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FOREWORD

This paper shows how Real-Time can be introduced into the algebraic
description of finite automata, to provide a tool for modelling

discrete~event-systems.

Alexander B. Kurzhanski,
Chairman,

System and Decision Sciences
Program



Introducing Real Time
into the Algebraic Theory

of Fimite Automata

Pierre MOLLER
International Institute for Applied Systems Analysis.
September 1986.

Algebraic automata theory and its corollary, regular language
theory, are efficient tools used in computer science for modeling
logical circuits, designing compilers, evaluating complexity of

algorythms and other preoblems.
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Recently, W. M. Wonham and P.J. Ramadge (see ref. ({7] to [11
applied this algebraic framework to "discrete-event systems” This
15 a new class of systems, which appears in various domains,
ranging from flexible-manufacturing plants to

communication-protocols controllers.

The major drawback of the classical automata thecry is that it

does not take into account the "real time"”. There 1s only an

implicit notion of "logic time"”, due to the precedence c¢f events.

After a brief introduction to the algebraic theory of finite
automata, we shall show how real-time can be introduced in these

models.
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] Introduction to finite state automata.

A good intoduction to this theory can be found in reference [0O],
chapters 1 t0 3.

A finite state automaton is a mathematical modei for a system, which can
be in any one of a finite number of states, and which moves from one
state to another according to discrete inputs, taken from a finite set of
inputs, procucing discrete outputs, from a finite set of possibie outputs.

The state of the automaton summarizes all the past 1nputs and their
Intiuence on the future outputs.

This definition can be formalized in the following way:

Definition 1.1 :

A Tinite automaton isaS-tuple(Q,2,8,q, F ) where:
Q is a finite set of states,
T is afinite input alphabet,
q is the initial state, an element of Q
F is the subset of Q of final states,
d is the transition function, mappingQ X £ to Q.

The last item indicates that for any state p and any input a, &q,a) is
defined and 1s a state. Thus, a can be viewed as a control.

We can generalise this definition to automata accepting strings of 1npurts,
N the following way:

We define T* as the set of all finite strings constructed with tne alonapet
the emoty string which we snall dencte 3; % j2 ucuzlly <ailed the

rionold generated by Z, because the concatenation of strings grovides
ructure of monoid.

ra
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Concatenation of strings w and x will be Jeno WX,

Since £* contains I, we can extend the functicn & to ==~ 7This 1S done
recursively: the state associated to a string 1S the state cbramned by
apiying successively all letters of the string as inputs, read from left to
right

Definition 1.2:

The extended transition function & of the finite automaton
(Q,%,8,q,F)is the function mapping Q X £* on G defined oy.
3'(p, €) = p for every state p and the empty string e,
8(p, wa) =8(8(p,w)a)
for every state p, string w, and letter a.

From now on, we shall use only & and denote it §, for sake of simplicity.

A finite automaton can be represented by its transition dizgram. This is a
directed graph, which has one node associated with each state, and whose
arcs are 1abeled by the input aiphabet: for every state p and avery input a,
there is one arc labelled by a, leaving the node p.

o
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A3 a2n example, let us consider a finite automaton with 3 st2tes;
Let Q = (a,p,r} g be the initial state,

and the input aiphabet be = ={0,1}.

The transition function is given by the table:

state

qQ|p|r

O0lajajaq
T 1p|r|op

input




Introducing Real Time into the Algebraic Theory of Finite Automata .

The transition diagram of this automaton is:

0
A==

7

In this automaton, the input string 11101 will take the automaton from
the initial state q to the state p.

Definition 1.3 :

A string is said to be accepted by a finite automaton, if it moves the
automaton from the initial state to a final state.

Suppose that on the previous example, r is the only final state, then the
string 11101 is not accepted by this automaton, but the string 011 is.

It is easy to see that a string is accepted by this automaton if and only if:

There are 2n (n21) occurences of the input 1 and no O in the string,

or:
There are 2n (n21) occurences of the input 1, following the last
G in the string.

Definition 1.4 :

Let £* be the free monoid generated by an alphabet T.

A subset L of ¥ (a language) is said to be regular, if there exists a
finite automaton, with inputs in £, which accepts atl the strings in L
and oniy the strings in L.

Until now, we have associated no output to a tinite automaton. To
infroduce outputs, we can use two type of models: Mealy machines and
Moore machines.
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2 Mealy Machines:

in the sequel, we shall suppose, for sake of simplicity, that all states are
final.

Mealy machines are obtained by associating one letter, chosen in an gutput
alphabet, to every arc in the transition diagram. in the previous example,
we canre-label the arcs in the following way:

Then the input string 11101 will give the cutput cfebc.

This dgefinition can be formalized in the following way:

Definition 2.1 :

A Mealy machine is a 6-tuple(Q,Z,T,q,d,n ) where
Q is a finite set of states,
Z is afinite input alphabet,
q is the initial state, an element of Q
8 is the transition function, mapping G X £ into Q.
T is afinite output alphabet
nis a function mappingQ X Z intoT.

n 15 the output function, which associates an ouiput n T, Lo avery
transitionin QX T . Ifnis not one-to-one, some moves of the automaten
carnct be distinguished by an ¢bserver of the outputs.

—i

his definition can be obviously extended to input strings, by using
S

ecursicn. Thus we can consider nas mapping Q X =¥ into T'™

-
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Restrictions:

In tnis first study, we shall concentrate onn tracking the transifions of
the states. Thus we shall assume that for ali Mealy machines, That
n_is one-to-ne . This means that two different arcs in tne transition
diagram always have different labels. In this case, outputs are
equivalent to state-transitions. This was not the case ¢n the example
introguced previously. In the end of this paper, we shall indicate which
problem arises if n is not one-to-one.

In the usual theory of finite automata, the behaviour of the automata is
described by the language of all possible strings of outputs. To use
numerical coefficients, we need to introduce the notion of formal and
rational series.

3 Formal and rational series.

Definition 3.1 :

A dicid is a 3-uple (D, @, X) where
D is a set of "scalars”, with two distinguished elements
such that:
® is an associative and commutative internal operation,
X 15 an associative internal operation,
¥ 15 distributive over &.
eda=aforeveryainD
exa=¢gforeveryainD.
exa=aforeveryainD.

This means that (D, & ) is a commutative monoid, (D,x) is @ monoid and, D
contains two distinguished elements e and e :

£ 13 the neutrai eiement for the "addition”.
e is the neutral element for "multiplication”.
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This structure is often called semi-ring; this word may Induce some
confusion, because many authors use the word "semi-ring” oniy 1f the
operation @ is regular: this is the case in the realisation of
markov-chains, where the dioid is the positive real line with usual
operations. Therefore, we, shall use the word dioid, which obviously stands
for the extension of a monoid.

Note that all rings and fields are dioids, and that:

In any dioid, matrix calculus can be defined by the usual formulas.

in the seguel, for simplicity of notations, the "procduct” axb will be
denoted ab . And the sum in the sense of the dioid will be denoted ®.

Definition 3.2 :

Let T be afinite alphabet.
A formal series, with coefficients in a dioid D and variables in T

is a function S mapping I'*, the free monoid generated ov I, into D.
S can be represented formally as;

~

S =X yers S@w

Definition 3.3 :

Let T be a finite alphabet.

A formal polynomial, with coefficients in 3 diofd D and variables in T
is a formal series P, such as

P (w)=¢conly for afinite set of strings w in I'*

Usually, the notation D<«< I'>> is used for the set of formal series with
coefficients in D and variables in T, and D< > stands for the sef of §
polyncmials with coefficients 1n D and variables inT.

1
orma;

If [ =(z,,2,,.2.}, one can aiso write D«z,,z,..2 > and D<z,,2,. 7>

;"’”"-OJ' ._2, _n .



Introducing Reai Time into the Algebraic Theory of Finite Autemata.

Wwe can exrend the operations defined on the dicid to ine formal series In
the following way:

Definition 3.4 :

The formal sum of two series S and T is the formal series (S & T
defined by:
(S® T (w) =S (W& T (w for every string w in I'*.

Definition 3.5 :

The formal product of two series s and T is the series (5.T)
defined by:

(5.T) (w) = 2043:0, ael* Pers Sa). T(B)
where ¢ff is the concatenation of strings a and B.

According to these formulas, the peutral elernent for the sum of formal
series i5 the function (or series) which associates € to every coefficient,
therefore 1 1s convenient to denote this element ¢

The neutral element for the product is the same, e.r‘ Je} that thp
coefficient of the empty string @ is e; for convenience we shall ¢
series e,

The diofd D can be obviously inbeded in D<< I>> by 1dentifying every
scalar A to the series denoted A ,which has all its coefficients equal toeg,
except the coefficient of the empty string @, which is equal to &; we Ju’st
write Ag=24.

Usually, the strings with coefficients equal to e are omitted; and
coefficients equal to e are omitted too: For instance z & 372 stands for

wdezd 3o 0D d e
Thus, the sum of series appears as an extension of the sum in the digoid,
and the product of series appears as an extension both of the product in
the dioid and of concatenation of strings.
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Let us look for a series S which is solutien of:
S=SA8®EB (3.1)
where A and B are given formal series. It is easy to compute that:
S=SA"®@B(e®ADA’D. ... AT (3.2)

Thus, if A" "vanishes” when n tends to + ==, we get cne sclution of
equaticon (3.1), which may or may not be the unigue sciuticn, degending on
the dioid:

S = B.A* (3.3)

where A% {5 defined at least for all formal series such as the ccefficient
of the empty stringise

Definition 3.6 :

If Ais a formal series such as the coefficient of the empty string is g,

A%¥= e D ADA’D...... AN, (3.4)

We can now justify the notation I'* for the set of all strings generated by
an alphapbet T A language (a set of finite strings) can be viewed as 3
formal series with coefficients in the Boolean algebra (0,1], and variabies
inT:

The coefficient of a string is 1 if it pelongs to the language,
The coefficient of a string 1s O if it does not belong to the language.

This is true for I itseif, and it can be easily checked that the series I'* is
actually obtained by applying the * operation to I, considered as the
formal sum of all its letters.

This S5* operation can be considered as the formal expansion of the
quotient 1/1-5 . Control theorists will recognise the importance of this
operation, because it is associated to feedbacks in systems.
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Definition 3.7 :

The rational operations on formal series are:
The formal sum, the formal product, the * operation.

Definition 3.8 :

The rational closure of a subset L of D«<I'>»
is the smallest subset of D<<I»> containing L
which is stable under the rational operations.

Definition 3.9 :

The set of rational series is the rational closure
of the set of polyomials.

This implies that every rational series can be written as a finite
expression, using polynomials and rational operations.

Theorem 3.10:

Every regular language is a rational series
with coefficients in the Boolean algebra.

Theorem 3.11 :
The support of every rational series (the set of words whichn have non-¢

coefficients) in N<<I>> ,is a regular language.

This theorem noids In other dioids than N, the set of positive Integers,
w1th the usua! operations, but it dces rnot hold for all dioids.
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Theorem 3.12: (Realisation Theorem, Kieene-Schutzenberger)

If S is arationai series with coefficients in D and variabpies inT,

there exists:
an integern
a(t,n) matrix G with coefficients inT,

a(n,1) matrix N with coefficients inT,
an application @ mapping
into the set of (n,n) matrixes with coefficients in D,

such that: :

if we extend g recursively to I'* by defining:

o (e)=¢e

9" (wa) = ¢ (). o () for every string wand every letter a, where

0 (w). 0 (a) is the matrix product of ¢ (a) and ¢ (a).
Then:

The coefficient of any word w in S is

S(w) = H ¢ (0).6.

This theorem is ¢bviously the extenion of the realisation theorem for
finite dimensional linear systems. It is due to Kieene for regular
languages, and Schutzenberger for formal rational series.

4 introducing real time in gutomata theory.

Let us consider a Mealy machine, with output alphabet I' We still suppose
that the function n mapping f the arcs of the transition diagram on the
output alphabet I, is one-to-one, and that all states are final.

To increase the power of this model, we are going to take into account the
time needed to perform a transition from one state to another.

Thus, we are given a function tmapping I on R+, such as:

for every output letter a, 1(a) is the time needaed to produce a.
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To this automata, we are going to associate a formal series with real (or
infinite) coefficients such as:

The coefficient of any string w {5 the least time necessary 1o produce
the outout w. To be precise, it will be the least time necessary until
the end of theproduction of outpul w.

If an output is impossible, its coefficient will be +eo, which means that an
infinite time is needed to perform this output.

we shail work with the following dioid, often cailled max-algebra, or
path-algebra, which has first been intensiveiy  studiec by
R. Cunningham-greene (see ref. [B]).

Definition 4.1 :

DRC is the dioid defined by:

The set IR U (—oo,+oo}

The "addition" a & b = max(a,b)

The "product” a.b = a+b (the product is the usual addition)
with the convention —oo +o0 = —co = ¢,

Since we denote -=o by g, in the calculations, we can write +eo = oo,
Formal series in one variable, with coefficients in the diold CRC, have
been introduced and studied by Cohen and all. , in references (4] 2nd [S].
Lemma 4.2:

in the dioid DRC, the formal series B.A* is always defined and 15 the

smallest solution to equation S =5 A @& B in the sense of the partial
order induced on the series by the order on the coefficients.
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Demonstration of the lemma:

We first note that in this dioid, since the "addition” is the maximum, if the
formal series S, A, B satisfy

S=A®B
Then S 2 Aand S 2 B for the partial order .
Thus,

S= A"S®Be®ADA D ... A1)

implies that for every string in I'*, its coefficient in 5 is greater or
equal than its coefficient in(e @ A® A2 ... ADE,

Furthermore, the coefficient of every string in this partial sum defines
monotonous non-decreasing sequence when n tends to +eo, and 15
convergent if we allow infinite coefficients.
S0 we can define the sum

(e@AB A SD..... Al )

without intoducing a topology, and

Ble® AD A2 ... A1y

is defined and minorates every solution of the equation S =S5SA @& B
for the partial order. :

B.A% is obviously is a solution, thus it is the smallest solution.

Now we can state the most important result.
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Theorem 4.3 :

Lot I be the output alphabet of a Mealy machine,
Let S be the formal series, with coefficients in DRC and variables inT
defined in the following way:

If a string w is a possible output of the machine,
the coefficient wis the least time necessary to produce w.

if astring w cannot be produced bi the machine,
its coefficient is + e,

Then:

S is rational in the sense of the dioid DRC and can be computed by the
following formula:

S=(P&Q) (e Te&R¥*
where P, Q and R are the following polynomials:

P is the sum of all gsingle outputs (leftersiwhich are possibie
from the initial state, multiplied by their duration.

Q is the sum of all single outputs which are Impossibie from the
initial state, multiplied by +ee.

T is the sum of all single outputs (all letters in T ) multiplied by
their duration.

R is the sum of all strings of 2 letters, which cannot be produced
from any state, thus cannot appear in any output string,
multiplied by +ee,
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Before giving the demonstration of the theorem, we shall study an example
to clarify this statement. Consider the following Mealy machine. We have

omitted the inputs to simplify the graph.

The polynomials are :

P=3g@® 2a

Q=00 @ oL ® od

T=3g®2ad 1bsd 3ca® 4d
R=w(algdadc)dblgdadbadd(cadiigdadbad)

If we compute the formal series associated to this automaton:

(P Qe TR

we find that the only strings with finite coefficients are the following:
g" with coefficient 3n (in the usual algebra, or 3" in the dioid),
g"a with coefficient 3n + 2,
gMab with coefficient 3n+ 3
gabc with coefficient 3n + 6
gMad with coefficient 3n+ 6
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Demonstration of the theorem 4.3:

we have defined S in the following way:

For any string w, S(w) is the least time needed to produce output w, if
this output is possible, otherwise S(w) is + oo

Note that by definition of S, all its coefficients are greater or equal to e=0
thus are never equal to e.

We need to prove that S is equal to X* , which we define as the smallest
solution, for the partial order, of equation:
X=(PdQ)dX(edT@&R) (4-1)

Where P, Q, R, T are as defined in the theorem.
we know from the lernma 4.2 that:

XK=(P&Q)(ed TR

First part of the demonstration:

we first show that S is larger or equal, for the partial order, than X°, by
showing that S is a solution of equation 4-1, that means:

S=(P®Q)®S(edT®R)=SeoPdQ8®ST®SR
Obviously S<(P@& Q)& S(e & T @R )for the partial order,
Thus wé need only to show that

S: PeQ@&STa®SR

This can pe done by showing that any term appearing on the right hand side
1S dominated py a term on the left.
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By definition of P, its terms are the single outputs which are possible
from the initial state, muitiplied by their duration. These terms appear
aiso In S, by definition of 3.

By definition of Q, its terms are the single outputs which are impossibie
from the initial state, multiplied by + e. These terms appear aiso in S,

A term in the product S.T has the form S(w).T(x) wk , where S( @ ).T(k) is
the dioid notation for the usual sum of S(w) and T(k).

If the output w is impossible, S( ) =+ o and the output wk is
impossible too; thus we have S(w).T(k) < S{ wK ) = + o as required.

If the output w is possible, but wk is impossible, we still have
S{w). T(k) < SCwk ) =+ o= 35 required.

[f the output @ is possible, and wk is possible, then the duraticn
needed to produce wk {s at least the sum of the needed durations, so
we have S(w).T(k) < S(wk ) as required.

A term in the product S.R has the form + o= wk, where w {s a string in S and
K is & string in R. This means that the output x is impossible frorm any
initial state, thus the output wx is impossible for the autornaton, thus its
coefficient In S is + o0 as required.

in conclusion of this part of the demonstration, S 1s a solution of equation
4-1, thus it is greater or equal than the smallest solution X°.
Second part of the demonstration:

To compl'ete the proof, we need to show that X° is larger than S for the
partial order.

To do this, we are going to show, by induction on n, the following
assertion:

For any string w of length smaller or equal than n, its coefricient in §
ic smaller or equal that its coefficient in X°

~l
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This is true for n=0, when the only possible string is the empty string,
which has coefficient e in both cases.

we now suppose the assertion is true for a fixed n, let's consider a
string @ of length n+ 1.

If n=0, the string is a single letter and the result i{s obvious: from equation
3-1, we deduce that X° is larger than P & Q, which is, by definition, equal
to the sum of the terms of degree 1 in S. S0 we now suppose that nx2.

if the output w is possible, we can split w in vk where v {s a possible
output of length n-1, andx is a letter which appears in 7.

From the recursion hypothesis, we know that S(v) ¢ X*(v).

Then S(uk) ¢ S(u).T(®m) because S(vk) is the smallest delay needed to
produce vk, and the decomposition v followed by x is only one of the
possible decompositions.

Since X* is solution of equation 4-1, which implies that X° is larger
than X°. T, we deduce that:

X°(ok) 2 X*(0).T(k), thus we obtain S(uk) < X (uv).

If the output vk is impossible, its coefficient in S is + o, thus we need to
show that its coefficient in X° is + e t00.

If @ is impossible, w must contain a substring u of length 2, made of
{wo outputs which cannot be produced successively. Thus the term o=@
appears in R,

If we split w in u.n.k,. k2. 1D, , where the ki are ietters, we can
deduce from equation 4-1 that:

K*(w) 2 X*(0).RK). T@A,). TA,). ... T

By definition of T, none of the terms T TQR,). .. T(kp) is equal to &
The recursion hypothesis implies that X*(v) 2 O.
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Because R(u) 15 + o, we finally have X°(w) 2 + oo

This completes the proof.

5 The case of Moore machines.

Another class of automata with outputs is given by Moore machines: in this
model, outputs are genereted when the automaton enters a new state:

Definition S.1 :

A Moore machine isab-uple(Q,2,T,q,8.A ) where:
Q is a finite set of states,
T is a finite input alphabet,
g is the initial state, an element of Q
8 is the transition function, mappingQ X £ into Q.
[ is a finite output alphabet
A is a functionmappingQ onT.

The main difference with mealy machines is that the initial output
appears first in any possible output string.

It can be proven that Mealy and Moore machines are equivalent, in the
sense that:

Every system modelled by a Mealy machine can be modelled by a Moore
machine and vice-versa.

Moore machines are less convenient for our purpose, because they generate
output strings which are one unit longer than those generated by a Mealy
machine. We shall briefly indicate how to apply our results to Moore
machines.

In Moore machines, outputs are associated to the states and not to
transitions. Therefeore, it is natural to temporize states instead of
transitions: A
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To each state, we shall associate a minimal stay of the token , before
it becomes available for another transition.

we shall suppose that the token is initially available at time O, in state q.
1 is still a mapping from I onto the dioid D.

If we suppose that the mapping A of states on the output alphabet is
ore-to-one, we can identify the states with the outputs, and talk of the
duration of a state.

Theorem 5.1 :

Let I be the output alphabet of a Moore machine (Q, 2, T, Q4,8 ,A),
where A is one-to-one. Let S be the formal series, with coeffictents in
DRC and variables in I such that the coefficient of any string w is the
least time necessary to produce w. Then:

S is rational in the sense of DRC and can be computed by the formula:
S=A(@eaW(edPaQ) . (edT&R¥*

where ¢ is the initial state and P,Q and R are the following
polynomials:

P is the sum of all states which are reachable from the initial
state, multiplied by their minimal duration.

Q is the sum of all single outputs which are impossibie from the
initial state, multiplied by +eo.

T is the sum of all states multiplied by their duration,

R is the sum of all strings of 2 states, which cannot be
succesively reached , multiplied by +ee.

U is the sum of all ouputs different from A(Q), which is the
output of the initial state, multiplied +eo.

20
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6 Remarks on the restrictions and the aigebra.

what happens if an output letter could be produced by different state
transitions?

[f those transitions have different durations, a minimization proodlem
occurs: two strings of outputs may be produced with different aurations;
and we are looking for the minimal time needed to perform outputs. This
would imply the use of the min operator, so question may pe reformulated
in another way:

why use (max,+) algebra and not (min,+)?
There are three reasons for this:

+oo needs to be an absorbing element for the = of the dioid, because the
finite coefficients have to be cancelled if a string IS impossible.
Unfortunatly, +eo 15 the neutral element for the min.

To compute the series associated to the Mealy machine, we introduce
an implicit equation in the (max,+) algebra; the series we are 1ooking
for is the minimal sclution of this equation ; this 15 essentiai for the
proof, because it shows that we can use the resoivent formuia to
compute the series. If we were working with (min,+), the resolvent
formula would give us a maximal solution.

The (max,+) algebra has been used by Cohen et al. to descripe
discrete-event systems with only synchronisations problems. Using
the same algebra gives us the hope to link both models to apply this
calculus to more general models.

To generalize this result to automata with several transitions producing
the same.outputs, we shall have to assume that one outout is performed in
a fixed duration, whatever state transition has produced it,.

Another point worth noticing, is that all these results still nold when the
real time is discrete;
(IR U {+oo,~00], max, +) is replaced by (Z U {+oo,~c0}, max, +)




introducing Real Time into the Algebraic Theory of Finite Autcmata .

7 Conclusions and new directions of research.

We have shown that the so-called "max-algebra” can be appiled to the
temporal description of finite-state of automata. The tools used, rational
series, is an extension of regular languages, which was used by wonham
and Ramadge to solve some control problems in refrences 7 to 11.

These models, finite automata, are only a sub-class of all possible
discrete-even systems: no synchronisation problems are modelled. The
interesting point is that the same algebra has been used by Cohen et al. in
references 2 to 5, to model discrete-event systems where only
synchronisation probiems occur, which is the other "extreme case”.

This gives us the hope that this mathematical theory, rationai series in
the max-algebra, can be applied to a broader class of discrete-event
systems, containing the two special cases we mentioned.

(ntroducing these series raises a new problem: the study the structure of
rational series in in the max-algebra, with several variables. The case of
one variable has been completely studied by Cohen et al., but all results do
not seem to extend to the case of several variables, pecause these
variapbles do not commute.

Another issue is to link timed-outputs to timed inputs. This was done by
Cohen and All, who introduced the notion of transfer function for the ciass
of systems they were able to model. Doing this will probably be much more
difficult in the case of finite-state automata, since the output aiphabet is
different from the input alphabet.
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