lIASA

L ecture Notes in

Controland
Information Sciences

Edited by M.Thoma and A.Wyner

103

P. Varaiya
A. B. Kurzhanski (Eds.)

Discrete Event Systems:
Models and Applications

IIASA Conference
Sopron, Hungary, August 3-7, 1987

IIASA

Lecture Notes in
Control and
Information Sciences

Edited by M.Thoma and A.Wyner

103

P. Varaiya
A. B. Kurzhanski (Eds.)

Discrete Event Systems:
Models and Applications

IIASA Conference
Sopron, Hungary, August 3-7, 1987

&, | Springer-Verlag

Berlin Heidelberg New York
London Paris Tokyo

Series Editors
M. Thoma - A. Wyner

Advisory Board
L. D. Davisson - A. G. J. MacFarlane - H. Kwakernaak
J.L.Massey : Ya Z. Tsypkin - A. J. Viterbi

Editors

Pravin Varaiya
University of California
Berkeley, CA 94708
USA

Alexander B. Kurzhanski

System and Decision Sciences Program
IIASA

2361 Laxenburg

Austria

ISBN 3-540-18666-2 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-18666-2 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material

is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation,
broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of
this publication or parts thereof is only permitted under the provisions of the German Copyright
Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be paid.

Violations fall under the prosecution act of the German Copyright Law.

© International Institute for Applied Systems Analysis, Laxenburg/Austria 1988

Printed in Germany

Offsetprinting: Mercedes-Druck, Berlin
Binding: B.Helm, Berlin

FTOREWORD

A major objective of the Systems and Decision Sciences (SDS) Program ol ITASA is to
further the study of new mathemalical approaches to the modcling, analysis and con-
tro! of real systems. SDS sponsored Lhe conference on Discrete IKvent Systems in the
beliel that these systems will demand increasing atiention. These proceedings should
therefore prove Lo be extremely Limely.

Alexander B, Kurzhanksi
Chairman
System and Decision Sciences Program

PREFACE

The purpose ol these remarks is to introduce discrete event systems and to pro-
vide a framework to the contributions to this volume.

WHAT IS A DISCRETE EVENT MODEL ?

Mathematical systems theory traditionally has been concerned with systems ol
continuous variables modcled by difference or differential equations, possibly includ-
ing random eclements. However, there is a growing need lor dynamical models of sys-
lems whose slales have logical or symbolic, rather than nunerical, values which
change with the occurrence of events which may also be described in non-numerical
terins. We call such models discrete event models or DEMs.

T'he need for DIEMs stems romn the effort 1o extend the scope ol mathematical
systems theory to include manufacturing systems, communication networks and other
systems whose behavior is naturally described by a record or trace of the occurrence of
certlain discrete, qualitative changes in the systern and by ignoring continuously occur-
ring micro-changes.

For examnple, the behavior of a data communicalions nelwork may adequately be
described by sentences such as "At time ¢, user 4 sent a packet of data to user 3 who
received it at time ¢,.” The building blocks of such sentences are phrases —
packet__sent, packet__received — that indicate the occurrence ol certain discrete
events. These eventls mark various qualitative changes in network operations and the
sentence ignores micro-changes such as the actual propagation of signals over the net-
work.

Similarly, it is casy to imagine that the flow and processing of parts in a manulac-
turing plant with several machines may uselully be described by sentences built from
phrases such as starl_ processing_. parl, finish__processing part, machine _ failed,
buffer__emply, clc. while the seutence ignores continuous changes in the ‘amount of
metal cut’ or in the “fraction of part processing task completed’.

These examples suggest thal as a first approximation we may think of DEMs as
follows. The "real” systemn behavior involves changes in variables that occur continu-
ously over time; DEMs abstract froin this behavior by recording ouly the occurrence
of certain discrete events. We will call such a record a trace. We can then say that a
discrete event model is a mathematical model or procedure lor describing the set of
traces that a system can generale. In most systeins the set of traces is infinite
(because of different initial conditions, control policies or random effects), whereas a
model must be finite. Thus a DEM is a finite mathematical model representing the
infinite set of traces ol a discrete event system.

TRACE ABSTRACTIONS AND DEM FORMALISMS

Traces can be mathematically represented at three levels of abstraction which we
call the logical, temporal, and slochastic levels. At the most abstract or logical level, a
trace is simply a sequence of events listed in their order of occurrence. For example,

the trace
§=010303" "~
might signily the behavior

packel__senl packet__lost timeoul__ezxpired - - -
At the temporal level, a trace is a sequence of pairs

s=(o1,1y) (09, 4y) (03,83) - - -
where g, 04 04 - - - is a logical trace and (; is the time at which cvent o; is executed.

Finally, at the stochastic level, the system behavior is modeled by a sequence of pairs
of randorn variables

(o1,) (o4, L) (03,t4) - -+

where the o; are event-valued and the (; are real-valued random variables such that
for each sample w

s(w) = (a4(w), 1 (w)) (02(w), y(w)) (o3(w), ty(w)) - - -
is a temporal trace.

Thus a DEM gives a finite mathematical description for an infinite set of traces
representing system behavior at a particular level of abstraction.! A DEM formalism
is a body ol mathematical and computational methods for formulating and answering
questions about a family of related discrete event models. There are several formal-
isms at the logical level including those based on finite stale machines, Petri nets, cal-
culus of communicating systems, and communicaling sequential processes.

Despite considerable practical interest, there is relatively little progress in
research on DEM formalisms at the temporal level. ‘There is work on limned Pelri nels,
and on several related formalisins such as dala flow graphs motivated by problems in
synchronous digital signal processing.

On the other hand, DEM formalisms at the stochastic level have been built on
the strong foundations of the theory of stochastic processes and statistical decision
theory. Of particular importance here are models of networks of queues and the lamily
ol mathemaltical and computational methods invented for the analysis and optimiza-
tion of these models.

COMPARISONS OF DEMS AND THEIR USES

As noted, formalisms can work at different levels of abstraction and at each level
there are several competing lormalisms. Are there ways of comparing different lor-
malisms either intrinsically or in terms of their use?

By delinition trace descriplions given by logical level models are less complex
than temporal level model descriptions which, in turn, are less complex than stochas-
tic descriptions. 1t is thercfore tempting to say that stochastic models are intrinsically
more powerful (i.e. they can describe more complex phenomena) than temporal
models. Ttowever, in trying to represent more aspects of trace behavior, formalisms
simplily the description of cach individual aspect. Thus, the logical aspect. of traces of
temporal mnodels has a simpler structure than that permitted by logical level models;

We distinguish among DEMs by how abstract their trace descriptions are. This is a focus on modeling.
Oune could propose more technical distinctions among DEMSs such as finite vs infinite state, deterministic vs
non-deterministic, etc.

Vi

similarly, the temporal aspect of traces ol stochastic models has a simpler structure
than that permitied by temporal models. For these reasons, one usually cannotl com-
pare formalisms atl different levels in terms of their descriptive power.

Such comparisons may be possible between lormalisins at the same level. Lel us
say thal two models are equivalent il they describe the same sel ol traces. We can
then borrow an idea from the ‘fTormal theory of languages’ and say thal a DISM for-
malisrn A has more descriptive power than a formalism B il every B-model has an
equivalent A-model. In this sense one can asserl [or example that the Pelri net for-
malisi has more descriplive power than the linile state machine lormalism.

Descriptive power provides an intrinsic means ol comparing formalisms. It may,
however, be more inleresting Lo base comparisons on how much useful work they can
do. We briefly discuss one basis — algebraic complezily.

When we try to analyze or to build a system, we tend to think of it as a collection
of subsystems whose operations (events) are coordinated in several ways. Similarly,
every DKM flormalisim is an ‘algebra’ in the sense that it contains several ‘operators’
which can be used to combine one or more models in the formalism to obtain a more
complex model.2 We can then say thal a DIEM formalisin has greater algebraic con-
plexity, relative to a particular application domain, il its algebraic operators
correspond more naturally to the ways in which real systems are coordinated. The
notion ol algebraic complexity is not lormal like the notion of descriptive power, but it
has heuristic value since il points to an important aspect ol modeling.

lHow are discrete event models used to lormulate and address interesting ques-
tions about manuflacturing systems, communication networks, etc? In the lirst place,
by abstracting lrom the real system behavior in terms of traces, models can exhibit
the structural similarity between very different systems (e.g. a manulacturing systemn
and a digital signal processing system). Analysis of the model then permits prediclion
of certain properties ol systein behavior. Ifor instance, a logical level model may
reveal that the system is [ree of ‘deadlock’; or it may show the possibility of incorrect
transmission of data. A temporal level model may be analyzed to deterimine the
‘throughput’ of a manufacturing system, i.e. the maximum rate of production.
IFinally, a stochastic model may show the distribution ol the build-up of inventories of
work-in-progress in a manuflacturing systern.

The preceding examples illustrate the use ol DEMs [or purposes ol analysis.
DEMs may also serve the nced lor synthesis. For example, logical models have been
used to propose, synthesize, and verily control algorithins (protocols) that guarantee
error-[ree transmission of data packets in communicalion networks; temporal models
can suggest how to speed up compulation in digital signal processing algorithmns; sto-
chastic models can be used to determine optimal bulfer sizes in manufacturing sys-
Lems.

CONTRIBUTIONS TO THIS VOLUME

Work in discrele event systems has jusi begun. There is a greal deal ol activily
now, and much enthusiasm. There is considerable diversity rellecling differences in
the intellectual lormation of workers in the field and in the applications that guide
their effort. This diversily is manilested in a prolileration of DISM lormalisins. Some
of the formalisms are essentially dillerent. Some ol the ‘new’ flormalisms are

T X A . . o ;

For example, linear time-invariant systems may be modeled by transfer functions. The operations of sum
and product of two transfer functions then correspond respectively to the parallel and cascade connection of
two systems.

Vil

reinventions of existing formalisins presented in new terms. These ‘duplications’
reveal both the new domains of intended application as well as the dilliculty in keep-
ing up with work that is published in journals on computer science, cornmunications,
signal processing, autornatic control, and mathernatical systemns theory — to name the
main disciplines with active research programs in discrete event systeins.

The first cight papers deal with models at the logical level, the next four are at
the temporal level and the last six are at the stochastic level. Of these eighteen
papers, three focus on manufacturing, four on communication networks, one on digi-
tal signal processing, the remaining ten papers address methodological issues ranging
fromm simulation to computational complexity ol some synthesis problemns. The
authors have made good ellorts to make their contributions self-contained and to pro-
vide a representative bibliography. The volume should therefore be both accessible
and uscful to those who are just getting interested in discrete event systems.

ACKNOWLEDGEMENTS

These papers were presented at a conference on “Discrete Fvent Systems” held in
Sopron, Hlungary, [rom August 3 to August 7, 1987. The conlerence was sponsored by
the Systems and Decision Sciences (SDS) Program of the International Institute for
Applied Systemns Analysis (LLIASA), Laxenburg, Austria. It is a pleasure to ack-
nowledge Professor Alexander Kurzhanksi, Program Leader of SDS, for his enthusias-
tic support of the conference. The local arrangements in llungary were handled by
the llungarian NMO ol IIASA; | am very gratelul to Ms. Zsélia Zamori for providing
everything needed for the conlerence. Ms. Erica Mayhew of SDS saw to it that every-
thing ran smoothly starting with preparations months before the conference and end-
ing with the publication of this volume. Without her sure competence, humor and
discipline, this enterprise may have foundered many times. | owe her many thanks.

The conlerence attracted 30 participants from 11 countries. Twenty-one papers
were presented over five days; 18 ol these are included here. The participants were
deliberately chosen to refllect diverse intellectual backgrounds and application
interests. Indeed one organizational criterion was that no participant should have
known more than one-third of the others. Another criterion was that each participant
would be able to present work at a level that was sulficiently abstract so that one
could readily delect both common features and distinguishing characteristics. [very
participant made the extra elfort neceded to establish comimunication across disci-
plinary biases. 1 think the conference was much more successful than my original
expectations. It brought together researchers in discrete event systems who would
ordinarily not have become aware of cach others’ work. The resulting interaction will
undoubtedly enrich their research.

Pravin Varaiya

Department of Electrical Engineering & Computer Science
University of California

Berkeley, CA 94720, USA

and

System and Decision Sciences Program
HASA

CONTENTS

Finitely Recursive ’rocesses
K. Inan and P. Varaiya

Reducibility in Analysis of Coordination
R.P. Kurshan

Distributed Reachability Analysis for Protocol Verification Environments
S. Aggarwal, R. Alonso and C. Courcoubetis

A Tool for the Automated Verification of ECCS Specifications of
OSI Protocols
V. Carchiolo and A. Faro

Supervisory Control of Discrete Event Systems: A Survey and Some
New Results
P. Ramadge

Using Trace Theory to Modcl Discrete Events
R. Smedinga

Protocol Verification Using Discrete-Event Models
M. Sajkowski

Analysis and Control of Discrete Fvent Systems Represented by ’etri Nets
A. Ichikawa and K. Iiraishi

Data FFlow Programming for Parallel Implementation of Digital Signal
Processing Systems
E.A. Lee

On an Analogy of Minimal Realizations in Conventional and
Discrete-Fivent Dynamic Systems
G.J. Olsder and R.E. de Vries

Representation, Analysis and Simulation of Manufacturing Systerns by
Petri Net Based Models
F. Archelli and A. Sciomachen

The SMARTIE Framework for Modelling Discrete Dynamic Systems
G.-J. Houben, J.L.G. Dietzand K.M. van Ilee

A Hierarchical Framework for Discrete Event Scheduling in

Manufacturing Systems
S.B. Gershwin

A Sclected and Annotated Bibilography on Perturbation Analysis
Y.C. Ho Liditor

19

40

69

81

100

115

135

149

162

179

197

217

X

Analog Livents and a Dual Computing Structure Using Analog
and Digital Circuits and Operalors
T. Roska

Robust Identification of Discrete-Time Stochastic Systems
H.-F. Chenand L. Guo

Derivatives of Probability Measures-Concepts and Applications to the
Optimization ol Stochastic Systems

G. Ch. Pflug

The Separation of Jets and Some Asymptotic Properties of

Random Sequences
LM. Sonin

225

239

252

275

FINITELY RECURSIVE PROCESSES

Kemal Inan and Pravin Varaiya

Department of Elecirical Engineering & Computer Sciences
University of California

Berkeley, CA 94720, USA

ABSTRACT

We present a new class of discrete event models called Finitely Recursive
Processes {FRI’). These models are proposed to help in the specification, implementa-
tion and simulation of communication protocols and supervisory control strategies.
We believe that the ‘algebra’ of FRPs ollers certain advantages over models based on
stale machines. The lormal structure of FRIs builds on lloare’s Communicaling
Sequential Processes (CRIP). The main differences with CRI”> are: (1) a FRP is
specified via recursion equations which clearly bring out the dynamic evolution of a
process, (2) some additional operators Tor combining FRI’s are introduced, (3) the
structure of the ‘algebra’ of FRPs is exploited Lo suggest methods for simnulating them.

INTRODUCTION

The behavior of a discrele event system is described by the sequences of events or
traces that it generates. Let A be the linite set of events and 4 ° the set of all finite
sequences of events in A, including the empty trace <>. A i represents the universe of
all possible behaviors, whereas the behavior of a particular system is given by a subset
Lc A'. The set L will usually be infinite. A discrete event model (DEM) is a finite
mathematical description of this inlinite set L.

To say that s = a a,- -+ is a trace of the system means only that in this behavior
the event a;,, occurs some timne after event a;, but the trace gives us no information
about the real time at which the event occurs. We may say that the trace only reflects
the precedence constraints of the system but not its real time constraints. Second, an
evenl is atomic. In the ‘real’ system each atomic event may be subdivided into several
operations; however, this finer granularity is not reflected in the model.

Our aim is to present a family of DEMs which we call Finitely Recursive
Processes (FRP). For purposes of exposition it is convenient to contrast FRI’s with
Finite State Machines (FSM), in part because FSMs are more familiar. Formally, a
FSM M is a 4-tuple

M - (Qa A) fa q())

where Q is the finite set of states, g5 € Q is the initial state, A is the finite set of
events, and f: Q x A — Q is a partial funclion called the state transition function. fis
partial means that f(¢,a) is only defined for a subset of pairs (g,e). f can be extended
Lo a partial function on @ x 4 * by induction:

g, <>):=q
A undefined if either f(q,s) or f(f(q, s}, ¢} is undelined
fg,5%a) := f({(q,s),a), otherwise
Here r°t is the concatenation of two strings r and t in A*. The traces of M is the sel

M :={se A’ | 40, $) is defined}.

It is known thal trM is a regular subsel of A *. Conversely, il L c A " is closed!
and regular, then there is an FSM M such that trM = L; sce, e.g. llopcroft aud Ullman
{1979). Thus, for example, the closure of the set

L:={a"bt" | n >0}
is not regular and so it cannot be described by any FSM.

In a state machine (whether finite or infinite) the notions of state and state tran-
sition are fundamental while the notion of trace is derivative. By contrasi, in a pro-
cess (defined below) the nolion of trace is primary while state is a derived notion.

PROCESSES AND RECURSIONS

A process P is a triple (trP,al,7P), where trP C A " is the set of traces of P,
aP: trP — 24 is the event function, and 7P: trP — {0,1} is the termination func-
tion. trP” is the set of traces that P can ezecule, aP(s) is the set of next events that
can engage iu, i.e. execule or block, alter il execules s, and 7/(s) specifies whether P
terminates or continues after executing s. This interpretation explains why a process
P must salisly the [ollowing conditions:

(1) <>eur
(2) s'tetrP = setr?
(3) s"a€ trP = a € aP(s)
(1) 7P(s) =1 = s"t ¢ trP unlesst = <>
Two trivial but useful processes are:
STOPp := ({<>}, aSTOPy(<>) = B, 1STOPy(<>) =0},
SKIPp .= ({<>}, aSKIPg(<>) = D, 1SKIPg(<>) = 1) .

The only difference between them is that STOP never lerminates, while SKIP ter-
minates immediately.

A process Q = (trQ, aQ, 7Q) is a subprocess of P, denoted Q c P, if trQ C trP,
and if aQ, 7Q agree with the functions aP, 7P restricted to the domain trQ. Thus, for
example, STOPy is a subprocess of every process P with 7P(<>) =0 and aP(<>) = B.
For each integer n let PTn be the subprocess of P which conlains all traces of P with
length at most n.

A fundarmental notion is that of the post-process P/s defined for s € trP by
tr(P/s) = {t | s"tewr},
oP[s)(t) = aP(s1)
(P/s)(t) == 7P(s7t) .

T s
L is closed means that if r"t € L then r € L.

Thus P/s is the process that follows P after it has executed s. Since
(P/s)/a = P/(s"a), we may associate with P a (possibly infinite) stale machine Mp,

Mp=({P/s|se€trP}, A, [P/<>=DP),
where the transition function is defined by
P/(s"a) il s"a € trP
J(P/3,8) =1 \ndefined if s™a ¢ trP
Mp is ‘equivalent’ to P in the sense thal trMp = trP.

Let 11 be the set of all processes (with the same sel 4 of events). A [unction
[11 = 1l is continuous il for every increasing sequence of processes I’y C P,C- - -

f(l‘JP.‘) = l‘J.f(l’.‘) .
A function f: 11" — 11 is continuous il it is continuous in each argument with the oth-

ers held fixed, and f = (f;,- - -, fn): 1" — II™ is continuous if each f; is continnous.

In order to propose a recursive construction of a process whose traces nnfold step
by step in time, lloare (1985) introduced the following notions of non-anticipative
functions.

Definition

£ Ul =+ 1l is constructive or conilfor X clland n >0
J(XTn)In = f(X)Tnt1;

[is non-destructive or ndes if
J(Xtn)tn = f(X)Tn;

[is strictly non-destructive or sndes il it is ndes bul not con.

Thus [is con if the (n+1)st evenl executed by the process f(X) is determined by
the first n events executed by X. If f is a function ol several arguments these
definitions apply if they apply to each argument with the others held fixed.

Theorem 1
Consider the equation

X = J(X) (1)
where f: 11" — II". For any set ol initial conditions

X;10=1Zg, i=1,---,n (2)
that is consistent, i.e.

Zoi = fi(Zoy,- -+, Zpp)10, =10+ +;n
equation (1) has a unique solulion X € 11" Lhat satisfies the initial conditions (2), pro-
vided f satisfies the [ollowing two condilions:
(C1) Each f; is continuous and ndes;

(C2) f contains no sndes loop, i.e. there is no sequence of indexes {1, -, {
that f; is sndes in X,»“l.

m = 11} such

These basic definitions and Theorem 1 (lor the one-dimensional case) are [rom
Hoare (1985). The mulii-dimensional extension and other results given below are
from Inan and Varaiya (1987).

Theorem 1 allows a recursive definition of processes in a way that is analogous to
delining trajectories in R" via the difference equation

2(t) = f(z(t-1)) = - - - = (z(0)), t=1,2, .-

This analogy becomes clearer in the one-dimensional version of (1), n = 1. In this case
{C2) implies that fis con and then the unique solution is given by

N
X tgoj((Zo)

where f() = fo fo- ..o f (t Limes).
THE SPACE Q"

Our strategy is to use Theorem 1 to propose a class ol DEMs. To do this we
must provide a finite procedure for constructing a class of functions f that satisly con-
ditions {C1) and {C2). To be uselul for the intended application this class of functions
should have good ‘algebraic’ properties in the sense that it must be possible to com-
bine functions in ways that rellect coordination of real systems. This class of functions
(1" is constructed out of five operators that serve as building blocks.

Deterministic choice

Given A, C A, distinct clements ay,- - -, a, [rom Ay, and 75 € {0,1}, this operator
maps (P,-- -, P,) € 1" into @ € 11 denoted by

Q=lay =Pyl lay—= Py

(By convention, il Ay, 74 is omitted, then 4y = {e,," - -,8,} and 7, = 0.} @ is defined by:
Il 7y =1, then @ = SKIP, .

Il 7y = 0, then

tr@ :

{<>}uu{e;"s | s trP;},

aQ(<>):= Ay, and aQ(q; s} := aP(s) for s € trP;,
Q(<>):=0, and rQ(a;"s) := rP{s) lor s € trP;.

Thus il 7, # 1 so that @ does not terminate immediately, then @ executes an event q;
and then follows the corresponding process P’;.

Example

Deterministic choice and recursion can be combined to obtain a process ‘equivalent’ to
any finite state machine M. We associate with each state i = 1,-- -, n ol M the process
X; and the equation

Xy=a; — X; |- a, = X, |,
which includes the ‘choice’ a — X; if and only if in M the event a leads to a transition

from state i to state j. By Theorem 1 these n equations uniquely deline processes
Xg,- -+, X, 1L is easy to see that il the initial state of M is 1, then trM = trX,.

Synchronous composition

First define by induction the projection of s € A’ on a process P, denoted siP:
<>1P:= <>, and

undefined if stP ¢ trP
s"alP:=1 (stP)aila €al(siP)
(s1P)if a ¢ aP(s1P)

P || @ denotes the synchronous composition of P and Q. Its traces are defined induc-
tively by: <> e tr(P|| Q), and
If setr(P || Q), then s"a € tr(P || Q) il and only if
satP etrP, s"alQ e trQ ,and a € aP(s1P)UaQ(s1Q).
Next,

o P[] Q)(s) := aP(s1P)UaQ(s1Q)

and,

P(s1P) = 1,and rQ(s1Q) =1 ; or
(P11 Q)(s) =1 <> | P(s1P) = 1. and aQ(s1Q) C aP(sIP) ; or
rQ(s1Q) = 1, and aP’(s1P) C aQ(s1Q)

7(P|] @)(s) =0, otherwise.

Iu essence, P || @ can execute event a il P and @ simultaneously execute a, or if one of
these processes, say P, executes a and it is not blocked by the other (i.c. it is not in
the event function of Q). Similarly P || Q terminates alter executing s il both P and Q
terminate, or if one process, say P, terminates and subordinates the other, i.e.
aQ(s) ¢ al’(s).

It is not diflicult to see that the binary operator * ||
tive.

’ is associative and commuta-

Scequential composition

The sequential composition of P and Q is the process P;Q which first follows P
and, once P terminates, it follows Q. Formally,

tr(P;Q) := trPU{s"1rQ | s € trP and 7P(s) = 1}

aP(s) ils€trP and rP(s) =0
a(P;Q)(s) = aQ(t) ifs=rt, retrPand rP(r) =1

) 1ifs=rt,retrlP, P(r)=1Q(t) =1
(75Q)(s) ::‘ 0 otherwise

It is trivial that * ; ’ is associative.

Example

The two-dimensional recursion

Y =

a> VX | d— smp{}]A ,

X = [b . smp{}]m

gives
trY = {<>}u{a"db"™ | n > 0}

which is not regular and hence Y is not ‘equivalent’ to any finite state machine.

Example
Take A = {a,b,¢} and

X=|a—> X;(a - SKIP{}) | b— X;(b - SK]P{}) | ¢ — SKIP{}‘

Then

rX ={s"c’sT | se{a,b}},
where sT is the same as s written in reverse order. This example is interesting
because trX cannot be generated by a Petri net; see Theorem 6-9 in Peterson (1981).

Local and global change of event set

The previous four operators were introduced by lloare. The following unary
operators were introduced by Inan and Varaiya; they change the event function of a
process and eliminale traces il necessary to conform to the delinition of a process. Let
I3, C be subsets of A. The local change operator corresponding to B, C maps P into
the process Pl=8+Cl where

trpl-Br e {s€trP | b€ B ==>bis not the first entry of s}
aPl=B+0(<>) i= {aP(<>)\ B}UC , and aPI"B+C(s) == aP(s), for s # <>
rl’l'B"*Cl(s) = 7P(s), for s € trpl=B+C

It

The global change operator corresponding to 1, C maps I into Pl 71 €l where
trPII=B+Cl .= {s € trP | b€ B => b is not an entry of s}
a]’”_UJrC”(s) = {aP(s)\B}uC

rpll- B+ C”(s) = 7P(s), for s € rpll=8+Cl

Example

In combination with synchronous composition, the event change operators can be used
to block the occurrence of certain events. For example, in the recursion

Y:[a—vXHY]
X:’b—o SKIP{}]

Y can execute event a arbitrarily often before X can execute event b and generate a
trace of the form

a'"ba2ba®b. ..
llowever, if the equation for Y is changed to
Y =|a— XItai| v,

(where XU1al .o x[=B1C wigh 1 =@ and C = {a}), then X!'4l blocks repeated execu-
tions of a by Y and so the traces of Y are restricted to be of the form

ababab- -

The introduction ol these event change operators was partly motivated by the ‘super-
visory control’ problemn formulation of Ramadge and Wonham (1987). On this prob-
lemn, also see Bochmann and Merlin (1978), Ramadge and Wonham (1986), Lin and
Woliman (1986), Cieslak et al (1986) and Cho and Marcus (1987).

The space Q"
Let 1" be the smallest class of formulas f of n variables z|,- - -, z,, that satisfy the
rules (1)-(4):
(1) For every Be24, the ‘constants’ STOPy and SKIPp are formulas.
(2) For cach i, z; is a formula.
(3) 1If fis a formula, f-B+0 and Al-B+C are formulas for all B, C in 24.
(4) I f,g are formulas, (f|| ¢g) and (f;g) are formulas.

To cach formula f € Q" we associate a funclion (also denoted by f) which maps
11" into 1I: its value at the vector process (X,- - -, X,;) € 1™ is obtained by ‘substitut-
ing’ these for the variables (z,,- - -, z,) and then evalualing each of the rules (1)-(4)
used in constructing the formula f as the corresponding operator described earlier.
Thus, for example, if the formula is f= ((z;z,) || =) || 23, and P, Q, R are processes,
then f(P,Q,R) is the process ((P;Q) || Q)|| R whiclt is the same as the process
(7;Q) || Q|| R since ¢ ||’ is associative. It is not dilficult to show that all these [unc-
tions are ndes.

Two dillerent formulas may yield the same [nction. IFFor example, z; || SKIP,
and SKIP, yield the same constant function f= SKII’4; similarly, the formulas z; || z,
and z, give the function f(X,) = X,.

FINITELY RECURSIVE PROCESSES

The next definition is [undamental to (he construction of FRPs.
(X, -+, X,,) € 11" is mutually recursive if for every i and trace s € trX;, the post-
process X;/s has a representation

Xl'/" = f(xll') Xn)

for some f e Q".

Example

Reconsider the recursion
Y = [a S VX[do SKIP{,]M
x=[o— SKIP{}]A,O
for which trY is the closure of {a™db™ | n > 0}, and trX = {<>,b}. Since
Y/a" = Y;X;- - -;X (n times),
Y/a"d = X;- - ;X (n times),
Y/a"db™ = X;- . -;X (n—m times),
it lollows that (Y, X, SKIPy)) is mutually recursive.

T'he notlion of mulually recursive processes brings us closer Lo our aim of finding
an ‘algebraically rich’ class ol processes having a finile representation. In the last
example the state machine ‘equivalent’ to Y has infinitely many states (the post-
processes of Y) because X, X;X, X;X;X, - - - are all different processes. Nevertheless,
since each state is a process of the form f(X, Y) lor some fc 02, one can say that we
have a finite representation, especially in light of Theorems 2 and 3 which show that
the representation can be calculated recursively as the process unfolds over time.

Theorem 2

X = (X,,- -+, X)) is mutually recursive if and only if X is the unique solution of the
recursion equation

Y= f(Y), Y‘TO = X"TO, t= 1,' e, n)
where cach component f; of f has the form
JX) = (o = faX) |] g = ()]

and cach f; € Q"

Definition

Y € Il is a finitely recursive process (FRP) if it can be represented as
X = f(X)
Y = g(X)

where fis in the form of Theorem 2 and g € Q™.

Theorem 3

Fix f as in Theorem 2. There is an eflectively calculable partial [unction

@y A x Q" — Q" such that (e,g) is in the domain of &, if and only if
Yi=¢g(X)=actrY.

Furthermore, il g, := ®/(a, g), then we have the representation

Y/a = g,(X).

FRP simulator

Theorem 3 suggests how to simulate any FRP Y. The sinulator is an interactive
program that takes as inilial data the pair f,g. The user enters a sequence of events
aya,--- one at a time. After each event is enlered, the simulator either returns reject
to indicate that Y cannot execute that event, or it returns accept and changes its
internal state accordingly. More precisely, suppose the user has successfully entered
trace s. The state of the simulator is then given by (the formula) g, such that
95(X) = Y/s. If the user now enters event a, the simulator will return

reject, if ®4{(a, g,) is undefined; or return

accept and replace g, by g,-, == Q,(a,g_,), if ®(a,g,) is defined.

USLES OF FRP FORMALISM

I'rom a formal viewpoint FRPs have strictly greater descriptive power than Petri
nets. This follows from an example given above and a result in Inan and Varaiya
(1987) showing how to construct an FRP with the same traces as a given Petri net.

lHHowever, the real test of a DEM lormalism must come lrom its usefulness in
modeling, simulation and performance evaluation of discrete cvent systems.? The
preceding section outlined one approach to simulation of FRI’s. In this section and
the next we offer some observations on modeling and performance evaluation.

Modeling

The FRP operators can be used in a flexible way to model or design systems in a
‘top down’ manner following the precepts of structured programming. As a simple
exercise let us model a job shop with two machines. There are I{ types of jobs, each
job must be processed by both machines in either order. A machine can process only
one job at a time, and once it starts work on a job it cannot be interrupted until that
job is finished. The shop has a capacity of one job of each type, counting the jobs
being processed. To create a FRP model of shop operations from this informal
description we deline the lollowing events:

a; := admission of new type k job
b!‘ := beginning of job k on machine 1
f; = finishing of job on machine {

Then the following K+ 3 recursion equations form a possible FRP model.
Y = [a, 5 (x{“";smP“)H Y -] ag - (XK aK);SKIl’“) [Y]
Xe= (bl = (81507 = 87 | 6F = (%58} > 8Y)] k=1, K

s'= (£ - sKIPQ) ppori=12
where B' := {b‘i; < b;{}
To understand these equations think of Y as the ‘master’ process which never ter-

minates. Its task is to adinit new jobs (execute events a;) while maintaining the capa-
city constraint. Thus, after Y executles g;, we get the post-process

Y/ap = (Xt sK1P) || Y

Y can no longer admit another job of type k until X,lfﬂ"I terminates. llowever, Y can

- is not blocked by X,"H"]. Il it does this we get the

execute any event a, # a; since a;

post-process
Y/aga; = (x,[*'“*';sxlp{}) [l (X][-“"];SK]PU) [l Y.

! guarantees the processing of job k by both machines in either
order. [inally, once S*' starts, it executes f' (i.e. machine i finishes its job) before
another event b} is executed, thereby ensuring uninterrupted processing of a job.

e +
I'he process X,L *

b3 T
Other aspects that should be considered are verification and testing.

10

One can give an ‘cquivalent’ finite state machine description. However, the FRP
description has several advantages. [irst, it is more compact. The state machine
description can be given in a ‘modular’ [ashion using K t2 sub-machines, one flor each
job type and each processing machine. The job sub-machine will have eight stales,
and each processor sub-machine will have K-1 states, giving a total of 8% x (/4 1)?
slates.

Second, cach ol the K+3 processes introduced in the FRIP description can be
interpreted as a ‘task’ Y admils jobs withoul exceeding capacity, X, guarantees
correct processing of type k job, etc. Since one often thinks of a systern in terms of the
tasks thal must be performed, the I'RP formalism offers a natural language for
describing such systems. The deterministic choice, event set change, synchronous and
sequential composition operators provide llexible ways of describing task coordination,
including precedence constraints, mutual exclusion, etc. Moreover, this task decompo-
sition orientation makes it quite easy to alter or to add new tasks. FFor example, sup-
pose we want to admit the possibility that when machine 1 is processing a job, it may
have a failure (denoted by the event e!), and then processing on this machine should
stop, processing on the other machine should continue, no more jobs should be admit-
ted, and the master process Y should ‘switch’ to an emergency process Z not yet
described. These changes can easily be accommodated by changing the description of
¥ and S! as follows.

Y = [a, N (,\r','“le SSKIPG) || Y |+ | ag — (XE“K';SKIP{})H Y|el o Z]

st = [[' ’ SK”’{} | e' - SK”){}]{”.‘,,-LCI}’O

Coordination through shared memory

lFollowing 1loare (1985) one can use the synchronous composition operator to
construct a ‘commnunication channel’ as a device for coordinating two FRI’s. Ilere we
introduce the notion of a ‘shared memory’ [or coordination.

In addition to the event set A we assume given a finite sel. V and a mapping
v A » F, where P is the set of all partial functions from V into V. let §(a)c V
denote the domain ol the partial function 4(a). V will serve as the possible values
{assignments) of the shared memory. It is used in the following way. Suppose the
current value of the memory is u, and suppose a FRI” can execute an event a. Then

(1) The event a can be executed only if u € 8(a); and
(2) After a is executed the value of the memory changes to y(a)(z).

Thus the memory serves only to restrict the possible traces of a process. In par-
ticular, il P is a process without memory, then the process with memory whose initial
value is v is the subprocess P, , consisting ol those traces s € trP for which y(s)(v) is

delined.

Example

We illustrate the use of shared memory to describe a buller of size K. New arrivals
can occur only if there is space in the buffer; if the bulfer is full, arrivals will be
blocked. Similarly, a departure can occur only if the bulfer is not empty. Take
A = {a,d} representing arrivals and departures. Let V = {0,---, K} and

6(a) = {v | v< K}, 7(a)(v)=v 11,
5d)={v|v>0}, 9(d)(v)=v-1.

T v hse umber in the er. Now consider the recursion
T'hus v represents number in the buffer. Now consider the re

1

X:YHZ,Y:FHA,Z:FHZL (3)
Take initial value v. Then

trX = {a,d}",
but ay- - -a, € trX, il and only if

0<ut Y1(a=a) - Y1(a;=d) < K, forallj,
1 1

as required.
Of course, we can do without the memory. [For instance, take the recursion with
K processes

POZ[aHPl], Pl:[aﬂP2|dﬂP0 Ve, I’K:[dHI’K_l]. (4)

Then it is easy to sce that X, = 7,
,
is more compact and convenient.

,- llowever, the description using shared memory

In this example Y is the arrival process and Z is the server process. Suppose now
we have two parallel servers Z, and Z, and the same bulfer. Then in (3) we should
replace the equation for Z by

7
Z= Zl | | Z2 ’
where each Z; is a server, i.e.

7= 4~ 7], 8(d)={v>0}, y(d)(v) =v-1.

We can do a similar modification using (1) and dispense with the shared memory.

Now let us suppose we have a job shop wilh capacity K and two machines. ach
job must be served by both machines in either order. (This is the same example as
before, except that there is only one job type.) Then in (3) we should deline Z by
Z=125||24,,and

Zyp = [dl = Sy o 52;212],1“0

Sl = l/l - SK]P{}]{dhbh/l}ro

2y = ’d'z = Sy3bp = SI;Z2l‘d7,O

g% — [/2 N SK]P{}]{drz,bmfi}'O

Morcover, ~(d,)(v) = v—~1, whereas ~(f;) = 7(b;) are identity functions on V. The
memory serves to enforce the following coordination constraint between Y and Z

0< v + No.ofl Ycycles (arrivals) - No. of Z cycles (departures) < K.
It is more difficult now Lo represent the process X, » without using shared memory.

The introduction of this shared memory is simply a modeling convenience, since
it does not increase the descriptive power of FR1’s as shown by the next result.

Theorem 4
If Xisa FRP,sois X, ,.

12
INCORPORATING REAL TIME IN FRP

We briefly discuss one way of enriching the concept of an FRP X so that to each
s € trX we can associate a number ¢X(s) which represents the ‘real time’ needed by X
to execute s.

Let us start with the simplest example,
X = [a — X] ,

whose traces are a®, n > 0. Suppose X models Hoare’s candy machine which responds
to a coin inserted in it by releasing a piece of candy. Suppose that il the coin is
inserted at time ¢, the candy is released at time t+ t(a), so that we can say that t(a) is
the time needed by the machine to respond to the comnmand a. This suggests the fol-
lowing command-response model: If coins are inserted at times

[h [2, ey
then the machine responds at times
L+ t(a), ty+ t(a), - - . (5)

But this is not quite right. Suppose t; < {; t t(a), i.e. the second command is issued
belore the first one is executed. Assurne, moreover, that the machine is insensitive or
blinded to a new command issued while it is executing the previous command. Then
we must impose the restriction

122 tl }’t(a)’ vt(+l 2 tl t t(a)) tte

on the times at which commands can be issued so that (5) gives the correct machine
response times. It seems reasonable to summarize this by defining tX(s) to be the
minimum time needed by the candy machine to execute s, i.e.

tX(e") = nt(a) .

Suppose now that the machine issues candy or gum in response to the command
a or b respectively,

X:a—>X|b—>X], (6)
and the corresponding single event response times are t(a), t(4). If the sequence of
commands is a,, a,, - - - issued at times ¢, t,, - - -, then the constraint on these times
should be

L2ty ttlay), oy tipy 2 G+ t(eg), - -

and the corresponding response times are
tttley), tytlay), - - -5

and the minimum time needed by the machine to execute a trace s is
tX(s) = n(a,s)t(a) + n(b,s)L(b),

where n(a,,s) is the number of times a; occurs in s.

Suppose now that the machine has two independent mechanisms — one dispens-
ing candy, the other dispensing gum — that can operate concurrently. This machine
can be represented by the process Y,

v=riiQ, P=[ap, g=[b-q (7)

and suppose t(a), {(b) are as beflore. Let s = ay, a3, - - be the sequence of commands

13

issued at times ¢y, t,,---. To obtain the constraint imposed on these times by the
machines, let
stP = a;a; -, fQ = N TRERE

Then the constraint is
t, > t'-‘-{—l(a), ti, > ti7+l(a), ety 2 tjl+t(b), t, > ¢j2+¢(b), ces
and when this constraint is mel, the Y-machine response times are

ti+ t(a), ty+tay), - -

As belore, let tY(s) be the minimum time needed to respond to s € trY. For example,
il t(a) = t(b) =1, then

tX(aaabbb) = 6, tY(aeabbd) =5, tX(ababab) =6, tY(ababab) = 3.

From this simple example we see that although trX = tr¥ (X given by (6) and Y
given by (7)), the response times of the two machines, tX and tY, are quite dillerent.
Thus the response time of a process X is not reducible to its logical behavior trX.
This raises the question:

Q1 Suppose we are given the ‘elementary’ execution times t(a), e € A; how do we
model the response time of a process X7

From the example it seems that the response time tX should depend upon the
actual implementation of X, i.e. the recursion equations used to implement X. Thus
(6) and (7) are dilferent implementations of the same process. In the example the
implementation (7) has a greater degree of concurrency than (6), and it is sensible to
say that (7) is a faster implementation than (6) since tY(s) > tX(s) for all s. If we can
answer Q| satisfactorily then one can ask a follow-up question:

Q2 Consider all possible implementations of a process X. Does there always exist a
fastest one?

In the remainder of this section we outline one possible approach to an answer to Q1.

Implementing FRP

The approach rests on an ‘execution model’ of FRP’s. We assume that a user
issues a sequence of commands, one at a time, to a machine that implements a FRP
Y. Assume that the sequence is a trace of Y. Ilach command is first reccived by a
scheduler which can either accept or block the command. If the command is accepted,
the user may issue another command; if the command is blocked, another command
may not be issued until it is unblocked (accepted). Thus the seheduler may bulfer
(block) at most one command. (This is simply the generalization of the constraints on
the command tirnes we had in the preceding example.)

To discuss the scheduler further we need to propose the execution model of an
implementation. We assume given lormulas L and g in 0" Interpreted as lunetions
these are used to specify Y and the MRP X:

Xp=lo = S | e > fin)y o LS 0 <, (8)
Y=g(X;, -, X,). (9)

Thus an implementation of a process is the set of formulas {fij, g}. Recall that the
same process can have several implementations.

14

We assume that in all the formulas of an interpretation there is only one
occurrence of each variable. Repeated occurrence of the saine variable is accommo-
dated siinply by adding another subseript. Thus X;), X5, - -, X;; will all be considered
as instances of the same variable X;. For example,

X1:[“ - X | b_’xl]’ Y= XX,
would be replaced by
X1:[“" Xy lb— Xn], Y= Xi3:Xm

Because X;; = X,, the process Y given by (9) is unchanged by this procedure.

Now suppose (8), (9) is an implementation of Y (with the understanding that
each variable occurs only once in the Jij and g). To simplily the discussion below, it is
assumed that the event change operators do not occur in the implementation.

We will associate with g three items:
1. The set ag of enabled events of g;
2. The set Ag of executable nezt events of g;

3. For each a € fig, a subsel rg(a) of the set of processes that occur in the formula g;
these are the processes that must execute a.

These items are constructed as follows by induction on the number ol steps nceded to
construct g as a formula in Q™.

1. Il gis STOPy or SKIPy , then ag = B, fg = @.
2. If g(X) = X,; , then (see (8))
ag=A;, Bg={ay, - - a3}, and ng(a) = {X;;}, a € By.
Now suppose we know how to define af, Af, nf for formulas f == g and f= h.
3. Suppose f(X) = g(X)|| A(X). Then
af =agUah ,
and
a € ffil and only il either a € fg and a ¢ ah (1)
or a¢ fg and a € ah (2)
or ¢ € fig and a € fh (3)

To defline nf in case (1) take nf(a) = ng(a); in case (2) take xf(a) = wh(a); in case
(3) take 7 f(a) = mg(a) Umh(a).

4. Suppose f(X) = ¢(X);h(X). We assume the formula reduction
SKIPg;[= /1,
so that we may assume g # SKIPp. Then, take
af =ag, ff=Pg, nf=ng.
Lemma 1
(1) ag = aY(<>)}, and
(2) Ag = {a | <a> € trY}; morcover,
(3) if X € mg(a), then a € trX; .

15

Updating procedure

Now let a € Ag. Let g/a be the formula oblained from ¢ by the following two-step
procedure which we call Proc(a).

Step 1. In g replace each variable X € ng(a) by the variable z;.
Step 2. By Lemma 1(3), a = g which appears on the right hand side of (8). Now
replace each occurrence of z; by the formula f. Aflter all occurrences of z; are

replaced, make sure that in the formula g/a each variable has a single occurrence by
replacing repeated occurrences with new instances.

Lemma 2
Proc(a) computes the correct formula in the sense that

Y/a = g/a{X).

Lemma 3

Suppose a,b,c,- - - are in Bg and ng(a),ng(b),mg(c), - - are all disjoint. Then applying
Proc(a), Proc(b), Proc(c), - - al most once lo g leads to the same formula independent
of the order in which these procedures are applied.? As a consequence, any sequence s
willi al most one occurrence of a,b,¢,-- - is in ¢rY; moreover, if s and r are {wo such
sequences thatl consisl of the same event (but in different order), then

Y/is=Y/r

We say that a subsel {a,b,c, - -} C f¢ is non-interfering (in state g) il xg(a),
ng(b)- - - are disjoinl. Non-interlerence provides faster response because the imple-
mentalion can execule these evenls concurrently.

The scheduler
We can now describe the operation of the scheduler. We start at time ¢t = 0. The
‘state’ of the scheduler at this time is denoted S(0),
5(0) = (g; ag, g, g, 9, 1), mg: a -+ mg(a), a € By, (10)

where lormula ¢ is the current configuralion of the implementation; ag,fg,ng are as
beflore; vg¢,6¢ are subsets of Ag and at Lime ¢ =0, vg = §g = . We will see thal g is
the set of commands being executed and 8¢ (which contains at most one event) is the
sct of blocked commands.

Suppose the user issues command e, at time t;. The scheduler responds to this
request as follows:

1. Il a; € Bg, the scheduler accepls the command, and asks every process in wg(e,) to
execule eventl g, and assigns

79 «— 79U {a;}.

2. If a; € aY\AY, then the scheduler blocks Tor ever and gives the response STOP.
3. Wa;¢aY,then the scheduler rejects the command.

More generally, suppose al lime ¢ the siluation is as lollows. The user has issued
the sequence of commands s°r; the sequence s has been ezecuted (by the implementa-

tion). Suppose r = a;- - -a,. There are lwo possible cases.

I'wo formulas are considered to be the same modulo a 1-1 mapping of instances of the same variable.
Thus, e.g. Xyg|] Xgzand X || Xgp are the same formulas.

16

Case 1

The scheduler has accepted all the commands in r, in which case its stale is
S(t) = (h = g/s; ah, Bh,vh = {a|, - -, a,}, 6h =@, wh) . (11)
In this case the scheduler’s state will change either because

(1) the processes executing the commands in A are all finished at some future time
L, before the user issues another command and then the state changes to

S(y)=(=1g/sl/riaf, Bf, [=9, 6[=9, %)),
and the scheduler reports ezecuted r to the user; or because

(2) the user issues another command, say a, at time t before the commands in ~k
are all executed; the scheduler then tests whether a interferes with any command
being executed, i.e. whether

wh(a)N {béth”h(b)} =¢?

If it is empty, the scheduler accepts the user’s command a, and its state changes
to (compare (11))
5(t,) = (h = g/s; ah, Bh, vh — vhU{a}, 6h = ¢, nh),

which has the same form as (11). If it is not empty, the scheduler blocks the
user’s command a, and its state changes to

S(l I) = (h = y/S, ah) ﬂhi ’Th) oh = {G}, Nh)

which has the same form as in Case 2.

Case 2
The scheduler has accepted commands a;,- - -, a,_, (the first n—1 commands in r) and
it has blocked the last command a,. In this case its state is (compare (11))

S(t) = (h = g/s; ah, Bh, vh = {a|, - -, a,_1}, 6h = {a,}, wh). (12)

Since the scheduler has blocked the user, it will not accept any nore commands until
all the commands in yh have been exccuted. Suppose this happens at time t,. The
scheduler’s state then becomes

S(l') = (f: h/al' ML T S O af) ﬂfy ’7.,: {an}7 6f:¢v 7|'f)v

and the scheduler returns a, accepted to the user who may then issue another com-
mand.

Real time performance

With this detour we can define as follows the real time needed to execute a
sequence s of commands by a particular implementation, i.e. a particular set of formu-
las I = {f;;, g} that realizes a process Y (sce (8), (9)). Let s € trV,

8§ = ﬂl' . 'ﬂn.
Find integers k, ky,- - - such that
s=apcapay e e ey (=a,)

salisfies the following property:

17

For each ¢=0,-.,m, the set of events A(d):={ay,y, -, 8, } is a non-
interfering set for the state g/a;- - - a; ; however, oG it interferes with A(i).

Thus each of the sets A(0),- - -, A(m) can be executed concurrently. Moreover, in the
implementation / this is the maximum amount of concurrency. Hence we propose to
define the time taken by the implementation f to execute s as

t(s) := f}o max {t(a) | a € A(1)}.

Example

Within the framework provided by this definition the fastest itnplementation of a pro-
cess with traces {a, b} is given by

X=r|Qq, 1):[a~»1’], Q:[b—»Q].
To see this we simply note that the largest possible non-interfering set is {a,b} and

the implementation always achieves this maximum. lence it lhas maximum con-
currency.

CONCLUSION

We have introduced a new class of discrete event models called finitely recursive
processes (I'RI’). Most of the discussion concerned properties of FRI at the logical
level. In our opinion, FRPs have certain advanlages over state machines and Petri
nets in terms of (1) compactuess of descriptions, (2) descriptive power, and (3) the
kinds of system coordination that can modeled by the operators of the FRP ‘algebra’.
We brieflly discussed how the FRP formalism lends itself Lo simulation, and we indi-
cated one approach to enriching this formalism to model real-time aspects of system
behavior.

ACKNOWLEDGEMENT

The research reported here was supported by Pacific Bell, Bell Comnmunication
Research, the State of California MICRO Program, the National Science Foundation,
and the International Institute for Applied Systems Analysis (IIASA).

REFERENCES

Cho, 1. and Marcus, S.I. (1987). On supremal languages of classes of sublanguages
thal arise in supervisor synthesis problems with partial observations. P’reprint.
Department of Electrical and Computer Engineering, University of Texas, Aus-
tin, TX.

Cieslak, R., Desclaux, C., Fawaz, A. and Varaiya, I>. (1986). Supervisory control of
discrete event systemns with partial observations. Prepriutl. lilectronics Research
Laboratory, University of California, Berkeley, CA.

lloare, C.A.RR. (1985). Communicating Sequential Processes. Prentice-llall Interna-
tional, U.K. Lid.

Hopcroft, L. and Ullman, J.1. (1979). Introduction to Automala theory, Languages,
and Computation. Addison-Wesley.

18

Inan, K. and Varaiya, I>. (1987). Finitely recursive process models for discrele event
systems. Preprint. Electronics Research Laboratory, University of California,
Berkeley, CA.

Lin, F. and Wonham, W.M. (1986). Decentralized supervisory control of discrete
event systems. Universily of Toronto, Systems Control Group Report No. 8612.

Merlin, P’. and Bochmann, G.v. (1983). On the construction of submodule
specifications and communication protocols. ACM Trans. Prog. Lang. and Syst.
Vol 5(1).

Peterson, J.L. (1981). Petri Net Theory and the Modelling of Systems. P’rentice-llall.

Ramadge, P.J. and Wonhain, W.M. (1986). Modular supervisory control of discrete
cvent systems. INRIA Conference. aris.

Ramadge, I>.J. and Wonham, W.M. (1987). On the supremal controllable sublanguage
of a given language. S1AM J. Control and Optimization, Vol 25(3).

REDUCIBILITY IN ANALYSIS OF COORDINATION
R. P. Kurshan

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The use of automata to model non-terminating processes such as communlcation protocols and
complex Integrated hardware systems Is conceptually attractive because it affords a well.-understood
mathematical model with an established literature, However, it has long been recognized that &
serious limitation of the automaton model in thils context is the size of the automaton state-space,
which grows exponentially with the number of coordinating components in the protocol or system.
Since most protocols or hardware systems of interest have many coordinating components, the pure
automaton model has been all but dismissed from serious consideration in thls context; the enormous
size of the ensuing state-space has been thought to render its analysis intractable.

The purpose of this paper is to show that this is not necessarily so. It is shown that threugh
exploitation of symmetries and medularity commonly designed into large coordinating systems, an
apparently intractable state space may be tested for a regular-language property or “task’’ through
examination of a smaller associated state space. The smaller state space is a “reduction’ relative to
the given task, with the property that the original system performs the given task if and only if the
reduced system performs a reduced task,

Checking the task-performance of the reduced system amounts to testing whether the w-
regular language associated with the reduced system is contained In the language defining the
reduced task. For a new class of automata defined here, such testing can be performed in time
linear in the number of edges of the automaton defining each reduced language. (For Biichl
automata, testing language contalnment is P-SPACE complete.) All w-regular languages may be
expressed by thls new class of automata.

1. Introduction

Finite state automata which accept sequences (rather than strings) define the w-regular
languages. This class of automata is established as a model in logic, topology, game theory
and computer science [Bu62, Ra69, Ra72, Ch74, Ku85a, SVW8S5, etc.]. In computer science,
such automata are used to model non-terminating processes such as communication protocols
and complex integrated hardware systems [CE81, MP81, AKS83, MW84, Ku85, etc.].

In the context of modelling non-terminating processes, one is given two automata, A
and I'. The automaton A models the process under study (the protocol or hardware system,
for example), whereas the automaton I' models the task which the process is intended to
perform; although the state-space of A may be too large to permit it to be constructed
explicitly, it may be defined implicitly in terms of a tensor product of components [AKS83,
Ku85]. Likewise, the task-defining automaton I' (defining a property for which A is to be
tested) also may be defined implicitly, in terms of components. Determination of whether or
not the process performs the specified task is ascertained by checking whether or not the
language 7(A) defined by A is contained in the language 7(I') defined by I'.

In this paper conditions are given under which the test: 7(A) C 7(I'), may be replaced
by the test: 7(A') C 7(I'"), for smaller automata A’ and I'’, which smaller test may then be
conducted in time linear in the number of edges of A" and of I''. The automata A’ and T"'
are derived from A and T through co-linear automaton homomorphisins, maps which are graph
homomorphisms, ‘‘preserve’ the transition structure of the respective automaton, and agree
on a Boolean algebra associated with the underlying alphabet. These homomorphisms may be
constructed implicitly from (explicit) homomorphisms on components defining each of A and
I', thus avoiding construction of the product spaces A and I' themselves. Component
homomorphisms may be generated through an O(nlogn) algorithm for each n-state

20

component, together with a user-designated Boolean-algebra homomorphism. While there is
no guarantee that a particular intractably large problem can be thus rendered tractable,
experience [HK86] has demonstrated the utility of this approach.

This program is conducted in the context of a newly defined class of automata, termed
L-automata (where L is the Boolean algebra associated with the underlying alphabet). Three
issues germane to these automata are complexity, expressiveness and syntax. Classically,
given automata A and T, in order to test whether 1(A) C 1(I'), one first constructs an
automaton I' which defines the complementary language 7(I')’, then one constructs an
automaton AT satisfying T1(A*I') = 1(A)N1(I') and finally one tests whether
17(A*T) = (J. This entire procedure is at least as complicated as constructing ', and since A
may be taken to define all sequences (over the given alphabet), testing language containment
is at least as hard as testing whether 1(I') = J, the so-called ‘“‘emptiness of complement’
problem. This problem is PSPACE-complete in the number of states for Blichi automata
[SVW85]. For L-automata, as already mentioned, the language-containment test is linear in
the size of A and in the size of T'.

In the context of testing task-performance, it is often natural to take the task-defining
automaton I to be deterministic. The reason for this is that properties of physical systems are
often portrayed in” deterministic terms, with conditional branches described causally. While it
is logically possible to define a task requirement nondeterministically so that each
nondeterministic branch corresponds implicitly to some behavior, it is more customary to
condition each branch on some causal event. For example, if a task for a communication
protocol has a conditional branch associated with whether or not a message is lost, it is
customary to define the ‘“‘event’ message-lost and condition the branch upon its truth-value,
thereby rendering the branch deterministic. Alternative acceptable behaviors are expressible
in a dererministic automaton through alternative acceptance structures.

The process under study, on the other hand, represented by the automaton A, is often
nondeterministic, represented in terms of incompletely defined information (e.g., whether the
channel loses or passes the message may be represented as a nondeterministic choice).

Given an w-regular language 7, a nondeterministic L-automaton A may be found such
that T = 1(A), while a finite number of deterministic L-automata I'y, ..., ', may be found such

n

that 'r=lﬂl 7(T;). In order to test 7(A) C f;l'r(l“/), one tests T(A) C () for i=1,...,n.

Each test 7(A) C 7(T';) may be completed in time linear in the number of edges of A and

linear in the number of edges of I';. The several individual tests 1(A) C ([, i=1,...,n

defined by the task decomposition 1= N7 (T;), provide a greater potential for reduction than
{

an undecomposed representation T=1(I'); each test may be separately reducible to a test
7(A") C 1(T'}), with each A’ different for different i.

Every homomorphism @ can be decomposed as ® = ®, 0P, where P, is trivial on the
underlying Boolean algebra and @, is trivial on the underlying graph. Hence, in order to
explicitly construct homomorphisms, it is enough to construct separately ®, and ®,. It turns
out that for deterministic automata there exist unique maximally reducing ®; and ®,. The
maximally reducing &; corresponds to minimal reduction of string-accepting automata (in the
Huffman-Moore sense), and Hopcroft’s O (nlogn) algorithm [Ho71] for state minimization (n
states) serves to construct ®;. Construction of the optimal &, is less fortuitous, being
equivalent to the NP-complete ‘‘set-basis’”” problem. However, as a practical matter, one will
guess (suboptimal) candidates for @, through knowledge of the modularity and symmetry in a
given process, and this guess is verified in time linear in the size of the graph and the
underlying Boolean algebra.

In this report the central ideas are developed; a complete report, including proofs, is
available from the author.

21

2. Preliminaries

Conventionally, an automaton is viewed as a set of states and a successor relation which
takes a ‘“‘current” state and ‘‘current’ input and returns a ‘‘next’ state (for deterministic
automata) or a set of ‘next’ states, in general. I prefer to view an automaton as a directed
graph whose vertices are the automaton states, and each edge of which is labelled with the set
of inputs which enables that state transition (c¢f. [Ts59]). The labelled graph is defined in
terms of its adjacency matrix. It is convenient to give the set of all subsets of inputs the
structure of a Boolean algebra. Then an automaton over a given alphabet of inputs may be
described as a matrix over the Boolean algebra whose atoms are those inputs. (A definition
of automaton initial states and acceptance conditions must also be given.)

2.1 Boolean Algebra

Let L be an atomic Boolean algebra, the set of whose atoms is denoted by §S(L), with
meet (product) *, join (sum) +, complement ~ (placed to the left of or over an element),
multiplicative identity 1 and additive identity 0 [Ha74]. For the purposes of this paper, little
is lost if one thinks of L as 2%, the power field over §, which is the set of all subsets of a finite
set S (the ‘‘alphabet”) where 1=5, 0=, * is set intersection, + is set union and ~ is set
complementation in §; the atoms of L in this case are the (singleton sets comprised of) the
elements of §. A Boolean algebra admits of a partial order < defined by x=y iff x*xy=1x.
If x<y and x #y, write x<<y. Atoms are minimal elements with respect to this order. A
homomorphism of Boolean algebras is a map which is linear with respect to *, + and ~ (i.e.,
S(x*y) = b(x)* b(y), (x +y) = d(x) + () and (~x) = ~ d(x)). Any homomorphism is
order-preserving (x <y = ¢(x) <¢(y)). If Boolean algebras L and M are isomorphic, this
will be denoted by writing L =M. Every Boolean algebra contains as a subalgebra the trivial
Boolean algebra IB = {0,1}. A sum or product indexed over the empty set is 0,1
respectively.

2.2 L-Matrix; Graph
Let L be a Boolean algebra, let V be a nonempty set and let M be a map
M:Vi-L

(where V2 = VX V is the cartesian product). Then M is said to be an L-marrix with state
space V(M) = V. The elements of V(M) are said to be states or vertices of M. An edge of an
L-matrix M is an element e € V(M)? for which M(e) # 0. (M(e) is the “label’”” on the edge
e.) The set of edges of M is denoted by E(M). If e=(v,w) €E(M), lete” =vand e* =w.
If M is an L-matrix and L CL’ then surely M is an L’-matrix as well,
If G is an L-matrix and W C V(G), then G|, the restriction of G to W, is the L-matrix

defined by V(G |w) = W and G |w(e) = G(e) for all e € W2. _

__ A graph is a B-matrix. The graph of the L-matrix M is the graph M with state space
V(M) = V(M), defined by

—_ 1 if M(e) # 0
M(e) = 0 otherwise .

A path in a graph G of length n is an (n +1)-tuple v = (v, ..., v,) € V(G)"*! such that
G(vj,vi+1) = 1 for all 0 =i < n; the path v is a cycle if v, =vqo. The path v is said to be from
vg to v,. The path v contains the edge (v, w) € E(G) if for some i, 0=<i<n, vy = v and
vi41 = w. If C C V(G) and each v, €C, then v is in C. A cycle (v, v) of length 1 is called a
self-loop (ar v). A vertex v € V(G) is reachable from I C V(G) if for some vg €1, there is a
path in G from vg to v. Any statement about a *“path” in a L-matrix M is to be construed as a
statement about M.

22

Let G be a graph. A set C C V(G) containing more than one element is said to be
strongly connected provided for each pair of distinct elements v, w € C there is a path from v to
w. A singleton set {v} C V(G) is strongly connected if (v,v) € E(G). A maximal strongly
connected set is called a strongly connected component (of G). Clearly, for every graph G,
V(G) is uniquely partitioned into strongly connected components and a non-strongly
connected set, each vertex of which has no self-loop. (The requirement that a single vertex
have a self-loop in order to be strongly connected, at some variance with the customary
definition, is important to the theory developed here.)

Let G,H be graphs and let &: V(G) -V(H) be a map which satisfies
(v, w) €E(G) = (P(v), ®(w)) €E(H). Then ® extends to a map ®: E(G) - E(H) and we
say @ is a homomorphism from G to H, and write

¢: G-H.

We say @ is 1-1 or onto according to the behavior of ® on V(G), and call ® a monomorphism
or epimorphism accordingly. If ®: E(G) - E(H) is onto we say @ is full. The inclusion map
of a restriction is a full monomorphism. A homomorphism which is 1-1, onto and full is said
to be an isomorphism. The image of G under @ is the graph ®(G) with V(PG) = PV(G) and
E(DG) = PE(G).

Let M and N be L-matrices. Their direcr sum is the L-matrix M @®N with
V(M ®N) =V (M)UV(N), defined by

M@y,w) if v, weV(M),

(MON)(v,w) = IN(v,w) if v, w€V(N),
0 otherwise ;

their rensor product is the L-matrix M @ N with V(M @N) = V(M) X V(N), defined by
(MON) (v, w), (v',w')) = M(v,v') * N(w,w').

The direct sum and tensor product can be extended to a commutative, associative sum and an
associative product, respectively, of any finite number of L-matrices. If L is complete (i.e.,
closed under infinite sums and products), the direct sum and tensor product can be extended
to infinite sums and products as well.

Let G, H be graphs. The projection

Mg: V(G®H) - V(G)

induces a (not necessarily onto) projection
Ng: E(G®H) -E(G).

If G and H are matrices, Il will denote the projection on the underlying graph G. Given G,
G3, ..., the projections Il may be written as II;, for convenience.

An L-matrix M is lockup-free if for all v € V(M) the sum 3 M(v,w) =1. An L-
wEV(M)
matrix M is deterministic if for all u,v,w € V(M), v # w = M(u, v) * M(u,w) = 0.

Lemma 1: The tensor product of deterministic L-matrices is deterministic. The tensor product of
lockup-free L-matrices is lockup-free.
2.3 L-Automata
An L-automaton is a 4-tuple
I'= (Mr, I(T), R(I), Z(I))

23

where Mr, the transition marrix of T', is a lockup-free L-matrix, & # I(I') C V(My), the
initial states of I', R(I') C E(Mr), the recurring edges of I' and Z(I") C 2V(Mr), the cycle sets
of T', is a (possibly empty) set of non-empty subsets of V(Mr). Set V(I') = V(Mr),
E(I') = E(Mr) and T'(v, w) = Mr(v,w) for all v, w€V(I). Let R°(I') = {e” |e €R(I)}
and R*(I') = {e* | e € R(I")}. Define the graph of ', T = M.

Suppose A,T" are L-automata satisfying V(A) C V(I'), M, = M |V(A), I(A) CI(D),
R(A) CR(') and Z(A) C Z(I'). Then A is said to be a subautomaton of I', denoted A CT.

Given an L-automaton I', the reachable subautomaton of I' is the L-automaton I'*
defined as follows: V(I'*) is the set of states reachable from I(I'), Mr« = Mr |yrs,
I(T*) = (), R(I'*) = R(D)NE[*) and Z(T'*) = {CNV(T*) |C €Z()}.

An L-automaton I' is finite-state if V(I') is finite. (No general assumption is made on
the finiteness of L, except that L is assumed atomic -— guaranteed, if finite —, and in
discussions of complexity, it is assumed that for any x € L, the question of whether x =0, can
be settled in constant time.) Let || = cardV(T).

A sequence of states v = (vg, vy,) €V()? is T-cyclic if for some integer N and
some C€Z(T), v€C for all i>N, while v is T-recurring if {i | (v;,v;+;) €ER()} is
unbounded.

A sequence ¢ = (cg,cy, * -) €(V(I) X S(L)Y with elements ¢; = (c{V, cf?) (where
cfV e V() and ¢f? € S(L)) is a chain of T if (c{¥) is either I'-cyclic or I'-recurring and

(1) o e,
(2) cf® *# TV, cfR) # 0 for all i=0;

¢ is said to be T-cyclic or T'-recurring according to the behavior of (¢{"). The set of chains of
T is denoted by (). A sequence x € S(L)® is an L-tape (or tape when L is understood).
Given a chain ¢ € @(I"), the tape 1(c) = (cf?) is the tape represented by c. (Sometimes it is
said, conversely, that (c{V) is a “run” in T of the tape x.) The set T%9(I") of tapes
represented by chains of I" is denoted by 7(I') and called the set of tapes accepted by T, or the
language defined by T'. Clearly, G(I'*) = @), 7(I'*) = 7(T’) and A C T = 1(A) C (). If
A and T are L-automata satisfying 1(A) = 7(I"), then they are said to be equivalent.

The L-automaton I' is said to be deterministic if Mrp. is deterministic; if T’ is
deterministic and cardI(I') =1 then I is said to be strongly deterministic. (Customarily,
‘“‘deterministic’’ has been used in the literature to mean what is here called ‘strongly
deterministic’’; however, this leads to unnecessary restriction, for example, in automata
complementation and minimization, where strong determinism is not required.)

Lemma 2: A rape accepted by a strongly deterministic L-automaton is represented by a unique
chain.

For any Boolean algebra L and any n >0, a string (in L, of length n) is an n-tuple of
atoms X = (xg, ..., X, ~1) € S(L)". Given an L-automaton I', a string x in L of length » and a
path (cycle) v in M, also of length n, then v is said to be a path (cycle) of x provided for all
i=0,..,n—1

x,*F(v,,v,+1) #= 0.

For simplicity, we will say that v is a path of x *in I'””. Since the transition matrix of an L-
automaton is lock-up free, for any v € V(I') and any string x in L, there is at least one path of
x in I, from v. When I' is deterministic, this path is unique. In this case, if the path is to
w €V ('), we denote w as v*=w. In this context, it is notationally convenient to admit
among the strings in L the string x ‘‘of length 0’ with the property that v* =v, (This simply
provides a short-cut wherein any assertion about v* for an arbitrary string x includes the case
in which v* is replaced by v. It has nothing to do with “silent” or ‘e —" transitions
considered by some authors, and except for the convenience it affords, it could be dropped
with no effect to the theory.)

24

If L is a Boolean algebra and x € L, let x" denote the set of strings of atoms in x of
length n, let y® denote the set of sequences of atoms in y, let x"y® denote the set of
sequences formed by concatenation of each string of the first set by each sequence of the

second, and let xt = U x". (There should be no confusion here, since there is no call for
n=1
writing the n-fold product of x as an element of L, inasmuch as that product is just x.)

3. Expressiveness of L-automata
Let S be a nonempty set. An w-regular language v over S is an element of the Boolean
n

algebra 25° of the form 7 = 3 A;Bf where A; and B, are regular sets over § [HU79] and
=1
juxtaposition denotes concatination.

An L-automaton [is said to be pseudo-Biichi (pseudo-Muller) provided Z(I')=@
(respectively, R(I')=(J). If B is an n-state Blichi automaton [Ch74] (respectively,
deterministic Biichi automaton {which by definition has a unique initial state}) which defines
the language 7 over §, then there exists a pseudo-Biichi (respectively, strongly deterministic
pseudo-Biichi) 2%-automaton T satisfying 7(I')=t and |T|=n; if T is a (strongly
deterministic) pseudo-Biichi L-automaton, there exists a (deterministic {with unique initial
state}) Biichi automaton B with n states which defines the language 7(T'), satisfying n=2|T|
([Ku85a; (2.3)]). Since every w-regular language is defined by some (nondeterministic) Biichi
automaton [Ch74; thm. 6.16], the following is immediate.

Theorem 1: The w-regular languages over a nonempty finite set S are exactly the respective sets
of languages defined by the finite-state pseudo-Biichi 28 -automara.

Let 'y, T,,... be L-automata. Define their direct sum to be the L-automaton ©T
defined by

@F[= (@M]“, UI(F[), UR(F[), UZ(F[)).

Proposition 1: Let 'y, I';, ... be L-automata. Then
1. 7(®T) = uxn(ly;

|®r;| = 3 |Tul:

(®T)* = er™

@©T, is deterministic if each T, is.

AW

Notice that the direct sum of two or more strongly deterministic L-automata fails to be
strongly deterministic. This can be rectified, at the cost of a state space which grows
exponentially with the number of summands. Define the weak product of L-automata Iy,
T';, ... to be the L-automaton

Vvl = @My, XIT), UI'RTY, UIZ(T)).

Proposition 2: Ler Ty, I';, ... be L-automata. Then
1. 2(yT) = Url):
2. || =0|ry|;
3. (vIp*cvr*
4. /T, is (strongly) deterministic if each T'; is.

Corollary: Let T be a deterministic L-automaton. Then there exists an equivalent strongly

25

deterministic L-automaton T’ satisfying
|1-w | = Irlcardl(r) ,

cardR(T'') = cardR(T) - card ("),
cardZ(I'') < cardZ(T') - card I(T") .

Things become more complicated with “product”. There can be no general
determinism-preserving definition of a ‘“product” of L-automata with the property that the set
of tapes of the “product” is the intersection of the respective sets of tapes of the factors.
Nonetheless, one may define such a product in two special cases.

Suppose I'y, T';, ... are L-automata. Define their tensor product to be the pseudo-Muller
L-automaton

®T, = (®Mr,, XIT), &, XZ{T)).

“Tensor product’ properly applies only to pseudo-Muller automata; it is defined for general
L-automata in order to provide a simple notational device to describe, for L-automata A and
I', the “subgraph” of M, ® M reachable from I(A) X I(I'), namely (A ®TI)* (which has
nothing to do with acceptance of tapes; see Theorem 4 below). Define the projection
I, : V(®T) - V(T')) to be the canonical map; as usual, this extends to a map
Iy, : E(®T) - E(T)).
Proposition 3: Ler Ty, T';, ... be pseudo-Muller L-automata. Then

1. «(®T) = Nw(Ty);
|®T,| = M|Ty|:
(®T)* C OT*;
QT is (strongly) deterministic if each T’y is.

A WoN

Let L' be a Boolean algebra containing independent subalgebras L, M CL' with
L' =L-M. For any L’'-matrix H, define the L-matrix [, H by

V(I H) = V(H),
(I, H)(e) = I, (H(e))

for all e € E(H).

Note: Clearly, [l H deterministic = H deterministic. (One may readily see that the converse
of this fails.)

Lemma 1: Suppose H and K are L'-matrices and L' = L+ M for independent subalgebras L, M.
Then

1. K lockup-free => II; K lockup-free;
2. I H, K lockup-free = Iy (H ® K) lockup-free;
3. Tl H, K deterministic, Iy H(e) € S(M) for all e € E(H) = I1; (H ®K) deterministic.

Proposition 4: Let Ty, ..., Ty be pseudo-Biichi L-automata. Then there exists a pseudo-Biichi L-
automaton I' satisfying

1. () =nNaT);

26
k
2 || =k 0 |Ty|;

3. T is(strongly) deterministic if each T, is.
Theorem 2: Let 'y, ..., '} be L-automata. Then there exists an L-automaton U satisfying
1. 2(T)=nN(T);

k k
2. IT|=k+2 [‘I'I1 T, |] [’Hl (cardZ(T)) + 1)].

Given an L-automaton T, define ()’ = SL)* \17(T). _ The problem of
“complementing’ T', that is, finding an L-automaton TI' satisfying 7(I') = =(I')’, is rather
different than the same problem for automata accepting strings, for which one usually
produces a complement by first determinizing the given automaton via the Rabin-Scott
**subset’” construction [RS59]. This approach does not work for L-automata, since it does not
work for pseudo-Biichi L-automata [Ku85a; (3.12.2)]. Nonetheless, the following proposition,
together with Theorem's 2 and 3, does give a decomposition construction for complement.

Say that an L-automaton I is node-recurring if (v, w) €R(T") and (v',w) € E(T") imply
that (v',w) € R(I'). From [Ku85a; (2.2), (2.3)] it easily follows that for any (deterministic)
L-automaton I' one may construct an equivalent (deterministic) node-recurring L-automaton
T’ satisfying cardI(T') = cardI(T'), cardR(I'") = card R(T"), cardZ(I'') = cardZ(T') and
IT'| = |T'| + cardR*(I"). Obviously, in a node-recurring L-automaton I, a chain ¢ € G(T’)
is T-recurring iff {i | c{! € R*(I")} is unbounded.

Lemma 2: If T is a strongly deterministic pseudo-Biichi (respectively, pseudo-Muller) L-
automaton, then there exists a strongly deterministic pseudo-Muller (respectively, pseudo-Biichi)
L-automaton T such that

1. 1(T) = 1(D)';
2. [T = [T| + cardR*(T) (respectively, If'l = || max{2, card Z(T)}).

Proposition 5: Given a deterministic L-automaton T, there exist strongly deterministic L-automata
Ty and Ty, pseudo-Biichi and pseudo-Muller respectively, such that for r = card I(T'),

1. 1(Tp) N7(Ty) = «(D)';

2. [Tyl = (T|"+ r-cardR*(T),
|Tg| = |T'|" max{2, r-card Z(T)}.

Let ' be an L-automaton. For each chain c€T), define
p(e) = {v €V(T) | cardfi | iV = v} = Ro}, the Muller set of ¢ (c¢f. [Ch74]). Obviously, if T is
finite-state, p(c) # &. For any tape x, let wr(x) = {u(c) |c € €T), 1(c) = x}. Clearly,
pur(x) # & iff x€x([). If T is strongly deterministic then wr(x) = & or ur(x) = {C} for
some C C V(I'). In this case, when T is finite-state, write wr(x) = C; then up(x) # & iff
x€1(I).

The Muller tapes accepted by an L-automaton I are the tapes
7,(0) = {x€1(T) | ur(x) NZ(T) # S}. For any w-regular language 7 over a nonempty finite
set §, there exists a finite-state strongly deterministic 25.automaton T' such that T7.(I) =1
[Ch74].

Theorem 3: For every w-regular language © over a nonempty finite set S, there exist deterministic
n

finite-state 25-automara Ty, ..., T, such that N (T = 1.
i=1

21

4. Testing Containment

For a graph G and a set R C E(G), let G/R denote the graph with V(G/R) = V(G),

G (e) if e€V(G)™\R
(G/R)(e) =1 ¢ otherwise.

(G/R is the result of removing the edges R from G.) It is convenient to extend the definition
to an arbitrary set R, defining G/R = G/(R N E(G)).

Theorem 4: Let A, T be finite-state L-automata and let I be the set of strongly connected
components of the graph

(AQT)* /TIF 1 R(T).

If for each K € ¥, either
1. for some C € Z(I'), IIr(K) C C,

or

2. for each e €K?*, Tls(e) £ R(A), and for each C €Z(A) and each strongly
connected component k of

(A®T) Inzicrnk
there exists a D € Z(T") such that TIp(k) C D,

then 1(A) C 7(T"). Furthermore, if T is strongly deterministic, then the converse holds as well.

5. Complexity

Theorem 4 may be translated into an algorithm for testing the containment 1(A) C 7(T),
based upon a procedure NEXTS() which takes a state v and generates all the *‘next states’
NEXTS(v) = {w € V(AQT)| (v,w) €E(A®T)}. The procedure NEXTS() makes its
computation as follows. If v=(vu, vr), NEXTS(v) computes NEXTS(v,), NEXTS(vr)
through local manipulations in the respective definitions of A and I'. For each
w=(wy, wr) € NEXTS(v,) X NEXTS(vr), NEXTS(v) tests

(1) (ABD)(v,w) # 0
and includes w € NEXTS(v) when (1) is rrue. There are a variety of means to test (1). One
is to test

2 A(vp, wp) * T'(vp, wr) # 0
for each pair (w,, wr) for which A(v,, wy) # 0 and I'(vp, wr) # 0. Testing (2) could be

done symbolically, or exhaustively through expansion to a sum of atoms (disjunctive normal
form). Another way to test (1) is to test, for each atom r € S(L),

= A(VA, WA) #*0

for all wy € V(A) such that A(v,, wp) # 0 and then for the same atom r, make the
analogous test in I". Since ¢ is an atom,

3) t* A(vp, wp) # 0 and r* (v, wr) # 0

implies (2) and hence (1). Conversely, if (3) fails for every atom ¢, then (1) fails. Hence, to

28

compute NEXTS(v), one may find
4 Ra(va, 1) = {wp €V(A) |1 % A(vp, wyp) # 0}

and Rr(vr, t) defined analogously, for each r, and then set

() NEXTS(va, vr) = |J (Ra(va,) XRr(vr,1).
1ES(L)

In the general worst general case, to test (2), one must parse each of A(v,, w,) and
I'(vr, wr) into a disjunctive normal form and compare the two forms. If the two forms
contain n atoms and n atoms respectively, then testing (2), as a practical matter (¢f. [Kn73;
p- 391]), consists of nm comparisons. If there are r edges in A outgoing from v, whose edge
labels contain, respectively, ay, ..., a, atoms, s edges in I" from vr whose edge labels contain,
respectively, by, ..., b, atoms, and n atoms in §, then the total cost of computing NEXTS(v)
via (2) can be as much as

Ea;bj = (Eai) (Eb]) = nz

comparisons, with equality when both A and I' are deterministic (2q;, £b; = n since an
automaton by definition is lockup-free). In addition to that is the cost of transforming each
edge label into normal form. On the other hand, in order to compute (5), one computes
Rp(va, 1) and Rp(vr,r) and then forms the product. This appears a bit more costly, as to
compute (4) for each atom r involves Za; = n comparisons, and this is repeated n times, once
for each atom, resulting in at least 2n% comparisons for (5). However, using an efficient
internal computer representation for an edge label can reduce the cost of each test of the form
(3) to that of one comparison. In this case, the cost of (5) reduces to n(r + s) which could be
substantially less than n?,

This procedure is incorporated into a depth-first traversal of (A @T')*/ 1R (), which
is used in conjunction with Tarjan’s algorithm [Ta72] to compute the set J of strongly
connected components of this graph, by traversing each edge exactly once. In the course of
this traversal, prior to its completion, strongly connected components may be found. As each
component is found, first property 1. of Theorem 4 is tested, and failing that, the same
algorithm is applied to find the strongly connected components of the graph defined in
property 2.

In summary, the cost of checking 7(A) C 7(I") using the algorithm outlined above is
linear in each of the size of E(A), E(T"), Z(I') and Z(A). It is assumed that the size of Z is
constant. The next section shows how the basis of this cost may be reduced through
exploitation of ‘“‘regularities” and symmetries in the definitions of A and T".

6. Homomorphism
Let ' be an L-automaton and let I'" be an L'-automaton. A homomorphism
o T -T'

is a pair of maps ® = (&, ') where

is a graph homomorphism satisfying

29

(1) /() = I(T),
() oR(T) = R(T"),
(3) Z(r") = {6(0) |C €Z()}
and
¢': L' -L

is a Boolean algebra homomorphism such that for each (v,w) € V(I)?, ¢ and ¢’ jointly
satisfy

(4) F(v, w) = ¢' T (d(v), b(w)).

We say © is a monomorphism or an epimorphism or full according to the behavior of ¢. The
homomorphism @ is level if ¢’ is an isomorphism and is flar if &' is the identity map; if
¢: V(') - V(T') is onto and

(2% R(T) = {e € E(T) | db(e) €ER(T")}
and

(3% ZM) = {o~1(C) | Cc eZ(T")}

then & is said to be exacr. We say ® is an isomorphism if ¢ is an isomorphism, & is level and
exact, and (4) is an equality. If ®: T =T’ is an isomorphism, write T = T’'. If ® is an
isomorphism and I'" =T, we say ® is an automorphism. We may denote both ¢ and ¢’ by ©.
Note that in view of (4), it was not necessary to require that ¢ be a homomorphism (it
is a consequence of (4)).
Theorem 5: I[f ®: T ~T' is a homomorphism then S, T(r,s) = OT'(®(v), ®(w)), with
O(r) = G(v
(53 = b
equality holding when T’ is deterministic.

Lemma 1: Ler ®: T -~T' be a homomorphism. If T' is deterministic then ® is a full
epimorphism.

Let T be an L-automaton, let T’ be an L’-automaton and let ®: ' -T' be a
homomorphism. An L’ automaton ®(I'), the image of I' under @, is defined in terms of
S(L') as follows:

V(&) = &(V(T)),

(@I (Dy, Dw) = 3 ¢
1EQ(, W)

where for v, w € V(I), Qv,w) ={teSL") | for some r,s eV({D),
O(r) = O(v), () = O(w) and T'(r, 5) *D(r) # 0};

(@) = oIT),
R(P() = ¢R(I),
Z(o()) = oz(I)

(which are, respectively, I(T''), R(T'’) and Z(I'’), by definition).
Lemma 2: O(T') is an L' -automaton, and ®: T - O(T') is onto and full.

30

Note: Simple examples show that it is possible for I' to be deterministic while ®I' is not
deterministic, as well as for ®I" to be deterministic while I" is not deterministic.

Corollary: If ®: T -T' and T’ is deterministic, then ®(') = T"'.

Let &': L' ~L be a homomorphism of Boolean algebras and let x' be a tape in L'.
Define &' (x') = {x € S(L)® | x;* &' (x"") #0}. Thus, for any tape x' in L', &'(X') is a set of
tapes in L.

Theorem 6: If T is an L-automaton, T'' is an L' -automaton and ®: T -T' is a homomorphism,
then 1(I") C UDr(I'"), with equality holding when I’ is deterministic and ® is exact.

Note: Containment in Theorem 6 may be proper even when I'" = &(T") and ® is exact (but
I’ is not deterministic).

Corollary: If T', T’ are L-automata, T’ deterministic and if ®: T -T' is exact and flat, then
() =1(T"").

Lemma 3: If & = (b, d’) and ¥ = (U, ') are homomorphisms, ®:T -T' and ¥:T' -T"’,
then Yo® = (Yod, &' ol’') is a homomorphism I -T'"'; if © and ¥V are exact then so is
Yod.

6.1 Lifting

Let 'y, I';, ... be a family of L-automata, let I'], T'3, ... be a family of L'-automata
and for i=1,2,... let

d’,: Fl - F;
be a family of homomorphisms. Then @, ®,, ... are said to be co-linear provided they agree

on L’ and either the family is finite, or they are complete on L'. In this case, for ' = T or
VT, and T’ = ®I'{ or \/T'{ respectively, define the lifting

®=Q¢,: T-T

to be the common homomorphism on L’ - L and for all ve V(T),
O(v) = (D,(v).

Lemma 4: A lifting ®=Q®,: I'=QTI, -I'' = QI is an automata homomorphism.

Lemma 5: A lifting of exact homomorphisms is exact.

Lemma 6: Suppose L,L,,...,L; are independent subalgebras of a Boolean algebra L = l;IL,,
Ly, L}, ..., Ly are independent subalgebras of a Boolean algebra L' = IlTL,' andb;: L -Ljisa
homomorphism, for all i=1,2,...,k. Then &= Il]¢, defined by d(x) = di(x)* - - - *di(x) is

a homomorphism, : L’ - L.
6.2 Reduction

Theorem 7: Let ®: A - A', ¥: T =T’ be co-linear homomorphisms. If 7(A) = UDT(A")
then 1(A) C () = 7(A') C «(T'); if 7(T) = U¥(’) then 1(A’) C =(T’) = 1(A) C 7(").

Corollary: Let ®: A - A’', ¥: T ~T' be exact, co-linear homomorphisms and suppose A' and
T’ are deterministic. Then

7(A) C () <= 1(A") C«(T").

Note: If in Theorem 7 @ and ¥ are flat, then the theorem follows trivially from the corollary

31

to Theorem 6.

Let A, A’, T and T’ be as in Theorem 7, with 71(A) = U®1(A’) and 7(I") = U ¥(T’).
Then the pair (A’, T') is called a homomorphic co-reduction of the pair (A, T). By
Theorem 7, if (A’,T’) is a homomorphic co-reduction of (A, T), then
T7(A) C () <= 7(A') C 7(I"’"). The homomorphic co-reduction (A’, T'') is exacr if ® and
¥ are exact, is deterministic if A’ and T’ are both deterministic, and is minimal state if
cardV(A' ®T') (= cardV(A')-card V(I'')) is minimal among all homomorphic co-
reductions. (The benefit of a co-reduction, as measured by the saving associated with using
Theorem 4, was shown in section 5 to be a function not only of the size of the reduced state
space, but also the sizes of R, Z and, perhaps most importantly, S(L'). However, as
discussed below, many facets of co-reduction, of which state space reduction is just one,
remain unresolved.)

For a single L-automaton I', a homomorphic reduction (exact homomorphic reduction) of T
is an equivalent L-automaton I'' = ®(T'), for some flat (exact) epimorphism ®:T -T"’,
(Recall, T’ is equivalent to ' if 7(I'') = 2(I').) A homomorphic minimization (exact
homomorphic minimization) of I" is a homomorphic reduction (exact homomorphic reduction)
of I' with fewest states.

Little is known in general about exact homomorphic (co-)reduction of a pair (A,T’) or a
single automaton I'. In the class of deterministic L-automata, life is easier: the Corollary to
Theorem 7 proves that any pair of exact co-linear homomorphisms &, ¥ give rise to a
homomorphic co-reduction of (A,T); likewise, by the Corollary to Theorem 6, any exact
homomorphism of T" produces a homomorphic reduction of I'. In Theorem 8 below it is
shown that the problem of homomorphic co-reduction of a pair (A, ') can be reduced to the
problem of homomorphic reduction of A and I' separately. In section 6.3 an algorithm will be
presented for finding the (unique up to isomorphism) exact homomorphic minimization of a
deterministic L-automaton.

Theorem 8: Let ' be an L-automaton, T'' be an L'-automaton and ®: T ~T'' a homomorphism.
Then ® = ©, 0P, where ®,: T ~-T"' is flat and ©,: T'' ~T' is the identity on V(I''").

Corollary: Let A, T be L-automata. Then (A', T’) is a minimal-state deterministic homomorphic
co-reduction of (A, T) iff for homomorphic minimizations A'' of A and T' of T,
cardV(A') = cardV(A'") and card V(I'') = card V(I''").

Let A, T be L-automata and ¢': L' ~L a homomorphism of Boolean algebras. If
(ida, ¢'), (idr, ¢') are homomorphisms on A and T respectively, then ¢’ is said to be co-
linear for A and T,

6.3 Reducing

Let A and I be L-automata for which we wish to prove or disprove that 1(A) C 7(I").
The theme of this paper is to *reduce’ that problem to a simpler equivalent problem of
showing 7(A") C 7(I'') for some respectively smaller automata A’ and I''. If the relationship
between the pair (A, T') and its *“‘co-reduction’ (A’, I'’) is undefined, then the problem of
finding a “‘minimal state co-reduction” of (A,T) is meaningless. (Let T(A") = S(L)* (for
which one state suffices) and let I'' = A’ if 7(A) C 7(T’), while otherwise 1(I'") = & (also
realizable with one state).) One may meaningfully define a co-reduction of (A, ') to be a
pair of L’'-automata (A’, I'') derived from (A, I') through replacement of A and I" by any
other L-automata A'’, T’ which accept the same respective sets of tapes and for which
(A’,T') is a homomorphic reduction of (A’',T'’") having the property that the complexity, as
described in section 5, of proving or disproving 1(A’) C 7(I'") using Theorem 4, is less than
the associated complexity for (A, I'). With this definition one may seek a co-reduction of
(A, T), minimal with respect to that complexity measure. Almost nothing is known about this
problem in such generality. For example, it is only conjectured that such a minimal co-
reduction (A’, T'’) of (A, T) must satisfy

32

cardV(A' @T')* = card VIAQT)

as, conceivably, the size of R, Z, S(L') or even E(A’ ®I'') may be considerably reduced by
slightly increasing the size of the state space. Furthermore, even if simply minimizing the size
of the state space were found to be desirable, it is not known how to do this, short of an
exhaustive search.

Things do not improve even if one restricts to the class of deterministic finite-state L-
automata. Unlike deterministic finite-state automata which accept strings, for arbitrary -
regular languages there is no analogue to the Myhill-Nerode right-invariant equivalence
relation [RS59], and a minimal-state deterministic finite-state L-automaton which accepts a
given w-regular language need not be unique up to isomorphism [St83].

On the other hand, finding a minimal state exact homomorphic reduction in the class of
deterministic L-processes, will be shown to be tractable.

It should be emphasized that, in view of the forgoing, there exist equivalent
deterministic ', '’ such that the homomorphic minimization of I" has fewer states than the
homomorphic minimization of I'’ (see the examples below). It is also true that there are
reductions which are better than any homomorphic reduction.

In the case of general co-reductions, it was already observed that whether or not
(A’, T') is a co-reduction of (A, I') may depend upon the complexity measure associated with
testing containment. In the case of homomorphic co-reduction this problem does not arise, as
a homomorphic co-reduction reduces (or leaves unchanged) the size of each parameter which
enters into the complexity measure (see section 5). Hence (assuming the complexity measure
is monotone), every homomorphic co-reduction is a co-reduction.

The temptation to reduce the size of the state space of I' through an equivalence relation
on V(I') which is analogous with the equivalence relation defined in association with the
Huffman-Moore minimization algorithm for automata accepting strings [HU79], does not
appear to work. Let I'j be I' except that I(I';) = V(I'). An equivalence relation for an L-
automaton I" analogous to the Huffman-Moore equivalence relation is: v = w if for every tape
x in L, x is represented by a chain ¢ € @(T’;) with ¢{’ = v iff x is represented by a chain
d € ¢(") with dfV’ = w, Clearly, = is an equivalence relation on V(I'). Letting [v] denote
the equivalence class of v € V(I'), we would be tempted to defice the “minimization” of T to
be the L-automaton [I'] defined by

vary = {vl|vevmy,
TI(v] wh = 3 T, 5,

r=y
s=w

(T = {v]| vINI(T) # &},
R(ITD = {([v], [w]) | for some (v',w') €ER(T), v'=v and w' =w},
Z(rp = {ivllIvinC # B} | C € Z(D)}.

(Tt should be clear that [I'] is indeed an L-automaton.)

Lemma 7: The map ®: V(') - V([I']) defined by ®(v) = [v] defines a flar epimorphism
&: ' - ('] and thus «(T") C =([T]).

The reason that [['] may not be a homomorphic reduction of I" is that & may not be
exact. This may cause what appears to be an irreconcilable problem (that 7(T") g 7([T'])), as

the next example shows.

Examples: 1. Let I" be defined by

Mr=

=t © =
(=2 IR
% Rk ©

where the states of I are the indices of the rows of Mp, with I(I') any nonempty subset of
V(I), R(I') = & and Z(T') = {1}, {2}, {3}}. It is easy to show that (I') = 1*x®. There
are several pairwise non-isomorphic minimal state automata defining the same w-language
(see [St83; ex. 2]) of which one is A with

X X
MA= -
X X

and Z(A) = {{1}, {2}}. While it is easily shown that there are flat homomorphisms T - A,
none can be exact. In fact, I' is homomorphically minimal. It follows from this example that
for any monotone complexity measure, there are minimal reductions less complex than any
minimal homomorphic reduction. On the other hand, it is easily shown that the respective
states of I' and of A are equivalent, and hence [I'] and [A] are both isomorphic to the one-
state automaton which defines 1, properly containing 7(I') = 1(A).

2. There seems little hope, even for special cases, that 7(I') = 7([I']), as the next
example shows. If A is as in the first example, except with Z(A) = & and R(A) = {(1,2)},
then T(A) = (x*xx*x)®. Clearly, [A] has a single state and 7([A]) = 1¥. Things are much
the same if the two examples are combined, with R(A) = {(1,2)} and Z(A) = {{1}, {2}}.
Then 7(A) = (x*xx*x)® + 1*x® while [A] again has one state and 7([A]) = 12,

In the case of a finite-state deterministic L-automaton I' for which R(T") =, and Z(I")
has, *‘essentially”, a single element (i.e., C, D € Z(I") = any cycle in CUD is in C or D) then
7([']) = 7(I'). However, this is an uninteresting generalization of a homomorphic
minimization: if each C € Z(T") is a union of strongly connected components (which one may
as well assume, by discarding the complement of the union of the strongly connected
components of C, an operation which leaves 7(I') unaltered), then I' - [I'] is exact, so
7(I') = 7([T']) by the corollary to Theorem 6.

Likewise, an analogous uninteresting generalization of homomorphic minimization is to
add to R(I') any set of edges contained in no cycle of I'. Clearly, this has no effect upon
7(T).

While the Huffman-Moore minimization algorithm does not generalize directly to L-
automata (as just shown), it can be adapted to homomorphic minimization of L-automata,
which is unique up to isomorphism. Because of this, one may consider that minimization of
deterministic automata which accept strings corresponds to homomorphic minimization of
automata which define w-regular languages, rather than the more general unqualified
minimization. (Homomorphic minimization of string acceptors can be defined analogously to
the definition given here, in which case for deterministic string acceptors, ‘“‘minimization’ and
“homomorphic minimization” coincide.)

For a node-recurring deterministic L-automaton I' with v, w €V(T'), write v=w
provided for every string x in L,

1. v*€RY(T) <=> w*€R*(I"), and
2. forevery C€Z(I'), v*€C <> w*€C.

Clearly, = is an equivalence relation on V(I'). Let the equivalence class of v be denoted by
[v], and let [I'] be defined as before but relative to = rather than = (from here on, there is
no further mention of =, and ‘[] refers only to =),

Lemma 7°: For any node-recurring deterministic L-automaton T', the map ®: V(I') - V([T']

34

defined by ®(v) = [v] defines a flat exact epimorphism ®: T - [T'].

Example 3. One could be tempted to try to weaken the above definition of = by allowing
general (non-node-recurring) automata and replacing condition 1. with the condition

%, v eR(T) iff (w*, w™D)€R(T)
for all atoms r€S(L). However, with this definition ® is not necessarily exact, as the
following example shows. Let I' be defined by
0

o =

Mr=

Xt O ©

o

O O %' O
O X O =t

where the states of I' are the indices of the rows of Mr, witzh (T = {1},
R@) ={(1,4), (3,2)} and Z(T') = &. It is easily seen that 7(I') = ((1x)*x")*®. However,
with this suggested weaker definition of =, 1 =23 and 2=4, as may be easily checked. Thus,

(R
M=z o

with R([T]) = {(1, 2)}, so () g 7([T']) = (1x)® and by the corollary to Theorem 6, the flat
epimorphism @ : I' - ['] (weaker =) cannot be exact.

Lemma 8: [I'] is deterministic.

Theorem 9: Let T be a deterministic node-recurring L-automaton. Then «+([T'])) = «(I).

Lemma 9: If T is node-recurring and ® is exact then ®(T') is node-recurring.

Theorem 10: Let W: T =T’ be a flat, exact epimorphism of deterministic L-automata, T node-
recurring. Then

a) V(v) =¥(w)<=>ve=w, forall v, weV({I*);

b) [T] = [I'].

Corollary: The exact homomorphic minimization of a dererministic node-recurring L-automaton is
unique up to isomorphism.

If cardV(I'*)=n, an O(nlogn) algorithm for computing the exact homomorphic
minimization [I'] of a deterministic node-recurring L-automaton I" is given by the Hopcroft
algorithm [Ho71]. The Hopcroft algorithm applies by partitioning into separate blocks states
v, w €V(I'*) which, for some string x, give rise to respective values v*, w* which violate
either condition 1. or 2. above for v=w,

Returning to Theorem 8, in the context of a homomorphic minimization, it remains to
minimize the Boolean algebra which underlies the image of a homomorphism. Theorem 8
tells us that we may assume for this purpose that the graph of the image is fixed. Suppose
that the L-automaton I is that image. The problem then can be posed thus: find a smallest
subalgebra L’ C L such that T is an L’-automaton. Clearly, L’ is the (unique) subalgebra
generated by

A= {T(e) | e €E(T™)}.

Since L' is determined by its atoms S(L') and each atom in S(L') is a union of atoms of L,

35

the problem of finding L' reduces to the problem of finding the coarsest partition of S(L)

such that every element of A is a sum of partition elements. This problem is equivalent to the

following problem, for n = card S(L) and m = card \. Given sets Ay, ..., A, C {1,..., n}, find

a minimal partition by U - -+ Ub, = {1,...,n} (b;'s pairwise disjoint) such that each \; is a

union of b;’s. Unfortunately, this problem, known as the “'set basis”’ problem, is NP-complete

[St75]. A solution is given by the following proposition. Denote A\[! = {1,...,n]\\;, A} =\,
m

and for A €2 mhm o €{—1, 1}™, define A\® = Iﬂl A", Say that {b,,...,b,} (above) is a
basis for Ny, ..., \,.

Proposition 6: Distinct sets A\y,...,\n, C{l,...,n} admit of a unique basis, namely
A | a € {= 1}"NO}.

Corollary: Let T be an L-automaton. To find the smallest L' such that U is an L'-automaton is
NP-complete in card E(T).

7. Analysis of Coordination

It is now described how the results of the previous sections may be applied to reduce the
complexity of analysis of a system of coordination components. (For example, computer
software and hardware often can be represented as such a system [AKS83, Ku8S5, KK86,
GK87].) The system is defined in terms of its coordinating components A,...,A; as a
product A=A ® - - @A, (all of this is defined below). It is required to know whether the
system A possesses a certain given behavioral trait. This is determined through formal
analysis, formulated in terms of testing A for its “‘performance” of a task defined by an L-
automaton I', where L is a Boolean algebra associated with A.

The components A, ...,A, as well as A are Moore-like [HU79] state machines called L-
processes. An L-process A induces an L-automaton A* which characterizes the behavior of A.
Testing A for performance of the task defined by I' amounts to testing whether or not
(A% C (D).

The cardinality of the state space of A is the product of that of each component
Ay, ...,A;. Thus, simply the size of A may preclude testing language containment directly as
above (it may be impossible to construct A explicitly). In this case, one seeks to find co-linear
homomorphisms ®: A~B and ¥:'-I’, thereby reducing the complexity of testing task-
performance to that of the test w(B*) C «(['). The homomorphism © may be defined as a
lifting (¢f. §6.1) ©® =& ®;, where ®;: A;~B;, and B=®B;. In this way, one avoids
constructing A (or ®) explicitly. Determination of whether or not 7(B¥) C 7(I'"’) may be
accomplished using the test of Theorem 4.

7.1 L-Process

Let L be a Boolean algebra. Although the theory holds in greater generality, assume
now that L is finite. An L-process is a triple A = (My, S4,1(A)), where M, is an L-matrix (the
transition matrix of A, with the associated notation V(4) = V(M,), E(A)=E(M,) and for all
v, wEV(A), A(v, w)=M,(v,w)), I(A) C V(A) (the set of initial states of A) satisfies
I(A) =@, and §,: V(A)~2L (the selector of A) satisfies S,(v) # @ for each v € V(A); for
S(A)= |J Sa(v), the set of selections of A, it is required that each selection x € §(A) is an

v EV(A)
atom in the Boolean algebra generated by S (A); finally, it is required that for all v, w € V(4),

Ayv,w)y=s Y x.
x €SA(W)

If in fact equality holds for all v, w then A is said to be lockup-free.

The interpretation of L-process is similar to that of L-automaton. Given an L-process A,
for each v € V(A) the selections x € S,(v) are the ‘“outputs” possible from v. If A is
interpreted as a Moore-like state machine, then while A is ““in” state v, the selection of A is a

36

nondeterministically chosen element of S4(v); as long as A “stays” in v, this selection may
repeatedly change to any other element of S4(v). For any e € E(A), the “edge label” A (e) is
an enabling predicate, expressed in terms of selections, for the transition along the edge e.
The selection x € S4(v) “‘enables” the transition (v, w) provided x*A (v, w) # 0. A is lockup-
free if and only if every selection x € S4(v) enables some transition (v, w). Nondeterminism in
selection facilitates modelling incompletely specified actions (e.g., from one state a process
may select to “send message m,”’, for i =1, 2, ..., the procedure for such selection remaining
unspecified). In keeping with the classical theory of finite state machines, process srare
models unobservable (private) memory, and a processes ‘‘behavior” is defined in terms of its
selections (output) alone.

Given L-processes A1, ..., A; define their (tensor) product to be

k k k k

® A= [l@l My, lgl Sas 11(1 I(Al)J

i=1

where [I;ISA‘] (Vl,...,Vk) ={x1 LRI M Ix[GSA'(Vl). i= l,.-., k}.

Lemma 1: If Ay, ..., Ay are L-processes, then their product @ A; is an L-process.
The L-processes A;,...,Ay are said to be independent provided x;€S5(A4)),
i=1,..,k=xyx - *x.#0.

Proposition 7: If A, ..., A; are independent, lockup-free L-processes, then their product @A, is
lockup-free.

The discrete-event behavior of a system modelled by an L-process A =A | ® - - - A4, is
interpreted in terms of the coordination among its independent, lockup-free components
Ay, ..., Ay as follows. At each time, in each process A, a selection x; possible at the *‘current”
state v; (i.e., x; €8,,(v)) is chosen non-deterministically. The product x=x,%* - - %x;
defines a *‘current global selection”, i.e., a selection of the product A at the state (v, ..., v).
At each time, in each process, the current global selection determines a set of possible ‘“‘next”
states, namely those states to which the transition from the current state is enabled by the
current global selection. In A, the transition from state v, to state w; is enabled by x iff
x*A(v;,w;) #0. Each process resolves the current global selection by choosing (non-
deterministically) one of these possible next states.

A system progresses in time by repeatedly ‘selecting” and ‘resolving’”. This
interpretation correctly describes the behavior of the product since by the atomicity assumption
on each S(A;) it follows that for v=(vy,...,) and w = (wy, ..., w;),

x*A(vi,w) #0 for 1=isk <= x*A(v,w) £ 0.

This same interpretation may be used to model systems of processes coordinating
asynchronously in continuous time [Ku86, GKR86].

7.2 Task Performance

Note that if A;, ..., A; are independent L-processes and k > 1 then the selections of each
A, are not atoms of L, i.e., S(A) NS(L)=. If, on the other hand, A is an L-process and
S(A) = S(L) then A is said to be auronomous (its behavior depends upon no other independent
L-process).

Now, suppose A is an autonomous, lockup-free L-process. Let A* denote the pseudo-
Muller L-automaton defined as follows:

via*) = vid) U {#}
where # is a symbol not in V(A); for v,w€V(A), A*(v,w)=A(v,w) while

Atv #)= 3 x, A*(#,#)=1 and A*#, v)=0; I(A*)=I(A) and
x €S(AN\SA(V)

37

Z(A*)={V(A)}. Thus, €(4*) is the set of sequences ¢=(cq,cy,...) where ¢;=(v;,x;) with
Vi €V(A), x; €84,(vy), vo €I(A) and x;*A(v,vi+1) #¥0fori=0,1,.... A raskfor A is a set

T C 2V xS@AN*

i.e., a set of sets of sequences of (state, selection) pairs of A. It is said that A performs the
task T if 4A*)€T. (T defines “acceptable behavior” of A by defining all “‘acceptable
versions'’ of A.)

This paper focuses upon testing task performance for a particular class of tasks: the
regular language tasks relative to L, those being the tasks of the form I =2" for some w-
regular language T over S(L). Thus, if T is such as task and 7 = 7(I") for some L-automaton
T, then A performs T iff 1(A*) C «(I).

7.3 Reduction

Let A be an L-process and B be an L'-process. In a manner strictly analogous to the
development of §6, a homomorphism @ : A =B is defined. All the details of this definition are
as in §6, with the exception of (2) and (3) which pertain to automaton acceptance structures,
and the following treatment of selections, which is added: for each v € V(A) and x € §4(v), it
is required that there be some y € Sz(Pv) such that x = O(y).

Proposition 8: Ler A be a lockup-free L-process, let B be an L' -process and let &: A ~B be a
epimorphism. Then B is lockup-free. Furthermore, for each v € V(A) and y € Sg(Pv), setting
Y={x€5,(v) [x= P}

> x = ®@).

x€Y

Thus, one effect of a process homomorphism is to associate to each selection of B, a nonempty
set of selections of A.

If A and B as above are both autonomous and lockup-free, then the process
homomorphism ®: A ~B extends naturally to an automaton homomorphism ®: A* ~B* with
O(#) =#. Furthermore, if A,,...,A; are independent, lockup-free L-processes and
®;: A;~-B; are co-linear process homomorphisms then the “lifting"” results of §6.1 for
automata carry over to here as well, and

P = ®¢1: ®A[- ®Bl
is a process homomorphism. If A = &4, and B = ®B; are autonomous, one thus may reduce
the test of whether for some L-automaton ", 1(A*) C 1(T') to a test of whether 7(B*) C 7(I').
If furthermore each ®; is co-linear with an automaton homomorphism ¥: I'-T"', the latter
test may be reduced further to the test 7(B¥) C 7(I'"). Specifically, the results of
Theorems 7, 8, 10 and their respective corollaries pertain.

These results suggest several techniques for reduction. The most obvious (and easiest to
automate) is state reduction via an exact homomorphic minimization applied to several A; at
once, replacing each remaining A; with a free version: a single-state process A; such that
S(Aj)=8(Ap). (The freeing of the several A;'s renders the exact homomorphic minimization
algorithm tractable.) This procedure can be continued, applying exact homomorphic
minimization to the reduced A,’s together with several of the (unreduced) A;’s, freeing the
remaining A;’s. If this procedure is continued until it has been applied to all of Ay, ..., Ay,
then the result is the exact homomorphic minimization of ®A; (this having been obtained
without computing ® A, explicitly).

Another reduction technique, which may be used in conjunction with the above, is to
guess a Boolean algebra homomorphism which induces full co-linear maps ®;: A;~B;. The
correctness of such a guess may be checked using Theorem 4. Such ‘*‘guessing’ is often
facilitated by inherent symmetry or modularity among the A,’s; for example, see [GK87].

38

Finally, if the structure of the A;’s is sufficiently simple and regular, one may apply a
mathematical argument to demonstrate the existence of a homomorphism ®A,-B, as in
[Ku85].

8. Conclusions

The overriding motive behind this paper has been to provide a theoretical basis for
machinery with which to perform formal analysis of large systems of coordinating processes.
A measure of the success of this approach can be taken from the derivative software system
[HK86] which performs formal analysis of systems with trillions or more states through
applications of Theorems 4, 7, 8 and 10 above.

The machinery developed here might be considered in the context of automated
theorem-proving [BL84]. Classically, theorem-proving algorithms consist of inference rules
applied to axiomatic systems. Because of the typically very general nature of these rules, it
may be hard to classify the tractably provable theorems. However, since the tractable
theorems are all characterized as provable in a (relatively) small number of steps from a fixed
reportoire of instructions, they may be considered to be those theorems reducible to small
regular-language assertions. The approach presented in this paper proceeds in the opposite
direction: the class of small regular-language assertions is extended to the class of
homomorphically reducible assertions.

REFERENCES

[RS59] M. O. Rabin, D. Scott, “Finite Automata and their Decisions Problems’, IBM J.
Res. and Dev. 3 (1959) 114-125. (Reprinted in [Mo64] 63-91.)

[Ts59] M. L. Tsetlin, “Non-primitive Circuits” (in Russian) Problemy Kibernetiki 2
(1959).

[Bu62] J. R. Blichi, “On a Decision Method in Restricted Second-Order Arithmetic”, Proc.
Internat. Cong. on Logic, Methodol. and Philos. of Sci., 1960, 1-11 (Stanford
Univ. Press, 1962).

[Ra69] M. O. Rabin, “Decidability of Second-Order Theories and Automata on Infinite
Trees”, Trans. Amer. Math. Soc. 141 (1969) 1-35.

{Ho711 J. E. Hopcroft, “An nlogn Algorithm for Minimizing the States in a Finite
Automaton” in Theory of Machines and Computations (Kohavi, Paz, eds.) Academic
Press, 189-196.

[Ra72] M. O. Rabin, Automara on Infinite Objects and Church’s Problem. Amer. Math.
Soc., 1972.

[Ta72] R. Tarjan, “Depth-First Search and Linear Graph Algorithms", SIAM J. Comput.
1(1972), 146-160.

[Kn73] D. E. Knuth, Sorting and Searching, (The Art of Computer Programming, v.3)
Addison-Wesley, 1973.

[Ch74] Y. Choueka, “Theories of Automata on w-Tapes: A Simplified Approach™, J.
Comput. Syst. Sci. 8 (1974), 117-141.

{Ha74] P. Halmos, Lectures on Boolean Algebras, Springer-Verlag, N.Y., 1974,
[St75] L. Stockmeyer, ““The Set Basis Problem is NP-Complete’’, unpublished.

{HU79] J. E. Hopcroft, J. D. Ullman, Intro. to Automata Theory, Languages and
Computation, Addison-Wesley, N.Y. 1979.

[CE81]

MP81]

[AKS83]

[St83]

[BL84}

MW84]

[Ku85]

[Ku85a]

[SYW85]

[HK86]
[Ku86]

[KK86]

[GK87]

[GKR87]

39

E. M. Clarke, E. A. Emerson, “Synthesis of Synchronization Skeletons from
Branching Time Temporal Logic”, Proc. Logic of Programs Workshop, 1981, Lect.
Notes in Comput. Sci. 131, Springer-Verlag, 1982, 52-71.

Z. Manna, A. Pnueli, “Verification of Concurrent Programs: The Temporal
Framework", Stanford Univ. Tech. Report CS-81-836.

S. Aggarwal, R. P. Kurshan, K. K. Sabnani, “A Calculus for Protocol Specification
and Validation” in Prorocol Specification, Testing and Verification, IlI, North-
Holland, 1983, 19-34,

L. Staiger, ‘‘Finite-State w-Languages”, J. Comput. Syst. Sci. 27 (1983) 434-448.

W. W. Bledsoe, D. W. Loveland (eds.), Auromared Theorem Proving: After 25
Years, Amer. Math. Soc. (Contemp. Math. v. 29), 1984.

Z. Manna, P. Wolper, “Synthesis of Communicating Processes from Temporal
Logic Specifications’’, ACM Trans. on Programming Languages and Systems 6
(1984) 68-93.

R. P. Kurshan, ‘“Modelling Concurrent Processes’’, Proc. Symp. Applied Math. 3
(1985) 45-57.

R. P. Kurshan, “Complementing Deterministic Blichi Automata in Polynomial
Time"”, J. Comput. Syst. Sci. (to appear).

A. P. Sistla, M. Y. Vardi, P. Wolper, “The Complementation Problem for Buchi
Automata, with Applications to Temporal Logic”, in Proc. 12th Internat. Coll. on
Automata, Languages and Programming, Lect. Notes Comp. Sci., 1985, Springer-
Verlag.

Z. Har’El, R. P. Kurshan, “COSPAN User's Guide”, in preparation.

R. P. Kurshan, ‘“Modelling Coordination in a Continuous-Time Asynchronous
System'’, preprint.

J. Katzenelson and R. P. Kurshan, ““S/R: A Language For Specifying Protocols and
Other Coordinating Processes’, Proc. 5th Ann. Int’l Phoenix Conf. Comput.
Commun., IEEE, 1986, 286-292.

1. Gertner, R. P. Kurshan, “Logical Analysis of Digital Circuits”, Proc. 8th Intn’l.
Conf. Comput. Hardware Description Languages, 1987, 47-67.

1. Gertner, R. P. Kurshan, M. 1. Reiman, ‘‘Stochastic Analysis of Coordinating
Systems”’, preprint.

Distributed Reachability Analysis for Protocol Verification
Environments

Sudhir Aggarwal

Bell Communications Research
435 South Street
Morristown, NJ 07960

Rafael Alonso

Department of Computer Science
Princeton University
Princeton, NJ 08544

Costas Courcoubetis

AT&T Bell Laboratories
600 Mountain Av.
Murray Hill, NJ 07974

ABSTRACT

A topic of importance in the area of distributed algorithms is the
efficient implementation of formal verification techniques. Many such
techniques are based on coupled finite state machine models, and
reachability analysis is central to their implementation. SPANNER is
an environment developed at AT&T Bell Laboratories, and is based on
the selection/resolution model (S/R) of coupled finite state machines.
It can be used for the formal specification and verification of computer
communication protocols. In SPANNER, protocols are specified as
coupled finite state machines, and analyzed by proving properties of
the joint behavior of these machines. In this last step, reachability
analysis is used in order to generate the "product" machine from its
components, and constitutes the most time consuming part of the verif-
ication process. In this paper we investigate aspects of distributing
reachability over a local area network of workstations, in order to
reduce the time needed to complete the calculation. A key property
which we exploit in our proposed design is that the two basic opera-
tions performed during reachability, the new state generation, and the
state tabulation, can be performed asynchronously, and to some degree
independently. Furthermore, each of these operations can be decom-
posed into concurrent subtasks. We provide a description of the distri-
buted reachability algorithm we are currently in the process of imple-
menting in SPANNER, and an investigation of the scheduling prob-
lems we face.

41

1. Introduction

Designing reliable distributed software such as computer communication proto-
cols is extremely difficult and challenging. Informal specifications of such software
are often imprecise and incomplete, and are not sufficient to ensure correctness of
many simple distributed algorithms. One reason is that the concurrent execution of
components typically results in an exploding number of execution histories. This
makes the prediction of all possible erroneous behavior of such systems prohibitively
complex for the human mind, and as a result the designer must rely on formal
methods for specifying and analyzing the software. There is an increasingly extensive
literature on such formal methods and tools; for example, see [Bo87] for a survey.

Among the formal specification methods, finite state models are one of the most
popular. In these models, the system is described as a set of coupled finite state
machines (FSMs), each machine modeling a concurrently executing component. The
reason FSMs are widely used to describe complex systems is that it is conceptually
easier to describe such a system in terms of a large number of small components, and
then derive the complete system by taking the "product” of these components. In
addition to this, in many cases, FSM descriptions can be directly translated to imple-
mentable code or implemented in hardware, see [AC85, AK84, GK87].

There are many existing tools for the analysis of finite state models, for example
see [ABM86, An86, FI87, CG86]. The way these tools work can be summarized in
the following steps. First, they provide an environment in which the designer speci-
fies the FSMs by describing the components of the system. Usually, the designer also
specifies the task that must be satisfied by the system in order to ensure correct exe-
cution. In the second step, the system uses the description of the components to con-
struct the "product” FSM which models the complete system. This step constitutes
the reachability analysis of the system, during which a database of all the reachable
states and transitions of the product FSM is constructed from the specifications of the
component FSMs. The last step consists of checking the validity of the task formula
on the product FSM. This can be accomplished in a "partial" way by assigning pro-
babilities to the FSM and checking correctness on some finite set of most probable
histories, obtained by simulation, or in a complete way by doing model checking of
the FSM and the task formula, see [CE82, QS82]. In some systems, the last step is
embedded in the second step, and corresponds to doing reachability analysis on a
larger number of FSMs, some of which model the task requirements, see [ACW86].
One can also use various reduction techniques depending on the underlying model, so
that the product FSM is substituted by a smaller one. Further details about these
techniques can be found in the literature, and are beyond the scope of this paper.

From the previous discussion, it follows that a limiting factor for the practical
application of the FSM methods is the time it takes to perform the reachability
analysis. With the current technology, graphs of 10* to 10® states can be analyzed in
times on the order of minutes or hours, by running the tools on single dedicated
workstations. In this paper we focus on how to move this limit substantially further
by performing the reachability analysis in parallel. Note that an important issue in
favor of distributing the reachability analysis is the size of the table of the explored
states. For large graphs, this table cannot fit in the main memory of a single works-
tation and the tabulation becomes increasingly slower as the number of explored
states grows. We describe a parallel reachability algorithm and its implementation
aspects, for the already existing tool SPANNER [ABMS87], in a local area network of
SUN workstations. We should emphasize that the design we propose is general

42

enough to be used for parallelizing the reachability analysis in most of the existing
FSM tools.

We will elaborate now further on the ideas presented in the paper. A "central-
ized" reachability analysis is performed as follows. The input consists of the descrip-
tion of N FSMs. A "global" state is a state of the product FSM, and consists of a
vector of N local states, one per component machine. The underlying model provides
a way to compute for each global state, the set of all possible successor global states.
The reachability analysis starts with some initial global state, and completes when all
global states reachable (in any number of steps) from this initial state, are found.
While doing this, there are two basic operations involved: the state generation, which
given a global state, computes its successor global states, and the state tabulation,
which given a global state, checks if it has been already found by keeping an updated
table of the global states visited so far. The distributed reachability analysis we pro-
pose is basically performed as follows. There are n state generators and m state tabu-
larors. Each state generator receives (global) states from the tabulators, computes
their successor states, and sends them to the tabulators. A state whose successor
states have been computed is considered to be "explored”. The tabulators receives
newly generated states from the generators, filter out the states that have already be
found, and send unexplored new states to the generators. The key issues we address
in our design is how to distribute the newly found state information among the tabu-
lators, and the scheduling of the work requests among the tabulators and the genera-
tors, so that the workload of different processors remains balanced. As it turns out,
the scheduling problem involved is non trivial, and has many generic aspects. This is
due to the large number of messages, and the comparable magnitude of the time
involved in processing the work carried by a message, with the message delay of the
network.

The paper is organized as follows. In section 2, we briefly describe the
SPANNER system and the model of FSMs on which SPANNER is based. In section
3 we describe the design of the distributed software, and its implementation environ-
ment. In section 4 we examine the underlying scheduling problem, and we provide a
queuing model for the system. This model can be used as a basis for simulating the
performance of the system, with different scheduling parameters. We also mention
two open scheduling problems which abstract different parts of the original problem
and seem interesting for further research. At the end of section 4, we investigate
performance issues related with the gain in speed of the reachability analysis due to
parallelism. In section 5 are the conclusions of this work.

2. The Selection/Resolution model and the SPANNER system

2.1. The Selection/Resolution model

For completeness, we review the selection/resolution model and the SPANNER
system. For simplicity we discuss the model in terms of its operational semantics.
Further details are available in [GK82, AKS83, ABM87]. The selection/resolution
model is a formal method of describing a complex system as a finite set of coupled
FSMs. Each component FSM (called a process) is specified as an edge labelled
directed graph, see figure 2.1.

The vertices of the graph are states of the process, and the directed edges describe a
state transition that is possible in one time step. A state encapsulates the past history
of the process and is private to that process. That is, no component FSM can know

43

otherwise otherwise

' PRODUCE {idle, write} \CONSUME ({idle, read}

(x.#<N)*(P:write) (x.#>0)*(C:read)

(C:done)

< TRY {head, tail) K TRY {head, tail}

C:idle,read,done)
(P:head)*(C:head)
+(P:tail)*(C:tail)

(P:done)
(P:idle,write,done)

+(P:head)*(C:tail)
+(P:tail)*(C:head)

& AB {writing, done} AB {reading, done}

otherwise otherwise

PRODUCER (P) CONSUMER (C)

N+1 {error}

(P:done)

(C:done) (C:done)

(P:done) (P:done) (P:done)
0 {0} 1 {1} 2 {2} N {N}

COUNTER (X)
Figure 2.1

about this state directly. In each state, a process can nondeterministically choose
from a set of selections (enclosed in braces next to the state). The selections are sig-
nals processes use to coordinate. They can be viewed as indicating the “intention’ of
the process. The component FSMs use these selections to determine their transitions.

The directed edges of the component FSMs are labelled by elements of a
Boolean algebra generated by the selections of the processes. We use * to indicate
the multiplication operator (Boolean and), and we use + to indicate the addition
operator (Boolean or). We use ~ for the Boolean negation.

After each process has made its selection, each process decides on a transition to
a new state. This resolution is done as follows. First, calculate the global selection
of the processes. This is done by multiplying together the current selections of all the
processes. Note that, by definition, this product is the and of all the current

44

selections. Next, each component FSM independently determines which transitions
out of the current state are enabled. It determines if a transition is enabled by the
global selection by multiplying the edge label by the global selection and checking if
the result is O in the Boolean algebra. If the product is O, the transition is not
enabled. Otherwise, it is enabled (a valid transition). Finally, each process chooses
one of the enabled transitions and transitions along that edge to its new state.

Consider the case of k processes P, ..., P, and let the selection of P; be s, at
time step r. Then the global selection s = 5,5,...s; is the AND (in the Boolean alge-
bra) of the individual selections. If process P, is in state v at time step ¢, and the
label on the edge from v to w is €, then w is a possible state at timer + 1 if s - € # 0.

A chain of a process is a sequence of state-selection pairs consistent with the
dynamics described above. Intuitively, a chain is a sample path of the behavior or
possible history of the process, where at each time step we record the state and selec-
tion of the process.

2.2. The Spanner System

SPANNER is an environment consisting of a set of modules for specifying and
analyzing protocols. The underlying formal model is the selection/resolution model
discussed above. SPANNER allows the user to specify a protocol as a set of coupled
FSMs using the SPANNER specification language. The parser module checks the
specification for syntactic correctness, and produces an intermediate description used
by other modules.

The basic construct of the specification language is a process; this corresponds to
a labelled directed graph of the s/r model. The initial declaration of the process sim-
ply describe the ranges of states and selections and gives the user the option (using
the keyword valnm) of providing descriptive names for the states and selections. The
import declaration describes which processes’ selections are visible in that process.
The init declaration declares the initial state of that process. The trans section is the
transitions section and consists of blocks that define transitions from sets of states.
The format of a block is shown in figure 2.2.

current state {selection list}
> pext state : condition;
> next state : condition;
Figure 2.2

Figure 2.3 shows the processes of a simple producer-consumer problem in the specifi-
cation language.

45

constants N = 3

process P /*the producer*/
import C
states 0..2 valnm [PRODUCE.:0, AB:1, TRY:2]
selections 0..5 valnm [idle:0,write:1,writing:2, done:3, head:4,tail:5)
init PRODUCE
trans

PRODUCE {idle, write}

> TRY :write);

>$:otherwise;
TRY {head, tail}
> AB :(C:idle,read,done) + (P:head)*(C:head) + (P:tail)*(C:tail);
>3 :otherwise;
AB {writing, done}
> PRODUCE:(P:done);
>89 :otherwise;
end
process C /*the consumer*/
import P

states 0..2 valnm [CONSUME:0, AB:1, TRY:2]
selections 0..5 valnm [idle:0, read:1, reading:2, done:3, head:4, tail:5]
init CONSUME
trans
CONSUME {idle, read}
> TRY (X.# > 0) * (Ciread);

>3 :otherwise;
TRY {head,tail}
> AB :(P:idle,write,done) + (P:head)*(C:tail) + (P:tail)*(C:head);
>3 :otherwise;
AB {reading, done}
> CONSUME:(C:done);
>89 :otherwise;
end
process X /*the counter*/

states 0..N+1 valnm [ERROR:N+1]
selections 0..N+1 valnm [error:N+1]
init 0
trans

$ {s}

>($ + 1)%(N+2): (P:done);

>(% - D%(N+2): (C:done);

>89 : otherwise;
end

Figure 2.3

46

SPANNER provides a variety of other constructs that make it easier to specify
large systems. This includes the notion of cluster, to facilitate hierarchical develop-
ment, and the notion of process type as a template for the instantiation of similar
processes. These constructs are discussed in the references.

The SPANNER system allows the user to experiment with and study the system
of coupled FSMs in two ways. First, the system can be studied using the reachability
graph. The reachability graph is a graph whose vertices are global states (vectors of
local states), and whose directed edges are valid transitions between global states.

The latest version of SPANNER is actually based on an extension of the s/r
model which allows reasoning about infinite paths (chains) [ACW86]. It turns out
that many questions about protocols such as deadlocks, livelocks, and liveness can be
answered solely by proper investigation of the reachability graph. The general
mechanism that we use is to add monitor processes that either check for or ensure
certain properties of interest. For example, to an existing protocol, we could add a
process that ensures that a particular component always makes progress and does not
pause forever (a liveness property). Similarly, we could add a process that checks
that a particular task such as receiving messages in the order sent was met. In this
approach, proving the validity of arbitrary temporal logic formulas is done by check-
ing properties of a reachability graph.

In order to make it convenient to study the reachability graph, SPANNER pro-
duces a database that consists of three tables (relations). The global reachable states
table (table r) has as attributes index (the number of the global state), and the local
state for each process identified by the name of the process. In addition, each global
state has the attribute cc that identifies to which strongly connected component that
state belongs. The transitions table (table r) has as attributes to-stare and from-state
that specify the global state numbers for the one step transitions. Using a set of com-
mands, the user can query the relations to determine those table entries that satisfy a
particular condition. For example, in the producer-consumer protocol of figure 2.1,
we could ask if there is a global reachable state with process P in state AB and process
C in state AB, corresponding to both processes accessing a common buffer at the same
time, and we would find that the answer is no. In addition, the database has a third
relation called table ¢ that is used in checking for liveness properties. For details, see
[ABMSS].

Another way of studying the system of coupled FSMs is through simulation.
This is particularly useful for very complex protocols, since interesting constraints can
be imposed on the simulation. For example, it is possible to assign probabilities to
the selection choices and it is also possible to force a selection to be held for a partic-
ular number of time steps. SPANNER allows the creation of a database of sample
runs using a set of simulation modules. These modules allow a simulation to be
setup, using the constraints mentioned, then simulated, and finally analyzed. The
user can analyze the results of the simulation by querying the generated database
using an interactive query language, similar to querying the reachability database.

Reachability

Reachability in SPANNER is done in a fairly standard way. Given, a global
state of the system (a vector of local states of components), the first step is to gen-
erate potential new global states. The is done by checking for all possible transitions
that are enabled in each component for that given global state, and then looking at

47

the new local states that result. These new local states are combined to form the next
set of global states. This is the generator function of reachability. Next, the poten-
tial new states are checked to see if they truly are new states. This is done by keep-
ing the reached states in a hash table. This is the rabulator function of reachability.
Unexplored states are kept on a list of states to be investigated, and they can be
explored by either breadth-first or depth-first search.

In this paper, we essentially discuss various ramifications of parallelizing this
reachability algorithm. As noted in the introduction, states can be generated in
parallel, since the generation of next states from two different initial states can be
done independently. Thus, the generator function can be done in parallel. Further,
by being careful to handle only parts of the hash table, the tabulator function could
also be done in parallel. It should also be noted that the generation of new states
from a given initial state can also be made parallel to some extent, since each com-
ponent process can independently determine the enabled transitions from its initial
local state.

3. Implementation

In this section we provide some of the details of our proposed implementation.
First, we describe the particular environment in which we intend to construct the
parallel version of SPANNER. We then outline the distributed reachability algo-
rithm. The details of the scheduling policy implemented are discussed in section 4.

3.1. Implementation Environment

The system will be implemented on a network of SUN workstations in the Dis-
tributed Computing Laboratory of Princeton University. We will use SUN models 2
and 3, which will provide us with some heterogeneity with respect to processor speeds
(the model 3 processor is significantly faster than that of the model 2). The
machines are connected via a dedicated Ethernet network, which ensures that during
our experiments the network is not loaded by extraneous messages.

The machines will be running SUN UNIX version 3.3, which supports a variety
of networking protocols [Sun86]. The currently implemented protocols are either
stream or daragram oriented. Stream protocols provide a bidirectional, reliable,
sequenced communication channel between processes. The stream protocol imple-
mented by SUN is the TCP protocol defined by DARPA [Po80a]. Datagrams also
allow bidirectional communication, but make no delivery guarantees. Datagram
packets may be lost, duplicated, etc. SUN's datagram implementation is based on the
IP protocol standard [Po80b]. Either type of protocol can support a message rate of
somewhat less than 1 megabit per second between two SUN workstations on an oth-
erwise idle Ethernet.

At first glance it would seem that choosing a stream protocol might be the obvi-
ous course of action for our work. After all, users of stream protocols do not have
to concern themselves with the details of packet formation, dealing with duplicates,
ensuring that messages are not lost, etc. However, this functionality comes at the
cost of lessened control over the transmission of data. The user view of a communi-
cation stream is that of a boundary-less flow of data. That is, users think of streams
as if they were inter-processor versions of UNIX pipes [RT78], and are not aware of
the details of the underlying communication layers. Typically however, a stream

48

protocol is implemented on top of a datagram protocol (as is the case for our net-
work). System designers who are primarily concerned with efficiency and perfor-
mance may need to have access to these underlying layers. For example, it may be
desirable to control the amount of data in a datagram packet and the time of its
transmission.

In practice, communication systems (i.e., the combination of network hardware,
protocols and operating system support) have certain packet sizes that they deliver
most efficiently; for example, if the networking code in the operating system kernel
needs to move the user’s data out of the user’s address space before shipping it across
the network, a packet size equal to the operating system’s page size will usually result
in the largest throughput. Another fact that must be taken into account in the imple-
mentation of a parallel application is that it is usually more efficient to send one large
message than many small ones because there is normally an overhead per packet sent.

In light of the above comments, it seems clear that our choice of networking
protocol is not an obvious one. Our present approach is to develop the initial code
using a stream protocol. Once the debugging stage is complete, we will start using
the datagram facility, in order to obtain the maximum performance from our system.

3.2. Software architecture

We have already provided some details of the reachability analysis carried out by
SPANNER. The distributed version consists of n generators and m tabulators. Each
generator stores the complete description of all component FSMs but keeps no infor-
mation about the set of reachable states. The "global" hashtable (which would be
used by SPANNER in its non-distributed version) is now split into m equal nonover-
lapping hashtables to be used by each of the m tabulators. Each tabulator has no
information about the FSMs, and will only store the global states which hash in its
local hashtable. This implies that each global state can be stored in only one among
the m tabulators. One can easily define the function & which maps any global state v
to the appropriate tabulator h(v) as follows. Compute the hashvalue of v, and check
to which of the local hashtables it corresponds. The index of the corresponding tabu-
lator is the value A (v).

A generator is described in terms of three concurrent processes: a receiver pro-
cess, which feeds the input queue with unexplored states by unpacking the arriving
messages; a next state generator, which given a state produces its successor states;
and a sender process, which controls the sending of the resulting states through the
network. A tabulator is similarly defined in terms of a receiver, a state tabulator, and
a sender process. A more precise description follows:

Generator i, i=1,...,n.
Process Receiver
do until (end of reachability analysis) {
receive message from network;
break it into states;
append the states to the generator input queue

Process Next_State_Generator

do until (end of reachability analysis) {
get next state v from the generator input queue;
compute the set nexr(v);

49

for each v’ in nexr(v) dof
compute j=h(v');
append <v',v,i> to the generator
output queue with destination Tabulator j

}

Process Sender
do until (end of reachability analysis) {
for each output queue with destination Tabulator j, j = 1,...,m, do{
use the heuristic scheduling policy of section 4
to pack states into messages sent to Tabulator j

}

}

Tabulator j, j=1,...m.

Process Receiver

do until (end of reachability analysis) {
receive message from network;

break it into states;
append these states to the tabulator input queue

Process State_Tabulator
variables: Uj is the list of the unacknowledged states
sent to generator i (in the order sent), i = 1,...n.
do until (end of reachability analysis) {
get next element <v',v,i> from the tabulator input queue;
if v is in Uy for some k=1,...n, then
update Uy=:U;—(v,vy,...,V),
where vy,...,v, are all states in Uy
prior to v;
insert v’ in the hash table;
if v’ is a new state, append it to the tabulator output queue
}
Process Sender
do until (end of reachability analysis) {
Use the heuristic scheduling policy of section 4
to pack states from the tabulator output queue into messages
sent to the generators

}

What we have not specified yet is how the end of reachability condition will be
detected by the processes. A simple way to do this is the following. When any pro-
cessor remains idle for more than time r, it triggers a round where all processors
respond about their work status. If all of them have empty input queues, then the
above condition is satisfied.

A final point to be made is that at the end of the reachability analysis phase
each tabulator will have only a portion of the reachability graph and a final coalesc-
ing step will be required in which all the sub-graphs are merged. This coalescing step
could also be done in parallel with the tabulation.

50

4. Scheduling aspects

In this section we examine the scheduling problems which must be addressed by
the distributed software described in the previous section. There is a plethora of
parameters which are important for the efficient execution of the system. The meas-
ure of performance we consider is the total finishing time, i.e., the time at which all
the reachable states have been found. Intuitively, this can be minimized if we can
keep the work balanced among the various computing resources in the system.
Achieving such a balance among the tabulators and the generators constitutes a non-
trivial scheduling problem which needs some novel heuristic solution.

We start by examining a simpler system consisting of a single tabulator and »
generators. The basic controller of the load of the processors in our system is the
tabulator. It is the tabulator’s responsibility, once an unexplored (new) state has
been found, to ship it to the most appropriate generator among the n available. The
following reasons make such a decision very complex. In most LAN’s, a message has
essentially the same cost (delay) if it contains up to some maximum number of bytes.
This implies that sending a message containing one state or some system dependent
mum., number of states, can be achieved for the same cost. This motivates the batch-
ing of a large number of states in the same message. In order to make this possible,
states ready to be shipped must be kept in a queue until enough of them accumulate
to be batched in a message. The negative side-effect of such a decision is that this
can produce idle time for the processors waiting to process these states. On the other
hand, if a small number of states per message is sent, this will result in flooding the
network with messages and will increase their delay. The reader should be reminded
of the size of the problem being on the order of 10° to 10° states, which makes batch-
ing unavoidable. The optimal size of the batch is a crucial parameter to be deter-
mined. Note that batching needs to be done from the generator’s side as well.

Another consideration is the following. At the beginning of the computation,
the number of unexplored states for most problems will grow exponentially fast, and
towards the end it will rapidly decrease to zero. If the tabulator ships exceedingly
large amounts of work to the generators towards the last phase of the computation, it
is likely that during this last phase the workload of the generators will be unbalanced,
since there are not enough new unexplored states generated which the tabulator can
appropriately distribute to even things out in the generators. A sensible policy
should, in the initial phase of the computation, send large amounts of work to the
generators to reduce the probability of them staying idle. Towards the end the policy
should keep a store of unfinished work in the tabulator’s output buffer, from which
increasingly smaller batches of work are to be send to the generators in an attempt to
keep their outstanding workload balanced, and to reduce the workload uniformly to
zero. Such a policy will minimize the total completion time. A key factor in our sys-
tem that makes such a policy difficult to implement is the random delay with which
observations concerning the workload of the generators are made. The tabulator can
only estimate the outstanding work in the generator sites from the information in the
messages it receives (the newly generated states arrive together with the identity of
their generator site). An important characteristic of our system is that the delay of a
message through the network is of comparable magnitude to its processing time (time
that the destination processor takes to complete the work associated with the states
stored in the message). Finding optimal policies with delayed information is in gen-
eral outside the scope of any realistic analysis; hence, a heuristic solution to the prob-
lem is the most for which one can hope.

51

Following the ideas in the previous discussion, a scheduling policy should define
the following decisions for the tabulator: when to send a message to a generator, fo
which generator to send it, and how much work the message should contain. The
available information for such a decision is an estimate of the amount of outstanding
work of each generator, its processing rate (estimated), the amount of work stored in
the tabulator’s queue, and the average delay of messages in the network.

The Queueing Model.

For modeling the system we make the following assumptions. First, the graph
constructed by the reachability analysis is characterized by a distribution function f5
of the outdegree of its states, and by some upper bound Ng of its number of states.
In our model we assume that each state has 4 next states, where d is distributed with
fe and is independent for different states. We also assume that each newly generated
state at time ¢ has probability r(r) of being already visited. There are many ways to
describe r(r) as a function of x(r) and Ng, where x(r) is the number of states found up
to time r. Different such functions correspond to different types of graphs. One such
choice is (1) = x(r)/Ng, which corresponds to graphs with small diameter.

The model describes n generators and a tabulator connected through a LAN, see
Figure 4.1.

qr Receiver :‘117';.0 a0 : Receiver g G
] |
i =1 o
(] 1
']
]]]
) I = |~
Sender E qk. qg’ f E Sender qg'
LAN
Figure 4.1

There are two types of customers in the system: the "simple" customers (single states)
and the "batched" customers (many states batched into one message). Simple custo-
mers belong to different classes. Each class describes the origin-destination of the cus-
tomer (for example, T—G;) and whether or not the customer serves as an ack-
nowledgement (discussed below). The class of a batched customer is the description
of the class of each simple customer it contains. Each generator G;, i = 1, * - - ,n, has
an input queue g%, an output queue qS', and a server with rate p®. There are two
network queues interfacing to the generator, the network output queue qf,{a, and the
network input queue qg‘_ ;- Customers arriving in the network output queue are of the
batched type. Upon arrival, they are automatically "unpacked” (a message containing
k states is broken into k single state messages), and the resulting simple customers are
placed in the generator input queue. The server serves simple customers from the
generator input queue in a FCFS basis, and after each service completion it appends a
random number d of simple customers with destination the tabulator, in its output
queue. The first among them is tagged as an acknowledgement. As mentioned
before, d is distributed with distribution function f;. A sender processes connects the
output queue of the generator to the input queue of the network. Its function

52

consists of making batched customers out of simple customers, and append them at
appropriate times in the network queue. Its available information consists of the
state of the generator queues, and of some local timer.

The tabulator has an input queue ¢j, and an output queue g5. These queues
interface in a similar fashion to the generators case with a network output queue gf o
through an receiver process, and with the network input queue g%, through a sender
processes respectively. A batched customer arriving in the network output queue is
immediately unpacked, and the resulting simple customers are placed in the tabulator
input queue. A server of rate p” serves this queue in a FCFS basis. When a custo-
mer finishes service at time r, it leaves the network with probability r(r), and with
probability 1—r(r) it joins the output queue. In this event, the state counter x is
incremented by one, to denote that a new state has been found. If a customer finish-
ing service is an acknowledgment and G, was its origin (class information of the cus-
tomer), the variable z denoting the outstanding work (number of states to be
explored) of generator G, is decremented by one. The sender process does the pack-
ing of simple customers, assigns the destination of the resulting batched customers,
and places them at appropriate times in the network input queue. Its available infor-
mation consists of the values of x, z;, - - - ,z,, and the state of the tabulator queues.

We are now left with the description of the network. There are n+1 input
queues and n+1 output queues already mentioned before. The model we choose
better describes LAN’s of the Ethernet type, such as the one in our implementation.
Each non-empty input queue is served with rate min[pyax, o/ #of non & queues].
To model congestion we choose i <(n+1)pm. In this model, py,, corresponds to
the maximum service rate allocated to any network queue. This implies that the
minimum delay of a message being in the front of a network input queue, is on the
average 1/pm.. If the number of transmitting stations increases, i.e., the number of
non-empty network input queues grows, the service rate allocated to a queue
decreases as the total network service rate p,, is being shared equally among the
competing queues.

Heuristic Scheduling Policies.

A scheduling policy is defined in terms of the algorithms used by the n +1 sender
processes of the system. We propose a scheduling policy of the following form:

Generator i: The sender process has a timer of duration . While the generator
output queue has more than Bg customers, it forms batches of B; simple customers
and delivers them to the network. If there are less than Bg customers, it sets the
timer. If the timer times out, and there are still less than B; customers, it batches
them into a message and sends them to the network.

This policy reduces the probability that the tabulator stays idle, while there is
work for the tabulator at the generators. It also reduces the number of messages
needed.

Tabulator: The sender algorithm uses the following heuristic. The size of the
batch is an increasing function of the number of customers in the tabulator output
queue g5, starting from zero if the queue is empty, and bounded by some Br. There
is a threshold k* in the number of customers in g5, which affects the operation as fol-
lows. If there are more customers than k", it continuously makes batches and sends
them to the generators, keeping the outstanding work indices w; = z7;/u% as close as
possible, until an "upper watermark” W, for each w; is reached. Then it stops

53

sending, until some w; drops below, in which case it resumes the sending of work. If
the number of customers in g5, drops below k*, it stops sending until for some genera-
tor wy<Wy,, where Wy, corresponds to some "low watermark”. Then it resumes
sending to this particular generator, until w;=W;,. The Readers can convince them-
selves that in order to achieve an even distribution of customers in the queues of the
system, Wy, and W, have to be increasing functions of the number of customers in
q5. Choosing Wy, to grow appropriately with ¢} ensures that the tabulator queues
do not grow faster than the generator queues. Choosing W, to decrease as g5
decreases provides that in the termination phase all queues will decrease uniformly to
zero. The appropriate selection of Wy,, and Wy, remains an open research topic.
(A simple queueing theory argument indicates that W, should be proportional to
(95)*.

We can simply define a policy for the general case of m tabulators by having
each tabulator use |U;|, as defined in the previous section, in place of z,.

Some Open Scheduling Problems,

There are two simple versions of the model for which the form of the optimal
scheduling policy may be more tractable. Solving these could give a greater insight
for how to operate the complete system. These models are derived by reducing to
zero the transmission delay of the network in one of the directions from G to T or
from T to G. The first model is described in Figure 4.2.

SR S

i @z
== A ||| 0 E

]]
qi Controller E an a _ " EDZ

: O

e e e - 4

Figure 4.2 7

There is a finite number K° of simple customers at time O in queue g;, There is a
sender process (controller) which as in the previous model, makes batches of simple
customers, and puts them in the network queue gy. Each such batch corresponds to a
batched customer and is destined to one of the two servers §; S;. The network con-
sists of a server serving with rate py in FCFS basis batched customers. Once a
batched customer is served, it joins its destination queue ¢;, i = 1,2 as the set of its
composing simple customers. Each server §; serves with rate p from its queue g,
i = 1,2. The information available to the controller is the complete departure process
of the system.

The second model is shown in Figure 4.3.
The difference with the previous is that it takes zero delay to append customers in the
queues of the two servers, and that the information available to the controller is a
delayed picture of the departure process of the system. For both systems we want to
minimize the time all customers complete service. One can easily see that a threshold

91 B
i ittt)
l — 1 '
s w o
t D
el kD — Ok
| —]
|l ‘
Controller ! 2 I-LN:
g J
92 P
Figure 4.3

type policy of the form described in the previous section should perform well in these
models. Although the mathematical analysis of these two models might be prohibi-
tively complex, any progress in this direction can result in a valuable practical contri-
bution.

4.1. Performance Analysis

In this section we provide a simple analytic model in order to predict the approx-
imate performance of our scheme. Let

n = number of generator nodes

m = number of tabulator nodes

N = number of states in the graph to be analyzed

d = average out-degree of vertices in state graph

t, = average time required to generate a single state (seconds)

t; = average time required to decide if one state is new (seconds)

B = average number of states batched in each message

tn(B) = average time required to send one message containing B states (seconds)

Using the above definitions, the reachability analysis performed on a single worksta-
tion will take total time T; = Nd(r,+1;) to complete, since each state is examined 4
times on average, by both the tabulator and generator software. Assuming that using
the current technology, a tool runing on a 1 MIP workstation completes a graph of
10° states and d = 10 in the order of an hour, we get that r,+1, is equal to 5-1073s.

The first interesting remark is that there is a maximum achievable speed up
independent of the number of workstations. To see this, we compute the total time
spent in communicating through the network. One can easily see that this time is
equal to N(d+1)1.(B)/B. Let B* correspond to the value of B minimizing 1,(B)/B.
Then, if an arbitrarily large number of workstation is used, the maximum speed up is
aproximately equal to Kpay = B™(t3+1,)/t,(B"). Using B = 40 (25 bytes/state, 1024
byte message), and and network bandwith equal to 5 Mbits/s, we get K, = 100.
(For a large number of two-way conversations the effective bandwidth of an Ethernet
is at least 5 Mbits).

We examine now how to choose the m, n. Assuming that we have m+n < K.y
and we operate in the otimal way (all processors are kept busy until the end), then
we must have that Ndrg/m = Ndig/n = Ty/(n+m). From this it follows that the
optimal partition is such that t;/m = r,/n, and the speed up is equal to m +n.

55

5. Conclusions

In this paper we demonstrated that distributed reachability analysis can be easily
incorporated into many existing protocol analysis environments and can produce a
significant speed up of the analysis. In many research environments there is easy
access to LANs with 10-20 workstations, which, according to the results of our per-
formance study, is an ideal environment to implement our method. An important
remark which makes our approach even more viable in the future is that fiber optic
technology makes communication bandwidth available in a faster rate than the rate of
increase of hardware speed. In our method a large number of communicating works-
tations can utilize this available bandwidth.

We are currently implementing the parallel reachability algorithm in SPANNER.
We hope that the results of our implementation will justify the approach presented in
this paper.

References

[ABMS6] S. Aggarwal, D. Barbara and K. Meth, "Specifying and analyzing pro-
tocols with SPANNER", Proceedings of the IEEE International Confer-
ence on Communications, June 22-25, 1986, Toronto, Canada.

[ABM387] S. Aggarwal, D. Barbara and K. Meth, "SPANNER - A tool for the
specification, analysis and evaluation of protocols”, to appear in IEEE
Trans. on Soft. Eng., 1987.

[ABM388)] S. Aggarwal, D. Barbara and K. Meth, "A software environment for
the specification and analysis of problems of coordination and con-
currency", to appear in the IEEE Trans. on Software Eng., 1988.

[AC85] S. Aggarwal and C. Courcoubetis, "Distributed implementation of a
model of communication and computation”, Proc. of the 18th Hawaii
Int. Conf. on System Sciences, January 1985, pp. 206-218.

[ACW86] S. Aggarwal, C. Courcoubetis and P. Wolper, "Adding liveness proper-
ties to coupled finite state machines", AT&T Bell Laboratories Techni-
cal Memo., 1986.

[AK84] S. Aggarwal and R. Kurshan, "Automated implementation from formal
specifications"”, Protocol Specification, Testing, and Verification 1V, (Y.
Yemini and al. eds.), North Holland, 1984.

[AKS83] S. Aggarwal, R. Kurshan, and K. Sabnani, "A calculus for protocol
specification and validation", Protocol Specification, Testing and Verifica-
tion 111, H. Rudin and C. West (Eds.), North Holland, 1983.

[An86] J. P. Ansart, et al., "Software tools for Estelle", Protocol Specification,
Testing and Verification VI, B. Sarikaya and G. Bochman (Eds.), North
Holland,1986, pp. 55-62.

[Bo87] G. V. Bochmann, "Usage of protocol development tools: the results of
a survey”, Proceedings of the 7th IFIP workshop on Protocol Specifica-
tion, Testing and Verification, Zurich, May 5-8, 1987.

[CEg2] E. M. Clarke, E. A. Emerson, "Synthesis of synchronization skeletons
from branching time temporal logic", Proc. Logic of Programs
Workshop, 1981, Lecture Notes in Comput. Sci. 131, Springer-Verlag,
1982, 52-71.

[CG86]

[F187]

[GK82]
[GK8T]
[Po80a)
[Po80b]

[QS82]

[RT78]
[Su8l]
[Sun86]

[ZWRCBS0]

56

D. Cohen, B. Gopinath, et al., "IC*: An environment for specifying
complex systems", Proc. IEEE GLOBECOM Conf., Houston, Dec. 1986,
pp- 632-637.

A. Fleischmann, "PASS - A Technique for specifying communication
protocols”, Proceedings of the 7th IFIP workshop on Prorocol Specifica-
tion, Testing and Verification, Zurich, May 5-8, 1987.

B. Gopinath and R. Kurshan, "The selection/resolution model for con-
current processes”, unpublished.

I. Gertner, R. P. Kurshan, "Logical analysis of digital circuits", Proc.
8th Int’l. Conf. Computer Hardware Description Languages, 1987, 47-67.
J. Postel, “DOD Standard Transmission Protocol,” RFC 761, Informa-
tion Sciences Institute, January 1980.

J. Postel, “DOD Standard Internet Protocol,” RFC 760, Information
Sciences Institute, January 1980.

J. P. Queille, J. Sifakis, "Specification and verification of concurrent
systems in CESAR, International Symposium in Programming, LNCS
137, 1982.

D. Ritchie and K. Thompson, “UNIX Time-Sharing System,” Bell Sys-
tem Technical Journal, Vol. 57, Number 6, 1978.

C. A. Sunshine, (ed.), Communication Protocol Modelling, Artech
House, 1981.

“Inter-Process Communication Primer,’”” Sun Microsystems User Docu-
mentation, Revision B of February 17, 1986.

P. Zafiropoulo, C. H. West, H. Rudin, D. D. Cowan and D. Brand,
"Towards analyzing and synthrsizing protocols", IEEE Trans. on Comm.,
COM-28, 4 (April 1980), pp. 651-660.

A TOOL FOR THE AUTOMATED VERIFICATION
OF ECCS SPECIFICATIONS OF OSI PROTOCOLS

Vincenza Carchiolo and Alberto Faro
Istituto di Informatica e Telecomunicazioni
Facolta’ di Ingegneria - Universita’ di Catania
Viale Andrea Doria, 6 - 95125 Catania (Italy)
Tel + 39 95 339449 - Telex 978255 UNIVCT I

1. INTRODUCTION

Due to the increasing complexity of the protocols defined
by the DSI (Open Systems Interconnections) standards the
ability to formally specify communication protocols and
services is becoming more and more appreciate. In fact, it is
common belief that the use of a formal technique is the only
means to obtain a precise and unambiguos specificication of
0SI communication protocols and services. Moreover, a formal
technique allows one to formally define protocol properties
and perform their verification.

The design of 0OSI systems can be viewed as consisting of
two main steps:

i. specifications of services and protocols;

ii. verification (consisting in proving the completeness,

correctness and consistency of the specification).

For these reasons the suitability of a formal technique
as Formal Oescription Technique (FDT) for the specification of
0SI protocols and services is strongly linked to the existence
of automated tools able to aid the design of 0SI systems, that
is able to support the designer in the effort to provide
formal specification and verification.

ECCS language, based on Milner’s Calculus of
Communicating Systems [Mil 80], provides a framework to
formally specify and verify 0SI systems as shown in [Car1 B86],
[Car2 86] and [Car B85]. This paper deals with the ability to
provide some tools in order to make ECCS actually wuseful as
FOT.

Two kinds of tools would be provided to implement an
automated enviroment for designing OSI systems. The first tool
is to make a syntax check and a simulation of the
specification [Pap 87] for rapid prototyping; the secand one
is to perform the verification step.

This paper presents a verification tool for ECCS
specifications, written in the logic programming PROLDOG [Clo
81]. This tool is based on the simulator for ECCS

58

specifications presented in [Pap 87] and on the bisimulation
notion given in [Par 81]. For this reason the tool is named
BlIsimulation Prover (BIP). The verification algorithm used by
this tool is an extension of the Sanderson algorithm [San 82].

The present paper 1is divided in four main sections:
Section 2 contains a description of the used language, Section
3 discusses about the verificaetion concept in the O0SI
framework, Section 4 gives some information about the
algorithm on which the verification tool is based, Section 5
presents the structure of the BIP tool and gives a sort of
implementation notes of the BIP core. Finally, some remarks
are given on the suitability of PROLOG to implement the
proposed verification tool.

2.ECCS: A SPECIFICATION LANGUAGE FOR OSI PROTOCOL

To perform a verification by BIP, the language wused to
specify a 0S5I system must be the ECCS language. It is based on
Milner’s CCS [Mil BO@] and it is an attempt to provide an ad-
hoc algebraic language for the specification of open systems.
Some extensions are introduced in respect to CCS with the
purpose to make easy the specification of service and protocol
for open systems.

The ECCS (Extended CCS), as said, is the MILNER’s
Calculus for Communicating Systems, without value passing, and
with the addition of the disable operator. Only a few syntatic
variants are also introduced with respect to CCS syntax. A
brief introduciton of ECCS follows.

ECCS is a calculus for specifying the behaviour of the

communicating systems. An ECCS system (called process in the
following) can be viewed as a black box interacting with the
environment through communication points named ‘gates’. The
atomic form of communication is the action; the offers of a
processes to communicate with the environment are termed
‘observable actions’. An observable action, in the case of
ECCS without value passing, is defined by:

~ the gate where it is offered;
- the direction, input or output from the viewpoint of the
process.

An observable action may take one of the following forms:

g? output at the gate g

g input at the gate g

A process may also be capable of internal action denoted
by T, for which no agreement with the environment is
requested.

An action is the simplest ECCS process expression. An
ECCS process expression can be built from others ECCS
processes expressions by means of the suitable operators.

Table 1 shows the ECCS syntax, where P and Q are process
expressions.

59

Table. 1. ECCS syntax

identifier

Operator Process expression Remark]
Inaction nil

Action a: P a is an action

Sum P+ q

Composition P par Q

Oisable P dis Q@

Relabelling P {S) S is a relabelling
Restriction P\ A A is a list of gate
Behaviour p p is an identifier

In Table 2 the syntax of action and relabelling
in a BNF form.

are given

Table.2.
<action> ::= <gate_name>? <gate_name>" T
<gate_name> ::= <identifier>
<relabelling> ::= <gate_name_list>/<gate_name_list>
<gate_name _list> ::= <identifier> {,<identifier>}

The operator precedences are:

composition > disable > sum >
action > (relabbelling = restriction)

The formal language semantics 1is given in
inference rules, i.e. P-a->P’ means that P executes
a and transforms itself into P’. Table 3 presents
semantics of ECCS.

In the following an informal interpretation of
operators is given.

Inaction
nil can execute no action.

Action g? : P g” : P T : P

g”? : P can transform itself into P by executing
action at gate g.

g’ : P can transform itself into P by executing
action at gate g.

T : P can transform itself into P by executing the

action T.

terms of
the action
the formal

the ECCS

an output
an input

internal

60

Table. 3. ECCS semantics

Operator Premiss Conclusions
Action none g?:P —-g?-> P
g :P -g~=> P
T:P -T-> P
Sum P -a-> P’ P+ Q@ ~a-> P’
Q -a-> Q@ P+ Q -a-> Q°
Composition P -a-> P’ P par @ -a-> P’ par Q@
Q -a-> Q' P par @ -a-> P par @’
P -g?-> P’",Q@-g"->Q" P par Q@ -T-> P’ par @&’
Disable P -a-> P’ P dis Q@ -a-> P’
Q ~a-> Q° P dis Q@ -a-> P dis Q°
Relabelling P -a-> P’ P{S} -a-> P’{S}
Restriction a s AP -a—>P’ P\ A —a-> P’\A
Behaviour p := P, P-a->pP’ p —a-> P’
identifier

Sum P + Q
P + § may behaves like P or Q®.

Composition P par @
P par Q describes the concurrent behaviour of P and @ with
communication through identical gates.

Disable P dis @
P dis Q may behaves like @ and terminate together with it.
Alternatively, at any step, it may start behaving like P

Relabelling P{S)

A relabelling S (expressed by X/Y) is a morphism over gates.
If X an Y are gate lists of equal lenght, X/Y denotes that
each of gate in X must be mapped with the corresponding gate
in Y.

Restriction P\G
The behaviour of P\G is equal to the behaviour of P with the
gates in G hidden to the environment.

Behaviour identifier p:=P
Each process expression P can be associated to a behaviour
identifier p in the form p:=P

In BIP system to prove the equivalence between two
process expressions P and Q, possibly containing some
behaviour identifiers, they must be named, i.e. they must be
associated with a behaviour identifier and they must be stored
in a file.

A relevant concept of a specification language 1is the

notion of equivalence. More than one equivalence relation has
been introduced for CCS [Mil 88], [Par 81], [DeN 82]; each of
them could be easily introduced in ECCS. In this paper, we

shall only introduce the equivalence relation, termed

61

obsevation equivalence, needed for our verification purpose.
We shall define this equivalence relation in term of a
bisimulation relation like in [Par B1). To this aim, we define
the relation

=g=>

where s is a string of observable actions {(possibly the empty
string €).

If s=€¢ then =g=> = (-T->}#%
If s=a1 a2 ... aN then
=s=> I (-T->)% -al1-> (-T->)#% -a2-> (~-T->)# ~aN->...(~-T->)#%

P and @ are observation equivalent if there exists a
bisimulation relation R such that <P,Q> € A. A relsation R is a
bisimulation if:

M s : P=s=>P’ exists a R’ : Q=s=>Q" <P’,Q’> € R
¥ s : R=s=>Q’ exists a P’ : P=s=>P’ <P’ ,Q’> € A

3. PROTOCOL VERIFICATION

Protocol verification consists in proving the
completeness, correctness and consistency of the protocol
specifications. Completeness needs that each protocol entity
is able to manage all the inputs coming from the cooperating
remote entity and from the adjacent ones. Correctness needs
that the protocol satisfies both safety and liveness
properties. Consistency needs that the service offered

(requested) by the protocol conforms to that expected (given)
by the upper { lower) layer.
Incompleteness can produce two undesirable effects:

i) one or both the protocol entities handle as error the
arrival of an input which on the contrary is
productive for the service to be offered by the
protocol;

ii) the protocol does not offer all the service options.

The first situation is not acceptable because it generally
leads to deadlock or does not permit the correct execution of

the purpose of the protocol, so not satisfying the safety
condition. The second situation on the contrary may be
acceptable if the user is not interested in all the service
options. Completeness analysis is the first step for protocol
verification. Generally the completeness is statically proved
by checking that there are no unspecified productive

receptions for each protocol entity.

Another property to be proved for protocol safety is the
absence of overspecification. We can have two main types of
overspecifications:

i) the protocol contains some redundant specifications
which are never used for offering the service fixed

62

by the designer;

ii) the overspecification constraints determine the
impossibility of offering the service fixed by the
designer.

We note that the last situation should be surely avoided

because it does not conforms to the safety property. On the
contrary the former could be acceptable, but it should be
avoided because it could lead to wunsafe situations. For
example the wunexecised message receptions specified in the
first situation could be execised by erroneous messages, thus
leading to bad behaviours. The absence of the first type

overspecification can be statically proved by checking that
there are no unexecised message receptions for every allowable
state pair (protocol global state) of the cooperating
entities. The proof of the second type overspecification is
part of the proof of the correct execution of the purpose of
the protocol (see below).

Other two important properties for protocol safety are:
the freeness of state ambiguities and the deadlock freeness.
These properties can be proved by respectively checking the
absence of entity states shared by two different global stable
states and the absence of global statesconsisting of the pair
of the entity states allowing only message receptions.

The above four properties together with the property that
the protocol correctly executes its purpose guarantee the
protocol safety, i.e. protocol partial correctness. To prove
the total correctness of a protocol it is necessary also to
prove the liveness properties.

Protocol liveness generally requests the absence of
unproductive <cycles during the protocol execution (livelocks)
due to either an erroneous resource scheduling (starvation
condition) or the relative speed of the messages (tempo-
blocking condition). In addition liveness requests that the
protocol is able to handle feaults (i.e. recovery from failure)
and to come back to a normal situation after any possible
pertubation (i.e. selfsynchronization) . Finally liveness
requests that the protocol terminates within a finite time
(finite termination); however sometimes it may be acceptable
an "infinite termination”, that 1is the property that the
protocol eventually terminates (fairness). The liveness
properties together with the assumed partial correctness allaow
us to prove that the protocol completes in a finite time the
requested service (total corractness).

After proving the protocol completeness and correctness,
the protocol verification needs the <consistency of the
specifications. This can be obtained by proving that the
purpose of the protocol (that is the service offered by the
protocol) is equivalent to that expected by its users.

Several approaches exist in literature for protocol
verification. Generally they use a hybrid approach consisting
of both state exploration and assertion proving. Algebraic
approach on the contrary allows us to verify protocol by using
a single framework. In particular the purpose of the protocol
(i.e. the service to be offered to its users) is expressed by
an algebraic formula and the verification essentially consists
in proving the equivalence between the exepected service and

63

that really offered by the protocol obtained by using
algebraic operators from the algebraic specifications of the
protocol entities and the intermediate channel. The above
verificetion can be perfomed by the normal equational
reasoning for finite state protocol and makes possible to
point out the following undesirable situations:

~ unspecified message receptions {protocol completeness);
~ unexercised message receptions (overspecification);

- state ambiguities;

- states without progress (deadlock).

Therefore algebraic approach allows us to prove partial
correctness. Algebraic approach allows us also to prove the
liveness properties verifiable by a finite observer. Thus it
is not possible to prove that a certain cyclic situation is
not a livelock. Livelocks can be treated by extending the
algebraic approach by temporal logic constructs. In addition
both temporal logic and structural induction should be applied
to treat protocol divergence (fairness or infinite state
evolution).

4. BISIMULATION PROVING: AN ALGORITHM

As said in the introduction the part of the verification
framework that we must take into account in this paper concern
with the proof of the consistency of the service offered by
the protocol and the one expected by the upper layer.

The proof of other properties could be performed by using
ECCS too, but this topic is out of the scope of this paper.

In the spirit of ECCS the proof of consistency consists in
proving the observation equivalence between the service
expected at the wupper layer and the composition of the
underlying service with the entities performing the protocol.

Our believe is that a more feasible algoritm for proving
the observation equivalence should be one based on the
bisimulation definition of Section 2.

This oalgorithm is based on the definition of observatian
equivalence in terms of bisimulation relation as introduced in

{Par B81). It aims to show the existence of a bisimulation
relation between the two processes. The Sanderson algorithm
[San 82] is based on this idea. In this paper we present

another algorithm that is an enhancemnt of the Sanderson
algaorithm.

The key concept of both the algorithms is to build, if
any, the set R defined in the following way:
<P,Q> € R iff,

i) ¥ s: P =s=> P’ exists Q’: @ =s=> Q’ <P’,Q’> € R
ii) ¥ s: Q =s=> @’ exists P’: P =s=> P’ <P’ ,Q’> € R

where s is a sequence of actions.

This 1is sufficient to guarantee that a bisimulation

64

relation between P and Q exists.

If this set does not exist, then the algorithm terminates
with a feilure. In this cese, the behaviours of P and Q@ are
not in a bisimulation relation, that is P and @ are not
equivalent under the fixed point definition.

Sanderson algorithm censtructs, if any, the set R
satisfying the above said conditions (for two behaviours
specified by P and Q) under the following restrictive

conditions:

1) behaviour P (or Q) must be rigid, 1i.e. the behaviour of P
must be described avoiding the use of internal action T and
the non_deterministic choice.

2) the behaviours P and @ must have no derivation that can

diverge.

The algorithm used in BIP tool removes the limitation 1)
of Sanderson algorithm.

Both methods are based on a recursive algorithm and aiming
at building & list containing the behaviour pairs that are in
a bisimulation releation.

The condition i) and ii) in the case of Sanderson
algorithm can be replaced, as shown in [San 82], by the
following simpler conditions:

1) ¢6 : P -6-> P’ exists a @’: @ ~6-> Q" , <P’,Q’> € R
or
§ -T-> Q" , <P,@’> € R
2) # 6§ : Q -6-> Q’ exists a P’: P ~-6-> P’ , <P’,Q’> E H
3) ¥ T : @ -T->Q’ then <P,Q’> € R

where 6 1is a generic visible action and T is the internal
action.

In the following we refer to R_list as the list containing
the behaviour pairs, and we marking the pairs with a
check_mark and unchecked_mark.

Let A and B the behaviour pairs for which the bisimulation
relation must be proved, this algorithm can be described as
follows:

1. Initially the R_list consists of the only pair <A,B> with
the unchecked mark.

2. The first pair of the R_list with a mark unchecked is taken
into account. We call this pair <P,Q>; if there is no pair
with unchecked mark then the claimed bisimulation is proved.

3. The pair <P,@> is checked by the condition 1. If there
exists the behaviour Q’: A-6~>Q’ then the pair <«P’,Q°> is put
in the MR_list with the unchecked mark;orif there exists the
behaviour @Q°‘: QA-T->Q " then the pair <P,@’> 1is put in the
AR_list with the unchecked mark; otherwise there is a failure
and the bisimulation relation between A and B is disproved.

4. The pair <P,d> is checked by the condition 2. If there
exists the behaviour P’ then the pair <P’,Q’> is put in the

65

R_list with the unchecked mark; otherwise there is a failure
and the bisimulation relation between A and B is disproved.

5. The pair <P,Q@> is checked by the condition 3 and the pair
<P,Q’> is put in the RA_list with the unchecked mark.

6. Return to step 2

In the case of a no_rigid behaviour pairs the algorithm is
symmetric and two main differences in the algorithm can be
found.

The first concerns with the fact that caondition i) and
ii) should be replaced, as shown in the [Car 87}, by the
following simpler symmetric conditions:

1) ¥ 6: P -6-> P’ exists a Q’: Q@ -6~-> @’ , <P’,Q"> € R
or
Q -T-> Q" , <P,Q’> € R

2) ¥ T: P -T-> P’ exists a Q’': @ -T-> Q" , <P’',Q’> € H
or
Q >¥c> , <P'Q> € R

3) v 6: Q@ -T-> Q' exists a P’: P -6-> P’ , <P’ ,Q’> € R
or
P -T-> P’, <P’'Q> & R

4) % T: Q -T-> Q' exists a P’: P -T-> P’ , <P’ ,Q°"> € R
or
P %> , <P,Q°> £ R

where 6 is a generic visible action and T is the internsal
action.

The second one concerns with the need to make a
backtraking operation in the construction of the process pair
list that are in a bisimulation relation. To manage the
backtracing operations two process pair lists are generated,
one for the pairs of processes proved equivalent, the second
for the pairs of processes assumed temporarily equivalent.

S. THE IMPLEMENTATION CODE

This section gives some information about the
implementation code of the BIP system. QOur implementation
chaices and the development of the BIP system are also
discussed.

As said in Section 1, BIP system is a PROLOG tool for
verifying consistency of distributed systems.

Figure 1 shows the BIP system. It 4is functionally
structured in three modules and uses the information contained
in three date base: PDB, DDB and EDB.

66

SIMUL PDB
—
L
i
INTERFACE : D DB
Y.
e
> EQUIV | E DB

Fig.1 BIP structure

The first data base is a collection of ECCS behaviour; BIP
investigates on the consistency of the only processes whose
behaviour expressions are associated to behaviour identifiers
in the data base. This data base is called Processes Data
Base, in the figure it is represented by the box PDB.

The second data base named Derivation Data Base (DD8 in
the figure) contains the triplet formed by:

- the process P
- the action X
- the process P’

that are in the relation P -X-> P’

The third data base, named Equivalence Data Base (EDB in
the figure) contains the behaviour identifier pairs of the
processes assigned to be in bisimulation relation.

In addittion, Figure 1 shows three functional module: a
user directed module, named INTERAFACE, and two operative
modules named SIMUL and EQUIV.

INTERFACE module 1is devoted to manage the interactions
between the user and the system and it provides the user
interface that making the system interactive. This module
containg the predicated devoted to manage the video and to
store the processes in the data base PDB.

SIMUL module 1is devoted to simulate a given process

expressed by a ECCS behaviour expression. Let wus p the
behaviour identifier of a process contained in the data base
PDB, the SIMUL module returns, for each possible first action

that the process p may perform, the pair X, p’. Where X is the
action and p’ is the behaviour identifier of the process in
which the execution of action X transforms P. Briefly, SIMUL

67

module selects a process of PDB and generates the triplets of
DDB to be checked by EQUIV. Moreover, it adds the resulting
processes P’ to PDB. This module contains the predicates
performing the inference rules of table 3. A more deeply
description of the structure and functionality of this module
can be found in [Pap 87].

EQUIV module 1is the core of the BIP system. It is the

module that actually executes the verification of the
consistency between processes. It aims to verify that two
processes are observation equivalent, in the sense that there
exists a bisimulation relation between the two processes

initially inserted in PDB by the BIP user. This module 1is
structured in accord with the bisimulation algorithm presented
in the previous section. It contains the predicate bbis{P,Q)
devoted to prove the bisimulation relation between two finite
state processes having, respectivelly, P and @, as processes
identifiers. The predicate bbis(P,Q) succeeds if P and Q@ are
in a bisimulation relation. The predicate bbis(P,Q) behaves as
follows:

i) prove the existence of the bisimulation relation
between P and Q.
ii) manage the backtracking operations when the search

of a bisimulation relation between P and R fails.

To attempt at step i), the predicate bbis(P,Q) wuses
predicate bis(P,Q) in order to check the existence of the
bisimulation relation. It succeeds if:

i) the pair P,Q is already in the equivalent behaviour 1list
expressed by the predicate e(P,Q).
ii) the pair P,Q is already in the temporarily equivalent
behaviour list expressed by the predicate temp(P,Q).
iii) the conditions 1, 2, 3 and 4 of the previous section,
are verified.

Breafly this module starting by the information contained
in the data base DDB returns the equivalent behaviour pairs
that must be put in the data base EDB.

The advantages of the presented structure of BIP system is
the easily up-to-dating of this tool. If we choose another
equivalence relation, i.e. the testing equivalence [DeN 82] to
adequate the system it is sufficent to modify only the EQUIV
module; the other modules can be used without variantions.

6. CDNCLUSIONS

A verification tool has been presented aimed at making
easy the design of 0SI systems. The programming language used,
viz. PRAOLAG, has been shown suitable for a verification tool
for two reason:

- the easy mapping of the ECCS semantics and bisimulation
definition onto the PROLOG predicetes;
- the agreement of the PROLOG with the backtraking operation

68

needed.

BIP could be easily extended for others FDT having a
simiar structure of ECCS5 like, for example LOTOS [Lot B85]), one
of the standard FDT defined by IS0.

REFERENCES

[Car B8S8] V.Carchiolo and G.Pappalardo,”"CCS as a Specification
and Verification Technique: A Case Study and a
Comparison with Temporal Logic", Pacific Computer
Communication Symposium, Seoul (Korea), Oct. 1985

[Cart 86] V.Carchiolo et alii,"ECCS and LIPS: two languages
for 0SI systems specification and verification",
Internal Report, Istituto di Informatica e
Telecomunicazioni, Catania, Italy, 1986.

[Car2 B86] v.Carchiolo et alii,"A LOTOS Specification of the
PROWAY Highway Service”, IEEE Trans. on Computers,
Vol. C-35, No.11, Nov. 1986

[Car 87] V.Carchiolo and A.Faro, "On Bisimulation Relation",
Internal Report, University of Catania, 1987

[Clo 81)] Clocksin W., Mellish, "Programming in PROLOG,
Springer-Verlag, 1981

[DeN B82] R.De Nicola, M.Hennesy, "Testing Equivalences for
Processes", Internal Report, University of

Edinburgh, CSR-123-82, 1982

[Lot B85)] , Information Processing Systems ~ Open Systems
Interconnection, LOTOS - A Formal description
technique based on temporal ordering of
observational behaviour, Is0/TC 97/8C 21/ DP 8887,
Jnue 1985

[Mil B88)] RA.Milner, "A Calculus of Communicating Systems", LNCS
92, Springer Verlag, Berlin 19880

[Pap B87] G.Pappalardo, "Experiences with a verification and
simulation tool for behavioural language"”, proc. of
VII IFIP Workshop on Spec., Verif. and Testing, 1987
[Par 81] D. Park, " Concurrency and Automata on Infinite
Sequences”, in Vol. 104, LNCS, Springer-Verlag,
1981
[San 82] M.T.Sanderson, "Proof Techniques for CCS", Internal

Report, University of Edinburgh, CST-19-82, 1982

Supervisory Control of Discrete Event Systems:

A Survey and Some New Results

Peter J. Ramadge *

Department of Electrical Engineering
Princeton University, Princeton NJ 08544.

Abstract

We present an overview of the modeling of discrete event systems using formal
languages. Some new results on the controllability of sequential behaviors are presented
and a standard coordination problem for a product system is shown to be of polynomial
complexily.

1 Introduction.

A discrete event system (DES) is a dynamic system that evolves, i.e., changes state, in
accordance with the occurrence, at possibly unknown irregular intervals, of discrete events. For
example, an event may correspond to the completion of a task or the failure of a machine in a
manufacturing system, the arrival or departure of a packet in a communication system, or the
occurrence of a disturbance or change of setpoint in a complex control system. Such systems
arise in a variety of areas including, for example, computer operating systems, distributed
computing, computer networks, data bases, communication networks, manufacturing systems,
the start-up and shut-down procedures of industrial plants, and the higher level intelligent
control of complex multi-mode processes.

Control problems for DES center on the idea of how to ensure, by control, the orderly
and efficient flow of events. Within is overall goal it is possible to recognize a hicrarchy of
control problems: higher levels dealing with optimization, lower levels with the logical aspects of
decision making, information processing, and feedback control, and the lowest levels addressing
implementation issues in terms of hardware and real time computer languages.

In this article we are concerned with the second level of the above hierarchy: the logical
coordination of DES. We survey the modeling of DES in the framework of [RW1] and report
some new results concerning event sequences and the complexity of controller synthesis.

* Research partially supported by the National Science Foundation through grant ECS-8715217 and by an
IBM Faculty Development Award.

70

Numerous models for DES have been proposed in the literature. These models can be
roughly grouped as follows: Petri nets [P]; Boolean models [A]; sample path models (traces,
runs, languages) [BeN],[CDFV],[1I],[MM],[Pa),[RW1]; and models based on temporal [FST],
[HO],[MW],[OW],[O],[TW] or modal [Ha],[I1Z],[MDII] logic. Although seemingly diverse these
models have a common connection through formal languages and sample paths of events.
Roughly speaking they are simply different means of specifying and reasoning about the set of
system sample paths considered as either a set of finite length strings or as as a set of infinite
sequences.

In [RW1],[WR1] Ramadge and Wonham proposed a simple framework for the study of the
supervision, i.e., control, of a class of discrete-event systems. This theory uses a simple ‘sample
path’ model for a discrete-event system to study a number of qualitative issues such as the
existence, uniqueness, and structure of supervisors for simple control tasks. 1n addition, algo-
rithms are developed for the synthesis of the desired supervisors. In its use of formal languages
the model is similar to the work of [S] and [Sh] on flow expressions and path expressions re-
spectively; the work of [BeN] on using automata models to study process synchronization; and
there are certain points of similarity with the linguistic approach of lloare to the specification of
concurrent processes [H]. The framework has proved useful in the theoretic analysis of a number
of basic supervisory control problems [RW1][WR1]; has motivated investigations using related
models in database systems [LaW], and manufacturing systems [MT); and more recently has
been extended to cover modular [RW2],[WR2] and distributed [CDFV],[LW1],[LW2] control.

The remainder of ‘the paper is organized as follows. In Section 2 we describe the the
modeling of DES in terms of languages, Section 3 introduces the concept of a controllable
language and discusses a basic control problem, and in Section 5 we consider the issue of the
complexity of supervisor synthesis in the context of a standard coordination problem. Space
limitations preclude the inclusion of proofs - for these the interested reader is referred to the
appropriate literature.

2 Discrete Event Systems

Intuitively a DES consists of a sct of elementary events together with a specification of the
possible orders in which these events can occur. To formalize this notion let ¥ denote a finite
set of events, and &* denote the set of all finite strings of elements of the set X, including the
empty string 1. We say that u € L* is a prefiz of v € L*, denoted u <X v, if for some string
w € I*, v = wu, and a proper prefir, denoted u < v, if w # 1. The prefizx closure of L C £* is
the subset L C T* defined by

L = {w:uv € L for some v € I*}

and L is prefiz closedif L = L.

The behavior of a DES can then be modeled as a prefix closed language L C £*. Here L
represents the possible (finite) strings of events that the DES can generate.

71

A natural extension of the above model is to consider infinite sequences of events in addition
to finite strings. For thislet ¥ = {1,2,3,...} denote the set of positive integers, and ¢ denote
the set of all sequences of elements of %, i.c.,

Y ={e: e« N = L}

For e € Z¥ and j € N, let e(j) denote the jth clement of e, and e/ = e(1)e(2)...e(j) denote
the string consisting its first j elements. A subset B C TV is termed an w-language, and the
prefiz of B is the subset pr(B) of £* defined by

pr(B) = Uj>1 Ueep €

For an increasing sequence u; < up < ug < ... of elements of L*, there is a unique element
e € L% such that ¢/ = ug for j = |ug|, k € N. We call e the limit of {u;}. The adherence ™
or limit of L C ©* is the w-language

L® = {eze € T & ¢ € L for infinitely many j € N}

Thus e € L™ if and only if there exists an increasing sequence uy < ug < ... of elements of L
such that e = lim u;. Note that if L is prefix closed, then e € L% if and only if &/ € L for all
JEN.

We incorporate sequences into the DES model by modecling a DES as a pair A = (L, S)
where L is a prefix closed subset of £* and S is a subset of L®°. In general it nced not be the
case that pr(S) = L. Equality implies that every string in L is a prefix of some sequence in S,
Roughly this can be interpreted to mean that the system is never ‘blocked’ or ‘deadlocked’ aund
thus unable to produce a string in S. Hence when pr(S) = L we say that A is nonblocking.

The language based model defined above is representation independent. The languages L
and S could be specified, for example, by finite automata, Petri nets, fixed point equations,
Turing machines, etc.. We make no assumption or restriction at this point about specific
representations. Of course at some point it may be interesting (or necessary) to specialize to
particular classes of languages for which a deeper analysis is possible.

2.1 Control

We assume that ¥ is partitioned into uncontrollable and controllable events: £ = £, U X,.
An admissible input for A consists of a subset v C T satisfying £, Cv. Let T' C 2% denote the
set of admissible inputs; note that T' is closed under set union and set intersection. If y € T
and ¢ € 7, then we say o is enabled by =, otherwise we say o is disabled by «. Disabled events
are prevented from occurring while enabled events can occur when permitted by the prescribed
dynamics; thus v represents the allowed ‘next’ events. The condition ¥, C v mcans that the
uncontrollable events are always enabled.

A supervisor for the controlled DES (CDES) A = (L, S) is a map

f:L-T

M After [BoN]. See also [Mc],[E].

72

specifying for cach possible (finite) siring of generated events the next input to be applied.
The closed loop DES consisting of f supervising A is denoted by (4, f), and the closed loop
behaviors, denoted Ly and Sy, are defined as follows:

(i) 1eLy;and
(i) wo € Ly ifand only if w € Ly & o € f(w).
(i) Sy = LPnS
Note that it is sufficient for f to be specified on a subset K of L containing L.

From the above definition it follows that

pr(Sy) C Ly

In general there need not be equality in this expression. Equality implies that the system (A4, f)
is nonblocking in which case we say that f is nonblocking for A.

3 Controllable Languages

The basic control problem in the above framework is the following: given a language K C L
(resp. an w-language B C §) does there exist a nonblocking supervisor f such that Ly=FK
(resp. S¢ = B). The answer in the case of string languages was given in [RW1] in terms of the
concept of a controllable language. This is a language K C L satisfying the following invariance
property:

EX,nLCK

It can be shown that for nonempty K C L there exists a supervisor f such that Ly = K if
and only if K is both prefix closed and controllable [RW1, Prop. 5.1]. We show below that a
similar result holds in the case of sequential behaviors.

A metric p can be defined on ¥ by

e n—1 _ n-1 .
pler,e2) = {é/"v ig 2 _ e—z.ez and e1(n) # ez(n);

The topolgical closure of a set B C I“ with respect to the above metric is denoted I, and
B C S is said to be closed relative to S if BNS = B.

Proposition 3.1.

If B C S is nonempty, then there exists a nonblocking supervisor f such that Sy = B if
and only if

(1) pr(B) is controllable, i.e., pr(B)X, N L C pr(B); and
(2) B is closed relative to S,i.e., BNS = B.

A subset B C S satisfying the two conditions of the above proposition is said to be a
controllable sequential behavior.

73

It was shown in [RW1] that the family of prefix closed and controllable sublanguages of L
is closed under set union and set intersection, and hence forms a lattice under subset inclusion.
Since the empty set and L are controllable it follows that and for any closed & C L there
exists a unique largest closed and controllable language K1 and a unique smallest closed and
controllable language K! such that KT € K C K!. These can be thought of as the best
controllable approximations to the language K.

The set of controllable w-languages is closed under arbitrary intersections and under finite
unions, but not in general under countable unions. Nevertheless in certain situations it is still
the case that there exists a unique maximal controllable w-language contained in a prescibed
w-language B.

Proposition 3.2,

If B C §'is closed relative to S, then there exists a unique maximal controllable w-language
BT contained in B.

4 Finite Representations and Computation

For purposes of computation it is necessary to select finite representations for the languages
L and S. One way in which this can be done is as follows. A generator G is a dynamic system
consisting of a state set @, an initial state qg, and transition function § : £x @ — @ (in general
a partial function). Without loss of generality we assume that every state of G is reachable
from the initial state, i.e., that G is accessible. § is extended to a (partial) function on £* x Q
in the standard fashion [IIU, p.17], and we write §(w,¢)! as an abbreviation for the phrase
‘6(w, q) is defined’. Then the language generated by G is defined to be the subset

L(G)={w:weI" & §(w,q)'}
Every closed language L C I* has such a representation. However, as is well known, L has a
finite state representation if and only if it is a closed regular language.

The limit behavior S can be specified as follows. Adjoin to G = (X, Q, 6, gp) one or more
subsets of states Q,, C Q ¥ . To each scquence of events e € L(G)™ there corresponds a
unique state trajectory se: N — @ satisfying

se(5) = 6(e’, q0)

The sequence e and trajectory s, are said to be admissible if s, visits the set Q,, infinitely
often. The set of event sequences generated by G = (X%,Q, 6, go, @m) is then defined to be ™

S(G) = {e:e € L(G)™, and s, is admissible }

It is well known that an w-language § can be represented in this fashion if and only if § is the
adherence of a regular language. This comprises a proper subset of the regular w-languages
(2)
3)

For simplicity we restrict attention at this point to one subset.
This is a deterministic Biichi automaton [B).

74

It is clear that in the above representation
S(6) € L(G)™ (1)
with equality if Q,, = Q; and that

pr(S(G)) € L(G) (G2)

Similarly for computation and implementation purposes one¢ must select a finite represen-
tation for a supervisor. One possibilty is to realize a supervisor in terms of a state machine
together with an output map [RW1],[WR1]. For this let § = (X, X,£,z¢) be an automaton
and ¢ : X — I'. We say that the pair (5, ¢) realizes the supervisor f if for each w € L(G, f)

H(E(w, 20)) = f(w)

We interpret S as a standard automaton whose state transitions are driven by the events in .
In turn the state feedback map ¢ determines the input for G as a function of the state of S.

We say that f is a finite state supervisor if it has a finite state realization.

Let Gy be a finite state generator for the DES A = (L, S), and let ' C L be a regular
language represented by a finite state automaton G3. An algorithm for computing the supremal
controllable sublanguage of X, based on a lattice fixpoint characterization of K1, is given in
[WR1]. This algorithm requires a time bounded by a polynomial in the number of states of Gy
and G2, and produces a finite state gencrator for KT. A finite state supervisor realization that
implements AT can then be synthesized directly from the generator for KT. This algorithm
also provides a polynomial time decision procedure for testing the controllability of a given
language K C L.

5 Product Systems

Our main interest is in a class of structured DES which we call product systems. These
are DES composed of a finite set of asynchronous interacting components. Such systems arise
naturally wlien modeling the concurrent operation of several asynchronous, or partially syn-
chronous discrete dynamical systems. One of the principal difficulties in dealing with product
systems is that the number of states increases exponentially with the number of components.
Thus synthesis methods based on searching over the product state space are not computa-
tionally feasible. For example, the general supervisor synthesis problems posed and solved in
[RW1], [WR1], although known to be of polynomial complexity when the size of a problem
instance is measured in terms of the number of system states [RW3], cannot be regarded as
computationally tractable for product systems. We regard a decision or synthesis problem
for a product system as computationally feasible if it can be solved in a time bounded by a

polynomial in the size of the component subsystems n and the number of components p.

Let A; = (L;, S;) be be p finite state DES over disjoint alphabets Xy,..., X,, with control
partitions ¥; = £ ; U £,;. Tor each A; assume

S;#90

75
pr(S;) = L;

Let © = Uleilg, and define the projection p; : £* — I} of * onto I by

N _fo, ifo€eZ
ri(o) = 1, ifo€ X withi#j.

pi(wo) = pi(w)pi(s) weL*, €L
A sequence e € B is Ej-recurrent if e(j) € X; infinitely often. In this case let e; denote the

unique subsequence of e consisting of the elements of ¥;, and extend the projection p; to a
partial function p; : Z% — X% by defining

€y if e is ¥;-recurrent;
pile) = .
: undefined, otherwise.

The product system A = ||?_, A; is defined to be the DES (L, S) with
L=A{wweX &pi(w)e Li,i=1,...,p}

and
S={eecZ¥ &pe)€ S, i=1,...,p}

Assume that for i = 1,...,p the component DES A; has a finite state rcalization
Gi = (T4, Qi 6i, 906, Qi)

Let |Q;| denote the cardinality of Q; and set n = maz{|Q;|: 1 <7 < p}.

The product generator G = ||f=1G,- is defined according to

G=(Z,Q,5)

with

T=U_ % (Bc= ULIEC,-)

Q=0"_,0;

90 = (d01, -+, %0p)
and for 0 € &;

8o, (a1 1902) = (G151 8i(9,4i)y - - -1 0p)
provided §;(ao, ¢;)!.
Tori=1,...,plet
Yimi = {0:9 € Q,4 € Qmi}

These sets will pay the role of the set Q,,; for the generator G;, except for G there are p such

recurrent sets - one for cach of the component generators.

) This assumes a fair shuffling of the component behaviors. If this is not acceptable then the sequential

behavior can be enlarged to include unfair shufflings.

76

The language generated by G is defined in the usual fashion, i.c.,
L(G) = {w:w € £*, 6(w,q)!}

To cach event sequence e € L(G)® there corresponds a unique state trajectory se. The sequence
e and trajectory se arc admissible if s, visits cach of the sets Y,,;, ¢ = 1,..., p, infinitely often.
The sequential behavior of G is then defined to be the set

5(G) = {e:e € L(G)*, and s, is admissible }

It is readily verified that for each 7,1 < i < p,
L(G) = {wiw € B* & pi(w) € L(G;),i=1,...,p)}

and that
S(G)={e: e€ X¥ & pi(e) € S(Gy), i=1,...,p}

Thus G is a representation of the product system A.

Note that if each G; has n states, then G has n” states. If p is bounded, then the size of G
is bounded by a polynomial in n. It follows from our previous remarks that control problems
for G formulated in the framework of [RW1)] are decidable in a time bounded by a polynomial
in n. Here, however, we are interested in the case when both p and n are variable and both
are to be taken as a measurc of problem size.

6 A Coordination Problem

In what follows A = “?:1‘4:' will be a product system with components A; = (L;, S;),
i=1,...,p. In order to discuss the complexity of decision and synthesis problems for 4 we
need to have a finite representation for the product system. For this we assume that finite state
realizations G; = (X, Q;, 8;, 90i, @mi), 1 = 1,...,p, are provided for each of the components A4;,
and let G denote the corresponding product generator.

A supervisor f for the product system is a coordinator if for every set of p event sequences
e1,€2,...,ep with ; € S, i = 1, ..., p, there exists a sequence € in the closed loop behavior §y
such that fori=1,...,p

pi(e) = e
i.e., the supervisor does not modify the open loop behaviors of the individual DES; it only

constrains how they interact by controlling the relative order of events.

A subset @ of the state set of the gencrator G is sald to be nontransient if there exists an
admissible state trajectory for G that visits Q infinitely often.

We now analyze the following standard problem:

MUTUAL EXCLUSION (MEX): Let Q; C Q; be p given nontransient subsets and k be a fixed
integer with 1 < k < p. Synthesize (if possible) a nonblocking supervisor f for A satisfying the
following two conditions:

17

(1) f is a coordinator; and

(2) Foreache € Sy, and cach j > 1, after e/ at most k of the generators G, satisfy q; € O;.

The problem requires the A4; to be coordinated so that at most k of the generators G; are
in the designated subsets of states at any one time. For k = 1 this is the traditional mutual

exclusion problem. When £ = p — 1 the problem is equivalent to ensuring that the state of G
never enters the subset @ = IIZ_, Q;, or equivalently that Q — Q is an invariant set.

Let B denote the subset of S consisting of all sequences in the open loop behavior that
satisfy the mutual exclusion constraint, i.e., that satisfy item (2) above. If {e,} is a sequence
in B that converges in the p-topology to a sequence e, then it is clear that e also satisfies the
mutual exclusion constraint. So if e € S, then e € B. Thus B is closed relative to S. It follows
from Prop. 3.2 that there exists a unique largest controllable sequential behavior contained in
B. If MEX is solvable, then a supervisor f that solves MEX and that implements B! is said
to be a minimally restrictive solution.

Our main result on MEX is

Theorem 6.1,
MEX is polynomially decidable and polynomially solvable. Furthermore, when MEX is

solvable it is possible to synthesize a minimally restrictive solution in polynomial time.

That the problem is polynomial is due to the fact that it can be decoupled and analyzed
in terms of the component DES. To show this it will be helpful to introduce the following
notation. Let £,; = E; — X; be the sct of uncontrolled events of G}, and D; denote the set of
states of G; from which is possible to reach @; via uncontrollable events:

D;={qi:qi € Q; & 6;(w,q;) € Q;, for some w € T};}

Necessary and sufficient conditions for the solvability of MEX arec readily determined in
terms of the sets D;:
Proposition 8.1.
MEX is solvable if and only if the following conditions are satisfied:
(1) For at most k of the Gy, qo; € D;; and
(2) There exist p — k + 1 generators with the property that every admissible state trajectory
of G; enters Q; — D; infinitely often.

The second condition of the previous proposition can be further resolved as follows:

Proposition 6.2,

Every admissible state trajectory of the generator G; enters the set Q; — D; infinitely ofter
if and only if G; has no cycles in D; that intersect Q ;.

Using these results it is straightforward to prove Theorem 6.1.

7

78
Conclusion

The modeling of DES in terms of formal languages provides a setting for the study of the

logical coordination of the components of a DES, and, as we have shown in the context of a
simple example, can lead to computationally feasible synthesis methods for certain classes of
systems. The model has some limitations particularly in terms of its modeling scope. Exten-
sions to include quantitative aspects of system behavior is a subject of current research.

8
[A]

[BeN]

[BoN]

(B]

[CDFV]

[E]

(FST]

[Ha]

[11Z]

[110]
(H]
[I1U]

[LaW]

[LW1]

References

Aveyard, R., A boolean model for a class of discrete event systems. IFEE Trans. Sys.
Man. and Cyb., SMC-4, 249-258, 1974,

Beaugquier, J., and M. Nivat, Application of formal language theory to problems of security
and synchronization. In R.V. Book (Ed.), Formal Language Theory - Perspective and Open
Problems, Academic Press, New York; pp. 407-454, 1980.

Boasson, L., and M. Nivat, Adherences of languages, Journal of Computer and System
Sciences, 20, 285-309, 1980.

Buchi, J.R., On a decision method in restricted second order arithmetic, International
Congress Logic Methodology and Philosophy of Science, Stanford, Calif., 1960.

Cieslak, R., C. Desclaux, A. Fawaz, and P. Varaiya, Supervisory control of discrete event
processes with partial observations, Memo no. UCB/ERL M86/63, Electronics Research
Lab., College of Eng., Univ. of Calf., Berkeley, 1986.

Eilenberg, S., Automata, Languages, and Machines Volume A, Academic Press, New York,
NY, 1974.

Fusaoko, A., H. Seki, and K. Takahashi, A description and reasoning of plant controllers
in temporal logic, Proc. 8th International Joint Conference on Artificial Intelligence, 405-
408, August 1983.

Halpern, J.Y., Using reasoning about knowledge to analyze distributed systems, To appear:
Comp. Science Annual Review, 1987.

Ialpern, J.Y., and L.D. Zuck, A little knowledge goes a long way: simple knowledge-based
derivations and proofs for a family of protocols, Extended abstract, IBM Almaden Research
Center, Dept. K53/801, 650 Harry Rd., San Jose, CA 95120, February 1987.

Hailpern, B.T., and S.S. Owicki, Modular verification of computer communication proto-
cols, IEEE Trans. Commun., COM-31, 56-68, 1983.

Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall, Englewood Cliffs, New
Jersey, 1985,

Hopcroft, J.E., and Ullman, J.D., Introduction to Automata Theory, Languages and Com-
putation, Addison-Wesley Pub. Co., Reading, MA., 1979.

Lafortune, S. and E, Wong, A state model for the concurrency control problem in data
base management systems, Memorandum no. UCB/ERL M85/27 Electronic Systems Lab-
oratory, College of Engineering, University of California Berkeley, CA 94720., April 1985.
Lin, F., and W.M. Wonham, Decentralized supervisory control of discrete event systems,
Tenth World Congress, International Federation of Automatic Control (IFAC), Munich,

(LW2)
[MT]
[MW]
[MM]
[MDII]
[Mc]
[OW]

[0]

[Pa)

[P

—_—

[RW1]

[RW2]

[RW3]

(5]
[Sh]

(TW]

[WR1]

79

W. Germany, July 1987; also to appear: Information Sciences, 1987. Sce also: Systems
Control Group Report No. 8612, Department of Electrical Engineering, University of
Toronto, July 1986.

Lin, F., and W.M. Wonham, On observability of discrete-event systems, Systems Control
Group Report #8701, Department of Elect. Eng., University of Toronto, 1987.

Maimon, O., G. Tadmor, “Efficient low level control of FMS,” LIDS-P-1571, Laboratory
for Information and Decisions Systems, MIT, Cambridge, MA, 02139, June 1986.

Manna, Z., A. Wolper, Synthesis of Communicating processes from temporal logic specifi-
cations, ACM Trans. on Programming Languages and Systems, 6, 68-93, 1984.

Milne, G., and R. Milner, Concurrent processes and their syntax, J. Assoc. Comp. Mach.,
26, 302-321, 1979.

Moses, Y., D. Dolev, and J. llalpern, Cheating husbands and other stories: a case study
of knowledge, action, and communication, Distributed Computing, 1, 167-176, 1986.
McNaughton, R., Testing and generating infinite sequences by finite automata, Inform.
Contr., 9, 521-530, 1966.

Ostroff, J.S., and W.M. Wonham, A temporal logic approach to real time control, Proc.
24th IEEE Conference on Decision and Control, Florida, December 1985.

Ostroff, J.S., Real Time Computer Control of Discrete Event Systems Modelled by Ex-
tended State Machines: A Temporal Logic Approach, Report no. 8618 Department of
Electrical Engineering, University of Toronto, September 1986.

Park, D., Concurrency and automata on infinite sequences, Theoretical Computer Science,
5th GI-Conference, Karlsruhe, March 1981, Lecture Notes in Computer Science, 104, 167-
183, 1981.

Peterson, J.L., Petri Net Theory and the Modeling of Systems, Prentice-11all, Inc., Engle-
wood Cliffs, NJ., 1981.)

Ramadge, P.J., and W.M. Wonham, Supervisory control of a class of discrete-event pro-
cesses, SIAM J. on Conlr. and Optimizalion, 25 (1), 206-230, January 1987.

Ramadge, P.J., and W.M. Wonham, Modular feedback logic for discrete event systems, To
appear: SIAM J. on Contr. and Optimization, 1987; see also: Proc. {th J[FAC IFORS
Symposium Large Scale Systems: Theory and Applications, Zurich, Switzerland, August
1986.

Ramadge, P.J., and W.M. Wonham, Modular supervisory control of discrete event systems,
Proc. of the Seventh International Conference on Analysis and Optimization of Systems,
Antibes, June, 1986.

Shaw, A.C., Software descriptions with flow expressions, IEEE Trans. on Software Engi-
neering, SE-4 (3), 242-254, 1978,

Shields, M.W., “COSY Train Journeys,” Rpt. ASM/67, Computing Laboratory, Univ. of
Newcastle-upon-Tyne, 1979.

Thistle, J.G., and W.M. Wonhamn, Control problems in a temporal logic framework, Sys-
tems Control Group Report No. 8510, Department of Electrical Engineering, University
of Toronto, Toronto, Canada, M5S1A4, August 1985.

Wonham, W.M., and P.J. Ramadge, On the supremal controllable sublanguage of a given
language, SIAM J. on Contr, and Optimization, 25 (3), 637-659, May 1987.

80

[WR2] Wonham, W.M., and P.J. Ramadge, Modular supervisor control of discrete event sys-
tems, to appear: Mathematics of Control, Signals and Systems, 1987; sec also Information
Sciences and Systems Report No. 49, Department of Electrical Engineering, Princeton
University, June 1986, revised LI'ebruary 1987.

Using trace theory to model discrete events

Rein Smedinga
Department of computing science
University of Groningen
p.o.boz 800
Groningen, the Netherlands

August 1987

Abstract

In this paper discrete processes are defined by means of trace structures. Every symbol
in a trace denotes (the occurrence of) some discrete event. The trace alphabet is split into
two disjoint sets, one denoting the communication events, the other denoting the exogenous
events. Control of a discrete process means constructing a second discrete process having as
alphabet the communication events only, so that the connection of the two discrete processes
results in a desired exogenous trace set. Connection of discrete processes means blending of
the corresponding trace structures.

An algorithm is derived to construct a controller, given a process to be controlled and
specifications of the desired exogenous behavior.

Two examples of the use of this algorithm are presented.

1 Introduction

A number of possibilities exists to model discrete events. Most of them however lack the possi-
bility to model plant and controller separately (for example Petri Nets). The controller has to
be known beforehand and plant and controller are handled as one system. There are no ways
to find a controller in a systematic way. Intuition and clever thinking are the only possibilities
in finding a controller.

Other theories exists in which plant and controller are handled separately (for example the
supervisory control theory of Wonham (see [RaWo])). Given a model of the plant it is possible
to compute a controller (a supervisor) and the behavior of plant, controller and the closed loop
system can be studied. However plant and controller need different interpretations. The plant
is given in the form of a generator of events, while the controller (the supervisor) acts as an
observer and generates enable/disable-strings. This different interpretation makes it hard to
connect more than two processes or, for example, to supervise a supervisor.

In this paper trace theory is used to model discrete processes. It turns out that plant and
controller can be described in exactly the same way. Furthermore a nice algorithm is developed
to construct a controller.

Throughout this paper we use the following notation:

(Vz : B(z) : C(z)) is true if C(z) holds for every z that satisfies B(z), e.g. (Vz:2 € N:2 > 0)

{3z : B(z): C()) is true if there exists an z satisfying B(z) for which C(z) holds, e.g. (3z :
z€N:z=10)

{z : B(z) : y(z)} is the set constructor and denotes the set of all elements y(z) constructed
using elements z satisfying B(z), e.g. {n:n € IN : a®b"} = {¢, ab, aabb,aaabb,...}

82

2 Discrete processes

Describing a discrete process means:

s defining all possible events

¢ defining the behavior of the process

All possible events are collected in an event set (which we call the alphabet). Events are
denoted by small letters near the beginning of the Latin alphabet, like a, b, ¢, etc.

The behavior of the process is given as a collection of sequences of events (which is called
the trace set). A sequence of events is denoted by a string of letters, like abe, meaning, that the
events a, b, and ¢ may appear in that order (first a, then b and at last ¢). Such a string is called
a trace. Sometimes we use small letters near the end of the Latin alphabet for traces, like z and
y. With ¢ we denote the empty string (a sequence of no events).

The set of all possible traces, together with the set of all events that a given system can
produce, is called a trace structure (TS for short) and is denoted by

P=<tP,aP >
where aP stands for the alphabet and tP for the trace set.

3 Trace theory

In this paper we discuss the notion of control of discrete processes. Therefore we introduce
connections between discrete processes. It turns out that connections can be defined using
existing operators from trace theory. Before we can define the notions discrete process and
connection of discrete processes we first introduce these operators and restrict our attention to
trace structures.

A connection of trace structures is in fact a shuffling, where identical events have to occur
simultaneously, i.e. occur in both processes at the same time. This means that a common event
can only occur if it occurs in both processes simultaneously. This kind of operation is called
weaving and is defined as follows:

Definition 1 The weaving w of two TS’s P and R is defined to be
PwR

<{z:z€(@PuUaR)" A z[aP€tP A z[aR€tR:z}
,aPUaR
>

The symbol [stands for the restriction of a trace to some alphabet, meaning that all events
in the trace, that do not belong to the alphabet are deleted.

Sometimes we are only interested in those events, that are not common, i.e. belong to only
one of the TS’s. Then we use blending:

Definition 2 The blending b of two T'S’s P and R is defined to be
PbR
<{z:z€(aPuUaR)* A z[aR€tP A z[aR € tR:z[(aP +aR)}

,aP+aR
>

}The operator -+ stands for symmetric set difference.

83

In the sequel we use the following partial ordering:

Definition 3 For two trace structures P and R the ordering P C R is defined as:
aP=aR A tPCtR

Property 4 For TS’s P and R, with aR C aP the following properties hold:

(1) PwR=<{z:z€tP A z[laRectR:z},aR>
(2) PbR=<{z:z€tP A z[aR€tR:z[(aP\aR)},aP\aR >
(3) PbR=<{z:z€etP[(aP\aR)A
(Jz:z €tP A z[(aP\aR)=z:z[aR € tR): 2}
,aP\aR>
(4) (Pw R)[aR=(P[aR)NR

and for TS’s P, R,, and R, we have:
(5) ngng(Ple)g(Psz)

4 Regular trace structures

If the trace set of a TS is regular?, it is possible to describe such a set by means of a finite state
machine and also by means of so called regular expressions.
A regular expression (RE) is defined (recursively) as follows:

Definition 5 The empty string (¢) and every single symbol is ¢ RE and if z and y are RE’s,
then also:

z;y concalenation first z, theny

zly union zory
z* repetition zero or more concatenations of z
(z) to change priority in evaluation

z,y weaving

The corresponding trace structures are:

TR(¢) = < {,0>

TR(a) = <{a},{a}>

TR(z;y) = < {t,u:t€tTR(z) A v€tTR(y):tu}
,aT R(z)u aT R(y)
>

TR(zly) = TR(z)UTR(y)

TR(z*) = <{t:tetTR(z):t},aTR(z)>

TR(z,y) = TR(z)w TR(y)

A more detailed introduction to this notation and terminology can be found in {JvdS].
A finite state machine (FSM for short) is defined as:

2A trace set is called regular if the number of equivalence classes is finite, where the equivalence relation on
(prefixes of) traces of a TS T is defined as:

z=y=(Vz:z€(al) :zz€ tT = yz €tT)

84

~0 o =

initial state final state transition §(p1,a) = p2
Figure 1: Representation of a FSM

Definition 8 A Finite state machine is a tuple M = (A, Q, 6, q, F) with:

A a finite set of events, called the alphabet
Q a finite set of states

geEQ initial {or start) state

FCQ set of final (or marker) states

§:Q X A— Q the transition function
From the state transition function § we derive a path z from p; € Q to p2 € Q if p» = 6*(p1, 2),
with §* the closure of §, defined as:

&*(p,e)=p fz=a

§*(p,z) = 6*(8(p,a),y) ifz=ay
The corresponding trace structure is:

TR(M)=<{z:6*(g,z)€ F:z},A>

In figure 1 we have given the representation of a FSM in a drawing.

In the sequel we consider FSM's that are minimal (i.e. contain a minimal number of states
in order to represent a certain behavior), deterministic (i.e. § is a function), and complete (i.e.
8 is defined for all pairs (p, z)). If a FSM M does not represent A* but only a subset of A* then
M contains an error state?, denoted by [@], with the property:

(Va:a € A:§([@),a)=[0]) A [B]¢ F

Once we have reached an error state using path z we are unable to reach a final state. This
means, that z is a trace that is no part of the corresponding trace set. So an error state is the
endpoint of all traces that do not belong to the corresponding trace structure.

A more detailed introduction to FSM’s can be found in [HoUl] and many other books.

5 Discrete processes

We now return to the notion of control of discrete processes. First we split the alphabet while
introducing two kinds of events:

e exogenous events
e communication events

The exogenous events are used to model own actions of the process. This means that
exogenous events do not appear in other processest.

3In drawings of FSM’s we omit this error state and all transitions going to it.

“One can argue about the name exogenous, endogenous events are perhaps more convenient. However it turns
out, that exogenous events are retained in a connection while communication events disappear. So communication
events are internal and exogenous events are external.

85

The communication events are used to model actions of a process, that may be common to other
processes. This kind of events is of interest in communication with other processes. Furthermore
we like to use communication events to control the exogenous events.

Such a TS, in which the alphabet is split up, is called a discrete process (DP for short) and
denoted as:

P =< tP,ePcP>
where tP is the trace set of the process (the set of all possible sequences of occurring events),

eP the set of exogenous events and cP the set of communication events.
Notice, that such a DP P is only well defined if

ePNncP=0

We are not concerned with how this communication is actually performed, i.e. which process
generates the event and which process receivesit. In other words, we do not make any distinction
between input and output events here.

In the sequel we sometimes look at a DP as being a TS, i.e. use P as if it was defined as a
TP P =< tP,ePUcP >. Then we use aP as abbreviation for eP UcP.

If we restrict our attention to the exogenous events we have, what is called the exogenous
behavior or external behavior tP[eP. If we restrict our attention to the communications we
have the communication behavior or internal behavior tP[cP.

Control of discrete processes can be described as using the communication events to establish
some predefined behavior of the exogenous events. Therefore we need:

e the uncontrolled exogenous behavior: tP[eP.
e one or more other DP’s communicating with P by means of the events from cP.

e the resulting controlled exogenous behavior: t(P ® R)[eP (where ® for this moment
denotes the connection of two DP’s and R is the controller).

In order to be able to discuss this topic we have to define what is meant by connection of discrete
processes.

6 Connections
In this section we define the notion connection of discrete processes.
Definition 7 Given two DP’s P =< tP,eP,cP > and R =< tR,eR,cR> withePNnaR=0
and eRNaP = @ then the connection of P and R is defined as
< t(PbR),ePUeR,cP+cR>
and denoted® by Pb R.

Note that all exogenous events of P and R are exogenous events of the connection. From
the communication events only those that do not belong to both processes are retained. This
guarantees, that

a(Pb R)=aP+aR

so that the blend is well defined.
In the sequel we write P b Ronly ifePNnaR =@ and eRNaP = Q.
It is not difficult to prove the following properties:

%S0 we use the same notation b for blending of TS’s as well as for connection of DP’s.

86

Property 8 For the connection b the following properties hold:
(1) PbR=RbP
(2) Pb <{¢,8,0>=P
(3) cPNcRNeS=0=(PbR})bS=Pb(RDbS)

For part (3) we have to remark that (P b R)b .S = Pb (R b S) only holds,ifaPnaRnasS = @,
which is established through the condition cPNncRNecS = @. This last property allows to write
multi-connections without parentheses.

The DP < {€},8,D > is the unit element of the operator b . Notice, that it is necessary to
have at least the empty trace ¢ in the trace set, because for every DP P we have that

Pb <0,0,0>=<90,0,0>

(thus < @,@,@ > is not a unit element).
Sometimes we are interested in the total behavior of the connected system. Therefore we
introduce the overall or total connection as well.

Definition 9 Given two DP’s P =< tP,eP,cP > and R =< tR,eR,¢R > withePnaR=0
and eRNaP = @ then the total connection of P and R is defined as:

<t(PwR),ePUeRU(cPncR),cP+cR>
and denoted® by P w R.

Notice, that we have put all common communication events of P and R in the exogenous
event set of the total connection. This guarantees that a(P w R) = aPUaR, that communication
events can be observed outside the connection and that communication events can not be used
in other connections for communication purposes. A communication event can thus serve as
communication between exactly two DP’s.

We have the following properties for the total connection:

Property 10 For the total connection w the following properties hold:
(1) PwR=RwP
(2) Pw <{,0,0>=P
3) (PwR)YwS=Pw(RwS)

7 Introduction to control

Before we give an exact description of our control prablem we give a illustrative example first.
Suppose a shop sells two kinds of articles and in order to get an article one has to pay for
it. Paying for an article is supposed to be a communicating action. So we have:

a1 article 1 is sold
ag article 2 is sold
p1 pay for article 1
p2 pay for article 2

The complete process becomes:

P =< ((p1; a1)l(p2; 62))", {a1, a2}, {p1, P2} >

A customer can now be described as “letting event p; occur for every article (number i) wanted,”
for example:

% Again the same notation for weaving of T'S’s and for the total connection of DP’s.

87

R=< ((Pl?Pl),Pz), 0:{1’11172} >

Connecting these two processes results in:

PbR

< ({(a13a1), a2), {ay,a2},90 >
Notice that the uncontrolled behavior of the shop P equals
tP[eP = (ail|as)*
while the controlled behavior is
t(Pb R) = (a1;a1), 0,

Notice, that the customer has in fact controlled the exogenous behavior of the shop.

8 A control problem

Using the previous definitions we are now able to state our control problem in a formal way:
Given are a DP P =< tP,eP,cP > and two trace structures Ly,in and L4, with

Lin =< thl'fnePi 2>
Lz =<tLy.,eP,0 >
Lmin c Lma:

Lyin and Ly, specify the range of resulting exogenous traces, that are acceptable.
The problem is to find, if possible, a DP R with:
R=<tR,®,cR> with: cRCcP
such that
Lmin © (P b R)[eP C Loz
This last condition is called the minmaz condition.

In words: construct, given a DP P, a second DP R, that controls the exogenous events of P
as specified by Ly,in and L.z, and whose possible events are at most all communication events
of P.

The restriction of t L,z to be a subset of (e P)* is needed because we can only give restric-
tions on the existing exogenous events. Without loss of generality we assume:

Lmin c Lma:: g Pl-eP

(so we can give restrictions to existing exogenous traces only).
This problem is called control of discrete events (CODE for short).
In our previous example we had:

tLmin = tLpas = (al;al)r a2

In the following section we give a general solution for CODE.

88

9 Solution for CODE

In the sequel we deal (without loss of generality) only with the situation that R =< tR,@,cP >,
i.e. cR = cP. So we use all communication events to control the process.
Furthermore we use DP’s P, R, and S and assume:

P =<tP,eP,cP >
R=<tR,0,cP >
L=<tL,eP,® >

In this section we give an algorithm to construct a solution for CODE that also can be used
to investigate if CODE has a solution at all. For the algorithm we need two functions:
Definition 11 With the CODE problem we associate the functions:

F(L)= (Pb L)\(Pb (P[eP\ L))
called the friend of L, and

G(L)=Pb F(L)
called the guardian of L.

In most cases we only need the trace set of F' or G, so we introduce:
f(L) = tF(L)
9(L) =tG(L)
Notice that:
eF(L)=0 cF(L)=cP
eG(L)=eP cG(L)=0
The algorithm (called the deCODEF) is described as follows:

forall L such that Ly CLC Lypgs:
if Lnin c G(L) c Laz
then F(L) is a solution
Of course, it is not immediately clear that this algorithm works. In the next section we try
to make it convincing. In the section thereafter we give a proof of the algorithm and, more
important, give a necessary and sufficient condition under which the problem is solvable.

10 Outline of the algorithm

First let us try
F(L)y=Pb L

So,if G'(L) =P b F'(L)= P b (P b L) satisfies the minmax condition then R = F'(L) should
be a solution.

However, starting with an L such that Lyyn © L C L.z does not guarantee, that Ly, C
G'(L) € Lz For example:

P =< {ac,ad,bc}, {c,d}, {a,b} >
Loin = Lmez =< {c},{c,d}, @ >

In the sequel checking the alphabets in proofs is omitted, if this is clear from this context.

89

results (with L = Ly,,z) in:

F(L) = t(P b R) = {a,b}
¢'(L) = t(P b F'(L)) = {c,d} # tL

In f’(L) the trace a does not lead to the desired solution because it also allows exogenous event
d to occur and d does not satisfy the minmax condition.
We conclude the following;:

o First compute P b L to get all possible control traces.
o Next compute P b L to get all control traces, that give undesired results®.
o At last take (P b L)\ (P b -L) to find exactly the right control traces.
This is precisely, what F(L) does:
F() = (Pbl) \(Pb (P[eP\L))
——— N e
possible controls L

undesired controls

~

-~
desired controls

11 Proof of the algorithm
First a number of properties of the friend and the guardian (and the operators used) are listed.

Lemma 12 The friend and the guardian of L satisfy:

§i09) {z:2€tP[eP A (Vz:2€tP A g[cP=2:2[eP €tLl):z}
g(L) {z:z2€tP A (Vy:y[cP =z[cP:y[eP € tL): z[eP}

I u

proof: We have:

t(P b (P[eP\L))
= [property 4 (3)]

{z:2€tP[cP A (3z:z€tP A z[cP=2z:z[eP €t(P[eP\L)):z}
= [z[eP € tP[eP]

{z:2z€tP[cP A (3z:z€tP A z[cP=z:z[eP gtL):z}

f(L)

t((P b S)\ (P b (P[eP\ L)))
= [definition of b and previous equation]
{z:2€tP[eP A (3z:z€tP A g[cP=2z:z[e€tl): 2}
\{z:z€tP[cP A (3z:2€tP A z[cP=z2:z[eP¢gtL): 2}
= [z[eP € tP[eP]
{2:2€tP[cP A (Vz:2€tP A z[cP=2z:z[eP €tl):z}

g(L) now easily follows from f(L).
(end of proof)

8The notation L is an abbreviation of P[eP\ L. It stands for the trace structure containing all traces (over
the same alphabet) that do not belong to L.

90

The expression of f(L) in this lemma is useful in the proofs of the next three lemmas. These
lemmas together make up the proof of the correctness of the algorithm and result in theorem
16.

Lemma 13 G(L)C L

proof;

z2€g(L)
= [definition of the guardian]
z € t(P b F(L))
= [definition of b]
(Iz:z€tP A z[cPE f(L):z[eP =2)
= [lemma 12: z €tP A z[cP € f(L) = z[eP €tP]
z€etL
(end of proof)
Lemma 13 implies that by choosing L = Ly, (the largest possible choice) the solution found
by the deCODEr still satisfies the right part of the minmax condition of CODE. Notice that
G(L) = L does not hold in general.

Lemma 14 RC P[cP A PbRCL=RC F(L)

proof:
z€tR
= [RCP[cP At(PbR)CL]
z€tP[cP A (Vz:2€tP A z[cP =z:z[eP € tl)
= [lemma 12]
z€ f(L)
(end of proof)

Lemma 14 is a very important lemma. It implies, that (take L = L,,,.) every solution of
CODE, that is contained in P[cP, is contained in Rmgr = F(Lmqaz). Using lemma 13 we see
that R, therefore is the greatest possible solution of CODE and can be constructed using the
algorithm®,

Notice, that we cannot prove:

RCP[cPALCPbR=FL)CR
and therefore, we cannot find in general a smallest possible solution. In other words, as we shall
see, if a solution exists, it is a most liberal solution. There may not be a most conservative one.
Lemma 15 L; C Ly = G(L;) C G(L3)
proof:

L C L

= [lemma 12]
F(L1) € F(L)

= [property 4 (5)]
Pb F(L;)C Pb F(Ly)

G(L1) € G(L)
(end of proof)

9Notice, that it is always possible to add to Rpyas traces that have no influence when they are blended with
P. So it is only possible to find a greatest solution that is contained in P[cP.

91

This lemma states, that an increasing set of choices of L leads to an increasing set of resulting

exogenous traces P b F(L) of the CODE problem (monotonicity).

We are able now to formulate the following important theorem:
Theorem 18 CODE has a solution if and only if Limin C G(Lmax)

proof: Suppose CODE has a solution, say R, then write
R= Rint U Re:t
with:

Rint = PrcP NR
Rez:t =R \ Rint
(which gives Pb R = P b Ri). Then we have:

Lmin

c [Ris a solution: Lyin Ct(P b Rint) =t(PbR)]
Pb Rint

c [Rint c PrCP A t(P b Rint) c Lma: = Rint c F(Lmaz:)]
Pb F(Lmez)

G(Lmaz:)
Next, suppose CODE has no solution:

(VR:PbRC Lyur: Lynin € Pb R)
=> [choose R = F(Lyaz) (such an R exists, see lemma 13) |
Lml'n Q Pb F(Lmat)

Lmin g G(Lma::)
(end of proof)

This theorem implies, that if the deCODEr does not abort, the constructed R is a solution
of CODE. If the deCODEr aborts with L = L,,,4, we may conclude that no solution exists.

12 Some properties of the deCODEr

The next lemma gives a property of solutions of CODE, as constructed using the friend and the

guardian.

Lemma 17

Lmin g G(Ll) (_: Lma:: A er'n g G(L2) (_: Lmaz:
=
Lmin g G(Ll U L2) g Lma:

92

proof: trivial, using:

G(L1U Ly)

Pb F(L U Ly))

= [F(Lyu L) = F(L)u F(Ly), see lemma 12 |
P b (F(L1)U F(Ls))

= [property 1.34 in [JvdS] |
(Pb F(L1))U (P b F(L)

G(L1) UG(Ls)
(end of proof)

This lemma states, that if Ry and R are both solutions of CODE (and of the form F(L) for
some L), then also Ry U R; is a solution. This lemma implies that a maximal solution (contained
in P[cP) exists.

In general, however, RiNR2 and R) w R; need not be solutions, which prevents the existence
of a minimal solution, as is shown in the following example: Let

P =< {abc, bad}, {a}, {b,¢,d} >
Ry =< {bc},9, {b,c,d} >
R? =< {bd}1 Qa {b:cad}

then:
t(P b Ry) = {a} and t(P b Ry) = {a}

(so both R; and R are solutions of CODE), but:
t(Pb(RiNRy))=0Q 2 tLpin

(hence Ry N R; is no solution of CODE).
This is due to the fact, that (according to property 1.34 in [JvdS)):

Pb(RyNR)C(PbR)N(PbRy)

Next we like to investigate if every solution of CODE can be written in terms of a friend
of some L satisfying the minmax condition. Because every solution of CODE can be extented
with traces that do not have any influence on the result (take Ryey, = RU R,y for an R, with
t(P b R.;:) = O, then R,., is also a solution), we can only hope that every solution R with
R C P[cP can be written in terms of a certain friend. Suppose R is a solution of CODE with
R C P[cP, then P b R satisfies the minmax condition. From lemma 14 we have:

RCF(PbR)
In general, we have no equality here.

It is easily seen, that if all exogenous traces can be found by applying a unique communication
trace only, all solutions of CODE can be found by applying the deCODZETr (i.e. are of the form
F(L)):

Lemma 18

(Vz,y:2 €tP A y€tP:z[cP # y[cP = z[eP # y[eP)
=
(VR: R is a solution of CODE A RC P[cP:F(PbR)=R)

93

proof: We only have to prove that R 2 F(P b R):

z€ f(PbR)
=
2€tP[cP A (VYz:2€tP A z[cP =z:z[eP €t(PDb R))
= [t(PbR)={y:y€ P A y[cPEtR:y[eP}]
2€tP[cP A (Vz:2€tP A z[cP€z:
(By:y€etP A y[eP €tR:z[eP = y[eP))
= [assumption implies y = z]
ZEtR
(end of proof)
If P has the property that
(Vz,y:z2 €tP A yetP:z[cP # y[cP = z[eP # y[eP)

we call P observable.
From lemma 18 it is clear, that every solution of CODE for an observable DP P has the
form F(L). In that case, the deCODETr gives exactly all possible solutions.

If P is observable we also have, that
G(PbR)=PbR
This property however holds for every P and every solution R:
Lemma 19 G(PbR)=PbR
proof: From lemma 14 we have (take L = P b R) that G(Pb R) C Pb R. So it remains to
prove G(P b R) 2 P b R. We have:

z[cP € tR
= [take u =y]
(Vy:y€tP A y[eP=z[cP:
(Qu:u € tP A u[cP e tR:y[eP = u[eP))

(Vy:y€tP A y[cP=2z[cP:y[eP €t(Pb R))

z2€t(PbR)

(Fz:z€tP A z[cP€EtR:2=z[eP)
= [above implication]
(Jz:z€tP A (Vy:yetP A y[cP=z[cP:y[eP et(Pb R))
12 =2z[eP)
= [see lemma 12]
2€g9(PbR)
(end of proof)

We end this section with a summary of the founded results:
Theorem 20 Associated with CODE the following conclusions hold:

¢ If CODE has a solution, we can find one by constructing R = F(L), with L satisfying:
Lyin € L C Linas

94

o If CODE has a solution and P is observable, all solutions are of the form R = F(L), with
L satisfying: Lypin € L C Lipgsr

o If no solutions of the form R = F(L) ezists (i.e. if F(Lmaz) does not lead to a solution),
no solution of CODE ezists.

13 An example: a ship lock

As an example of the use of the deCODEr we look at the following situation. Consider a ship
lock with two doors in which ships can pass from west to east (see figure 2). The lock is given
as:

P =<tP,eP,cP >
with

eP = {php?}
cP = {01102’61’62}

The behavior is given in figure 3.

Figure 2: A ship lock

1

NN/ \
OO0

-

of O O e
L
O-~0==0

c1

Figure 3: Behavior of the lock
The meaning of the events is given in table 1. The lock can contain one ship at the time.
Our desired behavior therefore is:
L =<(p1;p2)*,eP, 0 >
Using the deCODEr!® we find the controller as in figure 4. This controller does precisely

10We use a computer program here, so we do not give any calculations.

95

| event | meaning f
” a ship passes through door 1
p2 | a ship passes through door 2
01 open door 1
09 open door 2
¢ close door 1
¢z close door 2

Table 1: Meaning of the events of the lock

C2

/ N
-0+ 0—-+-~0-*0

Figure 4: Controller for the lock

what we expected he should do: first let a ship in by opening and closing door 1, next let the
ship go out by opening and closing door 2.

In figure 5 we have given P b L. Just computing P b L in general does not give the right
controller: in P b L for example the behavior

0], 02; €15 €2

is possible. This may lead to
P13 D2

but also

Pm

is possible and this last exogenous behavior is certainly not desired.
It can easily be verified, that the exogenous behavior of the connection equals:

t(P b R) = (p1;p2)*

2

% \
-0 204020
S R
O s O OO
N /

02

Figure 5: Pb L

96

| event | meaning]
i (get permission to) sit
gl; grab fork on the left
gri grab fork on the right
e; eat

i, lay down fork on the left
Ir; |lay down fork on the right
t; think

Table 2: Meaning of the events of F;

and the total behavior:

t(P w R) = (01; p1; €15 02; pa; €2)*
Remark that one should not underestimate the simplicity of the above example. The computed
controller could (with a little effort) as well be computed by simple intuitive reasoning. However
it may be difficult to prove the correctness of the controller. If the examples become more

difficult then finding a suitable controller becomes intractable by hand calculations, but using
the deCODEr remains feasible.

14 The dining philosophers

Consider a number of philosophers (say k), sitting around a round table. Each of them in turn
eats and thinks. To eat each philosopher needs two forks, one to the left and one to the right of
his plate. Between each plate only one fork is present, so every fork has to be shared between
two philosophers, but only one philosopher at the time can use it.

Each philosopher can be modeled as follows:

Py =< (8539055 gri; eqy Wy Iris 1), {gliy g, Wiy Iriy e, 13}, {8} > i=0,1,....,k—1

The interpretation of each event is given in table 2. To be able to model the sharing of the forks
we have:

F =< (gl 0)I(grias lrig1))"s @, {9l Uiy grigay Iripa} > i=0,1,..,k-1
Notice that fork F; plays the role of left fork for philosopher F; and the role of right fork for
philosopher P,;1. The behavior expresses, that grabbing a fork should first be followed by laying

down that fork by the same philosopher before it can be grabbed again.
The total behavior we like to investigate is:

T=FPwPw..whaowklhwFRhw...wFi,

Notice, that we have used the total connection here in order to be able to investigate the crucial
grabbing of the forks.

Suppose, that all philosophers have got permission to eat. Then the following sequence of
events is possible (take k = 3):

503 513 52; 9lo; 9l1; gla
Now all forks are in use, but no philosopher is able to eat. This phenomenon is called deadlock.

Notice, that the above trace is no trace of T. In order to use the deCODEr to prevent this
process from ending in deadlock we first have to add all deadlock-ending traces to T . This

97

problem is not as difficult as it seems to be. To do so we have to be more specific about how
the weaving of two FSM’s is defined.

Definition 21 Consider two deterministic, completely defined and minimal FSM’s Mp and
MR, given as

MP = (8P7QP16P1QP1FP)
MR = (aR,Qn,Jn,q}z,Fn)

then the FSM M is given as:

M = (aPUaR,Qp X Qr,$,(qp,qR), Fp X FR)
where §((p, q),a) is defined as:

a€aP Aad¢aR: §(pg)a)=(é(p,a)9g)
a¢aP AacaR: §(p,q).a)=(p,é(¢,0)
a€aPUaR: §((p,q),a) = [D] ifép(p,a) = [@] v é(q,a) = [D]
é((p, 9),a) = (6p(p,a),8R(g,a)) otherwise
The FSM representing the weaving of P and R is denoted by Mpr and constructed out of M by
deleting all unreachable states'!.

The constructed automaton Mppg is again deterministic, complete but need not be minimal any
more. It represents the behavior of the total connection of P and R.
Next we define a deadlock state in Mpp.

Definition 22 A state (p,q) in the FSM Mpp is called a deadlock state if:
(29)#(2] A (p.q) ¢ Fp X Fp A (Ya:a€aPUaR:é((p,g),0) =[2])

A path leading to a deadlock state is a trace not leading to a final state (so not part of the
trace set of the total connection) but possible by weaving prefixes of traces of P and R. Such a
path therefore leads to deadlock!?.

Notice, that minimizing the FSM Mppg results in a FSM that exactly represents the behavior
of the total connection of P and R but omits the possibility of detecting deadlock.

If we construct Mpg it turns out, that there exists a deadlock state. To prevent the connec-
tion to end in deadlock we first have to add all deadlock-ending traces to the behavior (simply
by making this deadlock state a final state) and secondly by using the deCODEr with desired
behavior according to F= Fow Fyw ... w F_,.

Reconsider process T. Because the events e; and t; are not important to us at this moment
we omit these from P;. So we use:

P, =< (si; glis gris Wiy 1rd)*, {9k, gri, Wiy Ini}, {8} > i=0,1,...,k-1
and consider

T=PwlF
with

P=FPwPw...wPFP._,
F=FRwFHhw...wkFi,

11 A state is unreachable if no path exists form the initial state to that state.

21t is possible to make all this formal, i.e. give a definition of deadlock (corresponding to our intuitive ideas)
and prove that deadlock in this sence is possible if and only if the FSM of the total connection has at least one
deadlock state. However it is outside the scope of this article to do all this (we only like to show that the deCODEr
can be used to prevent deadlock).

98

80, 82

nA N
O-21-0—>20

b

«C O @ —= O D

©)
3%1-21

Figure 6: First butler

Now add to T' all deadlock-ending traces by making the deadlock state in the corresponding
FSM MpF a final state and use F' as desired exogenous behavior of T' (notice that because of
the connection all events of F' are exogenous events in T').

The deCODETr gives us the controller (a butler in this case) (for k¥ = 3 this butler is displayed
in figure 6). The butler can only prevent the total process to end in deadlock by forbidding one
(randomly chosen) philosopher ever to eat. This is not what we like. The resulting controller
is unable to notice if a philosopher is ready with eating and therefore can not use the fact that
this philosopher does not need the forks any more.

To be able to find a nicer controller we add to P; an extra event ag;, meaning that philosopher
P; asks the butler if he may sit down. The butler then may give him permission to sit down by
letting event 8; occur. So we have:

Py =< (ai; 85,9k gris s 1), {gli, griy Wiy Imi} {ai 8} > i=0,1,..,k -1
Using the deCODEr we find (for £ = 3) the butler as in figure 7.
This butler behaves precisely as we should think he should. He gives permission to at most

two philosophers to start eating. A third demand is retained until one of the philosophers asks
again (and thereby letting the butler know that he has finished eating).

15 Conclusions

In this paper discrete event systems are defined using (an extended version of) trace theory. It
has turned out, that this way of modeling gives the possibility to formulate a control problem
(CODE) and construct a controller, that is defined in exactly the same way as the original
plant. So it is not necessary to interpret plant and controller differently (as for example in the
supervisor control theory of [RaWo]).

The philosophers-example illustrates that CODE can be used to avoid deadlock.

An advantage of this way of modeling is further, that the behavior of the process is given
as a set of traces, while nothing is said about (and nothing need to be known of) how such
traces are actually given. This means, that it is possible to give such a behavior by means of
finite state automatons or regular expressions (as is done in this paper), by means of (possibly)
infinite state automatons (as is done in [RaWo)), or by other means (although in this last case
it may be impossible to compute for instance the blend of such (in a strange way defined) trace
sets).

99

a2

— 0
T
— 0<% O0OZ_0

bkl

O=0-a 0= O~

| H H A Il

@:O @-*OII@

0
H !F] 81\ &
= O = :

|m

Figure 7: Second butler

References

[JvdS] J.L.A. van de Snepscheut (1985) Trace theory and VLSI design (Lecture notes in
computer science, nr. 200), Springer Verlag

[HoU}] J.E. Hopcroft and J.D. Ullman (1979) Introduction to automata theory, languages
and computation, Addison Wesley

[RaWo] P.J. Ramadge and W.M. Wonham (1985) Supervisory control of a class of discrete

event processes, systems control group report 8515, Dept. of electl. engrg., univ. of
Toronto

PROTOCOL VERIFICATION USING DISCRETE-EVENT MODELS

Michat Sajkowski
Technical University of Poznai, Poznan, Poland

Communication protocols belong to the broad class of discrete-event
systems. Other examples of these systems are flexible manufacturing systems,
process control systems, office information systems and VLS| circuits. The
behaviour of all of these systems can be characterized by starting and
ending times of their activities. All these systems inherently involve the
consideration of the notions of concurrency, nondeterminism, time and
commni cation. Therefore the formal description technique (FDT) used to the
description of a discrete-event system should be able to express these
notions.

The satisfaction of these requirements, which corresponds to the
modelling power of a FDT, influences the analyzability of this technique.
The analyzability of a FDT means here the ability to the analysis of the
specification written in this FDT. Therefore, the nature of a discrete-event
system influences also the formal technique used for the verification of its
specification.

In this paper we present a new approach to the verification of a
communication protocol modelled as a discrete-event system. This approach is
based on the analysis of a communication protocol considered as a time-
driven system,

The paper is organized as follows. First, in the second section, some
useful definitions dealing with protocol enaineering, discrete-event
systems and time-driven systems are given. Then, in the third section, the
selected discrete-event models applied to protocol verification are
discussed. The fourth section gives the principles of the modelling a
protocol as a time-driven system. The analyzed protocol is specified by
means of time augmented Petri nets. In the fifth section the idea of the
verification technique is presented. The technique combines time constraints
based projection and the examination of the safeness of certain places in
timed Petri net model. A simple example is provided. In the last section the
useful Iness of discrete-event models in protocol engineering is discussed
and topics for future research are suggested.

2. DEFINITIONS

Such a scope of a paper causes that some basic definitions dealing with
protocol engineering, discrete-event systems and time-driven systems should
be given. The first definition specifies the protocol engineering itself.

Protocol engineering is the application of scientific disciplines to
the production of high-quality communication protocols on time and within

101

budget.

These disciplines deal with the consecutive stages in the communication
protocol production process. These stages include: specification
verification, performance prediction, implementation, testing, certification
and assessment, performance evaluation, documentation, and possibly
synthesis and conversion. The major disciplines in protocol engineering have
been presented by Piatkowski (1983}, who is also the author of protocol
engineering term, The state of art in protocol engineering has been
discussed further in (Piatkowski1986).

We will define here, for the purpose of this paper, two stages of
protocol production process only: specification and verification. For the
definitions and scope of other stages see e.g. (Sajkowski 1985).

Protocol specification we understand the description which defines the
required behaviour of a protocol,

The specification may be formal or informal. The formal specification
applies formal language to the description of a protocol behaviour. The term
"formal'' means "'expressed in a precise mathematical way using symbols with
specific meaning" (Lévengreen 1985).

Protocol verification is understood as the demonstration of the
correctness, completeness and consistency of the protocol design represented
by its formal specification,

Now we will give the definitions of the most important notions in the
area of discrete-event systems.

Fvent is defined as an instantaneous elementary action. The elementary
action is understood as the indivisible one.

Discerete-event system is understood as a dynamic system in which events
occur at discrete times. The intervals between events have not to be
identical. The behaviour of the discrete-event system is then specified by
a set of concurrent and/or nondeterministic time-consuming activities, which
are performed according to prescribed ordering. Each event is seen as the
starting or ending of the activity (Cohen 1985, Cohen 1987, Dietz 1987,
Garzia 1986, Ho 1987, Lin 1986).

Discrete-event model we understand the model of discrete-event system.
Therefore, the model of a discrete-event system D is another discrete-event
system M which reflects some characteristics of D.

We will obtain the mathematical model of discrete-event system if we
form it by a mathematical object or structure. Such a structure was proposed
by Zeigler (Garzia 1986), where the discrete-event system is specified by
6-tuple: "

- The set of possible external events.

- The set of system states, in sequence.

- The set of output values.

- A transition function which combines the current state and external events
to yield a new state.

- An output function that maps the current state to an output value.

- A time-advance function that controls how long the system remains in a
given state. "

Now we will give two general definitions, based on (Ldvenareen 1985),
which describe the notions of concurrency and nondeterminism.

Concurrency called also true concurrency means that in a system the
elementary actions may overlap in time.

Nondeterminism is understood as an impossibility to uniquely determine
the future behaviour of the system knowing the future input event to the
system.

Finally, according to {Coolahan 1983), we will define time-driven
system,

Time-driven system we understand as one in which the time spent for

102

the execution of the system functions is critical to their successful
performance, and in which the global clock drives the repetitive realization
of similar activities at regular intervals.

3. DISCRETE-EVENT MODELS

There are a lot of FDTs applied earlier for protocol specification
(Sajkowski 1983, Sajkowski 1984). However, a limited number of them can be
considered as the methods possessing the power being enough for the modeling
of discrete-event systems,

To this group belong all FDTs which satisfy the crucial requirement of
discrete-event systems, namely the specification of a time-advance function.
The next two requirements which should be satisfied by a FDT are concurrency
and nondeterminism. The former is obvious if we recall our definition of
true concurrency, the latter results from the fact that discrete-event
systems are typically nondeterministic ones.

Among the FDTs applied earlier for communication protocol specification,
only time-augmented Petri nets, temporal logic and formal specification
languages satisfy three requirements given above (Sajkowski 1984). We will
add to them newly developed FDTs, which not necessarily have been applied to
protocol specification and which satisfy the required criteria. In this way
we can form the set of FDTs relevant to the specification of discrete-event
systems. This set is the following:

- Coordinated Concurrent Activities.

- Time-augmented Petri nets.

- Real-time temporal logic.

~ Real-time languages.

~ Timed communicating sequential processes.
- Algebras for timed processes.

- Real-time attribute grammars.

We will discuss now these FDTs. We will focus on the satisfaction by a
FDT of the criteria of modeling concurrency, time and nondeterminism.

The technique named Coordinated Concurrent Activities {CCA), introduced
in (Aggarwal 1987a, Aggarwal 1987b), corresponds to the well-known model of
coupled finite state machines. The CCA model is an extension to the previous
Selection/Resolution model {Aggarwal 1983, Kurshan 1985). This extension
covers the introduction of: continuous time, activity termination and the
precise semantics of activities coordination.

In CCA, the model of distributed system consists of N Activity Machines
running in parallel. These machines coordinate by exchanging the current
status of the running activities. The status corresponds to the selection in
S/R model. Each Activity Machine has a transition graph, called Activity
Graph, which specifies the sequencing of its activities. This graph
describes also the conditions for the changing of activities. These
conditions result from the status of other machines during coordination.

The real-time notion is introduced into the CCA model by assuming the
existence of an observer relative to which starting and ending times of the
activities are synchronized, and by the imposing timing constraints on the
switching of machine activities,

In this model, time is divided into successive intervals of work and
synchronization. |f activities in various machines remain in their active
phases, then all the machines are in the work phase. However, if any of the

103

activities comes into its termination phase, then the system of machines
enters synchronization phase and a new activity is incarnated.

The nondeterminism in CCA is included in that, that the selection of
an incarnated activity may be nondeterministic.

3.2, Time-Augmented Petri Nets

In Petri nets the notion of time can be associated with transitions
(Ramchandani 1974, Merlin 1976, Zuberek 1980, Molloy 1982, Razouk 1985,
Dugan 1984, Ajmone Marsan 1985) and places (Sifakis 1980, Coolahan 1983,
Wong 1984). The timing can be deterministic (Ramchandani 1974, Merlin 1976,
Zuberek 1980, Coolahan 1983, Razouk 1985) or stochastic (Molloy 1982,

Dugan 1984, Ajmone Marsan 1985, Florin 1985, Lazar 1987). In the case of the
deterministic timing, there may be deterministic firing time added to each
transition (Ramchandani 1974) or firing interval expressed by means of two
deterministic values (Merlin 1976). In the case of stochastic timing, the
firing delay is a random variable with an exponential distribution for
continuous time systems or with geometrical distribution for discrete time
systems.

Nondeterminism is modelled by means of conflict transitions, and
concurrency by the use of non-causally related transitions.

3.3. Real-Time Temporal Logic

There are known the examples of the application of temporal logic to
the modelling and analysis of discrete-event systems. For instance in
(Thistle 1986) linear-time temporal logic has been used for the verification
of control system. However, it seems that more expressive temporal logics
should be used for this purpose, for instance real-time temporal logic
(Koymans 1983a, Koymans 1983b). It comes from the fact, that the linear time
temporal logic considers time qualitatively, and it cannot express the
time-out mechanism.

In the real-time temporal logic, for the purpose of quantitative
treatment of time, two new temporal operators have been added: !''before"
referred to the past and ''strong until in real-time t" from which other
real-time operators can be derived: e.g. "eventually within real-time t from
now'' or '"always after real-time t has elapsed from now''. Therefore, in the
real-time temporal logic the state possesses the component representing a
kind of a glokal clock.

3.4, Real-Time Lanquages

Recently, various high-level programming languages for real-time
applications in industry have been developed. The examples of them are:
Ada (Ada 1983), Occam (Occam 1984), Chill (Chill 1985), LUSTRE (Caspi 1987)
and ESTEREL (Berry 1985)., The first three of them, i.e. Ada, Occam and Chill
are asynchronous, nondeterministic and they use the notion of "absolute"
time only. The last two of them, i.e. LUSTRE and ESTEREL are synchronous,
deterministic and they use the "mul tiform' notion of time.

We will consider now the treatment of concurrency, time and
nondeterminism in the representatives of these aroups of languages.

For instance, in Ada the passage of absolute time is expressed by mean:s
of delay statement, but time-out mechanism can be described jointly by
select and delay statements. The select statement is the basic mean for the

104

description of nondeterminism, The parts of a program in Ada called tusks
can run in parallel, and they communicate or synchronize by the use of
rendezvous mechanism. The rendezvous can be also used in order to cause the
delay up to the occurrence of a particular event.

In the second group of real-time languages, the synchronous data flow
lanquage LUSTRE provides simple way of handling time. In LUSTRE, variables
may be considered to be functions of time. The variable is characterized by
sequence of values and its clock. LUSTRE possesses four non-standard
operators, i.e. 'previous', "followed by', ''when' and ''current'. These
operators are used for the construction of nested clocks and for the
operation on expressions with different clocks, LUSTRE has deterministic
nature.

3.5. Timed Communicating Sequential Processes

Up to now, there are only a few approaches to add time notion to the
parallel language CSP (Koymans 1985, Reed 1986, Gerth 1987).

The model of timed CSP developed by Reed and Roscoe (1986) is
continuous with respect to time, assumes the existence of a conceptual
alobal clock, a system delay constant, hiding removing the external control,
and timed stability. The events in CSP are replaced by timed events. Two new
processes are added, with respect to untimed CSP, namely process WAIT t
(t>0) and diverging process. The main result of the extension of CSP with
time notion is the distinguishing deadlock from divergence. This model
expresses non-discrete time with a least element and true concurrency.

Koymans et al, (1985) propose a real-time variant of CSP, called CSP-R.
All events are related to each other by a conceptual global clock. The
concurrent execution is modelled by an extension of maximal parallelism
model. The main additional construct w.r.t. CSP is the real-time construct
wait d, where d is a duration. CSP-R language allows to model discrete time
and time-out,

Gerth and Boucher (1987) developed a model for the real-time behaviour
of extended communicating sequential processes. This model is called "timed
failures model". It is really a generalization of the failures model. The
timed failures model allows to describe a-priori bounded delay of actions,
time-out of actions, non-discrete time with a least element, true
concurrency of actions, nondeterminism and abstraction.

3.6. Algebras for Timed Processes

Algebras for timed processes (Richier 1986, Quemada 1987, Nounou 1985)
are related to very well known CCS (Milner 1980). These FDTs additionally
incorporate the notion of time.

The Algebra for Timed Processes - ATP (Richier 1986), which gave the
name to the group of similar FDTs, is an extension of process algebra
specified in (Bergstra 1984). In ATP standard delay statement is expressed
by means of start delay and termination delay constructs. The timed system
itself is described by the use of timed state graph. lts nodes are labelled
by corresponding delays. The parallel composition is asynchronous or
synchronous, according to the type of actions, and is defined by operators
left merge' and "communication merge'. Nondeterminism is described by means
of an "alternative composition' operator.

The second example of the algebra for timed processes is Timed LOTOS
(Quemada 1987). In it, a quantitative relative time notion is added to
widely used IS0 language LOTOS (Brinksma 1986, Lotos 1987). It is done by

105

means of a time interval associated with an action, indicating the period of
time in which this action should terminate. Time is expressed by the data
type in ACT-ONE. Concurrency is modelled by parallel composition operator.
The nondeterminism is described by choice operator.

The previous technique to these two above which applies algebraic
specification of protocol timing behavior has been a variant of CCS proposed
in (Nounou 1985). The protocol timing behaviour is modelled by marked point
process, i.e. the set of events in a given time, and its attributes: time
durations and probabilities of possible behaviours. The correct ordering of
events is described by the use of a time constraint relation '<<'". Time-out
upper bound and mean-transfer time are analyzed.

3.7. Real-Time Attribute Grammars

Real-time attribute grammars are an extension of conventional attribute
grammars in order to specify concurrency and real-time. The only example of

this FDT is ''Real-Time Asynchronous Grammar'' - RTAG, proposed by Anderson
and Landweber (1985).
In RTAGs, terminal symbols correspond to input events, i.e. receiving
a message, or output events, i.e. sending a message. The parallel composition

of events is expressed using curly brackets notation. Time constraints are
described by means of a special terminal symbol /timer/, which has a single
integer attribute Znterval. Productions in which /timer/ is engaged are
called timed productions. The timed production is able to specify the
time-out mechanism.

3.8. Discussion of Approaches

In this section we have discussed the FDTs, which in our opinion are
the only ones sufficient for the modellina of discrete-event systems. FDTs,
considered here, have been applied to the specification of various instances
of discrete-event systems.

Communication protocols have been described by means of Coordinated
Concurrent Activities (Aggarwal 1987a), time-augmented Petri nets
(Merlin 1976, Razouk 1985, Ajmone Marsan 1985, Sajkowski 1986, Lazar 1987,
Sajkowski 1987), real-time languages (Bochmann 1981), algebras for timed
processes (Nounou 1985, Richier 1986, Quemada 1987) and real-time attribute
grammars (Anderson 1985).

Flexible manufacturing systems have been specified only by means of CCA
(Aggarwal 1987b) and time-augmented Petri nets (Alla 1986, Hillion 1987).

Control systems have been described by the use of CCA (Aggarwal 1987b,
Katzenelson 1986), time-augmented Petri nets (Coolahan 1983) and real-time
languages (Plessmann 1986, Caspi 1987).

It is seen that two FDTs: CCA and time-augmented Petri nets have been
applied to all major examples of discrete-event systems. The biggest number
of FDTs has been used for the description of communication protocols.

There are some similarities existing between certain FDTs. For instance
CCA, certain real-time languages (Ada, Occam) and Timed CSP use the
rendezvous concept, which requires synchronous communication. CCA, some
timed CSP (Reed 1986, Gerth 1987) use the continuous time notion, whereas
ATP, CSP-R, ESTEREL and RTAG apply discrete time. Time-aucmented Petri nets,
dgpending on the approach, apply discrete or continuous notion of time. CCA,
time-augmented Petri nets, real-time temporal logic, Timed CSP (Reed 1986)
§nd Timed LOTOS assume explicitly the existence of a alobal clock.Finally
in all but one FDTs, discussed here, nondeterminism can be expressed.

106

This exception are deterministic real-time languages like LUSTRE and ESTEREL.
it should be noticed, that almost all of FDTs use the asynchronous
cooperation between processes, and synchronous communication between actions
in the different processes. The exceptions are languages LUSTRE and ESTEREL

which use synchronous cooperation and Chill which applies asynchronous
communication. For the definitions of asynchronous or synchronous cooperation
and communication see (Bergstra 1985).

Let us consider now the techniques used for the verification of the
discrete-event system specification written by the use of given FDT. For
specifications in CCA, reachability analysis and simulation of sample
trajectories of a discrete-event system are applied (Aggarwal 1985a,
Aggarwal 1985b), Time-augmented Petri nets descriptions of a discrete-event
system are verified by the use of reachability analysis (Merlin 1976,

Razouk 1985, Sajkowski 1986, Stotts 1986, Sajkowski 1987) and invariant
analysis (Alla 1986, Hillion 1987). The specifications written in real-time
temporal logic, real-time languages and Timed CSP require assertion provina
techniques for the verification of the properties of discrete-event systems.
The systems modelled by means of algebras for timed processes are verified
by the use of algebraic verification, e.g. applying observation equivalence
notion of CCS (Richier 1986). Discrete-event system model applyina RTAG FDT
can be verified by means of any algebraic verification technique.

As it is seen form the above comparison of FDTs, the time-augmented
Petri nets are one of the techniques suitable for the description of
discrete-event systems. We will show, in the next sections, a new approach
to the application of this FDT to communication protocol analysis.

L4 PROTOCOL AS A TIME-DRIVEN SYSTEM

We have applied a description of a communication protocol using the
model of a time-driven system proposed by Coolahan and Roussopoulos (1983).
Therefore we describe a protocol using time-augmented Petri nets (see
Appendix), and then we add a global clock construction and we distinguish
the final transition in the modelled protocol.

The global clock construction (called also a drivino cycle or master
timing mechanism) has the significant role in the time- -driven system
analysis. This construction consists of a marked place p,, called master
timing process, and the transition t, connected to p, by an elementary loop.
The master timing process has the execution time T, associated with it. In
our solution the execution time T, has a little changed semantics. It models
the delay before the expiration of which the protocol should provide the
required service. In classical time-driven systems, time T] drives the
repetitive realizations of the remainder of Petri net model.

Such an approach comes from the fact, that even in the case of so

called time-independent protocol, its user will not be waiting endlessly for
the service provision. Therefore a certain time limit should be imposed on
the service provision. Hence, in practice, every real-life protocol is the

time-dependent one. It implies that the formal protocol specification is
really a formal specification of its timing behaviour. A new approach to the
verification of such a specification is presented in the next section.

Our model of a protocol has the following properties:
The firing of transitions can be simultaneous.
-~ All events, i.e, the starting and ending of the process execution, are
related with a global clock.
The cooperation between protocol entities is asynchronous.
The communication between protocol actions in (different) entities is
synchronous.

107

As an example we have used the user-server protocol {(Brand 1983). The
time-driven model of this protocol is given in Figure 1.

-

FAULT

lossalarm

treq Tservice -done
SERVICE |ossdome

lossreq

1-readg
+done

WAIT

Twait

FIGURE 1 The time-driven model of the user-server protocol

5. VERIFICATION OF A PROTOCOL AS A TIME-DRIVEN SYSTEM

The verification of the communication protocol specified as a time-
driven system is performed in two steps. First the time constraints based
projection is applied to the time-driven model of a protocol. Then the
examination of the safeness of certain places in the reduced protocol model
is carried out,

5.1. Time Constraints Based Projection

The projection via time constraints is proposed as a new technique for
the avoidance of state explosion. It differs from the classical projection
technique (Lam 1984) , cause it reduces the set of reachable states and
hence the analysis complexity by means of the use of time constraints
derived from the protocol model. Therefore, the complete protocol model is
projected into a plane on which certain time constraints are satisfied.
Then the reduced model of a protocol is analysed only.

Hence, the time constraints based projection is understood as the
creation of the image of the complete protocol model by the cut off these
parts of the model which will never occur for given time constraints.

5.2. Examination of the Safeness of Places

For the protocol described as a time-driven system, the protocol
properties can be verified by the examination of the safeness of certain
places of the constructions existing in this model. The safeness is verified
by means of formulae derived in {Coolahan 1983) for various constructions

108

like: simple places, synchronized parallel paths, independent cycles and
shared resources.

5.3. Example

Lets verify the semantic property of the ccrrect execution of the
purpose of the user-server protocol. It is defined here as the service

provision to the user before the time limit will expire, and is modelled by
the firing of the transition +done.
We first apply the projection to our protocol model. It eliminates, for

instance, the firing of the transition -alarm and is based on the following
T Ia(t

time expression:
A
(Tready < Tidle) (Tready * req s Tidle +req < t-alarm)h (1)
Ia(T < 2T. - T)

A(Tdone < Tidle wait idle ready * Tservice

Then we add the place named SP (checking the service provision)
b)

, and we
set the global clock execution time T, equal to T,, where Tb is the time

limit for the service provision (see Figure 2).

FIGURE 2 The projection of the protocol model for service provision
checking

We will use now the formula for the safeness of the final place in the
path of the synchronized parallel paths construction,(see Appendix). The
condition for the service provision is satisfied in the case of the
safeness of the place SP. Lets consider the final place SP in the path p.:
SP, and the path pj: READY_REQ_§ERVICE DONE. Then we have: ‘

T - -
(ready + Treq * Tservice + Tdone) Tsp = (Tb/1) Tsp
that is:
T .
ready * Treq * Tservice * Tdone = Tb (2)

And similarly for the path P; and the path P READY_WAIT

Tready * Twait = Tb 3
In order to describe the lack of the loss of messages, the following
time expressions should be added:

<
(Treq - Tmaxreqdelay)/\(T

(k)

done Tmaxdonedelay)

109

6. CONCLUSIONS

Existing previously FDTs, without the notion of time included, have
been used for any discrete-event system description. However such a
description is insufficient for the purpose of sophisticated verification
and performance prediction, which consider time constraints.

We have discussed here seven discrete-event models, incorporating the
notion of time, which can be applied for the specification and verification
of communication protocols and other discrete-event systems. It is seen that
CCA, time-augmented Petri nets and algebras for timed processes have
practical significance in these areas. The most promising new techniques are
CCA and algebras for timed processes. |t comes from the fact that these F[Ts
are based on a strong mathematical background.

The design and analysis of complex real-life protocols require the
existence of appropriate development tools (for a comprehensive survey of
the usage of protocol development tools see (Bochmann 1987)). We will
indicate now the tools for specification development, constructed for the
FDTs discussed here.

For CCA two tools have been developed, that is SPANNER (Aggarwal 1985b)
and SIMUL (Aggarwal 1985a). For the Selection/Resolution model, preceding
the CCA model, COSPAN tool has been designed (Katzenelson 1986). Time-
augmented Petri nets have the biggest number of tools, both for
deterministic time and stochastic Petri nets, for instance TINA (Roux 1986),
GreatSPN (Chiola 1987), GTPN Analyzer (Holliday 1985), DEEP (Duaan 1985).
For algebras for timed processes CUP1D/Aralyst tool applying alaebraic
verification is available (Barghouti 1987). There are other tools developed
e.q. for LOTOS language (Turner 1987), however the tool for Timed LOTOS has
not been announced yet. For RTAGs there exists RTAG Analyzer (Anderson 1985).
The author is not aware of the tools existing for other FDTs discussed here.

Therefore, one of the topics for further research is the design and
implementation of software tools for other discrete-event models like
real-time temporal logic, real-time languages and timed CSP, in order to
make them more attractive.

The second direction is the addition of verification tools to existing
implementation oriented tools, e.g. RTAG Analyzer.

The third question which can be considered is the application of
discrete-event simulators, used up to now to flexible manufacturing systems
analysis - e.g. SEDRIC (Valette 1985), to the examination of communication
protocols and other discrete-event systems.

The fourth problem which remains to be done is the development of FDTs
themselves and the determination of the impact of a discrete-event system
modelled on the FDT used.

The fifth point that should be addressed is a separate examination of
protccol engineering and discrete-event systems fields in order to provide
formal definitions and reasonable taxonomy of notions relevant to them.

Finally, the presented verification technique should be further
developed in order to apply to the complete set of protocol properties and
to make it more friendly to its users.

APPENDI X
Time—augmented Petri nets (Coolahan 1983)
In this Petri net model, places represent processes and a nonnegative

execution time T, is assigned to the each place k. The input transition to
the place models the beginning of the execution of the process. A transition

110

will be able to fire if all its input places possess tokens and for all of
them the required execution times have expired. The transition will fire
immediately when is enabled. The firing time of the transition is equal to
zero. | f more than one transition is enabled, then may happen that one of
them will fire only. Then the choice of the transition is nondeterministic.

A formula for the safeness of the final place p. . in the path p. of a
synchronized parallel paths construction, in the presence of time, is the
following (Coolahan 1983):

Pj - Pi < (Tl/Fif) - Tif (A1)
where:

T,: global clock execution time

i
Fif: maximum relative firing frequency of the input transition to the final
place Pis

Tif: execution time of Pig

P. (Pj’ respectively): time of the traversing the path p, (pj, respectively)

The notation used in the protocol model

\'H a process

T : the execution time of a process

x¥ transmitted message

-x: sending a message

+x: receiving a message

Tx: sojourn time of a message in the channel

lossx: the loss of message

T : maximum allowed delay for a message X in a channel
maxxdelay

Ly (t+x' resp.) : global time of sending (receiving) message X

t-y < t+x: nondeterministic choice of -y among transitions -y, +x.

REFERENCES

Ada. (1983). The Programming Language Ada. Reference Manual. LNCS 155.
Springer-Verlag, Berlin.

Aggarwal, S., Kurshan, R.P., and Sabnani, K. (1983). A Calculus for Protocol
Specification and Validation. In H, Rudin and C.H. West (Eds.), Protocol

Specification, Testing, and Verification, lll. North Holland, Amsterdam.
Agoarwal, S. and Har’El, Z. (1985a). SIMUL: A Tool for the Simulation and
Analysis of Protocols, Tech. Memo, ATuT Bell Labs, Murray Hill, USA.

Aggarwal, S., Barbara, D., and Meth, K.Z. (1985b). SPANNER: A Tool for the
Specification, Analysis, and Evaluation of Protocols. To appear in IEEE
Trans. on Software Engineering.

Aggarwal, S., Barbara, D., and Courcoubetis, C. (1987a). LAN Broadcast
Protocols for Implementing the CCA Model. Proc. IFIP Int’l Symp. on
Protocol specification, Testing, and Verification, 7th, Zurich, May 1987,

Aggarwal, S., Barbara, D., and Courcoubetis, C. (1987b). Real-Time
Coordination of Concurrent Activities. In B. Sarikaya and G.V. Bochmann
(Eds.), Protocol Specification, Testing, and Verification, VI. North
Holland, Amsterdam.

Ajmone Marsan, M. and Chiola, G. (1985). Modeling Discrete Event Systems With

Stochastic Petri Nets. Proc. ISCAS 85 Symp., Kyoto, June 1985. [EEE
Computer Society Press.

111

Alla, H. and Ladet, P. (1986). Coloured Petri Nets: A Tool for Modelling,
Validation and Simultation of FMS. in A, Kusiak (Ed.), Flexible
Manufacturing Systems: Methods and Studies. North Holland, Amsterdam.

Anderson, D.P. and Landweber, L.H. (1985). A Grammar-Based Methodology for
Protocol Specification and Implementation. Proc. Data Communications
Symp., 9th, Whistler Mountain, September 1985. |EEE Computer Society
Press.

Barghouti, N., Nounou, N., and Yemini, Y. (1987). An Interactive Protocol
Development Environment. In B. Sarikaya and G.v. Bochmann (Eds.),
Protocol Specification, Testing and Verification, Vi. North Holland,
Amsterdam,

Bergstra, J.A. and Klop, J.W. (1984). Algebra of Communicating Processes.
CS R8421. Dept. of Computer Science, Center for Mathematics and
Computer Science, Amsterdam, The Netherlands.

Bergstra, J.A., Klop, J.W., and Tucker. J.V. (1985). Process Algebra with
Asynchronous Communication Mechanism. In S.D. Brookes, A.W. Roscoe and
G. Winskel (Eds.), Seminar on Concurrency. LNCS 197, Springer-Verlag,
Berlin.

Berry, G. and Cosserat, L. (1985). The ESTEREL Synchronous Programming
Language and lts Mathematical Semantics. In S.D. Brookes, A.W. Roscoe
and G. Winskel (Eds.), Seminar on Concurrency. LNCS 197, Springer-
Verlag, Berlin.

Bochmann, G.v. and Pickens, J.R. {1981). A Methodology for the Specification
of a Message Transport System. In R.P. Uhlig (Ed.), Computer Message
Systems. North Holland, Amsterdam.

Bochmann, G.v. (1987). Usage of Protocol Development Tools: The Results of a
Survey. Proc. IFIP int'! Symp. on Protocol Specification, Testing, and
Verification, 7th, Zurich, May 1987.

Brand, D. and Zafiropulo, P, (1983). On Communicating Finite-State Machines.
Journal of the ACM, 30(2): 323-342.

Brinksma, E. (1986). A Tutorial on LOT0S. In M, Diaz (Ed.), Protocol
Specification, Testing, and Verification, V. North Holland, Amsterdam.

Caspi, P., Pilaud, D., Halbwachs, N., and Plaice, J.A. {1987). LUSTRE: A
Declarative Language for Programming Synchronous Systems. Proc. Annual
Acg Symp. on Principles of Programming Languages, 1hth, Munich, January
1987.

Chill. (1985), The CCITT High Leyel Programming Language (CHILL),
Recommendation Z.200, Geneva, Switzerland.

Chiola, G. (1987). A Graphical Petri Net Tool for Performance Analysis. In
Proc. Int’1 Workshop on Modelling Techniques and Performance
Evaluation, 3rd, Paris, March 1987.

Cohen, G., Dubois, D., Quadrat, J.P., and Viot, M. (1985). A Linear-System
Theoretic View of Discrete-Event Processes and Its Use for Performance
Evaluation in Manufacturing. IEEE Trans. on Automatic Control, AC-30
(3): 210-220.

Cohen, G., Moller, P., Quadrat, J.P., and Viot, M. (1987). A 2-D Discrete
Event Linear System Theory. In Proc. Algebres Exotiques et Systemes a
Evenements Discrets Seminar, Issy-les-Moulineaux, June 1987.

Coolahan, J.E. and Roussopoulos, N. {1983). Timing Requirements for Time-
Driven Systems Using Augmented Petri Nets. IEEE Trans. on Software
Engineering, SE-9(5): 603-613.

Dietz, J.L.G. and van Hee, K.M. (1987), A Framework for the Conceptual
Modeling of Discrete Dynamic Systems, Proc. Temporal Aspects in
Information Systems Conf., 2nd, Sophia Antipolis, May 1987.

Dugan, J.B., Trivedi, K.S., Geist, R.M., and Nicola, V.F. (1984). Extended
Stochastic Petri Nets: Application and Analysis. In E. Gelenbe (Ed.),
Performance 84, North Holland, Amsterdam.

112

Dugan, J.B., Bobbio, A., Ciardo, G., and Trivedi, K. (1985) . The Design of a
Uni fied Package for the Solution of Stochastic Petri Net Models. Proc.
Int’ | Workshop on Timed Petri Nets, 1st, Turin, July 1985.

Florin, G. and Natkin, S. (1985). Les Reseaux de Petri Stochastiques. T.S.l.,
L(1): 143-160.

Garzia, R.F., Garzia, M.R., and Zeigler, B.P. (1986). Discrete-Event
Simulation. 'EEE Spectrum, 23(12): 32-36.

Gerth, R. and Boucher, A. (1987). A Timed Failures Model for Extended
Communicating Processes. Proc. ICALP87 Colloquium, Karlsruhe, July 1987.

Hillion, H.p. and Proth, J-M. {1987). Performance Evaluation of Job-Shop
Systems Using Timed Event Graphs. Proc. Int’l Conf. on Production
Systems, 2nd, Paris, April 1987.

Ho, Y-C. (1987) . Performance Evaluation and Perturbation Analysis of Discrete
Event Dynamic Systems. IEEE Trans. on Automatic Control, AC-3207):
563-572.

Holliday, M.A. and Vernon, M.K. (1985) . A Generalized Timed Petri Net Model
for Performance Analysis. Proc. Int’l Workshop on Timed Petri Nets, lst,
Turin, July 1985,

Katzenelson, J. and Kurshan, R. (1986). S/R: A Language for Specifying
Protocols and Other Coordinating Processes. Proc. Annual Int’l Phoenix
Conf. on Computers and Communications, 5th, Scottsdale, March 1986,
IEEE Computer Society Press.

Koymans, R. and de Roever, W.P. (1982a), Examples of a Real-Time Temporal
Logic Specification. In B.T. Denvir, W.T. Harwood, M.l. Jackson, and
M.J. Wray (Eds.), The Analysis of Concurrent Systems. LNCS 207.
Springer-Verlag, Berlin.

Koymans, R., Vytopil, J., and de Roever, W.P. (1982b). Real-Time Proaramming
and Asynchronous Message Passing. Proc. ACM Principles of Distributed
Computing Symp., 2nd, Montreal 1983.

Koymans, R., Shyamasundar, R.K., de Roever, W.P., Gerth, R., and Arun-Kumar,
S. (1985). Compositional Semantics for Real-Time Distributed Computing.
No. 68. Dept. of Computer Science, University of Nijmegen, Nijmegen,
The Netherlands.

Kurshan, R.P. (1985). Modelling Concurrent Processes. Proceedings of
Symposia in Applied Mathematics, 31, 45-57.

Lam, S.S. and Shankar, A.U. (1984). Protocol Verification via Projections.
lEEE Trans. on Software Engineering, SE-10(4): 325-342.

Lazar, A.A. and Robertazzi, T.G. (1987). Markovian Petri Net Protocols with
Product Form Solution. Proc. INFOCOM’87, San Francisco, March/April
1987, IEEE Computer Society Press.

Lin, F. and Wonham, W.M. (1986) . Decentralized Supervisory Control of
Discrete-Event Systems. No 8612. Systems Control Group, Dept. of
Electrical Engineering, University of Toronto, Toronto, Canada.

Lotos. (1987). LOTOS-A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. 1S0 DIS8807, July 1987.

Lévengreen, H.H. (1985). On Concurrency Formalization. Ph.D. Thesis. ID-TR
1985-3. Dept. of Computer Science, Technical University of Denmark,
Lyngby, Denmark.

Merlin, P.M. and Farber, D.J. (1976). Recoverability of Communication
Protocols - Implications of a Theoretical Study. IEEE Trans. on
Communications, COM-24(9): 1036-1043.

Milner, R. (1980). A Calculus of Communicating Systems. LNCS 92, Springer-
Verlag, Berlin.

Molloy, M.K. (1982). Performance Analysis Using Stochastic Petri Nets. |EEE
Trans. on Computers, C-31(9): 913-917.

Nounou, N. and Yemini, Y. (1985). Algebraic Specification-Based Performance
Analysis of Communication Protocols. In Y. Yemini, R. Strom and

113

S. Yemini (Eds.), Protocol Specification, Testing, and Verification, V.
North Holland, Amsterdam.

Occam. (1984). Occam Programming Manual. INMOS Ltd. Prentice Hall
International.

Piatkowski, T.F. (1983). Protocol Engineering. Proc. 1CC’83 Conf., Boston,
June 1983,

Piatkowski, T.F. (1986). The State of Art in Protocol Engineering. Proc.
S1GCOMM’86 Symp., Stowe, August 1986,

Plessmann, K.W. and Tassakos, C. (1986). Die Programmiersprache OCCAM.
Angewandte Informatik, 28(9): 389-399.

Quemada, J. and Fernandez, A. (1987). Introduction of Quantitative Relative
Time into LOTOS. Proc. IFIP Int’]l Symp. on Protocol Specification,
Testing, and Verification, 7th, Zurich, May 1987.

Ramchandani, C. (1974). Analysis of Asynchronous Concurrent Systems by Petri
Nets. Ph.D. Thesis. MAC-TR-120, MIT, Cambridge, USA.

Razouk, R.R. and Phelps, C.V. (1985). Performance Analysis Using Timed Petri
Nets. In Y. Yemini, R. Strom and S. Yemini (Eds.), Protocol
Specification, Testing, and Verification, IV. North Holland, Amsterdam.

Reed, G.M. and Roscoe, A.W. (1986). A Timed Model for Communicating
Sequential Processes. Proc. ICALP’86 Colloquium, 13th, Rennes, July
1986. Springer-Verlag, Berlin.

Richier, J.L., Sifakis, J., and Voiron, J. (1986). ATP-An Algebra for Timed
Processes. No 1. Projet CESAR, LGI, Grenoble, France.

Roux, J.L. and Berthomieu, B. (1986). Verification of a Local Area Network
Protocol with TINA, a Software Package for Time Petri Nets. Proc.
European Workshop on Application and Theory of Petri Nets, 7th, Oxford,
June/July 1986.

Sajkowski, M. and Stroiniski, M. (1983). Evaluation of Formal Methods for
Communication Protocol Specification from Protocol Designer’s Viewpoint.
Proc. Int’l Conf. on Software Engineering for Telecommunication
Switching Systems, Sth, Lund, July 1983. !EE, London.

Sajkowski, M. (1984). Evaluation of Formal Description Techniques Applied to
Communication Protocols Development. Proc. Int’l Symp. on Data
Communication and Computer Networks ’Networks India 84°. Madras,
October 1984,

Sajkowski, M. (1985). Protocol Verification Techniques: Status Quo and
Perspectives. In Y. Yemini, R. Strom and S. Yemini (Eds.), Protocol
Specification, Testing, and Verification, 1V. North Holland, Amsterdam.

Sajkowski, M. (1986). On Verifying Time-Dependent Protocols. Proc. Int’l.
Conf. on Software Engineering for Telecommunication Switching Systems,
6th, Eindhoven, April 1986. IEE, London.

Sajkowski, M. (1987). Protocol Verification in the Presence of Time. In
B. Sarikaya and G.v. Bochmann (Eds.), Protocol Specification, Testing,
and Verification, Vi. North Holland, Amsterdam.

Sifakis, J. (1980). Performance Evaluation Using Nets. In W. Brauer (Ed.),
Net Theory and Applications. LNCS 84, Springer-Verlag, Berlin.

Stotts, P.D. and Pratt, T.W. (1986). Petri Net Reachability Trees for
Concurrent Execution Rules. TR-1679. Computer Science Dept., University
of Maryland, College Park, USA.

Thistle, J.G. and Wonham, W.M. (1986). Control Problems in a Temporal Logic
Framework. Int. J. Control, 4h4(4): 943-976.

Turner, K.J. (1987). LOTOS-A Practical Formal Description Technique for 0SI.
Proc. Int’l Open Systems Conf., March 1987.

Valette, R., Thomas, V, and Bachmann, S. (1985). SEDRIC: un simulateur a
evenements discrets base sur les reseaux de Petri. R.A.1.R.0. APII,
19(5): 423-436,

Wong, C.Y., Dillon, T.S., and Forward, K.E. (1984). Analysis of Timing

114

Aspects of Communicating Computer Systems Using Timed Places Petri Nets.
In Proc. tCCC Conf., 7th, Sydney, October/November 1984.

Zuberek, W.M. (1980). Timed Petri Nets and Preliminary Performance
Evaluation. in Proc. Int’l Symp. on Computer Architecture, 7th, May 1980.

Analysis and Control of Discrete Event Systems
Represented by Petri Nets

Atsunobu Ichikawa Kunihiko Hiraishi

Department of Systems Science International Institute for Advanced
Tokyo Institute of Technology Study of Social Information Science
Nagatsuta, Midori-ku Fujitsu Limited

Yokohama 227, Japan Numazu Shizuoka, Japan

1. Introduction

When we intend to control a discrete event system (DES) we need to
describe the system behavior in a mathematical form. Some of formal
representations, such as, a formal language, a sequential machine or a finite
automaton have been used for this purpose (Ramadge and Wonham (1982),
Cohen et al (1984)). A time domain representation was also used by Ho and
Cassandras (1983). A formal representation is a kind of external or a black
box type of model in a sense that it does describe the system input output
relation in terms of state transition but not describe the structure of the
system which actually realizes state transitions. When we want to realize
a control system, we need a structural model of a system. By structural
model, we mean the model which describes the structure of the system and
a state transition mechanism in the system. The structural model must
also be capable of representing sufficiently large class of DES.

We shall utilize a Petri net as a structural model in analysis and
design of a control system of DES since the Petri net has been recognized as
a suitable mean of describing a DES, particularly when a system is
asynchronous concurrent (Petri 1962, Peterson 1981, Reisig 1985). In
contrast with a state machine, a Petri net has no explicit input and output
from the outside in its definition. Presence of inputs from the outside is
implicitly assumed in selecting a transition to fire among fireable
transitions. Presence of outputs to the outside is also implicitly assumed
to be a sequence of markings observed from the outside. This is, however,
not the case in real systems. We are often prohibited from access to some
of transitions, and token counts on some of places are not seen from the
outside. We need, therefore, to define explicitly the external input and
output ports of a Petri net.

In this paper we first describe briefly the outcome of the authors' study

116

conducted on a Petri net with the external input and output: they are;
modeling capability, observability, decision-free fireability, reachability
and control system design. Then we extend some of the results,
reachability in particular, to a wider class of Petri net. The major
contribution of this paper is, therefore, to give a necessary and sufficient
condition for reachability in a class of Petri nets and to utilize it in the
control system design of DES.

The reachability problem of a Petri net, which is to decide whether or
not a marking is reachable in a Petri net from its initial marking, has been
drawing considerable attention since many problems defined on the Petri
net are reducible to the problem. The structure of the reachability set has
been extensively studied. Though it may be very complicated for a general
Petri net, the reachability set is shown to be semilinear and decidable for
some restricted classes of Petri nets . They are less-than-6-places Petri
nets (Hopcroft and Pansiot 1979), reversible nets (Araki and Kasami 1977),
persistent nets (Landweber and Robertson 1978, Grabowski 1980, Muller
1980, and Mayr 1981) and weakly persistent nets (Yamasaki 1981, Yamasaki
1984). Necessary and sufficient conditions for reachability (NSCR) have
also been obtained for restricted classes of Petri nets, such as for marked
graphs (Murata 1977) , for forward conflict-free (Ichikawa et a/ 1985), for
constrained firing nets (lchikawa and Hiraishi 1983) and backward
conflict-free Petri nets (Hiraishi and lchikawa 1986) .

In this paper, a NSCR is obtained for a class of trap circuit Petri nets
where any fundamental circuit contained in the net is a trap. This result is
extended to a class of deadlock circuit Petri net. A sufficient condition
for reachability which seems to be very close to necessary and sufficient is
obtained for a class of trap containing circuit Petri net where any
fundamental circuit contains a trap.

The necessary and/or sufficient condirtions are then utilized for
designing the control system of DES represented by these classes of Petri
nets.

2. Definitions and Notation
2.1 Petri net

A Petri net (a net) is a five-tuple,

M=(P, T,B*, B, m), C=(PT,B" B) (1)
where P = {p,, p,,..., P} is a finite set of places ; T = {t,, 1,,..., 1 } is a finite
set of transitions; P N T= ¢ ; B*= [b*i]] and B™ = [b"i]] are mxn incidence
matrices from transitions to places and from places to {ransitions,
respectively , B = B*— B is used whenever convenient; m : P+ N, N is the
set of natural numbers, is @ marking ; C is a Petri net sturucture.

117

Marking and firing

We write m(Q), Q C P, to indicate the token count in a set of places Q,
at the marking m. If m(Q) = 0 we say that Q is token-free or unmarked at
the marking m. If m(Q) = 0 we say that Q is not token-free or marked.
Without confusion, we also write a marking in vector form. m = (m(p,),

m(pz,),...,m(pm))T is the marking denoted as the m-dimentional non-negative

integer vector.
Transition t j is fireable when each input place p ;of t j contains at least

b7ij number of tokens. Firing of transition t j results the removal of b’ij
tokens from each input place p ; and the addition of b*ij tokens in each
output place p ; of the transition t .

When we intend to control a system represented by a Petri net from the

outside of the system, we need to introduce the outside time-scale into the
Petri net. So we assume that transitions in the net fire at discrete time,
k = 0,1,2,---, which are not necessary at regular intervals. We allow more
than one transitions to fire at a time when they are simultaneously fireable.
We do not allow, however, a transition to fire more than once at a time even
it it is possible by token counts in the input places. A firing vector at
time k, u(k), is a m-dimentional {0,1} vector. Its j-th conponent is one if
transition t j fires at time k and zero it not. Thus, we have the marking
transition equation and the firing inequality.

m(k+1) = m(k) + Bu(k), m(0)=m° k=0,1,.. @)

m(k) =z B uk), k=0,1,.. (3)

We can extend the definitions and notation to the sequence of transition
firings. Let a firing sequence be o = u{0)u(1)-=-u(k). A firng count vector
(firing count) 0o is a m-dimentional positive integer vector whose j-th
component is the number of firing occurence of transition t j in a firing
sequence 0. A sequnce g is said to be included in a firing sequnce a if B = a.
A firing count x is said to be fireable if it has a firing sequence o =
u{O)u{1)--ru{k) where each u(k) satisties Inequality (3) at each time k.
When a firing count x fires in a Petri net M = (C, m) , the resulting marking
m' is given by

m=m4+Bx (4)

We call Equation (4) the matrix equation of Petri net M.
We also write m [a > m' , where a is any of a firing count, a firing
sequence, a firing vector or a set of transitions, to indicate that a is
fireable at marking m and that the firing of o yields marking m'. When we

118

do not need to specify the rsulting marking we simply write m {a> to
indicate o is fireable at marking m. For example, Equation (2) together
with Inequality (3) are writen as m(k) [u(k)> m(k+1).

Given a Petri net M and a firing count x, a firing count subnet is a
subnet of the Petri net, Mx = (Px, Tx, B*x, B'x, mx), which consists of a set
of transitions included in the firing count x and their incident input and
output places, where B*x, B'x, and mx are, respectively, the projection of
B*, B” and m on x) a firing count x has to fire, each transition in the
firing count subnet Mx must fire at least once.

The set of reachable markings or the reachability set R(C, m% of a
Petri net M = (C, m% is {m| m? [x> m, for some x}. If me R(C, m% we
say that the marking m is reachable in M.

Substructure

Lettj be a transition. Then "tj={p,|bijZ 1}andti"={p, |b%i=
1} are the set of input places and the set of output places, respectively, of
transition t . The set of input transitions, " p = {ti| b*ijZ1}, and the set
of output transitions, p ;'= {tj|b7ij Z1} of a place p ; are similarly defined.
We extend this notation to a set of transitions or places, such as, °S, S ° for
ScTand Q, Q" for QC P, where, for example, "S={p|p&E’t,teSCT}

A Petri net is a single arc if each b*ij and b’ij is equal to either zero
or one.

A deadlock D of a Petri net M is the set of places defined by

D={p|'DCD"}
that is, any transition which has at least one output place in a deadlock has
at least one input place in the deadlock. When a deadlock once becomes
token-free, it remains token-free by firing of any transition. A place which
has no input transition is the smallest deadlock. We call this a single place
deadlock.

Atrap Tris the set of places defined by
Tr={p|Tr C Tr}
that is, any transition which has at least one input place in a trap has at
least one output place in the trap. When a trap has at least a token, then it
never becomes token-free by firing of any transition. A place which has no
output transition is the smallest trap. We call this a single place trap.
A directed path (path) in a Petri net is a chain p,t.p,t,*=+t.p ., where

p,e "tyandp,,et;"i=12.s Adirected path is a directed circuit

i ’
(circuit) it p ;=p,,,- A circuit is fundamental if it is not a sum of other
circuits.A set of places included in a path or a circuit is simply called,
without confusion, a path or a circuit, respectively.
Restriction of Petri net
A Petri net is a marked graph it each place has at most one input

119

transition and at most one output transition.

A Petri net is structurely forward (backward) conflict-free if each
place has at most one output (input) transition.

A Petri net M is a trap circuit Petri net (tc-net) if each fundamental
circuit in M is a trap. Similarly a Petri net M is a deadlock circuit net
(dc-net) if each fundamental circuit in M is a deadlock. A tc-net is
equivalent to a normal net defined by Yamasaki(1984). The autors use the
name tc- rather than normal since the name tc-net indicates the structural
nature of the net and suggests the significance of a dc-net.

Given a Petri net M = (P, T, B*, B", m), a reverse netis a Petri net M =
(P, T, B*, B*, m) where B*' =B and B = B*. The reverse net is the Petri
net obtained by reversing the direction of all the arcs of the original Petri
net.

A Petri net is persistent if for all t1,t2€ T, t1 -t2 and any reachable
marking m, m [t1> and m [t2> imply m [tit2>; that is, if any two transitions
are fireable at a reachable marking the firing of one transition does not
make the other unfireable (Landweber and Robertson 1978). A Petri net is
weakly persistent if for any two sequences o, ,a = (3 and any reachable
marking m, m [e> and m [g> imply m [y > for some y whichy = B
(Yamasaki 1981).

Additive independance of integer vector

A set of integer vectors x i, i=1,2,...,r, is said to be additively
independent if an equation > i aixi=0, aie{-1,0,1} holds if and only if
all a iare zero.

1.2 Petri Net with External Input and Output

When we intend to control a system represented by a Petri net from the
outside we must have external input ports in the Petri net. The input ports
are provided by adding an auxiliary input place, called an external input
place, to a transition we want to control its firing. We may not be able to
control firings of all transitions from the outside. = Some of transitions may
not be controlled and are left to fire spontaneocusly when they become
fireable without intervention from the outside. Similarly, we may not be
able to observe token counts in all the places. Token counts in some of
places are not seen from the outside. Thus we have the following structure
of a Petri net with external input and output.

A Petri net with external input and output (PNIO) is a tour-tuple;

(C,Q, R, m) (5)
where C is a Petri net structure; Q = { qft j) It;e UC Ttis a set of

external input places, and R C T is a set of external output places.
A control input from the outside to a PNIO is a sequence of marking on

120

Q, v(k), k = 0,1,2,««s, which we are able to set at any sequence of
non-negative |QJ-dimentional integer vectors.

After a control input is given, a PNIO has no intervention from the
outside with regard to the firing of fireable transitions. Transitons which
are fireable are left to fire spontaneously. The following notion of
decision-free firing (df-firing) thus becomes necessary.

A Petri net is decision-free at marking m if all the transitions
fireable at the marking m can fire simultaneouly, that is, the net is
behaviorally conflict-free at the marking m. Decision-free firing
(df-firing) is the spontaneous firing of transitions without further
intervention from the outside in a decision-free Petri net at marking m. A
Petri net is decision-free (df-net) if it is decision-free at any marking
reachable from the initial marking through a sequence of df-firing. We use
the name decision-free instead of conflict-free, since contflict-free has
long been used to indicate structual contlict-free.

3. Df-firing Petri Net
3.1 Df-firing Petri net is equivalent to Turing Machine

In this section we shall discuss the modeling capability (computational
power) of a df-net.
It is well known that;
-the modeling capability of a Petri net is more than that of a finite state
machine since a Petri net can simulate the machine ,
-the modeling capability of a Petri net is less than that of a Turing machine
since a Petri net has no ability of detecting zero token of a place when
it is unbounded, and
-any extention of the Petri net which actually adds the ability of
detecting zero token to a Petri net makes a net equivalent to a Truing
machine.

In a first look a df-net seems to be a restriction of a Petri net since the
net is constrained such that it is behaviorally conflict-free at any marking
reachable by a sequence of df-firing. It is quite interesting to know,
however, that the modeling capability of a df- net is equivalent to a Turing
machine.

This is proven by showing that a df-firing Petri net can simulate a
register machine which in turn is equivalent to a Turing machine.

A register machine is a two-tuple (Re, Pr) where Re is a finite set of
registers which can store any large non-negative integers; Pr is a program
which is a finite sequence of instructions. Shepardson and Sturgeis (1963)
has shown that a register machine with a program consists of instructions
of the following three kinds can simulate a Turing machine:

(1) I(n): increase register n by 1,

121

(2) D(n): decrease register n by 1 if it is not zero,
(3) J(n)[s]: Jump to statement s if register n is zero.

To simulate a register machine by a df-net, we construct a df-net
consists of three kinds of elementary df-nets each of which can simulate
each of the above three kinds of instructions (Sasaki 1986).

Let a given register machine has r number of registers and a program
consists of s number of instructions. Let p_,P.,.....P,, be places which

represent the registers, and let p_,.p.,.P.,:--:Pes D€ places which represent

program counters. For each instruction contained in the program, we use
one of three elementary df-nets shown in Flg.1 a), b) and c¢) corresponding to
I(n), D(n) and J(n)[s] of the instruction, respectively. Note that the obtained
net is df-fireable starting any token count in p. , i=1,2,..,r and a token in

P,y Since the elementary nets are all df-fireable and the program of the

register machine must be consecutively executable. Thus we
have the following theorem.
Theorem 1 A df-net is equivalent to a Turing machine.

This property of the df-net is quite desireable in one hand since it
assures that the df-net can represents any of real life DES as far as they
are rigorously described. This property is not at all desireable, on the
other hand, in the sense that it prohibits us from analyzing most of
significant problems concerned with the property of the df-net. Typical
example of these is the df-fireability itself. The df-fireability problem,
which is defined as to decide whether or not a Petri net M = (C, m) is
df-fireable, is undecidable since the problem is easily shown to be
equivalent to the halting problem of the Turing machine. This property
requires us to restrict the df-net within a such class that some of
significant problems become decidable.

Pei Peit1 Peci P Pei P et
Drn Drn Drn ps
a) I(n) b) D(n) c) J(n)s]

Figure 1 Petri nets representing instructions

122
3.2 Making a Petri Net df-fireable

Even if the df-fireability problem is undecidable, It may be possible to
make a given Petri net df-fireable by chosing properly a set of external
input places, an initial marking and/or a control input sequence. From this
point of view, the f{ollowing classification of the df-tireability becomes
significant.
Level 0: a Petri net is df-fireable at level 0 if it is df-fireable for any
initial marking, any choice of external input places and any control input
sequence.
Level 1: a Petri net is df-lireable at level 1 if there exists a set of
external input places such that it is df-tireable for any initial marking and
any control input sequence.
Level 2: a Petri net is df-fireable at level 2 it there exist a set of external
input places and a control input sequence such that it is df-fireable for any
initial marking.
Level 3: a Petri net is di-fireable at level 3 if there exist a set of external
input places, an initial marking and an control input sequence such that it is
di-fireable.

The following theorems which have been obtained by the previous
research (lchikawa, Yokoyama and Kurogi 1985) will be usefull;
Theorem 2 Level 0 and Level 1 are equivalent.,
Theorem 3 A Petri net is df-fireable at level 1 if and only it it is
structurely forward conflict-free.,
Theorem 4 A Petri net is di-fireable at Level 2.,

Theorem 4 is obvious, since any Petri net can be made df-fireable at

Level 2 by adding an external input place to each transition which has input
places in common with other transitions. Level 3 is, therefore, of no
significance in determining a set of external input places in order to make a
Petri net di-fireable.

4. Observability of Marking

When a set of external output places R is a proper subset of the set of
places P, the marking on P is not directly observed and must be estimated
from the observed sequence of the marking on R. The observation problem
thus arises. Once the initial marking is estimated and the control input
sequence is known, the current marking is immediately computable. The
observation problem is, therefore, essentially to estimate the initial
marking of the net. Without loss of generality we shall limit our study
within a class of Petri nets with the external output (PNOJ.

123

Observation Problem

Given a PNO, estimate the initial marking from the observed sequence

of the marking on the set of external output places; is the observation
problem.

The problem can be devided into two problems.
Firing sequence problem : Given a PNO and an observed output sequence,
estimate the firing sequence of transitions.
Initial marking problem : Given a PNO and a firing sequence o, estimate
initial markings that give the firing sequence.

The necessary and sufficient condition for the solution of the firing
sequence problem to be unique is given by the previous research (Ichikawa
and Ogasawara 1986).

Theorem 5 Given a PNO and an observed output sequence, let BR be the
projection of the incidence matrix B onto only the set of external output
places R. The firing sequence that gives the observed output sequence can
be uniquely determined if and only if the set of column vectors of the matrix
Br does not contain zero vector and is additively independent.,

The initial markings which give the specified sequnece of df-firing can
be obtained by the following equation. This is derived by successive
substitution of Equations (2) and Inequality (3):

mlem®n m° (6)
m® =N {m|mzm’%)}
k-1
m’= 2> b-2 2 t
L€ O(k) n=1 1€ 0(n)
m°=mk{m|m§a°kj}
mo 0 -
Mm%y = Mg+ b
Equation (6) constitues an algorithm to estimate the initial marking
from the observed sequence of the output marking. The algorithm is
effective for a large-scale df-net, since the computation is straightforward
and contains no iterative procedure.
5. Necessary and Sufficient Condition for Reachability
in this section we shall give the necessary and sufficient condition for

reachability in a trap circuit Petri net(tc-net).
As described in Section 3, a df-net is equivalent to a Turing machine.

124

The reachability problem of the di-net is, therefore, undecidable. To
control a DES represented by a Petri net, we have at least to know whether
the target marking is reachable or not. At this point, we shall limit our
concern within a such class of Petri net that the reachability problem is at
least decidable.

We shall deal with a single arc Petri net. A single arc Petri net is
equivalent to a Petri net in its modeling capability when we consider a
conventional Petri net, that is, the Petri net where the firing ot any fireable
transition is subject to the control from the outside. They are, however, not
equivalent each other in the class ot df-nets. A df-net employs mutiple arc
in the simulation of a register machine in order to realize a type of
instruction J(n)[s] or, in other words, in order to have a capability of
detecting zero token. This capability can not be achieved by a single arc
df-net. Thus a single arc df-net is not equivalent to a Turing machine. So
we can expect that the reachability problem is decidable for a class of
single arc df- nets and this is true as shown in succeeding sections.

Decidability is not only our concern for an application to real systems
since even if it is decidable the amount of computation may exceed our
capasity. It is quite desireable to have a necessary and sufficient condition
for reachability (NSCR) expressed in terms of an initial marking, a target
marking and a structure of a Petri net.

NSCRs have been obtained so far for some restricted classes of Petri
nets. A marked graph (Murata 1977), a structually conflict-free Petri net
(lchikawa, Yokoyama and Kurogi 1985, Hiraishi and Ichikawa 1986) are these
classes. If we take a close look at these conditions so far obtained, we
find that the specified structure, such as marked graph and structurely
contlict-free, is only sufficient condition for the obtained NSCRs to be true.
This finding suggest us that it may be worthwhile to try to answer the
gestion under what structural constraint a NSCR is obtainable. This is
done in the following.

To obtain a NSCR expressed in terms of an initial marking, a target
marking and a Petri net structure means that we must be able to estimate a
sequence of markings, without computation, to such an extent that
Inequality (3) can be verified at each time k = 1,2,.... We shall seek a
structure that enables us this verification.

5.1 Preparation

A Petri net considered in this section is a single arc Petri net.
Lemma 1 Let a Petrinetbe M = (P, T, B*, B, m®. If a firing count vector
x is fireable at m®, then the following two conditions hold:
1) all deadlock in the tfiring count subnet Mx are marked at the marking m°,
and
2) all traps are marked in Mx at m' = m® + B x.

125

proof : Condition 1) : If there is a token-free deadlock in Mx at m®, then a
transition having an input place in the deadlock can not fire. This violates
that any transition in Mx must fire at least once.

Condition 2) : If there is a token-free trap in Mx at m”, then a transition
which has an output place in the trap do not fire in the firing sequence. This
violates that any transition in Mx must fire at least once.,

Lemma 2 Let a Petri net be M = (P, T, B¥, B, m%. If no transition can fire
at a marking m, then there exists at least a token-free deadlock.

Proof: Assume that a transition, say t p can not fire at m. It has at least

one token-free input place p ,. Let a transition which has p, as one of

output places be t s. Thets cannot fire at m. Repeat this procedure, then
we reach either of the following two cases since the Petri net is finite:
Case 1 : there is a token-free single place deadlock.
Case 2 : there is a token-free circuit. In this case, if there is no path which
is to deposit a token into the circuit then the circuit is token-free deadlock.
If there is a path which is to deposit a token into the circuite, we find the
path is token-free by applying the above procedure. Repeating this
procedure, we finally have a token-free deadlock.,
Lemma 3 Given a Petri net M = (P, T, B*, B", m%) and a firing count vector x.
If m'=m® + B x Zo0, then all single place deadlocks in Mx are marked at m°.
Proof : If there is a token-free single place deadlock at m®, then token count
of the place at m' must be negative after firing of its output transitions.
Lemma 4 If a Petrinet M = (P, T, B¥, B, m®) has no circuit, then the
marking m' is reachable in M if and only if the equation m' = m® + B x has a
non-negative integer vector solution.
Proof : Only-if-part is imeadiate from Equation (2).
If-part: Assume that Mx has no fireable transition, then from Lemma 2
there exists a token-free deadlock. Since M has no circuit, this means there
is at least one token-free single place deadlock. Since this violates Lemma
3, there must exists at least one transition fireable. Consider the situation
that the transition fired. Let the remainning firing count vector be x'
Then Mx must have at least one transition fireable from the same reason
described above. Repeating this procedure, we can generate the firing
sequence which satifies a specified firing count vector.,
Lemma 5 Let a Petri net be M = (P, T, B¥, B, m®. A marking m'is
reachable through a firing sequence ¢ in M if and only if the marking m° is
reachable through the reverse sequence ¢~! in the reverse net M = (P, T,
B-, B*, m).
Proof : Proof is immediate if we subsitute m® by m', m' by m®, B" by B* and
B by -B in Equations (2) and Inequality (3).,
Lemma 6 Let a Petri net M = (P, T, B*, B", m°) be a tc-net. Then any
marked circuit in M does not become token-free by firing of any transition
in M.

0

126
Proof : Obvious from the definition of tc-net.,
5.2 Trap Circiut Petri Net

Lemma 2 and 4 indicate importance of the presence of token-free
deadlock of circuit type in the firing sequence. In this respect, a Petri net
that any marked deadlock does not become unmarked during a firing
sequence is of significance. And from Lemma 6 the tc-net has such a
property.

Theorem 6 Let a Petrinet M= (P, T, BY, B, m% be a tc-net. Then a
marking m' is reachable in M if and only if there exists a non-negative
integer vector x which satisies the following two conditions,

1) x is the minimal solution of m' = m® + Bx, and

2) all deadlocks in Mx are marked at m°.

Proof : Only-if-part : Condition 1) is immediate from Equation (4).
Condition 2) is also immediate from Lemma 2. If x is not the minimal
solution of m' = m® + Bx then there exists the minimal solution x' = x .
Since Mx C Mx for x' = x, there is no token-free deadlock in Mx' if there is no
token-free deadlock in Mx.

If-part : From Lemma 2 and Condition 2) there exists at least a transition
that can fire. Consider the situation after the transition fires. Let the
remainning firing count vector be x'. There is no token-free deadlock of
circuit type in Mx from Lemma 6 , and there is no token-free single place
deadlock from Lemma 3. There exists, therefore, no token-free deadlock in
Mx and thus there is at least one transition fireable. Repeating this
procedure we can generate firing sequence from m® which satisfies the
firing count vector x.,

While a number of solutions of the matrix equation of a Petri net may be
infinite, a number of the minimal solutions is finite. So the reachability in
a tc-net is decidable within finite amount of computation.

Theorem 6 includes as its sepecial case the NSCR for a marked graph by
Murata(1977) and the NSCR for a structually forward conflict-free Petri net
(Ichikawa, Yokoyama and Kurogi 1985).

5.3 Deadlock circuit Petri net

Using Lemma 4 we have the following NSCR in a dc- net.
Corollary 1 Let a Petri net M = (P, T, B*, B", m®) be a dc-net. Then a
marking m' is reachable in M if and only if there exists a non-negative
integer vector x such that the following two conditions hold;
1) X is the minimal solution of the equation m' = m® + B x, and
2) all traps in Mx are marked at the marking m'.,

127

5.4 Sufficient Condition for Reachability

If we carefully examine the if-part of the proof of Theorem 6, we find
it most essential that a marked deadlock in the firing subnet at the initial
marking does not become unmarked by any transition firing. The tc-net is
sufficient but not necessary to assure this property. We can weaken a
little bit the restriction imposed on the structure of Petri nets.

A Petri net is a trap containning circuit Petri net (icc-net) if any circuit
in the net contains a trap. Then we have next.

Theorem 7 Let a Petrinet M = (P, T, BY, B, m®) be a tcc-net. Then a
marking m' is reachable in M if there exists a non-negative integer vector x
which satisies the following two conditions,

1) x is the minimal solution of m' = m® + B x, and

2) all.deadlock in Mx conntain marked trap at m°.

Proof : lf-part of the proof for Theorem 3 is also true for a tcc-net.,

The reason why the condition 2) in Theorem 7 is not necessary but
sufficient is the following. As we see in Lemma 2, the necessary
condition requires token(s) be in a deadlock, not necessarily token{s) be in a
trap within a deadlock. When token(s) exists in a deadlock and not in a
contained trap at the initial marking it may be deposited into the trap
during the firing sequence before it is taken out of the deadlock.

This gives us the feeling that this sufficiency is very close to the
necessity. From practical point of view, it is worthwhile to examine a
given net to be a tcc-net when it is not a tc-net.

A deadlock containning circuit Petri net (dcc-net) is similarly defined
as a ttc-net and we have;
Corollary 2 Let a Petri net M = (P, T, BY, B", m% be a dcc-net. Then a
marking m' is reachable in M if there exists a non-negative integer vector x
which satisies the following two conditions,
1) x is the minimal solution of m' = m® + B x, and
2) all traps in Mx are marked at m'.

6. Control System Design

There are two types of control in a DES represented by a Petri net. One
is to control a firing sequence such that the sequence follows a prescribed
firing sequence. We call this type of control a firing control. The other is
to bring a Petri net to the specified marking. We call this type of control a
marking control. For each type control, we have to carry out two tasks.
One is to provide a set of the external input places, and the other is to
determine a control input sequence on the set of external input places.

We shall limit our study within the class of tc- and dc-net so that the
NSCR obtained in the last section are utilized in the control system design.

128
6.1 Firing Control

The firing control may be devided into two classes. One is the firing
sequence control where the firing sequence has to follow the prescribed
sequence. The other is the firing count control where the specified firing
count has to be realized. We shall discuss here only the firing sequence
control, since the firing count control is similar with the marking control
in its concept and in available theorems.

The initial marking which enables a specified firing sequence is
already obtained in Section 3, Equation (6) for a Petri net without
particular restriction.

If the set m® n m? obtained by Equation (6) for a prescribed firing
sequence o is non-empty, then o is realizable as a df-firing sequence
starting from an initial marking m®€ m®n m® . We say this case the
initial marking control for a prescribed firing sequence. This means that we
need only to set the initial marking and need not to apply a control input
sequence.

If the set m® N m® for the prescribed firing sequence o is empty then
we can not realize o by an initial marking control and we need a control
input sequence.

The following algorithm will give the firing sequence control.
Algorithm 1
1) Compute m® and m® by Equation (6) for a prescribed sequence of firing o.
2) If the set m® N m® is non-empty then choose a m®e m® n m® Deposit
the m° over the places and let the net start the df-firing. The df-firing
will realize the prescribed sequence of firing. If m® N m% is empty,
then go to Step 3).
3) Choose a m®e m® Compute m' = m® + B o, where o is the firing count of

o. LetS be the set of transitions which are not fireable in m'. Add an
external input place qft) to each transiton t€ X+ T-S, where X is
the set of transitions included in the firing sequence 0. Q = {q(t)} thus
formed is the set of external input places.

4) Deposit tokens sequentially into coresponding external input places
according to the prescribed firing sequence. |

6.2 Marking Control

We shall again limit our study within the classes of tc-, dc- , ttc- and
dcc-nets, in order to utilize the necessary and/or sufficient conditions for
reachability in these classes of Petri nets.

First of all, we shall show that a tc-net which satifies the NSCR is
weakly persistent.

Theorem 8 A Petri net M = (C, m) is weakly persistent if and only if it is a

129

tc-net and all deadlocks are marked at the initial marking m.

Proof : Only-if-part : Consider firing sequences a, 8 and ay with ™y = g

Since the sequences a and 8 are fireable, a firing count subnet MaB =M, U
Mg = Ma y has no token-free deadlock. Therefore, the sequence avy is

fireable.
If-part : Assume the net is not a tc-net, then there is a circuit ¢ which is
not a trap. There are at least two transitions which have their input places
in ¢. One is ftransition t that has no output place in ¢c. The other is
transition t' that has an output place in c. Clearly a sequence t' first then t
is always fireable, but a sequence t first and then t' is not allways fireable.
The net is not, therefore, weakly persistent.,
Firing count bounded df-tiring

Given a Petri net M = (C, m) which is a tc-net and a firing count vector x,
a firing sequence defined by the following procedure is a x-bounded
df-firing sequence.
1) Set k =0, m(0) = m® and x(0) = x.
2) Let u(k) be the maximal df-firing vector at m(k).
3) If u(k) = 0 or x(k)— u(k) = 0, then stop. Otherwise, let x(k+1) = x(k) -
u(k), m(k+1) = m(k) + B u(k) and k=k+1, then back to Step 2).,

A x-bounded df-firing sequence is said to be df-fireable if there exists

an integer K such that x = 3~ X, _ u(k).

Then we have the following.
Theorem 9 |If a Petri net M = (C, m) is a tc-net, then x-bounded df-firing
sequence is fireable if x is fireable.

Proof : For any two firing count vector x which are fireable,

; and x, ,x, = x,
X, = X, - X, has firing sequence, since the tc- net is persistent from

Theorem 8. Assume that a df-firing sequence come to time k. x(k) = x -
(x-x(k)) has a firing sequence since x-x(k) has a firing sequence
u(O)u(1)u(2)==+u(k-1), and x(k) = x. Therefore, there is at least one fireable
transition at m(k) which is contained in x(k). u(k) becomes zero if and only
if x(k) becomes zero.,

Theorem 10 Let a Petri net M = (C, m) be a tc-net. Assume that the target
marking m' is reachable in M. Let s be a minimal solution of m' = m® + B s
and has a firing sequence. Let S be a set of transitions which are fireable
at the marking mf. Let Q = { q(t It €S} be a set of external input
places. Deposit s, number of tokens in each external input place q(t ,) .
Then the marking m' is reached by df-firing in M.

Proof : It is obvious from Theorem 9 that each t , in S fires s, times. We

only need to show that a transition t j in T- S which is not fireable at m!
actually fires s j times. It is clear that t j can fire at least s j times
since s has di-firing sequence. We need, therefore, to show that the firing
of t | ends after sj times firings. Assume that t | can fires s j+1 times.

130

Since s is the solution of m' = m® + B s, and has a firing sequence, there
exists a firing sequence which leads to m' without firing t | s j+i times.
This means that t j can fire at m!, since the net is weakly persistent from
Theorem 8.
Control Design Procedure for Marking Control

Given a tc-net M = (C, m®) and the target marking m', the procedure to
find the set of external input places and the control input is given by the
following.
Algorithm 2
1) Solve Equation m' = m® + B x and find the minimal solutions, sa,sb,...

I no solution of the equation exists m' is not reachable.
2) Among the minimal solutions find one that satisfies the conditions of

Theorem 6. If no such solution exists m' is not reachable.

3) Let S be the set of transitions which are fireable at m'. Add an
external input place q(t () to each t (€ S, and let the set Q(S) = { q(t) |t
< € S} be the set of external input places.

4) Deposit coresponding number of tokens s _ to each q(t) at time k=0.
Then let M be dt-firing.,

Theorem 6, 9 and 10 assure that the net reaches to the target marking
m!. Token number s is not necessarily deposited all at time k=0. They can
be deposited consecutively into Q(S) at any time k such that % | v(k) = s.

Similar design method is developed for a dc-net, utilizing Collorary 1
instead of Teorem 5.

6.3 Firing Count Control

The difference between the firng count control and the marking control
is that in the former the firing count vector x is prescribed and in the latter
the initial and the target markings m° and m', respectively, are specified.
The matrix equation m' = m® + B x connects these two. The design
procedure for the firing count control is therefore obvious.

Algorithm 3

1) Find m° z 0 and m' = 0 such that m' = m® + B x for a given firing count
vector x.

2) If there is a token-free deadlock in Mx at m®, add tokens until all the
deadlock are marked.

3) Follow Algorithm 2 from Step 3).

In this case any non-negative integer vector x is made fireable by
properly setting the initial marking and manipulating the control input
sequence.

131
7. lNlustrative Example

A tcc-net shown in Figure 2 is used to illustrate how the necessary
and/or sufticient conditions work in the control system design. The net is
tcc- but not tc- since a circuit {p,, p,, p;} is not trap but contains a trap

{P, P} Note that the Petri net is not a marked graph, a structurelly

conilict-free, nor a free choice.

We shall examine whether a target marking m' = (01 02 1 0)7 is
reachable from the initial marking m® = (0001 10)". The matrix
equation m' = m® + B x , where the incidence matrix B = (-1

has the minimal non-negative solution x = (211 1 1 1)7, The firing coun
subnet Mx is Mx = M. There exists a token-free deadlock {p;. p,. P,} in Mx

at m® as shown in Figure 3 a), the target marking m' is not reachable in M.
Instead, m' = (1 1 01 1 0)7 is reachable from m® = (1000 1 0)T, since
any deadlock in Mx, x = (2 1 1 11 1)7, contains a marked trap at m®as shown

in Figure 3 b). The scheme of the control system obtained by Algoritm 2
is shown in Figure 4. The firing sequence is in this case either t t t t,t,
tytyort t ottty 12, either sequence can bring the net to (1 1 0 1 1 o)T.
Pj t
t, ﬂ o S
t, ts
P, Ps Ps
Py |‘/
ts \/; I'tg
4

Figure 2 A structure of a tcc-net

b) No token-free deadlock

Figure 3 Deadlocks at the initial marking

°
t
F N o,
(oM
@ 1 tg
a(s) Py
N——

Figure 4 A control scheme

Retferences

Araki, T. and Kasami, T.(1977). Decidable Problem on the Strong
Connectivity of Petri Net Reachability Sets. Theor. Comput. Science 4
(1) ,97-119

Cohen, G., Moller, P. Quadrat, J.P. and Viot, M. (1984). Linear System Theory

133

for Discrete Event Systems. Proc. 23-rd Int. Conf. Decision and
Control. 1, 539-544
Gravowski, J. (1980) . The decidability of Persistence for Vector Addition
Systems. Inf. Proc. Letters 11(1) 20-23
Hiraishi, K. and Ichikawa, A. (1986). Conflict-free Places and Fireability of a
Solution of Matrix Equation in Petri Nets. Trans. Soc. Instr. Contr. Engr..
22(7), 750-755 (in Japanese)
Ho, Y.C. and Cassandras, C. (1983). A New Approach to the Analysis of
Discrete Event Systems. Automatica, 19 (2) 149-167
Hopcroft, J. and Pansiot, J.J. (1979). On the Reachability Problem for
5-dimentional Vector Addition Systems. Theor. Comput. Science 8,
135-159
Ichikawa, A. and Hiraishi, K. (1984) . Necessary and Sufficient Condition for
a class of Reachability in Petri nets. Trans. Soc. Instr. Contr. Engr..
20(8), 762-764 (in Japanese)
Ichikawa, A.and Ogasawara, K. (1986). Observation of markings in Petri
Nets. Trans. Soc. Instr. Contr. Engr. 21(4), 324-330 (in Japanese)
Ichikawa, A., Yokoyama, K. and Kurogi S. (1985). Control of Event-driven
Systems - Reachability and Control of Conflict-free Petri nets -.
Trans. Soc. Instr. Contr. Engr. 21(4), 324-330 (in Japanese)
Ichikawa, A., Yokoyama, K. and Kurogi S. (1985). Reachability and Control of
Discrete Event Systems Represented by Petri Nets. Proc. Int. Symp.
Circuits and Systems 1985 , 2, 487-490
Landweber, L.H. and Robertson, E.L. (1978) . Properties of Conflict-free and
Persistent Petri nets. Journal of the ACM. 25, 352-364 .
Mayr, E. W. (1981). Persistence of Vector Replacement System is Decidable.
Acta Informatica 15, 309-318
Mayr, E. W. (1984). An Algorithm for the General Petri Net Reachability
Problem. SIAM J. Comput. 13(3) 441-460
Muller, H. (1980). Decidability of Reachbility in Persistent Vector
Replacement Systems. Lecture Notes in Computer Science, 88,
426-438
Murata, T. (1977). Circuit Theoretic Analysis and Synthesis of Marked Graph.
IEEE Trans. Circuits and Systems. CAS-24(7), 400-405
Peterson J.L.(1981) . Petri Net Theory and The Modeling of Systems,
Prentice-Hall
Petri C.A.(1962). Fundamentals of a Theory of Asynchronous Information
Flow,. Proc. IFIP Congress 1962. 386-390
Ramadge, P.J. and Wonham, W.M. (1982). Algebraic Decomposition of
Controlled Sequential Machines. Proc. 8-th World Congress IFAC, 1,
313-318
Ramadge, P.J. and Wonham, W.M.(1982) Supervision of Discret Event
Processes. Proc. 21st IEEE Conf. Decision and Control. 3, 1228-1229
Reisig, W. (1985) Petri Nets , An Introduction. Springer-Verlag

134

Sasaki, I. (1986). Modeling and Language Acception Power of Decision-free
Petri nets. BS thesis, Department of Systems Science, Tokyo [nstitute
Technology.
Shepardson, J. and Sturgis, H. (1963) . Computability of Recursive Functions,
Journal ot the ACM, 10(2), 217-255
Yamasaki H. (1981) . On Weak Persistency of Petri nets. Inf. Proc. Letters,
13(1) : 94-97
Yamasaki H. (1984). Normal Petri Nets. Theor, Comput. Science, 31 (3)
307-315

DATA FLOW PROGRAMMING FOR PARALLEL IMPLEMENTATION OF

DIGITAL SIGNAL PROCESSING SYSTEMS'

Edward A. Lee

Dept. of Electrical Engincering and Computer Science
U.C. Berkeley, Cory Hall, Berkeley CA 94720, USA

Presented at: IIASA workshop on
Discrete Event Systems: Models and Applications
3-7 August, 1987, Sopron, Hungary

ABSTRACT

Digital signal processing systems constitute a special class of discrete event
systems where events correspond to samples of signals. A data flow description of
such systems can capture much of the information required for high performance,
cost-effective, parallel implementation. A formal model called synchronous data
Sflow (SDF) is a useful special case of data flow and subclass of discrete event sys-
tems where the events are deterministic and periodic. An SDF description of an
algorithm can be first analyzed for implementability, then an implementation can
be synthesized. In the analysis phase we can check for (1) stability of the buffers,
(2) freedom from deadlocks, and (3) adequate concurrency to meet a given perfor-
mance specification. The synthesis phase consists primarily of constructing a
periodic schedule and mapping the algorithm onto parallel processors. The
resulting schedule is said to be staric and is far less costly to implement than
dynamic, or run-time scheduling,

Although many digital signal processing systems can be accurately described
within the SDF model, the model needs to be generalized to be broadly applicable.
In particular, the expanded model should accommodate asynchronous systems
and systems with data dependent computations. To some degree, dynamic
scheduling becomes essential. However, in order to achieve high performance and
low cost, fully dynamic scheduling should be avoided. Limited extensions to the
SDF model are described which are inexpensive to implement and can be used to
describe a variety of systems with asynchronous events.

1. Digital Signal Processing and Discrete Event Systems

Digital signals arc sequences of numbers called samples. Usually signals are processed to pro-
duce ncw signals at the same sample rate, as shown in figure la, or at a sample rate related by a
rational factor, as shown in figure 1b. Both are discrete-time systems, although the multi-rate system
is a little different from the usual conception of a discrete-time system. Time is discretized dif-
ferently in different parts of the systcm. Such systems are said to be synchronous, and are a special

L This research was sponsored by an IBM faculty development grant and National Science
Foundation Presidential Young Investigator award.

136

/_ EVENT

SINGLE

—> RATE >
SYSTEM

SIGNALIN (a) SIGNAL OUT
MULTIPLE

— RATE >

SYSTEM

()

Figure 1. Single sample rate (a) and multi-rate (b) digital signal processing systems.

subset of discrete event systems. The arrival of a sample is an event, and typically the cvents are
periodic and deterministic.

A complete signal processing system may be a complex interconnection of synchronous subsys-
tems. Such an interconnection is conveniently described by a block diagram, or a data flow graph, an
cxample of which is shown in figure 2a. Blocks in the block diagram (nodes in the data flow graph)
represent computations performed on signals, and the paths between blocks (branches or arcs in the
data flow graph) represent the routing of signal samples (called tokens). The fundamental premise of
data flow program graphs [1] is that nodes can firc whenever there is sufficient data on their input
branches. Since nodes can fire simultancously, the concurrency available in an algorithm is exhibited
in a data flow description.

(a)

(b)

Figure 2. (a) A signal processing system is built by connecting subsystems. The boxes represent compu-
tations and the arcs represent signal paths. (b) The petri net equivalent of (a) has transitions instead of
boxes and places instead of arcs. The assumption is that transitions take some time to fire (the computa-
tion time of the boxes).

137

The connection between data flow graphs and Petri nets [2] should be obvious to those readers
familiar with Petri nets. The graph in figurc 2a is modeled as a Petri net in figure 2b. The nodes in
the data flow graph correspond 1o transitions in the Petri net, and the branches in the data flow graph
corrcspond to the places in the Petri net. In the Petri net model we assume that the transitions take
some time to fire (the cxccution time of a computation). Also, tokens can accumulate in the places,
but in a signal processing system they should be processed in the same order of their arrival,

We make the important distinction between data flow program graphs, data flow languages, and
data flow machines. The term "data flow language" is often used to refer to languages that are easily
translated into data flow program graphs, even if the syntax of the language bears no rescmblance to a
graph. Such languages are usually functional languages [3], and are often intended for use with data
flow machines. Data flow machines cvaluate data flow graphs. Such machines use costly hardware
or software to determine when 1o fire nodes in the graph. Since the scheduling is done at run time, it
is said to dynamic. A good survey of such machines is given by Srini [4]. Here we view data flow
program graphs as the input from the programmer (preferably graphical input), and the target archi-
tecture is a conventional multiprocessor, not a data flow machine.

Our overall aim is the automatic synthesis of cost-effective implementations of signal process-
ing systems from a high level description of the algorithm. The objcclive is to map the data (low
graph onto processors such that we cither maximize the throughput subject to a constraint on the
number of processors, or minimize the number of processors subject to a throughput constraint. In
essence, what is required is a scheduling strategy. In addition, we will nced a way to check the
correctness of a graph.

For signal processing, data flow descriptions of algorithms have important advantages.

Appropriateness:
Signal processing algorithms arc often described as data flow graphs by choice when there is no
compelling reason to do so. In fact, this appropriateness has led dozens of rescarchers to
develop so called "block diagram languages" for signal processing.

Parallelizability:
As mentioned above, the concurrency in an algorithm is evident in a data flow description. Sig-

nal processing applications are frequently computation intensive, so parallel processing is
essential.

Modularity:
Subsystems that have been implemented in the past and are well understood can be easily re-
used by splicing them into a new data flow graph.

Synchronous data flow [5,6] is a special case of data flow that has properties that are particu-
larly convenient for implementation. A synchronous data flow node is defined to be one where the
same number of tokens are consumed on each input branch and produced on each output branch cach
time the node fires. A synchronous data flow node is shown in figure 3. The numbers adjacent to
cach branch indicate the number of tokens produced and consumed when the node fires. An SDF
graph is an interconnection of synchronous data flow nodes, and is clearly capable of representing
synchronous multi-rate signal processing systiems. The main advantage of specializing 10 SDF is the
ability to generate static schedules at compile time and ensure correctness of the schedule.

Figure 3. An SDF node. The numbers adjacent to each branch indicate the number of tokens produced
and consumed each time the node fires.

138

An example of an SDF description of signal processing algorithm (a second order recursive
digital filter) is shown in figure 4. The triangle at the left is a data flow node that can fire at any time,
because it has no inputs, cach time producing one token. This models the signal source. Hence the
assumption is that the computation can run forever, and must run forever without deadlock. This
assumption is peculiar to signal processing applications, and is one of the important differences
between signal processing and general purpose computations.

All of the nodes in figure 4 consume and produce a single token on each input and output
branch. A graph consisting exclusively of such nodes is called a homogeneous SDF graph, and
corresponds to a single-sample-rate signal processing system. Also, the nodes in the graph represent
clementary computations (additions, multiplications, forks), so the graph is said to be atomic. A
larger granularity may be desirable. The graph in figure 5 represents a voiceband data modem, and
each node is a complicated computation that may be specified hicrarchically as an SDF graph.
Descriptions at this level of granularity are called large grain data flow {7]. The techniques discussed
in this paper apply equally well to all levels of granularity and any mixture of levels.

The labels "D" on some of the branches in figure 4 refer to delays. The term "delay” is used in
the signal processing sensc to mean a sample offset between the input and the output (a z ™! operator).
We define a unit delay on an arc from node A to node B 10 mean that the n'* sample consumed by B
will be the (n — 1) sample produced by A. This implies that the first sample that B consumes is not
produced by A at all, but is part of the initial state of the buffer connecting the two. Indced a detay of

Figure 4. A data flow graph for a second-order recursive digital filter. The empty circles are "fork"
nodes, which simply replicate each input token on all output paths. The "1" adjacent to each node input
or output indicates that a single token is consumed or produced when the node fires.

9600Hz 1200Hz 600Hz

INPUT

FILT: FRONT-END FILTER 2D 2

HIL: HILBERT FILTER ><

EQ: ADAPTIVE EQUALIZER \/

PLL: PHASE LOCKED LOOP

DECI: DECISION —> REAL SAMPLES
DECO: DECODER =——> COMPLEX SAMPLES

OUT: ouTPUT

Figure 5. A SDF graph showing a voiceband data modem. Note the muitiplicity of sample rates. For
emphasis, signal paths that carry complex signals are shown with double lines, although these arcs are no
different from the arcs carrying real signals except that the rate of flow of tokens is twice the sample rate
of the complex signal.

139

d samples on a branch is implemented in SDF simply by initializing the arc buffer with d zero sam-
ples. The inscription dD will be placed ncar the arc to illustrate the delay. In the Petri net model,
delays correspond simply to an initial marking.

Notably absent from the SDF model is data dependent routing of tokens. Since tokens drive the
firing of nodes, data dependent firing is also absent. The corresponding feature of the Petri net model
that is missing is conlflicts, which would introduce an indcterminacy. Although most DSP systcms
can modcled without this indcterminacy, some practical systems arc cxcluded by this restriction. An
example of a computation that we may wish to perform is shown in figure 6. It is equivalent to the
functional statement

z = if (x) then {(y) clsc g(y).

The nodes labeled switch and select are asynchronous because it is not possible to specify a-priori
how many tokens will be produced on their outputs or consumed on their inputs. A range (0,1) is
specificd instcad. Since the firing of nodes in this graph is dependent on the data (the valuc of x), it is
not possible to construct a static schedule (a schedule constructed at compile time that is valid
throughout the computation). QOur approach is to introduce limited dynamic scheduling to handle
only those situations that absolutely require dynamic scheduling. Hence the price (in overhead) of
dynamic scheduling is not paid when not necessary.

2. OBJECTIVES OF THIS PAPER

Given an SDF graph describing a digital signal processing algorithm, we wish to analyze it for
implementability (the analysis phasc) and synthesize a cost effective implementation (thc synthesis
phase). In the analysis phase we check for (1) stable buffers, (2) freedom from deadlocks, and (3)
adequate concurrency to meet the performance specification. All three can be donc in polynomial
time. The relevant techniques have been described in two closely related papers (6, 5], so we skip

some dctails in order to highlight the intuition and point out the relationship to other models used for
discrete event systems.

Figure 6. Two asynchronous nodes are shown used in a conditional construct implementing an if-then-
else. The switch routes tokens to one of two output paths depending on a control input and the select
selects tokens from one of two inputs depending on the control token. The notation "(0,1)" indicates that
when the node fires, either zero or one sample will be produced or consumed.

140

For cost rcasons, the number of processors available for the implementation of the SDF graph
may be limited. Hence we cannot simply assign one processor to each nodc. Even if we could, this
would probably result in a gross under-utilization of the hardware resources. The problem that we
consider in this paper is to schedule the SDF graph onto one or more parallel processors such that we
maximize the throughput (or minimize the period of a periodic schedule). Usually for a signal pro-
cessing system the number of processors is selected so that a required throughput is just barcly met.
To simplify the discussion, we assume that the parallel processors sharc memory without contention,
so there are no communication delays between nodes mapped onto different processors. Practical
parallel architectures with this feature have in fact been proposed [8,9]. A useful (and intcresting)
special casc is a single processor. In the single processor case it is clear that we are discussing compi-
lation techniques.

The history of modcls related to SDF is extensively reviewed in [5] so the interested reader is
referred to that paper. Nonetheless, one prior paper is closely enough related to require mentioning.
In 1966 Karp and Miller introduced computation graphs, which are essentially equivalent to SDF
graphs but arc intended to describe general computations [10]. In particular, Karp and Miller discuss
graphs that terminate, or dcadlock after some time. They concentrate on fundamental theoretical con-
siderations, for example proving that computation graphs are determinate, meaning that any admissi-
ble exccution yields the same results. Such a theorem of course underlies the validity of data flow.

Also described in [5] is a software implementation of an SDF programming system called
Gabricl. We again refer the interested reader to that paper.

3. THE ANALYSIS PHASE

In the analysis phase we check the implementability of the system by checking (1) stability of
the buffers, (2) freedom from deadlocks, and (3) adequate concurrency.

3.1. Stability of the Buffers

We assume that an SDF graph describes a repetitive computation to be performed on an infinite
stream of input data, so the desired schedule is periodic. 1t is not always possible to construct a prac-
tical periodic schedule for an SDF graph, however. In particular, for some graphs the buffers used to
implement the arcs of the data flow graph may have to be of infinite size. This indicates an crror in
the construction of the graph, and must be identified.

Consider the SDF graph of figure 7(a). To start the computation, node 1 can be invoked
because it has no input arcs and hence needs no data samples. After invoking node 1, node 2 can be
invoked, after which node 3 can be invoked. This scquence can be repeated. But node 1 produces
twice as many samples on arc 2 as node 3 consumes. An infinite repetition of this schedule thercfore
causes an infinite accumulation of samples in the buffer associated with arc 3. This implies an
unbounded memory requirement, which is clearly not practical.

In a DSP sense, the SDF graph has inconsistent sample rates. Node 3 expects as inputs two sig-
nals with the same sample rate but gets two signals with different sample rates. The SDF graph of

Figure 7. (a) An example of a defective SDF graph with sample rate inconsistencies. The flags on the
arcs simply identily them with a number for reference in the text. (b) A corrected SDF graph with con-
sistent sample rates. The flags attached to the arcs simply identify them with a number.

11

figure 7(b) docs not have this problem. A periodic admissible sequential schedule repeats the invoca-
tions {1,2,3,3}. Nodc 3 is invoked twice as often as the other two. It is possible to automatically
check for consistent sample rates and simultancously determine the relative frequency with which
each node must be invoked. To do this, we nced a little formalism.

A SDF graph can be charactcrized by a matrix similar to the incidence matrix associated with
directed graphs in graph theory. It is constructed by first numbering each node and arc, as donc in
figure 7, and assigning a column to cach node and a row to each arc. The (i,j)* entry in the matrix is
the amount of data produced by node j on arc { each time it is invoked. If node j consumcs data
from arc i, the number is negative, and if it is not connected to arc i, then the number is zcro. For the
graphs in figure 7 we get

1-10 1-10
L,=[2 0 -1 To=[2 0 -1 (1
01 -1 02 -1

This matrix is called a topology matrix, and need not be square, in general.

If a nodc has a connection to itsell (a self loop), then only one entry in T describes this link.
This entry gives the net difference between the amount of data produced on this link and the amount
consumed each time the node is invoked. This difference should clearly be zcro for a correctly con-
structed graph, so the I entry describing a sclf loop should be a zero row.

We can conceptually replace cach arc with a FIFO queue (buffer) to pass data from one node to
another. The size of the qucue will vary at different times in the exccution. Define the vector b(n) to
contain the number of tokens in each quecue at time n. The vector b(a) thus specifics the marking at
time n in the equivalent Petri net model.

For the scquential (single processor) schedule, only one node can be invoked at a time, and for
the purposes of scheduling it does not matter how long each node runs. Thus, the time index n can
simply be incremented each time a node finishes and a new node is begun. We specify the node
invoked at time n with a vector v(n), which has a onc in the position corresponding to the number of
the node that is invoked at time » and zcros for cach node that is not invoked. For the systems in
figurc 7, v(n) can take onc of three values for a sequential schedule,

1 0 0
v(n)= |0 OR |1|OR |0 @)
0 0 1

depending on which of the three nodes is invoked. Each time a node is invoked, it will consume data
from zero or more input arcs and produce data on zero or more output arcs. The change in the size of
the queues caused by invoking a node is given by

b(n+1)=b(n) + I'v(n) (€)]
The topology matrix T characterizes the effcct on the buffers of invoking a node.

To initialize the rccursion (3) we set b(0) to reflect the number of delays on each arc. The ini-
tial condition for the qucues in figure 7 is thus

0
b0)=|0|.
o]
and in figure 8 is

!'1'
b0)= |, | C))

Recall that this corresponds to an initial marking of a Petri net. Becausc of these initial conditions,
node 2 can be invoked once and node 3 twice before node 1 is invoked at all. Dclays, therefore,
affcct the way the system starts up. Clearly, every directed loop must have at least one delay, or the
system cannot be started. Automatic identification of this condition is discussed in the next

Figure 8. An example of an SDF graph with delays on the arcs.

subscction,

Inconsistent sample rates preclude construction of a periodic sequential schedule with bounded
memory requirements. A nccessary condition for the existence of such a schedule is that
rank (') =s—1, where s is the number of nodes. This can be scen by observing that stable periodic
exccution requires that

b(n +K)=b(n))

where K is the number of node firings in one cycle of the periodic schedule. From (3) we also see
that

b(n +K)=b(n)+I'q)
where
q=v(n)+ - +v(n+K -1).)]
Equations (5) and (6) can only both be true if
q=0

or q is in the right nullspace of T. For q to be non-trivial, T" cannot have full rank. It is proven in [6]
that it must have rank s — 1.

The topology matrix T, for the graph in figure 7a has rank three, so no periodic admissible
sequential schedule can be constructed. The topology matrix T, for the graph in figure 7b has rank
two, so a schedule may be possible. It is also proven in [6] that a topology matrix with the proper
rank has a strictly positive (element-wise) integer vector q in its right nullspace. For figure 7b, a set
of such vectors is

1
q=J|1],
2

for any positive integer J. Notice that the dimension of q is s, the number of nodes. Notice further
that q specifics the number of times we should invoke each node in one cycle of a periodic schedule,
as can be seen from (7). Node 3 gets invoked twice as ofien as the other two nodes, for any positive
integer J.

Valuable information is obtained from the topology matrix. Its rank can be used to verify con-
sistent sample rates, which is necessary for stable buffers, and its nullspace gives the relative fre-
quency with which nodes must be invoked.

3.2. Freedom From Deadlocks

Even with consistent sample rates, it may not be possible to construct a periodic admissible
sequential schedule. Two examples of SDF graphs with consistent sample rates but no such
schedules are shown in figure 9. Directed Ioops with insufficient delays are an error in the construc-
tion of the SDF graph and must be identificd to the user. It is shown in [6] that a large class of
scheduling algorithms will always run to completion if a periodic admissible scquential schedule
exists, and will fail otherwise. Running such an algorithm is a simple way of verifying the

143

(b)

Figure 9. Two SDF graphs with consistent sample rates but no admissible schedule.

correctness of the SDF graph. The class of algorithms is described in the section below on the syn-
thesis phase.

3.3. Checking for Adequate Concurrency

The iteration period is the length of one cycle of a periodic schedule. Throughput is inversely
proportional to the iteration period. The iteration period is bounded from below in graphs with
directed loops. If the iteration period bound exceeds the iteration period required for a particular sig-
nal processing algorithm, then the algorithm has to be modified. No amount of parallcl hardware will
overcome the problem. Hence the iteration period bound would be useful information for the
designer of the algorithm.

For homogeneous SDF graphs (all nodes produce or consume one token on each input and out-
put) the itcration period bound has been shown to be the worst case (over all directed loops) of the
total computation time in the loop divided by the number of delays [11,12]. An alternative point of
vicw is that the itcration period bound is the unique cigenvalue of a matrix used to describe the graph
in a max-algebra [13, 14]. The iteration period bound can be found in polynomial time [13], but
existing techniques only apply to homogeneous SDF graphs. An algorithm for translating gencral
SDF graphs into homogeneous SDF graphs is given in [15].

4. THE SYNTHESIS PHASE

The synthesis phase consists of constructing schedules for single or multiple processors. We
begin with the single processor problem.

4.1. Scheduling for a Single Processor

Given a positive integer vector q in the nullspace of T, one cycle of a periodic schedule invokes
cach node the number of times specified by q. A scquential schedule can be constructed by sclecting
a runnable node, using (3) to determine its effect on the buffer sizes, and continuing until all nodes
have been invoked the number of times given by q. We define a class of algorithms.

DEFINITION (CLASS S ALGORITHMS): Given a positive integer vector q s.t. Tq = 0 and an initial
state for the buffers b(0), the i** node is said to be runnable at a given time if it has not been run g;
times and running it will not cause a buffer size to become negative. A class S algorithm ("S" for
Sequential) is any algorithm that schedules a node if it is runnable, updates b(n) and stops (ter-
minates) only when no more nodes are runnable. If a class S algorithm terminates before it has
scheduled cach node the number of times specificd in the q vector, then it is said to be deadlocked.

Class S algorithms construct static schedules by simulating the effects on the buffers of an
actual run for onc cycle of a periodic schedule. That is, the nodes need not actually run. Any
dynamic (run time) scheduling algorithm becomes a class S algorithm simply by specifying a stop-
ping condition, which depends on the veetor q. It is proven in [6] that any class S algorithm will run
to completion if a periodic admissible sequential schedule exists for a given SDF graph. Hence, suc-
cessful completion of the algorithm guarantees that there are no directed loops with insufficient delay.
A suitable class S algorithm for sequential scheduling is

144

1. Solve for the smallest positive integer vector g in the right nullspace of T.

2. Form an arbitrarily ordered list L of all nodes in the system.

3. Foreach a € L, schedule a if it is runnable, trying each node once.

4. If each node o has been scheduled g , times, STOP.

5. If no node in L can be scheduled, indicate a deadlock (an error in the graph).
6. Else, go 10 3 and repeat.

The only question remaining for single processor schedules is the complexity of the first step
above. Our technique is simple. We begin with any node A in the graph and assume it will be run
once in one cycle of the periodic schedule (i.e. let g4 = 1). Assume node B is connected to node A.
We can find g with a simple division, possibly getting a fraction, but always getting a rational
number. A nodc cannot be invoked a fractional number of times, so we will have to correct for this
later. We do the same for any node C adjacent to B. A simple recursive algorithm computes these
rational numbers in linear time (a linear function of the number of arcs, not the number of nodes).
The resulting vector q has rational entries and is in the nullspace of T. To get the smallest integer
vector in the nullspace of T" we use Euclid’s algorithm to find the least common multiple of all the
denominators. Actually, three simultaneous objectives are accomplished with one pass through the
graph. Sample rate consistency is checked, a vector (with rational entries) in the nullspace of T is
found, and Euclid’s algorithm is used to find the least common multiple of all the denominators.

SDF offers concrete advantages for single processor implementations. The ability to intercon-
ncet modular blocks of code (nodcs) in a natural way could considerably case the task of program-
ming high pcrformance signal processors, even if the blocks of code themselves are programmed in
assembly language. But a single processor implementation cannot take advantage of the explicit con-
currency in an SDF description. The next section is dedicated to explaining how the concurrency in
the description can be used to improve the throughput of a multiprocessor implementation.

4.2. Scheduling for Parallel Processors

Clearly, if a workable schedule for a single processor can be generated, then a workable
schedule for a multiprocessor system can also be gencrated. Trivially, all the computation could be
scheduled onto only onc of the processors. Usually, however, the throughput can be increased sub-
stantially by distributing the load more evenly. It is shown in [6] that the multiprocessor scheduling
problem can be reduced to a familiar problem in operations research for which good heuristic
mcthods are available. We again give the intuition without the details. We assume for now homo-
gencous parallel processors sharing memory without contention, and consider only blocked
schedules. A blocked schedule is one where one cycle of the schedule must finish on all processors
before the next cycle can begin on any (cf. Schwartz [12}).

A blocked periodic admissible parallel schedule is a sct of lists {y; ;i =1, -+, M} wherc M is
the number of processors, and y; specifics a periodic schedule for processor i. If p is the smallest
positive integer vector in the nullspace of T then a cycle of a schedule must invoke each node the
number of times given by g =/ p for some positive integer J. J is called the blocking factor, and for
blocked schedules, there is sometimes a spced advantage to using J greater than unity. If the "best”
blocking factor is known, then construction of a good parallcl schedule is not hard.

The task of the scheduler is to construct a schedule that avoids deadlocks and minimizes the
iteration period, defined more generally to be the run time for one cycle of the schedule divided by J .
The first step is to construct a graph describing the precedences in g =J p invocations of each node.
The graph will be acyclic. A precise class S algorithm accomplishing this construction is given in [6]
so we merely illustrate it with the cxample in figure 10a. Node 1 should be invoked twice as often as
the other two nodes, so p=[21 117. Further, given the delays on the arcs, we note that there are
thrce periodic admissible sequential schedules with unity blocking factor, ¢;={1,3,1,2},
¢, =1(3,1,1,2}, or ¢; ={1,1,3,2}. A schedule that is not admissible is ¢, = {2,1,3,1}, because node 2 is
not immediately runnable. Figure 10b shows the precedences involved in all three schedules. Figure
10c shows the precedences using a blocking factor of two (J=2).

The sclf-loops in figure 10a imply that successive invocations of the same node cannot overlap
in time. Somc practical SDF implementations have such precedences in order to preserve the

145

Figure 10. (a) An SDF graph with self-loops. (b) An acyclic precedence graph for unity blocking factor,
J=1. (¢) An acyclic precedence graph for J =2,

integrity of the buffers between nodes. In other words, two processors accessing the same buffer at
the same time may not be tolerable, depending on how the buffers are implemented. The self-loops
are also required, of course, if the node has a state that is updated when it is invoked. We will hen-
ccforth assume that all nodes have self loops, thus avoiding the potential implementation difficultics.
Note that this may increase the iteration bound.

If we have two processors available, a schedule for J =1 is
\I”l = {111-2)

V. ={3}.

When this system starts up, nodes 3 and 1 will run concurrently. The precise timing of the run
depends on the run time of the nodes. If we assume that the run time of node 1 is a single time unit,
the run time of node 2 is two time units, and the run time of node 3 is three time units, then the timing
is shown in figurc 11a. The shaded region represents idle time. A schedule constructed for J=2,
using the precedence graph of figure 10c will perform better. An example is

y ={1,1,2,1,2}

vy, =(3,1,3}
and its timing is shown in figure 11b. There is no idle time, so no faster schedule exists.

146

TIME — TIME —
PROC.1: | 1] | 1, 2 1, | 1 2y 3,
PROC. 2: 3 V/// 3, I3 | 14| 2,
(a) (b)

Figure 11. One period of each of two periodic schedules for the SDF graph of figure 11. In (a) J=1 while
in (b) J=2.

The construction of the acyclic precedence graph is handled by the class S algorithm given in
[6]. The remaining problem of constructing a parallel schedule given an acyclic precedence graph is
a familiar one. It is identical with assembly line problems in operations rescarch, and can be solved
for the optimal schedule, but the problem is NP complete [16]. This may not be a problem for small
SDF graphs, and for large ones we can use well studied heuristic methods, the best being members of
a family of "critical path" methods [17]. An carly example, known as the Hu-level-scheduling algo-
rithm [18], closely approximates an optimal solution for most graphs [19, 17], and is simple.

5. EXTENSIONS TO HANDLE LIMITED ASYNCHRONY

It has been mentioned that the SDF modecl cannot accommodate some useful constructs that
involve data dependent routing. An example is shown in figure 6. Because of the data dependent
routing of tokens, some form of dynamic scheduling is in order. Our approach is to introduce limited
dynamic scheduling only where it is actually nceded, rather than generalizing the system to do all
scheduling dynamically.

Observe that the graph in figure 6 can be divided into three synchronous subgraphs, (1) the
graph represented by f (), (2) the graph represented by g (*), and (3) the rest of the sysiem. Consider
a single processor implementation. Static schedules can be constructed for cach of the three sub-
graphs. The sysiem is started such that the schedule for subgraph (3) is invoked first. When the
switch node fires, schedule (3) is suspended and either schedule (1) or (2) is invoked to run through
one cycle. The code to do this in effect is implementing a dynamic scheduler, but decisions are only
being made at run time if they have to be.

Consider a multiprocessor schedule. The problem is a little more complicated for several rea-
sons. Forone, if f () and g () arc complicated subsystems then it is desirable to distribute them over
several processors. For another, if the execution time of f (-) and g () are different then a worst casc
exccution time must be assumed. Our approach is to put dynamic scheduling code into all proces-
sors, making all processors available for the subsystem g () or f(-). This is casily cxplained by
cxample.

In figure 12 we have shown how one such if-then-else might be scheduled. Beginning at the
left, subgraph (3) (the synchronous subgraph containing the switch and select) arc scheduled like any
ordinary SDF graph, until the switch node is invoked. The boxes indicate time occupicd by nodes in
the subgraph on each of three processors. When the switch node is invoked, special code is inseried
(shown as cross-hatched boxes) to implement a conditional branch in cach of the processors. Then
schedules for each of subgraphs (1) (for f (-)) and (2) (for g (*)) are created assuming that all three pro-
cessors become available immediately after the swilch code is executed. These two schedules are
shown at the top and the bottom of the figure. After this, we wish 1o retum to scheduling subgraph
(3), but we nced to know when the three processors arc available. The code for subgraphs (1) and (2)
is padded with no-ops (boxes with horizontal lines) so that both subgraphs finish at the same time on
each processor. Then we can resume scheduling subgraph (3), as shown on the right.

6. CONCLUSION

We have outlined a paradigm called synchronous data llow for the description of digital signal
processing algorithms. The description permits intcrpolation and decimation, and restricts neither the

147

SCHEDULE FOR SUBGRAPH (1)

. SCHEDULE FOR SUBGRAPH (3)

coo

SCHEDULE FOR SUBGRAPH (2)

Figure 12. Anm illustration of scheduling for an if-then-else construct (figure 6) on multiple processors.
The blank boxes indicate time taken by nodes on each of three processors. The cross-hatched boxes indi-
cate code associated with the switch and select nodes. This code implements the dynamic scheduling.
The top and bottom subschedules correspond to the two possible outcomes of the if-then-else. The boxes
with horizontal lines indicate no-ops inserted so that the two possible outcomes finish at the same time on
each of the three processors.

granularity (complexity) of a node nor the language in which it is programmed. It is hierarchical and
cncourages a structured methodology for building a system. Most importantly, SDF graphs cxplicitly
display concurrcncy and permit automatic scheduling onto parallel processors. We illustrated how
the SDF paradigm can be used to gencrate code for DSP microcomputers, including the management
of limited forms of asynchrony that support conditionals. We also introduced the notion of static
buffering. Using these techniques, we believe that compilers can be constructed which cfficiently
map SDF descriptions onto a wide varicty of hardware architectures, thereby eliminating many of the
costly translations from one description to another that are necessary under current methodologics.

References

1. Davis, A. L. and Keller, R. M,, ‘““Data Flow Program Graphs,”” Computer 15(2)(Fcbruary
1982).

2. Peterson, J. L., Petri Net Theory and the Modeling of Systems, Prentice-Hall Inc., Englewood
Cliffs, NJ (1981).

3. Ackcrman, W. B,, ‘‘Data Flow Languages,”’ Computer 15(2)(Fcb., 1982).
Srini, V., “*An Architcctural Comparison of Dataflow Systems,”” Computer 19(3)(March 1986).

5. Lee, E. A. and Messerschmitt, D. G., *‘Synchronous Data Flow,’" IEEE Proceedings, (1987).
To appear

6. Lec, E. A. and Messerschmitt, D. G., *‘Static Scheduling of Synchronous Data Flow Programs
for Digital Signal Processing,’’ [EEE Trans. on Computers C-36(2)(January 1987).

7. Babb, R. G., “‘Parallel Proccssing with Large Grain Data Flow Techniques,”” Computer
17(7)(July, 1984).

8. Lcc, E. A. and Messerschmitt, D. G., **Pipelinc Interleaved Programmable DSPs: Archilee-
ture,”’ IEEE Trans. on ASSP, (1987). To appear

9. Lee, E. A, and Messerschmitt, D. G., *‘Pipeline Interlcaved Programmablc DSPs: Synchronous
Data Flow Programming,’’ IEEE Trans. on ASSP, (1987). To appear

10. Karp, R. M. and Miller, R. E., “‘Propertics of a Model for Parallgl Computations: Determinacy,
Termination, Queucing,’” SIAM Journal 14 pp. 1390-1411 (November, 1966).

11.

12.

14.

15.

17.

18.

19.

148

Renfors, M. and Neuvo, Y., ‘‘The Maximum Sampling Rate of Digital Filters Under Hardware
Speed Constraints,”’ IEEE Trans. on Circuits and Systems CAS-28(3)(March 1981).

Schwartz, D. A., “‘Synchronous Multiprocessor Realizations of Shift-Invariant Flow Graphs,”’
Georgia Institute of Technology Technical Report DSPL-85-2, (July 1985). PhD Dissertation
Cohen, G., Dubois, D., Quadrat, J. P,, and Viot, M., ‘A Linecar-System-Theoretic View of
Discrcte-Event Processes and its Use for Performance cvaluation in Manufacturing,”” JEEE
Trans. on Automatic Control AC-30 pp. 210-220 (1985).

Olsder, G. J., “‘Some Results on the Minimal Realization of Discretc-Event Dynamic Sys-
tems,’’ Report 85-35, Department of Mathematics, Delft University of Technology, The Nether-
lands, (1985).

Lee, E. A., “*A Coupled Hardware and Sofiware Architecturc for Programmable Digital Signal
Processors,”” Memorandum No. UCB/ERL M86/54, EECS Dept., UC Berkeley, (1986). PhD
Disscrtation

Coffman, E. G. Jr., Computer and Job Scheduling Theory, Wiley, Necw York (1976).

Adam, T. L., Chandy, K. M., and Dickson, J. R., **A Comparison of List Schedules for Parallcl
Processing Systems,’’ Comm. ACM 17(12) pp. 685-690 (Dec., 1974).

Hu, T. C., ‘‘Parallel Sequencing and Assembly Line Problems,’ Operations Research 9(6) pp.
841-848 (1961).

Kohler, W. H., “*A Preliminary Evaluation of the Critical Path Mcthod for Scheduling Tasks on
Multiprocessor Systems,’’ JEEE Trans. on Computers, pp. 1235-1238 (Dec., 1975).

ON AN ANALOGY OF MINIMAL REALIZATIONS IN CONVENTIONAL AND DISCRETE-EVENT
DYNAMIC SYSTEMS

Geert J. Olsder, Remco E. de Vries
Department of Mathematics and Informatics
Delft University of Technology

P.0O. Box 356, 2600 AJ DELFT

The Netherlands

ABSTRACT

Recently an analogy between the conventional linear system theory and
the relatively new theory on discrete-event dynamic systems has been shown to
exist. A mapping which relates these two theories will be investigated,
specifically with respect to the theory of minimal realizations.

1. INTRODUCTION

A very large class of dynamic systems, such as the material flow in
production or assembly lines, the message flow in communication networks
and jobs in multi-programmed computer systems comes under the heading of
Discrete-Event Dynamic Systems (DEDS). In contrast to conventional dynamic
systems described by difference equations, where the underlying time set
is independent of the evolution of the system, the evolution of DEDS is
described by sudden changes of state (hereafter referred to as discrete
events) which occur at instants determined by the dynamics of the system.
Examples of points of time at which discrete events occur are the beaginning
and the completion of a task or the arrival of a message or a customer.
Unfortunately, for several DEDS mathematical models, evaluation of their
per formance or studies pertaining to optimal decisions are lacking (with
the noticeable exception of many problems in queueing theory).

Recently, at INRIA, France, a new approach [1] has been promoted,
showing similarities with conventional system theory [2] and for which
the underlying algebra is the so-called max-algebra [31, an absorbing semi-
ring. The elements in this max-algebra are the real numbers (and minus
infinity) and the admissible operations are maximization and addition.

One of the basic difficulties in proving statements in the max-algebra is
that the inverse of the maximum operator does not exist. In spite of this,
it is surprising to learn, that many analogies exist with respect to the
conventional linear algebra, such as Cramer's rule and the theorem of
Cayley-Hamilton [4].

The current paper is a continuation of [5], in which it is investigated
whether the conventional minimal realization theory [2] does have an analoay
in the theory of DEDS. Minimal realizations are important for compact
mathematical descriptions without dimensional redundancies and also for
design purposes. In [51 a procedure was given (repeated in this paper)
which constructs a state space description of a DEDS if the impulse response
(or, eguivalently, the Markov-parameters) is given. In this paper we will

150

prove, at least for some cases, that the procedure agiven leads to a correct
state space description. We restrict ourselves to single input/single output
systems.

In section 2 the precise problem statement is given, as well as the
standard theorem in conventional system theory about minimal realizations.
The basic idea for the proofs of theorems to follow is also given. The
characteristic equation plays a crucial role and it is given, in max-algebra-
setting, in section 3. Section 4 gives the procedure indicated above.
Section 5 gives an example as to elucidate how the procedure works and
finally, in section 6, a proof is given for the correctness of the procedure
(in some specific cases; a general proof seems to be hard).

The paper concludes with the references.

2. PROBLEM STATEMENT

In conventional linear system theory one considers models described by
x{k + 1) = Ax(k) + bu(k), y(k) = c'x(k) (1)

or written componentwise,

n
x.(k+1) =) a _.x.(k) +bulk), i=1,...,n;
i 2y 1373 i
j (2)
n
yk) = § c.x, (k).
4o 379

The state vector x is n-dimensional, the input u and the output y are scalars.
We will only consider single-input/sinale-output systems. Matrix A has

size nxn and the vectors b and ¢ have n components. The symbol ' denotes
transpose. In (1) and (2) two operations are used, viz. addition and
multiplication. We will speak of a linear system as a discrete-event dynamic
system (DEDS) if the system can still be written in the form of (1) or (2)
with the only difference that the operations of addition and multiplication
are replaced by maximization and addition respectively. These operations

will be denoted by @ and ®. Thus a linear discrete-event dynamic system

can be written as

x. {k + 1) = (a,. ® x,(k)) @b, ® u(k), i = 1,...,n;
i ij i i

n
yk) = Jo (cj @ x50k). (3)
=1

A possible interpretation of such a system is that of a network with n nodes
in which xj (k) is the earliest time instant at which node i is activated for
the k-th time; u(k) is the time instant at which the resource becomes
available for the k-th time; y(k) is the time instant at which the output

(a finished product) becomes available for the k-th time; a. b, and <

are processing times at nodes and transportation times betweén tﬁe nodes.

As the * symbol is quite often omitted in conventional analysis, this will
also be done with respect to the ® symbol if no confusion is possible. The

summation symbol z provided with the index ® refers to the maximization of

151

the elements concerned.

In this paper we will be concerned whether a DEDS analogy exists of a
well-known theorem on minimal realizations in conventional system theory.
We will now first formulate this theorem in the conventional setting.

The external description of (1) is given by

yk) =) g .u(i), (4)
3=1 k-3

where {g.} is the impulse response; the quantities g are sometimes called
Markov- pAIameters and they satisfy

9 = eally, 5 =1,2,.. . ()

In realization theory one starts from the sequence {g.)} and tries to con-
struct A, b, ¢, such that (5) is satisfied. In order to find A, b, ¢, one
constructs the semi-infinite Hankel matrix H;

94 9y Gy eeeee

= (6)

The truncated Hankel matrix Hi,p is obtained from H by deletina the rows
k+1,k+2,... and the columns £+1,f+2,... . The proof of the following theorem
can for instance be found in [2].

w
e Theorem 1: To the sequence {g.}. corresponds a finite dimensional

=1
realization of dimension n if and only if rank H(¢= n for £ = n+1,n+2,

equivalently det Hp p = 0 for £ = n+1,n+2, . If moreover det Hp, # O
then this realization is minimal. If the (n+1) vector Yy = (a 'an-l""'al' b
satisfies Hn+1,n+1Y = 0, then
0 1 O.vennnn. 0
~ ~ N g 1
RS ~ Sa . 1
~ ~ ~
e S~ ~oO s 0
- ~ -
~ ~ . .
A=| O.......... 0 S|, b= |. , c = |. (7)
g
-a -a -a n
R RRERE 9 1
is such a minimal realization. []

For a possible formulation of Theorem 1 in DEDS-settina, the starting
point will be the conventional analysis. Instead of considering quantities
(scalars) a and B, we will consider exp (as) and exp (Bs) and then apply
conventional analysis. The quantity s is a (real) parameter. Since

&S 4 esB _ es(u+8) - eS(aQB{ (8)

lim é log (e>* " = Lim é’loq eSmarle By, é’loq &S (098

S-»co S)rx S

 (9)

152

we hope to obtain results in the max-algebra setting by considering the
exponential behaviour of the quantities introduced.

Instead of considering the mapping a -+ exp (as) one could equally well
use the mapping o » z® and then let z » «. We will, however, stick to the
first mapping. If instead of (1) we consider

esx(k+1) - esAesx(k) + esbesu(k)' (10)
where the exponential of matrices and vectors is defined componentwise, e.g.
(exp (SA))ij = exp (sajs), and if we now consider the limit as s » =, then
the exponential growth of (10) is exactly given by (3)!

3. THE CHARACTERISTIC EQUATION

Since the characteristic equation of a matrix in max-algebra setting
will be used frequently in the sections to come, it will be introduced
briefly. For a more detailed analysis see [4], [5].

An equivalence of the determinant in max-algebra is the dominant, which
is defined as

dom (B) = 1im—l— log | det (exp (sA))]|. (11)

S0
An eigenvalue) is defined by means of the equation
Ax = XX

in max-algebra scnse. If such a X and x (# e) exist, then A is called an
eigenvalue and x an eigenvector. The element ¢ introduced is the neutral
element with respect to @, i.e. a ® ¢ = a for all a ¢ R. In fact, € = -,
In order to define the characteristic equation, we start with the following
equation in conventional analysis sense;

A(s)&(s) = A(s)&(s) (12)

where

a,.s
1]

o

i(s) = exp fxis}, i=1,...,n; A(s) = exp {As], {A(S)}ij = e

Since A(s) is a positive matrix, the Perron-Frobenius theorem teaches us
that at least one such A(s) and x(s) exist. For finite s, A(s) satisfies
the characteristic equation

A sy o+ én_l(s)in_l(s) t .+ 8 (8)R(s) + 8, =0 (13)
where

ii (s). ..ai i (s)

Lt 1tk
& (s) =Dk) det | : k =1 n.
n-k L b : : :

Lystose-hy : :
a (s).. .éi i (s)
Tty "

153

For s * *“ we got

.- o k3 *
lim cn_k(s) = 1lim (~1) dn-k exp (scn~),

k
S0 g
where
ai i a
. EEREE:
-) qom |1 1k (14)
Cn-k Do <® . mo.
Tttt Tk a cereedy o

kt1 k'k

and where En_k is determined by a counting procedure. This quantity equals
the number of even minus the number of odd permutations which determine the

* ~
value of cp_yx. Thus dn can be negative, zero or positive. The terms in

-k
k~ . -
(13) will now be rearranged in the following way; if (-1) d,_, is positive,
then the corresponding term, i.e. the k-th term in (13), will remain at the
left-hand side; if it is negative then the corresponding term will be

moved to the right-hand side of the equation. If (—1)kEn_k is zero, the
corresponding term is deleted. Thus an equation arises for which all
coefficients at left- and right-hand side are positive for s sufficiently
large. If we now take logarithms of both sides of this equation - the
logarithm of a matrix is taken componentwise -, divide the result by s and
take the limit as s - «, then we get

n * n-k * n-1 * n-k
Ao z@ Cn—kx B Cn—l A ® ?@ Cn—kA ! (13)

keN kN

where N and N are nonoverlapping subsets of {2,...,n}. Equation (15) is
called the characteristic equation in max-algebra sense.

® Theorem 2: The characteristic equation (15) has .at least one (real)
solution. If X is replaced by A in (15), we get an identity. This latter
result is called the Cayley-Hamilton theorem in the max-algebra. 0

This theorem has been proved in [4]. A different proof can be found in
[6]. unlike the situation in ordinary calculus, in the max-algebra not every
polynomial is a characteristic polynomial. This will be elucidated by means
of polynomials of degree two, for which there are two forms;

A< = clk ® c, (16)

A @, = c A (7

2
The formA @ c . A = ¢, is not possible as a characteristic equation as follows
easily from the derivation of this equation.

® [emna 1: For any values of ¢, and ¢, (16) is a characteristic equation,

for (17) to be a characteristic equatlon it is necessary and sufficient that
2
<c] (=c

y 1 1 &cy).

€ 0

Proof: The matrix has as characteristic equation formula (16) from

C2 Cl

154

which the first asscertion of the lemma follows. To prove the second assertion
we start with

11 %12
A =
821 %22
The coefficients <y and <, satisfy ¢, =ay -] a5n1 C, = dom (A).
Because cp belongs to the left-hand side of (17), it is determined by an
even permutation, hence ¢, = all & ay,i
2 2 2 2
= < : = =
€3 = a5 ® Ay, =a;; ®ay; ®ap0a,=(@; ®ay) =cp

which proves the necessity. For the sufficiency-part of the proof we con-
struct a matrix A which has (17) as characteristic equation. Choose

a11 = cl, a22 = c2 - c1 and choose a12 and a21 such that

ajp ®ay < a ®ay,.

4. PROCEDURE FOR MINIMAL REALIZATIONS

The starting point is the sequence {gi}l' and a procedure will be given
which yields A, b and ¢ such that

gj=c'®AJ_1@b, 3= 1,2,... . (18)
The procedure consists of the following seven steps.
1. Construct the Hankel matrix H as in (6).
2. Find a linear dependency among the least possible number of successive
columns of H. The coefficients describing this dependency are constant
(i.e. irrespective of which sequence of successive columns of H is_taken,

provided the order is the same). These coefficients, called {ci}2t1' with

Chet = 0, determine a polynomial equation. (A }equirement is that this

must be a characteristic equation; see discussion in section 6.) Vectors
aj ¢« (R ufeh?, i =1,...,k, are called linearly dependent if the index
set {1,...,k} can be divided into two disjunct parts S and §,and scalars

A ¢ (Rufel)i=1,...,k, exist such that

o"i% T Yo 212
ie¢S ieS

An equivalent statement is that dom(a = €, where

1,...,ak,ak+1,...,an)
aki1s...,a, are arbitrary n-vectors.

3. Apply the operation exp {s.} to the elements of H, after the trans-
formation called H(s), and to the (characteristic) equation.

4. Extend H(s) to H (s) by adding lower-order exponentials to the elements
such that €

155

B, (s)| - =0, A = i ,
n+1,n+1 .c,s n+l,n+1 n+l,n+1

where the + signs depend on the place of the corresponding term in the
characteristic equation; left-hand or right-hand side.
5. Apply Theorem 1 and construct A{s), b(s) and T(s).
6. Make a coordinate transformation such that the dominant elements of the
transformed A(s), b(s) and c(s) are nonnegative. _
7. Study the experimental behaviour of the transformed A(s), b(s) and c(s)
ag s *w, i.e. apply operation lim (1/s)log(.) to all elements.
e
This yields the minimal realization in max-algebra sense of the given
impulse response.
Section 5 will give an example to illustrate this procedure and section 6
gives a proof of the correctness of this procedure for some specific cases.
A general proof is currently not available unfortunately.

5. EXAMPLE

In this section an example is given which shows how the procedure of
section 4 can be applied.

Suppose we are given the Markov-parameters

9y = 3, 9, =5, 95 =84 g, =124, g = 164, (19)

The columns of the Hankel matrix H,

3 5 8% 125 16%
5 8% 124 iiiiiiioaann
H= |85 125 ...t

satisfy

0 @ i-th column & 6 & (i-2)-nd column = 4 @ (i-1)-st column,
i=3,4,... .
The corresponding polynomial equation is

Az ® 6 = 4).

Matrix H(s) can be constructed and subsequently ﬁe(s), which satisfies

3 Qs
e65 * (i-2)-nd column - eds x (i-1)-st column + e)q * i-th column = 0.

Matrix ﬁe (s) is
3,3

156

~ 1 1.
835 e55+e415 eB;s
. 1 12 11
H (s) = eSS+e4’2S e8125 e lzs—e s
3,3
84s 12%s 11s 104%s 16Ls 15s
e e -e -e e -e
from which
0 1 e3S
A(s) = , b(s) = , c(s) =
1,
_e65 e4sJ eSS + e41s

Application of the transformation matrix

1 1
1
P = , det P = eSS - e2s - e1ZS
L
e25+elzs e5s
yields
e7s+86%s_e5%s e1Os_e9s+eGS
l—\=P_1AP=dt1:P
¢ Sks 4s 3%s 3s 9s 7s 6.s
e -e ~-2e -e e’ T-e T-e -
eBS_eSS_e4%s 1
= —1- 1 =
b=rp = = .
det P €
0 1

The DEDS which leads to the Markov-parameters we started with, can now

easily be found;

-2

10%s
-e

14s
e

x(k + 1) = x(k) @ u(k), vy(k) = (0 0) x(k).

L4 €

If instead of the transformation matrix P in (20) we would

then the following DEDS would result;

2 2 3
x(k + 1) = x(k) ® u(k), y(k) = (0 0)

1% 4 €

choose

x(k).

(20)

(21)

(22)

The series {gi} we started with in this example was not chosen ad random;

it is the impulse response of

157

2 3 1%
x(k + 1) = x(k) ® u(k), y(k) = (1% 0) x(k) (23)
1 4 0

such that, starting with the series {gi}, it would be known that at least
one solution, viz. (23), would exist. One easily convinces himself that
each of the systems (21), (22) and (23) yields the same Markov-parameters
as given in (19).

6. TWO CLASSES OF IMPULSE RESPONSES FOR WHICH THE PROCEDURE IS CORRECT

As already said, a general proof of the fact that the procedure
described in section 4 indeed yields the minimal realization is not cur-
rently available. In [3] the proof was given for a specific class of
impulse responses (for sake of completeness the proof is repeated here) ;

e Theorem $: Given an impulse response {gi]:_1 such that for the correspond-
ing Hankel matrix

0 ® i-th column = c1 ® (i-1)-st column & ... @& cn ® (i-n)-th column,

i =n+l,n+2,...

and n is the smallest integer for which this or another dependency is
possible, then the discrete-event system characterized by

%\\ \\i o € gl 0
\\ ~E .
A= |1 S . , b=1: R c = |e (24)
~ ~ .
€ taneenn te 0 . .
R EATEER cy 9, €

is a minimal realization.

I'roof: Direct calculation yields that the impulse response corresponding to

the system (24) equals the sequence {gilj -1 Realization (24) is minimal,

since if there would exist a lower dimensional realization, this would
result in a lower-order characteristic polynomial and then, due to Theorem 2,
there would be a smaller number (smaller than n+l1) of successive columns

of H which would be linear dependent which is contradicted by the statement
of the theorem. O

We will now consider series {gj} for which three successive columns
in the corresponding Hankel matrix are linearly dependent. Three different
kinds of dependency relations exist;

0 ® column i = c; ® column (i-1) @ c, ® column (i-2), (25)
0 ® column i ® c, ® column (i-2) = c, ® column (i-1), (26)
0 @ column i & c, ® column (i-1) = c, ® column (i-2), (27

i=3,4,5,... . Relation (25) is a special casas of the series {g;} con-
sidered in Theorem 3 and we know how to construct a minimal realization.

158

Next we consider rclation (26). Without any loss of gencrality we can
confine ourselves to c1 # ¢ and 02 #e.

2
o Lemma 2: If relation (26) holds, then c, < -

Proof: From (26), i = 3, it follows that

column 3 < <4 ® column 2,

and from (26), i = 4, it follows that
c, ® column 2 < ¢y ® column 3.

Combining these two results we get

c, ® column 2 < ¢, ® column 3 < 02 ® column 2

2 1 1
and therefore c, < cy-
W id th ub ; a) =2 b) < 02 nd =c
e now consider ree subcases; a) ¢, = C i <, 12 a; = ©,9,
(and therefore 02g1 < clgz); c) 02 < c1 and ng1 = Clg2 (and therefore
95 < Cng)' which will be treated separately.
Ad a. Because c, = c?, (26) yields
2 _—
0@ 9; ® ¢y ® 9;_ 5 = ¢4 ® 951 i=23,4,.... (28)
Substitution of i = 3 gives g, > ¢, ® g, and of i = 4: g, >~ c, ® g and
5 2 1 1 3 1 2
hence 9, zcl] 9y In general 9, = c? > 95 o and (28) can be rewritten as

0@g. =c, &g, and (26) as 0 ® column i = ¢, ® column (i-1), i = 3,4,...
i i i-1

i
Since this latter equation may not be true for i = 2, it cannot be concluded
here that Theorem 3 can be applied such that a one-dimensional system results.

Equation (28) can also be written as 0 & g, = ¢ ® 9, _ ®ae 907 where a

1 1

is a constant < c? and therefore
O @ column i = ¢, ® column (i-1) & a ® column (i-2),

1 2
i=23,4,..., a< Cl' (29)

The conclusion is that if (26) holds with c2 = ci, then also (29) holds and
now Theorem 3 can be applied.
Ad b, If (26) is considered componentwise, then

0@ gi 2} c2 @ gi_2 = c1 @ gi-l’ i=23,4,...

i = 3; = i = i <
For i 3: 9, @ €9, C1g2' Since 9, €19, by assumption, €59y < €49, and
also c,9y < 9q- Therefore we can write 94 = €19,- For i = 4 we obtain

, 2 . .
g4 @ ng2 = clg3. Since c, < ¢, by assumption, < c

2 1
can write 94 = €195- In general, g

C2g2 19, = ©195/ and we
1 = Clgi—l’ i=23,4,... . As in the
previous case Ad a), the first element g, is missing in these equalities.
In order to have 94 included, we can write

159
0 ® column i = c1 ® column (i-1) ® a ® column (i-2), i = 3,4,..., (30)

where a is a constant which is < 02 as is easily shown. Theorem 3 can be
applied to equations (30).

Ad c¢. Here we consider (26) with cy < c% and c3gy = €492- Application of the
procedure of section 4 yields, after the fifth step,

b
) 0 1 1 1
A(s) = CZS Cls ’ b(s) = ’ c = '
-e e b 0
2)
9,8 g,s
where by = e _ and b2 = e _ + lower-order exponentials. A matrix P which
transforms A, b and c“to A, b and ¢ respectively with nonnegative elements
is
1 1
P = . (31)
P2 O
b

It is straightforward to show that the elements of K, b and ¢ are non-
negative for s sufficiently large and provided the assumptions of case c)
hold. Ultimately, step 7 of the procedure leads to the DEDS

27% 27 9
x(k + 1) = x(k) ® ulk), yk) = (0 0) x(k),

* c € (32)

where the element indicated by * depends on the lower-order exponentials in
by. It is easy to show that realization (32) is minimal. If this were not
true, a one-dimensional realization would exist and for the Markov-para-

meters we would have that g; = k & c?_l, i=1,2,..., where k is some
constant. Other choices of P exist which also lead to (other) two-dimen-
sional realizations. If a column of P in (31) is multiplied by a positive
constant for instance, then this new matrix also leads to such a realization.
Another possibility is to replace the (2,2) element of P in (31) by eks
where k is a constant > c,.

Dependency-relations (25) and (26) have been considered in detail now
and we next consider (27). Two subcases will be considered;
a) g3 < €y9,i b) 93 2 ¢y9,.

Ad a. Consider the first scalar equation of the vector equation (27).
For i = 3 we get 95 2] clg2 = C2g1' Because of the assumption g3 < €19,
necessarily Cng = C,9,-

. _ - _ 2
For i = 4 we get 9y -2 €193 = €,9,- Then either €195 = C,9, (<Cng) or ,
94 = 9, (and clg3 < gq). From the first possibility it follows that c,< cy-

For i = 5 we get gg @ €19, = C,93- Now €195 < 9y is ruled out since

160

2 - A . _
clg4 > €159, = c2g1 > c2g3 which is impossible. Therefore clg3 = CnGy,
9y < €193 and c, < cy- From the equality 95 ® clg4
either €19y = C,gy OF gg = c2g3. By studying what happens in (27) with i = 6,

= Cy9, it follows that

it readily follows that 9s < €59, and therefore €19, = €

2 293"

With induction it can now be shown that

C195_1 = €395 o i=3,4,5,...

from which we conclude that a linear dependence of two successive columns of
H exists. By means of Theorem 3 a one-dimensional system can be constructed

now.

ad b. Now equation (27) holds with 93 = ©,9,. By considering

9; 23] C195_1 = €395 for i = 3,4, etc., it readily follows that
9; > Clgi—l' gi = c2gi_2, i=23,4,....

Apart from (27), now also the following dependence among the columns of H
exists:

0 ® column i = a & column (i-1) @& c2 ® column (i-2), i = 3,4,...,

and now Theorem 3 can be applied again (a is a constant which is < cl).
As an example, consider

9, = 0, g, = 3, 95 = 5, 94 = 8,...

then for the corresponding matrix H,

0 ® column i & 2 & column (i-1) =5 ® column (i-2), i = 3,4,...,
and also
0 ® column i = a ® column (i-1) ® 5 ® column (i-2), a < 2,
i=3,4,5,...

Summarizing, we have obtained the following. If any three successive
columns of a Hankel matrix are linearly dependent, then at least one of
the following assertions is true:

1. any two successive columns are linearly dependent;

2. the linear dependence is of the form of (25);

3. if the linear dependence is not of the form of (25), then another

linear dependence exists which does have this form.

4. if none of the above assertions holds, then the procedure (also)

gives a minimal realization by construction.
Thus we have proved:

Theorem 4: Given a series {gi}?_ such that for the corresponding Hankel

1
matrix any three successive columns are linearly dependent, then a DEDS of at
most state dimension two exists for which the given series is the impulse
response.

8

161

Remark: With some obvious changes in notation and interpretation, the
paper can be repeated in terms of the min-algebra instead of the max-algebra.
In the min-algebra the operations are addition and minimization.

0

REFERENCES

[1] Cohen, G., D. Dubois, J.P. Quadrat and M. Viot, A Linear-System-Theoretic
View of Discrete-Event Processes and its Use for Performance Evaluation
in Manufacturing, IEEE Transactions on Automatic Control, Vol. AC-30,
1985, pp. 210-220.

[2] Chen, C.T., Linear System Theory and Design, Holt, Rinehart and Winston,
1984.

[3] cuninghame Green, R., Minimax Algebra, Lecture Note No. 166 in Economics
and Mathematical Systems, Springer-Verlag, 1979.

[4] Olsder, G.J., C. Roos, Cramer and Cayley-Hamilton in the Max-Algebra,
to appear in Linear Algebra and its Applications. Also Report No. 85-30
of the Dept. of Mathematics and Informatics, Delft University of Tech-
nology.

[5] olsder, G.J., Some Results on the Minimal Realization of Discrete-Event
Dynamic Systems, Proc. 7th International Conference on Analysis and
Optimization of Systems, Antibes (France), Lecture Note No. 83 in
Control and Information Sciences, Springer~Verlag, 1986.

[6] Moller, P., Théoréme de Cayley-Hamilton dans les Dioides et Application

a 1'Etude des Systémes a Evénement Discrets, Ibidem.

REPRESENTATION, ANALYSIS AND SIMULATION OF MANUFACTURING
SYSTEMS BY PETRI NET BASED MODELS

Francesco Archetti, Anna Sciomachen

Universita di Milano, Via L. Cicognara 7, 20129 Milano, Italy

1. INTRODUCTION

The aim of this paper is to give, in a simple framework,
some basic indications on the methodological tools required in
order to understand, develope and analyze Petri net based
models of manufacturing systems.

Petri nets have been developed in the last decade into a
powerful tool to model discrete event systems., Their growing
relevance 1is witnessed by a host of theoretical studies, the
wide ranging application areas and a number of software tools
for the analysis of Petri net based models (Ajmone Marsan et
al. 1984a, Chiola 1985, Cumani 1985, Dugan et al. 1985,
Molloy and Riddle 1986, Sciomachen 1986, Billington 1987).

Recently manufacturing systems have emerged as a most
important application area. Petri nets are well suited to
model the <complex interactions between the elements of a
manufacturing systemn, in particular those features of
synchronization and concurrency of different activities which
exert a critical influence on the overall performance of a
system (Dubois 1983, Alla et al. 1985, Martinez et al. 1986).

Petri nets have been particularly successful in the
specification and validation of control procedures at the
workcell level (Valette et al. 1983b, Thuriot and Courvoisier
1983, Murata 1984a, Komoda et al. 1984).

There are many advantages in modelling a system wusing
Petri nets. First of all, the system is described in a
graphical form and hence 1t is possible to visualize the
interactions among different components of complex systems,
Petri nets also indicate explicity those points in the system
where the control can be exercised (Valette et al. 1983a,
Marabet 1986) . Second, the system can be modelled
hierarchically and represented 1in a top-down fashion at
different levels of abstraction. Moreover, a systematic and
complete qualitative analysis of the system 1is allowed by
Petri net analysis techniques. Finally, performance evaluation
of the system is possible by Markov techniques, when this is
stochastically and computationally feasible, and by direct
simulation of the net.

The above points will be dealt with in this paper and
exemplified considering the representation, analysis and

163

simulation of a machine for electronic assembly.

The basic operations of the machine are in this paper
only sketched without going into unnecessary technicalities. A
complete description of the operations of a specific machine
of this type is given in Ahmadi et al. (1986).

For each workboard to be assembled by the machine a given
number of electronic components must be picked wup from a
component magazine and fitted to the workboard in a specified
position. There are two component magazines located in the
north and south side of the machine, which can independently
move to align the slot containing the specified component with
the pick up position. At the center of the machine there is an
arm which has one head at each of its ends. Each cycle of the
machine is defined by the following operations. The arm moves
first to the north magazine while the north head of the arm is
preparing for picking the component and the magazine is moving
to the proper position. Concurrently, the other magazine is
moving and the workboard is being positioned for the component
to be fitted by the south head. Only when the magazine 1is
aligned and the arm is idle the component is picked up. As
soon as the arm 1is 1idle the south head can start the
preparation activities and subsequently fit the component.
When both the picking and the fitting are completed, the arm
moves to the south magazine and the same operations are
performed in the south side of the machine reversing the roles
of the heads of the arm. The very features of concurrency and
synchronization which can produce, in ideal conditions, the
peak performance make the machine subject to severe
degradation when the concurrency is not properly exploited.

In order to plan the capacity of the assembly line and to
schedule the production, an accurate estimate of the machine
cycle time for a given product is required before the start of
the production,

Creating a setup and sequencing for a new workboard
requires extensive and time consuming preparation of the
machine,

Replacing this trial and error method on the machine is
the main reason behind the development of simulation models.

Petri nets have proved particularly suited to this task
for a class of Computer Numerically Controlled (CNC) machines
(Archetti et al. 1986, Grotzinger and Sciomachen 1987,
Sciomachen et al. 1987).

In this paper the steps required for the representation,
analysis and simulation of these machines will be described.

Section 2 1is devoted to the basic definitions and
properties of Petri mnets and to the model of the machine
sketched above,

In Section 3 the main technique for the logical
verification of the model computing the invariants of the net
(Reisig 1982) is presented. These invariants are shown to have
a meaningful interpretation for the operations of the machine.

Section 4 outlines the main techniques, based on
Markovian analysis and direct simulation of the net, to
compute the steady-state probabilities from which the

164

performance indices of the machine can be derived.

The numerical results of the Markovian analysis and
direct simulation for the machine considered in this paper are
given and compared. Their analysis and that of the invariants
allow to draw useful considerations on the behavior of the
machine.

2. CREATING A PETRI NET MODEL

In this Section the basic components of a Petri net model
are introduced. The presentation, far from being complete, is
aimed at making the paper self-contained. For a comprehensive
coverage of the subject the reader is referred to the volumes
Peterson (1981) and Reisig (1982), while two survey papers of
a general and introductory nature are Agerwala (1979) and
Murata (1984b).

As far as manufacturing systems are concerned, two
recent introductory references are Kamath and Viswanadham
(1986) and Beck and Krogh (1986).

A Petri net is a bipartite directed graph PN = (P,T,A)
whose nodes are divided into a set of places P = {p ,p , ...,
1 2
p } and a set of transitions T = {(t , t , ..., t }.
n 1 2 m
A = (P xXxT) U(T x P) is a set of directed arcs which

link places to transitions and transitions to places.

Places are wused to represent resources and logical
conditions of the modelled system.

Places may contain tokens. The state of the net, or its
marking, is given by an integer vector M(i) whose k-th
component M(i;k) is the number of tokens in place p .

k

The specification of the initial marking M(0) is required
in order for the Petri net to be completely defined.

For each transition a set of input places I(t) = ({p:
(p,t) A} and a set of output places 0(t) = {p: (t,p) A} are
given.

In the <classical Petri net theory, a transition is
enabled when there is at least 1 token in each of its input
places. A transition, enabled in a marking M(i), <can fire
removing 1 token from each input place and placing 1 token in
each output place,

Several extensions, e.g. weighted arcs and places with
capacity, have been added to the classical theory to reflect
the modelling requirements of specific application areas. The
firing rules have been modified accordingly.

The firing of a transition t moves the system into a new
marking M(i+1) = M(i) + F(t) where the k-th component of F(t)
is given by F(t;k) = 1 if pkE o(t) -~ I(t), F(t;k) = -1 if p

€ I(t) - 0(t) and F(t;k) = 0 otherwise.
Transitions can be immediate, 1i.e. they fire as soon as
they are enabled, or timed: 1in this case there is a delay,

165

random or deterministic, between enabling and firing.

Immediate transitions are utilized in order to
synchronize multiple flows before enabling a timed transition
(Dubois and Stecke 1983).

Timed transitions are used to represent operations and
activities of the system (Ramchadami 1974, Sifakis 1977). A
general reference to the research activity in the area of
timed nets is in Torino (1985).

Graphically places are represented by circles, immediate
transitions by bars, timed transitions by rectangles and
tokens by dots inside places.

Enabled transitions which share input places cannot fire
at the same time. Indeed the firing of one transition disables
the others.

In this case the transitions are not independent and have
a joint firing probability. This situation is <called a
conflict.

Two or more transitions are concurrent when they can
independently fire. Concurrent transitions represent
activities which take place simultaneously.

The set of markings generated by the firing of all the
enabled transitions is called reachability graph and denoted
by R(PN,M(0)).

For instance, the net of Figure 2.1 (Molloy 1982)
displays transitions 2 and 3 which are concurrent and
transitions 4 and 5 which are in conflict.

Figure 2.1

Given the initial marking M(0) = (1,0,0,0,0) the
reachability graph contains the vectors (0,1,1,0,0),
(0,0,1,1,0), ¢(0,1,0,0,1) and (0,0,0,1,1).

An important feature of Petri nets 1is the wuse of
inhibitor arecs. A token in a place linked by an inhibitor arc
to a transition prevents the transition from firing.

Inhibitor arcs are particularly useful to model failures

166

of components of the system (Archetti et al. 1985, Archetti et
al, 1987) and priority rules (Abraham and Sciomachen 1986).

Another useful feature of Petri nets are the double arcs.
For instance, in the net of Figure 2.2 place 2 is both input
and output for transition 2. Places 1, 2 and 3 can
respectively represent the loading station, the output buffer
of a machine and the wait station of an Automated Guided
Vehicle (AGV). Places 4 and 5 represent respectively the AGV
loaded and the AGV in travel mode to load a workpiece from
place 1.

6

Figure 2.2

Transitions 3 and 4 represent respectively the travel
time of the AGV loaded and empty. The double arc from place 2
to transition 2 represents a transportation request.
Transition 2 fires but the token never leaves place 2. This
property 1is required in order to compute statistics about the
queue lenght in the output buffer.

After this simple example, we'll use the basic notions
introduced above to build the Petri net model of the machine
described in the Introduction. This model is displayed 1in
Figure 2.3. The net has 26 places and 19 transitions, 13 of
which are timed transitions representing all the operations
and activities performed by the machine.

The basic movements of the 4 main subsystems of the
machine namely arm, board, north and right magazines, are
represented by the timed transitions AMS and AMN (arm moving
south and arm moving north), BM (board moving), NFM (north
magazine moving) and SFM (south magazine moving).

The two timed transitions NHM and SHM (north and south
head moving) represent the movement of the head which has to
be aligned with the picking location when the arm is moving to

167

north/south. The two timed transitions SHT and NHT
(south/north head preparing in the north/south side) represent
the preparation activities required to the south/north head in

order to be ready for the fitting when the arm is north/south
aligned.

(
23 25
46 PLN

17 ()21

T]
i5#

22

Figure 2.3

168

The picking and the fitting operations are represented by
transitions PKN and PLN in the north side of the machine and
by transitions PKS and PLS in the south side of the machine.

In this example, the time associated to each of the above
transitions 1is expressed by an exponential random wvariable
whose mean value 1s given in Table 2.1.

Table 2.1

Transition Mean value (sec.)

BM 0.222
AMN 0.265
AMS 0.265
NHM 0.088
SHM 0.088
NFM 0.646
SFM 0.801
SHT 0.260
NHT 0.260
PKN 0.340
PKS 0.340
PLN 0.340
PKS 0.340

It can be noted that there are 6 immediate transitions in
the net. These transitions are introduced in order to
synchronize different concurrent operations before the
beginning of the activity corresponding to the subsequent
timed transition. For instance, picking can start when there
is a token in place 17 in the north side or in place 18 in the
south side of the machine, and the magazine involved, the arm

and the corresponding head are ready. Analogously, an
electronic component can be fitted only when the board is in
the proper position and the corresponding head is ready. The

completion of both picking and fitting represents the end of a
cycle.

At the beginning an initial marking is given in which 5
tokens are in the net, in the places 1, 3, 5, 7 and 8. In this
case the first picking is performed in the north side of the
machine.

It can be remarked that only the main c¢ycle of the
machine operation is modelled in the net and no load/unload
procedures are considered. In the initial marking, indeed, the
component to be fitted in the first cycle is supposed to be
ready for the head at the south end of the arm,

We observe that all the transitions enabled in the
initial marking are concurrent, that 1s each of these
transitions can be independently choosen to fire first
according to the realization of the random variable expressing

169

its firing delay. All the activities represented by these
transitions are to be <completed 1in order to start the
subsequent picking and fitting operations. In particular, a
picking 1is enabled after a time T(pick) from the initial
marking, where T(pick) is given by T(pick) = Max{Time(LCM),
Time(NHM), Time(AMN)}. In the same way the time T(fit) can be
computed as the time elapsed from the initial marking before
the start of fitting a component,., This time is given by T(fit)
= Max{Time(AMN) + Time(SHT), Time(BM)}.

J.SYSTEM VERIFICATION BY PETRI NETS

In this Section we shall be concerned with the
qualitative aspects of the behavior of the system and of its
Petri net model.

Let us first introduce the basic properties of a
manufacturing system which can be analyzed using Petri nets
(Naharari and Viswanadham 1984).

Conservativeness. It is related to the invariance of the
number of resources and jobs in the system. A net is
conservative if the number of tokens in the net is constant,

that is if XM(j;k) = XM(ij;k) V (i,j).
k=1 k=1

Boundedness. It is a very important property when
modelling manufacturing systems. In fact it is related to the
absence of overflows. A place is bounded if there exists an
integer value k such that no more than k tokens can be in that
place in any marking of the net. A net is bounded if all its
places are bounded.

Liveness, This property means absence of deadocks. A
transition 1is said to be live if and only if for all markings
of the net there is a firing sequence which takes the net in a
marking in which that transition is enabled. A net is 1live if
all 1its transitions are live. If the Petri net representing
the manufacturing system is live and the model is correct then
no deadlocks will happen in the operation of the systenmn.

Properness. It means that the system can be
reinitialized. A net is said to be proper if the initial
marking is reachable from all the markings in the reachability
graph. In the case of manufacturing systems, if the
corresponding net 1is proper then no manual intervention 1is
required to restore the system to its initial state from any
state.

In order to analyze these properties, the net 1is
represented thru its incidence matrix € = «¢(i,j), i=1,...,n,
j=1,...,m, where «c¢(i,j) = -1 if p_ ef(t), c(i,j) =1 1if p

i] i

€0(t) and c(i,j) = 0 otherwise.

j

Given the markings M(i) and M(j), if M(j) is reachable
from M(i) then the following relation holds: M(j) = M(i) + CY
where each component of the m-dimensional column vector)

170

denotes the number of times the corresponding transition has
fired.

In particular, if the net is to return to any given
state, then the existence of a positive integer vector Y such
that CY = 0 1is a necessary condition. Such a vector Y 1is

called a transition invariant.

If a positive integer n-dimensional row vector X exists
such that XC = 0 then XM(i) = XM(j). Such a vector is called a
place dinvariant. This relation implies, for each invariant,
that the number of tokens 1is constant 1in the places
corresponding to positive components of the same invariant.

If and only if X =1, the unit vector, the net is
conservative. A net is bounded if and only if there exists a
place invariant whose components are positive,

A Petri net is not proper if no transition invariant
exists.

Unfortunately, at least to the authors' knowledge, there
is no further condition in order to test the liveness and
properness properties of a net., However it is possible in most
cases, as we will show below in the case considered, to check
these properties from all the invariants of the net and from
some informations and considerations about the system.

The computation of the invariants for the machine
considered in this paper allows to verify the behavior of the
system and the correctness of the model. Indeed for the
machine to get back to a state, each operation must be
performed once, with the exception of the board which must
execute two movements for the two fittings performed 1in the
north and the south sides of the machine.

This requirement is reflected by the only transition
invariant Y obtained from the Petri net of Figure 2.3. 1In
this invariant all the components are equal to 1 except the
component associated with transition BM (board moving) which
is 2.

It can be observed, from the Petri net model and the
description of the machine, that in this case this result
implies that the net is proper.

Moreover, since all the transitions, for the net to get
back to a marking, fire, according to the transition
invariant Y, the net in this case is also live.

As far as the place invariants are concerned, the
solutions of the system XC = 0 span an 8-dimensional space. A
base of this space is given by the vectors V1, V2, V3, V4, V5,
V6, V7 and V8 listed in Table 3.1

Linear combinations of these vectors give the invariants
of interest,

In particular the invariant X1 = V1 + V2 is associated
to the places representing the flow of the board in the net,
i.e, all 1its possible states. From the definition of place
invariant, the number of tokens in places 1, 2, 22, 26, 21 and
25 is constant; since this number in the initial marking is 1,
this implies that 1 and only 1 token is, in any marking, in
any of these places. This condition reflects the possible
states of the board: moving for fitting (place 1), ready for

171

fitting (place 2), during the fitting in the north or south
side of the machine (places 21 and 22) and after the
completion of the fitting operation (places 25 and 26).

Table 3.1

V8

<
[
<
(™)
<
o
<
o
<
~

Place V1 V5

1 1 0 0 0 0 0 -1 0
2 1 0 0 0 0 0 -1 0
3 0 0 1 0 -1 -1 1 0
4 0 0 1 0 -1 0 1 -1
5 0 0 0 0 0 1 0 0
6 0 0 0 0 0 0 0 1
7 -1 1 -1 1 1 0 0 0
8 0 0 0 0 1 0 0 0
9 1 -1 1 0 -1 1 0 0
10 0 0 1 0 -1 0 0 -1
11 0 0 0 0 0 1 0 0
12 0 0 0 0 0 0 0 1
13 -1 1 -1 1 1 0 0 0
14 0 0 0 0 1 0 0 0
15 -1 1 0 0 0 0 1 0
16 0 0 0 0 0 0 1 0
17 0 0 0 1 0 0 0 0
18 0 0 1 0 0 0 0 0
19 -1 1 0 0 0 0 1 0
20 0 0 0 0 0 0 1 0
21 0 1 0 0 0 0 0 0
22 1 0 0 0 0 0 0 0
23 0 0 0 1 0 0 0 0
24 0 0 1 0 0 0 0 0
25 0 1 0 0 0 0 0 0
26 1 0 0 0 0 0 0 0

The 1invariants associated to the other components of the
machine, namely the arm, the north and south magazines, the
picking head and the fitting head, have been found in the same
way. The invariant X2 = V3 + V4 is related to the states of
the arm, Indeed the corresponding non =zero components
represent all the places in which a token can be found. It can
be easily verified that the arm can be moving to the north
magazine (place 3) or to the south magazine (place 4), ready
for the north and south side respectively (place 9 or 10), or
can be aligned with the north/south magazine before and after
the completion of the picking (places 17 and 23/18 and 24).

As far as the two magazines are concerned, the
corresponding invarjiants X3 and X4 are given by X3 = V4 for
the north magazine and by X4 = V3 + V5 for the south one. 1In
fact, considering for instance the north magazine, it can be

172

in four different states: moving to align the slot containing
the required <component (place 7), ready for picking (place
13), during the picking (place 17) and after the completion of
the picking (place 23). Analogous considerations hold for the
south magazine whose possible states are represented by places
4, 14, 18 and 24.

In order to perform a pick, it is required that the
involved head is properly oriented with the component to be
picked wup. The flow of the picking head is reflected in the
invariant X5 given by X5 = V3 + V4 + V6 + V8. The positive
components of this invariant, in fact, are related to the
positions in which the head can be. This head can be moving
(place 5), ready (place 11), picking (place 17) and idle
(place 23) in the north side and in the south side (places 6,
12, 18 and 24) of the machine.

The preparation activities performed by the other head,
which has to fit the electronic component, as it is also shown
by the invariant X6 = V1 + V2 + V7, are assocliated to the arm
movements (places 3 and 4) which are to be completed before
the head start (places 15 and 16). Then the head can be ready
(places 19 and 20), fitting (places 21 and 22) or idle after
the completion of the operation (places 25 and 26).

4 .PERFORMANCE EVALUATION

The use of Petri nets for performance evaluation has been
mostly 1in the areas of multiprocessing, communications and
more recently manufacturing systems.

In this paper we shall not consider specific methods
suggested for a particular performance -evaluation problem
(Sifakis 1980, Magott 1987), but only the main techniques.

Two basic approaches can be used to derive performance
measures: analytical-numerical techniques and direct
simulation.

The first can be applied to Stochastic Petri Nets (SPN).
By this term we denote timed nets in which the firing delay of
the transitions 1is an exponentially distributed random
variable,

SPN are isomorphic to continuous time Markov chains: the
states of the chain correspond to the markings of the net and
the sojourn times are the same. This result, due to Molloy
(1981) and extended by other authors (Ajmone Marsan et al.
1984b) to GSPN (Generalized Stochastic Petri Nets) which have
exponential and immediate transitions, enables to apply to the
analysis of Petri nets the Markovian analysis techniques and
in particular to compute the probability of each state in
steady state and transient conditions.

Petri nets have two advantages over Markov models. They
are a formalized language of system specification and allow,
thru the computation of the reachability graph, the automatic
generation of the state space.

The method used to compute the probabilities for both the
transient and the steady-state case first computes the

173

reachability graph R(PN, M(0)). The states can be vanishing,
when at least one enabled transition is immediate, and
tangible, when all enabled transitions are timed. The
probabilities are computed only for the tangible states, This
is done, for the steady-state, solving the balance equations
of the Markov chain, typically by the Gauss-Seidel method and,
for the transient case, computing the exponential of the rate
matrix of the Markov chain.

These probabilities allow to compute the performance
indices of the system thru the distribution of the number of
tokens in each place of the net.

This analysis has been performed for the net of Figure
2.3. The number of markings is 128. Gauss-Seidel converged in
5 iterations to the steady-state probability for each state.

A substantial limitation of the Markovian approach 1is
that the number of states can be exceedingly high, making
computationally unfeasible the generation of the reachability
graph, even for middle size models, and subsequently the
computation of the probabilities.

A second limitation of the analytical approach is that it
can be applied, as already remarked, basically only when the
probabilistic structure of the net is Markovian.

The other main analysis technique 1is the direct
simulation of the net, In this case, tokens are moved around
according to the firing rules and the statistics are

collected about the number of tokens in each place.

The simulation procedure, (Sciomachen 1986), 1is simple
and straighforward. In a tangible marking it checks which
transitions are enabled. For the transitions which were
already enabled in the previous marking the time elapsed
between the two markings 1is subtracted from their time
constant. The wvariables required by each transition are
subsequently generated and the event list is updated
accordingly. At this point one can decide which transition
fires first and which marking is generated. Before moving 1in
the new marking the statistical counters of the simulation are
updated.

The lenght of the simulation rum is controlled by the
usual criteria of statistical simulation. The search for
stopping criteria explicity dependent on the structure of the
Petri mnet 1is still very much an open problem (Haas and
Shedler 1986a, 1986b, 1987a, 1987b). In the same papers the
simulation of SPN is analyzed in the framework of Generalized
Semi Markov Processes.

Over traditional simulation languages Petri nets offer
the advantages that the system specifications, as they are
represented 1in the net, and the initial marking are the only
input required by the simulation procedure which generates
automatically the simulation program.

The methods recalled above are common in most of the
software packages for analyzing timed Petri nets. Specific
features may be different depending on the environment in
which the package has been developed and its main application
area. For instance MEGAS (Multiple Event Graph Analysis &

174

Simulation), (Sciomachen 1986), developed in a manufacturing
environment, has several options for dealing with conflicts,
allowing the use of state dependent rules, which can represent
adaptive control policies.

Moreover the timing of the transitions can vary
dynamically during the execution of the net. This feature, as
illustrated in Archetti et al. (1986), 1is important when
dealing, in realistic conditions, with machines 1like that
considered in this paper.

For the machine of Figure 2.3 the token distribution has
been computed by the analytical technique and by simulation.

Table 4.1 gdives the probability of having 1 token for
each place of the net.

Table 4.1
Place Probability of 1 token
Analytic Simulation
1 0.198 0.196
2 0.312 0.314
k] 0.118 0.118
4 0.118 0.119
5 0.082 0.082
6 0.082 0.082
7 0.289 0.295
8 0.358 0.353
9 0.076 0.079
10 0.109 0.106
11 0.112 0.115
12 0.145 0.143
13 0.418 0.413
14 0.357 0.361
15 0.116 0.116
16 0.116 0.116
17 0.152 0.150
18 0.152 0.151
19 0.021 0.020
20 0.021 0.021
21 0.152 0.154
22 0.152 0.152
23 0.141 0.141
24 0.133 0.135
25 0.080 0.081
26 0.105 0.102

The agreement between the analytical and simulation
results is more than satisfactory.

It 1s important to note the relation between the place
invariants and the token distribution. Let P be the steady-

175

state probability vector of having 1 token in each place of
the net and X any place invariant vector. Then the sum of the
probabilities of having 1 token in the places belonging to
each place invariant is related to the corresponding invariant
by the relation XP = 1.

The verification of this property is given in Table 4.2
where for each invariant it is computed the scalar product XP.
In the Table the values P(i), representing the probability of
having 1 token in place i, are the results obtained by the
analytical procedure; the same results hold for the simulation
results.

Table 4.2

Invariant XP

X1 P(1)+P(2)+P(21)+P(22)+P(25)+P(26) = 0.999

X2 P(3)+P(4)+P(9)+P(10)+P(17)+P(18)+P(23)+P(25) = 1.

X3 P(7)+P(13)+P(17)+P(23) = 1.

X4 P(8)+P(14)+P(18)+P(24) = 1.

X5 P(5)+P(6)+P(11)+P(12)+P(17)+P(18)+P(23)+P(24) = 0.999

X6 P(3)+P(4)+P(15)+P(16)+P(19)+P(20)+P(21)+P(22)+P(25)
+P(26) =1

CONCLUDING REMARKS

The example discussed in this paper and the growing
research interest 1in the wuse of Petri nets to model
manufacturing systems bear witness to their great potential in
the design and management of the automated factory.

The main advantages of Petri nets over traditional
simulation languages can be summarized in the following
points, First, the availability of a design and simulation
language which can be used at different levels of abstraction
and detail. Different analysis technique using the same data
structure can be employed from the initial macrosimulation for
capacity planning to the system control at workcell level,.
Second, the automatic generation from the net of the
simulation program, with a drastic reduction in the time and
cost of program development,

The main obstacle to a broader use of Petri net based
tools 1is the lack of a generally agreed upon methodology for
constructing models out of the system specifications. For this
reason, the model in this paper as well as the more complex
ones of Sciomachen et al. (1987) and Abraham and Sciomachen
(1986), have been presented in such a way as to outline a
general methodology for building Petri net models. This
methodology holds, in the authors' opinion, beyond the issue,
specifically addressed in this paper, of modelling CNC
machines.

176

REFERENCES

Abraham, €., Sciomachen, A. (1986). Planning for Automatic
Guided Vehicle Systems by Petri Nets. RC 12288, IBM T.J.
Watson Research Center, Yorktown Heights, New York.

Agerwala, T. (1979), Putting Petri Nets to Work. IEEE
Computer, vol.12, 1979,

Ahmadi, J., Grotzinger, S., Johnson, D. (1986)., Emulation of
Concurrency in Circuit Card Assembly Machines. RC 12161,
IBM T.J. Watson Research Center, Yorktown Heights, New
York.

Ajmone Marsan, M., Balbo, G., Ciardo, G., Conte, G. (1984a)., A
Software tool for the automatic analysis of Generalized
Stochastic Petri Net Models. Proceedings of
"International Conference on Modelling Techniques and
Tools for Performance Analysis'", Paris 1984.

Ajmone Marsan, M., Balbo, G., Conte, G. (1984b), A Class of
Generalized Stochastic Petri Nets for the performance
evaluation of multiprocessor systems. ACM Transactions on
Computer Systems. vol.2 #2, pp.93-122,

Alla, H., Ladet, P,, Martinez, J., Silva-Suarez, M. (1985).
Modeling and Validation of complex systems by coloured
Petri Nets; application to a flexible manufacturing
system. Proceedings of International Workshop on Timed
Petri Nets, IEEE Computer Press, Torino 1985,

Archetti, F., Fagiuoli, E., Sciomachen, A. (1985). Performance
Evaluation of a transfer line via Stochastic Petri Nets,.
Conv. ANIPLA, Genova 1985,

Archetti, F.,, Grotzinger, S., Sciomachen, A. (1986). The
design of a Petri net based tool for the performance
evaluation of pick and place machines. RC 12359, IBM T.J.
Watson Research Center, Yorktown Heights, New York.

Archetti, F., Fagiuoli, E., Sciomachen, A. (1987). Computation
of the Makespan 1in a transfer 1line with station
breakdowns using Stochastic Petri Nets, To appear on
Computer and Operation Research.

Beck, C., Krogh, B. (1986). Models for Simulation and Discrete
Control of Manufacturing Systems. Proceedings IECON, IEEE
Computer.

Billington, J., Wilbur-Ham, M.C. (1987). PROTEAN: A high level
Petri Net tool. Petri Net Newsletter, 26 Aprile 1987,
Chiola, G. (1985). A Software Package for the analysis of
Generalized Stochastic Petri Net Models. Proceedings of
International Workshop on Timed Petri Nets, IEEE Computer

Press, Torino 1985.

Cumani, A. (1985). ESP. A Package for evaluation of Stochastic
Petri Nets with phase-type distributed transition times.
Proceeding of International Workshop on Timed Petri Nets,
IEEE Computer Press, Torino 1985.

Dubois, D., Stecke, K. (1983). Using Petri Nets to represent
production Processes. Proceedings 22 IEEE Conference on
Decision and Control, pp.1062-1067.

Dugan, J.B., Bobbjo, A., Ciardo, G., Trivedi, (1985). The
Design of a unified package for the solution of

177

Stochastic Petri Net Models. IEEE Computer Press, Torino
1985.

Grotzinger, S., Sciomachen, A., (1987). A Petri net
characterization of ahigh speed pacement machine. RC
12935, IBM T. J. Watson Research Center, Yorktown
Heights, New York.

Haas, P., Shedler, G. (1986a). Regenerative Stochastic Petri
Nets., Performance Evaluation 6, pp.189-204.

Haas, P., Shedler, G. (1986b). Simulation with simultaneous
events, RJ 5158, IBM Almaden Research Center, S.Jose, CA.

Haas, P., Shedler, G. (1987a). Stochastic Petri Nets with
simultaneous transition firings. RJ 5464, IBM Almaden
Research Center, S.Jose, CA.

Haas, P., Shedler, G. (1987b). Stochastic Petri Net
Rapresentation of Discrete Event Simulation. IBM RC 5646
(57145), 715/87.

Kamath, M., Viswanadham, N. (1986). Application of Petri Net
based models 1in the Modelling and Analysis of Flexible
Manufacturing Systems. Proceedings IECON 1986, IEEE
Computer.

Komoda, N., Kera, K., Kubo, T., (1984). An Autonomous
Decentralized Control System for Factory Automation. IEEE
Computer, December 1984.

Marabet, A.A. (1986). Dynamic Job Shop Scheduling: an
Operating System based design. Flexible Manufacturing
Systems: Methods and Studies, A. Kusiak £Ed., North
Holland, 1986.

Magott, J. (1987). New NP Complete Problems in Performance
Evaluation of Concurrent Systems Using Petri Nets. IEEE
Transactions on Software Engineering, vol.SE, n.5, May
1987.

Martinez, J. Alla, H., Silva-Suarez, M. (1986). Petri Nets for
the Specification of FMS. Modelling and Design of
Flexible Manufacturing Systems. A. Kusiak Ed., North
Holland, 1986.

Molloy, M.K. (1981). On the integration of delay and
throughput measures in distributed processing models. PhD
Thesis, UCLA.

Molloy, M.K. (1982). Performance Analysis using Stochastic
Petri Nets. IEEE Transaction on Computers, C31, N.9,
pp.913-917.

Molloy, M.K., (1986). The Stochastic Petri Net Analyzer systenm
design tool for Bit-mapped workstations. TR-86-12,
University of Texas, Dept. of Computer Science, 1986.

Murata, T. (1984a). A Petri Net based Factory Automation
Controller for Flexible and Maintainable Control
Specifications, Proceedings IECON 84.

Murata, T. (1984b). Petri Nets and their application: an
introduction. Management and Office Information Systens,
Plenum Press, 1984,

Naharari, Y., Viswanadham, N., (1984). Analysis and synthesis
of Flexible Manufacturing Systems using Petri Nets.
Proceedings of the First ORSA/TIMS Conference on FMS, Ann
Arbor, 1984,

178

Peterson, J.L. (1981). Petri Net Theory and the Modeling of
Systems. Prentice Hall Inc., 1981.

Ramchadami, C. (1974). Analysis of Asynchronous Concurrent
Systems by Timed Petri Nets. PhD Thesis MIT 1974 MAC-TR-
120.

Reisig, W., (1982). Petrinetze. Springer Verlag, 1982.

Sciomachen, A. (1986). The Design of a Petri Net based Package
for Modeling and Analysis of Manufacturing Systems. RC
12218, IBM T.J. Watson Research Center, Yorktown Heights,
New York.

Sciomachen, A., Grotzinger, S., Archetti, F. (1987)., Petri Net
based emulation for a highly concurrent Pick and Place
Machine., RC 12940, 1IBM T.J. Watson Research Center,
Yorktown Heights, New York.

Sifakis, J., (1977). Use Petri Nets for Performance
Evaluation. Measuring, Modelling and Evauating Computer
Systems. H. Beilner & E. Gelenbe Eds., North Holland
1977.

Sifakis, J. (1980). Performance Evaluation of Systems using
Nets. Proc. of +the third Int. Symposium IFIP Working
Group 7.3, Ed. H. Beilner and E. Gelembe.

Thuriot, E., Courvoisier, M. (1983). Implementation of a
centralized synchronization concept for production
systems. Proceedings Real-Time Systems Symposium,
Arlington, VA, 1983.

Torino (1985). Proceedings of the International Workshop on
Timed Petri Nets. IEEE Computer Press, 1985.

Valette, R., Courvoisier, M., Mayeux, D. (1983a). Control of
Flexible Production Systems and Petri Nets. European
Workshop on Application and Theory of Petri Nets, Varenna
1982, Springer Verlag, vol.63.

Valette, R., Courvoisier, M., Mayeux, D. (1983b). A Petri Net
based programmable logic controller. Computer
Applications in Production and Engineering (CAPE 83),
North Holland.

The SMARTIE Framework for
Modelling Discrete Dynamic Systems

Geernt-Jan Houben, Jan L.G. Dietz, Kees M. van Hee

1. INTRODUCTION

A major problem in software and sysiems engincering is the precise specification of the
system to be analysed or designcd. A formal model of the sysiem to be build can be con-
sidcred as a specification of the system, restricted to the aspects considered in the model.

A computer-model is an implementation of a formal model. It can be used to simulate the
bechaviour of a modelled system. In casc this system is an information system a computer-
modcl can be used as a prototype of the system. Users or potential users of an information
system usually arc unable to understand a formal model of the system. With a prototype of the
system they can sce if their requirements are translated correctly by the system designers.

The systems we are dealing with are discretc dynamic systems. Such a sysicm is at each
moment in one of a set of states. At some moments it performs a transition to anothcr, not
nccessarily diffcrent state. The number of transitions in cach finite time interval is finitc. A
transition is triggered by onc or morc actions. The system may produce by each transition onc
or more rcactions. Actions are coming from the environment of the system or they may be
crcated by the system itself and fed back to the system.

Many rcal systems, including information systems, are discrcte dynamic systcms.

In literature there are many approaches to model discrete dynamic systems. Finite state
machines, Markov chains and Petri nets are well-known cxamples of gencric models. In Dictz
and van Hec (1986) a framework, called SMARTIE, is developed. It is an extension of finitc
statc machines combined with a modelling language based on predicate logic. In Harel (1986)
another generalization of finite state machines combined with a graphical modclling language is
presented. A different and less formal approach is found in Jackson’s System Development
(Jackson 1983). In Jackson (1983) scveral interesting cxamples are presented. In Sridhar and
Hoare (1985) some of these cxamples are modelled using the language of Hoare CSP. In that
paper it is suggested that CSP could provide a formal basis for the JSD mcthod.

We fcel that our approach is a powerful alternative. In van Hce, Houben and Dictz
(1987) this is alrcady demonstrated by treating some cxamples. In that paper we also focuscd

180

on a modclling language and a diagram technique.

In this paper we give the description of our modcl for a discrete dynamic system (dds) in
Section 2. In Section 3 we bricfly describe our modelling language and in Scction 4 we give
some cxamples. The examples include a banking system, a queucing system and a heating
sysiem. In Scction 5 some conclusions are drawn.

2. MODEL QF DISCRETE DYNAMIC SYSTEMS

A dds is determined by a sceven-tuple, the components of which will not all be known.
Some of the components will be fully specified during the design phase of a dds, while others
will become known during the operational phase of the system.

In this section we define the components of a dds and its behaviour. In this paper we do
not define the aggregate of a dds. However, since it tums out that such an aggregate is a dds
itself, our model allows decomposition and integration of dds’scs.

We use the following notations :

- P(X) denotes the sct of all finitc subsets ol a sct X,

- A denotes the symmetric difference-operator, i.c. a Ab = (@ U bN\a n b).

- dom and mg arc functions that assign domain and range to a function, respectively.

- X — Y denotes the set of all funclions with domain contained in X and range contained in
Y.

- (ujed 1 Aj)denotes {x 11jes 1 x e A}

- (njeJ D Aj) denotes (x I Vet 1x e A;).

Furthermore, we usc the usual notations of sct theory and symbolic logic, including —
for implication. Often we write f, instcad of f (x) for a [unction application. We frequently
use the A-operator and the fact that this operator is commutative and associative. Therefore,

we may define for some set of scts X, AX =X, AX,A --- AX, for somc cnumeration
X1 Xp of X. Similarly for some seil-valued function X,
(Aiedom(X) : X;) = X,~l A X,~1 A - A Xi,. for some enumeration {y,...,i, of dom(X). Let N

denote the set of natural numbers. Let R* denote {x | x € R A x 2 g} for some fixed € > 0,
where R denotes the reals. R* will be used as the time domain of dds'ses.

Definition 2.1.
A discrete dynamic system is a seven-tuple

<S,M A ,R,T,! E>

where

- § is a set-valued [unction,
fori,j € dom(S) wehavei #j - §; n §; =2,
dom(S') is called the set of store indices,
for j e dom(S) : §; is called the state base of store /,

S; = P(S;) is called the state space of store j.

181

- M is a function,
dom(M) is called the set of processor indices,
fori € dom(M) : M; = <MC; ,MR;>
where:
M, is called the motor of processor i,
MC; and MR; are functions,
MC; is called the chan nction of processor i,

MR; is called the response function of processor §.

- A is a sct-valued function,
dom(A) = dom(M),
fori,jedomM):i#j oA, N A =0,
fori € dom(M)and j € dom(S) : A; N §;j=2,
i € dom(M) : A; is called the action base of processor {,
A; = P(A;) is called the action space of processor {.

- R is a sct-valued function,
dom(R) = dom(M),
fori,jedomM):i#j >R N Ri=0,
i € dom(M) : R; is called the reaction base of processor i,
R; = P(R;) is called the reaction space of processor i.

- T is a function, dom(T) = dom(M) x dom(M)
fori,j e dom(M):T; € R; - P(A;x RY),
T is called the transfer function.

- I is a sct-valued function, dom(/) = dom(M)
fori e dom(M) : I; < dom(S),
I is called the interaction function.

- Fori e dom(M):
* MS; =(Ujel; . ;) is called the state base of processor i,
MS; = P(MS;) the state space of processor i,
MC; e MS; x A; > MS;,
MR; € MS; x A; > R;,
VseMS; : MC;(s,@) = MR;(s,@) = @.

* ¥ ¥ ¥

- E =<EU ,ES ,FEA> where EU, ES and EA arc functions:
* dom(EU) = dom(S) and
for j € dom(S): EU; € P(S;x R"),
EU; is called the extemnal update set of store j
* dom(ES) = dom(S) and
for j e dom(S) : ES; € §;,
ES; is called the initial state of store j.

182

* dom(EA) = dom(M) and
fori e dom(M) : EA; € P(A; X RY),
EA; is called the exiernal event sct of processor i.

(cnd of definition)

A mcchanical appreciation of a dds is as follows. A dds consists of a sct of processors
and a sct of stores. Processors are mutually connccled by transaction channcls and processors
and storcs may be connected by interconnections. The motor of a processor transforms instan-
tancously a sct of actions into updates for the connected stores (by means of the function MC)
and simultaneously it produces some set of rcactions. The transformations may depend on the
states of the connected stores. The statc of a store may change by an update from a connccted
processor or by some cxtenal update. Hence an cnvironment may influence a dds by cxtemal
updates on stores and by imposing actions on the processors. The occurrence of an action at a
particular moment is called an gvent. More than one event at a time for one processor is
allowed. The output of a processor is sent to the cnvironment of the processor and a transfer
function transforms some reactions into actions with a time delay. Such a pair is sent to a pro-
cessor as a new event with a time stamp equal to the sum of the processing time and the delay.

The delays arc clements of R* and therefore the number of transitions in a finite time
interval is always finitc. The cvents produced by a dds for itsclf or another processor arc called
internal events. They are inserted into the event agenda of the recciving processor. Initially,
this agenda consists of all the cxtemal events, later on it contains also internal events. The
cxtcmnal updates arc supposed to commute; in fact we assume that cach update is specificd by
some valuc from the statc space of a store. If this value is denoted by 5, and the actual state of
that store is s, then the effect of the update will be 5, A 5.

Next we define the behaviour of a dds.

Definition 2.2.
Let <S ,M ,A ,R,T,I ,E> be a dds. The process of the dds is a five-tuple

<t,0,p,0,¢>

where:
- te N> Randforne N :1,is the lime stamp of the n-th activation,
- 0, p, 0, ¢ arc functions with

dom(a) = dom(p) = dom(¢$) = dom(M) and dom(s) = dom(S) .
For i € dom(M):
- o; € R 5 A, o;(¢) is the action sct of processor i at time ¢,
- pi € R 5 R;,p;(t) is the reaction set of processor | at time ¢,

- ¢; € R > P(A; x R"Y), ¢;(t) is the event agenda of processor i at time .
For j € dom(S):

- 6;€ R > §},0;(t) is the state of store | at time ¢.

183

These funclions arc defined recursively:
- 1=0, fori € dom(M) : o;(0) =2, p;(0) = 2, §;(0) = EA;
for j € dom(S) : 5;(0) = ES;.
Let 1, be defined and let the functions o, p, ¢ and ¢ be defined on the interval [0,7,],
- T, =min{t 1 liedomM) :daeA; : <a,t>€ §;(1,)]
and for j € dom(S) let & be defined by

8;(th)=0;(1,) A A x| <x,y>€ EU; AT, <y <Tp})
and for i € dom(M) lct ¥ be defined by:
Yi(Tws1) = (Uj€l; 1 8;(T,11))

and let:
- 0(Taa) = {a 1 <aT,,> € 0,1}
fort, <t <7ty :0,(1) =9
= PilTas) = MR(Y;i (T041).:04 (T)
fort, <t <1, :pit)=9;
- Gt) =(<a > 1(at> e §;(T) A1 >T,,)V
VvV Ade R* : dkedomM) : t =1, +d A <a,d> € Ty (P (T, 1))}
fort, <t < Tt ¢; (1) = ¢;(T,).
For j € dom(S):
- Gi(Th) = 0j(Thu) A(AL € dom(M) : S; N MCi(¥,; (141,04 (T,11)) A
AAx x> € EU/-})
fort, <t <ty :6;()=06;(T,)AA{x | <x,y>€ EU; AT, <y<t}.

(end of dcfinition)

Note that 3;(t,,,) is the last state of store j before T,,; and that ¥;(T,.) is the last siatc
of processor i before 1,,;. The state of store j at 1,,; includes also the external updates at
time T,,;.

Here we do not define the aggregate of a dds, but it turns out that the aggregate is a dds
itself. However, it has only one processor and one store. So it may be called a simple dds. In
a top-down design-process we start in fact with a simple dds and we decomposc it into a dds
with more stores and processors. At the top level we do not specify much components of the
dds. However, the further we decompose the system, the more details we specify. If we finally
have specified at the bottom level all details of the dds, then that is also the specification of the
simple dds at the top level. In this design-process the diagram technique, proposed in van
Hee, Houben and Dictz (1987), can be helpful. When we observe the processes of a dds and
its aggregate, then we learn that they have the same outputs and therefore the same external
behaviour. So we could consider them equivalent.

In practice we only specify the first six components of a dds, since we cannot look into
the future to determine EU and EA. However often we know or require some properties from

184

these scts, for cxample that the time lag between two cvents or cxternal updales is bounded
from below by some known quantity. Such information may be used to prove propertics of
the behaviour of the system, i.c. of the process of the system. On the other hand we sometimes
require propertics of the process of a system, and then these requircments may be translated
into rcquircments for E and therefore for the environment of the system.

In our model we assume that stalc transitions are cxeculed instantancously. This assump-
tion is made to facilitate modcling. In practice it is often impossible to implement instantancous
transitions. There are several ways 1o guarantce that the time lag between two transitions is
longer than the time needed to realise the transition in the real system. Onc of these mcthods is
demonstrated in the second cxample of scction 4. We think that this kind of modifications of a
modcl is a ncxt phase in the design process : first we model an idecal system, afterwards we
lake care of the limitations of implementations such as bounds on store sizes and exccution
times for state transitions.

Finally we note that our framework assumes the existence of absolute time. However the
processors we model do not have the possibility to inspect some absolute clock. The absolute
lime wec assume is just for the definition ol the process of a system and may be used to
cxpress and prove propertics of the dynamics of systems.

3. MODELLING LANGUAGE

The modelling language that we introduce in this section is onc of the possible ways to
describe the components of a dds, defined in the framework of Section 2. Although we feel
that a large class of systems can be described in this way, we do not claim that this is truc for
cvery dds.

Our modelling language consists ol two parts. The first part is a first order language L
that is used to describe the state, action and reaction bases and spaces. The second parl is a
language PRL for production rules, that is used to describe the motor functions.

The first order language L is constructed in the usual way (cf. Chang and Lee 1973). It is
exiended by introducing two additional quantifiers for summation and cardinality.

The alphabet consists of:

- sct of variables

- sct of constants, called Fy

- sct of n-ary function symbols, called F,, forn € N and n >0

- sct of n-ary predicale symbols, called P,, forn € N,
P =(uneN :P,)

- quantifiers: 1, ¥, T, #

- logical operators: v, A, 1, 5, ¢

- rclational operators: <, >, <, 2, =, #

- arithmetic operators: 4, —, %, mod, div

- punctuation symbols: (,), 5, . {, }, |

185

Terms are defined by:

- constants and variables arc (crms;

- il ty,...,t, arc lcrms and f e F,, then f(¢y,.. ., 4,) is a term;

- il ¢y and ¢, are terms, then () +4¢5), (¢ % tp), (¢~ 1), (¢, div¢,) and (¢, mod¢,) are terms;

- if ¢t is a term, x is a variablc and Q a formula, then (Zx : Q :¢t) and (#x : Q) are terms.

Atoms arc dcfined by:

- ifty,...,¢t, areterms and p € P,, thenp(¢y,.. ., ¢t,) is an atom;

- if ¢y and ¢; are terms, then (8, 8,), (6,215), (£,<ty), (¢,>15), (t;=t,) and (¢t;#¢,) arc
atoms.

Formulas are defined by:

- an atom is a formula;

- il Q and R arc formulas, then (QV R), (Q AR), (—Q), (@ 2 R) and (Q € R) are for-
mulas;

- if Q is a formula and x is a variable, then (Vx : Q) and x : Q) are formulas.

Notc that, when no problems arise, parentheses are often omitted. In formulas free and
bounded variables arc distinguished, in the usual way. To give formulas a (formal) interpreta-
tion (cf. Lloyd 1984), we choose the sct of integers as the domain of interpretation. This mcans
that every constant is mapped to an integer and cvery variable is given an integer value, but
this restriction to integers is only made for convenicnce and is not cssential.

For describing the state base of a store or an action- and reaction base of a proccssor we
choose a subsct of the predicate symbols P. The bases are defined as the sets of all ground
atoms with corresponding predicate symbols. Note that when we specifly such a sct of predi-
cate symbols, we also specify for cach predicate symbol the number of arguments that the
corresponding ground atoms will have; p(-,-) dcnotes that the ground atoms with predicate
symbol p have two arguments. All scts of predicate symbols for basc-definitions should be
mutually disjoint. Remember that the state space of a processor is the union of the statc bascs
of stores with which it is connccted.

We assume that relational and arithmetic operators have their usual interpretation, as have
the logical operators and quantificrs. For each processor { with action- and reaction bases
defincd with predicate symbol scts PA; and PR; respectively and a state basc defined with
predicate symbols PS;, a subset PD; of P is dcfined that is disjoint with PA;, PR; and PS;.
The predicate symbols in PD; are used for shorthands in the description of the motor of i.

For each processor i a set of closed formulas D; is defined. Formulas in D; may contain
predicate symbols of PD; U PA; U PR; U PS;. These formulas arc considered 1o be axioms;
they have the truth value true. These formulas serve as definitions for shorthands or as con-
straints on statcs and actions. We can for instance specily constraints for specifying that some
argument valucs are not allowed for some predicate symbols, thus specifying as domain of an
argument only a subset of the integers. The set D; is called the axiom base of processor i.

We follow the closed-world assumption (cf. Reiter 1984), which implies that, given some
statc s and some action a all ground atoms in s and a have the trulth valuc truc, whercas all

186

other ground atoms that can be formed by predicale symbols [rom the corresponding bases
have the truth value false. We require that a processor i never has 1o deal with a state or an
action that is in contradiction with D;. It is the responsibility of the designer of a system to
prove that a dds fulfills this requircment. Usually, this is donc by showing that, given a state
and an action, that do not contradict D;, the new state docs not contradict D; ecither.

The definitions in D; are closed formulas of the kind:

Yxp: oo iVx, ip(xy, .. x) €0

where p € PD; and Q is some formula involving at most x,, . .., x, as {ree variables and
predicate symbols from PD; U PA; U PR; U PS;. Each predicate symbol of PD; occurs
cxactly once in such a formula on the left-hand side. Tt is again the designer’s responsibility to
guarantee that for cach ground atom, with its predicate symbol in PD;, a truth value can be
detcrmined w.r.t. some state s of processor i and some action a for processor i.

Given D;, some state s of processor i and some action a for processor §, thc motor M;
may change the state and therefore the formal interpretation of formulas. Such a change of
state consists of additions and dcletions of ground atoms with predicate symbols from PS;. A
dcletion means that the negation of that alom gets truth value true. This can ncver cause a con-
tradiction with a definition in D;, but it may create contradictions with constraints. If an axiom
base, a state and an action are considered to be axioms of a theory, then a transition may
change this theory into a new one.

Now we can define the language of production rules PRL, for describing the motor of a
processor. First we define formally the language’s syntax; its semantics will be defined infor-
mally afterwards.

In PRL, formulas of L occur. The non-terminals <formula> and <atom> refer to formu-
las and atoms of L resp. Using EBNF-notation we dcfinc:

<rule> = <condition><D -part></ -pari><R -part>
<condition> = | <formula>
<D -part> U= =l:> <atom sct>
1
<l -part> u= = <atom sct>
R
<R -part> u= = <alom sct>
<atom sct> u= [<cnumerated set> | <conditional set> | <atom sct> U <alom scl >]
<cnumerated set> = {<atom list>}
<atom list> u= <atom> {, <atom>}

<conditional sct>

{ <atom> | <formula>}

! R
Note that ‘=", ‘=, ‘=’ ‘=’ and the underscored symbols are terminals.

187

An cxample:
E @03)AqO)V rx,y,z)
D
= (@ r(M v [pCxx.y)It@)Ay2x}
1
=

R
= {(m(x,z)1t(x))

There may occur frec variables in a rule, i.e. in the formula of the condition or in an
atom set. However, the free variables in an atom set have to occur also in the condition. Note
that a variable that occurs as a frce variable before and afler the bar in a conditional set is
bounded. With cach state and action of a processor we associale an active domain. This is the
sct of all constants that occur in the axiom base, the state or the action. The active domain and
the set of all variables occurring in the description of a motor or store arc finite. A binding of a
sct of variables is a function with this set of variables as domain and the active domain as
range.

The semantics of a rule are as follows. For each binding of the free variables of the for-
mula in the condition of a rule, it is checked whether this formula is true, with respect to the
formulas in the axiom base, the (current) state and the action. If it is true, then the atom sets of
the D-, I- and R-parts arc computed, where for free variables in these atom sects the values
defined by the binding are substituted. The quantifications over bounded variables in closed
formulas and conditional sets are computcd also with respect to the aclive domain, so these
quantifications are computable. The computation of a conditional set is as usual. When in a
D-, I- or R-part no atom sct occurs, then the set of ground atoms computed will be empty.
For reasons of convenience we allow that, instcad of writing a part without an atom set, such a
part is omitted.

Denote for rule n and binding b of the free variables of the condition of the rule, the sets
of ground atoms computed in the D-, /- and R-part by D, , I, and R, ,, respectively.
Then we define:

C=(An:(Ub:D,p)A AR (Vb 1),
R=(n:(Ub:R,;)) .

For a transition of a motor is now dcfined for state s and action a:
MC(s,a)=sAC
MR(s,a)=R

so the state is changed by taking the symmetric difference of the old state and for all rules, the
union, over all bindings of the free variables in the conditions in the condition of the rule, of
thc computed sets of the D- and /-pants, whereas the reaction is just the union over all com-
puted sets of R-parts for all rules and bindings. Note that the distinction between D - and /-
parts is only made for convenicnce.

188

4, EXAMPLES

In this scction we present three examples. The first onc treats a banking system similar
1o the cxample treated in Sridhar and Hoare (1985). The sccond one shows how to deal with
queucs. The last one treats a heating system.

4.1. Banking System

In this section we will give two versions of a banking systcm. The first version describes
a very simple system in which the balances of accounts arc managed. This example comes
from Sridhar and Hoarc (1985).

Processor 1 receives banking transactions, originating from the account holders, and
makes appropriatc changes to the balances in Store 1. Processor 2 periodically reads the con-
tents of Store 1 and producces a balance report, which is sent to the bank managcman Store 1
holds the balances of the accounts. For Storc 1 we will use ground atoms balance(i, x), where
balance(/, x) means that the balance of account { is equal to x.

Processor 1, which has interaction with Store 1, can be specificd as follows:
A = {invest(-,-), payin(- ,-), withdraw(- ,-), tcrminate(-)}
R=02
M:
k= invest(i,x) A no—account(i)

I
=> {balance(i, x))

E= terminate(é) A balance(i, 0)
D
= {balance(i, 0)}

E= balance(i, x) A —invest(i,y) A —terminate(i)
D
= {balance(i, x))}

I
=> {balance(i,y) |y =x + Tw : payin(i,w) : w) — (Tw : withdraw(i,w) : w))}
D = (Vi : no-account(i) <> —(Jx : balance(i, x)))
Processor 2, which has interaction with Store 1, can be specified as follows:
A = {makereport}
R = {repori(- ,-),dorepon(-)}
M:

= makereport A balance(i, x)
R
= {repon(i,x))

% note that this rule is executed for all accounts, if a makereport action is received %

E= makereport
R
= {dorepori(¢)}

% note that this rule is exccuted only once when a makereport action is received %

189

Furthcrmore :
T,2: Vit :dorepori(t) € A — Ty5(A) = {<makercport,t>)
% via the fcedback transaction channel a next makereport action is transferred, that will be
received ¢ time units later %
Store 1 can be specified as follows :
S = (balance(- ,-)}

When we consider this specification, we can notice that we assume that Processor 1 can
only get some scts of actions at a time, c.g. not an invest action and a lcrminate action
together. This implies that we have some knowledge concerning the environment, i.e. the pos-
sible sets of cvents.

In the second version of the banking system we will specify Processor 1 in such a way
that we do not have to make assumptions about the event scts coming from the environment.
Furthermore we will specify exactly the domains of the predicate symbols. Again both proces-
sors have interaction with Store 1.

Specification of Processor 2 :
A = {makercport]
R = {report(-,-), doreport(-))
M:
= makereport A balance(i, x)

R
= [report(f,x)}

k= makereport
R
= (dorcpori(t))
Specification of Store 1 :
§ = [balance(- ,-),no—account(- }}
Specification of Processor 1 :
A = (invest(-), payin(- ,-), withdraw(- ,-), terminate(-)}
R = {error(-))
M:
k= inputcrror(i)

R
= {error({)}

k= —inputerror(i) A invest(i,x)
D
= {no—accouni(i))

I
= ({balance(i,x)}

190

= —inpulterror(i) A terminale(i) A balance(i,x)

D
= [balance(i, x)}

1
= {no—account(i)}

k= —inputerror(i) A balance(i,x) A —invest(i,y) A —lerminate(i)
D
=> {balance(i,x)}

1
= (balance(i,y)ly =x + (Iw : payin(i,w) : w) — (Ew : withdraw(i,w) : w)}
If D is the union of the axiom bases of both processors, then D can be specified as follows

D = { Vi : inputerror(i) <>

3 x,y : invest(i, x) A balance(i,y)) V
dx: (payin(i,x) v withdraw(i, x) V terminate(i)) A no—account({)) V
d x,y : invest(i, x) A invest(i,y)Ax # y)V
d x,y :invesW(i,x) A (payin(i,y) V withdraw(i,y) V tcrminate(i))) V
(A x : terminate(i) A (payin(i,x) A withdraw(i,x))) V
{d x : terminate(i) A balance(i,x) A x # 0),

Vi,x :invest(i,x) V payin(i,x) V withdraw(i, x) V tcrminatc(i) V no—account(i) —

ieNAxe N,

Vi,x : balance(i,x) V repori(i,x) > ie NAx e Z,

V1 :dorcpori(t) >t € R*,

Vi : no—account(i) €= —3x e Z : balance(i, x),

Vi,x,y : balance(i,x) A balance(i,y) » x =y,

Vi :crrori) > i e N}

One of the differences between the two specifications is that the second one imposes less
constraints on the environment. The sets of events which in the first case lead to an undefined
situation are accepted in the second case and imply an crror message to the environment,
Another dilference is, that no-account(d) is a shorthand in the first specification, wherecas it is a
ground atom, bound to some constraints, in the second specification. We alrcady mentioned
the cxact specification of the domains of the predicate symbols.

Note that in the second specification D includes

Vi,x,y : balance(i, x) A balance(i,y) &> x =y,
which is a constraint stating that for each account only one balance is valid. Of course, this
constraint is met in the first specification, but this can only be casily verified due to the simple
nature of the specification. In morc complex cases we shall specily constraints in order to
make a specification more recadable, but also 10 make the task of proving the correctness of the
specification (as mentioned in Section 3) much easier.

4.2, Qucucing Sysicm

A processor will be activated instantancously when a non-empty set of actions arrives. In
practicc many systems can process only onc action at a time and morcover cach processing

191

takes time, so that the system is unable to handle actions arriving during the busy period. In
principle it is possible to modify a given dds with instantancously recacting processors into a
system that simulates processing time and fifo-qucueing order. To do this one nceds to modify
the processors such that they give themsclves fecdback cvents telling that the processing has
finished and onc has to keep an administration of the waiting actions.

Instead of modifying processors we add to the dds another dds, which is a simple dds
and which behaves as a waiting room for the original dds. Since the waiting room we describe
here can be defined independent of the characteristics of the original dds, the waiting room
may be considered a standard dds construction.

Supposc a simple dds, called ddst, is given. Remember that every dds can be aggregated
into a simple dds. The composition of ddst and the dds, called waiting room, is also a dds.
This dds is called dds2. For simplicity we assume that the action basc of ddsl consists of
ground atoms with only on¢ unary predicate symbol : p. We also assume that the motor of
dds1 produces upon arrival of an action a rcaction that contains a ground atom rcady(d), where
rcady is a predicate symbol not used elsewhere in dds1 and where d is an integer indicating
the time nceded for processing the just arrived action. This quantity d may depend on the
state of dds1 and on the received action. The transfer function T interprets d as a delay. We
assume that T transforms such a rcaction into a pair <ok,d>, where ok is a ground atom of
the action basc of the waiting room and where d is the delay.

So we have for dds1 :

A={pQ)
recady(-) e R
M:

E= p(x) A "d is the time of processing for p (x)"

R
= ({ready(d)}

We can specify the waiting room, consisting of one processor and one store which have

intcraction, as follows :

S ={ps(-.*)}

A = {pa(-).ok}

R'={pr(-)}

M:

E= pa(x) A max(k) A rank(x,m)
% rank(x,m) means that in the action sct there are m ground atoms with a constant

smaller than or cqual to x; max(k) means that in thc state the maximal constant
occurring in a ground atom is k, i.c. the highest scheduling number is k; if there is

no ground atom in the state, then max(0) holds, i.e. the queuc is empty%
1
= [(ps(x,k+m)}

192

% this rule specifics that upon receiving an action, this action is storcd with a schedul-
ing number equal to the maximal number in the store plus the rank of the action
atom in the sct of atoms in the action%

= pa(x) A max(0) A rank(x, 1)

R
= {pr(x)}

% il the queuc is empty, then the action can be sent to ddsl directly%

= ok Aps(x,k)An—dy : ps(y,k=1)
D
= {ps(x,k)}
% upon rcceiving an ok signal of dds!, the action to which the ok reflects should be
deleted; note that ps (x, k) is deleted after p (x) is processed by dds1%
F ok Aps(,k)Ady ips@yk-1) A=y @ ps(y.k=2)
R
= {pr(x)}
% if, upon receiving an ok signal of ddsl, there is a next action, then that action is sent
10 dds?; note that a the same time the third rule makes that ps (y, k1) is deleted%

If D is the union of the axiom bases of ddsl and the wailing room, then D can be
specificd as follows :
D:
(Nx:pax)V pr(x)Vv ps(x)Vpx) >x e N,
Yd :ready(d) > d € R,
Yy.m :rank(y,m) <> (pa@) AN (4 z :pa(z)ANz< y)=m),
Yk :max(k) > Ay :ps@, k) A-Ay : ps(y.k+1)),
max(0) €~ Vy,k : —ps(y,k)}
The transfer function will transform pr(x) into <p (x),€>. So, if 1 is the abbreviation for
dds1 and w that for the waiting room, then we can state :
Vd:rady(d)e A - T, (A)= [<ok,d>},
Y : T, (prx)}) = {<p (x).€>}.
Now we have a standard dds construction for modelling a processor with non-instantancous
processing and fifo-queucing order.

4.3 Hecalin stem

First we will describe the hcating system in natural language. This cxample originates
from the problem set for the 4th International Workshop on Software Specification and Design.

The controller of an oil hot water home heating system regulates in-flow of heat, by tum-
ing the furnace on and off. The controller activates the furnace whenever the home temperature
falls below t, - 2 degrees, where ¢, is the desired temperature sct by the user. The activation
procedure is as follows :

193

(1) the controller signals the motor 1o be activated;

(2) the controller monitors the speed and once the speed is adequate it signals the ignition and
oil valve 10 be activated;

(3) the controller monitors the water temperature and once the water temperature has reached a
predefined value it signals the circulation valve 1o be opened; the heated water then starts 1o
circulate through the housc;

(4) once the home tempcerature recaches ¢, + 2 degrees, the controller deactivates the furnace by
first closing the oil valve and then, after 5 seconds, stopping the motor.

In addition the system is subject to the constraint that the minimum lime for a furnace
restart after a prior operation equals 5 minutcs.

This heating system can be described with one processor and onc store. The specification
of the store is :

S = { furnaceoff, startingmotor, heatingwater, furnaceon, stopping, coolingdown, ¢, (-) }

The processor, that has of course interaction with that store, can be specificd as follows :

A

R

[hometemp(-), motorspeed(-), watertemp(-), stepstopmotor, cooldown, setdestemp(-) }

{ checkhometemp, activatemolor, checkmotorspeed, activateignition, checkwatertemp,
opencircvalve, closeoilvalve, stepstopmotor, stopmotor, cooldown, error }

M:
= in?
R
= [crror}
% in? means that the input, i.c. the action set, is not meaningful (in this statc)%
k= —in? A furnaceoff A hometemp(t) A t, (')At 2 -2

R
= {checkhometemp)

= —in? A fumaceoff A hometemp(t) A , (')At < /=2
D
=

{furnaceofTf}
{startingmotor}
{activatemotor, checkmotorspeed}

k= —in? A startingmotor A motorspeed(s) A 5 < adequatespeed
R
=

(checkmotorspeed)

—in? A startingmotor A motorspecd(s) A s = adequatespeed

$oT

[startingmotor}

{hcatingwater}

4= ¥~

{activateignition, checkwatertemp)

194

k= —in? A heatingwater A wateriemp(t) A ¢ < predefinedvalue
R
= [checkwatertemp}

k= —in? A hcatingwater A watertemp(t) A t 2 predefinedvalue
D
=<4

{hcatingwater)

{furnaccon)

t= ¥~

{opencircvalve, checkhometemp}
—in? A furnaceon A hometemp(t) A f,({)Nt < 742
{checkhomelemp}

—in? A furnaceon A hometemp(t) A £, (FIN &> 7 +2

boT 4=T

{furnaceon}

{stopping}

t= ¥~

[closcoilvalve, stepstopmotor}

—in? A slopping A stepstopmotor

boT

{stopping}

{coolingdown}

U= 4~

(stopmotor, cooldown}

—in? A coolingdown A cooldown

boTr

{coolingdown}

{fumaccoff}

t= ¥~

{checkhometemp)

= setdestemp(r) A £, ()
D
=

{£,("))
1
= {1 (1)}
The transition function 7 can be specified as follows :
T({stepstopmotor}) = {<stepstopmotor, 5 sec. >}
T ({cooldown}) = {<cooldown, 5 min. >}

195

The axiom base D of the processor can be specified as follows :
D={3::4(0),
in? <> { ,¢ : hometemp(t) A hometemp(f')A ¢ #)V

@A 5.5 : motorspced(s) A motorspeed(s’) A s #)V
@ 1,7 : watertemp(t) A watertemp()A £ # L)V
@3 1.7 : setdestemp(r) A sctdestemp(f)A ¢ # £)V
d ¢ : hometemp(r) A —(fumaceolf v furmaceon)) v
ds: motorspeed(s) A —startingmotor) V
@ ¢ : watertemp(t) A —heatingwater)}

When we consider this, specification we can notice that we assume that the system itsclf
is always on, i.c. there is no possibility for the user to tum off the system,

Ncither do we consider crrors in the opcration of the system. As [ar as the recciving ol
actions is conccrned we have stated in the constraints that the action scts are such that an
action likec homctemp(t) is only reccived in a state in which such an action is cxpected. When
such an action is reccived in another state, then we signal this as an crror. We also signal an
crror, whenever e.g. two diflcrent homctemperatures are scnt. We assume that the system
starts in a state with two ground atoms : fumaccoff and ¢, (¢) for some temperature ¢. This
mecans that at the start the fumace is off and a desired tcmperature is known.

Of course, we also assume that whenever a message is sent in order to lcarn for instance
thc motorspeed, then there is definitcly coming a message with this information. As always
with dds’ses the decision, on what 10 describe explicitly in the dds and what to assume for the
cnvironment of the dds, is based on the definition of the system and thus of its cnvironment.

5. CONCLUSIONS AND FUTURE RESEARCH

A framcwork is developed for the formal description of systems of a large class, includ-
ing information systems. In this framework data modelling and process specification are com-
pletely integrated. Hicrarchical decomposition is possible.

The language for sysiem description that we proposed is powerlul, but may be replaced
by others. For instance, the data modelling can be replaced by the relational model, the cntity
rclationship model, a binary modcl or by a functional data model. The process modelling may
be replaced by any third generation programming language or by a functional language.

The framework is also uscful for the development of simulation models of physical sys-
tems. The framework may be uscd for formulating and proving temporal propertics of a dds.
This issuc is a current research topic.

Another rescarch topic is the cxtension of the framework to allow for the creation and
starvation of copics of a dds. This extension will allow for the application of object-orientcd
programming techniques.

We arc also studying on a softwarc design environment bascd on our framework in order
to be able o derive prototypes directly from high level system specifications.

196

REFERENCES

Chang, C.L., Lee, R.C.T. (1973). Symbolic Logic and Mechanical Theorem Proving.
Academic Press, 1973.

Dictz, J.G., van Hec, K.M. (1987). A Framework for the Conceptual Modeling of Discrete
Dynamic Systems. Proc. of Temporal Aspects in Information Systems, 1987.

Harel, D. (1986). Statecharts: A Visual Approach to Complex Systems. CS 86-02, The
Weizmann Institute of Science, 1986.

van Hee, K. M., Houben, G.J., Dietz, J.L.G. (1987). Modelling of Discrete Dynamic Systems
Framework and Examples. Eindhoven University of Technology, 1987.

Jackson, M. (1983). System Development. Prentice Hall, 1983.

Lloyd, J.W. (1984). Foundations of Logic Programming. Springer Vcrlag, 1984.

Rciter, R. (1984). Towards a Logical Reconstruction of Relational Databascs. In M.L. Brodie,
J. Mylopoulos, J.W, Schmidt (eds.), On Conceptual Modeling. Springer Verlag, 1984.

Sridhar, K.T., Hoare, C.A.R. (1985). Oxford University Computing Laboratory, 1985.

Ward, P.T., Mecllor, S.J. (1985). Structured Development for Real-Time Systems. Yourdon
Press, 1985.

A HIERARCHICAL FRAMEWORK FOR DISCRETE EVENT SCHEDULING IN
MANUFACTURING SYSTEMS

Stanley B. Gershwin
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Boston University, Boston, Massachusetts, USA

1. INTRODUCTION

Operating policies for manufacturing systems must respond to important discrete
events that occur during production such as machine failures, setups, demand changes,
expedited batches, etc. These feedback policies must be based on realistic models, and
they must be computationally tractable. In this paper, we develop a class of hierarchi-
cal scheduling and planning algorithms whose structure is systematically based on the
characteristics of the specific kind of production that is being controlled. The levels
of the hierarchy correspond to classes of events that have distinct frequencies of oc-
currence.

Computational tractability is an important concern because of the complexity of the
system. Even for a very small, deterministic, idealization of a production system, the
computational effort for combinatorial optimization renders it impractical for real-time
control. Any control scheme must be based on a simplified representation of the system
and a heuristic solution of the scheduling problem.

There have been many hierarchical scheduling and planning algorithms, some quite
practical and successful. However, there has been no systematic justification of this
structure. The main contribution of this paper is a framework for studying and synthe-
sizing such a structure.

This work extends a formulation by Kimemia and Gershwin (1983) in which only two
kinds of events were considered: production operations on parts and failures and repairs
of machines. Operations occurred much more often than failures, and this allowed the
use of a continuous representation of material flow. A dynamic programming formulation
led naturally to a feedback control policy. The state of the system had two parts: a
vector of real numbers represented the surplus, the cumulative difference between pro-
duction and requirements. The discrete part of the state represented the set of ma-
chines that are operational. The object was to choose the production rate vector as a
function of the state to keep the surplus near O.

The production rate (the continuous control variable) was restricted by linear in-
equality constraints that depended on the repair state. They represented the instantan-
eous capacity of the system, and they expressed the idea that no machine, while it is
operational, may be busy more than 100% of the time; and no machine, while it is not
operational, may be used at all. The present paper describes the extension of this work
to the widest possible variety of phenomena and decisions in a manufacturing environ-
ment.

Figure 1.1 illustrates some of the issues that are considered here. 1t is a graph
of the cumulative production and demand for one part type (j) among many that share one

198

machine. A long term production rate (ujl) is specified for this part type, and its in-

tegral is represented by the solid straight line. It is not possible to follow this

line exactly because the machine is set up for Type j parts only during a set of time

intervals. During such intervals, the medium term production rate u? must be greater

J
than ujl, because during the other intervals -- while it is set up for other parts -- uJ?
is 0. The integral of ujz (the dashed line) is staircase-like, close to the integral of

1
Uj.

The dashed line cannot be realized either. The machine is unreliable, and while it

is down, its production rate uj-’ is 0. Consequently, while it is up and set up for Type

j, it must be operated at a short term rate uj-’ greater than that of the dashed line.
The dotted line, which represents this phenomenon, is again staircase-like, and is close
to the dashed line. Finally, the actual cumulative production graph (which requires too
much resolution to be plotted) is a true staircase. It has vertical steps at the in-
stants when parts are loaded, and it is flat otherwise. It is very close to the dotted
line.

This paper formalizes this hierarchy, and extends it to an arbitrary number of
levels and several machines.

Literature Survey

There is a large literature in scheduling (Graves, 1981). Many papers are based on
combinatorial optimization/integer programming methods (Lageweg, Lenstra, and Rinnooy
Kan, 1977 and 1978; Papadimitriou and Kannelakis, 1980) or mixed integer methods (Afen-
takis, Gavish, and Karmarkar, 1984; Newhouse, 1975a and 1975b; Wagner and Whitin, 1958).
Because of the difficulty of the problem, authors are limited to analyzing computational
complexity, or proposing and analyzing heuristics.

An important class of problem formulations is that of hierarchical structure (Bit-
ran, Haas, and Hax, 1981; Dempster et al., 1981; Graves, 1982; Hax and Meal, 1975; and
others). The goal is to replace one large problem by a set of many small ones because
the latter is invariably easier to solve. These methods are often used but there is no
general, systematic way of synthesizing hierarchies for large classes of stochastic
scheduling problems.

Multiple time scale problems have recently been studied in the control theory (Sak-
sena, O'Reilly, and Kokotovic, 1984) and Markov chain literature (Delebecque, Quadrat,
and Kokotovic, 1984)., We use insights from these methods to develop a systematic justi-
fication for hierarchical analysis. This paper also makes use of, and extends the work
of Kimemia and Gershwin (1983). A recent survey (Maimon and Gershwin, 1987) describes
this and several related papers.

Outline

Section 2 describes the manufacturing systems that we are considering. It establi-
shes terminology and discusses the basic concepts for the present approach: capacity
and frequency separation. Section 3 builds on the frequency separation to derive a
small set of results that form the foundation of the hierarchy. Control in the hierar-
chy is described in detail in Section 4. Sections 5 and 6 present the two building
blocks: the staircase strategy and the hedging point strategy. A simple example appears
in Section 7, and conclusions are drawn in Section 8.

2. PRODUCTION EVENTS AND_CAPACITY

In-this section, we discuss the discrete events that occur during the production
process. We define terminology to help describe these events. We categorize events in
two ways: the frequéhc§r with which they occur; and the degree of control that deci-
sion-makers can exert'Gver them. We define capacity, and show how capacity is affected

199

by production events.
2.1 Definitions

A resource is any part of the production system that is not consumed or transformed
during the production process. Machines -- both material transformation and inspection
machines, workers, pallets, and sometimes tools -- if we ignore wear or breakage -- can
be modeled as resources. Workpieces and processing chemicals cannot.

An activity is a pair of events associated with a resource. The first event corre-
sponds to the start of the activity, and the second is the end of the activity. Only
one activity can appear at a resource at any time., For example, the operation of dril-
ling the 3/8" hole in part type 12, serial number 947882927 that started at 10:03 this
morning and ended at 10:07 is an activity. Other examples include machine failures,
setups (i.e., changes of tooling, etc.), preventative maintenance, routine calibration,
inspection, and training sessions. We use the same term to refer to a set of such pairs
of events. For example, drilling 3/8" holes in type 12 parts is an activity, specific-
ally, an operation.

Let i be a resource and j an activity. Define aij(t) to be the state of resource i.
This is a binary variable which is 1 if resource i is occupied by activity j at time t,
and 0 otherwise. Since at most only one activity may be present at a resource at a
given time,

Y ay(t) < L for all i (n
J

Every activity has a frequency and a dwation. To define frequency, let NU(T) be the
total number of times that resource i is occupied by activity j in (0,T). Then define

u; = AN(T). &)

This is the frequency with which type j activities occur at resource i.

In the following, we do not indicate a resource (i) explicitly in the subscript of
u. This allows the flexibility of either considering the index j to include a specific
resource (in which case j might mean "operation 30 on a Type 12 part at Machine 5") or
any resource (in which case j might mean "the required operation on a Type 12 part at
the current machine”). When u has only the j subscript, (2) holds only when activi-
ty j actually takes place at resource i. If it does not take place at resource i, (2) is
meaningless, and if it takes place at more than one resource i, it must hold for each i.
(This implies a "conservation of flow" condition, since u; = Uy o= uy, if j goes to both
resource 1 and resource 2.)

The vector u is the activity rate vector. It satisfies u; 2 0. Let r;; be the aver-

age duration of activity j at resource i. Then r is the activity dwration matrix. It
satisfies 1y 2 0. (We can now say that (2) holds only when rj; > 0.) Durations may
be random or deterministic, but we assume that they are not under the control of the
decision-maker.

Observation: If the system is in steady state,
mj by = Eoy (3)

Proof:

Consider a sample history of the system. The total time that resource i is occupied by
activity j in (0,T) is

200

T

.[aij(t)dt. (4)
0
The average duration satisfies
T T
_[a(t)dt %J. o (t)dt
Tij = ?qij('r) = Duj . (5

If the system is in steady state, then the time average of a quantity is the same as its
expected value, so the numerator is Eaij and (3) is proved. (This can also be viewed
as an instance of Little's law.) The assumption that the system is in steady state is
an important one. In later sections, the dynamics of the system is divided into sub-
sets, each considered over different time scales. Each subset has a different time

period for steady state.

Since only one activity may occur at a resource at one time, the fraction of re-
source i's time that is spent on activity j is Tijy; This is called the occupation of

j
resource i by activity j.
Example: Type 1 parts arrive at Machine 1 at a rate of 1 per hour (u;). They undergo

operations that take 20 minutes (r;;). Therefore Machine 1 is occupied by making Type 1
parts for 1/3 of its time.

2.2 Capacity
From (1),

1 > EY, a(t) = h 7;;u; for all resources i (6)
j i

This is the fundamental capacity limitation: no resource can be occupied more than
100% of the time.

Example: In addition to the Type 1 parts, we wish to send Type 2 parts to Machine
1 for an operation that takes 25 minutes (7;,). There is a demand of one Type 2
part every 35 minutes (u,). This is not possible because it violates (6).

The set of all activity rate vectors u that satisfies (6) is the capacity set (L
It is important to observe that capacity is a set -- a polyhedron -- and not a sca-
lar. Here we have defined capacity as a constant set. In later sections, capacity is
described as a function of the state of the system. This means that capacity is a
time-varying, stochastic set.

2.3 Frequency Separation

Dynamic models always have two parts: a constant part and a time-varying part. In
all dynamic models, there is something that is treated as unchanging over time: some
parameters, and, most often, the structure of the model. For example, the model de-
scribed in Sections 2.1 and 2.2 is a conventional one in which there are static quanti-
ties (uj, ;). a static structure, and dynamic quantities (aij(t), Nij(t)).

Recently, the dichotomy between static and dynamic has been extended to systems
with multiple time scales, modeled as differential equations or Markov chains. At one
end of the scale, there are quantities that are treated as static. The other variables
are divided into groups according to the speed of their dynamics. Because of this
grouping, it is possible to simplify the computation of the behavior of these systems.
Approximate but accurate techniques have been developed to calculate the effects of the
slower and faster dynamics of adjcent groups on each group of variables.

The essential idea is: when treating any dynamic quantity, treat quantities that
vary much more slowly as static; and model quantities that vary much faster in a way

201

that ignores the details of their variations (such as replacing fast-moving quantities
by their averages; or by Brownian noises with appropriate parameters.) This is the
central assumption of the hierarchical decomposition presented here.

Assumption I: The activities can be grouped into sets J,, J,, ... such that for each
set J,, there is a characteristic frequency f, satisfying

fi <<y <0 << fy «< fi <« ... (7
The activity rates satisfy

jely = fi | « u; << firr (8)
Figure 2.1 represents two kinds of production that satisfy this assumption. The
horizontal axis represents frequency and the vertical axis represents occupation of some
critical resource. Because of Assumption 1, all the event frequencies occur at distinct

clusters.

The time period over which a component of the system reaches steady state depends
on the frequency classes of the activities that affect that component. It is on the
order of 1/f,_; if the lowest frequency activity is a member of J,.

A capacity set can be associated with each time scale k. Consequently, capacity
is a se of time-varying, stochastic sets.

2.4 Slow variation

In 2.1 and 2.2, u; is treated as constant, However, it is convenient to allow
u; to be slowly varying. That is, y; is not constant, but it changes slowly com-
pared to the changes in o;;, An important special case is where u; is piece-
wise constant, and its changes occur much less often than those of a;;. Equation
(3) is now
735 ult) = Ea;(t). 9)

This is established in the same manner as (3), but the bounds of the integral
(4) are t; and t, where t; is the time of the most recent change in u;, and t

is the current time. The quantity uj(t) satisfies

t
N;(1) = Iouj(s)ds for 7; > 0, or

t
Nij(t) - Nij(tl) = J. uj(s)ds =(t - tl)uj(tl). (10)
t

The assumption here is that many occupations of resource i by activity j occur in
the interval (t;, t): enough so that

t
Eo(t) = &J. a;(s)ds. (1)
Wy
25 Degree of control

Events may or may not be under the control of the decision-maker. Figures 2.2-2.4
represent a variety of activities with different degrees of control. Figure 2.2 shows
the two repair states of a machine: operational and down. In this “case, the times at
which the transitions occur are beyond the control of the production personnel.

Figure 2.3 represents the operation states of a flexible machine. It can work on a
family of four parts, and setup is not required. That is, after doing an operation on
one part, the time required to do an operation on another part depends only on the new
part, and not the identity of the part that preceded it. While the machine is in the

202

idle state, it may be used to do an operation on any of the parts. When to make the
transition, and what state to visit next, are entirely at the discretion of the manager.

Once that decision has been made, however, the manager loses control. The time required
to perform the operation may or may not be known, but it cannot be chosen, and the next
state must be the idle state.

Figure 2.4 displays the configuration states of a machine which can do operations
on three families of parts. There is a substantial setup time to switch the machine
from operations on one family to another. While the system is set up for any one fami-
ly, it can remain that way indefinitely. The manager can choose when to switch out of
the current family and which family to switch into next. However, the system then goes
to the appropriate setup state. (While it is there, tools are changed, calibration is
performed, test parts are made, etc.) It stays in that state for a length of time which
is not under the control of the manager. (Again, it may or may not be known, but it
cannot be chosen.) After that, the system goes to the new family state, and the series
of events repeats.

2.6 Effects of events

The goal of the factory is to produce in a way that satisfies demand at least cost.
The only events that directly further this goal are the production events, and only if
they are chosen correctly. The direct effects of all the other events work against this
goal.

When any activity occurs, it prevents all other activities from occurring at the
same resource. Thus a low frequency, high occupation activity is a major disruption to
the system. During such an activity, the resource it occupies is unavailable for a very
long time (as seen by the high frequency events). This may not simply shut down all
production; instead, it may temporarily restrict only some kinds of production. Such
disruptions greatly complicate the scheduling problem.

2.7 Purpose of the decomposition

It is possible to represent the scheduling problem as an integer programming prob-
lem, particularly if time is discretized. However, this almost always leads to a prob-
lem which cannot practically be solved even in the absence of random events. The goal
of the approach described below is to formulate the problem in a way that will provide
an approximate feedback solution for the stochastic scheduling problem.

The solution approach is based on a reformulation of the problem in which the large
set of binary variables that indicate the precise times when events occur is replaced by
a small set of real variables representing the rates that events occur. This is a good
approximation because of the large difference in frequencies of these events. Eventual-
ly, the binary variables are calculated, but by a much simplified procedure.

3. THE SPECTRUM AND THE HTERARCHY

In this section, we define the variables of the hierarchy and what calculations
take place at each of the levels. In the following sections, we propose problem formu-
lations for those calculations.

3.1 Definitions

The structure of the hierarchy is based on Assumption 1: that events tend to occur
on a discrete spectrum, Classes of events have frequencies that cluster near discrete
points on the spectrum. The control hierarchy is tied to the spectrum. Each level Kk in
the hierarchy corresponds to a discrete point on the spectrum and thus to a set of acti-
vities. This point is the characteristic frequency f, (and 1/f, is the characteristic
time scale) of those activities.

203

At each level of the hierarchy, events that correspond to higher levels (i.e.,
lower frequencies, and lower values of k) can be treated as discrete and constant or
slowly varying. Events that correspond to lower levels can described by continuous
(real) variables. These variables can be treated as though they are deterministic.

The approach is to define a set of rate or frequency variables for every activity.
These quantities represent the behavior of the system in an aggregated way. At each
level, we calculate optimal values for those aggregate variables. Optimal, here, means
that they must be close, on the average, to the corresponding values chosen at the high-
er levels. However, they must respond to events that occur at their level.

Define the level L(j) of activity j to be the value of k in Assumption |
associated with this activity. That is,

L(j) =k if jel, (12)

in (8). We choose the convention that less frequent activities are higher level
activities and have lower values of k; lower levels have higher values of k.

In the following we define Level k quantities. These are values of system states
as perceived by an observer who is not able to distinguish individual events -- that is,
changes in o -- that happen much more frequently than f,. The frequencies of high
frequency events, as perceived by this observer, depend on the current states of low
frequency activities, and expectations must similarly be conditioned on the current
states of low frequency activities.

whose level is k or higher. If L(j) < k,
ak(t) = ay(1). (13)

Let a-kj(t) be the level k state of resource i. This is defined only for activities j

k

Define o* as the vector whose components are o

Its dimensionality depends on k.

Let E, be the level k expectation operator. Tt is the conditional expectation, given
that all level m quantities (m<k) remain constant at their values at time t. That
is, we treat af}(t) as constant.

Let u;‘ be the level k rate of activity j. This is defined only if the level of acti-
vity j is lower than k, that is, L(j) > k. The level k rate of activity j is the fre-
quency that a level k observer would measure that activity j occurs while all level m
events (m<k) are held constant at their current values. This rate satisfies

E o j(t)
i

u¥(t) =
)

(14)
and
ul(t) 2 0. (15)

The conditioning event of E, is a subset of that of E,_;. This is because the set of
quantities held constant for E,_; is a subset of that for E,. Consequently,

E By = Epyo5 (16)
Taking the level k-1 expectation of (14):

E, o;(t)
k)
E, juf = Ek_l—-—rij .)

But this is equal to

E, 1050) o
——— according to (16). This implies that

204

Ek_lu}‘ = u}‘". (18)
That is, the level k-1 rate of an activity is the level k-1 expectation of the

level k rate of the activity. This is a very important observation, because it relates

quantities at different levels of the hierarchy.

If L(j) > k, level k of the hierarchy calculates u}‘. How that calculation is per-
formed depends on the degree of control of activity j. If activity j can be initiated

by the decision-maker rather than by nature, then u}‘ is chosen to satisfy (18).

All activities j appear in three different guises in the hierarchy. At their own
level (k=L(j)), they appear as pairs of discrete events (the start and the end of the
activity). This is, of course, exactly what they are. No approximate representation is
possible. At higher levels in the hierarchy (k<L(j)), however, their details are ig-
nored, and they are represerited by rates (u}‘), At lower levels (k>L(j)), they are treai-
ed as constant at their current values.

Controllable activities are chosen from top down. That is, a rate ujl is chosen ini-

tially. Then (k>1) is chosen to satisfy (18) and other conditions (according to the
hedging point strategy of Section 6) for increasing values of k until k = L(j). At that
point, @;; is chosen to satisfy (14) according to the staircase strategy described in
Section 5.

On the other hand, (14) and (18) have different interpretations when activity
j is not controllable (for example, machine failures). In that case, the expectations
are statistical operations, in which data are collected and sample means are found. The

rate u}‘(j)-l is calculated from (14) by observing the values of @) If L(j)<k-1, (18)

is repeated for decreasing values of k.

3.2 Capacity in the hierarchy

For each k, the sum in (1) can be broken into two parts:

Y o<1 -) ok (19)
L(j)>k L(j)<k
in which (13) is applied to the high-level sum on the right side. 1f we take a level
k expectation of (19), the right side is not affected. From (14),

Z riju}‘ <1 - Z ak (20)
L{j)>k L{j)<k
This equation is the basic statement of capacity in the hierarchy. It limits the
rates at which low level events can occur as a function of the current states of high
level events. If any high level activity is currently at resource i, that resource is
not available for any low level events. In that case, the right side of (20) is 0 and

all u}‘ that have a positive coefficient must be zero. If none of the high level
activities in (20) are currently taking place, this inequality becomes

PRI ¥3))

Capacity is thus a function of hierarchy level and, since it depends on the state
of the system, a stochastic function of time. We define the level k capacity set
as

K . vk Y k< - ok Vi uk 2 0 v j L3k
o) = L L(;'Z):Sk i j j . @)

This set is the constraint on the hedging point strategy. It limits the choice of

205

k

rates u® as a function of the current state of the system. Note that the condition

uk € k) (23)

is a necessary but not sufficient condition. That is, d‘(a“) was constructed so that every

sequence of events must satisfy (23). However, we have not demonstrated that for

every u¥ that satisfies (23) there corresponds a feasible sequence of events. We

assume sufficiency in the following, however.

4. CONTROL IN THE HIERARCHY

The goal of the hierarchical scheduler is to select a time to initiate each con-
trollable event. This is performed by solving one or two problems at each level k. We
emphasize control -- i.e., scheduling and planning -- here. Data-gathering and proces-
sing is also an important function of the hierarchy, but is not discussed in this paper.
The hierarchy is illustrated in Figure 4.1.

Problem I: (The hedging point strategy)

Find u}‘ (for all j, L(j)>k) satisfying (18) and (20) (and possibly other conditions).
Problem 2: (The staircase strategy)

Find of (for all j, L(j)=k) satisfying

E, jofj = rul? (24)

(and possibly other conditions).

At the top level of the hierarchy (k=l), required rates of some of the controllable
activities are specified, for example, production rates and maintenance frequencies.
Other rates may not be specified, such as setup frequencies. We assume that rates of
uncontrollable events are known. The frequency associated with the top level is 0.
Consequently, there is no Problem 2 at that level, and Problem | reduces to a static
optimization. The function of Problem 1 here is to choose all the rates that were not

specified. The vector u! is the target rate vector for level 2.

If there are any controllable events at level k > 1, we solve Problem 2. (An exam-
ple is the change in setup of a machine.) Controllable events are thereby initiated in
such a way that their rates of occurrence are close to the target rates that are deter-
mined at level k-1,

Then we solve Problem | to determine the level k rates of occurrence u}‘ of all acti-
vities j whose frequencies are much higher than f,. These rates are refinements of
the target rates determined at level k-I: u}‘". They differ from the higher level rates
in that they are affected by the level k discrete events. These events, if they are
controllable, were chosen by Problem 2 at this level. However, even if the level k

events are not controllable, the level k rates differ from the higher level rates.
These rates are then the targets for level k+l.

For example, if at level k we choose setup times, the production rates must be
calculated so that they are appropriate for the current setup. If we are making Type |
parts at the rate of 4 per day, but the necessary machine is only set up for that part
on Tuesdays, then we must work at a rate of 20 per day on Tuesday and O Type | parts per
day during the rest of the week.

Similarly, the activities associated with level k may not be controllable, such as
machine failures. It is still necessary to refine the production rates. If the overall
requirements for Type 1 parts are 20 per day, and the machine is down 10% of the time,

206

and failures occur several times per day, then the appropriate strategy is to operate

the machine at a rate of 22.2 parts per day while it is up. Note that this only makes
sense if failures are much more frequent than setups and much less frequent than opera-
tions. If not, related but different calculations must be performed in a different

order. That is, a different hierarchy is appropriate.

An important feature of this hierarchy is that rates u}‘ are always chosen to be

within the current capacity of the system. When a level m event occurs (m<k), the capa-
city set (22) changes. Problem 2 is then recalculated so that the new rates remain
feasible. As mentioned earlier, this is necessary for feasibility. In all the simu-

lation experiments that we have performed, it appeared to be sufficient as well.

5. THE STAIRCASE STRATEGY

The staircase strategy was introduced by Gershwin, Akella, and Choong (1985) and
Akella, Choong, and Gershwin (1984), although stated somewhat differently from here. It
was used to load parts in a simulation of a flexible manufacturing system.

Instead of treating the statement of Problem 2 in Section 4 directly, we choose

starting times for events ai‘} to satisfy (2), or rather

¢
N ~ _[u}(s)ds (29)
0

where N:‘j(t) is the number of times activity j occurs at resource i during [0,t]. This
expression is only approximate because the left side is an integer and the right side is
a real number. The objctive is to develop an algorithm which keeps the error in (25)
less than 1. This is because, approximately,

t
E,.0f(1) = tth.Iqt o(s)ds = t_Ltl[NE(D-Ni(t))i (26)
1

in steady state. If the times to start activities are chosen to satisfy (25), then
E, of(t) = muk(t) (27)

The difference between (25) and (24) is that a simple algorithm can be devised
to implement (25). It is called the staircase strategy because of the graph of N}‘j(T).

Staircase strategy: For all activities j such that L(j) = k, perform activity j at re-
source i as early as possible after the eligibility rule is satisfied.

T
Eligibility rule: N:‘j(T) < I u}‘dt (28)
)

If there were only one activity in the system, it would be initiated as soon as (28)
were satisfied with equality. Immediately afterward, the left side of (25) would
exceed the right side by exactly 1. The difference would then start to diminish until,
again, (28) is satisfied with equality. Thus, the error in (25) would never grow
larger than 1. Figure 5.1 represents this strategy, and illustrates the term "stair-
case." The solid line represents the right side of (28), and the dashed line repre-
sents the left side. Note that the change in slope of the solid line poses no difficul-
ties for this strategy.

Example: If activity j is an operation on Type A parts at Machine 6, attempt to
load a Type A part into the machine whenever (28) is satisfied.

In reality, there are two complications, First, because there are other activi-
ties, activity j may not be the only one to satisfy (28) at any instant. Therefore,
there must be a mechanism or an additional eligibility rule for selecting one. Conse-
quently, we can no longer assert that (25) is satisfied with an error no larger than I.

207

Second, there are relationships among activities other than non-simultaneity. For
example, some manufacturing operations may not be performed unless the system is set up
in a certain way, That is, in order to perform an operation on Type | parts, the system
must be set up for them. The most recent setup activity must have been one that is
appropriate for Type 1 parts. This leads to additional eligibility rules.

Example: 1f activity j is an operation on Type A parts at Machine 6, attempt to load a
Type A part into the machine whenever (28) is satisfied and Machine 6 is set up for
Type A and the part that has been waiting longest for Machine 6 that can be produced in
its current configuration is Type A.

Methods for implementing this strategy can be developed based on the methods of
Ramadge and Wonham (1985), Maimon and Tadmor (1986).

6. THE HEDGING POINT STRATEGY

The hedging point strategy was introduced by Kimemia and Gershwin (1983) and re-
fined by Gershwin et al. (1985) for a restricted version of the scheduling problem dis-
cussed here. In that problem, there were only two activities: operations and failures.
The hedging point strategy was used to calculate the production rates of parts in re-
sponse to repairs and failures of machines.

In the present context, the purpose of the problem is to find u}‘ (for all j such

that L(j) > k) to satisfy (18) and (23) (and possibly other conditions). That is,

we find the optimum frequencies of controllable events whose frequencies are much higher
than f,. These frequencies are chosen in response to changes in low frequency activi-
ties: those whose values change at a frequency roughly f, or slower.

6.1 Surplus

We introduce x}‘, the activity j swrplus., This quantity represents the excess of oc-
currences of activity j as determined by u¥ over the number of occurrences required by u‘j‘".

i
The surplus is illustrated in Figure 6.1. It satisfies

t t
x(t) = _[u}(s)ds - Iu}“l(s)ds (29)
0 0
or
dxk
4 = ub -l (30)

To keep u}‘ near u}“l, we must keep x}‘ near 0. We therefore define a strictly convex

function g such that g(0) = 0; g(x) 2 0 V x; and lHn g(x) = oo and we seek u* to
C . |1} | —00]
minimize
T

EHI g(xX(t))dt (31
0

in which T is long enough so that the dynamic programming problem has a time-invariant
solution u¥(x*,0¥). Thus T is much greater than 1/f,. If (31) is small, then x¥(t) must be
k-1

small for all t. Equation (29) then implies that u}‘(t) is near u;

62 Capacity constraints

The activity rate vector uk(t) must satisfy the stochastic capacity constraints
uk(t) e aak(t)) (32)

where ﬂ"(a“(t)) is given by (22). This means that the activity rates of all

208

high frequency activities are restricted in a way that depends on the current states of
activities whose frequencies are roughly f, or less. Those whose frequencies are much
less than f, can be treated as constant at their present values, but the variations of
those that change at a frequency comparable to f, must be considered.

Because Kimemia and Gershwin were dealing with machine failures and repairs, they
could treat a“(t) as the state of a Markov process. Here, however, some components

of o¥(t) are chosen by the scheduler according to the staircase strategy of Section
5. For the purpose of determining the frequencies of high-frequency activities, we

treat o*(t) as though it is generated by some exogenous stochastic process with tran-
sition rate matrix A%

ALt = prob {a¥(t+ét)=8 | ak(1)=a), e#f; AL, = ';”\Zﬂ' (33

By treating all level k events this way, we are ignoring information that could be
used, in principal, to improve the performance function (31). Since the time for the
next event is known and not random, the optimal trajectory should be different. This
requires further study.

6.3 Other constraints

Some activities are non-controllable, such as machine failures. Their frequencies
cannot be chosen; they are given quantities. Thus, if A& is the set of uncontrollable
activities,

uk specified, j € . (34)

J

Other activities require special constraints because of their special nature. For
example, when a resource may have more than one configuration, and setups require
significant time, setup frequencies are constrained to satisfy a set of equality
constraints. Assume resource i has configurations 1, ..., C(i). Denote p{(iab) as the
activity of changing the configuration of resource i from a to b. Then ui“ab is the level
k frequency of changing the configuration of resource i from a to b. These frequencies
must satisfy

; u}(ab = ; u}(ba' (35)

since the frequency of changing into setup b must be the same as the frequency of
switching out of setup b. Related formulations appear in Gershwin (1986) and Choong
(1987).

We summarize all such miscellaneous constraints as
m(uX(1)) =0 (36)

6.4 Problem statement

Here we present a compact statement of the problem. It is a dynamic programming
problem whose states are x¥(t) and a*(t) and whose control is uk(t). (The rates u*'! are
treated as exogenous constants.)

Find the feedback control law u*(x¥(t),a¥(t),t) to minimize (31) subject to (30),
(32), and (36) in which o is the state of an exogenous Markov process, with para-
meters A*. The initial conditions at t=0 are x“(O), ak(0). T is very large.

209

6.5 Solution

Kimemia and Gershwin (1983) derived a Bellman's equation for this problem:
— mi k Ak _ k-1 al k
0 = min {g(x) + ax(u uk-1) 4 5t Zﬂ:z\aﬁJ[x ,ﬂ.t]} (37)

in which J[x¥(t),a%(t),t] is the cost-to-go function, the cost incurred during (t,T) if the
initial conditions are x¥(t) and oX(t) at time t. The minimization in (37) is performed at
every t subject to (32) and (36). If such a J function could be found to satisfy

this nonlinear partial differential equation, the optimal control u* could be

determined from the indicated minimization.

If J were known, determining u¥ would reduce to solving
. al k
min $-u
3 (38)
subject to (32) and (36).

If m(u*) is a linear function, this is a linear programming problem.

Akella and Kumar (1986), Bielecki and Kumar (1987), and Sharifnia (1987) have ob-
tained analytic solutions for versions of this problem in which x¥ and u¥ are
scalars. In no other cases are exact solutions to this problem known. Numerical solu-
tions are equally unavailable because of the "curse of dimensionality." To overcome
this difficulty, Akella et al. (1984) show that a quadratic approximation of J can
produce excellent performance.

Kimemia and Gershwin ran several simulations to test a simple hierarchical policy:

solve (38) at every time instant to determine uk, and then load parts (in a manner
somewhat more complex and less effective than the staircase strategy of Section 5) so
that the rate of loading parts was close to uk. This worked well until the solution
of (38) changed abruptly. (This is an important possibility since (38) is a

linear program.) Very often, it changed abruptly again at the next time instant, and
this led to reduced performance.

Gershwin et al. (1985) avoided this chattering by observing a behavior similar to
that of a closely related problem of Rishel (1975). The continuous part of the state,
x¥, is restricted to reduced dimensional surfaces whenever u¥ would otherwise chatter. In
the present problem, chattering is avoided by adding linear equality constraints to
(38) whenever x¥ reaches certain planes.

This step has the additional benefit of reducing computational effort. 1t is no
longer necessary to solve (38) at every time instant. Instead, a series of computa-
tions is performed at every time t_ when there is a change in ok, At those instants
(38) is solved, and then solved repeatedly with additional constraints, as described
above. The outcome of these calculations is a piecewise constant function of t, u}‘(t;a"(t:)),

defined for t>t.. This function is the set of target rates for level k+l. When ok
changes, the function is recalculated.

There are two kinds of states ok feasible and infeasible. Feasible states are

those for which uk"1 ¢ ¥aX(t)). All other states are infeasible. If a* is feasible and con-
stant for a long enough period, the strategy drives x¥ to the value that minimizes J(x*,o¥t).

In steady state, this is a constant which we call the hedging point. We have assumed
that T is large enough so that the system can be assumed to be in steady state.

The hedging point represents a safety level of the surplus. Infeasible states are

certain to occur eventually. While o is infeasible, x* must decrease, and possibly
become negative. The hedging point represents a compromise between a cost for positive

xk and a cost for negative xX. When the activities considered are production operations

210

on parts, for example, the tradeoff is between production that is ahead of demand (and
therefore can lead to inventory) and production that is behind demand (and therefore
leads to starved downstream resources or unhappy customers). The hedging point need not
be positive. Bielecki and Kumar show that it can sometimes be O.

7. SIMPLE EXAMPLE

In this section, we illustrate the ideas developed in this paper with a two-part,
two-machine system. There are only two phenomena in this system: failures and opera-
tions. The former are much less frequent, but of much greater duration, than the lat-
ter. This is an example of the methods of Kimemia and Gershwin (1983) and Gershwin,
Akella, and Choong (1985). An extension of this system, in which setup plays a role, is
described in Gershwin (1987).

7.1 Description of System .

Figure 7.1 illustrates the two-machine system. In this system, Machine | is per-
fectly flexible. That is, it can do operations on either part type, without time lost
for changeover. It is unreliable, however: it fails at random times and stays down for
random lengths of time. Machine 2 is perfectly reliable, but totally inflexible. It
can only make Type | parts. Thus Machine 1 is shared among the two part types and Ma-
chine 2 is devoted entirely to Type 1.

The data that are specified are the demand rates for the parts, the failure (p) and
repair (r) rates, and the durations of the operations (7, 7y, and 7y, where 7;; is the
duration of an operation on a Type j part at Machine i). To simplify the problem, we
assume that the demand rate for Type 1 parts is broken down by the machine at which the

operation is performed, so that the specified demand rates are d;;, d,=d,, and d,,.
For this problem, Assumption | becomes:
Tits Tize T2 1/dyy, 1/d,, 1/d,; are the same order of magnitude.

These quantities are all smaller than 1/r, I/p, which are the same order of
magnitude.

7.2 Level 1: Hedging point strategy

The states of the system are a, the repair state of Machine 1, an exogenous random

variable; and x,,, X5, and x,,, the surpluses. The control variables are u.., the level 1
11 12 21 ij
flow rate of Type j parts to Machine 1 (ij = 11, 12, 21).
Here, (30) becomes
= ;- d;; for ij = 11, 12, and 21. (39)
The linear programming problem of Section 6.5, which determines U becomes
n‘ll:jn 3 ¢ (x,0) uy (40)
subjct to:
Ty + Tpuyy £ @ (41)
Tailz; S | (42)
u; 2 0 (43)

where for ij = 11, 12, and 21 and for mn = 11, 12, and 21,

cij(X,a) = nZI;IAijmn(a)xmn + b(a). (44)

211

Here, c(x,a) is the approximation of 8J/dx. Satisfactory results have been obtained
with diagonal A matrices, so we choose A = 0 if (mn) # (ij). The hedging point is
then

ijmn

The outcome of this calculation is a piecewise constant function of time uij(t), as

described by Gershwin et al. (1985). This function is used in the staircase strategy,
below, until the repair state @ changes. When that happens, a new function is
calculated at this level.

73 Level 2: Staircase strategy

Loading a Type j part into‘Machine | is eligible if:

I. The number of Type j parts made on Machine | is less than

t

I uy;(s)ds, and (45)
0

2. Machine | is now idle.
Loading a Type | part into Machine 2 is eligible if:

I. The number of Type | parts made on Machine 2 is less than

t

-[u,(s)ds, and (46)
0

2. Machine 2 is now idle.

74 Simulation results

Figure 7.2 demonstrates how the cumulative output follows the cumulative requirements
when the system is run with this strategy.

8. CONCLUSIONS

A hierarchical scheduling and planning strategy has been described for manufactur-
ing system. It is based on two majr propositions:

1. Capacity. No resource can function more than 100% of the time.

2. Frequency separation. We assume that the spectrum of events is discrete. The fre-
quencies of important events are grouped into distinct clusters.

This work is in its early stages. Among the important outstanding research prob-
lems are proving the conjecture that hierarchical decomposition is asymptotically opti-
mal as times scales separate; determining how to deal with systems in which time scales
are not widely separated; formulating and solving the hedging point problem with non-
Markov events (such as those generated by a staircase strategy); developing sufficiency
conditions for capacity. To improve on the staircase policy, new formulations of combi-
natorial optimization problems are required in which the objctive is to load material
as close as possible to a given rate.

We have not discussed at all the collection and processing of data in the hierar-

212

chy. This will require the solution of statistics problems. Some extensions include
the reduction of the problem size at higher levels. This requires aggregation of acti-
vities (so that one considers, for example, large classes of part types, rather than
individual types) and of resources (so that the smallest unit can be a cell or workshop
or even factory, rather than a machine).

The last issue is related to the long time that parts spend in some kinds of manu-
facturing, particularly semiconductor fabrication. Preliminary work in extending the
Kimemia-Gershwin formulation to systems with both operation and queuing delay and is
described in Lou et al. (1987) and Van Ryzin (1987).

ACKNOWLEDGMENTS

This work was supported by the Defense Advanced Research Projects Agency and moni-
tored by ONR under contract N00014-85-K-0213.

REFERENCES

P. Afentakis, B. Gavish, U. Karmarkar (1984), "Computationally Efficient Optimal Solu-
tions to the Lot-Sizing Problem in Multi-stage Assembly Systems,” Managenent Science,
Vol. 30, No. 2, February 1984, pp. 222-239,

R. Akella, Y. F. Choong, and S. B. Gershwin (1984), "Performance of Hierarchical Produc-
tion Scheduling Policy," TEEE Transactions on Components, Hybrids, and Manufacturing
Technology, Vol. CHMT-7, No. 3, September, 1984,

R. Akella and Kumar (1986), "Optimal Control of Production Rate in a Failure Prone Manu-
facturing System, [EEE Transactions on Auwomatic Control, Vol. AC-31, No. 2, pp.
116-126, February, 1986.

T. Bielecki, and P. R. Kumar (1986), "Optimality of Zero-Inventory Policies for Unreli-
able Manufacturing Systems", Coordinated Science Laboratory, University of Illinois
Working Paper.

G. R. Bitran, E. A, Haas, and A. C. Hax (1981), "Hierarchical Production Planning A
Single-Stage System,” Operations Research, Vol. 29, No. 4, July-August, 1981, pp. 717-
743.

Y. F. Choong (1987), MIT Ph.D. Thesis in preparation.

F. Delebecque, J. P. Quadrat, and P. V. Kokotovic (1984), "A Unified View of Aggregation
and Coherency in Networks and Markov Chains," International Journal of Control,
Vol, 40, No. 5, November, 1984,

M. A. H. Dempster, M. L. Fisher, L. Jansen, B. J. Lageweg, J. K. Lenstra, and A, H. G.
and Rinnooy Kan, (1981), "Analytical Evaluation of Hierarchical Planning Systems," Oper-
aions Research, Vol. 29, No. 4, July-August, 1981, pp. 707-716.

S. B. Gershwin (1986), "Stochastic Scheduling and Setups in a Flexible Manufacturing
System," in Proceedings of the Second ORSA/TIMS Conference on Flexible Manufacturing
Systems, Ann Arbor, Michigan, August, 1986, pp. 431-442,

S. B. Gershwin (1987), "A Hierarchical Framework for Manufacturing System Scheduling,"
Proceedings of the 26th IEEE Conference on Decision and Control, Los Angeles, Califor-
nia, December, 1987

S. B. Gershwin, R. Akella, and Y. F. Choong (1985), "Short-Term Production Scheduling of
an Automated Manufacturing Facility," /BM Journal of Research and Development,
Vol. 29, No. 4, pp 392-400, July, 1985.

213

S. C. Graves (1981), "A Review of Production Scheduling,” Operations Research,
Vol. 29, No. 4, July-August, 1981, pp. 646-675.

S. C. Graves (1982), "Using Lagrangean Relaxation Techniques to Solve Hierarchical Pro-
duction Planning Problems," Managenent Science, Vol. 28, No. 3, March 1982, pp. 260-275.

A. C. Hax and H. C. Meal (1975), "Hierarchical Integration of Production Planning and
Scheduling," North Holland/TIMS, Studies in Management Sciences, Vol. 1, Logistics.

J. Kimemia and S. B. Gershwin (1983), "An Algorithm for the Computer Control of a Flexi-
ble Manufacturing System," //E Transactions Vol. 15, No. 4, pp 353-362, December,
1983.

B. J. Lageweg, J. K. Lenstra, and A. H. G. and Rinnooy Kan (1977), "Job-Shop Scheduling
by Implicit Enumeration,” Management Science, Vol. 24, No. 4, December 1977, pp. 441-
450.

B. J. Lageweg, J. K. Lenstra, and A. H. G. and Rinnooy Kan (19787), "A General Bounding
Scheme for the Permutation Flow-Shop Problem," Operations Research, Vol. 26, No.
1, January-February 1978, pp. 53-67.

X.-C. Lou, J. G. Van Ryzin and S. B. Gershwin (1987), "Scheduling Job Shops with De-
lays," in Proceedings of the 1987 IEEE International Conference on Robotics and Auto-
mation, Raleigh, North Carolina, March-April 1987.

O. Z. Maimon and S. B. Gershwin (1987), "Dynamic Scheduling and Routing For Flexible
Manufacturing Systems that have Unreliable Machines,” in Proceedings of the 1987 IEEE
I'nternational Conference on Robotics and Automation, Raleigh, North Carolina,

March-April 1987. See revised version: MIT LIDS Report No. LIDS-P-1610, revised July,
1987.

O. Maimon and G. Tadmor (1986), "Efficient Low-Level Control of Flexible Manufacturing
Systems,” MIT LIDS Report No. LIDS-P-1571.

E. F. P. Newhouse (1975a), "Multi-Item Lot Size Scheduling by Heuristic, Part I: With
Fixed Resources," Managenent Science, Vol. 21, No. 10, June 1975, pp. 1186-1193.

E. F. P. Newhouse (1975b), "Multi-Item Lot Size Scheduling by Heuristic, Part I: With
Yariable Resources," Managenent Science, Vol. 21, No. 10, June 1975, pp. 1194-
1203.

C. H. Papadimitriou and P. C. Kannelakis (1980), "Flowshop Scheduling with Limited Tem-
porary Storage," Journal of the ACM, Vol. 27, No. 3, July, 1980.

P. J. Ramadge and W. M. Wonham (1985), "Supervisory Control of a Class of Discrete Event
Processes,” Systems Control Group Report No. 8515, University of Toronto.

Rishel, R. "Dynamic Programming and Minimum Principles for Systems with Jump Markov Dis-
turbances”, SIAM Journal on Control, Vol.13, No.2 (February 1975).

Y. R. Saksena, J. O'Reilly, and P. V. Kokotovic (1984), "Singular Perturbations and
Time-Scale Methods in Control Theory: Survey 1976-1983", Awonutica, Vol. 20, No.
3, May, 1984.

A. Sharifnia (1987), "Optimal Production Control of a Manufacturing System with Machine
Failures," Department of Manufacturing Engineering, Boston University.

H. M. Wagner and T. M. Whitin (1958), "Dynamic Version of the Economic Lot Size Model,"

214

Management Science, Yol. 5, No. 1, October, 1958, pp. 89-96.

J. G. Van Ryzin (1987), "Control of Manufacturing Systems with Delay," MIT EECS Master
of Science Thesis, MIT LIDS Report LIDS-TH-1676.

CUMULATIVE
PRODUCTION /;

AND ¥
DEMAND {

/: : WORKING
DOWN

SET UP NOT SET UP SET uP

1
Figure 1.1 Production and Other Events

REPAIR STATE OF MACHINE i -
NOT CONTROLLABLE

Figure 2.2 Repair States

TWO KINDS OF PRODUCTION

Resource
QOccupotion
operations ~*
ee2 oreventative
1yoel toilores , | setwps 'Oret (mointenonce
- 0Chine
! N . . ‘l:) ./. t- . | feplocement
w0* 10? 10' 1 o' w0? 0?
Event trequency
Events /doy
Resource
Occupotion
/opualiom
selups foilures roimng
Iy] 5
1 1 1 1 :l_{ 1 1 " 1
(R 10 t o' w? ?

Event trequency
Events/day

Figure 2.1 Two Spectra

Figure 2.3 Operation States

Ous
%@’

Figure 2.4 Configuration States

CUMULATIVE
NUMBER OF
ol TIMES THAT
9 aj; = 7
81 0
T Nii(') ly
]
51 r \
; ! k-t
at -
{ ‘[uj (s)ds
3+ re,
;
2F r-
)
1b-

215

ARCHITECTURE OF THE HIERARCHY

[2] [~]

>
'

discrete NN
doto
Eq Statistics Problems
. 3- Calculate u*
: fram u**',
conlinuous
dota 4- Calculate o*
from a **' .
Figure 4.1 Hierarchy
CUMULATIVE
NUMBER OF EVENTS
1
f uHislds .
o L,
Kt
Kk 7 f k" Y(s)ds
| d
Ir_‘
-

Control Problems

{- Colcuiate *
from u*"' ond at.

2- Colculate o* from

Figure 5.1 Staircase Strategy

Figure 6.1 Surplus

216

Flexible

/{Unreliohle

MACHINE @
| VAMPIRE L
4 ! N

\ /

\ MACHINE |/
2
\{Inflenible

Reliabte

Figure 7.1 Simple System

CUMULATIVE
PRODUCTION

L sy A 1 31§
f e e LEVEL2
i7"/ e LEVEL3

}/

/,'.

/i

7

7"
/

0 24 a8 72 96 TIME

Figure 7.2 Behavior of Strategy

A Selected and Annotated Bibliography

on Perturbafion Analysis
by
The Perturbation Analysis Group
Harvard University
(Y. C. Ho, Editor)

Since its accidental beginning in 1977 as a by product of research on the
FIAT 131 Engine Production Line Monitoring System (see reference 1
below), Perturbation Analysis (PA) has grown into a full blown research
area. A total of ten present and past faculties and Ph.D. students of
Harvard University have worked on the subject matter producing up to now
40 papers. The participants are X. Cao, C. Cassandras, J. Dille, A.

Eyler, W.B. Gong, P. Glasserman, Y. C. Ho, S. Li, R. Suri, and M.
Zazanis. They can be thought of as the joint authors for this annotated
bibliography which is assembled to facilitate readers who are interested

in this subject matter.

The bibliography is arranged in more or less historical order. We have not
included here related works by other authors. However, pertinent
references to these other works can be found in [reference 28] below.

1. Ho, Y.C., A. Eyler, and T.T.Chien (1979) " A Gradient Technique for
General Buffer Storage Design in a Serial Production Line", Int! J. on
Production Research , 17, 6, pp. 557-580, 1979

2. Ho, Y.C. (1979), "Parameter Sensitivity of a Statistical Experiment",
IEEE Trans. on Auto. Control , AC-24, 6, p. 982,

3. Ho, Y.C., A. Eyler, and T.T.Chien (1983) "A New Approach to Determine
Parameter Sensitivities on Transfer Lines", Management Science , 29,6, pp.
700-714, 1983

These three papers started the study of Perturbalion Analysis of discrete event
dynamic systems. Arguments used in these papers are somewhat naive by current standards.
They are included here for purposes of illustrating the development of the idea.

4. Ho, Y.C., and C.G. Cassandras (1983), "A New Approach to the Analysis
of Discrete Event Dynamic Systems", Automatica, 19, 2, pp. 149-167.

218

5. Ho, Y.C., and X. R. Cao (1983), "Perturbation Analysis and Optimization
of Queueing Networks", Journal of Optimization Theory and Applications,
40, 4, pp. 559-582.

These papers represent the first work of perturbation analysis on general queueing
networks. Much research was stimulated by them.

6. Ho, Y.C., X. R. Cao, and C.G. Cassandras (1983), "Infinitesimal and Finite
Perturbation Analysis for Queueing Networks", Automatica , 19, 4, pp.
439-445.

This is the first paper on the finite perturbation analysis rules and experimental
results. The importance of event order change was recognized then.

7. Cao, X. R.,and Y. C. Ho, (1984), "Estimating Sojourn Time Sensitivity in
Queueing Networks Using Perturbation Analysis”, Technical Report,

Division of Applied Science, Harvard University; also Journal of

Optimization Theory and Applications , Vol. 53, 3, 353-375, 1987.

The paper is the first work which discovers the discontinuity of the sample
performance function and proposes the interchangibility problems for discrete event
systems. Perturbation analysis algorithms are developed for sojourn time sensitivity
estimation. Experimental results are presented. An earlier version of this paper entitled
"Perturbation Analysis of Sojourn Times in Queueing Networks" was submitted to and
reviewed by Operations Research in 1984. Eventually, a more rigorous version appeared as
[ref.26)

8. Cao, X.R. (1985), "Convergence of Parameter Sensitivity Estimates in
a Stochastic Experiment”, IEEE Trans. on Automatic Control , Vol. AC-30, 9,
pp. 834-843.

The paper is the first work which formalizes mathematically the problem of
interchangibility of the expectation and the differentiation for discrete event systems.
Conditions are found under which this interchangibility holds. It is proved that under these
conditions the sample derivative is the best estimate of the derivative of the expected value
among three kinds of estimates discussed in the paper.

9. Cao, X.R. (1987), "First-Order Perturbation Analysis of a Single
Multi-Class Finite Source Queue", Performance Evaluation. Vol.7, 31-41,
1987

The contribution of this paper is twofold: First, it gives an example which shows that
the interchangibility does not hold for the throughput of muiticlass systems. Second, it
provides an algorithm which yields the exact estimate for the throughput sensitivity of a
multiclass system using first order perturbation analysis.

10. Cassandras, C.G., and Y.C. Ho (1985), "An Event Domain Formalism for
Sample Path Perturbation Analysis of Discrete Event Dynamic Systems”,
IEEE Trans. on Automatic Control, Vol. AC-30, 12, pp. 1217-1221.

Consistent formalism is provided for the earlier results on Infinitesimal PA.

219

11. Suri,R. and M. A. Zazanis, (1985) "Perturbation Analysis Gives Strongly
Consistent Sensitivity Estimates for the M/G/1 Queue", to appear in
Management Science

This paper is among the earliest studies of consistency of IPA. It considers, for an
M/G/1 queueing system, the sensitivity of mean system time of a customer to a parameter
of the arrival or service distribution. It shows analytically that (i) the steady state value of
the perturbation analysis estimate of this sensitivity is unbiased, and (ii) a perturbation
analysis algorithm implemented on a single sample path of the system gives asymptotically
unbiased and strongly consistent estimates of this sensitivity.

12. Ho, Y.C. and Cao, X.R. (1985), "Performance Sensitivity to Routing
Changes in Queueing Networks and Flexible Manufacturing Systems Using
Perturbation Analysis", IEEE J. on Robotics and Automation , Vol. 1, pp.
165-172.

This paper, among other things, shows that despite claim 1o the contrary, regular IPA
rules can be applied to yield correct estimates of performance sensitivity 1o routing
probabilities.

13. Cao, X. R., (1985), "On Sample Performance Functions of Jackson
Queueing Networks”, to appear in Operations Research .

The paper proposes the concepts of Sample Performance Functions and Sample
Derivatives and proves that the interchangibility holds for the average time required to
service one customer in any finite period as a function of the mean service time in a Jackson
queueing network; and the perturbation analysis estimate of the sensitivity of throughput is
a strongly consistent estimate.

14. Cassandras, C. G. (1985), "Error Properties of Perturbation Analysis
for Queueing Systems", to appear in Operations Research .

IPA is placed in the context of a family of PA estimation procedures, showing the
tradeoff between increased accuracy and state memory costs. The GI/G/1 model is analyzed
to characterize the error properties of the simplest PA procedures which, under certain
conditions, provide unbiased performance sensitivities. Extensions to tandem queueing
networks and blocking effects are included.

15. Cao, X. R. (1987), "The Convergence Property of Sample Derivatives in
Closed Jackson Queueing Networks", submitted to Journal of Applied
Probability (The result was also presented in a technical report of

Harvard University, 1986).

The paper proves that the sample elasticity of throughput with respect to the mean
service time obtained by perturbation analysis converges in mean to that of the steady state
mean throughput as the number of customers served goes 1o infinity.

16. Cao, X. R. {(1987), "Realization Probability in Closed Jackson Queueing
Networks and Its Application”, to appear in Advances in Applied
Probability . Sept. 1987

220

This paper introduces the concept of realization probability for closed Jackson
networks. This new concept provides an analytical solution to the sample elasticity of the
system throughput and some other sensitivities. Using realization probability and the
ergodicity of the system, it is proved that the sample elasticity of throughput with respect
to the mean service time obtained by perturbation analysis also converges with probability
or;e to that of the steady state mean throughput as the number of customers serves goes to
infinity.

17. Ho, Y.C. and Yang, P.Q. (1986) "Equivalent Networks, Load Dependent
Servers, and Perturbation Analysis - An Experimental Study” Proceedings

of the Conference on Teletraffic Analysis and Computer Performance
Evaluation , O.J. Boxma, J.W.Cohen, H.C. Tijms (Eds), North Holland 1986.

This paper derives the PA algorithm for load dependent queueing networks and shows
that the idea of PA can be applied to aggregated systems.

18. Cassandras, C. G. (1987), "On-Line Optimization for a Flow Control
Strategy", to appear in /EEE Trans. on Automatic Control.

Itis shown that a direct extension of PA, tracking queue lengths in addition to event
times, can be used to eslimate performance sensilivities in a simple state-dependent
routing environment. This is done at the expense of state memory along the observed sample
path. When a state memory constraint is imposed, the estimates become biased, but may
stili be sufficiently accurate.

19. Zazanis, M. A. and R. Suri (1985), "Comparison of Perturbation Analysis
with Canventional Sensitivity Estimate for Stochastic Systems”,
submitted to Operations Research.

This paper examines the Mean Squared Error (MSE) of PA estimates and compares it to
that of estimates obtained by conventional methods. We consider two different experimental
methods that are commonly used: (i) independent replications and (ii) regenerative
techniques. The analylic results obtained establish the asymptotic superiority of PA over
conventional methods for both of these experimental approaches. Furthermore, it shows that
PA estimates have a mean square error which is of order O(1/t) where 1 is the duration of
the experiment in a regenerative system, whereas classical finite difference estimates have
a mean square error which is at best O(1/t172)

20. Zazanis, M. A. and R. Suri (1985), "Estimating First and Second
Derivatives of Response Time for GI/G/1 Queues from a Single Sample
Path", submitted to Queueing Systems: Theory and Applications ..

A PA algorithm is developed for estimating second derivatives of the mean system
time for a class of G/G/1 queueing systems, with respect to parameters of the interarrival
and service distribution, from observations on a single sample path. The statistical
properties of the algorithm are investigated analytically and it is proved that the estimates
obtained are strongly consistent.

21. Cao, X. R. (1986), "Sensitivity Estimates Based on One Realization of a
Stochastic System", Journal of Statistical Computation and Simulation
Vol.27,211-232, 1987.

221

The paper shows that the perturbation analysis estimate corresponds to the estimate
of the difference of two random functions using the same random variable: thus, its
variance is smaller than other one sample path based sensitivity estimates such as the
likelihood ratio estimate.

22. Cao, X. R. (1987), "Calculation of Sensitivities of Throughputs and
Realization Probabilities in Closed Queueing Networks with Finite
Buffers", manuscript to be submitted

The paper derives equations for realization probability for systems with finite buffers
and shows that the infinitesimal perturbation analysis eslimate is generally biased for
these systems. However, examples indicate the bias is usually very small.

23. Cao, X. R. (1987), ';Realization Probability in Multi-Class Closed
Queueing Networks", submitted to European Journal of Operations Research

The paper discusses the concept of realization probability for multiclass closed
networks.

24. Cao, X. R., and Y. Dallery (1986), "An Operational Approach to
Perturbation Analysis of Closed Queueing Networks", Mathematics and
Computers in Simulation , Vol. 28, pp. 433-451.

The paper develops and operational definition of realization probability and proves the
sensitivity equations using operational assumptions.

25. Cao, X.R., and Y.C. Ho (1987), "Sensitivity Estimate and Optimization of
Throughput in a Production Line with Blocking”, to appear in /EEE Trans. on
Automatic Control Vol. AC-32, # 11, 1987

The paper proves that the perturbation analysis estimate is strongly consistent for
systems with finite bufter capacities but no simultaneous blocking. The perturbation
analysis estimate is used in optimization of a production line. It is shown that perturbation
analysis enables us 1o use the Robbins-Monro procedure instead of the conventional
Kiefer-Wolfowitz procedure.

26. Cao, X.R., and Y.C. Ho (1986), "Perturbation Analysis of Sojourn Times in
Closed Jackson Queueing Networks", submitted to Operations Research ,

The paper proves the convergence theorems for the perturbation analysis estimate of
sojourn times in closed Jackson networks.

27. Cassandras, C.G. and Strickland, S.G. (1987), "Perturbation Analytic
Methodologies for Design and Optimization of Communication Networks",
submitted to /IEEE J. of Selected Areas in Communications .

Simple PA algorithms are used to estimate performance sensitivities for
communication network models. Of particular interest is the application of IPA in
estimating marginal delays in links modeled as G1/G/1 queues. These estimates are used in
conjunction with a distributed minimum delay algorithm to optimize routing in a
quasi-static environment.

222

28. Ho, Y.C. (1987), "Performance Evaluation and Perturbation Analysis of
Discrete Event Dynamic Systems ", IEEE Trans. on Automatic Control ,
AC-32, 6, July 1987, 563-572

This paper contains probably the most complete references on PA and related matters
as of 12/86.

29. Ho, Y.C. (1987), "PA Explained" to appear /EEE Trans. on Automatic
Control.

This note explains in simplest term via an example the essence of PA and answers
intuitively the question "How can one infer the performance of a discrete event system
operating under one parameter value from that of another with a different parameter value?
Don't the two sample paths behave totally differently?"

30. Zazanis, M.A. (1987) "Unbiasedness of Infinitesimal Perturbation
Analysis Estimates for Higher Moments of the Response Time of an M/M/1
Queue" Technical report 87-06 Northwestern University, 1987. submitted
to Operation Research

This paper uses classical markovian analysis 1o esiablish the unbiasedness of IPA
estimates for the M/M/1 system and refutes another public claim of the limitations of IPA.
The restrictive markovian assumption is the price paid for the simplicity of the arguments
used.

31. Suri, R., and J. Dille (1985), "A Technique for On-line Sensitivity
Analysis of Flexible Manufacturing Systems”, Annals of Operations
Research, 3, pp. 381-391.

The PA approach is applied to flexible manufacturing systems (FMS). We give a
simulation example illustrating how our perturbation analysis could be used on-line on an
FMS to improve its performance, including reducing its operating cost. Experimental resulis
are also presented validating the estimates obtained from this technique.

32. Suri, R.,,and Y.T. Leung (1987), "Single Run Optimization of Discrete
Event Simulations - An Empirical Study using the M/M/1 Queue". Technical
Report #87-3, Department of Industrial Engineering, University of
Wisconsin, Madison.

This study proposes a stochastic optimization method to optimize a simulation model
in a single simulation run. Two algorithms are developed and evaluated empirically using an
M/M/1 queue problem. Experimental results show that an algorithm based on iPA provides
extremely fast convergence as compared with a traditional Kiefer-Wolfowitz based method.

33. Cassandras, C. G., and Strickland, S. G. (1987), "An 'Augmented Chain'
Approach for On-Line Sensitivity Analysis of Markov Processes”,

submitted to 26th IEEE Conference Decision and Control (also to Trans. on
Automatic Control).

223

This paper presents a new way of estimating performance sensitivities of Markov
processes by direct observation. The parameters considered are discrete (integer-valued),
e.g. queue capacities, thresholds in routing policies and number of customers of a specific
class in a closed network model. The main idea is to construct an "augmented chain" whose
state transitions are observable when the process itself is observed.

34. Zazanis, M.A. (1987), "An Expression for the Derivative of the Mean
Response Time of a GI/G/1 Queue", Technical report 87-08 Northwestern
University (see also "Extension to GI/G/1 systems with a scale
parameter”, Technical report 87-07).

In this paper an expression is given for the derivative of the mean virtual waiting time
in a GI/G/1 queue with respect to the service rate.

35. Suri, R. and M.A. Zazanis (1987), "Infinitesimal Perturbation Analysis
and the Regenerative Structure of the GI/G/1 Queue", Proc. 1987 IEEE

Decision and Control Conference , LA, Calif. to appear

The strong consistency of IPA estimates for the mean response time is shown using
the regenerative structure of the GI/G/1 queue. The analysis throws some light on the
conditions which are required for the consistency of IPA estimates in general systems with
regenerative structure.

36. R. Suri (1987), "Infinitesimal Perturbation Analysis For General

Discrete Event Dynamic Systems” J. of ACM, July 1987

This is the final version of the paper first presented in 1983 at IEEE Decision and
control conference which sets forth IPA in a general setting under deterministic similarity
assumptions.

37. Gong, Weibo, and Y.C. Ho (1987), "Smoothed (conditional) Perturbation
Analysis of Discrete Event Dynamic Systems”, to appear in |[EEE Trans. on
Automatic Control.

We show that by using the smoothing properties of conditional expectation, the
problem of interchange between expectation and differentiation can be resolved to give
consistent PA estimates for problems heretofore proclaimed to be unsolvable by PA, e.g.

derivatives of throughput w.r.t. mean service time in multiclass queueing networks, mean
number of customers served in a busy period w.r.t. mean service time, etc.

38. Ho, Y.C. and Shu Li (1987), "Extensions of the Infinitesimal
Perturbation Analysis Technique of Discrete Event Systems", submitted to
IEEE Trans. on Automatic Control.

In this paper, we show another general approach to circumvent the difficulty of
discontinuities in PM(0,w) w.r.t. q for Markov systems. This technique also puts in
perspective earlier work on finite PA showing it to be one member among a range of possible

approximations from the crudest to the exact for handling the discontinuity problem.
Robustness of these approximations is discussed and experimental supporls are illustraled.

224

39. Glasserman, P. (1987), "IPA Analysis of a Birth-Death Process "
submitted to Operations Research Letters .

This note shows that the regular IPA rules can be applied to a birth-death process to
yield correct sensitivity estimates despite written claim to the contrary.

40. P. Heidelberger, X. Cao, M. Zazanis, R. Suri "Convergence Results for
Infinitesimal Perturbation Analysis Estimates” to appear in Management
Science , 1988

ANALOG EVENTS AND A DUAL COMPUTING STRUCTURE USING ANALOG AND DIGITAL
CIRCUITS AND OPERATORS

Tamas Roska
Computer and Automation Institute, Hungarian Academy of Sciences
Uri-u 49 Budapest H-1014

1. INTRODUCTION

Despite the impressive and further increasing power of digital
electronic circuits and systems proving their success in applications
like computing, communication and control there are signs and facts
which clearly show the inherent 1limits of the exclusiveness of the
digital way of operation. Some of these facts are as follows.

(1) Complex algorithms {even NP complete) are solved with
appropriate success and accuracy in a few time constants using analog
arrays (Tank et al. 1986), (Chua et al. 1985) and there are some "smart
analog" components showing practical advantages of the dual operations
{Lineback 1986).

(ii) The physical and informational view of computation provides a
broader understanding of electronic information processing or decision
circuits and systems (Csurgay 1983).

(iii) There are well defined theoretical and practical limitations
of the capability of digital simulation of large-scale analog physical
circuits and systems (Roska 1983) as well as of biological systems
(Conrad 1974).

(iv) A simple discrete-time approximation with delay elements and
nonlinear memoryless readout maps of many practical continuous nonlinear
operators is an appealing realization possibility (Boyd et.al. 1985).

(v) The summarized experiences concerning the behavioral
manifestations of the human cerebral asymmetry show and suggest a
combined analytic-holistic or perhaps digital-analog way of operation in
solving difficult tasks (Bradshaw et al. 1983).

Paradoxically, the widely publicized so called "non von Neumann”
architectures are very specialized forms proposed by von Neumann where
even the analog basic operations were considered too (von Neumann 1958).

Based on the above results and facts, as well as keeping in mind
the standard theory of modelling (Zeigler 1976), a novel dual computing

226

structure is proposed using analog, digital and joint digital-analog
modules and operators.

Section 2 contains the motivating facts, models and statements. In
section 3 one crucial concept of the model, namely, the analog event is
introduced and the principles of the physical rcalization of some
important nonlinear operators as computational elements are discussed.
The general framework of the novel computing structure 1is shown in
Section 4 while some important parts of the model including the joint
processor are presented in more details in Section 5. In Section 6 the
conclusions arce summarized along with some proposals.

2. MOTIVATING FACTS AND RESULTS

Analog and hybrid computations are old topics. Recently, however,
based on the advantages of VLSI possibilities it turned out that regular
structures with arrays of operational anplifiers shows surprising
characteristics. They are able to realize complex algorithms like the
nonlinecar programming (Chua et al. 1985) or even the traveling salesman
problem and complex signal decision algorithms (Tank et al. 1986).
Hence, even a digitally NP complete problem can be solved in a few time
constants with a quite wuseful accuracy using "neural"™ electronic
circuits (Hopfield et al.). Furthermore, there are new "smart analog"
devices on the market which combine the digital and analog functions for
communication, data conversion and signal processing applications
(Lineback 1986). The new BIMOS (combined bipolar - MOS) technolgies are
especially suited for digital-analog dual structures.

Based on the physics of computation (Mead ct al. 1980) considering
the physical realization and the information content of an I/0O operator
constructed using artificial electronic circuits and systems it turned
out (Csurgay 1983) that the hardware and the software has a unified and
well-defined meaning independent of the way of operation (analog or
digital).

Considering the complexity of the digital simulation of electronic
circuits and systems it has been shown (Roska 1983) that increasing the
complexity of the analog circuit or system to be simulated, if the
digital simulator’s complexity is increasing in the same rate then the
complexity of the simulation is increasing too. Hence, there are well-
defined limitations of the digital realization of analog functions.

A recent result (Boyd et al. 1985) shows a possibility, at least
theoretically, for approximating many practical (with a fading memory)
continuous nonlinear operators (even described by partial differential
equations) by a simple discrete-time structure. It consists of unit
delay elements and one multi-input polinomial nonlinear readout map. An
extended class of the latter (any continuous nonlinear map) can be
approximated by a novel memory structure (Roska 1987).

Finally, the rich research experiences concerning the behavioral
manifestations of the human cerebral asymmetry provide a genuine source
for understanding a dual way of processing. In what follows, based
mainly on (Bradshaw et al. 1983), an attempt is made to summarize some
crucial characters of cerebral asymmetry from our special point of view.

227

Namely, the left hemisphere (LH) and the right hemisphere (RH), which
were considered as performing the analytic and holistic processing, here
are considered as if they were the digital and analog type ones,
respectively. Later we modify this strict view.

LH RH

dual facts

- analytic (breaking into parts - holistic (global)
and elements, etc.)

- differential - integral

- sequential processing and - immediate, perception
temporal resolution of infor- of the relations of the
mation (sequencing, discrimi- parts and the whole

nation of duration, temporal
order and rhythm)

- verbal abilities cspecially - performing abilities
at motor level

- matching of conceptually - matching of structurally
similar objects (pictures, curves etc)
similar objects

- events of high rate of - events of small
change (50 msec) rate of change

- information ordered in - information ordered in
time space

-dual encoding hypothesis in memory theory
verbal, symbols pictorial, images
(tipical dual representation: metaphores)

unique fact
prceminence in motor control

contradictional facts

-superiority at visuospatial tasks

requiring fine spatial acuity (per-

forming by analytic extraction of

significant features or elements)
-possesses considerable
linguistic power, especi-
ally receptive

-linguistic specialization only

on limited fields (e.g compu-

tational and combinatorial al-

gorithms that characterize ab-

stract syntax and phonology)

228

2. ANALOG EVENTS AND THE PHYSICAILL REPRESENTATION OF NONLINEAR COMPUTING
OPERATORS.

Digitally coded logical events play a dominant role in present day
information processing and decision systems. The actual processing
machines operate on the elementary events specifically on the digital
bits. This is one of the reason why this machines are so accurate and
reliable on one hand and why they are so ineffective on the other hand
in some specific other tasks (e.g. selecting some features and
optimizing some cost functions).

Next, we introduce and define the analog event, its detection and
storing process and the elementary operators on it. We are doing it to
show, 1in parallel, the corresponding facts for the digital-logical
events.

analog event digital-logical event
signals
e Fr x() €x"
g:r;CO , nonzero on{0,T] §1,2 .threshold values for

binary codes (0,1)

Fal
t ! sampling time instant

~ A
x(t) —> 25%5 xj (t) ; a finite set x(t) > :rABC: finite coded

of event functions, j=1,2..m set of symbols

unique detection

~ ~
x® - %@ |l £ € |x 0 - 212 £ £
on [0, T2

unique detection devices

nonlinear memoryless two~ports comparator
storing

events within a class: 1,0 codes
- elementary I/O operators
of a unified input
- elementary inputs of a
unified I/0 operator
- reed-out map (look-up table)
the class is represented by a
digital code

229

elementary operators

{at, asat, | |, sgn, etc. AND, OR, NOT
nonlinear progr., A/D, etc. +, -, %, /
real-time sequential

algorithmic elements

E? elements of recursive
N functions (on integers
as coded events)

The last question mark denotes those elementary continuous
nonlinear operators which plays the role of the elementary recursive
functions in the digital-logical computational paradigm (see e.g. the
interpretation of the Church thesis in (Lewis et al. 1981)).

Concerning the physical representation of nonlinear operators as
computational elements four concepts are summarized as follows.

(i) The electronic circuit or system as a physical object realizes
an operator which worth to consider either as a solution of a
differential equation or as a minimum of a well defined energy function.
The first two cited examples of Section 2 are characteristic special
cases. Due to the inherent constraints in the circuit the minimum of an
appropriate energy function is not necessarily an unconstrained minimum.

(ii) A convenient realization of the detection of an analog event
within a class of events could be a parallel connection of nonlinear
(memoryless) two-ports having the inverse characterictics of the analog
events. Hence, the minimum signal output selects the appropiate event.

(iii) Realizing a multi input memoryless discrete time operator
with single-input single-output memories a systematic decomposition
procedure (Roska 1987) based on Kolmogorov's approximation theorem
reduces drastically the surface, the time or the power needed to perfom
the prescribed operator.

(iv) Biological considerations (Conrad 1974) show that within well-
defined problem classes non-programmable analog physical~-chemical
processes are extremly economic, hence, before decomposing a complex
operator (or a decision system) into programmed computational structures
it 1is worth to analyse whether the natural elementary parts of the
complex operator are realizable (or not) by non-programmable electronic
structures.

4. THE GENERAL FRAMEWORK

It 1is quite easy to prove that both the exclusively analog or
digital computational decision structures have serious inherent
disadvantages (a few of them have been cited above). Next, we introduce
a novel computing structure (see the next page).

(L)

230

74 AV

7 \V,
DMdP JMdP AMAP
digital joint analog
memory memory memory Md
decoding decoding decoding _—
processor processor processor
|
|
+ Pa
DPa
digital
’ processor
ra
array Jpa
N joint <
processor
array
synchr. | asynchr. next APa
T<Te 1T > 7%, < analog
controller. (C) processor <
array
j §
Memory (M)
Digital i Analog
events [events
|
DMeP JMeP
digital joint analog
memory memory memory
encoding encoding encoding
processor processor processor
¥ S/
excitations

FIGURE 1 The general framework

(R)

(digital and analog)

231

This structure
(i) prefers a given dual way of operation (digital and analog) and

(ii) tries to capitalize the special division of labour shown by
the human cerebral asymmetry (as summarized in Section 2).

We call the framework in Figure 1 "the asymmetrical, controlled,
dual (digital-analog) computing structure" (shortly ACD structure).

It conists of five main parts:
(1) the memory encoding part (Me)
(ii) the dual (digital and analog) memory (M),
(iii) the controller (C)
(iv) the three types of processing arrays (Pa)
(v) the memory decoding part (Md)

The controller (C) 1is a standard digital finite state machine with
an inherent finite memory making unique digital-logical decisions (next
state functions and output functions).

The memory (M) has a dual structure, a digital and an analog part.

All the other three parts have basically three building blocks.
These are the digital, the analog and the joint digital-analog
processors. All the directed arcs in Figure 1 represent the flow of
either digital-logical or analog events.

Considering Figure 1 some relations with the summarized behaviours
of cerebral asymmetry (Left~Right) can be realized. These are the

digital (motor) control, the threshold time to select between the
digital and analog events as well as the sychronous and asynchronous
control (based on high vs. small rate of changec), the dual memory

encoding and the three types of processors (digital, analog and joint).

The holistic processing of the right hemisphere and the
particularly effective non-programmable (or soft programmable) analog
biological primary structures (Conrad 1974) suggest the use of the
analog processors operating on analog events (a special case 1is the
analog value) under analog programs.

Hence, some of the left hemisphere characteristics are incorporated
in the conventional digital processors and the right hemisphere ones in
the analog processors. Both processors and arrays of them can work in
series or parallel mode. The sequential mode is dedicated to the digital
processor.

The contradictional facts concerning the hemispheric division and
the Jjoint actions of the two hemispheres motivate the introduction of
the joint (digital-analog) processor. The main characteristics of the
joint processor are as follows.

(i) Operators working on analog events are groupped in classes.

232

(ii) Within these classes the interconncections between the
operators and the setting of some parameters of the operators are
digitally programmable.

(iii) Decisions between the classes are done either by digital
programs or by analog operators (analog programs)

The memory (M) has two parts. Besides the conventional digital part
the analog part contains the analog events within a class of events
(represented as defined in Section 3).

In the memory encoding part (Me) the joint memory encoding
processor, based on the dual memory encoding hypothesis, determines the

digital code of the class and the analog event within the class.

5. Details concerning the realization of some parts of the model

In what follows the realizability , the programmability and/or the
uniqueness of some proposed structures are shown.

5.1. Analog event detection

The stucture of Figure 2 contains nonlinear memoryless 2-port
elements (NEi), detectors detecting signals below a small threshold and
a conventional digital decoder. NEi have the inverse characteristics of
the analog events within a given class of events.

The structure of Figure 2 1is unique, because, unlike linear
dynamical systems, nonlinear memoryless operators are unique modulo
scaling and delay (Theorem 1 in (Boyd et al. 1983)). However, delay is
set by the controlled starting instant of the analog events and scaling
is given by the fixed peak value of them. Hence, the cited Theorem
assures the uniqueness of the detecting structure. The practical
approximation errors of the inverse characteristics can be taken into
account by the threshold values of the detectors.

1 NE 1 —D‘Q
digital
NE 2 decoder
D
analog
Ll _%
events N
NEn D

FIGURE 2 Detecting analog events

233

5.2 A programmable nonlinear memoryless multi-input element (PNE)

Recently, it has been shown (Roska 1987) that any multi-input
nonlinear memoryless operator can be approximated (with any given
precision) by a nested structure of single-input single-output digital
memories and a few adders (Figure 3). The practical finite physical
parameters of the realization (area, energy, power, time) are quite
appealing. In a fully analog realization adders are replaced by
operational amplifiers with feedback resistors approximating ¥ and x .

)

p=1

(:Z:‘qu(x

)4

2n+1
f (xl,...,xn) = 2
gq=1

A
2n+1

+
+A

— o~
] ~ [5
= 3] -
~
X =
ol
3%
LI) x
e
q d = =
O
[~
o
X x %

FIGURE 3 A programmable multi-input nonlinear element (PNE)

234

5.3 A prototype programmable dynamic analog structurc (PDA)

According to Theorem 4 in (Boyd et al. 1985) , if N is any time
invariant discrete-time operator (1 1) with fading memory (N is
continuous and the effects of the input are decreasing with time i.e.
unigue stecady state) then the system of Figure 4 with £() beiny a
polynomial can approximate N with any prescribed error. We generalize
this structure allowing f() to be an approximation of any multi-input
continuos funcion, moreover, it is programmable using PNE-s. On the
other hand without wusing A/D and D/A converters the signals are of
finite precision.

’ ’ . o unit

delay

PNE

gt e xn)

‘J' f (xl, x

FIGURE 4 A prototype programmable dynamic analog structure
(PDA)

5.4 A programmable regular feedbach structure (PRF)

Providing a programmability with PNE-s for the reqular feedback
structure similar that of (Hopfield et al. 1985) the system of Figure 5
seems a quite natural solution. APi is an analog processor with A/D-D/A
elcments.

This structure which can be seen on the next page not only provides
programmability but, because the use of PNE-s allows to realize any
memorxyless multivariable non-symmetric feedback function, extends
substantially the class of operators.

235

<
> & (sHHH—-HHHK
> /s SRS I
RN L L L
> f\ S8 B
\ o i U
r— L2 B Y
%4; .
3 3 20
g 3 _
A = o .

FIGURlL 5 A programmable regular feedback structure (PRF)

5.5 The joint processor

Figure 6 shows the structure of a joint processor. The general
control 1is carried out by the digital processor. The c¢lasses of the
analog operators are organized according to the classes of the analog
events.

236

i Y

analog analog V. .
.
operators operators
-decision
- > '
—interconnection
outputs % ’

-parameters

Class A Class B

ol e

decision within classes

[— — T
analog I digital
processor | processor

I

M

FIGURE 6 A joint (digital-analog) processor (JP)

6. IN CONCLUSION

Based on the investigations presented in the paper there are quite
strong evidences supporting the following statements.

(i) Human cerebral asymmetry, as it is wunderstood now, strongly
advices to finish with the eXxclusiveness of the digital computing
structures as well as not only to introduce also the analog operators,
however, in some particularly complex situations a genuine joint
digital-analog way of operation seems inevitable.

(ii) The asymmetric controlled dual (ACD) computing structure
suggested in the paper is a starting attempt to build up such a complex
model. Although analog events are allowed it is eventually a discrete
event structure.

(iii) Some parts of the ACD structure has been elaborated and its
realizability, uniqueness and programmability properties were partly
shown without determining the exact class of operators solvable by the
models. it is also certain that concerning the finite physical
parameters (area, time, power, etc.) in some tasks this structure has
definite advantages against the exclusive digital solution.

237

(iv) Tt is a quite important open question within the framework
suggested hier which are the equivalent representations and the formal
realizability conditions.

(v) The ACD structure is far not a model of the human cerebral
asymmetry (although perhaps some investigations can be made with it).
Conversely, it has been an experiment to build up a computational
structure for the artificial electronic circuits and systems which
reflects some genuine characteristics of the manifestations of cerebral
asymmetry.

ACKNOWLEDGEMENTS

The inspiring results of and discussions with Dr. Arpad Csurgay is
gratefully acknowledged. Thanks are due to Dr. Maria S. Kopp for her
kind help in providing summarizing literatures on human cerebral
asymmetry. The work was supported by the Academic Research Fund (RKA) of
the Hungarian Academy of Sciences.

REFERENCES

Boyd, S. and Chua, L.O. (1983). Uniquencss of a basic nonlinear
structure. IEEE Trans. Circuits and Systems, CAS-30.648-651.

Boyd, S. and Chua, L.O. (1985). Fading memory and the problem of
approximating nonlinear operators with Volterra scries. IEEE Trans.

Circuits and Systems, CAS-32:1150-1161.

Bradshaw, J.L. and Nettleton, N.C. (1983). Human cerebral asymmetry
(Chapter Nine). Prentice Hall, Englewood Cliffs.

Chua, L.O. and Lin, G-N. (1985). Nonlinear programming without
computation. IEEE Trans. Circuits and Systems, CAS-31: 182-188.

Conrad, M. (1974). The limits of biological simulation. J. theor. Biol.,

45:585-590.
Csurgay, A. (1983). Fundamental limits in large scale circuit modeling.
Proc. Eur. Conf. Circ. Theory and Design., 6th, Stuttgart,

September 1983. VDE-Verlag, Berlin.

Hopfield, J.J. and Tank, D.W. (1985). "Neural" computation of decisions
in optimization problems. Biol. Cybern., 52:141-152,

Lewis, H.R. and Papadimitriou, C.H. (1981). Elements of the theory of
computations. Prentice Hall, Englewood Cliffs.

Lineback, J.R. (1986). "Smart analog” - IC-s due from Texas startup.
Electronics, (January 20):21-22.

von Neumann, J. (1958) . The computer and the brain. Yale University
Press, New Haven.

238

Mead, C.A. and Convay, L.A. (1980). Introduction to VLSI systems.
Addison Wesley, Reading.

Roska, T. (1983). Complexity of digital simulators used for the analysis
of large scale circuit dynamics. Proc. Eur. Conf. Circ. Theory and
Design., 6th, Stuttgart, Septcmber 1983. VDE-Verlag, Berlin.

Roska, T. (1987). A canonical memory-adder realization of nonlinear
memoryless operators - approximation of look-up tables. Proc. Int.
Conf. Nonlin. Osc. 1lth, Budapest, August 1987. Bdélyai Math. Soc. ,
Budapest.

Tank, D.W. and Hopfield, J.J. (1986). Simple "neural" optimization
networks: an A/D converter, signal decision circuit and a linear
programming circuit. IEEE Trans. Circuits and Systems, CAS-32:533-
541.

Zeigler, B.P. (1976). Theory of modeling and simulation. John Wiley, New
York.

ROBUST IDENTIFICATION OF DISCRETE-TIME STOCHASTIC SYSTEMS*

Han-FU CHEN and Lei GUO
Institute of Systems Science,Academia Sinica,Beijing,China

1. INTRODUCTION

Since a real system can hardly be modelled by an exact 1li-
near deterministic or stochastic system and in this case a small
disturbance may cause instability of adaptive algorithms (Lgardt,
1980,Riedle et al 1984,Rohrs,1982),it is of great importance to
analyse the influence of the unmodelled dynamics contained in the
system upon the behavior of the adaptive control system.For re-
cent years there has been a vast amount of research devoted to
this issue (Anderson et al,1986,Bitmead et al,1986,Goodwin et al,
1985,H1ill et al,1985,Icannou et al 198La,b,loannou et al,1985 and
Kosut et al 1984).

The authors have analysed the robustness of identification
and adaptive control algorithms in (Chen & Guo,1986a,b) for dis-
crete- and continuous-time stochastic systems respectively,when
the extended least squares (ELS) identification is applied.Rough-
ly speaking,there it is shown that the estimation error and the
deviation of the tracking error from its minimum value is small
when the unmodelled dynamics is small in a certain sense.

In this paper we are concentrated on the robustness issue
of identification for the discrete-time stochastic system which
consists of a modelled part being a CARMA process and of an un-
modelled part nn,i.e. the system i1s described by

A(z)yn=B(z)un+C(z)wn+nn (1)
where
A(Z)=I+A1z+-~-+Apzp- p>0 (2)
B(z)=B,24B,z%+++++B 29, q»1 (3)
1 2 q a4
C(z)=I+C1z+---+Crzr, r»0 (4)

are matrix polynomials in shift-back operator z with unknown ma-
trix coefficient

T_ * e 0 LR N) e e 0
0 =(-A, -A By "B Cy c.) (5)

*The project supported by the National MNatural Science Founda-
tion of China and by the TWAS Research Grant No.87-43.

240

but with known upper bounds p,q,r for orders and where the unno-
delled dynamics n, is dominated by

n-1 .
Hnnﬂseiéoan T Ny g1+l + a1 +1) (6)

with ae(0,1),e20.
The driven noise {wn} in the modelled part of the system is

assumed to be a martingale difference sequence with respect to a
non-decreasing family of o-algebras {Tn} with properties

; 2
sHpE[Hwn+ﬂ| /Tn]<w (7)
11’1-1 11’1—1
O<a=liminfﬁ'z Hwﬂlzslimsupﬁ.z ”wﬁ}2=8<wa.s. (8)
n+o i=0 n-+o i=0

The purpose of the paper is to show three things:
1) The estimation error 9-8 has an upper bound proportio-
nal to /K where k is the conditiBn number of the matrix

n
T
RASH
where en is the estimate for 6 given by ELS and

T- T.o- T Toto T T_T L) T _T
¢n-[yn Yn-p+1'n" " "Un-q+19n ®n-1%n yn-r+1$n-ren-r+1] (9)

2) In stochastic adaptive control in order simultaneously to
get consistent parameter estimates and optimal or suboptimal con-
trol performances a small dither is usually added to the system
(Caines & Lafortune,1984,Chen,1984,Chen & Caines,1985).Later,it
has been shown that better results can be achieved if the excita-
tion is put to the system input (Chen & Guo,1986,1987)rather to
the output.Here we prove that for the system with unmodelled dy-
n%mics considered in this paper the condition number of

Z ¢i¢§ is bounded in n if the desired contrel is disturbed by a

lalther with constant variance.Thus,in this case the estimation
error is of order €.

1 3) For results mentioned above the positive realness of
C” ' (2)-3I is required.Further,we remove this condition for single
input single output systems and get results similar to the pre-
vious ones,

2., ROBUSTNESS OF ELS ESTIMATION

Let the unknown matrix 6 be estimated by the ELS algorithm

_ T T
6 41=0 *ta P o (y ,q-0,6)

241

P-aPo6o6P, a

P = =
ntl "'n nnnnn n

(1+07P 6)" (10)
with P _=dI,d=mptlqtnr and 90 arbitrary,where ¢n is given by (9),
m and ¢ are the dimensions of Yo and u, respectively.

Denote by Agax and Agin respectively the maximum and minimum

eigenvalue of

.1, Theorem 1. For the system described by (1)-(8) suppose that
C™"(2z)-%1 is strictly positive real.Then

limsuplle_-8ll2ge kd(1+l§gg)Ez (11)
n+e n 0
where
s n n
k_l:fiuPAmax/Amin (12)

and ¢, is a constant depending on C(z) and the real number a in

(6).

Proof., We just point out the key steps of the proof and re-
fer to (Chen & Guo,1986a).

Set
£ = ot .o (13)
nt1 Yn+1"%ne1 " n+1'n 13
~ nz1
6 _=6-6 = z
n 0 r 1+_Z H¢J| (14)
i=0
Then -
=67
C(z)8 4178 41190+" 41 (15)
Using the strictly positive realness condition we can show
that
~r g
tren+1Pn+1en+1
(16)
£0(1o 1+6r Yte €2((1428)(n+1)r_,.)-c rf”g.r o P
& Th41’7% nt17 701, L 1014101

where 6>0,c,>0 are constants depending on C(z) only.Next,we can
prove

liminf(rn+1/n)>a (17)
n-o
The desired estimation follows from (16)(17). #

We now consider when k defined by (12) is bounded.
Set

242

O_ (T, uunT T,...T T, ,..,T
d)n—(yn Yn-p+1¥n" " "Yn-q+1¥n wn-r+1] (18)
with ¢ =0 for i<0 and denote by Amax and Amln respectively the

max1mum and minimum elgenvalue of

Z¢’¢’OT1

i=0

Lemma 1. If conditions of Theorem 1 hold then

4k
kg 0

T 2 (19)
1-2r02d(1+2k0)€

on on
max/xmln
poss1b1y depends on we

where k 11msupA © and cy is independent of € and n but

Proof. By (16)(17) it follows that

2 1428, > 1+
1§||81+1¢ﬂ| <c3(1+ 5 e rn+1+0(log
where c, depends on C(z) and a only.Then by (6)(17)(20) from (15)
we can ?1nd c >0 such that

rn+1) (20)

1+6)

n
.Z H£i+1|Psczezrn+1+O(log T a.s. (21)

Starting from (21) we can conclude {19).For details we refer
to (Chen & Guo,1986a).

We now introduce the dither v_ to the desired control u®,
Let [v } be a sequence of ¢-dimensional iid random vectBrs
independent™of (w } and such that
Evn=0, Evnv;=ul, u>O,an|F<0§4vn>0 (22)
Without loss of generality assume

7n=0[vi,wi.0sisn} (23)

and set ,
~0{v ¥y ,0gign} (24)

Let the desired control u® be 7'-measurab1e and let the con-

trol u applied to the system (1) b8 defined by

u =u+v (25)
n n n

We need an auxiliary system

243

A(z)zn=B(z)un+C(z)wn (26)

with the same {un} and{wn} as those for system (1).Set
o— T'.' T T.'. T T'.. T T
wn_(zn zn-p+1un un-q+1wn wn-r+1) (27)

vp=(deth(2))0, ol=(deth(z))o?

and denote by Xmin(x) the minimum eigenvalue of a matrix X.

Lemma 2. If A(z),B(z) and C(z) have no common left factor
and Ap is of full rank with A =L by definition and if

n
Z||u§H2=O(n)
i=o *

then for sufficiently large n

n-1 1 11
Mpin L hiU:)2yn (28)

where y>0 and it may depend on w.
Proof. The proof is essentially the same as that for (46) in

(Chen & Guo,1986¢c) if we note that £,6 and o of (Chen & Guo,1986¢)
equal 0,0 and 1 respectively in the present case. #

Theorem 2. Suppose that A(z),B(z) and C(z) have no common
left factor and A_ is of full rank with AO=I,control defined by

(25) is applied to the system (1) and that

n-1
[(ly;1E 4l) gitn, va (29)
i=0
with M possibly depending on w only.Then

€6

k Z1imsupr® /297 ¢ (30)
0 s max’minve, (y-c €
and on)
Amin?CS(Y'CAE)n (31)

where ci,i=4,5.6 are constants,e</(y7c4) and y is given in (28).

If,in addition,C‘1(z)-éI is strictly positive real,then

limsup||9n-9||2\<c7s2 (32)
n-*o

where

244

g=he céd(1+—ig§)/[c5(y-c g2

L)(1-2yc2dcz)-4yc6c2d].

Proof. Set

(bn [T] n1 "n;_p+1O---O]T (33)

By (1) and (26) we have

A(z). 0
0 ,0y_,N
- (62-02) =67 (34)
0 - “A(z)
hence
1_.1
¢n-wn+cn (35)
where
AdjA(z), 0
- . n
Ly" . o
0 AdjA(z)

From (6)(33) and condition (29) it is easy to see

Z'lC |2<c e?n for some 04>0 (36)
For any xeR from (35) it follows that

1 1
T, Il2<dlx o I +21k ¢ |I?
and hence

(Z ¢l lT)+2c €2n.

n-1
1,11
n(izownwn)S2Amin 120 4

From this and (28) it follows that

(nf1¢1¢1T)>*(2¢,e?)n (37)
n' L0101 2T)

Let mp
1z+~--+a pz .

By the Schwarz inequality and the fact that ¢ =0 for i<0 it
is easy to see that

detA(z)=a +a

(Z ¢1¢1T)— inf Z (xT¢1)2<(mp+1) Z a? Ag?n (38,
lx[l=1 1i=1 j=0

245

Then (31) follows from (37)(38),while (30) from (29)(31).
Finally,putting (30) into (19) leads to an estimate for k which
together with %11) implies (32). #

3. REMOVAL OF SPR CONDITION

In this section1we consider the single input single output
system for which €7 '(z)-% is unnecessarily strictly positive
real,but assume that we can find a polynomial

r

D(z)=1+d ztesetd z

1
so that (D(z)/C(z))-4 is strictly positive real.
Instead of Yn*Unr®n it is natural to use their prefiltered

value yi,uﬁand ¢n,where

£ f....F £f....f £ fr veout fr T
¢n—[yn Yn-p+1'n" " "Yn-q+19n *n-1% yn-r+1-¢n-r0n-r+1) (39)

D(z)y£=yn, D(z)urf;=un (40)

In the present case the unknown parameter 6 is no longer a
matrix but a vector.For estimating it we apply an algorithm modi-
fied from ELS,namely,the estimate 6_ for 6 is recursively given
by (see Goodwin & Sin,1984) n

_ f

0 =8, 4P oy 4 (e +(D(z)-1)v) (41)
_ £ fr f1 £

P =P q=P 10 q0n_qPu /(e P 60 o) (42)

where

I S & ¢

en " n"%n-1%n-1 (43)
_f £

vn—yn-d)n’.]en (44)

In the sequel by a_=0(b_) we mean that |an|<cbn holds for
all n and for some constant " ¢>0.

Theorem 3. Assume that for systen ;1)-(8) with m=2=1 there
is a known polynomial D(z)=1+dﬁ+-»-+drz such that (D(z)/C(z))-%

is strictly positive real and that the estimate Bn for 6 is given
by (41)-(44).Then

n ~ 2 +
1) Illolel Ir=o(rf 4S50 +0(20g" 0r) as. (45)
i=1

n=-1 ~
where r£=1+ Z|I¢£|F, §>0 and 6_=6-8
i=1

246

2) llmsupHO I12=0(k fe2/(1-a)2) a.s. (46)

n+oo

where it is assumed that

n-1
k%1 insupr___(! ¢f £T+E)/A ([¢f £T+a)<m a.s. (47)
e M8X 420
) . 146 f CF o o E T) 0 o
3) “en” _0(10g I‘n/)\min igo‘bi‘bi +a‘ H] v6> (4)

if nn=0,i.e.,if there is no unmodelled dynamics.,

Proof. By (44) we have

¢(2) (v -D™" (z)w_)=v_+(C(z)-1)v ~C()D™" (2)w_
=yE-ofT 8 +(C(z)-1)v ~C(z)D7" (2)u_
=07 (2) (1-A(2))y, +D7 " (2)B(2)u, +D7" (2) C(a)w,

+071 (2)n_+(C(z)-1)v_-ofT,0_-C(2)D7" (2)u_

- b
‘bn 1 n r]n (1&9)
where
N2)n,, (50)
Set
cn=D(z)vn—wn (51)
Clearly,we have
D(z) (v -0 (z)w) =g, (52)
Combining (49)(52) yields
D(z) ~ .
Z2(6f T 0 +nl) =g (53)

By the assumptlon of strictly positive realness there are

constants k1>0,k2>0 such that for all n>0

n ~
_ f +k T f
S, Z o5 1 ;tni) (g 1(9 ¢l 11030) +ky20 (54)
By (41) (44) and (53) 1t is easy to see that

f
n- 1)

o (55)

Cn+wn=[en+(D(Z)'1)vn]/(1+¢n 1" n-1

247

and

6n=6n_1+P -1 n 1(C +w) (56)

Similar to (19) in (Chen & Guo,1986c) from (56) we have

aTp-1g o7 p-1 £ aTef £
tr 6 P-'6 <6 P .8 14]6 o, _qlF-2¢ 8 o L -2u 6T 01

aT =134 T 1+k
—en 1Pn 1e --1-2(4’n—16n+nn)(C 1(6 ¢n 1+nn))

fy f aTof f
-k, (6 of P -(1+k) (0L 4207 (¢ -(14k,)0707) -2u 876

n-1 nnn-1

Summing up both sides of the last inequality we obtain

0 p‘1e <eTp'1e 528, +2k,-k, ? (6%
1,5,

iTi-1

P-4k L (nfy
i=1

T,f
+2 ? (g -(14k,)e i.1)-2 Z Wy 1¢1 1

0(1)-k, T (5%6f ¥ -(14k) T (nf
< - 1i£1 8505 _1F -(1+k, i£1(niP

n ~
f T, f T,f
+21§_1”1(Ci‘(1+k1)ei¢i-1)'2i£0“'a'¢' (57)

By stability of C(z) from (53) we see that
0 Yoot f
2
DRSS WRICTHRRIOAS) (58)
for some constant k3>0 and that for any 6>0
n ~
f T, f
2li£1ni(ci-(1+k1)ei¢i_1)I
4 0
szl (n P 428 Z gi+26 (14k, ¥ Z (6 65 . 1?
=1

n n o~
f T f
s(1/6+26k3)'20(niy +26 (kg t (14K)%) T (8505 ¢ F (59)
i= i=0
Substituting (59) into (57) leads to

~_[_ _1~ X n ~
orP- ens0(1)-(k1-26(k3+(1+k1)2))i£1(e. 17 -2 Z W161¢1 1

(14 <125k.) § (nf)? (60)
-y -g-2skg) [(ng

248

for any 6>0,
By an argument similar to that used for (22)(30) in (Chen &
Guo,1986c) we have

n -~
T, f B
| E w805 41=00C

(670 17) M+0(1og™*rl) ne(3,1) w80 (61)
i=1 i

[te]

1

Putting (61) into (60) we find

n -~
T,f

_1(ei¢i_1f

. 1

o P enso(1)-[k1-2a(k3+(1+k1Y))i
n

_(1+k1-%-26k3)i£1(n§Y+o(1og1+6r£) (62)

By (6)(40) and (50) it is easy to see

n ¢ n=1 £ £
) (ni)zs(ezkA/(1-a)z)Z ((y; 7 +(ug ¥ +n) (63)
i=1 i=1
for some constant k, independent of € and a.
Multiplying D(é) to the SISO system (1) we get

y£=(1—A(z))y£+B(z)uf;+r1£+(C(z)D"1 (z)-1)w +u_,

which means that yf-wn is 7-measurable.Then by Lemma 2 of (Chenk
Guo 1987) we have 1

? (y?? = ? (y?-w.y + ? w. +0({ ? (y?-w.f)A)' ran<
I = B i=0 "t

and hence

r n-1 £ 1n-1
liminf—23liminf(1/n) J (y: P >linminf- J w?=0>0 a.s. (64)
n-+o n n+w i=1 1 n-+o ni:‘] 1
From (63)(64) we see
T or 2 f
i):f1(r1i)2 gk rn/(1—a)z (65)

for some constant k5>0.Then taking & small enough so that
k1-25(k3+(1+k1 ¥ ¥>0
and combining (62)(65) we obtain

STl e IR £ 148 f
enphenso(1)-k6i£1(ei¢i_1? tkpe?r /(1-af +0(log’ ""r) (66)

where k6 and k7 are positive constants independent of € and a.

249

Finally,all c?nclusions of the theorem follow from (66):(45)
holds because §TP~'§ >0,(46) is true if we remove the negative
term on the right®halld side of (66) and (48) follows if set =0
in (66), #

We now give results similar to Theorem 2.

Theorem 4. If conditions of Theorem 3 are satisfied,A(z),
B(z) and C(z) have no common factor and A_ is of full rank with
A =1 and if control defined by (25) is apBlied to system (1) and

n-1
J (y?+u?)<Ln, ¥n (67)
NP A !

with L possibly depending on w only,then there exists ane¥>0 such
that

limsudquensksez a.s.
n+oo

"for any ee[0,e¥),where kg is a constant independent of €.

Proof. Defining

f_
D(z)wn-wn (68)
¢fo=[foo. f ufooouf wfa--wf]1
i In yn-p+1 n n-q+1°n n-r+1
we have
o_ fo
d)i-D(z)d)i
and (ni1 04°T) ni1(TyOp
A . ¢.¢:)= inf X &
™oz Pt |Ixll=1i=0 0t

n-1 r r n-1
=int [([dx"6f% Pe(re1) a2 inr [(xTofOF
[Ix|=1i=0 j=0 J ! 3=0 JIx|l=11i=0
r n-1

fo,fot
=(r+1 dzx_. .o
(r)jZO ; Mln(i£0¢l o3)

Hence by (31) we find

n-1

r
-1

Amin(_z ¢£o¢§oT)>[05(y-0452)n/(1+r)](.Z dg) (69)

i=0 j=0

On the other hand,by (67) it is easy to see
n-1
fo,fort

*max(i£0¢i ;7")skgn (70)

for some constant k9.
Combining (69)7(70) we get

250

-1 n-1
fa,. n fo, for fo, for
ko—llmsuPAmax(.Z ¢i o5)/Amin(.g ¢i o5) <o (71)
n-+o i=0 i=0

By definitions of ¢£ and ¢£° and (44)(52)(68) we have

£ . fo_¢q... f... £ T
¢, =% =(0 Ovn'wn Vn-r+1-wn-r+1}

= e oe -1 co e -1 T

=(0+++0D" (z)g *++D” (2)g,_ . 4q) (72)
Then applying (45)(63) to (53),from (72) we see that

n

¥ llof-0f0)2=0(10g" 0) 40(rfe2/(1-a)2) (73)
3800 7iTT n n

which is the analogue of (21).Starting from this estimate by an
argument similar to that used in Lemma 1 we get an inequality

between ki and ki similar to (19) .Finally,the desired result fol-
lows from (46)(77). #

Applications of the obtained results to robustness analysis
of adaptive control and similar results for continuous time sys-
tems will be published elsewhere.

REFERENCES

Anderson,B.D.0.et al (1986),Stability of Adaptive Systems:Passi-
vity and Avaraging Analysis,MIT Press.

Bitmead,R. & C.R.Johnson Jr.(1986),Discrete averaging and robust
identification,Advances in Control & Dynamic Systems,(Ed.
C.T.Leondes)Vol.XXIV.

Caines,P.E.& S.Lafortune (1984),Adaptive control with recursive
identification for stochastic linear systems,IEEE Trans.
Autom,Control,AC-29,312-321,

Chen,H.F.(1984) ,Recursive system identification and adaptive con-
trol by use of the modified least squares algorithm,SIAM J.
Control & Optimization,Vol.22,No.5,758-776. ‘

Chen,H.F.& P.E.Caines (19855.Strong consistence of the stochastic
gradient algorithm of adaptive control,IEEE Trans.Autom.Con-
trol,Ac~30,N0.2,189-192.

Chen,H.F.& L.Guo (1986a),Robustness analysis of identification
and adaptive control for stochastic systems,accepted for
publication by System & Control Letters.

Chen,H.F.& L.Guo (1986b),Continuous-time stochastic adaptive con-
trol:robustness and asymptotic properties,Technical Report,
Institute of Systems Science,Academia Sinica.

Chen,H.F.& L.Guo (1986c),Convergence rate of least squares iden-
tification and adaptive control for stochastic systems,In-
ternational J.of Control,Vol.44,No0.3,1459-1476.

Chen,H.F.& L.Guo (1987),Asymptotically optimal adaptive control
with consistent parameter estimates,accepted for publication
by SIAM J.Control & Optimization.

251

Egardt,B.(1980),Stability analysis of adaptive control systems
with disturbances,Proc.JACC San Francisco,CA.

Goodwin,G.C.& K.S.Sin (1984),Adaptive Filtering Prediction and
Control,Prentice Hall.

Goodwin,G,.C,,D.J.Hil1ll, D.Q.Mayne & R,H.Middleton (1985),Adaptive
robust control (convergence,stability and performance)Tech-
nical Report LEE 8544.

Hill,D.J.,R.H.Middleton & G.C.Goodwin (1985),A class of robust
adaptive control algorithms,Proc, of the 1985 IFAC Symposium
on Identification & System Parameter Estimation.

Ioannou,P.A.& P,V.Kokotovie (1984d),Instability analysis and im-
provement of robustness of adaptive control,Automatica,Vol.
20,No.5,

Ioannou,P,A.& P.V,Kokotovic(1984b),Robust redesign of adaptive
control,IEEE Trans.Autom.Control,AC-29,202-211,

Ioannou,P,A.& K,Tsaklis (1985),A robust direct adaptive control-
ler,Report 85-07-1,FElectrical Engineering-Systems,Universi-
ty of Southern California.

Kosut,R.L,& B,D,0.Anderson {(198,),Robust adaptive control:condi-
tions for local stability,Proc.23 CDC,Las Vegas,

Riedle,B.D.0.& P.V.Kokotovie (1984),Disturbance instability in
an adaptive system,IEEE Trans.Autom.Control,AC-29,822-824.

Rohrs,C.E,,L.Valavani,M.Athans & C.Stein (1982),Robustness of
adaptive control algorithms in the presence of unmodelled
dynamics,Preprints of 21st IEEE CDC,Orlando,lL,

DERIVATIVES OF PROBABILITY MEASURES-
CONCEPTS AND APPLICATIONS TO THE OPTIMIZATION OF STOCHASTIC SYSTEMS

Georg Ch. Pflug
Justus-Liebig-University
Arndtstr. 2

D-6300 Giessen, F.R.G .

1. INTRODUCTION

Consider a stochastic system with state space S. Assume that Z is the
random state of the system and that Hy: the distribution of Z depends on a

vector x of controls. We are interested in finding the optimal control, that
is the control which maximizes the performance of the system. In
mathematical terms we want to find the solution of the problem

F(x) := Ex(H(Z,x)) = Jil(z,x)dpx = max!

(P)
x €X ¢ Rk

Here H(Z,x) is a performance-generating function, which may depend on the
control x. Applications of (P) include optimal design of service systenms,
optimal facility location, optimal design of communication systems, optimal
traffic control, etc.

If the structure of H resp. Hy is rather complicated, we cannot solve (P) in

an analytic manner. But it is nearly always possible to simulate the system
(by using a random generator for px). What we get then is an unbiased

stochastic estimate for F(x). We are however primarily interested in the
solution of (P) and would like to have an unbiased stochastic estimate of
the gradient of F(x), since such an estimate can be used in a recursive
stochastic gradient procedure for the minimization of (P) (see the monograph
of Ermoliev (1976) for a profound discussion of such a technique and Ho et
al. (1983) for an application in Queueing Networks)

The existence of unbiased estimates of the gradient of F(x) depends on
differentiability properties of x -» H{z,x) (classical!) and x - Hy -

In this paper we study different notions of derivatives of probability
measures with respect to a parameter x and compare their scope and
applicability. The weak derivative will be introduced in section 2 and the

exanples for weak derivatives. In section &5 sampling procedures are
presented which allow a direct sampling of derivatives. These procedures may
be used to construct unbiased estimates of the gradient of F{(x). These
estimates are much better than the widely used numerical stochastic
gradients.

253

2. WEAK DERIVATIVES

Let m be the set of all finite signed regular measures on the Borel
field A of a separable metric space (S,d). M can be endowed with a
Banach-norm, the variation-norm

||¢]| = var(p}(8) = sup wl(E }-plE,)
1 2
E,,E €A
172
If S is not countable, then (M,ll ||) is not separable. Therefore we will

consider the weak topology on M. Let C(S) be the set of all bounded
continuous real valued functions on S. C(S) is a Banach space with norm

THIEEIHEE
X

If S=Rm, the m-dimensional Euclidean space, then we consider furthermore
C(“)(Rm) the set of all test-functions

Ck(Rm) (for k21), the set of all continuous functions f, for which

there are constants c_,c, such that |f(x)|gc1+c2||x||k.

1'72

It is well known, that m is contained in the topological dual of C(S), with
equality if S is compact (cf.Dunford-Schwartz (1957), p.265). We write (g, w
for the bilinear form, i.e.

g, 1= Jg(y) auly) .

The set of all probability measures on S is denoted by Ml‘ By the known

Jordan-Hahn decomposition (Dunford-Schwartz (1957), p.130), every u € # may
be written as

H = CiH=CoH, (1)

with HyrHy € n cizo: where ¢ is the positive and ¢ is the negative

1 11 22
part of u, hence Hy Loy, It is clear that the representation of an element

of m as a weighted difference of probability measures is not unique, since,
for an arbitrary nonnegative measure v the decomposition

C ot C ot
M= (c1+1) _1;— (c2+1) 272
c1+1 cz+1
would also do the job. However note that (c1+c2) is minimized in the
representation (1), if Hyth,. To see this, write clpl—c2p2=d1u1-d2u2. if
€14 is the positive part of u, then clpl(E) = sup u(F) for all Eei. Hence
FcE
c1=s:p(d1u1(F)—d2u2(F)) < s;p dlul(F) < dl' The inequality czgd2 is proved

in an analogue manner.

In the following, we study applications x — Hy o mapping x € Rk into

Ml' In particular differentiability properties will be studied.

254

Definition 1. A function x —o Ky mapping an open subset of Rk into ml is

called weakly differentiable at the point x, if there is a k-vektor of
(1)

signed finite measures p; e (yx ' ,y;(k)): y'(l) € A such that

i)y L
149 1y = Gom> - Ehi(g,yx | = o] n]] (2)

for all g € C(S) as h - 0. Here o{-) may depend on g.
The derivative y; may be represented as

. (1) -(2 (1) (2 (1) -(k
Ky = [Cl(":(()-yi)), cz(y;)-y;)),...,ck(yx)-y,(())]

and ﬁ(i)

vhere 1),) {

. - (1)
e My €. We do not require that pu

» are orthogonal
of each other, bearing however in mind that ¢y is minimized if ﬁil) 1 p;l).

Note that (g,y;(1)> = 0 for the constant function g = 1, since (g,px> =1,

We write y; = {c, hx’ ﬁx) to denote the situation that ¢ = {c

1.....ck)
_ (1) <(k), - _ (1) (k) . . .
o = (Pk e by) Hy = (p& eee iy) is the derivative of x — Hy at x

in the sense of (2).
The derivative obeys the following rules:

1) If x — Hy and x — vy is differentiable, with derivative (c, L&, ﬁx)

resp. {d, bx’ Ux), then x — au+(l-a)u is differentiable with
derivative

olc;':x+(1~ol)d\3x ac,l}x*'(l-a)dﬁx

act{l-a)d, :
ac+{l-a)d act(l-a)d

(Note that aﬁx+(1—a)&x is in general not orthogonal to aﬁx+(1—a)ﬁx).
2) Under the same assumptions x — P&*Ux (convolution) is differentiable

with derivative

£ x L S € = L B,
c+d M Ux+ ord Mx Yy cxd Hx Ux+ cFd M Ux)

{c+d,
3) If T is a measurable transformation which maps Hy onto pz i.e.

pa) 1= (1A

then x — y: is differentiable with derivative (c,ﬁg,ﬁl)

4)

5)

6)

255

If T is a continuous application § —s (S',d') and A, is the o-algebra

generated by T, then x — pxl'to is differentiable with derivative
(e, pxl’to' px"to)

If Hy <¢ p with density fx(y) and x — fx(y) is Ll(p)- differentiable,

then x — Hy is also weakly differentiable. A mapping X — Ll(p) is

called Ll-differentiable, if there is a vector 9y = (g}(‘l),..., g}((k)) of
Ll—functions with the property that
£, - ¢ -Ehg(i)||1=o(h) for h - 0.
x+h X i¥x L
- (i) . -
Of course, ¢, = ||gx ||L1 and M, resp. p may be taken as
- (1)
" g (1) 4
" maxle
i
(1)
du .
X -1 . (i)
-—dII—-C_.mln(gx ,0).

i
It may happen that Hy (¢ pand x — Hy is weakly differentiable with

var(p;) ¢ u, but x — Hy is not differentiable in the Ll-sense.
Consider the following example: Let 5 = [0,1],

dpx(y) = ¢(x) -(1+x-sin(‘xi))dy H dpo(y) = dy

It is easy to see that c(x) = 1+0(x2). Therefore

1 - = sin (L
;[fx(y) fo(y)] = sin (+0(x)
1
which is not convergent in the L,f0,1]-sense. But J‘g(y)-sin(:(?)dy - 0
0

for all measurable, bounded g (Riemann-Lebesgue Theorem).

If x — Hy is differentiable with derivative (c, ’.‘x’ ﬂx) and x — g(x)
is differentiable, then so is

X — u
g(x)
and has derivative

(C,Jg-/.lx, Jg'/.lx)

where Jg is the jacobian of g.

256

T Decomposition of measures.
It p, = ux(-|z)dvx(z) is a decomposition and both v —and v are

differentiable, then
(c,i—U&x(-|z)lx(z) + Jux(-|z)d§x(z)], ;—[Jﬂx(-|z)d1x(z)+Jux(-|z)d'v'x(z)

8) If X — Hy is weakly differentiable with derivative (c,ﬁx,ﬁx), then
- per definitionem -
X — <g,yx>
is differentiable for all continuous g. However, one may slightly depart

from continuity. If A is the set of discontinuities of h and satisfies ﬂ&(A)

= ﬁx(A) = 0 then

X —» (h,yx)

is differentiable, with derivative

c(<h,;}x> - <h,))x>).

9) If lyxl are probability measures on R" and x € R, then weak
differentiability is equivalent to the following: There is a function of

bounded variation Fx, such that for each continuity point u of Fx

.1 _
lim E—(Fx+h(h) - Fx(u)) = Fx

where Fx is the distribution function of Hy -

3. PROCESS DERIVATIVES

We have just seen that on & weak differentiability is equivalent to
the differentiability of the distribution functions

X — Fx(u)

with respect to x. There is another notion of differentiability - somewhat
dual to the above - , which is connected to the differentiability of the
functions

X —+ F;l(u)

This concept 1is called process differentiability and was used by many
authors previously (see Ho et al. (1983), sSuri (1987), Glynn (1987), etc.)
Its relation to weak differentiability will be studied below. For simplicity
Wwe assume S = R and X € R.

Definition 2. A family of random variables IYxl on a probability space
(2, A,P) is called a process representation for lyxl, if Yo has law Hy

2(Yx) = My

257

Example 1. If Fx is the distribution function belonging to Hyr then
Y =F “(U) U ~ uniform on [0,1]

is always a process representation of lyxl.

Definition 3. If !Yxl is a version of a process representation for lyxl, for
which
L1 s
lim Y _ . -Y) =: Y
+

hO h' "x+h "x X
exists almost everywhere, then ?x is called a process derivative of Hy at
the point x.

It is important to stress the fact, that the law of Yx is not uniquely
determined by the family lyxl and hence we may only speak of "a” process
derivative.

Example 2. Let Iyxl be normal N(0,1+x2)-distributions. There are two

possible process representations:

1. Yx = Y1+xY2 , where Yi are independent N(0,1)-distributions
2. Y o= T+x°7.Y , where Y is a N{0,1)-distribution.
In the first representation, the pathwise derivative is ?x = Y2 ~ N(0,1) and
in the second representation, the derivative is ¥_ = — % 'y ~ N(O x2
p 1 x 'w_,.

1+x
Remark that the second representation leads to a process derivative with
smaller variance. This fact will be explained below.
Suppose that x — Yx is differentiable not only in the a.e. -sense but also
in Ll, 1.e.

[¥, . -Y, ~h-¥

b Yx x||L = o(h) as h -+ 0
1

Then, for each bounded, continuously differentiable function ¥

?(Yx+h) = ‘P(Yx+hYx+Rh) =
= w(Yx) + (h-Yx+Rh) -y (Yh), where Rh = Yx+h—Ax—hYx and Yh lies between Yx
” S T B
and Y . Since ¥, - Y and Y. +h 'R, —— Y it follows that
x+h h X b4 h X
*

1 : '
5 w(Yx+h)—w(Yx) —_— Yx-? (Yx)

258

. 3 _ 9 _ s
In particular, X E(?(Yx)) x (?,px) E(Yx? (Yx))' Thus, for every

appropriate v, E(?x?.(Yx)) must be independent of the particular process

representation. It is easy to check that indeed, for example 2

E(Y*P'(Y+xY))=E[X v/ zv)]

If x — Yx is process differentiable at X then the process behaves near
X like
o
Y o+ {x-x)-¥
X o X
o o

Thus the joint distribution of (Yx '?x) determines its local behavior. We
o ‘o

have already seen that (Y_ ,Y_) is not determined by lpxl. Since, for any
o “o
square integrable random variable Y and sub-g-algebra =

Var(Y) = Var (E(Y|®)) + E{(Var(Y|s))

(Var(Y|#) 1is the conditional variance), we see that Var(?x? (Yx)) is

minimized if the conditional variance Var(?x|Yx) is zero. Notice that in the
X

v 2
1+x
This idea may be extended further: Since we are mainly interested in finding

good estimates for

example 2, Var(Y|Y) = 0 for the second representation.

3 v o
X PO = E(Y ¥ (Yx))

the estimate Yx? (Yx) can be improved (i.e. its variance can be reduced) by

taking E(?X|Yx) instead of ?x itself. We call

E(Y, |v,)
a reduced process derivative. It may happen that there is no process
representation for Ipx|, for which E(YX|YX) a process derivative. However
there may be another process ?x representing Iﬁxl which has E(Y'x |Yx) as
o

process derivative at X, and Fy =;x . We call I;xl a reduced process
o “o
representation.

259

Example 3. (Glynn) Let My = §-6x + §'6x' Then Y+x-Y with Y=0

J 1 with prob. 2/3
Y =

1 -1 with prob. 1/3

is a process representation of Iyxl. Since E(?|Y) = ; a reduced process

derivative is 1/3 (deterministic): The process Y+x-%— belongs to the family

l;xl, where Lx = 6x/3' This family has process derivative identical to the

reduced process derivative of lpxl.

The next theorem shows that if the joint distribution of (Yx,?x) has a

Lebegue density, then a differentiable process representation can be found
by taking the ~inverse distribution function” method. The derivative is
automatically reduced.

Theorem 1. Suppose that (Y,¥) has a joint Lebesgue density f(y,z). Let Fh be

the distribution function of Y+hY. Suppose that Fo is strictly monotone.
Then

1, ~1 -1 p -1
lim E%Fh (u)—Fo (u)) E(Y|Y=Fo (u)).

Proof. Write Fh as

X w0
F(x) = F(h,x) = P{Y+hY'gx} - J Jf(y-hz,z)dzdy -
» x-hv @
= J Jf(u;v)dudv = Jb(x-hv,v)dv, where

X

G(x,v) = Jf(u,v) dudv. Of course gk G(x,v) = f(x,v). We have to show that we
-0

may differentiate under the integral sign to get

gE-F(h,x) h=o = lef(x,v)dv.
-
Since, for h > 0,
® ® © o max(x,x-hv)
J J %—|G(x—hv,v) - 6ix,v)| dx dv = J J %- J flu,v) du dv dx =
T T -o—w min(x,x-hv)

260

x® 0 »

1 =
J J J F Lnin(u,uthv) ,max(u,uthy)] (%) £u,v) dx dv du =

-0 =0 -x

J J |v| f(u,v) du dv and %—[G(x-hv,v) - G(x,v)] converges a.e. to
- =0

-v-f(x,v), Scheffe's Lemma implies that %—[G(x-hv,v) - G(x,v)] converges in

Ll(dx,dv) to -v-f(x,v). The same is true for h ¢ 0. Thus, for almost all x,

x -
J %—[G(x-hv) - G(x,v)] dv converges to J;vf(x,v)dv.
- -

Now fix a pe(0,1), such that Fo_l is continuous at p.Let F(h,xh)sp, i.e.

xh=F;1(p). The implicit functions theorem gives

-
3 J&-f(xo,v)dv
ax s Fthox)| _ - i
] h _ _ oh o 'h=0 _ - E(Y|Y=x)
oh % (o)

3

<z F(O,x) | _

ox X=X Jf(x ,v)dx
o

-0

= E(Y[Y=F “(p)). o

Theorem 2. Let Yh’ he(-g,£) be a family of random variables with

distribution function F,. Suppose that Fhl(u) is Lipschitz-continuous in a

h

neighborhood of Uy uniformly in h. Let Rh be a random variable with the

property

P{|Rh|)a(h)} ¢ b(h) (3)

with a(h)=o(h), b(h)=o(h).

Let Fh be the distribution function of Yh+Rh. Then

. 1,.~1 ~1 _
lim E‘Fh (uo)-Fh (uo)) = 0.

Proof. From the inclusions

Ithul < th+R <uta(h)} v I|Rh|>a(h)|

h

+
1Y, +R

pumath)l <y, cul v {[R Pa(h)}

we get

Fh(u—a(h)) -b(h) ¢F) () ¢ Fh<u+a<h)) + b(h).

261

in a neighborhood of uo=F;1(p). Therefore

F;I(p—b(h))—a(h) <F

-1 ~1
h (p) < Fh (p-b(h))-a(h)

Since |f;1(p-b(h)) - f;l(p)l ¢ const. b(h) we get the desired result. @
If the family lyxl is not smooth enough, then the theorem 1 does not

apply. There is a simple trick to bring everything to the smooth case: a
regularization.

Definition 4. Let lpxl be a family of probability measures. We call the

family ipLO) = Hy * N(0,02(1+(x-xo)2)l the o-regularized family at Xge This

family has smooth densities.
Remark. The idea behind the definition is the following: If
Y. =Y + {xx).Y_ +R
X X o 'x X
(o o

is a differentiable process representation of lpxl, then

Y= (Y, +0z,) + (x-x)(Y_+0Z,) + R
X X 1 o X 2 X
o o
is a differentiable process representation of lpLO)l, where Z1 and 22 are
N(0,1) random variables independent of each other and everything else. The

reqularized variables (Yx +oZl) resp. (Yx +°ZZ) fulfill Thowever all
o)
smoothness conditions.
We are therefore able to state the main result.

Theorem 3. If lpxl possesses a Ll—process derivative at X, which satisfies

(3) then

(i) For the regularized family fpu (o)

(O)l with distribution function F

X X
3 o)1
3§'Fx (u) x=, exists for all o»0
and
2—-F(O)_I(U) is uniformly integrable for U~uniform [0,1]
IX X e
L () . (2j-1) 1
(ii) For every veC (R) with sup sup | » (x) T (23] | ¢

j ox

X — (¥, u) is differentiable at x=x_ and

)
—<
ox (K ’

% lx=x_ < K'S;P|? (y) | for a constant K.

262

Conversely, if (i), (ii) 1is satisfied, then there is a pair of random

varibles (Y. ,¥) such that
X ''x
o "o
= E(Yx * (Yx)
o o

3
— (?,yx)

ax X=X
o]

()

for all veC . The process

e .

X — Yx (x xo)Yx
o o

is a reduced process representation for Iyxl.

Proof. The first part is contained in theorems 1 and 2. In order to prove
the second assertion, let

(Y(o)'?(o)) - (F(o)-l
X X X
o o

pla 1y)

F:]
v, X X X=X
o

with U~uniform [0,1]. Because of (i) (YLO),?QO)) is uniformly tight and we
o o

may choose a limit (Y_ ,Y¥_) as o - 0. Of course e(Y,)=

o “o o)
Let yLO) = pr N(O.02(1+(x—xo)2)) the regularization and
Lio) = u, x N(O,oz)

another different smoothing. Let L(Y

(o)
X

i")) = y)i") and #(z) = N(0,0%), 2z

independent of Y'~' . Then, for ¥+ e C(w)(R)

(o)

[< #op > - ¢ ?,LQO) | = |E ({9

X
= |x - x

+ (x-x) -02) - ?(YLO)))I =
R (4)

Let ?o(y) = J *(y-z) dN(O,oz)(z) be the regularization of ¥. Then, by (4)

3 _ 9 ~(a) _ 3 (o)
3w CYorFx Vxex Taw CPHy Olgex T e PHg Oy tOL9)
o (o] o
= e e i) v o0 —— EW P) as o —0 (5)
A Taylor expansion of ¥ leads to
o .
¥ (y) = [#ly-z) AN(0,0%) (2) = #ly) + }?(Zj)(y% o)
o ' T T
j=1
Since sup | sup ?(Zj-l)(x) . 1 | ¢ « we get from (ii)
j X 2.4...‘2]5
3 _ 3 2
3% TorBy) T g PO 0(o”)
and therefore from (5)
9 _ . .
3 ¢ PH s E(Yx ¥ (Yx))

o o
which is the desired identity. o]

263

If x — H, Possesses a process derivative, it may not be weakly
differentiable (Simply take Yx = x). Conversely x — K, may be weakly

differentiable without having a process derivative:

Take ¢ uniformly distributed in [0,1] and
0 £<x

vx={
1 £)X.
If A is a set with boundary oA, satisfying (ﬁx+ﬁx)(aA) = 0 then x — yx(A)

is differentiable, if x — Hy is weakly differentiable (cf. property 8. of

section 2).A similar statement is not valid for process derivatives.

A numerical example

Let Hy be an exponential distribution with expectation x. Hy has density

fx(y) = x-exp(-xy)
and inverse distribution function
-1 _ 1 _
Fx (u) = i-ln(l u).

Let Yx be distributed according to Hy We look for estimates for g;E(JY;) =

§§-< J?ﬂyx >. Three different methods will be considered:

1. Numerical differences

Fix a h > 0. We estimate o < J?]px) by

OxX
(1),_1 N -
Z, =gl x+h /Y;) (6)
where Yx+h' Yx are independent. Of course, (6) is a biased estimate. We may

reduce the bias by making h very small but then the variance will increase.

2. Process derivatives
A process representation of Iyxl is

1 ,
Y. = -i-ln(l—U) U ~ uniform [0,1].
A process derivative of /Y; is

Z(Z):= - %—x_2/3 /In{1-U7.

X
which is an unbiased estimate.

3. Weak derivatives

) . .
A
= Yopy > is estimated by

Z(3):= _1_
X e.Xx

Wt - Al

where Y;l) resp. Y£2) are distributed according to ﬁx resp. ﬁx. Details of

the generation of these random variables are contained in the next secticn,
example 2). This estimate is also unbiased.

264

The following table compares the variances of the three estimates. Notice,
that in the particular case we may calculate analytically that

H(x) := < J?ﬂpx > = J x /Y exp(-xy) dy = l-./n7x.

2
. _ =/m
and H (x) = W—— .
TABLE 1:
x=1.0 x=2.0 x=3.0
H'(x) -0.4431 -0.1566 -0.0852
Numerical difference :
h=0.1 E(Z;l)) -0.4590 -0.1569 -0.0853
Var(Zil)) 10.8 5.37 3.57
h=0.01 E(Zx(l)) -0.4308 -0.1567 -0.0852
Var(Z}((l)) 1069.9 534.5 356.2
Process derivative:
Var(Z;z)) 0.0485 0.0061 0.0008
Weak derivative:
Var(2;3)) 0.0226 0.0027 0.0001

We see that the weak derivative has always the smallest variance.

4. EXAMPLES FOR WEAK DERIVATIVES

4.1 Poisson distribution.

Let Hy be a Poisson distribution with mean x, i.e.

00
= -X X
Hg = © ESTsJ'
=0

(]
P
(=)

265

00
]
. -x \ x o .
where H =€ E T 6j+1 , a shifted Poisson distribution and Hy = Hy- This
=0

is however not the Jordan-Hahn decomposition. The latter is

.1 -x J-x X - 1 -x -3 X7
e T ¢ E[x]'ﬂ_éj’ B =28 & ¢ [x_]-jTGJ
j=x1 j=1
with
- j
e J-%X1 X
o B
j= x

The second representation has a smaller ¢, namely

X C
0.5 | 0.6.65
1.0 | 0.3679
2.0 | 0.2707
3.0 | 0.2240
4.0 | 0.1954
5.0 | 0.1754

but the first representation has clear sampling advantages. We may sample ﬁx

as a Poisson-variable Y and Ax as Y+1. Of course, process derivatives do not

exist, since the Poisson distribution is discrete.

4.2 Exponential distribution

Xy

If Hy is an exponential distribution with density x-e 7, a derivative is

1 _ ~XY o (wy—1)a XY
k;z? x-e{l-xy)e llygl/xldy’ x-e-(xy-1)e llyzl/xldy]

A process representation for the exponential distributions is
1
X ln(f)

where ¢ is uniformly [0,17] distributed. A process derivative is

1
—21n(£).

X

266

This derivative does not help us in differentiating e.g. x — yx([a,w]),
the probability that a px-distributed randon variable is larger than a. With

the weak derivative we get

9 o K .
3% K llae]) = C[px([a,oo]) K ([a,])].

4.3 Normal distribution

Let Hy have a Lebesgue density

2
= L _ 1(y-m(x)
fx(y) = = a(x) exp[f'_ETKT_J]

and x — m(x) and x — o(x) be differentiable.
A process representation for Hy is

o(x) (¢-m(x))

with ¢~N(0,1) and derivative o (x) (¢-m(x)) + o(x) -y (x).

(1)-function then

If gisa C
X — (g,/.lx)

is differentiable with derivative
—a < y = (L >y = |Lg-f d (7)
3% g:Fx Q:Fx g X Yy

where L is the differential operator
o (x)

(Lg) (y) = g'(y)l? T o(x)m'(x)]

In the space Ll(R) n C(l)(R) (7) is the inner product. L has an adjoint
operator in this space

*
[(Lg)-fxdy = JQ-L (fx)dY
where

* _ 9 ' _ o (x)
V() = 3 [t (a0’) - Sk] (8)

The weak derivatives have Lebesgue densities which are identical to the
positive resp. negative part of (8).

267

5. SAMPLING DERIVATIVES OF PROBABILITY MEASURES

Let Hy be a probability measure on (S,4) and let (c,ﬁx,ﬁx) be a weak
derivative. If a pair of random variables (Y¥,¥) has marginal distribution L&

resp. ﬁx, then

c (g(¥)-g(i)) (9)
is an unbiased estimate for 3; (g,yx) for g € C{S). Of course, we are

interested in estimates with small variance. Let Z:=g(Y¥) and Z:=g(Y). The

g +g

marginals of (Z,Z) are the image measures ﬂx resp. p. of hx resp. p . and

X X
hence fixed. We are looking for the joint distribution with given marginals

which minimizes Var(Z-Z). The solution of this minimization problem is given
by the following theorem.

Theorem 4. (Major,1978). Let ¥ be a convex function. Let (Zl'ZZ) have

resp. F2. Then
and Z, has d.f.F2 | =

marginal distribution functions Fl

inf{ E(?(Zl—Zz) : Z1 has d.f. F1

_ -1, -1
= Jl?(Fl (u) F2 (u)) du
0
Corollary. The joint distribution which minimizes Var(Zl—Zz) is that of
(FII(U),FEI(U)) U ~ uniform [0,1].
Thus the minimal variance estimate for (7) is
c(Z1 - Zz)

-1 -1
where Zl- Fl (u), Zz— F2

g g
F d.f. of Hy: F2 d.f. of Hy+

(U), U ~ uniform[0,1],

Since the decomposition of a signed measure is not unique, we may decompose
yi in several ways.

p; =c (L& - ﬁx) (Jordan-Hahn decomposition)
Hy = d (ux - ux) {(other decomposition).

Although the constant ¢ is minimized for the Jordan-Hahn decomposition, it
may happen that a different decomposition leads to an estimate for %; <
g,yx) with smaller variance. It is somewhat astonishing that in some cases
we can do better than to decompose yi into orthogonal parts and to use then
the optimal estimate given by the Corollary. Here is the example:

Example: Let Hy = (o.125+x-0.1)61 + (0.125-x-0.4)62 + (o.125+x-0.1)¢53 +
(0.125-—x-0.2)64 + (0.125+x-0.1)65 + (0.125+O.2)66 + (0.125-x-0.4)6.7 +
(125+x~0.5)67.1

268

The Jordan-Hahn decomposition of p; is

c=1

;}x= 0.1-6, + 0.1:6, + 0.1:6; + 0.2-6¢ + 0.5-5, ,

px= 0.4:5, + 0.2:5, - 0.4-5,
Another decomposition of p; is

d = 1.05263 = (0.95) 7}

bx= 0.095-61 + 0.145-63 + 0.095-65 + 0.19-66 + 0.475-67.1

V= 0.38:5, + 0.05.5, + 0.19-5, + 0.38-5,.
Let Fl resp. F2 be the distribution functions of L& resp. px and G1 resp. 62
the distribution functions of bx resp. Dx‘ We may estimate

g—xjy du (y)

(which has by the way the constant value 1.25, easily obtainable by direct
calculation) either by

D, := 1-(F] (V) - E;}(0) U ~ uniform [0,1]
or by

D, = 1.05263-(6.1(U) - 6. 1(u))

2 1 2

A somevwhat lengthy calculation shows that

E(Dl) = E(Dz) = 1,25 (as it should be!)

but
Var(Dl) = 2.4415 > 2.3198 = Var(Dz) !

For the practical implementation of optimization algorithms one is often

satisfied with a reasonable, though not optimal estimate of gf ¢ g,px>. The

simplest way is to take the Jordan-Hahn decomposition p; = c([lx - Lx) and to
sample Y resp. Y independently from ﬁx resp. px. of course, the variance

could be decreased, if g(¥) and g(¥) has positive correlation, but it is not
easy to sample from such a joined distribution.

In principle, any known method for random number generation can be used to
sample (Y,¥) from (px,ﬁx). (For the generation of non-uniform variables see

Devroye{1986)). The problem discussed in this section is however the
following:
Is it possible to modify a generator for a px—distributed random

varible Y in an easy way to get a random number generator for the derivative
(Y, Y)?

269
m
We begin with discrete distributions. Let Hy = } pi(x)-su , where 5u is
i=1 :
the point mass at u. Alternatively, we may write

PlY=uiI = pi(x).
Of course, x — Hy is weakly differentiable iff x —o pi(x) is
differentiable for all i. Let

- (3) _a + Tl
P, (x) := Sif'pi(X) and a := max (a,0); a := -min(a,0).

The derivative is:

m m
. (3) o T e F) -
< -2 2 xn* = E (537" (x1)
i=1 izl
m m
(3) 1 (3) oyt i w(3) _ 1,2 (3) -
i -2 = 57 (x)) ‘0 iy -2 = 67) 5,
i=1 i=1 3

Consider the following graph for illustration. Let x be univariate.

AN
/ N -~
(xy (x} N _(x)~ _ {x)
p3 / p4 p5 ~ \ps
/ AN \\
/ ~ ~
Ve / ~ R

4 92 U3 g U5 3

To sample Hy: We have to choose one of the i-th arc with probability pi(x).
Suppose that the solid arcs indicate that H%'pi(X) > 0 and the dashed arcs

correspond to d p.{x) < 0. We sample p_ resp. p_ by
dx ©i X X

resp. 0

Ke)
) AN
’ /I N ~
. . . . SO0 .
pl(x) p4(x) p5(x) pz(x) L I:p3(x) N p6(x)
c c c - , ¢ M. T e
7 I N
Vi N
v ! N
7] N
ul u4 2 u

m jul
where ¢ = E (pi(x))+ = E (pi(x))_.
i=1 i=1

270

Sometimes random numbers are generated in a two - or multiple step
procedure. Let, for instance
m
= Ax) v,
} pJ X.]
i=1

We sample Hy by a two-stage procedure:

Let Z take the value j with probability pj. If Z equals j then a v

X,]
distributed r.v. is sampled. If x — Yy j is differentiable with derivative
(cj,ilx i’ x J) and x— p (x) is differentiable, then so is x —s Hy and the
derivative is

n n n
1 . 1 1
[d a—}p (x)u, E}pj(x)u’ d—} (x)u E} (x)u]
J =1 J=1 = ':
m n

where d = E p. + E p. (x) - cJ. The sampling procedure is the following:
=1 j=1

Let ¢ = ;(x) and Z resp. Z the derivatives of Z.

I 5o
F,P\/ﬂ

h}
With probability g-we sample Z and if Z=3
we sample finally Vj

{and analoguously for Z)

with probability 1- g-we sample Z an if Z = j
we sample finally Vj
(and analoguously Vj)

For a non-discrete probability Hy there are several methods of sampling. We

discuss here the transformation method:
Suppose that
Yx := K(x,¢) (10)

is a y -distributed random variable, where ¢ is uniformly [0,1] distributed.

A typical transformation method is the inverse-distribution function method,
where K is defined as

1

K(x,8) = F " (¢)

F being the d.f. of M- Our goal is to find random variables ?x resp. Vx

which are distributed according to

21

Theorem 5. Suppose that (x,z) — K(x,z) is twice differentiable. Let, for
z € [0,1]

2
3 3
2 kx,2) 7 R®Z 5 Kx2)
3z 3X YA
L(x,z) := +
a; K(x,z) —E-K(x z) ’
az ’
Let L(x,z) = L+(x,z)—L_(x,z) be the decomposition of L into its positive

resp. negative part. If f, resp. 7, have Lebesgue densities

+ -~
const. L (x,z) resp. const. L (x,z)
on [0,1], then

?x ~ K(x,q,)
fx ~ K(x,7,)
is a possible sampling realization for ﬂx resp. ﬁx.
Proof. By the transformation rule of measures we know that the density of

K(x,¢) is
1

) -1
3E'K(X’K (x,y)

fx(y) =

Let p; be the signed measure which is the derivative of x —Hy - 0f course

ay’ ¢ (y)
P (y) = % x ¥ (11)
ayx fx(yi :

Let A be the Lebesgue measure on [0,1] and let the signed measure u; have
the density

dux dpx
ax (z) = T (K(x,z)).

Everything is proved, if we show that

,))
dv 2 _kix,z) 7 Kxz)gKixz)
X JdZaIX Iz
- (z) = - - +
dx 3 2
3z Kix.2) 2 K(x,2)
Iz

which follows from simple calculus. 0

272

Example 1. Let K(x,¢) = - %ln(l-g); i.e. Hy is an exponential distribution.

Then L(x,z) = ;41n1—z)+1). The positive resp. negative normed parts of L are

L+(z) e-{lnz+1) -1

{z21/e]

L (z) -e-(lnz+1)-1|z(1/eI
_ 1
andc—ﬁ—.

If m has density L (z) and 7, has density L™ (z) then

Y. = K(x,nl) Y = K(x,qz)
is a possible model for the derivatives. 7, way be sampled by a rejection

method, since it has bounded density. /qz has the density
_292(21n2+1)1|z<1/e| which again is bounded and may be sampled by rejection.
Note that the distributions of m and 7, both do not depend on x!

The very same method can be applied, if the distribution of Fy is sampled by

using a couple of uniform random variables, i.e.
Yx = K(x,tl.---.tk)

Suppose that for fixed ZgreeenZy

(x,zl) —_— K(x,zl,zz,...,zk)

satisfies the assumptions of theorem 1, then we may view Ky as a

decomposition of the form
Ky = Jux(~|zz,...,zk) dzz,...,dzk.

where Yy is the image measure of K(x,(l,zz,...,zk). Since the "mixture

measure” dz ,dzk does not depend on X, vwe may differentiate oy by mixing

PIRRE
over the derivatives of Yy i.e.

(c,hx,ﬁx) = (c,%-be(-(|22,...,zk)dz,...,zk, %—Jﬁx(-|22,...,zk)d22,..,zk)

where ¢ has to be chosen in such a way to make ﬁx and ﬁx probability

measures.

Example 2. Take a normally distributed random variable Yx ~ N(x,1), sampled
by the Box-Muller method:
= /(i)
Y, 2In{l-¢, cos(n§2)+x

273

Here K(x,zl,zz) = /—21n(1-21$ cos(2nzz)+x. (X,zl) — K(x,zl,zz) satisfies
the assumptions of theorem 1 and we may calculate L(x,zl,zz) for fixed zZyt

L(x,zl,zz) i= ——————l—————-— /~2In{1-2)
/~2In(1-zZ}
We may decompose L in the two parts
L, = 1, L, = /ZIn(i-2]
J/~2In{1-2)

We do this for the sake of simplicity - being quite aware that this is not
the decomposition of L into positive and negative parts.

1
As J—l——dz = J/—_Zl'n' T2 dz = 1_/‘(%_) .
0 “&4lnil-z JZ JZ

We have to sample random variables ?x resp. ?x with densities

—1— —r resp. l—J—lnizi .
/o /S In(z) e

These densities are unbounded on [0,1] and the calculation of the
distribution function requires the knowledge of the incomplete r-function.

So, we proceed a different way: The densities of J?Z resp. Jyz are

X X
-1— -z resp. 1— z/~1In{z)
/o /In(z) /u
which are both bounded by —l—-e_l/z.
Ju

The final algorithm is:

1. Sample Ul’e2’€3 from uniform [0,1]

2. Accept
s _ 2
Yx = ./ 21n(e1) cos(n£2)+x
if £3 -gel/z R
/-21nz
Accept

o _ a2
Yx =./ 21n(£1) cos(n£2)+x

if g3ge1/2-z -2Inz

3. The constant is ¢ = /7 /2.

274

Of course, one could also consider the function
(x,zz) —_ K(x,zl,zz) for an application

of theorem 5. Here

cos(n-zz)
L(u,zl,zz) = —
sin“{m-z,)
2
which is not integrable in [0,1]! There are two poles: z, = 0 for the

positive part and 2z, = 1 for the negative part. We are therefore led to try

2
to take the point mass at 0 for the positive part and the point mass at 1
for the negative part.

Thus the algorithm is
1. Sample el from the uniform distribution

2. Take
?x = J—21n1§1$ + X
?x = -J—21nleli + x
c = (211)—1/2

Obviously, this leads to a correct distribution.

REFERENCES

[1] Bickel, P.J. and Freedman, D.A. (1981). Some asymptotic theory for the
bootstrap. The Annals of Statistics, Vol. 9, No. 6, 1196-1217.

[2] Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer
Verlag, New York, Berlin, Heidelberg.

[3] Dunford, N. and Schwartz, J.T. (1957) . Linear operators, Part I.
Interscience publishers, New York.

[4] Ermoliev, Yu. (1976). Methods of stochastic programming. Monographs in
Optimization and Operations Research, Nauka, Moskwa.

[5] 6lynn, P.W. (1987). Construction ot process-differentiable
representations for parametric families of distributions.
University of Wisconsin-Madison, Mathematics Research Center.

[6] Ho, Y.C. and Cao X. (1983). Perturbation Analysis and Optimization of
Queueing Networks. J. Optim. Theory Applic. Vol. 40, No. 4,
559-582.

[7] Kersting, G.D. (1978). Die Geschwindigkeit der Glivenko-Cantelli
Konvergenz, gemessen in der Prohorov-Melrik.
Math. Zeitschrift 163, No. 1, 65-102.

[8] Major, P. {1978). On the invariance principle for sums of independent,
identically distributed random variables. Journ. of Multivariate
Analysis 8, 487-501.

[9] Rubenstein, R.Y. (198l). Simulation and the Monte Carlo Method. John
Wiley, New York.

[10] suri, R. (1987). Infinitesimal perturbation analysis for general
discrete-event systems. To appear in Journal of the ACM.

THE SEPARATION OF JETS AND SOME ASYMPTOTIC PROPERTIES
OF RANDOM SEQUENCES

I.M. Sonin
Central Economic Mathematical Institute, USSR Academy of Sciences,
ul. Krasikov, 32 Moscow 117418, USSR

1 The present article is concerned with three seemingly unrelated problems which
are actually profoundly interconnected. We shall reler to these as Problems 1,2,3.

PProblem | deals with a mathematical mmodel of a physical problem concerning the
asymptotic behaviour of the nonhomogencous solution in a system ol vessels {discrete
coloured streams) as time tends to infinity. Theorem 1 proved in [I| - a theorem on
scparation of jets - states that every coloured stream with a bounded number of
vessels at cach moment, can be decomposed into jets (a jet is any sequence of subsets
of vessels) such that stabilization of volume and concentration takes place in every jet
and the overflow between dilferent jets is finite on an infinite time interval. From the
physical point of view a coloured stream is an example of an irreversible process and
in our opinion Theorem 1 is only a sketch of a general theorem about the asymptotic
behaviour of such processes. From the probabilistic point of view Problein 1 is a
problemn on the asymptotic behaviour of a nonhomogencous Markov chain. Using
Theorem 1 we get Theorem 2 which describes such behaviour under the single condi-
tion that the number of elemenis in the state spaces of the Markov chain is bounded.
Problem 2 deals with P(lim inf (X, € D,))) for classes of random sequences with the
same two-dimensional distributions P(X,, X,,;), n€ N. Theorem 3 gives an
interesting incquality for such probabilitics. Problem 3 and the corresponding
Theorein 4 are concerned with the existence of a nonrandom sequence (barrier) such
that the expected number of intersections between this sequence and the trajectories
of a martingale-type random sequence is finite on infinite time interval.

2 A sequence (M,, rl) = (M, r) is called a (discrete) stream if its elements satisfy the
following conditions:

M,CN={1,2---},r7>0,icM, jeM, ,neN ,
(1)
Zr:;j: Y r;’;"_+l<oo,j€Mn+l,n€N

The elements of a stream (M, r) have the following interpretation: M, is a set of
vessels in moment n, r¥ is the amount of liquid (solution) flowing from vessel i € M,

276

to vessel j eM,, | | in moment n.
Denote by mf, = ZjeM,l, . riJ the amount of solution in vessel i in moment n. We
assume that }J;¢ g, mj < co and hence [rom (1) without loss of generality

B omhnen @)
1C M,

A scquence (M, t¥, 0,, al) = (M, r, O, a) is called a (discrete) coloured stream
(CS) il (M, r) is a stream, O = (0Q,) is a sequence of subsets, 0, C M,, ne N, the
numbers a}, satisly the following conditions:

0<al<l,ai=0,i€0, ;
(3)

ol 1= % aprd/ml (T €M \Oy
teM,

The number o} is interpreted as a concentration of the solution (temperature) in
vessel ¢ in a morment n. The sequence of sets (0,) is called an "occan” - the concentra-
tion of the solution in vessels of this sequence is always zero and does not depend on
the concentration of the solution llowing into these vessels. Fivery CS (M, r, O, a) is
specilied il a stream (M, r), an ocean (0,) and initial values o} for i€ M\O, are
specilied.

Problem 1 is to describe the asymptotic behaviour of the CS as time tends to
infinity. For a [ixed stream, any sequence J = (J,,), J, € M, n € N is called a jet; a jet
J = (J,) is called a trap if the tolal ‘overflow’ from jet J to other vessels is finite, i.e.

by r:;j + by r:? < oo . (4)

n=11€Jp, ¢y ¢ 1€

o0
A tuple of jets v = (J',...,J) is called a parlition (of M = 1l M,) il

a) JinJl=g s £,
c
b) UlJ;": M, nc N.
8=

Let |B| be the cardinality of the set B and m,(A) = Y icpy, mhi, A CM,. The fol-

lowing theorem was formulated and proved in [1].

THILOREM 1 (Separation of jets). For any CS (M,r, 0,a) such that
[M\O,| < N <00, ne N there exist an integer ¢, 1<c <N +1, a luple !, dl),
I=1,.,¢,m'>0, 0<a'<---<a"<1, a parlition ~= (JY,...,J9, J =,
l=1,...,c and a tuple of jets (J',..., J°) such that .if, cJbi=1,...,c and

n’

a) Stabilization of the volume in every jet J' takes place,

imm,(J)=ml 1=1,..,¢c,
n

b) Stabilization of the concentration in every jel J' lakes place, with the possible
ezxceplion of some vessels whose volume lends lo zero, 1.e.

: ¢ _ =l
lime), = &
n

yizi, e cJl Ii'rlnmn[.lfl\jfl) =0,l=1,...,¢,

217

¢) Everyjet J'1=1,... ¢ is atrap for the stream (M, r).

REMARK 1 The existence of the partition 4 with properties a) and b) is rather
trivial. A nontrivial fact is the existence of 4 with all three properties a), b), c¢). The

main diflicultics arise in the case of lim,inf; ¢ py m! = 0.

REMARK 2 The partition v in Theorem 1 was constructed in |1] recursively in an
explicit form and it was proved also that the overflow belween each jet and other jets
can be estimated through the increments of the function F(m,, a,) = }icm, m! (al)?,

which is monotonically decreasing for every CS.

3 The probabilistic interpretation ol Problem 1 is the following. Let (M, r) be a
stream. Without loss of generalily m}, > 0 for all ¢, n. Consider a sequence of matrices
P, =[P, where P = rii/mi, ie M,, je€ M., n€ N. It is obvious that P, are sto-
chastic matrices and (P,) with initial condition m{, + € M|, uniquely specify a nonho-
mogencous Markov chain (Z,,) with state spaces Mn, transition matrices P, and initial
distribution m'i. Conversely, il a Markov chain (Z,) with values in discrete spaces M,
is given, then defining a sequence rf by formulae r7 = P(Z, =14, Z,,, =), i € M,,
j€ M, il is casy to check that (M, r) is a stream. Thercfore, a siream and a nonho-
mogencous Markov chain are two inlerpretations of the same model. Obviously the
sequence m!, = P(Z, = 1) = YieM,_, r¥ satisfies the [ollowing relations.

my,, =m, P, ,neN , (5)
(M|

where m,, = (m},..., m,) is a row-veclor.

The relation (4) from the definition of a trap means that the expected number of
the entrances into and exists from a jet (J,)) ol a trajectory of the Markov chain (Z,) is
finite.

Any CS (M, r, O, a) also has a simple probabilistic interpretation. It is easy to
show that a CS may also be defined in such a way that the initial condition af, { € M,
will take a form af = I;(i), where G C M|\O,, I(-) is a characteristic function of the
set G. Let (Z,) be a Markov chain corresponding to a stream (M, r). Define a sequence
of sets (D,)) by D, = G, D, = M,\O,, [or n > 1 and introduce the posterior probabilities

Bi=P(Z,e D,y s=1,...,n|2, =i),i €M, n €N (6)

Using the Markov property of (Z,) it is casy to show that g satisly the same [ormulae
as al in (3). It is evident also that Bi=ajforie M,.

Jonversely, any nonhomogeneous Markov chain Z = (Z,) with values in some
discrete spaces (M,) and a sequence of sets D = (D,) D, C M, (we shall say for the
sake of brevity that (Z, D) is a Markov pair) specily a CS with a stream (M, r),
i =P(2, =1, 2,,,=13), i€ My, j € M, with an ocean 0 = (0,), O, = M,\D,, and
with «} given by (6). So as in Lhe case of a stream and a Markov chain, CS and a
Markov pair provide two inlerpretalions of the same mathematical model.

It is useful to note that, if we introduce the sequence of vectors (a,), where
a, = (a}, 1 € M), a;, = alm), is equal to the amount of a solute in vessel ¢ in a moment
n and the substochastic matrices P, = |PJ|, with P =p¥ lor j¢ O,,,, p =0 for

218

i€ 0,1, n € N, then, as in (5), we have
8, 1 =a,P,neN . ()

The above relationship between CS and Markov pairs allows us to consider
Theorem 1 as a theorem describing an asymptotic behaviour ol posterior probabilities
(6) for a given Markov pair (Z, D), D = (D,) in the case when |D,| < N < 0co. Proper-
ties a) and b) of Theorem 1 take a form

a) lim,P(Z, € J) = il >0,0=1,...,¢c , (8)

b) lim P(Z,eD, 1 <s<n|Z,=i)=d ielcil, (9)
lim,P(Z, € (JI\JD)) =0,1=1,...,¢c ,

FFrom (9) it is easy to gel

é' = limP(z,ep,, 1 <8 <n|Z,€J) . (10)
n

4 We now present Theorem 2. We introduce some useflul notions which play also an
important role in the proof of the Theorem 3. Generalizing the previous definition of a
trap for a Markov chain, let us say that a sequence of sets J = (J,)) is a trap lor a ran-
dorn sequence (r.s.) X = (X,) if as in (4)

00
2 IP(Xn € Jm Xn+l ¢ Jn+l) + P(Xn ¢ Jm Xn+l e‘]n+ 1)] <oo . (11)

n=1
If the r.s. X is lixed or there is no danger of confusion we shall omit the reference o X.
Il J=1(J,) is a trap for X = (X,)) let us call the limit P(X, € J,) (it always exists for
any trap) as Lhie volume of J for X. We say thal a trap J is indecomposable if its

volume is posilive and J can nol be represented as a sum of two traps with posilive
volumes, J, = J} t J2, n€ N.

THEOREM 2 Let (2,) be a (nonhomogeneous) Markov chain with values in M,
M| <N<oo, ne N. Then there exist a parlition into indecomposable traps
7 = (JY...,J%) and a tuple of numbers !, rr"uL(j), jEM, ke N, 1=1,...,¢, such that
a) lim,P(Z, € JL) =m'> 0, lim,P(2, € J\|2 = j) = mi(5),
b) limylim,P(Z, € J}, 2, ¢ J) = mls,
Q) limglimg|P(% = j, 2, = i)@' — P(2; = §)P(2, =)8 =0,

i=€di,izi el s, 1=1,..,c. Here6"isthe Kronecker symbol.
REMARK 3 It is easy Lo prove thal the existence of v, specilied wilh regards to
traps with zero volumne, and points a), b) and point ¢) for s # I are valid for any r.s.
with bounded number of values. A nontrivial fact, valid in general only for a Markov
chain with a bounded number of values is point ¢) for s = I. In other words any Mar-

kov chain with bounded number of values has a mixing properly inside every indecom-
posable trap. Theorem 1 is used only in the proofl of this part of Theorem 2.

279

5 Let us dwell upon another interesting itern related to Problem 1. We give first

some basic definitions and notions regarding the so-called theory of majorization. Our
starting point is the books of Marchall and Olkin |2] and of Dieter and Uhlman [3]. Let
z, y be the vectors in llf. The veclor z is said to be majorized by the vector y (y > z)
il for any continuous convex function g the inequality Y;¢(y,) > ¥,9(z,) holds. The
relation > defines a partial pre-order and il y > z and z > y then = may be gotten from
y by somne perinutation of coordinates. This relation also has some other interesting
interpretations. In particular, y > z if and only il there exists a doubly stochastic
matrix P such that z = yP. According to an econormic interpretation the coordinates
of a vector z = (z!,...,z") are the incomes of N economic agents and the transforma-
tion ol y into z represents some “[air” redistribution ol incoines. The background for
geomelric interpretation gives Birkhofl’s theorem on the representation of a doubly
stochastic matrix as a convex linear combination of permutation matrices. A [unction
preserving the relation of majorization, i.e. such that y > z ifl ¢(y) > p(z) is called
Schur-convex or simply S-convex. As was mentioned above all the functions
p(z) = ¥3;9(z;}, where g is convex are S-convex. Il g is strictly convex then is strictly
S-convex, i.e. p(y) > p(z) if y > z and z 3 y. The theory of majorization gives a nnified
approach to deriving a large number ol different inequalities and results based on
them in different fields of mathematics. The systematic consideration of these prob-
lerns may be found in |2].

The generalization of the main notions of theory of majorization to abstract alge-
braic systems —~ W*-algebras is described in a book [3]|. Some sections of this book are
devoted to physical interpretations of the majorization. If the vectors z, y are inter-
preted as the states of some physical systems and y > z then z is called more mixed,
more chaotic. This terminology is due to the fact that any sequence of vectors (z,),
where z,, | =z, P, P, are doubly stochastic malrices, n € N, describes an irreversible
process. The property of irreversibility fails to hold of course if P, are only stochastic
(not doubly stochastic matrices). But if a state of some physical system is described by
a pair of vectors 2 = (m, a), m, a € Ii’,v and the transformations of a physical system
 i1s an N x N stochastic matrix,
n € N, then the property of irreversible holds. This fact follows immediately fromn the
existence of functions prescrving the relation >> (sce Section 1.9 of book [3|). An
example of such a function is ¥);m*'g(a’/m'}, where g is convex. Note that in our paper
CS (without an ocean) is a sequence of states (m}, af), a! = alim}, i € M,, of the same
type (sce formulae (5) and (7)) and that the function ¥;m‘g(-/) was used in [1] for
9(2) = A? (see Remark 2).

Every sequence (z,), 7, | = 2,P,, 2, € RY, vyhere P, are doubly stochastic, can
be considered as a specific CS with m{, =1/N, o} =12/Y 2}, i=1,..,N, ne N. So
Theorem ! may be applied but in the case when m! = constant its proof is rather
trivial (see Remark 1).

n?

Y ha : -) — >
(z>> 2) have a form m, ,\ = m P, a, | = a,Pp, |

The idea of using the theory of majorization to the description of irreversible phy-
sical processes was elaborated in some papers following the pioneering work of Ruch
|1]. But in these papers as in [2| and [3], two important problems were not touched:
what is the limit stale of an irreversible process and how is this limit achieved.
Theorem 1 gives an answer Lo these questions in a more general situation than doubly
stochastic transformations - that is in the case of CS. Moreover, in our opinion it is
only a sketch of a general theorem about the asymptotic behaviour of an irreversible
process. The heuristic formulation of this theorem is the following. The limit state

280

exists and the system may be decomposed into subsystems such that there is mixing
inside every subsystem, the limit state of the subsystem is “uniform” and the interac-
tion belween subsystems is in some sense “finite”. The decomposition may depend on
time. Of course this theorem would be valid under some conditions of the same Lype
as in Theorem 1. We siress once more that the crucial point is the finiteness of the
interaction.

6 Now we turn to Problem 2. The rs. X = (X,) and X = (X,,) with values in some
discrete spaces (M,) are called equivalent (X ~ X) ifforal AC M, BC M, ,,,ne N

P(X,€A, X, ,€B)=P(X,€4,X,,,€8) . (12)

It is obvions that every class of cquivalent r.s. contains some nonhomogeneous
Markov chain and conversely, every Markov chain defines some class of equivalent r.s.

Let X = (X,) be a r.s., D = (D,) be a sequence of sets. Denote by

i(X, D) = P(lim inf(X, € D,)) = P(Y 0 (X, €D,))

N
n>
the probability thatl the trajectories of X do not leave (D,) after some (random) time,
and by

s(X, D) = P(lim sup (X, € D)) = P((X, € D)

nu
kn>k
the probability that X visits {(D,)) infinitely often.

Problem 2 is to investigate i(X, D), (s(X, D)) for some lixed class of equivalent
r.s. The following theorem was formulated in |1] (the proof is not yet published).

TIHEOREM 3 Let Z =(Z,) be some nonhomogeneous Markov chain with values in
(M,) and D = (D,) be some sequence of sets, D, C M,, n € N, such that |D,| < N < oo,
n € N. Then for every r.s. X ~ Z the following inequality holds

i(Z, D) < i(X, D) (13)

REMARK 4 Since i(X, D) =1 — s(X, M\D), M\D = (M, \D,) the incquality (13) is
equivalent to the assertion that for any Markov chain Z and a sequence G = (G,) such
that |[M\G,| < N<oo,n€e N

s(2,G) > s(X,G), X~ Z . (14)

REMARK 5 There is an example where |D,| — co and the enequality (13) fails to
holtd but it is too complex to be presented here. The motivation for studying (13) was
the following. The question of when Markov strategies ensure a payoll close to the
value is one of the main questions arising in the theory of stochastic programming.
Strange as it may seem, there is as yet no full answer to this question. In particular it
is an open problem for a countable stale space and a functional E lim sup f(X[T), where
(X1) is a r.s. corresponding to a strategy #. In the fundamental work of 1Iill [6] a posi-
Live answer was given for a finite state space and a class of functionals L(zg, z,- - -)
called shift-and-permutation invariant. This class includes the classical {inite fortune
gambling problems of Dubins and Savage |5|, L =lim supf(z,), as well as a case
L = lim inf f(z,) and their combinations, (in a recent paper of I1ill and Pestien [7] the

281

case of L = lim inf was extended to a countable state space). Using the well-known fact
that for any strategy = there corresponds a Markov strategy ¢ such that X" ~ X and
X° is a Markov chain, it is easy to get from Theorem 3 the result of llill for a finite
state space and L = lim sup f(z,). Note that the formulation of Problem 2 and the
hypothesis about inequality (13) are due to Ii.A. Fainberg. Note also that the exam-
ple showing that the incquality (13) fails to hold if |D,| — co, does not imply that
theorem of Hill Tails to hold for a case of countable state space. To prove Theorem 3
we prove also a lemma which may be called an analog of the Borel 0, 1 law for nonho-
mogencous Markov chains. IFfrom this lemma and some other lemmas Theorem 4
below is an easy corollary from results of [1].

7 We first give some definitions. Let (e,) and (b,) be some nonrandom sequences.
The sequence (a,) intersects the sequence (b,) in a moment & if a; < by, ap) > by or
ag > by, ap g < bpyy. Let X =(X,) be ars., d =(d,) a nonrandom sequence. Denote
by Vyp(X, d) the expected number of intersections of trajectories (X,) with (d,) on the
time interval (1, 7). The nonrandom sequence d = (d,) is called a barrier for r.s. X if
Vo (X, d) < co. In other words, d is a barrier for X if the jet (J,), J, = (~ oo, d,| is a
trap for X. Problem 3 [1] is to describe the classes of random sequences for which bar-
riers exist in some intervals (a, 5).

Denote by MP(a, b) the class of r.s. X = (X,) taking no more than N values inside
the interval (a,) for all n € N, i.e. X € M¥(a, b) ill therc exists a sequence of finite
sets (G,), such that |G,| < N < oo, n € N and

P(X,¢ G, X,€(a,6))=0,ne N

(Outside the interval (a, ¢) the sets of values of X may be arbitrary). Fromn the results
of |1| (Theorem 3 and Lemma 4.3) we immediately get Theorem 4.

TIEOREM 4 Let (X,) be a bounded sub(super)martingale in direct or reversed time
and let X € MN(a, b) for some a, b, N. Then there ezists a barrier (d,) for X, d, €(a, b),
ne N,

The idea of using Theorem 4 is the following. If (M, r, 0, ¢) is some CS and (Z,)
is the corresponding Markov chain, then a rs. (Y,) defined by

Y, = af"z EieM,,a:-a’i(Zn) is a submartingale (a martingale in the case of a CS
without an ocean) in reversed time with respect to o-algebras o(2,, Z,,,,---), n € N.
Il|M,| < N <oco,ne N then (Y,) satislies the conditions of Theorem 4 for all (a, b).

Note that Theorem 4 does not follow from the well-known theorem of Doob which
states that the expected number of intersections of every fixed interval by trajectories
ol bounded submartingale is finite. The example mentioned above shows also that
Theoremn 4 fails to hold if the condition |G| < N < oo is replaced by |G,| — co.

8 Let us mention some unsolved problems connected with these questions besides
the meutioned theoremn about general irreversible process. (1) To formulate an analog
of Theorem 1 for the case |M,| = co. Such an analog would give a possibility to con-
sider the case of continuous space and time. (2) To estimate a value of "work”

282

connected with given CS, i.e. E,,E,-jrf{]a{;_, — al] or in other words a value of
EY Y. 1 - Y, for a martingale associated with given Markov pair {Z, D). (3) To
generalize the inequality (13).

REFERENCES

[1] Sonin, I.LM.: A theorem on separation of jels and some properties of random
sequences. Stochastics 21, 231250 (1987).

|2] Marshal, A.W. and I. Olkin: Inequalities: Theory ol Majorization and its Applica-
tion. Academic Press, New York, 1979.

[3] Alberti, P.M., and A. Uhlman: Stochasticity and Partial Ordering. Ser. Math. and
its Appl., v 9, Berlin, D. Reidel Publishing Company, 1982.

[4] Ruch, E.: The principle of increasing mixing characler. Theor. Chim. Acta 38,
167-175 (1975).

|5] Dubins, L..E. and L.I. Savage: lnequalities for Stochastic Processes (llow to Gamble
il You Must), New York, Dover Publications, 1976.

[6] till, T.: On the existence of good Markov strategies, Trans. Am. Math. Soc. 247,
157-176 (1979).

|7] 1ill, T. and V. DPestien: The existence ol good Markov strategies for decision
processes with general payolls. Stoch. Pr. Appl., 23, 112 (1986).

This series aims to report new developments in the fields of control and
information sciences - quickly, informally and at a high level. The type of
material considered for publication includes:

1. Preliminary drafts of monographs and advanced textbooks
2. Lectures on a new field, or presenting a new angle on a classical field
3. Research reports
4. Reports of meetings, provided they are
a) of exceptional interest and
b) devoted to a specific topic.

The timeliness of a manuscript is more important than its form, which
may be unfinished or tentative. If possible, a subject index should be
included. Publication of Lecture Notes is intended as a service to the
international scientific and engineering community, in that a commercial
publisher, Springer-Verlag, can offer a wider distribution of documents
which would otherwise have a restricted readership. Once published and
copyrighted, they can be documented in the scientific literature.

Manuscripts

Manuscripts should be no less than 100 and preferably no more than 500 pages in length.

They are reproduced by a photographic process and therefore must be typed with extreme care. Symbols
not on the typewriter should be inserted by hand in indelible black ink. Corrections to the typescript
should be made by pasting in the new text or painting out errors with white correction fluid. The typescript
is reduced slightly in size during reproduction; best results will not be obtained unless on each page a typing
area of 18 x26,5 cm (7 x10% inches) is respected. On request, the publisher can supply paper with the typing
area outlined. More detailed typing instructions are also available on request.

Manuscripts generated by a word-processor or computerized typesetting are in principle acceptable. However
if the quality of this output differs significantly from that of a standard typewriter, then authors should contact
Springer-Verlag at an early stage.

Authors of monographs receive 50 free copies; editors of proceedings receive 75 free copies; all authors are
free to use the material in other publications.

Manuscripts, preferably in English, should be sent to Professor Dr.-Ing. M. Thoma, Institut fiir Regelungstechnik,
Technische Universitit, Appelstrasse 11, D-3000 Hannover, Prof. Dr. A. Wyner, Dept. Head, Communications
Analysis Research Dept., AT &T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974,
or directly to Springer-Verlag Heidelberg.

Springer-Verlag, TiergartenstraBe 17, D-6900 Heidelberg 1
Springer-Verlag, 175 Fifth Avenue, New York, NY 10010/USA

ISBN 3-540-18666-2
ISBN 0-387-18666-2

