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FOREWORD

This paper is closely connected with the studies on
decision making under uncertainty, particularly with the
stochastic optimization problems that are investigated in
the Adaptation and Optimization Project of the System and
Decision Sciences Program.

The paper deals with some economic models in which
it appears possible to formalize the notion of the price
on information concerning the problem parameters. In-
surance models under uncertainty are studied here with
more detail.

Alexander B. Kurzhanski
Chairman

System and Decision Sciences
Program
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PRICES ON INFORMATION AND
STOCHASTIC INSURANCE MODELS

I.V. Evstigneev

The aim of this work is to study the information constraints

in economic problems of decision making under uncertainty.

The information constraints, as well as the resources con-
straints, play an important role in an economic system. However,
until recently, only the constraints of the latter type have been
systematically studied.

It is well known that the Lagrangian multipliers which
remove the resources constraints in an economic optimization
problem can be regarded as prices of the resources. It turns out
that the Lagrangian multipliers associated with the information
constraints can also be interpreted as prices, namely, prices
which characterize the effectiveness of information. Moreover,
it can be shown that there are relations between the prices under
consideration and such an important economic phenomenon as insurance.

This work was stimulated by a series of papers by R.T.
Rockafellar and R.J.B. Wets (see, e.g., [1,2]) devoted to a
profound mathematical investigation of stochastic extremum
problems. An essential role was also played by some comments of
economic nature that were made in the course of the discussion of
R.T. Rockafellar's lecture in the Central Economic and Mathematical
Institute (Moscow, 1974).
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We emphasize that no purely mathematical aims are pursued
in this work. On the contrary, examples are considered that are
most simple from the mathematical point of view, and the main
attention is paid to the clarification of the economic sense of

mathematical ideas.

We start with a description of the model. Let f(s,x) be a
function of a random parameter s€S (S is a finite set) and of
a vector x € X (X is a subset of R"). Suppose that f(s,x) is
continuous and concave in x, and the set X is convex and compact

with int X # d&.

Problem A. Find a plan (decision) x in the set X such that

the mathematical expectation Ef(s,x) is a maximum. In symbols,
E f(s,x) - max (1)
X €EX . (2)

Let us consider together with the problem A the following

problem B.
Problem B.
E f(s,x(s)) - max (3)
Xx(s) ¢ X, s €8S . (4)

In problem B one has to find a function (strategy) x(-)

which maximizes the functional (3) under the constraint (4).
Note that in the problem A the maximum is taken over the set of
deterministic vectors (rather than vector functions x(s) of the

random parameter s).

The problem A can be obtained from the problem B by adding

the following constraint:
x(s) does not depend on s, (5)
which can be also rewritten as

x(s) - Ex{(*) =0 . (6)



This form of the information constaint has been studied (in a
much more general setting) by Rockafellar and Wets [1,2] (see
also [3]).

Thus the information constraint (5) is represented in the

form

where

Ax(+)

"

x(*) = Ex(*)

is a linear operator. By applying an appropriate variant of the
Kuhn - Tucker theorem, we obtain that the constraint (5) can
be removed by a Lagrangian multiplier p(*). Namely, there exists
a function p(s) such that

Ef(s,x(s)) + Ep(s) [x(s) - Ex(+)] < E £(s,x) (7)

(x(s) € X, s € S), where x is a solution of the problem A. It
is established by a standard argument that (7) is equivalent
to the following ineguality

f(s,x) - Px + p(s)x < f(s,x) - Px + p(s)x (s € S, x € X) (8)
where

P = Ep(*) . (9)

-~

It has been demonstrated in [#4] that p and p(s) satisfying
(8) and (9) can be interpreted as insurance prices (p(s)x is
the compensation and px is the premium). In the present note we
briefly sketch this interpretation.

The inequality (8) means that, by paying px (premium) and
getting p(s)x (compensation), we guarantee, that the plan x
becomes optimal in each random situation. In this sense, the
insurance system based on the prices p and p(s) makes it possible
to eliminate the future uncertainty. The relation (9) reflects
the fact that the premium should be*;approximately) equal to the

expected value of the compensation.

¥
)Variants of the above model are considered, in which the premium
price p is greater, than Ep(s).



Let us illustrate the above idea by the following example.
Consider a model for insurance of a good transported by a ship.

A ship transports x units of a good from one port to another.
There are two possibilities: successful transportation and
catastrophe. In this example, the random parameter s takes two
values: s = s, (catastrophe) and s = S, (success). The capacity

of the ship equals x Thus, the set X of possible plans is as

o"
follows: X = {x: 0 < x < x,l}.

Suppose that the income (profit) obtained from a successful
transportation eguals f(sz,x) = d,X, and losses which we have
in case of a catastrophe equal f(s1,x) = =g4X. Denote by Xi
the probability P{s = si} (i = 1,2) and assume that X,q, < A,q,.

Then the optimal plan x coincides with X -

Let us consider the following task. Find all the prices p
and p(s) possessing the properties (8), (9) and the additional
property p(sz) = 0. The last equation means that, in case of
success, the compensation equals zero.

It can be shown that the solution of the problem is given
by the formulae:
~ A1 _
pisq) = f%f T~ 9 P Lqg; - (10)
2

Thus, there are two bounds for p, .and p(s,) is a linear function
of p.

The inequalities in (10) have an obvious economic sense.

A
The inequality Tl 94 2 P is equivalent to the following one
2
pP(sq)x > pPx + g% (x € X)

which means that the compensation is not less than the sum of
the losses and of the premium.

Some variants of the above model are considered in which
the profit f(s,,x) = qz(x) is a nonlinear function (diminishing
returns to scale). It turns out that the price p is unique in
these models and P coincides with the left bound in (10).

Let us now discuss the relation between the prices considered

and the problem of effectiveness of information.



It is natural to expect that the Lagrangian multiplier which
removes the information constraint gives an economic evaluation
of information just as the Lagrangian multipliers which remove

the resources constraints evaluate these resources.

In order to discuss this idea in rigorous terms, we have to
be able to measure the gquantity of information. It is well known
that an important role is played in the technology and discrete
mathematics by Shannon's method of information measuring. Simple
- argumentation shows that this method is not quite appropriate
for our aims.*)

In order to outline an alternative approach, let us imagine
the following situation (which is formalized in our model). At
the beginning of the planning period, we have to make a decision
X without any information about s. Generally speaking, the value
of s is observed only at the end of the planning period. Then
only, we learn, whether the initial decision x is good or bad.
However, if it is possible to make some special efforts which
result in learning s earlier, then we can make a correction, i.e.
replace X by x + h(s) (h(*) is the correction).

For example, suppose that, basing on uncertain data, we
have decided to work out a project. Suppose further that after
some time we have got a reliable prediction that the project is
doomed to failure. Then this information makes it possible to
stop payments (or supply) and thus spend the sum of money

X - u (u > o),

rather than the sum x initially planned. The strategy used here

is as follows:

]
”
1
e

x(s1) (failure),

x(sz) X (success) .

The earlier we get the information about failure, the more essen-

tial is the correction, and, consequently, the more flexible

*
)However, some connections can be found between the Shannon theory
and the point of view on information which is considered here

(see the last pages of the present paper).



strategy is used. (The flexibility of a strategy means here the

difference between our actions in the cases s = S 4 and s = s2.)

Thus, the earlier we get the information about s, the more
freedom for corrections we have. It follows that the value of
information (in the example considered) depends on the time when
the information is obtained. The value equals zero if the infor-
mation comes so late that it is impossible to make any correction
of the decision initially made. The value is maximal, if we get
the information so early that the initial program can be completely
revised.

The above argumentation shows that the central role in our
problem is played by the class H of the corrections which can be
carried out given the information about s. The class H charac-
terises the useful, effective information contained in the com-
munication of s. In other words, the property of information
that is essential here is its property to improve the adaptivity
of economic system, i.e. the ability of the system to react in
a flexible way to a changing situation. It turns out that the
approach outlined here makes it possible to regard m(s) = p - p(s)

as an information price.

Indeed, let us fix a function h(s) (correction) and compare
the maximal value of the objective functional on the set of
strategies of the form x+h(s)

¢(h(-)) = max Ef(s,x(s))
x(s) = x+h(s)

with the maximal value of the objective functional on the set
of strategies x independent of s

¢(0) = max E f(s,x).

X
We have

¢(h(*)) = ¢(0) = E m(s)h(s) + o(|[h [} (11)
where m(s) = p - p(s) and || * || is an arbitrary norm in the

(finite-dimensional) space of functions h(*). The formula (11)
is deduced from the following relation

¢(h(+)) - ¢(0) < E m(s)h(s),



which, in turn, is a consequence of (7). In order to make this
argumentation rigorous, it is sufficient to assume that ¢ is
differentiable at 0 and that 0 belongs to the interior of the
domain of ¢.

Thus, we have established the (marginal) property (11) of
the price m(s) which shows that the number E m(s)h(s) gives an
evaluation of the economic effectiveness of information about s
used in the correction h(*). The correction here is specified
by a function h(+) or, eguivalently (since S is a finite set),
by a finite~dimensional vector. Hence, the "quantity of infor-
mation" is a vector. This is the approach that fits the struc-
ture of our problem.

On the other hand, it is more convenient to use scalar-
valued (rather than vector-valued) characteristics for measuring
the effectiveness of information. One of the possible ways to
find such characteristics is based on the concept of flexibility

(adaptivity) of the correction h(*) (or of ‘the strategy x(*) =
x + h(+)).

Let us compare the problems A and B. In the first problem,
we use strategies of the form x(s) = const, i.e. strategies that
do not react to a possible difference in the values of s. The
second problem corresponds to the other extreme case: we can
employ arbitrary strategies x(¢). In the latter case, the reaction
to a change in the situation s is maximally flexible.

Our aim is now as follows. We would like to define a number
which measures the flexibility (adaptivity) of a strategy and
makes it possible to consider problems that are "intermediate"
between A and B. This number will at the same time characterize
the "quantity of information” about s used in the strategy x(s).
Indeed, the flexibility of the strategy x(s) (the degree of
dependence of the function x(s) on s) reflects also the degree
of utilization of the information about s in the process of
making the decision x(s).

Assume that such a characteristic of the flexibility of a
strategy (= of the gquantity of information) is established. Then
we consider the class Kr of the strategies x(*) with the flexi-
bility not greater than a real number r. The zero value of the



flexibility and the class Ko correspond to the problem A. The

* *
maximal value of the flexibility r and the class K. containing
all strategies correspond to the problem B.

Let us consider the maximal value of the objective functional
on the class Kr

L(x) = max E f(s,x(s)).
x(°) E"Kr

Denote by Br the principal linear part of the function 2(r) at
the point r = o. Then the coefficient x can be regarded as a
(shadow) price which gives an evaluation of the flexibility of
a strategy, and thus an evaluation of the amount of information
used in this strategy. Roughly speaking, it is worth paying Br
in order to have a possibility to use strategies with the flexi-
bility not greater than r. In other words, if we have an economic
mechanism that makes it possible to use strategies with flexibility

< r, then the (shadow) cost of such a mechanism is equal to gr

The simplest and the most common way to measure the scattering
of values of a random variable is to consider its standard devia-

tion. The standard deviation of x(s) is defined by

9]

ey = B = Ex(H 2 o jx - Bx() ]y -

We shall use O%(+) in order to measure the flexibility of a
strategy x(°).

Let us calculate the shadow price corresponding to the measure
of flexibility just defined.

Consider the function

L(r) = max E f£f(s,x(s)),
x(+) € K.

where K, = {X(-): Op(e) S F } is the class of strategies with
flexibility < r. We shall find ¢' (o) and express this value in
terms of p(-).
It is easily seen that
L(x) = max E f(s,x(s))
X(s) = x + h(s) € X
E h(s) =0

Oh(ey ST -



By virtue of (11), we have

d(h(R)) = ¢(0) + E m(s)h(s) + o(||n]|]) ,

where ||*|| is any norm in the finite-dimensional space of func-
tions h(*), e.g., the norm | |- le. Consequently, for sufficiently
small r's,
L(r) - 2(0) = max [¢(h(-)) - ¢(0)] =
E h() =0
oh(') <r
= max E m(s)h(s) + o(r) = max E m(s)h(s) + o(r) =
E h(¢) =0 E h(s) =0
Op(ey £ T ||h(’)||L2 r
= max E (p - p(s))h(s) + o(r) = Ilﬁ-p(‘)HL + o(r)
E h(*) =0 2
b)) ], <«
L2 -
The last inequality becomes obvious, if we regard h(*) and p - p(*)

as elements of the Hilbert space
2
{h(+): Eh(*) =0, E |[|h()]] < o }

with the usual scalar product. The above argumentation is based
on the fact that h(*) = 0 is an interior point of the domain of
the functional ¢ (h(+)).

Thus, the following result is obtained:
£ - 2 = . + .
(x) (0) b (*) r + o(r)

Consequently, if the quantity of information used in the strategy
x(*) is measured by the standard deviation ox(.), then the price
of information equals the standard deviation qp(.) of the function
p(s). This means that the difference between 2(r) [the maximal
income for the strategies using the amount of information < r]
and 2(0) [the maximal income for the strategies using the zero

amount of information] is approximately equal to ¢ r. In

p()

p(+) r units of

other words, it is worth paying approximately o
money for a small amount r of information.
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Let us return for .a minute to the insurance model. The
above result shows that the information price is equal to the
standard deviation Op(‘) of the insurance price p(s). Thus,
the larger is the dispersion of values of p(s), the more impor-
tant is the information. Consequently, the more essential is
the difference between the failure and success, the larger is

the information price Up(.).

We outline now the relations between the above approach and
the Shannon information theory.

Let us first recall the definition of Shannon's information.
Assume that there is a random variable A which takes m values
Ayy eoey Am with the probabilities H1, cooy Hm. The entropy of
A is defined by

H(A) = - 2 Djlog Il; = L n(l) ,
i i
where n(a) = ~a log a.

Suppose that B is another random variable which takes the

values Bys «eey B_. Denote by Hi' the conditional probability

n J
P {B=B| &A= Aj} .
The number
H,.(B) =ZI . Z n(ll..)
A i 1 3 bRy

is called the conditional entropy of B given A ("the average
uncertainty of the experiment B given the result of the experiment
A"). The Shannon information is defined by the formula

I(B, A) = H(B) - Hy(B) .

This difference shows to what extent the knowledge of the result
of experiment A reduces the uncertainty of the experiment B.

The Shannon information theory plays an‘important role in
various fields of applied mathematics. It works especially good,
when there is no measure of proximity between the different out-
come of the experiment, i.e., all the outcomes are in some sense
eqguivalent.
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However, this approach is not always convenient. Imagine a
. random variable A that takes n real values with equal probabilities.

Assume that n-1 values A1, e.es A are very close to each other,

n-1
and the n-th value A, differs essentially from Ryr «-.r A :

n-1

] |
I IR REE
An A1A2l L] ‘An_1
If we neglect the difference between the values Rqr eey An-1’

then the uncertainty of the random variable A should be approxi-
mately equal to the uncertainty of the random variable A' taking

two values A, and A with probabilities % and E%l . On the other
hand, the entropy of A is equal, e.g., to the entropy of a random
variable A" taking n values 1,2,..., n with probability %, which

is "much more uncertain”.

The point is that Shannon's definition is purely discrete;
it does not take into account, e.g., the linear structure of the
space. This is one of the reasons, why the Shannon's theory as
it is, cannot be applied to our problem, where the linearity and
concavity play central roles.

We modify the above definition by introducing a "measure of
indifference" between the outcomes of the experiment (i.e. between
the values of the random variable). It is assumed that this
measure of indifference is proportional to the distance between
the values of the random variable. If the random variables takes
two values x, and x, (x; € R), then, roughly speaking, we mix
x, and x, up with probability % + g, where q = |x1 - x2| (for
small g's).

This idea is formulated in strict terms as follows:
Given a strategy

x(*) = {x(sy), x(s,)} = {x4, x,}

with q = |x; - x,| sufficiently small, we introduce an auxiliary
random variable % which is defined by the following rule. If
s = s,, then & = x, with probability 1 - g' and % = x, with
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probability g, where

.
a =g+ Ixg - x

If s = s,, then g = X, with probability 1 - g and & = xq with
probability q.

Denote by I(g) the Shannon information about s given R.

We have
I(q) = - A, log Al = Xy log A, +
A1(1-q)
Azq
+ 29 l°9[x1(1—q) T xzq] +
A1q
+ Aqq l°9[11q ¥ x2<1—q7] *
A, (1=q)
+ 2

A simple computation shows that

I(q) =qats Aihya’ + olg?) (12)

Consequently,
1" (0) =25 Ak,

Let us measure the amount of information used in the strategy

x(*) by the quantity

ITTx, - %X,1) = VI ik, 1%, - X0 =3 (x(+))

Then we have

y(r) = max E f£(s,x(s)) =
J(x(s)) <r
= max E f£(s,x(s)) = max E f(s,x(s)) ,
x(*) x(+)

/I({x1 - xET)< r j(cx(.)) <r
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where

5(a) = /I (——).

LY
Indeed,
c
s, = =2 o AT,
x(*) o) 2 2
172

since

o = Ixq = x| /A%,

x(+)
Furthermore,

L(x) = max E f£(s,x(s)) = &(i(x)) ,
x(+) < i(r)

where i(r) = j_1(r). Thus,

£(0) «i (0) r + o(r)

¥(r) = v(0)

Since i (0) = 1/3 (0), it remains to compute j (0). This
can be done as follows

500 = 1im 2L = 1im 122 f 4 0(0?) =

JoZ_
InZ

]
=

(see (12)). Hence,
vy - o) =/ B2 . 1,

r + o(r) ,

i.e., 'the information price (corresponding to information measure

/I(|x1 - X,|) equals

M o

P(*)
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where op(') is the standard deviation of the function p(-).
We note that the constant % VL%E is universal: it does not

depend on the probability distribution {A1,X2}.
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