem is to decide for each i e H if we put

in S or not. Two cases are possible the variable corresponding to arc

i is free or it is at its bound. If i e H is free and if each arc of

the cycle associated with arc i is also free, then we put i in S. As

we want to have the set S as large as possible, we try to obtain a basis

B containing the maximum number of free arcs. Such a basis B is called a

maximal basis (Dembo et al. 1981) and has the property that there can only

be free basic arcs in the cycle associated with a free out-of-basis arc. If

i e H is at its bound, we have to examine the cycle associated to arc i,

arc by arc in order to see if the f low can be changed on arc i withou t
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violating the bounds on the basic arcs of the cycle. The arc i e H will

be called blocked and put in N if a basic arc of the cycle is in the same

orientation as arc i but at the opposite bound or if a basic arc of the

cycle is in the opposite orientation with respect to arc i but at the same

bound.

Now we have H = (S N) and we want to compute dS (we know already

that dN = 0 ) by solving

(QS) s. t. uk ::: uk :> uk , k= 1 , •.• ,K ,

AS ~ 0 , IlS ~ 0

A~ (xS - xS) 0 T
(xs - xS) 0IlS = .

If * AS * denote a solution of (QS) thenuk , IlS

AS * Z~
K

*dS - IlS - ( L uk gk + hK)
k=l

K
be replaced where is the set of timeObserve that Lk=l can by LkeJs JS

periods covered by the cycles associated with S and that OS) i = 0 if

(XS)i is free or at its upper bound and (IlS) i = 0 if (xS) i is free or at

its lower bound. The number of variables of (QS) is then the number of

time periods k e JS such that uk < uk plus the number of superbasic

variables at their bound.

If dS = 0 , we check

{'; ( L * hK) ~ 0 t e N (x)t (x)tuk gk +

( L * hK) ::: 0 t e N (x)t (x) tZt uk gk +

If these conditions are satisfied, then dH = 0 and

Otherwise we have to solve (QH) to obtain dH • If

optimal; otherwise we have to check the feasibility of

x is optimal.

dH = 0 then x is

dB . If it is the

case we perform a line search along d ; in the other case we find a

feasible descent direction d by solving :
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Minimize fl (x;d)

s. t. A d = 0 ,

(PL) 0 :0 dj ::; if (x) j (x) j

-1 :;; dj ::; 0 if (Xj) (x)j

-1 ::; dj :0 if (x) j < (x)j < (x) j

where

h~
K T Tf' (x; d) d + L max {uk gk d uk gk d)

k=1

An experimental FORTRAN code implementing this algorithm has been

written and tested on two scheduling problems related to the medium term

energy generation planning problem for the Hydro-Qu~bec multireservoir

system.

The first test problem is a small-scale problem : it involves 8

reservoirs and 10 time periods and represents a network of 80 nodes and

168 arcs. The second test problem is a med ium-scale problem : it also

involves 8 reservoirs but 52 time periods. Here the network has 416

nodes and 840 arcs. The numerical results will appear in a forthcoming

paper.
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AN ALGORITHM FOR SOLVING A WATER-PRESSURE-CONTROL
PLANNING PROBLEM WITH A NONDIFFERENTIABLE

OBJECTIVE FUNCTION

Yoshikazu Nishikawa and Akihiko Udo
Department ofElectrical Engineering, Kyoto University, Kyoto 606, Japan

1. INTRODUCTION

In this paper we develop an algorithm for a nondifferenti

able optimization problem arising in pressure-control planning

of water distribution networks (WDN).

Although the problem is of the nonlinear programming type,

it is solved by iterating solutions of linear programs and de

scents along V-shaped ravines caused by the nondifferentiability

of the objective function. The equations of the V-shaped ravines

are derived from the physical law governing the steady-state

flow of WDN. The resulting solution procedure is then widely

applicable to large-scale networks.

Our early work on this problem has already been reported

(Nishikawa and Udo, 1982). In this paper, the problem is re

formulated in a mathematically more refined manner, the charac

ter of the V-shaped ravine is clarified, and a revised algorithm

is constructed.

2. FORMULATION

The problem is to minimize the total energy, or equival

ently the cost, expended in pumping while keeping the water

heads (pressures) at all nodes in an allowable range. Every

pipe link where a pump or a valve is introduced is considered.
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This enables us to find desirable locations for pumps and/or

valves as well as their scheme of operation, which is especially

useful in the planning stage.

Let Z denote a pressure gap due to a pump or a

the characteristic equation of pipe link i equipped

or a valve is written as

h I 1
0.a5.=r.q. q. -z .

~ ~ ~ ~ ~
(1 )

where hi is the head differential (the difference of the heads

at both ends of a link), r. is the resistance factor deter-
~

mined by the diameter, length and smoothness of the pipe, and

qi is the flow rate, all of link i.

If qizi>O, zi denotes the pressure gap given by the pump,

while if qizi<O, that by the valve.

Then our problem is formulated as follows:

(P1 ) minimize f= L • (q . Z • + Iq . Z • I ) /2
~ ~ ~ ~ ~

(Pumping cost) (2)

P .{p.
J J

subject to

L(Z, Qc)=(Z¢)~(Linear function of Z)

+ (Nonlinear function of Qc )

(Head-differential loop law: HDLL)

P.~P.(Z, Qc) __~(Linear function of Z)
-J J

+(Nonlinear function of Qc ) and

(Node-head condition)

(3)

(4 )

Here Z~(zi)' Qc is the vector of the flow rates of cotree links,

i.e., a set of necessary and sufficient variables to describe

all qi's. The HDLL is equivalent to Kirchhoff's voltage law and

implies that the total head differential around any loop is

zero. ~j=(Ew) and Pj=(Pw) are the vectors denoting the lowest

and the highest allowable values of P.=(p ), the heads at the
J W

consumption nodes.

By way of example, the problem (P1) is formulated as

follows for Network-1 of Fig. 1.
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Fig. 1. Diagram of Network-1.

q 1z 1 + I q 1z 1 I+q 2 z 2 + Iq 2 z 2 I+ (2 -q 1 -q 2 ) z 3

+ I (2 -q 1 -q 2 ) z 3 I + (1 -q 2 ) z 4 + I (1 -q 2 ) z 4 I
r q I q I 0.85 -z -r (2-q -q ) I 2-q -q I 0.85 +z =0

1 1 1 1 3 1 2 1 2 3
r q Iq I °. 8 5 -z -r (1 -q ) I 1-q I°. 8 5 +z
222 24 2 2 4

-r (2-q -q ) 12-q -q IO.85+Z =0
3 1 2 1 2 3

< _ _ I I°•8 5 + ~-2. 1~p 1 =p 0 r 1q 1 q 1 z 1 -p 1

< _ _ I I°•8 5 + <-
2.2~P2=PO r 2

q 2 q2 z2~P2

-- Tree

---_ Cotree

subject to

minimize

3. BASIC ALGORITHM

(P1) is obviously a nonlinear programming problem.

However, if Q is fixe~ at some value, and if z. is written as
c ~

z.=x.-y. (x., y.~O), (P1) is reduced to a linear programming
~ ~ ~ ~ ~

problem (LPP) whose unknowns are X=(x i ) and Y=(Yi)' Let us

denote the optimal value of the LPP with Qc fixed by f* (Qc) and

the optimal point by (X*, Y*). Then the gradient of f*(Q ) with
c

respect to Q can be calculated using the shadow prices of the
c

LPP as follows;

(5 )

T: Transposition of a vector/matrix

5
L

and 5
U

denote the set of active lower node-head constraints

and that of active higher node-head constraints at (X*, Y*),

respectively. A is the vector of the shadow prices at (X*, Y*)

and its size is equal to the number of constraints (3) and (4).

Suppose that Vf*(Qc) is always defined. If Vf*(Qc)~O, then

there is a positive number 0 (step size) which satisfies
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(6)

Hence, the optimal solution of (P1) can be found by iterating

solutions of the LPP and computing the gradient, Eq. (5).

Since a pump or a valve can be located on every link, the

head at every node can be set arbitrarily for any Qc' Hence, the

LPP is always solvable.

It is difficult to know how best to determine the step size

o. One-dimensional search is far from efficient because of the

time needed to compute f*(Q ). In fact, this involves the soluc
tion of an LPP. We therefore use the following algorithm:

Basic Algorithm (Algorithm 1).

Suppose that QO and 0°>0 are givEn.
c

(Step 1)

(Step 2)

(Step 3)

(Step 4)

(Steo 5)

Set k=O.

Set Qk=Qo and set ok=oo.
c c k ' k k k k

Compute Q =Q -0 Vf*(Q )/!Vf*(Q ) Ic c c c
I . I: Euclid norm of a vector

If f*(Qk')<f*(Qk), go to Step 5;
c c
otherwise, go to Step 7.

Set Qk+l=Qk', and set ok+1=11.5o k
c C k

o
(if ok~ok-1;:;ok-2)

(except the above)

(Step 6)

(Step 7)

(Step 8)

Set k=k+1, and go to Step 3.

Set ok=ok/2.

If 0 <E stop, otherwise, return to Step 3.

E: a reference small positive quantity for stopping

the algorithm.

4. V-SHAPED RAVINE

The basic algorithm stops on the subspace of Q -space where
c

Vf* (Q ) is not defined. Let us call such a subspace a V-shaped
C

ravine.

The V-shaped ravine is caused by the nondifferentiability

of the objective function f: f is nondifferentiable with respect

to q. and 3. at q.=O and 3.=0, respectively. In fact, if the
1- 1- 1- 1-
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sign of q.z. switches, the objective function of the LPP changes,
<- <-

and consequently the V-shaped ravine is formed. It should be

noted that the sian of z .(z~) cannot be known until the LPP is
J <- <-

solved.

The subspace of q.=O is a hy?erplane in Q -space, because
<- c

q. is a linear function of the components of Q. z.=O is the
<- c <-

subspace where the basis (the set of basic variables) of the LPP

changes, i.e., at least one of x~ and y~ switches between zero
<- <-

and positive.

It

of Network-1.Fig. 2.

The V-shaped ravine can also be explained through Eg. (5).

The first term of Eq. (5) is discontinuous at the subspace of

q.=O and z~=O. The second term is also discontinuous at the
<- <-

subspace of z~=O, because some components of A change discon-
<-

tinuously there due to the cl1ange. in the basis of the LPP.

(Note: a V-shaped ravine can thus emerge even if the objective

function is smooth.)

Now let us consider the subspace of z~=O in detail.
<-

must be noted that we use the linear graph ~ where inflows from

sources and outflows from consumption nodes are represented by

the flow rates of the reference-node connected links. Figure 2

shows ~ of Network-1. Consider the

neighbourhood of Q , a point on a
c

V-shaped ravine. First, if neither

the upper constraint nor the lower

constraint on p is active at Q , and
W C

the constraints are also not active in

the proper neighbourhood of Q , then
C

the consumption link W is not in~

volved in the change in basis of the

LPP. Second, if x~>O holds for pipe link i, x~ remains
<- <-

positive for a small change in q. and also for the small change
<-

in h. caused by small changes in the flow rates in other links,
<-

as far as such changes are in the proper neighbourhood of Q .. C

The same is valid for the case when y~>O holds for pipe link i.
<-

Thus, a change in basis is possible only on the subgraph =b

obtained by deleting the above mentioned consumption links and

pi?e links from ~.

Consider the consumption link W in ~b' Since its node head
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is constrained to the lowest or the highest allowable value,

the node-head condition is equivalent to the HDLL. By way of

example, in Network-1, the HDLL of the loop of links 1 and 3,

and the node-head condition at node 1 (assumed to be active) are

written as follows:

x*-y*-(x*-y*)=1' q Iq 1°·85_1' (2-q -q )!2-q -q \0.85
1133111 312 12

x*-y*=n -p +1' q Iq 1°·85
1 1 "'-1 0 1 1 1

where the components of X and Yare collected on the left sides

of the equations, and the components of Q
c

and constants on the

left sides.

Find a full set of independent loops in ~b ann write

down the HDLL of those loops. Let us denote the set of the

right sides of these equations by G(Q )=(g. (Q )), which are
c 1.- c

called loop head-loss terms.

Now, since the left sides of the equations are all zero,

G (Q ) =0
c

(7 )

is satisfied at Q If some g. (Q ) becomes positive or
c 1.- c

negative, at least one of z~=x~-y~ switches its sign. That is
1.- 1.- 1.-

to say, Eq. (7) describes a V~shaped ravine.

If Q , i.e., the flow pattern, is changed along the
c

V-shaped ravine, a new descent of f*(Q ) becomes possible. The
c

descent along the ravine does not put a pump or valve in any

pipe link in ~b •

5. REVISED ALGORITHM

Based on the foregoing discussion, an algorithm which de~

scends along the bottom of a ravine is constructed in this section.

5.1 Algorithm for the Search of Ravine Equations (Algorithm 2)

Consider the k-th iteration of the basic algorithm. Let

LP(Q ) denote the LPP at Q , and let 8 be a small positive
c c l'

value for judging an encounter with a V-shaped ravine.



329

(Step 0) If f* (Qk ') >f* (Qk), for Qk I =Qk_ ok'Vf* (Q ) / I 'Vf* (Q ) I
k C C C C C C

with 0 <0 , that is, if the cost cannot be improved even if the

step sizerok is small, go to (Step 1); otherwise, iterate the

basic algorithm.

(Step 1) Find the subgraph ~b based upon the solutions
k k k . k I

X =(x.) and Y =(y.) of LP(Q ), and the solutlons X =(x:) and
k I ~ k~ C ~

Y =(x:) of LP(Q ').
~ C

a) Let all the source links be included in ~b.

b) Consider pipe link i. If (x .-y .) (x :-y: 1>0, since link i
~ ~ ~ ~

is not involved in the change of basis, let link iE~b;

otherwise, let link iE~b.

k - k' -c) Consider consumption link~. If £ <p <p and £ <p <p I

~ ~ ~k ~ ~k' ~
since the constrainits are not active both at p and at p , let

link ~~~bi otherwise, let link ~E~b. Here, pk ~nd pk
l

de~ote
k~ ~ k'

the heads at node ~ in the solutions of LP(Q ) and LP(Q ),
C C

respectively.

(Step 2) In ~b' find a full set of independent loops by

spanning a tree, and construct their loop head-loss terms

g.(Q )(i=1, 2, .•. , TO).
~ C

(Step 3) If the sign of

equation of q.=O is added
~

(i=T
O

+1, ••• , T).

k' kq. at Q differs from that at Q , the
~ C C

to the ravine equations as g .(Q )
~ C

5.2 Algorithm for Descent along a V-shaped Ravine

(Algorithm 3)

Suppose that the flow pattern is now Qk and is close to a
C

V-shaped ravine. Further, suppose that, by Algorithm 2, the

ravine equations turn out to be

(i=1, 2, ... , (8)

(Step 1) Let v be the projected vector of -'Vf*{Q ) on the
C

tangential hyperplane of the V-shaped ravine of Eq. (8). Change

the flow pattern to Qk ' which is in the direction of v by a step
C
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size 8 :

Q~' =Q~-8kV/IV I
where

V=(I-D T {DD T )-1 D) (-llf*(Qk)),
c

(9 )

(Step 2) By use of the Newton-Raphson method, change the flow
k I k"pattern from Q to Q which satisfies Eq. (8) (see Fig. 3).
c c

Fig. 3. Descent along the
V-shaped ravine. Fig. 4. V-shaped ravines.

It must be noted that more than one ravine at a time may

be found by Algorithm 2 (see Fig. 4). In such a case, Eg. (8)

denotes the intersection of those ravines. In general, the

ravines terminate at an intersection and a new ravine starts

there. (Note: If the intersection is a point, it may be the

optimal point.) Then the nearest point on the intersection from

Qk is chosen as Qk+1 and descent is restarted from Qk+1 by using
c c c

Algorithm 1. The following step is appended for this purpose.

(Step 3) If f*(Qk)<f*(Qk"), then execute Step 1 and Step 2 for
c c

a smaller step size, a.18k. If f* does not decrease even for

this step size, find the nearest point on the subspace of Eq.

(8) from Qk and let the point be Qk+1.
c c

5.3 Revised Algorithm

Algorithms 1 through 3 are combined as follows.

(1) Start minimization by using Algorithm 1, the basic

algorithm.

(2) When the cost cannot be improved even if step size ok is

made smaller than or as in the Step a of Algorithm 2, switch

into Algorithm 2 and find the ravine equations.

(3) The descent along the ravine bottom may be stopped at some
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point by an encounter with another V-shaped ravine. If it is

stopped, restart minimization by using Algorithm 1 from that

point. This is because the equations of the present ravine are

not necessarily included in the set of equations of the new

ravine.
r

Since the step size ok becomes smaller and

approaches the optimal point, we halve or on the

Algorithm 2, bearing in mind the balance between

Finally, the procedure is stopped when both

hold.

6. EX~~PLE

smaller as Qc
application of

ko and or.
ok<E and ° <E

r

The revised algorithm was applied to some networks of

practical size. For each network, computations were started

from some different initial values of Q , and the uniquec
minimum-cost solution was obtained. It is practical to use the

steady-state flow without use of any pumps and valves as the

initial value.

In the case of the network of 36 nodes, 42 links and 4

sources presented in our earlier paper, the solution is obtained

by solving a chain of 80 linear programs which consist of 84

unknowns and 42 constraints (only the lower constraint for each

node head), with some extra time for descent along the V-shaped

ravines.
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QUASI-DIFFERENTIABLE FUNCTIONS IN THE OPTIMAL
CONSTRUCTION OF ELECTRICAL CIRCUITS

E.F. Voiton
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Universiteskaya Nab. 7/9, Leningrad 199164, USSR

When considering the optimization problems which arise in

the design of technical devices, it is clear that a central role

is played by minimax problems, i,e" the problem of finding

min <jJ(X)
XE[2

( 1)

where <jJ(X) = max f(X,y) is a maximum function, [2 CE , GCEm,
yEG n

The minimax formulation of the problem is in many cases

preferable to other models and in some cases is crucial,

Problems of form (1) appear, in particular, in the design

of electric circuits if it is necessary to find either the

values of components of a circuit of given structure (parametric

synthesis) or the values of parameters of a circuit function of

given type (the approximate synthesis problem) ,

In what follows we consider some examples of problems based

on the structural synthesis of electrical circuits which contain

linear elements with constant parameters, linear elements with

variable (so-called controlled) parameters and non-inertial

nonlinear elements.

We consider the possibility of stating a wide class of op

timization problems of form (1) and suggest a unified approach

to solving these problems.
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1. Analytical methods for solving (1) can be applied only

to a limited number of one-dimensional approximation problems

where the function f(X,y) is an algebraic or trigonometric poly

nomial or a rational function with a given polynomial in the de

nominator.

These functions describe characteristics of certain classes

of electrical circuits, the most sophisticated of them being the

so-called frequency filter, i.e., a device with different proper

ties on two nonintersecting sets of some variable.

2. A wider class of devices is described by functions

f(X,y) which are continuous with of(~xY) jointly in both vari

ables on a set ~ x G. It is necessary to use a more complicated

criterion function since in many circuits there exist elements

with fixed values of parameters, and additional constraints to

be satisfiea by the circuit.

If f is a linear function then one can apply the Remez

polynomial algorithm [1,2]. But in general the function f(X,y)

is nonlinear in X therefore we cannot use this algorithm.

Some effective minimization methods are based on the direc

tional oifferentiability of a maximum function [2]. Since

lim cj> (Hag) -4> (X)

a-++O a
max (Of(X,y) , g)

yER(x) oX

where R(X) {XEG I f(X,y) = cj>(X)}. Then the necessary condi-

tion of an unconstrained minimum

op(X*) > 0
og

is equivalent to the condition

OE ..H(X*)

Vg (2)

(3 )

If at Xo E En condition (3) is not satisfied then the direc-

tion
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z (Xo)
- Hz (X

o
) II

where

min II zll
ZE~¢ (Xo)

is the uirection of steepest descent (of f at Xo) .
Problem (1) can be discretized (i.e., the set G can be re

placeu by a finite number of points) and we shall have a discrete

minimax problem which can be solved by well-known methods.

There are different approaches to discretize G. The "direct"

method (to replace G by a "thick" grid) is too "expensive" from

the computational standpoint. Much more effective is "the ex

tremal basis method" which uses only n + 2 points (where n is

the dimensionality of the space) at each step, but these points

("a basis") are being adjusted at each step (see [5]).

Computational experiments showed that the extremal basis method

is highly effective, especially if the method of equalizing

maxima (see [7]) is applied at the final stage of computations.

EXAMPLE 1. (The Mandelshtam problem).

Let

f (X, t)
15

cos t + L cos ((k+1) t+x
k

))
k=1

It is required to find x* = (x~, ... ,x~ 5) E En such that

max f (x* , t)
tE[-TI,TI]

min max f(X,t)
XEE

n
tE[-TI,TI]

( 4)

This is the problem of finding the "phase" shifts in the circuits

of 16 harmonic generators (it is assumed that Xo = 0) which

guarantee the resulting signal with the minimal value of the

"maximal" level.

Note that the maximal possible value is 16 (it is achieved

if xi = 0 "d i E 1: 15). After solving problem (4) (by any avail

able minimax technique) we get the following optimal solution



x* (1.57625;

0.35074,

0.55282,

0.7561Cl,

1.99774,

2.60184,

-1.34677,

0.97112,
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-2,91176;

-1.13237;

2.19116;

0.06332) .

-2.00577

2.83581

2.26278

This peak value of the total signal was reduced from 16 to

3.89755 = ¢(x*).

The function h(t) = f(X*,t) achieves its maximal value

(with respect to t) at 16 points.

t 1 -2.2295; t 2 -1.8311, t 3
-1,5243; t 4 -1,1755

t 5 -0.5162; t 6 0.1445; t 7
0.3655, t 8 0.7931

t 9
1.0087; t 10 1.2297; t 11

1.4687; t 12 1.8025

t U = 2.1754; t 14 2.3969; t 15 2.7671; t 16 3.1318

The signs of f(X*,t) were as follows

+,-,-,+,+,-,+,+,-,+,-,+,-,+,-,+

This fact shows that there is no " a lternance" property (as was

the case in linear minimax problems).

3. In solving practical problems it is often necessary to

minimize a function which is a composition of max-type functions.

Let a function F(a
1
,a

2
, ... ,ap ) be continuously differenti-

able on Ep ' and ¢k(x),kE1:p, be functions of the form ¢k

= max f
k

(X,y) (or ¢k = min f k (X,y)), where Gk are compact in Em'
yEGk

and function fk(X,y) as before are continuous together with

df
k

(X,y)
ax elm EnxGk · Let ¢(X) = F(¢1(X), ... ,¢p)X)) be a super-

position of functions ¢1 (X)' ... '¢p(X). without loss of general

ity we assume that ¢k(X) are max-type functions.

Since ¢k are directionally differentiable then ¢ is also

directionally differentiable and
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p
L aF

k=1 a<P k
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Since

where

C<P k (X) = max (dfk (X,y) )
-~ ax' g

YER
k

(X)

then

{y E G
k

I f
k

(X,y) k E 1:p

Putting

a<p (X) _ I aF (dfk (X,y) )

~ - k=1 a<P k y ;:~X) ax ,g
(5)

aF (<P
1

(X) , ••• ,<P (X))
p

IJIk(X)

we can rewrite (5) in the form

L IJI (X)
kEJ+(X) k

a<p (X)

~

p ( afk (X,y)
L IJIk(X) max

k=1 yERk(X) aX

(

dfk(X,y)
max ax

yERk(X)

where

(

dfk(X,y) )
+ L IJIk(X) max ax ,g

kEJ (X) yERk(X)
- A + B
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(

atk (X,Y) )_
A L max \jIk (X) ax ,g-

kEJ+(X) yERk(X)

max (L \jI (X)
y,ER, (X) kEJ+(X) k
Y2ER2(X)........
YpERp(X)

B L \jI (X ) max ( atk (X, Y ) )
kEJ_ (X) k yER

k
(X) aX ' 9

Thus,

min (L \jI (X)
Y,ER, (X) kEJ_(X) k
Y2ER2 (X)........
Y ER (X)P p

a¢ (X)
max (L \jI (X)

afk(X,yk )

, g) +----ag-
Y,ER, (X) kEJ+(X) k

ax

........
Y ER (X)

P p

+ min (L \jI (X)
afk{X'Yk)

, 9 ) (6)
Y,ER, (X) kEJ_{X) k

ax
.

........
Y2ERp{X)

Recall (see [5)) that a function f is called quasidifferentiable

at a point X E E if it is differentiable at the point X in any
n

direction gEE and if there are convex compacts af (X) C E andn n
af (X) C En such that
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----ag-
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_ lim f (X+ag) -f (X)

a"'"+0 a
max

vEdf (X)
(v,g) + min (w,g).

WEaf (X)

The pair of sets Df(X) [If(X) ,af(X)] is called a quasidif-

ferential of the function f at the point X, and sets 1f(X) and

af(X) are respectively called a subdifferential and a superdif

ferential of the function f at the point ·X.

Now it is easy to see that the function ~ is quasidiffer

entiable.

We say that a quasidifferentiable function f has a vertex

type quasidifferential at a point X, if the subdifferential

1f(X) and the superdifferential af(X) may be represented as con

vex hulls of a finite number of points. In the case of a

vertex-type quasidifferential the formulas of quasidifferential

calculus are readily applicable in practice.

For example, let f (X) = max f. (X), where X E En' and func
iEJ: 1

tions f. are quasidifferentiable, and
1

df. (X)
- 1

co A. (X)
1

co {a1
1
' , ••• , a i }

mi

af. (X)
1

i i }co B. (X) = co {b 1 ' ... , b
1 n.

1

Here each of A. (X) and B. (X) consists of a finite number of
1 1

points in E .
n

Let

R(X) = {iEIlf(X) = fi(X)}. Then

1f (X)

where

co A(X) ,af(X) co B (X) ,

A (X) = 1a = a~ ~ i I ) l b i
k

(·)li'ER(X),j(i l )E1:m.,k(i)E1:n. l ,
iER(X) 1 1 1\

i~i I

B(X) 1b = L bk
i ( . ) Ik (i) E 1 : n. I

iER(X) 1 1\
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It is easy to see that the number of points in the set A(X)

is equal to L (m
1
., x IT n.) and in the set B(X) is equal

i'ER(X) iER(X) 1

ifi'
to IT n .•

iER(X) 1

A simple structure of vertex-type quasidifferentials enables

one to apply well-known methods for finding the distance bet~.

ween sets if(X) and -3f(X) and at the same time to check whether

the necessary condition for an unconstrained minimum

-3f(X) c ~f(X) (7)

is satisfied and to determine a direction of steepest descent.

It is easy to see from (6) that ¢ has a vertex-type quasi

differential, if the sets Rk (X), k E 1 :p, are finite.

4 • Let X E rl C E , Y E GeE , Z Ewe E. Here G and waren m s
compact sets in proper spaces, rl is a convex compact set. Let

¢(X,y)

Q(X,y)

min f(X,y,Z)
ZEw

{zEwlf(X,y,Z) ¢ (X,y)}

Consider the function

¢(X) max ¢(X,y)
YEG

and the set

R(X) {yE GI¢ (X,y) ¢ (X) }

The problem of mlnlmizing ¢ on rl C En is reduced to that of

finding parameters X Erland determining the relation Z (y), which

provide the minimal values of f(X,y,Z) on the set G i.e., to the

problem:

max min f(X,y,Z) ~ min
yEG ZEw xErl
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By discretizing sets G and w, we have the problem of mini

mizing the function

~(X) = max min f
1
'J' (X)

iEI jEJ

It is easy to see that this function is quasidifferentiable.

Consider the following example.

Let

where

f(X,y,z)
, 2 2

4x,Yz {(z+x,y) +[x,z('+y )-

2 2 2 2 ~- (z +x,y )] cos (x 2 vx, z)} - ,

It is necessary to find min ~ (X) where
XEE

2

~(X) max min f(X,y,Z)
yE [y, ,Y2] zE (Z" Z2]

This is the problem of optimizing the operational attenuation of

a ferrite impedance transformer by choosing the proper values of

parameters x"x2 (the dielectrical permeability and the elec

trical length) and determining an optimal rule for controlling

the magnetic permeability z(y) if the transformer load changes

on the interval [Y"Y2].
Fix numbers N"N2 and put

The initial function ~ can be approximated by the function

~ (X) max min f .. (X)
iEI jEJ lJ

where f..(X) = f(X,y.,Z.).
lJ 1 J

The function ~ is quasidifferentiable. Find its quasi-

differential.
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We have

where

<p(X) max
iEI

f. (X)
l

f. (X)
l

f (X,y i) min
jEJ

f .. (X)
lJ

Since the functions f .. are continuously differentiable, we can
lJ

take

Using the rules of quasidifferential calculus [5] we obtain

at. (X) = 0, a f . (X)
- l l

where

= co \ _d_f.;:::i-:,;j_(_X_)
) dX

Q. (X)
l

Finally we get

Q(X,y.)
l

{z . I j E J, f . (X)
J l

f .. (X)}
lJ

where

It is clear that the function t has a vertex-type quasidiffer

ential.

5. Let us now consider the problem of designing smoothly

tuning frequency filters. Mathematically this can be stated as

the following problem:



F(X)
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max min max f(X,y,Z)
tE[a,b] z(t)EW YE[t,t+8]

----+ min
XErl

(8 )

where a,b are constants, 8 < < b-a, w is some class of functions

defined on [a,b]. Replacing each of the intervals [a,b] and

[t,t+8] by a finite number of points and a function Z(t) by the

corresponding vector we shall approximate the function F by

the function

where

F 1 (X) max min max f .. (X)
iEO:N jEJ kEi: (i+t) 1)

Clearly, F
1

is a quasidifferentiable function and has a

vertex-type quasidifferential.

The problem of designing discrete controllable frequency

band filters is of particular interest. The returning of these

filters within the workable frequency band, for example, by the

passband is performed in steps by switching filter element

groups. Capacities are often used as components of such groups.

The problem of optimal synthesis (in the Chebyshev sense)

of the discretized controllable filter may be presented as

follows:

max
iEI

min
ZEw.

1

max
tES i

f(X,Z,t) -~ min
xErl

where S. is the set of workable band frequencies, S. c E1 ;
1 1

I is an index set, I = 1 : p i

P is a number of filter subband3

w. is a set of groups of discretized tunable elements,
1

w. C E .
1 m'

rl is a set of unvariable filter elements, rl c En

6. Now let us discuss the problem of synthesising non

linear circuits. Mathematically this can be stated as the prob

lem of minimizing the function
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¢ (X) max I f (X, t) - F (t) I
tE[O,T]

where

f (X,t) f(X,u(t)) ,f(X,u)
m
L f. (X,u)

i=1 1

F (t) is a given function; x E E , u (t) is a periodic function of
n

a given period T; f. (X,u) are so-called module functions. The
1

function f(X,t) is the result of transforming the function u(t)

by a nonlinear element, the volt/ampere characteristics of which

are given by the module function f(X,u) .

Consider two examples of solving practical problems.

Let

f(X,u)

F (t) = a O + a 1 cos t + a
2

cost 2t + a
3

cos 3t

The problem is to find

min max Ix 1cos t - x o +
x

O
,x

1
tE[O, TI]

or in the discrete form

min ¢ (X)
XEE 2

where

x 1cos t - x oI-F (t) I

TI
t j N j, J = O:N,

N is a flxea natural number.
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The problem is reduced to that of finding a cosinusoidal

pulse x 1 , and a level for the cut~ff of cosinusoid x o' which

guarantee that the periodic pulse constructed is approximated

in the best way by a polyharmqnic oscillation with given ampli

tudes of the first, second and third harmonics and a constant

component.

For the initial approximation let us choose the solution

obtained via Fourier Series. Let x 1 = 1, x o = 0.5 (the cut-off

angle e = 60 0) to which Berg coefficients a O = 0.218, a 1 = 0.391,

a 2 = 0.276, a 3 ~ O.13d correspond. Thus

F(t.) = 0.218 + 0.391 cos t. + 0.276 cos 2t. + 0.138 cos 3t.
J J J J

<j>(x O'x1 ) = max I x 1 cost
1

-xO + I x 1 cost. -xO I-F(t.) I
jEJ J J

The initial value <P(0,5i1) = 0.12074.

For computational reasons we introduce an E-subdifferential

and an E-superdifferential of the functions (they are approxi

mations of a subdifferential and a superdifferential)

Here E > O. We obtain (see [5])

(2cost, -2), ifX1cost-xO>~

(0,0), if x 1cost-xo <-~

{ (2cos t, - 2) , (0,0) ] , if -~ < x cos t - x < ~
2 - 1 0 2

(0,0) i
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<-~
2

co{ 2~Er (xO,x" t) ,-iaEr (xO,x" t)},

if-%.:. r(xO,x"t) :5.. %

~Er(xo,x"t)-iEr(xO,x"t) ,

if - %.:. r (xO,x, ,t) < %

Then

where

At t,he initial point -~E¢(0.5,1) ~ ~E¢(0.5,1), therefore

Xu (0.5;') is not a stationary point. When using the method

of E-steepest descent after '3 steps on a grid having N =50,

we obtained point X: = (0,34754', 0.~22896). At this point

( * * * * * *¢ xO,x,) = s(xO,x" '.'34724) = 0.072292. Assume RE(XO'X') =

{
1 ** ** } .= t=tkE [O,1T] ¢(xO,x,) -s(xO,x"tk ) .:. E , where t k 1S a local

maximum of function s(x~,x~,~) with respect to t (between grid

points) and take E = 0,0001. Then RE(x~,x~) = {t,=0,t2=0.760555,

t 3='.'34724}. Finally we get
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co{ [ (0. 844765 , - 2 . 0) , (0. 0) ], (3 . 448907, - 4 . 0) +

+ [ ( O. l:l4 4 7 65, - 2. 0) , (0. 0) ] , (+2. 0, - 2. 0) }

(-2.0,+2.0) + [(-0.844765,+2.0),(0,0)]

(2.0,-2.0) + [(0.844765,-2.0), (0,0)]

Thus at the point x* (0.347541,0.822896) we have

i.e. at this point the necessary condition for a minimum of the

function CP(x O,x1 ) (condition (7)) is satisfied (up to E-accur

acy (Fig. 1)).

It is interesting to note that the solution of the inverse

protlem of finding amplitudes of the three harmonics and a con

stant component which provide the best approximation of the periodic.

cosinusoidal pulse of the same form (x 1 = 1, x o = 0.5) leads to

the following values of coefficients: 0: 0 = 0.20918, 0: 1 = 0.37849,

0: 2 = 0.27542, 0: 3 = 0.18398; CP(o:) being 0.077876. The comparison

shows that the solution given differs essentially from the co

efficient determined by applying the Fourier Series and provides

a better (in the Chebyshev sense) approximation of the initial

function.

Another example relates to the problem of designing ampli

tude harmonic filters. Let some signal be of the form u(t) =
= b 1cost + b 2 cos2t, 0 < b 1 2. 1,0 < b 2 < 1, i.e. the signal

has the first and second harmonics. It is required to reduce

the level of the second harmonic with respect to the first one

in the output signal spectrum by choosing the proper transducer
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parameters. The transducer consists of n diode nonlinear ele

ments and its output signal is

f(X,t)
n

~ L Ct.. (u(t) - a. + I u(t) - a·1 + 1'1
i=1 1 1 1

The problem of synthesis is formulated as follows. Deter

mine a vector X = (a 1 , ... ,an ,Ct. 1 , ... ,Ct.
n

,l'I) which minimizes the

function

¢ (X) max If (X, t) - F ( t) I
tE[O,TI]

small (p (X*) = O. OO~), the
E

stationary one.

where F(t) = b O cost, a i is the characteristic curvature of the

i-th diode, a i is the current cut-off angle of the i-th diode, 1'1

is the constant component of the output signal. Let n = 3,

b O=-1, b 1 =1, b 2 =0.2. The initial approximation was the

o 0 0 0 0_ 0
following: a

1
=-0.9, a 2 =-0.7, a 3 =0, Ct. 1 =-2.5, Ct. 2 -1.5, Ct. 3

= 0.3, 1'1 0 = 1. The maximum signal slope for the given case was

<jl(X) =0.25.

*By using the E-steepest descent method the vector X =

(a1=-O.~22, a;=-0.624, a;=-O.054, Ct.~=-2.608, a;=1.416,

a; = 0.505, 1'1*= 1.031) was obtained and the max-type function was

¢(x*) = 0.027. At this point the sets of sub- and superdiffer

entials a ¢(x*) and a ¢(x*) represent convex polyhedra having
-E E

respectively L3 and 4 vertices in 7-dimensional space.

Since the aistance between the sets a ¢(x*) and -a ¢(x*) is
-E E

point x* can be regarded as an E-

The resulting suppression of the second harmonic is easy to

determine by representing the found signal F(t) as a Fourier

Series. In this example the suppression value amounts to 24 dB.

So the transducer considered is in fact a nonlinear harmonic

filter. Within the interval where the frequency of the nonlinear

element operates, the suppression level does not depend on a

frequency.
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however, it is necessary to underline that unlike the charac

teristics of frequency filters the characteristics of amplitude

filters are sensitive to the input signal level.

Thus, the examples discussed show that Quasidifferential

Calculus enables one to greatly extend the class of electrical

circuit problems which can be successfully solved.

0 2 3 4 5 6

-1

-2

-3

--4

-5

-6

-7

Fig. I
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