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Preface

Structural change is a fundamental concept in economic model building. Statistics and
econometrics provide the tools for identification of change, for estimating the onset of a
change, for assessing its extent and relevance. Statistics and econometrics also have de­
veloped models that are suitable for picturing the data-generating process in the presence
of structural change by assimilating the changes or due to the robustness to its presence.
Important subjects in this context are forecasting methods.

The need for such methods became obvious when, as a consequence of the oil price
shock, the results of empirical analyses suddenly seemed to be much less reliable than
before. Nowadays, economists agree that models with fixed structure that picture reality
over longer periods are illusions. An example for less dramatic causes than the oil price
shock with similarly profound effects is economic growth and its impacts on the economic
system. Indeed, economic growth was a motivating concept for this volume.

In 1983, the Interuational Institute for Applied Systems Analysis (IIASA) in La..xen­
burg/Austria initiated an ambitious project on "Economic Growth and Structural Change".
These two economic issues and their interrelation are crucial determinants and pose a great
challenge for economic theory. An outstanding effort, guided and supervised by Wilhelm
Krelle, was started in the form of a joint IIASA-University of Bonn Project. The empirical
basis of the project covered all important countries and regions. Excellent economists and
econometricians participated in the project, partly as members of a central group in Bonn
and partly as members of country or regional groups. The heart of the work was a highly
aggregated world model established by the central group, which related results of country
and regional groups to guarantee consistency. Several conferences on these topics took
place between 1984 and 1986.

At the same time when the nASA- Universi ty of Bonn Project was started. an nASA
Working Group on "Statistical Analysis and Forecasting of Economic Structural Change"
was established. In the planning stage ofthe nASA- University of Bonn Project, it became
clear that many questions would require special statistical techniques. Such questions are.
e.g., how to identify structural changes, what type of models are adequate in the presence
of structural change, how to take into account structural changes when forecasting future
developments? Some 50 economists and econometricians from about 1.5 countries from the
East and West contributed to the aims of this nASA Working Group. A bibliography of
related books and papers was compiled [Hackl and Westlund (1989)]. In 1985 and 1986,



vi Preface

three workshops took place where available and new statistical methods were presented
and discussed.

The activities of the nASA-University of Bonn Project and the nASA Working Group
resulted in the publication of the main outcomes in two books. The Future of the World
Economy: Economic Growth and Structural Change, edited by Wilhelm Krelle, contains
a comprehensive description of the model and results from the nASA-University of Bonn
Project. The main part of the volume concerns the work done by the central group in Bonn.
Other chapters cover results of the collaborating country and regional groups. The model,
some data, and some results are given by Krelle in Chapter 17 of this volume. Statistical
Analysis and Forecasting of Economic Structural Change, edited by Peter Hackl, is a
multi-authored volume, consisting of papers that were presented at the Working Group's
meetings or were specially invited as surveying papers. Both volumes were published in
1989.

Interest in statistical methods related to economic structural change was not restricted
to nASA activities during the last ten years. Hackl and Westlund's (1989) bibliography
of the literature in this area contains about 400 entries, among them some 100 that ap­
peared between 1985 and 1988. In addition, some systematic surveys have been published
recently: Schulze (1987) deals with multiphase regression models; Broemeling and Tsu­
rumi (1987) present a comprehensive survey on Bayesian econometric methods. Somewhat
older is Poirier's (1976) book that discusses models based on spline functions. A special
issue of Empirical Economics on econometric methods has been edited by Kramer (1989).
Moreover, since 1989, a new journal entitled Structural Change and Economic Dynamics
attempts to provide a forum for methodological discussions.

The growing interest and activities indicated led to organizing another workshop on
this topic. Many of the participants in the nASA Working Group were still engaged in
related research. Those as well as other statisticians and econometricians were invited to
the international conference on "Economic Structural Change: Analysis and Forecasting"
that took place in May 1989 in Stockholm. The program presented 16 lectures; invited dis­
cussants stimulated the discussion of each lecture. Most of the papers that were presented
at the Stockholm conference are part of this volume.

From the beginning it was clear that it would not be possible to cover the whole area of
such a complex topic at the Stockholm conference. A wide range of statistical methods in­
terfers in this topic, such as time series analysis, regression analysis, econometrics, filtering
techniques, etc. Demands from applications in areas other than economics, like engineer­
ing, biology, hydrology, lead to interesting impacts and contributions. This is especially
true for themes that are not of central interest in the discussion of statistical analysis of
economic structural change, like special modeling approaches, the relation to disequilib­
rium modeling, etc. When designing the plan for this volume, we invited scientists who
are competent in a series of related areas.

We would like to acknowledge the help and support that made this book possible. We
wish to thank the Prince Bertil Foundation at the Stockholm School of Economics, Pro­
fessor Hans Landberg (The Swedish Council for Planning and Coordination of Research),
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and Professor Robert H. Pry (International Institute for Applied Systems Analysis) for
their financial support and their interest; the contributors to the volume and the referees,
in particular Ake Anderson, Wolfgang Polasek, and Howell Tong, for their very fruitful and
uncomplicated collaboration; and the Publications Department at IIASA for providing its
very professional know-how in producing this volume.

We hope that this volume will contribute to stimulate the interest of statisticians and
econometricians in this topic and to improve models for analyzing real-world phenomena
and reliability of results.

Peter Hackl
Department of Statistics
University of Economics

Vienna, Austria

Anders H. Westlund
Department of Economic Statistics

Stockholm School of Economics
Stockholm, Sweden
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CHAPTER 1

Introduction

Peter Hackl and Anders H. Westlund

This volume contains 21 papers that are grouped into four parts. These are:

I. Identification of structural change.

II. Model building in the presence of structural change.

III. Forecasting in the presence of structural change.

IV. Economic modeling and the use of empirical data.

It is to be hoped that economists as well as statisticians and econometricians will read this
volume. According to our experience, the understanding of the notion "structural change"
is quite different for these two groups. Consequently, we think that a few comments about
this notion is in order right at the beginning. Then, we will give some introductory remarks
to each part of the volume.

1.1 The Notion of Structural Change

The "structural change" concept is often used in everyday life without an exact definition.
In research, howevever, clarifications and definitions are urgent. The use of the concept
"change" presupposes statements about degree of change, which requires measurement.
But even in research there is obviously a certain conceptual confusion concerning what is
actually meant by structural changes, and as a consequence, an uncertainty of how these
phenomena are to be identified, characterized, and modeled.

Structural changes have been of major concern in economics. Different theories on
economic development and growth assume that economic relationships and processes are
changing over time, and .these changes are described and explained basically in a descriptive
way, without being statistically estimated and tested. One view of structural changes that



2 Economic Structural Change: Analysis and Forecasting

is discussed among economists comprises changes in the composition of the output vector
of an economic system, or changes in the composition of instrumental as well as exogenous
input vectors. The approach is adopted by Krelle in Chapter 17; he discusses the way
in which structural change is used to study changes in the sectoral composition of GDP,
changes in the commodity composition of demand, changes in labor force, changes in trade
relations, etc. This means that the notion of structure is not explicitly defined.

The statistical perspective of structural change is basically related to the model struc­
ture. There is no unambiguous definition of the concept "structure", although in relation
to the theory of systems, it indicates the relations among variables of a system. A sys­
tem is, of course, any arbitrarily selected set of variables interacting with each other and
with an environment. Active and relevant variables are defined by the purpose of the
study and by relevant theories. Thus, the actual "system at work" consists of a finite
number of variables. Variables not included will represent the environment. In modeling
economic systems the identification requires some knowledge of the relation between the
system and the variables of the environment that have a special influence on the system.
In the modeling process these variables are characterized as exogenous, while the rest of
the environment is represented in the model by random disturbances.

Scientific treatment of the concept of structural change requires a strict definition of
the system at work. Theories specify the form of the model equations, and structural
form parameters depict the causal structure of the system and the relations to exogenous
variables. In this way we relate the concept "change" to a proposition in the model field. In
a regression model framework, for example, the change in one or more of the parameters
indicate structural changes. Poirier (1976) distinguishes between some kind of general
structural variability and structural change, and emphasizes that just considerable and
low frequent variability should be associated with structural change (which certainly is
consistent with a general nonscientific view).

Important reasons for structural changes in economic systems manifested in parame­
ters shifts are, e.g., personal changes in behavior, the technical progress with correspond­
ing changes in production function parameters, moves from fixed to floating exchange
rate regimes. Within macroeconomics the so-called Lucas critique claims for parameter
changes. The idea is that parameters of macroeconomic models will be determined by the
expectations of economic agents involved concerning future economic policy. If a policy
changes, so do the expectations and related parameters.

Apparently, it is extremely difficult to distinguish general misspecification problems
from the problem of structural change and its impacts on the modeling process. In order to
do that, some identifying theoretical knowledge is necessary (such as a priori knowledge of
a changing institutional framework). The role of the econometric analysis is now basically
to determine the "significance" of the structural change. The modeling process with
respect to structural change may continue according to one of at least three lines:

1. To allow for time-varying (or space-varying) parameters.

2. To model the structural change and introduce it into the basic model (if structural
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changes are caused by the environment, the interest should be focused on changes
in exogenous variables, and on changes in their relation to the system).

3. To redefine (basically widen) the system at work.

Of course, if this is not done correctly, it will introduce misspecifications, with possible
consequences such as residual autocorrelation, heteroscedasticity, etc. Thus, any strategy
of diagnostic checking, at least among those based on residual analysis, must be influenced
by the existing theoretical knowledge and hypotheses about structural change.

Apparently, structural change is a relative concept, and statements about it are re­
stricted to the actual system at work and to the way it is manifested through a specified
model. The concept is, however, an internal part of each model-building process, and the
role of statistical analysis is "to detect its presence, to find ways to assimilate it in models,
and to find methods of statistical inference that are robust to its presence" [see Anderson
and Mizon (1989)].

1.2 Identification of Structural Change

Changes of the underlying data-generating process vis-a.-vis the structure of the model are
intrinsic phenomena of modeling in economics. Of course, the stages of model building
include diagnostic checking of the model, a crucial part of the process of learning from
reality. The identification of changes might be the outcome of diagnostic checks. However,
it can hardly be expected that all sorts of driving forces for changing patterns~among

them technical progress or other stimulants of economic growth~can be anticipated in a
model, not to mention behaviorial changes or effects of political actions. From this and
other reasons, the need of tools for the identification or detection of structural change is
obvious.

The problem of testing for parameter constancy was tackled for the first time in the
late 1950s in the regression model context. A large body of literature on various aspects of
this problem has been published since. Methods that are of special interest for economists
are those that allow one to test hypotheses of parameter constancy in linear regression
relationships, simultaneous equations models, and time series models, corresponding to the
most commonly applied types of model. Comprehensive discussions about these methods
can be found in Hackl (1980), Chow (1984), Judge et al. (1985), Anderson and Mizon
(1989), and Dziechciarz (1989) [see also the bibliography by Hackl and Westlund (1989)].

A crucial point for the application of tests and the interpretation of the test outcomes
is the robustness of the test statistic with respect to the various assumptions. In re­
cent years, robustness with respect to distributional assumptions has found great interest,
and robustified versions of many statistical procedures (mainly estimation procedures)
have been suggested. A contribution in the sense of these ideas is Chapter 2 by Marie
Huskova, who introduces and discusses CUSU:M and MOSUM test procedures for testing
the constancy of regression relationships over time that are based on robustified versions
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of recursive residuals: The (recursive) least squares estimators of the regression coeffi­
cients that are used in the definition of traditional recursive residuals are replaced by
M-estimators. These M-tests are introduced under general assumptions. Detailed results
based on Monte Carlo estimates allow one to compare the cases where Huber's 1/J is used
as the score function with the traditional methods.

The main reason for using recursive residuals in the CUSUM and MOSUM technique
is the simplicity of their distributional properties as compared with the conventional OLS
residuals that are used in other approaches. Walter Kramer and his coauthors discuss in
Chapter 3 a CUSUM technique that is based on these OLS residuals. They derive the
limiting null distribution for large sample sizes. Monte Carlo comparisons between the
recursive residual-based and the OLS residual-based CUSUM procedures indicate that one
is not superior to the other. However, the OLS-based version has more power in detecting
parameter shifts that occur late in the sample than the recursive residual-based CUSUM
test, whose deficiency in this respect is notorious.

A classical procedure for testing the constancy of linear regression models over the
sample period consists in comparing the regression coefficients of independent regressions
for the respective subsamples. The classical approach [Chow (1960)] assumes equal dis­
turbance variances. For the case when the variances are unequal, Jean-Marie Dufour
(Chapter 4) derives exact bounds for the null distribution of a (Wald-type) statistic for
testing the equality of the regression coefficients (or any other set of linear restrictions on
them). The statistic is that of the test suggested by Ohtani and Kobayashi and generalized
by Farebrother; these researchers, however, do not answer the question of how to calculate
critical limits for their test statistic. Dufour presents an algorithm that only needs the
calculation of the central Fisher distribution.

In an earlier paper, Bernd Schips and Yngve Abrahamsen put testing for structural
change into the context of misspecification testing [Abrahamsen and Schips (1989)]. They
discussed the use of jackknife versions of the Stone-Geisser prediction test procedure for
that purpose and demonstrated a good performance of the prediction tests in a wide range
of misspecification cases and a superiority in many situations over other tests. In Chap­
ter 5, Bernd Schips and Yngve Abrahamsen present a Monte Carlo study that compares
more general jackknife versions (p-step) Stone-Geisser prediction tests wi th other specifi­
cation tests that are generally used in econometric model building. The study is based on
single equation and simple multi-equation macro models and extends in this repect the
above-mentioned earlier paper.

Although many papers in the literature on identification of regression parameter chan­
ges deal with the testing problem, little attention has been paid to the issue of inferring
about the change point. For the two-phase regression problem Lyle Broemeling and his
coauthors derive in Chapter 6 in a Bayesian setup the density of the intersection in closed
form starting from a proper joint distribution of the intersection point, the regression
coefficients, and the disturbance variance that is assumed to be common to both regimes.
Point and interval estimates of the intersection can be obtained by means of numerical
integration.
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Estimating a change point that is indicated by a test for parameter nonconstancy
contrasts to the problem posed in intervention analysis; here, a change in regimes is
claimed for a certain point of time, and the question is whether this is true. In Chapter 7,
Peter Hackl introduces a sequential testing procedure for this purpose. Different from other
authors who discussed this topic, in this paper the sequential character of the procedure
makes sure that the user can apply it as a surveillance tool to obtain an affirmative response
as soon as possible. The procedure is based on ranks. The null distribution is independent
of the distribution of the control variable, another point where this method differs from
earlier methods.

The question of robustness of statistical procedures with respect to the underlying
assumptions has found interest in much research work done on structural change problems.
An example given in this volume is Marie Huskuva's chapter. On the other hand, the
question might be raised whether certain procedures are robust with respect to parameter
nonconstancy. An example for this is Chapter 8 by David Hendry and Adrian Neale. They
investigate the robustness of the DF (Dickey-Fuller) and the ADF (Augmented Dickey­
Fuller) tests when there is a shift in the intercept of an AR process. Their Monte Carlo
study reveals interesting results. Such regime shifts can mimic unit roots in stationary
time series; consequently, a unit-root test should be accompanied by a diagnostic test for
parameter constancy.

1.3 Model Building in the Presence of Structural Change

Model evaluation is, of course, a basic dimension of the model-building process. The
relative forecast performance of rival models constitute one natural criterion of evaluation.
Model congruence requires the models to be coherent with sample data information and
with theory, and to encompass (i.e., perform as well as) alternative models. Encompassing
is an essential issue in model building. In Chapter 9, Maozu Lu and Graham Mizon present
a class of forecast-encompassing tests with the purpose of comparing models on the basis
of a combination of parametric-encompassing and parameter-constancy hypotheses. These
tests are feasible for evaluating the forecast performance of large-scale macroeconometric
models.

Traditional model building through time series analysis or econometrics often presup­
poses stationary time series although most series in practice require one or more differ­
entiations to attain stationarity. [A time series is denoted 1(d) if its d-th differences are
stationary.] If two different time series are both 1(1) but a linear combination of them
is 1(0), i.e., stationary, the two series are called cointegrated. Increasing attention has
been paid to the cointegration concept in economic model building over the last few years.
Cointegration theory and tests have been developed for models with constant parameters
[see, e.g., Granger (1986) and Engle and Granger (1987)]. Cointegration might be rejected,
however, just because parameters are erroneously assumed to be constant (see Chapter 18
by Tedisvirta in this volume). Cointegration is traditionally a linear concept, and allowing
for time-varying parameters (e.g., structural change) makes it much more flexible. Thus, it
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is important to extend the idea of cointegration to time-varying parameter (TVP) regres­
sion. That is done in Chapter 10 by Clive Granger and Hahn Lee. Certain properties of a
TVP cointegrated process and of the related estimation procedure are indicated. It is also
pointed out by the authors that if a TVP cointegration procedure provides evidence of an
equilibrium relationship, but the traditional linear cointegration does not, then this might
be an indication of some misspecification of the linear cointegrating model. Incorrectly
omitted variables should be looked for.

Disequilibrium modeling and switching regressions are early areas of econometric anal­
yses of structural changes. In Chapter 11, G.S. Maddala discusses the Markov switching
model, an example of switching regression models with exogenous switching, and self­
selection models. In particular, the literature on these approaches is outlined [see also
Maddala (1986)], and compared with the literature on structural change analysis. The
paper also shows how switching regression methods can be modified to take into account
gradual adjustments and (expectations about) policy changes, constituting one important
driving force for economic structural change.

The connection between misspecification phenomena and structural change charac­
teristics in economic modeling has been pointed out above. One strategy of economic
modeling that sometimes will take care of misspeeification problems is to widen the limits
of the economic system, to endogenize and allow for simultaneity. Although simultaneous
equations models have attracted numerous econometricians, methodological research re­
lated to such models with time-varying parameters is by now of surprisingly limited scope.
One of the few exceptions is Chapter 12 by Andrew Harvey and Mariane Streibel that
deals with the problem of stochastic trends in simultaneous equations models. Identifi­
ability conditions are verified, and the maximum likelihood estimation of such models is
discussed.

Another way of eliminating misspecification errors is to allow for nonlinearities in the
model. Nonlinearities arise in many different ways in econometric applications. General
nonlinear models are often used in the estimation of demand and production functions.
The advent of computer technology now makes it possible for econometricians to esti­
mate rather general nonlinearities [for a survey of nonlinear regression models, with an
emphasis on the theory of estimation and hypothesis testing, see Amemiya (1983)]. As
it is the case for simultaneous equations models, research on nonlinear regression mod­
els with time-varying parameters is very rare. Peter Robinson (in Chapter 13), however,
discusses estimation of intrinsically nonlinear regression models, where the parameters
change smoothly and nonparametrically over time. A kernel-based analog of nonlinear
least squares estimation is suggested and analyzed with respect to its asymptotic proper­
ties.

Since early the 1970s [see, e.g., Sarris (1973)], Kalman filtering has been used and
evaluated as a procedure for estimating econometric models with time-varying parameters.
Several research contributions have been published [see Hackl and Westlund (1989)]. In
Chapter 14, Wolfgang Schneider continues this tradition. He specifies a state space model
and applies scoring and the EM method for the estimation of the hyperparameters of
this model. A descriptive interpretation of Kalman filtering (the so-called flexible least
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squares approach) is described, and its use as an exploratory data analysis approach to a
preliminary descriptive stability analysis of a traditional money-demand function for the
Federal Republic of Germany is discussed.

1.4 Forecasting in the Presence of Structural Change

Forecasting has always been an essential part of the economic planning process. The gen­
eral purpose of forecasting is, of course, to provide knowledge about future states of an
economic system. As there is often substantial evidence against the assumption of systems
stability, the forecasting process should also include judgments about the structural de­
velopments of the system. The recent extensive changes in the economy have also aroused
doubt about formalized approaches in the forecasting process. Thus, qualitative and non­
formalized approaches were considered to be more important when forecasting structurally
changing economic systems. As simple extrapolations of historical patterns are not always
acceptable, the reduced confidence in formalized approaches is to a certain extent well
motivated. A combination of quantita.tive strategies a.nd qualitative judgments will cer­
tainly prove useful when forecasting structurally changing systems. In particular, future
structural changes might be identified and characterized (e.g., through scenarios that aim
at describing the future structural development in terms that allow for substitution into
formalized models). The system states are then conditioned on the structural forecasts
within the structural model. It is here essential to search for formalized procedures to
combine the qualitative and quantitative strategies.

Forecast combinations are nowadays well-accepted procedures. In the case of struc­
turally changing economic systems a practical difficulty is how to identify the combination
weights in the case of structurally changing economic systems. Some methods have been
suggested that cope with this problem. One such method consists in adaptively estimat­
ing the weight matrix [see, e.g., Diebold and Pauly (1987)]. State space modeling and
Kalman filtering will also provide strategies that can explicitly consider the nature of non­
stationary weights, although the effectiveness of combining may be seriously undermined.
The Bayesian perspective to combining forecasts will provide a formal framework for ratio­
nal transition between judgmental and data-based estimation of combination weights, and
also appears to be of specific relevance, when seeking for the interaction between judgmen­
tal and quantitative model-based forecasts. Some properties of a Bayesian combination
procedure are explored in Chapter 15 by Francis Diebold. In particular, the asymptotic
performance of Bayesian composite forecasts is studied, when none of the forecasting mod­
els to be combined corresponds to the true data-generating process. Combining is also
discussed by Spyros Makridakis (Chapter 16) as a strategy to be used to improve forecast­
ing of structurally changing economic systems. The main point of this chapter, however,
is to show that model selection should be based on the actual out-of-sample forecasting
performance. Different forecasting horizons are used to identify not only the preferred fore­
casting method but also "best" forecasting models. This concept will certainly improve
the possibility to cope with structural change problems in economic forecasting.
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1.5 Economic Modeling and the Use of Empirical Data

It is of great importance to learn from empirical studies about how different test and
estimation approaches work. It is also important to implement methodological research
in empirical applications. The present volume, thus, gives some empirical studies on eco­
nomic modeling subject to structural changes. The IIASA-University of Bonn Research
Project on Economic Growth and Structural Change is one good example of economic em­
pirical research from which insights are gained with respect to econometric and statistical
methodology to deal with structural change problems. This particular research project
also points out important areas of methodological research on structural change. Part of
this research is indicated in Chapter 17 by Wilhelm Krelle, where the starting point is
the argument that long-term economic growth is connected with structural change phe­
nomena. That is demonstrated by a multisectoral world model. As mentioned in Section
1.1, structural changes, however, are not considered in this chapter in the statistical sense,
i.e., as parameter changes, but basically as changes in the composition of demand and
production of different commodities.

A shorter business-cycle perspective is emphasized in Chapter 18 by Timo Terasvirta.
Some issues, related to the structural change problem wi thin business-cycle analysis and
forecasting that are raised involve the question of whether cycles are asymmetric around
turning points. The asymmetry problem is analyzed through testing linearity of monthly
industrial production time series. Linearity is rejected, but the nonlinearity observed is not
evidently related to cycle asymmetry, but more likely to an alternative kind of structural
change, viz., to change in seasonal patterns, from constant to variable seasonality. Another
important dimension of structural change in dynamic models, among which business-cycle
models in general are important examples, concerns changes in the dynamic structure. For
example, leading indicator models for business cycle forecasting are often characterized
by varying leads. These problems may be analyzed through the use of transfer function
models allowing for parameter variability. This approach is adopted by Lennart Claesson
and Anders Westlund in Chapter 19. The model parameters are estimated by an iterative
recursive instrumental variables approach. The filtering procedure used is based on a
state space formulation. Structural changes in state-space models are further considered
by Hiroki Tsurumi in Chapter 20; abrupt as well as gradual structural shifts are analyzed
through a Bayesian procedure. Empirically, the Bayesian procedure is applied to single
equation models of the US dollar jyen exchange rate. Based on monthly data, a structural
change in exchange rate regimes is identified for 1985 (a shift probably due to the so-called
Plaza Hotel agreement). State space modeling and structural change problems are also
considered in Chapter 21 by Masanao Aoki. The resulting impulse response time profiles
are used to analyze and verify changes in interaction characteristics of the real GNP
processes of the USA, West Germany, and Japan. Changes in the dynamic properties of
these interactions are emphasized.

An interesting and, to some extent, more complicated example of empirical use of
change point models is given by Pranab Sen in Chapter 22. A methodology is developed
for studying structural changes in income distributions. Part of the framework involves
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stratification of the economic system with respect to income level. Different stratifica­
tion principles imply overlapping or nonoverlapping strata. Methodologically emphasis is
placed on nonparametric and robustness considerations.
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CHAPTER 2

Recursive M-Tests for the
Change-Point Problem

Marie Huskova

Summary

The chapter concerns robust recursive M-tests for testing the constancy of regression
relationships over time. More exactly, the robust modifications of the CUSUM and MO­
SUM procedures, based on robustified recursive residuals and M-estimators, are presented.
Some results of a simulation study are given; they coincide with those from the theoretical
considerations.

2.1 Introduction

Let Xl, ... ,X n be independent random variables observed at ordered time points t} <
... < tn ; the Xi follow the model

Xi = C:Oi + ei, i = 1, ... , n,

where Ci = (Ci},' .. ,Cip)' are known regression vectors, Oi = (Oi},' .. ,Oip)' are unknown (re­
gression) vector parameters, and el, ... ,en are independent identically distributed (i.i .d.)
random errors with ei having the distribution function (dJ.) F fulfilling certain regularity
conditions (and unknown otherwise).

We are interested in testing the constancy of the regression relationships over time
formulated as

Ho: 0 1 = ... = On = 00 (unknown)
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and
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HI: there exists 1 ::; m < n such that (}l = ... = (}m 1- (}m+l = ... = (}n.

The alternative hypothesis HI means that the observations Xj follow the regression model
with the vector parameter (}l till the unknown time point T E (tm, tm+d and then they
switch to the regression model with a different parameter (}n' The time point T is usually
called the change-point.

Attention has been paid to the case when the error dJ. F is normal with zero mean and
known or unknown variance. The test procedures in this case are closely related to the least
squares estimators [see, e.g., Brown et al. (1975), Hackl (1980), James et al. (1987, 1988)].
It is known that the quality of these estimators is highly sensitive to deviations from
normality, to heavy-tailed distributions, and to outlying observations. For this reason,
so-called robust estimators have been developed, which behave reasonably good and are
rather insensitive to deviations from the assumed model. Typical robust estimators are AI
(maximum likelihood type), R (rank statistics type), and L (linear combinations of order
statistics type) estimators. For further information concerning these estimators, see, e.g.,
the monographs by P. Huber (1981) and Hampel et al. (1985).

The same arguments (and results of simulation studies) lead to the need of robust
procedures for our testing problem Ho vs. HI' These can be based on either of the
mentioned type of robust estimators. For the location model Xj = Oi + ei, i = 1, ... , n,
procedures based on both M- and R-estimators were developed and studied; for detailed
information about the literature till 1986, see Huskova and Sen (1989). Recent results can
be found in Huskova (1989a), Lombard (1987), and Csorgo and Horvath (1987, 1988).

For the regression model, main attention has been paid to robust procedures based
on M-estimators for they are more appealing from the computational point of view than
those based on R-estimators. The basic idea in constructing these AI-test procedures
is to replace the least squares estimators by At-estimators (or by certainly modified A1­
estimators) and the residuals by their robust counterparts. Generally, two types of M -test
procedures have been developed: nonrecursive and recursive.

The M-estimator ih('lj;) of (}o (under H o) generated by the function 'lj; of Xl,.' ,·,Xk
is defined as a solution of the equation

k

L Cj'lj; (Xi - C;(}) = O.
j=l

(2.1)

The maximum likelihood test for the normal dJ. F leads to the nonrecursive M -test
procedure, which is based on the oM-residuals 'lj;[Xk - C~Ofl('lj;)], k = p+ 1,oo.,n, where

On('lj;) is the M-estimator of (}o generated by the score function 'lj; based on the obser­
vations Xl, . .. ,Xn. These tests together with their asymptotic properties are discussed
by Sen (1984) and Huskova (1988,1989a). Results of a simulation study are contained in
Antoch and Huskova (1989).
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Recursive tests (CUSUM, MOSUM) have been suggested for the normal d.£. F based
on the recursive residuals

Xi-ci0i_l, i=p+l, ... ,n, (2.2)

where 0i_1 is the least squares estimator of 00 based on XI, ... , Xi-I. [These tests are
studied in detail by Hackl (1980)J. Recursive M -test procedures are based on the M­
recursive residuals

Wi = 1/![Xi - ci0i-I(1/!)], i = p+ 1, ... ,n, (2.3)

where Oi_1 (1/!) is the M -estimator of 00 generated by the score function 7j; of the ob­
servations XI, ... , Xi-I, or some related estimator (some possibilities are mentioned in
Section 2.3). Notice that for 7j;(x) = x the classical recursive residuals (2.2) are obtained.

In this chapter I focus on the recursive M-test procedure, robust versions of CUSUM
and MOSUM tests. In Section 2.2 I describe the test procedures. Estimators Oi-I (7j;),
p < i ~ n, are proposed in Section 2.3. The assumptions together with possible choices
for 7j; are discussed in Section 2.4. In Section 2.5 I present results of a simulation study,
while Section 2.6 contains remarks and recommendations.

2.2 Recursive M-Test Procedures

The CUSUM M-tests are based on the statistics

k

Wk,c = L Wi uk l
, k = ko, ... ,n,

i=p+1
(2.4)

where Wi is defined by (2.3); ko C~ p+ 1) is suitably chosen, and u~ is a consistent estimator
of J7j;2(x)dF(x) [some suggestions are the equations (2.6)-(2.8)J in Section 2.3.

Critical regions of the CUSUM M-tests are of the form

n

U {Wk,c>w(O',k,n)},
k=ko

where the critical values w( 0', k, n) are chosen so that the asymptotic level is 0' (or ~ 0').
The w(0', k, n) are not uniquely determined; different (asymptotic) arguments lead to
different sets of critical values.

The Bonferroni inequality (together with large deviation results on Wk ) leads to

WI(O',k,n)=k~q;-l[l- (0' ],
2 n - ko)
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Table 2.1: Critical values W; = w;(0.05, k, n) for the CUSUM M-tests.

w;(0.05,k,n) n = 40 n = 70 n = 100

WI 3.235 d 3.39 kt 3.48 kt
W2 3.182 kt 3.2 kt 3.22 kt

W3 14.173 18.75 22.41
W4 4.896+0.316 k 7.411+0.2316 k 9.048+0.193 k

where q,-I is the quantile function corresponding to the standard normal distribution;
the resulting test is (asymptotically) conservative. The application of modified results of
Darling and Erdos (1956) gives

w2(0:,k,n) = kt [-loglog(l- o:)-~ + 2loglogn

+ ~logloglogn - ~10g(47l")] (2loglogn)-~.
2 2

Since

. q,-I (1 _ n- I)
hm = 1,
n~oo y'2log n

we get

1
. WI (0:, k, n)
1m = +00,

n~oo w2(0:,k,n)
k=p+1, ... ,n. o:E(O,l).

(2.5)

Hence for large enough n, wdo:,k,n) > w2(0:,k,n) for p:S k:S n,O: E (0,1). Sen (1984)
proposed critical values

1

W3(0:,k,n) = n'iwa ,

where W a is defined by P[sUPtE[O,l] {IW( t)J} > wa] = 0: with {W( t), t E [0,1]} being the
standardized Wiener process. For the classical CUSUM, Brown et al. (1975) suggested

1

W4( 0:, k, n) = h a ( n - p)2 (2k + n - 3p - 3)/(n - p - 1) ,

with ha fulfilling 1- q,(3ha ) + q,(ha)e-4h~ = 0:/2 (hO.OI = 1.143; hO.05 = 0.948; hO.I
0.85). Asymptotic results show that these critical values are also appropriate for our
situation.

Notice that none of these critical values depends on 1/J and that WI and W2 are parabolic
functions of k, tv3 is constant in k, and 104 is linear in k. Table 2.1 contains critical values
10;(0.05, k, n) for i = 1, ... ,4 and n = 40,70,100. The relation between the critical regions
is shown in Figure 2.1 for 0: = 0.05, n = 100, p = 2.
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Figure 2.1: Critical regions Wi, i = 1, ... ,4, of the CUSUM M-tests.

The MOSUM M-tests are based on the statistics

k = ko, ... , n,

where Wi (i = ko, ... , n) is defined in (2.3), ko (;::: k - G + 1) is sui tably chosen, and az is
a consistent estimator of J'1/;2(x)dF(x). The critical regions of the MOSUM M-tests are
of the form

n

U {Wk,G > m(o,h,n)} ,
k=ko

where h = Gin and the critical values m(o,h,n) are determined so that the asymptotic
level is ° (or:::; 0).

The Bonferroni inequality gives critical values

-I ( 0)ml(o,h,n)=<p 1- [ ] .
2 n - nh - ko

The test is asymptotically conservative. A modification of the results of Deheuvels and
Revesz (1987) leads (for Gin small, see assumption C2 below) to critical values

1

m2(o,h,n) = (2logh- 1)2

+ [loglogh- 1 -log:rr - 2loglog(1- o)-tj
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Table 2.2: Critical values m, = m,(0.05,h,n) with h = Gin.

G n = 40 n = 70 n = 100 n = 200
5 3.17 3.35 3.45 3.65

10 3.15 3.33 3.43 3.65
20 3.00 3.27 3.42 3.63

Table 2.2 contains critical values m,(o:, h, n) for 0: = 0.05 and ko = 2. By direct compu­
tation we obtain

m2(0.05; 0.05)

m2(0.05; 0.10)

m2(0.05; 0.15)

m2(0.05; 0.20)

3.935

3.780

3.699

3.6495.

If G ....... 00 and Gn-{3 ....... 0 as n --+ 00 then from (2.5) follows m, (0:, h, n) > m2( 0:, h, n) for
large enough nand 0: E (0,1).

One should keep in the mind that all presented critical values Wi( 0:, k, n) and mi(0:, h, n)
are based on asymptotic distributions (the convergence could be rather slow); hence n

should be large enough. Furthermore, ko should not be too small because both the esti­
mators (h( 'l/J) and Ok can considerably oscillate for small k. Theoretical results are derived
by Sen (1984) and Huskova (1989b,c,d).

The CUSUM and the MOSUM M-tests described above are not scale invariant (siIn­
ilarly as the usual AI-estimators), which means that the critical regions corresponding
to the observations (X" ... ,Xn ) and (cX" ... ,cXn ), 0 < c f=- 1, are generally differ­
ent. However, a simple modification (called studentization) of the procedures results in
scale invariant procedures. This studentization consists in replacing Xi - <Oi-' ('l,b) and
Xi - C;Od~') by [Xi - C:Oi-'(~))]sk" and [Xi - C:(h('l/J)]sk", respectively, where Sk is an
estimator of a scale functional a = a(F) > 0 with the properties

sdX(k)] > 0, sk[a {X(k) + c(k)b}] = a sk[X(k)J,

where X(k) = (XI,"" Xd', c(k) = (CI, ... , cd', b > 0, a E R I . The resulting procedures
are scale invariant. Since Sk can considerably oscilate for small k, a(F) should preferably
be estimated independently of XI, ... ,X n .

2.3 The Estimators Crk and (h( t/J)

As an estimator of J 'l/J 2(.T)dF(x) we can use either

k

k-' L 1/>2[Xi - C;Oi-1 ('l/J)J, k = ko, ... , n ,
i=p+2

(2.6)
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or

k

k- I L'ljJ2[X; - c;lh('ljJ)], k = ko, ... ,n,
;=1

19

(2.7)

(2.8)

which are consistent (for n ---> 00) even under the local alternative; however, they can
oscillate for small k. Intuitively one may expect that the estimator

k

a~ = k-IL'ljJ2[X;-c;(h('ljJ)]-1,6~, k=ko, ... ,n,
;=1

with 1,6k = k- I 2::7=1 'ljJ[X; - c;lh('ljJ)] would be better than (2.6) and (2.7) as it suppresses
the influence of moderate alternatives.

The estimator (h( 'ljJ) of 00 should have the property

as n ---> 00 and kn ---> 00 for some v > 0; here, 00 contains the values of the parameters and
11·11 denotes the Euclidean norm. Reasonable candidates are the stochastic approximation­
type estimators Ok('ljJ) and the recursive M-estimators ih('ljJ).

The stochastic approximation-type estimator is defined by

k+1
Ok+I('ljJ)=Ok('ljJ)+lkICk~ILc;'ljJ[X;-C;Ok('ljJ)], k=kn, ... ,n,

;=1

where Okn('ljJ) is an initial estimator based on XI, ... ,Xkn; a suitable choice for Okn('ljJ)
is the usual M-estimator generated by the score function '!/J. The quantity Ik estimates
A'(O), which is the derivative of A(t) = - J'ljJ(x - t)dF(x) at t = O. An usual choice is

if
if
if

for k = kn , ... , n, where

k

Ik = (2tk~) -I L {!/J [X; - c;0k('ljJ) + tk-~] - 'ljJ [X; - c;Ok(!/J) - tk-~]}
;=1

with t > 0 fixed and ak "" O. If the function 'ljJ is smooth, Ik can be replaced by

k

It = k- I L'ljJ' [X; - C;Ok(!/JJ]
;=1
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Asymptotic properties of these estimators are studied in Huskova (1989b).

The recursive M -estimator ih( 1/;) is defined as follows:

where ih n (1/;) is an initial estimator based on XI, ... ,Xkn ; a sui table choice for ihn (7/J)
is the usual M -estimator generated by the score function 1/;. Similarly as in the previous
case, ik is an estimator of '\'(0), usually of the form

if
if
if

-. -1
ak < I'k < ak
i k S; ak
iZ ~ ak

l

for k = kn , ... , n, where

k

iZ = (2tk)-1 L {1/; [Xi - <Oi-I('0) + ti-~] - 7/-' [Xi - C:Oi-I(7/-,) - ti-~]} d
i=1

with t > 0 fixed and ak "" O. If the function 1/; is smooth, iZ can be replaced by

k

iZ* = k- I L 1/;' [Xi - cJh(1/;)] .
i=1

Notice that for computation the following relation is useful:

iZ+1 = iZ [k(k + 1)]~ + [2t(k + 1)~]-1

X {1/; [Xk+1 - C~+IOk(1/;) + t(k + 1)-~] -1/; [Xk+1 - C~+IOkt7/J) - t(k + 1)-~]}

The asymptotic properties of these estimators are studied, e.g., in Poljak and Tsyp­
kin (1979).

The recursive M -estimators are more appealing from the computational point of view.
However, a small simulation study shows that the convergence of the stochastic approxima­
tion-type estimators is somewhat faster than that of the recursive ones.

We may also use the usual M -estimator generated by the function 1/; [see Sen (1984)],
which leads to rather long computations (because they are defined implicitely and an
iterative procedure has to be applied after every new observation).

2.4 Choice of the Score Function 'IjJ and Assumptions

In this section the assumptions on the score function 1/;, the distribution F, and the
regression vectors Ci are formulated and some typical1/; functions are given.

Under the following assumptions, the tests described in Section 2.2 have asymptotic
level Q (or S; Q):
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AI: 1/J is nondecreasing; there exist positive constants D l1 D2 such that

sup {J 1/J2(x - a) dF(x), lal ~ Dl} < +00,

for lal ~ D I , Ibl ~ D I .

A2: J11/J(xWdF(x) < +00.

A3 : 1/J is bounded.

21

B: The function >.(a) = - J1/J(x -a)dF(x), a E R I , fulfills >'(0) = 0; there exists the first
derivative N(O) > 0 and

GI : The regression vectors Ci = (Cil, ••. , Cip)', i = 1, ... , n, fulfill

[ntl

n- l L CiC; ---+ tC as n ---+ 00 for t E [0,1]
i=l

n

limsupn-l Lct < +00,
n-+CX) i=]

for j = 1, ... ,p, where C is a positive definite matrix and [a] denotes the integer
part of a.

G2 : The regression vectors Ci = (Cil"",Cip)', i = 1, ... ,n, fulfill

k

lim sup max G;;I L ICijl < +00
n--+oo Gn+p<k<n

- i=k-Gn+I

as n ---+ 00.

For the CUSUM M-procedure one needs assumptions AI, A 2 , B, and G l while assumptions
AI, A 3 , B, Gl , and G2 are connected with the MOSUM A:I-procedure. Assumptions Al
and B are fulfilled by typical 1/J functions [see, e.g., Huber (1981), Hampel et at. (1985)]
and for a large family of distribution function F, e.g.:
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• 7/J( x)
+00.
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x (which leads to the classical least squares estimators) and Jx2dF(x) <

• The Huber 7/J function [7/J(x) = signx min(lxl, J(), x E Hd, and F has a bounded
derivative in a neighborhood of ±IC

• 7/J is a step function having a finite number of jumps (of finite magnitude), and F
has bounded derivatives f and f' in neighborhood of the jump points of 7/J.

It can easily be shown that also nonmonotone functions 7/J can be used; some of them, e.g.,
the Tukey biweight function [7/J(x) = 2x (1- x2 ) for Ixl ::; 1, 7/J(x) = 0 otherwise] and the
Cauchy 7/J function [7/J(x) = 2x(1 + X2 )-l, x E HI] are of particular interest.

Assumptions CI and C2 mean that only a small part of the Cij can be larger and
that the design matrix (CI, ... , cn)' is asymptotically, in a certain sense, regular. The
assumptions imposed on G require that G is large enough, however small enough with
respect to n.

2.5 A Simulation Study

The following simple linear model was considered:

Xi 5 + 2Ci + ei, i = 1, ... ,n/2,

Xi 5+2ci+ei+{}, i=n/2+1, ... ,n,

where the Xi are observations, Ci = 10(1 + 2i/n) for i = 1, ... ,n, and the e;'s are i.i.d.
errors distributed according to the dJ. F. Simulations were done for sample sizes n = 40
and 70, and for shifts {} = 0 and 2. For F, the normal distribution N(O, 1) with parameters
oand 1 and the Laplace distribution L(O, 1) with parameters 0 and 1 were chosen.

For all of these situations 300 and 100 repetitions of the experiments were done with
n = 40 and n = 70, respectively; the maximum of the MOSUM test statistics

. {-II k I}M = ma..x ..JGCrk Wi12(15)~k~40(70) ( ) i=k~+1

and the corresponding index

{ I k I}. -I
k = arg max ..JGCrk Wi

12(17):Sk:S40(70) ( ) i=k~+1

were computed for G = 10 and 15 and for 7/JIlx) = x, x E HI, and the Huber function

{

X
7/J2 X =( ) 1. 7 s sign x

if Ixl :S 1.7 s
iflxl> 1.78,
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where s is an estimator of2F-1(3/4)-1.

Figures 2.2-2.5 show the histograms of k under the null hypothesis Ho (8 = 0) for
n = 40, G = 10, while Figures 2.6-2.9 present the histograms of k under the alternative
(8 = 2). Figures 2.10-2.17 contain the histograms of if for the same situations.

It can be seen that the frequencies of k under Ho are almost uniformly distributed
while under the alternative there is a peak just after the change (Le., around the 25th
observation). There is a considerable difference in the frequencies of 111 between the null
and the alternative hypothesis if the error dJ. is N (0,0.5) and 7/JI is used; the frequencies
of if correspond to the asymptotic results. However, using 7/JI if the error dJ. is L(O, 1),
the frequencies of if do not behave as one would wish. The results for 7/J2 are acceptable
in both cases.

The results for n = 70 and as well as for the CUSUM procedure are quite similar.
Figure 2.18 shows a typical behavior of

12 :S k :S 70.

Figure 2.18 indicates that the MOSUM M-tests could also be used for the detection of
more than one change (if the changes do not follow close to each other). The simulations
were done by my colleague J. Antoch; an extensive study will be published elsewhere.

2.6 Concluding Remarks

To apply the test procedures described in Section 2.2 one has to choose 7/J and the crit­
ical value. As for the choice of 7/J one should follow the recommendations made for the
M -estimators: If the error dJ. is normal, choose 7/J( x) = x, x E R1; if a nonnormal distri­
bution is suspected (mostly the distribution with some heavier tails such as the Laplace
distribution) use the Huber 7/J function (or another one). For more advanced recommen­
dations see, e.g., Huber (1981) or Hampel et ai. (1985).

Since the critical values introduced in Section 2.2 are based on asymptotic distributions
(for n -+ 00) and the convergence for a nonnormal error dJ. F is quite slow, the mentioned
critical values should be used very carefully and probably only for preliminary inference if
n is moderate. For the final inference (decision) one should carefully inspect the behavior
of either

or

Wk,c, k=ko, ... ,n.
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Figure 2.6: Histogram of k under B = 2, N(0,0.5), Huber's 1/J.
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Figure 2.7: Histogram of k under B = 2, N(0,0.5), 1/J(x) = x.
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CHAPTER 3

Recursive vs. OLS Residuals in the
CUSUM Test

Walter Kramer, Werner Ploberger, and Irene SchlUter

Summary
We extend the well-known CUSUM test for the constancy of the coefficients of a linear
regression model, which is usually based on recursive residuals, to ordinary least squares
(OLS) residuals. We show how to modify the test statistic, derive its limiting distribution
under Ha, and compare the finite sample power of the two versions of the test via Monte
Carlo experiments.

3.1 The Model and the Tests

We consider the familiar Brown-Durbin-Evans (1975) CUSUM test for structural change
in the linear regression model

Yt :::: xU] + Ut t:::: 1, ... ,T, (3.1)

(3.2)

where Yt is the dependent variable, Xt = (1, X/2, ... , X/K)' is a J( X 1 vector of independent
variables (including a constant), such that

T

plim !.. LX/x; :::: R
T-oo T t=l

for some finite and nonsingular J( x J( matri.x R, the Ut'S are Li.d.(O, a 2 ) disturbances (not
necessarily normal), and f3 is a J( X 1 vector of regression coefficients. The null hypothesis
under test is that this vector remains constant over time.
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The standard CUSUM test is based on recursive residuals (standardized forecast errors)

(3.3)

where

(

t-l ) -1 t-l

~(t-1) = L XjX; L XiYi

1=1 1=1

is the OLS estimate for (3 from the first t - 1 observations (t = K + 1, ... ,T; we tacitly
assume that 2:f:l XjX~ has rank K) and where

It rejects the null hypothesis of parameter constancy for large values of

I
W(T)(Z)I

sup ,
O~z~1 1 + 2z

where

(3.4)

(3.5)

is the cumulated sum of the first z(T - K) recursive residuals, and where

a= (3.6)

This chapter is concerned with the OLS-based analogue of (3.5). Let

,(T) _ '(3'(T)ut - Yt - x t

be the t-th OLS residual, where ~(T) = (2:;=1 XIX;)-1 2:;=1 XtYI is the OLS estimator
for (3 from the full sample and where the superscript T emphasizes the fact that OLS
residuals, unlike recursive residuals, change as the sample increases. Following Ploberger
and Kramer (1988), we suggest a test based on

zT

B(T)(z) = _1_ '" u(T)• ImTLJ 1 ,
av.1 1=1

(3.7)
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i.e., the cumulated sum of the first zT OLS residuals. This is very similar to the standard
form in (3.5). The only difference is that summation starts at t = 1 and that OLS residuals
rather than recursive residuals are used. MacNeill (1978) has considered similar tests in
the context of very special regressors (constants or polynomial trends). Otherwise, OLS
residuals have not been very popular in CUSUM-type specification tests. McCabe and
Harrison (1980) provide an OLS-based extension of the CUSUM of squares test, but a
similar extension of the CUSUM test has not yet been given. A technical reason is that
OLS residuals, unlike recursive residuals, are stochastically dependent and heteroscedastic
even under Ho. This makes it hard to derive the null distribution of any test. In addition,
OLS residuals always sum to zero when the regression contains a constant, whether there
is a structural change or not, so the intuition behind the standard CUSUM test (i.e., that
the cumulated sum of the recursive residuals will eventually drift off after a structural
change) does not apply to the OLS-based version of the test.

On the other hand, the standard CUSUM test is rather weak when structural changes
are orthogonal to the Xt'S [see Ploberger and Kramer (1989) or Section 3.2 below] or when
a structural change occurs late in the sample period (since this leaves the cumulated sums
of forecast errors little time to cumulate), whereas a structural change at any time affects
all the OLS residuals. Thus there is some prior justification for probing into the usefulness
of their cumulated sums.

We suggest to reject the null hypothesis of parameter constancy for large values of

sup IB(T)(z)l.
O~z~1

(3.8)

This differs from the standard case. The standard test statistic (3.4) is equivalent to
rejecting the null hypothesis for cumulated sums outside some bounds as in Figure 3.1,
whereas the statistic (3.8) amounts to rejecting for cumulated sums outside the bounds in
Figure 3.2 (where we have added a typical sample path for illustration).

Similar to the standard test, the exact finite sample null distribution of the statistic
(3.8) is not known, i.e., both procedures are only asymptotic tests. Sen (1982) shows that

as T --+ 00, (3.9)

where':!' denotes convergence in distribution and W( z) is the standard Wiener process.
This implies a critical value of 0.945 for the test statistic (3.4), for a significance level of
a = 5%. Similarly, Ploberger and Kramer (1988) show that

asT--+oo, (3.10)

where B(z) is a standard Brownian bridge [or "tied-down Brownian motion"; see Billings­
ley (1968, p. 64)]. This implies that the test statistic (3.8) has the limiting distribution
function

00

F(x) = 1- 2~)_1)J+l exp( -2/x2
)

j==1

(3.11)
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Figure 3.1: Sample path and critical lines for standard CUSUM test.
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Figure 3.2: Sample path and critical lines for OLS-based CUSUM test.
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[see Billingsley (1968, p. 85)], which is identical to the asymptotic null distribution of
the Ploberger-Kramer-Kontrus (1989) fluctuation test and also to the limiting distribu­
tion of yet another variant of the CUSUM test for mean adjusted data [Ploberger and
Kramer (1987)]. For Q = 5%, the distribution function (3.11) produces a critical value of
1.36 for the OLS-based CUSUM test.

3.2 Local Power

Any choice between the OLS-based and the recursive-residual-based versions of the CU­
SUM test must rest on their respective power to detect a structural change. Little can be
said here analytically for finite samples, but there are some local power results. Let the
regression coefficients vary according to

1
(3t,T = (3 + vrg(tIT), (3.12)

where g(z) is some K-dimensional function defined on the [0,1] interval. The relationship
(3.12) defines a triangle sequence of regression models (local alternatives), where the in­
tensity of any structural changes is of the order T- 1

/
2

• It includes a single shift at a fixed
quantile of the sample period as a special case [i .e., g(z) = a (z < z*) and g( z) = 6,,(3
(z 2 z*)].

The limiting rejection probability [as T --+ 00 and as the regression coefficients vary
according to (3.12)] is called the local power of the test. In econometrics, this has become
the most popular means of discriminating among consistent tests.

The local power of both versions of the CUSUM test depends crucially on the "mean
regressor"

1 T
C == lim -T L Xt •

T---+oo
t=1

(3.13)

This always exists by virtue of assumption (3.2) and coincides with the first column (or
row) of the matrix R defined in (3.2).

Given alternatives (3.12) and given any g-function which can be expressed as a uniform
limit of step-functions, Ploberger and Kramer (1988) show that

d 1[ t t 1 r ]W(Tl(z) --+ W(z) + -;; c'10 g(u)du-c' 10 ;10 g(w)dwdv (3.14)

This means that the cumulated sums of the recursive residuals tend in distribution to
a Wiener process plus some rather complicated nonstochastic function, which depends
on the particular type of structural change and the mean regressor c. The point is that
this function is identically zero if c is orthogonal to g( z) for all z in [0,1]. In this case,
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Figure 3.3: Mean regressor orthogonal to structural change.

the limiting distribution of the standard CUSUM test is the same as under Ha, Le., the
CUSUM test has limiting power equal to its size.

The corresponding expression for the OLS-based version of the CUSUM test is [see
Ploberger and Kramer (1988)]

(3.15)

Again, the limiting distribution of the test is the same for Ha and local alternatives if
the mean regressor c is orthogonal to any structural change. Both versions of the test
therefore share the defect of overlooking certain types of structural shift.

For illustration, consider the regression

1 1 t
Yt = - + - (-1) + Ut

2 2
(3.16)

with a one-time increase in slope from 1/2 to 3/2 at some time T*. The true regression
lines, both before and after the structural change, are depicted in Figure 3.3. The mean
regressor in the relationship (3.16) is c = [1,0], whereas the structural shift is 6.{3 = [0,1].
Structural shift and mean regressor are therefore orthogonal.

From Figure 3.3, it is intuitively obvious that the standard CUSUM test will never
detect this shift, since forecast errors subsequent to the shift will have opposite signs and
will cancel each other, giving their cumulated sum little chance to cross the critical lines.
The same happens with the OLS-based CUSUM test. The regression line as estimated
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from the full sample will lie in between the pre-shift and ·the post-shift true regression
lines, with the same intercept, but some intermediate slope. This implies that successive
OLS residuals both before and after the shift will tend to have opposite sign, again leaving
their cumulated sums no chance to cumulate.

If g( z) is not orthogonal to c for all z in [0,1]' the limiting distribution under Ho
will differ from the limiting distribution under local alternatives for both tests, and the
limiting rejection probability exceeds the size of the test. It can, at least in principle,
be computed as a crossing probability for Brownian motion or the Brownian bridge from
(3.14) and (3.15), but all our attempts at doing so have failed. The critical lines implied
by (3.14) and (3.15) are much more complicated than the simple cases (mostly straight
lines), which are discussed by, e.g., Durbin (1971).

3.3 Power in Finite Samples

Next we report on a Monte Carlo investigation into the finite sample relevance of the
asymptotic results from Section 3.2. To economize on computer time and for ease of
comparison with Ploberger and Kramer (1988), we confine ourselves to bivariate models
with Ut ""' N(O, 1), and a single structural shift. The regressors are either

Xt=[l,sint]' or Xt=[l,GNPtl',

where GNPt are (centered) monthly growth rates of West German GNP from 1976 to
1986. In both cases, the mean regressor is given by

c= lim -T
1

LXt = [0,1]'.
T-+oo

(3.17)

Both regressors were used for sample sizes T = 60 and T = 120. Given T, we let the shift
occur at T* = z*T, where z* = 0.1,0.3,0.5,0.7, and 0.9. The shift itself is

/).(3 = )y[COS'ljJ,Sin'ljJ]" (3.18)

where 'ljJ is the angle between /).(3 and the mean regressor c, i.e., the quantity we are
primarily interested in considering the local power results from Section 3.2. This angle is
given the values 0°,18°,36°,54°,72°, and 90°, with Section 3.2 predicting a monotone
loss of power as 'ljJ increases.

The intensity of the shift is 11/).(311 = IbI/.JT, and is likewise varied systematically.
For any given combination of b, 'ljJ, T, and z', N = 1,000 runs were performed for any
given combination of b, 'ljJ, T, and z* (except when b = 0, in which case we performed
N = 10,000 runs to get a more precise figure for the size of the test). We uniformly used
a nominal size of 0' = 5%.
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Table 3.1: Finite sample power of the CUSUM tests for Xt = [l,sin tl' and T = 60.

Angle t/J
b 0° 18° 36° 54° 72° 90°

(a) CUSUM Test (size = 0.0321)
z· = 0.1 4.8 .158 .143 .112 .073 .042 .038

7.2 .334 .331 .222 .130 .057 .033
9.6 .547 .506 .373 .197 .073 .027

12.0 .748 .703 .542 .304 .088 .024
z· = 0.3 4.8 .220 .203 .147 .084 .045 .037

7.2 .472 .426 .300 .160 .060 .031
9.6 .739 .696 .531 .266 .074 .025

12.0 .922 .887 .727 .396 .092 .020
z· = 0.5 4.8 .140 .130 .089 .061 .046 .035

7.2 .324 .295 .204 .093 .048 .032
9.6 .572 .530 .364 .170 .046 .023

12.0 .793 .737 .559 .263 .053 .013
z· = 0.7 4.8 .054 .056 .049 .042 .038 .041

7.2 .116 .109 .065 .046 .032 .035
9.6 .218 .200 .128 .055 .028 .024

12.0 .330 .303 .221 .075 .022 .010
z· = 0.9 4.8 .036 .038 .038 .040 .039 .041

7.2 .034 .036 .035 .036 .037 .040
9.6 .031 .029 .028 .031 .035 .037

12.0 .025 .026 .029 .025 .027 .028

(b) CUSUM (OLS) Test (size = 0.0334)
z· = 0.1 4.8 .057 .055 .052 .043 .035 .039

7.2 .103 .090 .062 .048 .034 .034
9.6 .164 .151 .100 .059 .034 .030

12.0 .290 .243 .157 .066 .034 .027
z· = 0.3 4.8 .351 .322 .222 .112 .052 .034

7.2 .707 .663 .504 .254 .074 .028
9.6 .947 .925 .777 .439 .105 .026

12.0 .994 .988 .950 .641 .159 .022
z· = 0.5 4.8 .504 .466 .348 .182 .062 .033

7.2 .871 .831 .684 .401 .118 .029
9.6 .983 .975 .919 .633 .181 .021

12.0 .999 .966 .985 .832 .265 .016
z· = 0.7 4.8 .363 .332 .247 .124 .052 .037

7.2 .720 .683 .511 .284 .079 .031
9.6 .942 .920 .808 .476 .119 .026

12.0 .992 .988 .951 .696 .180 .018
z· = 0.9 4.8 .051 .051 .046 .041 .037 .034

7.2 .098 .087 .070 .045 .040 .033
9.6 .170 .145 .109 .059 .038 .031

12.0 .276 .242 .158 .081 .036 .030
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Table 3.2: Finite sample power of the CUSUM tests for x = [1, GNPtl' and T = 60.

Angle 1/!
b 0° 18° 36° 54° 72° 90°

(a) CUSUM Test (size = 0.0322)
z· = 0.1 4.8 .143 .133 .099 .061 .040 .033

7.2 .297 .265 .027 .116 .047 .030
9.6 .482 .445 .342 .187 .065 .030

12.0 .705 .643 .489 .281 .096 .029
z· = 0.3 4.8 .192 .179 .137 .076 .040 .031

7.2 .413 .378 .274 .156 .054 .035
9.6 .686 .646 .482 .263 .081 .029

12.0 .878 .843 .693 .400 .126 .028
z· = 0.5 4.8 .125 .115 .087 .052 .035 .038

7.2 .285 .259 .180 .103 .042 .032
9.6 .527 .475 .336 .172 .057 .034

12.0 .755 .706 .540 .269 .083 .030
z· = 0.7 4.8 .052 .048 .039 .035 .031 .031

7.2 .113 .106 .077 .043 .032 .032
9.6 .206 .190 .129 .074 .035 .031

12.0 .334 .299 .212 .109 .038 .031
z· = 0.9 4.8 .032 .032 .030 .030 .030 .030

7.2 .029 .031 .032 .030 .029 .029
9.6 .026 .027 .028 .032 .030 .031

12.0 .026 .025 .026 .029 .030 .034

(b) CUSUM (OLS) Test (size = 0.0267)
z· = 0.1 4.8 .056 .053 .047 .036 .035 .038

7.2 .100 .090 .067 .048 .034 .037
9.6 .173 .153 .115 .063 .035 .040

12.0 .280 .251 .178 .094 .045 .035
z· = 0.3 4.8 .282 .258 .178 .100 .044 .037

7.2 .648 .605 .436 .217 .069 .036
9.6 .912 .878 .746 .405 .106 .035

12.0 .990 .981 .924 .635 .163 .036
z· = 0.5 4.8 .439 .403 .286 .142 .054 .037

7.2 .825 .763 .611 .340 .083 .036
9.6 .977 .965 .875 .581 .157 .037

12.0 .995 .992 .978 .801 .260 .036
z· = 0.7 4.8 .328 .297 .210 .091 .043 .034

7.2 .687 .628 .483 .254 .060 .035
9.6 .941 .906 .782 .456 .107 .033

12.0 .988 .985 .948 .660 .192 .030
z· = 0.9 4.8 .048 .046 .044 .040 .036 .034

7.2 .080 .073 .062 .043 .038 .032
9.6 .147 .129 .091 .059 .040 .030

12.0 .262 .232 .151 .077 .044 .030

43
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Table 3.1 summarizes the experiments for T = 60 and Xt = [1, sin t],. It shows that
power for both versions of the test is indeed decreasing as '1jJ increases, even dropping
below the size as 'l/J = 90°. Power for the OLS-based version is comparable for z· and
1 - z·, whereas the standard version peaks at z· = 0.3, and performs increasingly worse
as z· -> 1, again as predicted by the asymptotic results from Section 3.2. Only for very
early shifts is the OLS-based version outperformed by its standard counterpart. Since the
exact sizes of the tests are almost identical (and in both cases below the nominal size,
confirming previous Monte Carlo work), there is no need to correct for any difference here.

Not unexpectedly, power for both tests increase, ceteris paribus, as the intensity of the
shift increases. An exception is 'l/J = 90°, and z· = 0.9 (standard version), where power
decreases as b increases. This is due to the particular form (3.6) of our estimator for a,
which enters the denominator of both test statistics and is likely to blow up, and thus
decrease, the chance of crossing the respective critical limits, as b increases. This issue
is addressed by Harvey (1975) and Alt and Kramer (1986), but outside the scope of this
chapter.

Table 3.2 gives the analoguous results for Xt = [1, GNP t ]'. It mainly demonstrates that
our previous results are no artifact of the particular regressor sequence, confirming what
was observed for Xt = [l,sint],. The exact size of the OLS-based version is here markedly
below the corresponding figures for the standard test, so the superior performance of the
former version would even be enhanced by any correction.

Tables 3.3 and 3.4 extend the sample size to T = 120. The main result here again is
that nothing much has changed. Exact size is for both tests now closer to the nominal
size of a = 5%, as expected. Ceteris paribus (i.e., given z·, 'l/J, and b), power for T = 60
and T = 120 does not differ much, indicating that local power (i.e., the limiting power as
the intensity b/vIf' tends to zero) is a reasonable guide for samples as small as 60.

3.4 Conclusion

The CUSUM test can equally well be based on OLS residuals. It then reacts also to
structural shifts that occur late in the sample, which are likely to go unnoticed by the
standard version of the test. No version is uniformly superior to the other.
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Table 3.3: Finite sample power of the CUSUM tests for Xt = [1, sin t], and T = 120.

Angle lj;
b 0° 18° 36° 54° 72° 90°

(a) CUSUM Test (size = 0.037)
z· = 0.1 4.8 .179 .165 .122 .083 .052 .033

7.2 .365 .328 .248 .140 .066 .031
9.6 .584 .528 .417 .231 .090 .029

12.0 .780 .746 .585 .335 .106 .027
z· = 0.3 4.8 .250 .229 .161 .097 .056 .028

7.2 .540 .489 .348 .184 .068 .027
9.6 .823 .775 .603 .311 .094 .023

12.0 .949 .930 .819 .479 .134 .020
z· = 0.5 4.8 .168 .147 .113 .071 .047 .029

7.2 .411 .359 .236 .117 .049 .026
9.6 .684 .623 .451 .207 .061 .022

12.0 .890 .850 .660 .324 .076 .019
z· = 0.7 4.8 .079 .067 .057 .046 .035 .031

7.2 .152 .132 .100 .058 .036 .028
9.6 .293 .253 .161 .083 .037 .022

12.0 .487 .434 .266 .116 .039 .016
z· = 0.9 4.8 .035 .033 .032 .031 .030 .030

7.2 .038 .039 .036 .031 .030 .028
9.6 .042 .042 .037 .029 .028 .027

12.0 .049 .047 .040 .030 .026 .024

(b) CUSUM (OLS) Test (size = 0.039)
z· = 0.1 4.8 .081 .073 .063 .048 .039 .040

7.2 .131 .123 .093 .067 .039 .039
9.6 .225 .199 .141 .086 .043 .034

12.0 .390 .334 .216 .114 .049 .028
z· = 0.3 4.8 .389 .348 .262 .150 .066 .039

7.2 .779 .734 .555 .297 .103 .034
9.6 .964 .947 .842 .513 .147 .028

12.0 .999 .996 .969 .745 .204 .021
z· = 0.5 4.8 .547 .508 .372 .210 .079 .041

7.2 .907 .876 .733 .422 .139 .037
9.6 .993 .988 .940 .690 .210 .028

12.0 1.000 .999 .995 .876 .284 .018
z· = 0.7 4.8 .405 .360 .250 .142 .057 .037

7.2 .765 .707 .543 .271 .095 .035
9.6 .965 .947 .810 .485 .124 .024

12.0 .997 .994 .962 .686 .178 .021
z· = 0.9 4.8 .076 .069 .059 .046 .039 .039

7.2 .140 .121 .092 .058 .043 .037
9.6 .238 .204 .148 .078 .044 .035

12.0 .383 .328 .215 .106 .046 .033

45



46 Economic Structural Change: Analysis and F01'ecasting

Table 3.4: Finite sample power of the CUSUM tests for x = [1, GNPtl' and T = 120.

Angle t/J
b 0° 18° 36° 54° 72° 90°

(a) CUSUM Test (size = 0.037)
z· = 0.1 4.8 .167 .150 .118 .081 .050 .033

7.2 .354 .325 .244 .141 .066 .033
9.6 .583 .543 .405 .234 .082 .033

12.0 .773 .740 .592 .341 .110 .033
z· = 0.3 4.8 .235 .210 .157 .094 .060 .035

7.2 .542 .500 .355 .186 .072 .034
9.6 .819 .774 .609 .337 .100 .034

12.0 .958 .930 .830 .526 .140 .034
z· = 0.5 4.8 .146 .134 .096 .065 .047 .035

7.2 .328 .300 .207 .108 .063 .035
9.6 .613 .555 .395 .195 .066 .035

12.0 .834 .788 .627 .314 .093 .035
z· = 0.7 4.8 .067 .067 .060 .054 .039 .035

7.2 .135 .126 .089 .062 .046 .035
9.6 .242 .219 .150 .084 .055 .035

12.0 .415 .363 .249 .132 .059 .036
z· = 0.9 4.8 .032 .033 .031 .034 .034 .035

7.2 .040 .039 .035 .031 .034 .035
9.6 .050 .048 .042 .034 .033 .035

12.0 .051 .051 .049 .040 .031 .035

(b) CUSUM (OLS) Test (size = 0.0281)
z· = 0.1 4.8 .053 .050 .047 .039 .035 .032

7.2 .103 .096 .073 .047 .034 .033
9.6 .207 .180 .119 .069 .039 .032

12.0 .357 .312 .212 .102 .044 .032
z· = 0.3 4.8 .365 .320 .240 .131 .047 .032

7.2 .775 .717 .535 .279 .086 .031
9.6 .959 .943 .845 .504 .147 .032

12.0 .999 .996 .965 .750 .216 .032
z· = 0.5 4.8 .447 .408 .284 .155 .053 .032

7.2 .835 .793 .630 .340 .110 .033
9.6 .979 .966 .886 .598 .172 .032

12.0 .999 .997 .979 .815 .252 .032
z· = 0.7 4.8 .295 .262 .185 .104 .043 .032

7.2 .649 .605 .435 .220 .072 .032
9.6 .910 .873 .723 .404 .110 .032

12.0 .991 .983 .916 .624 .166 .031
z· = 0.9 4.8 .056 .050 .040 .032 .032 .032

7.2 .097 .091 .070 .045 .032 .032
9.6 .175 .155 .116 .063 .033 .032

12.0 .315 .284 .177 .094 .038 .032
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CHAPTER 4

Kimball's Inequality and Bounds Tests
for Comparing Several Regressions
under Heteroscedasticity

Jean-Marie Dufour

Summary

This chapter studies the problem of comparing the coefficients of several independent
linear regressions with unequal variances. Using an extension of Kimball's inequality, we
give simple exact bounds for the null distribution of a general Wald-type statistic for
testing any set of linear restrictions linking the coefficients of the regressions. The bounds
proposed are based on central Fisher distributions, so that the p-values can be obtained
by using any program that computes the central Fisher distribution. In particular, the
bounds suggested are much easier to compute than earlier bounds proposed by Ohtani
and Kobayashi (1986) and Farebrother (1989), especially when more than two regressions
are considered.

4.1 Introduction

A common problem in econometrics and statistics consists of comparing the coefficients of
several independent linear regressions. Such problems are met, in particular, when assess­
ing whether the coefficients of a linear relationship are identical in different subsamples
(corresponding, for example, to different subperiods). When the variances of the distur­
bances are equal, standard analysis-of-covariance methods can be used for this purpose
[see Chow (1960) and Dufour (1982)]. On the other hand, when the vari,Ulces are un-
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equal, it is well known that such procedures are unreliable [see Toyoda (1974), Schmidt
and Sickles (1977), and Ohtani and Toyoda (1985a)].

This chapter considers the following model

Yj

U'J

= Xj{3j + Uj,

N(O, a;Inj ),

j = 1, ,m,
j = 1, ,m,

(4.1)

(4.2)

where Yj is an nj X 1 vector of observations on a dependent variable, Xj is an nj x kj fixed
matrix such that 1 ::; rank(Xj) = kj < nj, Uj is an nj X 1 vector of random disturbances,
and Ul, ... , Um are independent. I study the problem of testing general linear restrictions
of the form

m

H o: LRj(3j = r,
j=l

(4.3)

where Rj is a q X kj matrix, r is a q X 1 vector, and the matrix [R l , Rz, ... , R",] has rank
q.

For the case of two regressions with equal numbers of coefficients (m = 2, kl = kz),
finite-sample procedures for testing Ho: (31 - (3z = 0 were suggested by Jayatissa (1977),
Tsurumi (1984), Ohtani and Kobayashi (1986), and Dalal and Mudholkar (1988). Among
these, the method of Ohtani and Kobayashi (1986), which is based on bounding the distri­
bution of a Wald-type statistic, is the most generally applicable. The three other methods
impose additional restrictions that are inappropriate in many econometric problems. For
example, Tsurumi (1984) requires nl = nz (which may lead to dropping a portion of the
sample) and paired observations (where different pairings can lead to different values of
the test statistic), Dalal and Mudholkar (1988) need Xl = cXz (where c is a constant),
while Jayatissa's (1977) test calls for sample sizes that are sufficiently large with respect
to the number of regressors (nj - kj 2: kj,i = 1,2). Further, the last procedure, which
is based on Hotelling's T Z statistic, is computationally burdensome, requires several ar­
bitrary choices, and makes an inefficient use of the sample; for additional discussion, see
Watt (1979), Tsurumi (1984), Ohtani and Toyoda (1985a), Honda and Ohtani (1986),
and Ali and Silver (1985). Other available procedures are based on approximate distribu­
tions (e.g., large-sample approximations) and thus lead to tests whose size may exceed the
stated level; see Goldfeld and Quandt (1978), Watt (1979), Honda (1982), Erlat (1984),
Rothenberg (1984), Ohtani and Toyoda (1985a, 1985b), Ali and Silver (1985), Honda and
Ohtani (1986), Kobayashi (1986), Toyoda and Ohtani (1986), and Conerly and Mansfield
(1988). The procedure suggested by Weerahandi (1987) is not a test in the usual sense,
and it is not known whether the probability of type I error is smaller than the nominal
"level"; on this issue, see also Griffiths and Judge (1989). Bayesian approaches to the
problem were suggested by Zellner and Siow (1980) and Tsurumi and Sheflin (1985).

The problem of testing general hypotheses of the form (4.3) with m equations (m > 2)
and arbitrary numbers of regressors (when kl = .. , = k", does not necessarily hold)
has been much less studied, especially from a finite-sample perspective. The main re­
sults on this issue are due to Farebrother (1988, 1989) who proposed a generalization of
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the approach of Ohtani and Kobayashi (1986). [Farebrother also proposed extensions of
the approaches of Jayatissa (1977) and Weerahandi (1987). The shortcomings of these
two methods are the same as in the two sample case.] Farebrother, however, did not
propose an algorithm for computing the bounds, so that the generalized method is not
operational. Finding these bounds requires one to evaluate joint probabilities for ratios of
non-independent ratios of chi-square variables. Even though Ohtani and Kobayashi (1986)
proposed an algorithm applicable when m = 2, it appears that their approach would be
difficult to apply when m 2': 3. Even for m = 2, it is fairly complex to use.

In this chapter, I give a result that can simplify considerably the application of Fare­
brother's generalization of the Ohtani-Kobayashi bounds test as well as the latter itself.
For this purpose, we use an extension of Kimball's (1951) inequality to give simple exact
bounds for the distribution of the Wald-type statistic considered by these authors. The
bounds proposed are based on central Fisher distributions, and p-values can be obtained
by using any program that computes the central Fisher distribution. Although less tight
than the bounds considered by Ohtani-Kobayashi-Farebrother, the bounds suggested can
be computed much more easily, irrespective of the number m of regressions involved.

In Section 4.2, the test statistic studied is defined, various notations are introduced,
and further details on the problem are given. In Section 4.3, the extension of Kimball's
inequality is stated and the simple bounds based on it are derived. Section 4.4 discusses
the result obtained and its application.

4.2 Test Statistic

To test general hypotheses of the form ~j~1 R)/3j = r, Farebrother (1988, 1989) gener­
alized the approach of Ohtani and Kobayashi (1986). The test statistic considered is the
Wald-type statistic

w = (R~ - r)' (f S;Qj) -I (R~ - r),
)=1

(4.4)

h f3- (f3-' f3-' f3-' )' f3-' ("\-' V )-IX" 2 -, - ! r. -were l' 2"", m , j = -"-Fl.j jYj, Sj = Uj llj Vj, Vj = 1/j - h:j, Uj =
Yj - Xj~j, Qj = Rj(XjXj)-1 Rj, and the q X k matrix R = [R], R2 , .•. , Rm ] has rank q.

This statistic is not identical to the Wald statistic for this problem; the latter would use
aJ = ujuj!nj instead of sJ. The null hypothesis Hois rejected when W is large.

Let Sj = sJ!o}, j = 1, ... , m, and

H/
o = (R~ - 1')' (f oJQj) -I (R~ - r).

)=1

Then the statistic 1V can be bounded as follows:

(4.5)

(4.6)
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where
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min{WO/S l , ... , WO/Sm} ,

max{Wo/ SI,"" WO/Sm}.

(4.7)

(4.8)

Wo, SI, ... ,Sm are mutually independent with Wo '" X2(q) and VjSj '" X2(Vj), j =
1, ... ,m. However, the ratios Wo/ SI, ... , Wo/ Sm are not independent. The distribution
and tail areas of W can now be bounded either by computing the distributions of W L and
Wu or by bounding the latter in turn.

For the case of two regressions (m = 2) with kl = k2 = q and R l = -R2 = Iq ,

Ohtani and Kobayashi (1986) proposed an algorithm based on evaluating joint probabilities
of the forms P[Wo/ Sj > c, S2/ SI > 1J and P[Wo/5j > c, S2/ 51 < 1], j = 1,2, from
doubly infinite series of gamma functions. Using this method, critical bounds for W were
evaluated for Q = 0.05 and a limited number of values of q and sample sizes (q = 2, ... ,6;
nl, n2 = 12,13, ... ,20,30,40,60). It is easy to see that this algorithm can also deal with
cases where kl = k2 = q and R l = -R2 = Iq do not hold (provided m = 2). However,
when more than two regressions are considered (m 2: 3), it appears that the approach
proposed by Ohtani and Kobayashi for computing the distributions of WL and Wu would
be much more difficult to apply. It is complex to implement for even m = 2.

In Section 4.3 simple bounds for P[W ~ c] are given which are based on central Fisher
distributions and are applicable irrespective of the values of m, q, k l , ... , km , without
special restrictions on R l , ... ,Rm .

4.3 Kimball Bounds

To derive bounds for P[W ~ e], we will use the following lemma, which slightly extends
earlier inequalities given by Kimball (1951), Khatri (1967), and Tong (1980, p. 14).

Lemma 4.1 Let Y be a real mndom variable and let f;(y), i = 1, ... ,p, be Borel­
measurable real-valued functions of y E R such that E[IMY)!J < 00, i = 1, ... ,p, and
E[I n;:'1 f;(Y)IJ < 00, N = 1, ... ,po If the functions f;(y) are nonnegative and monotonic
in the same direction (either nondecreasing or nonincreasing), then

(4.9)

Proof: The result is trivial for p = 1. Let p ~ 2. Since the functions It (y), ... , fp( y) are
nonnegative and monotonic in the same direction, the functions n;:'1 fi(y), N = 1, ... ,p,
are also nonnegative and monotonic in the same direction as f;(y), i = 1, ... ,po Using
Lemma 2.2.1 of Tong (1980, p. 13), we get (for N = 2, ... , p)

(4.10)
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The inequality (4.9) then follows by applying (4.10) successively in E[Il;=1 fi(Y)]. 0

In particular, it is clear that the conditions E[lf;(Y)1J < 00, i = 1, ... ,p, and E[I rr~1
fi(Y)1J < 00, N = 1, ... ,p, hold when the functions h(Y), ... , fp(Y) are bounded. We
can now prove our basic result.

Theorem 4.1 Under the assumptions (4.1), (4.2), and (4-3),

m m

II P[F(q,vj) 2: x]::; P[W/q 2: x]::; 1- II P[F(q,vj) < x]
j=1 j=1

(4.11)

for all x, where W is the Wald statistic in (4.4), Vj = nj - kj, and F(q,vj) follows a
Fisher distribution with (q, vj) degrees of freedom.

Proof: From (4.6), we have WL ::; W::; Wu. For any x,

P[WL/q 2: x] = P[min{Wo/Sl , ... ,Wo/Sm} 2: qx]

P[Wo/ Sj 2: qx,j = 1, , m]
P[I/Sj 2: qx/Wo,j = 1, ,m]

Eo{P[I/ Sj 2: qx/Wo,j = 1, ... , mlWo]}
m

Eo{II P[I/Sj 2: qx/WoIWo]} ,
j=1

(4.12)

where Eo is the expected value with respect to the distribution of 1110 and the last iden­
tity follows by noting that Wo, SI, ... , Sm are mutually independent. Since the functions
h(Y) = P[I/ Sj 2: qx/WoIWo]' j = 1, ... , m, are nonnegative, bounded, and monotoni­
cally decreasing in x, we can use Lemma 4.1, and we find

m

P[WL/q 2: x] 2: II Eo{P[I/ Sj 2: qx/WoIWo]}
j=1
m

II P[I/ Sj 2: qx/Wo]
j=1

m

= II P[(Wo/q)/Sj 2: x]
j=1
m

II P[F(q,vj) 2: x]
j=1

(4.13 )

for all x, where (Wo/q)/Sj = (Wo/q)/(s;/aJ) follows a Fisher distribution with (q,Vj)
degrees of freedom. Similarly, for Wu /q we have

P[Wu /q < xl P[max{Wo/ SI,.·., Wo/ Sm} < qx]

= P[Wo/ Sj < qx,j = 1, ... ,m]
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Eo{P[1/Sj < qx/Wo,j = 1, ... ,mIWo]}
m

EoHI P[1/Sj < qx/woIWo]}
j=l

m

> II Eo{P[1/ Sj < qx/WoIWo]}
j=l
m

= II P[F(q,lIj) < x]
j=l

(4.14)

for any x, where the fact that the functions gj(x) =P[1/ Sj < qx /WoIWo] are nonnegative,
bounded, and monotonically increasing in x has been used. Thus, for any x,

m

II P[F(q, IIj) 2: x] < P[WL/q 2: x] :S P[W/q 2: x]
j=l

< P[Wu/q 2: x]:S 1- II P[F(q,lIj) < x].
j=l

4.4 Discussion

From the proof of Theorem 4-1, it is clear that

o

m m

II P[F(q,lIj) 2: x]::; P[WL/q 2: x]:S P[Wu/q 2: :1:]::; 1- II P[F(q,lIj) < x]
j=l j=l

so that the bounds in (4.11) are less tight than those based on computing P[WL/q 2: x] and
P[Wu/q 2: x], as done by Ohtani and Kobayashi (1986). On the other hand, they have the
merit of being much easier to compute. They are based on the central Fisher distributions
with (q,lIj), j = 1, ... ,m, degrees of freedom. The simplest way to use them in practice
is to find p-values for ltV with any program that computes the Fisher distribution (such
programs are widely available). Letting G(x;q,lIj) = P[F(q,lIj) < x] be the cumulative
distribution function of F(q, IIj), we see that the cri tical region 1- IIi=l G(W/ q; q, IIj) ::; a
is conservative at level a, while the critical region IIi=l {1 - G(W/q; q, IIj)} :S a is liberal
at level a. One can thus use the following bounds test:

m

reject Ho if 1- II G(W/q;q,lIj):S a,
j=l

m

accept Ho if II{1- G(W/q;q,lIj)} > a,
j=l

consider the test inconclusive, otherwise.

For further discussion of bounds procedures, see Dufour (1989, 1990).

(4.15 )
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Clearly, it is also possible to build tables to perform tests of given levels (say, a =
0.10,0.05). This requires finding FL( a) and Fu( a) such that

m

IT P[F(q,vj) ~ FL(a)] = a,
j=1

m

IT P[F(q, Vj) < Fu(a)] = 1 - a.
j=1

(4.16)

The rejection region Wjq > Fu(a) and the acceptance region Wjq :s: F£(a) are equivalent
to the corresponding regions in (4.15). However, the critical bounds FL(a) and Fu(a)
depend on m, q, VI, ••• ,Vm , and tables of such critical values may rapidly become very
large. In this respect, if ao = 1- (1- a)l/m, 0 < a < 1, P[F(q,vj) ~ F(ao;q,vj)] = ao
and

Gu(a) = max{F(aojq,vj),j = 1, ... ,m}.

It is useful to observe that
m

P[Wjq ~ Gu(a)] :s: 1- IT P[F(q,vj) < Gu(a)]
j=1
m

< 1- ITp[F(q,vj)<F(ao;q,vj)]=a.
j=1

Similarly, if ab = a 1
/

m and

G£(a) = min{F(ab;q,vj),j = 1, ... ,m},

we have
m

P[Wjq ~ GL(a)] > IT P[F(q,vj) ~ GL(a)]
j=1
m

> IT P[F(q,vj) ~ F(o:b; q,Vj)] = a.
j=1

(4.17)

(4.18 )

(4.19)

(4.20)

Each critical bound, Gu(a) and GL(a), requires one to find at most m different quantiles
of central Fisher distributions (only one when VI = ... = vm ). On the other hand, it is
clear that GL(a) :s: FL( a) :s: Fu( a) :s: Gu(a) so that the rejection region Wj q ~ Gu( 0:) is
more conservative than the region Wjq ~ Fu(a), and the acceptance region Wjq < GL(a)
is smaller than the region W j q < FL(a).
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CHAPTER 5

A Further Look at Model Evaluation

Bernd Schips and Yngve Abrahamsen

Summary
In this chapter we compare the specification tests generally used in econometric model
building with recently developed p-step Stone-Geisser prediction tests using jackknife pro­
cedures. The comparisons are based on a Monte Carlo study using different structural
forms. The structural forms are partly misspecified. Three sets of simulations are pre­
sented: A variety of single equation models, a simple multi-equation macro model, and
Klein's Model I using US data. The jackknife based statistics enable a more cri tical eval­
uation of the out-of-sample performance of the estimated multi-equation models.

5.1 Introduction

The basic idea of this study is quite simple: The methods and techniques of classical in­
ferential statistics in econometrics are necessary but not sufficient. The classical approach
is inadequate in practice because we do not know the form of the underlying mechanism
producing the economic data. Hence, we have not only errors in variables but also errors
in equations.

The traditional econometric methods for estimating simultaneous equation models re­
quire the identification of the structural parameters. The asymptotically justified estima­
tion methods can be used only when the identification problem is really solved, because
identification is a necessary condition for the existence of estimators with the desired
asymptotic properties like consistency. However, the identification problem cannot be
solved by the more or less pragmatic use of exclusion restrictions. The basic hypothesis
that the considered model is true is the critical and importal1t point. Econometric models
are only approximations, they are never true.
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The identification of dynamic macroeconomic models is difficult. The reason for this
is that the identifying restrictions are pragmatically adjusted to avoid obvious conflicts
with the data, so that these restrictions can only be regarded as simplifications, not as a
priori knowledge imposed on the data. Although this is a weakness in econometric model
building, it does not follow that macroeconomic models are of no value in the preparation
of economic policy decisions. (The well-known rational expectations critique is based on
the fact that statistical models are likely to become unreliable for conditions far outside
the historically "normal" range experienced in the sample data.)

The main point is that only a careful statistical modeling of the historical structure can
be used to make conditional forecasts appropriate for economic policy analysis. Statistical
models and estimation methods should be used which do not strictly require identifying
parameters of behavior which are invariant to unprecendented changes.

The concepts of unbiasedness, consistency, and efficiency utterly lose their meaning by
the time an applied econometrician starts to work [Leamer (1983)]. Often the relevant
economic theory does not yield precise information regarding functional forms of relation­
ships, lag structures, and other elements involved in a stochastic specification of a model.
Therefore, a "trial and error" process of specification search is used. However, the usual
specification search invalidates the classical inferential procedures. This unhappy state of
affairs may be remedied by appropriate sequential procedures, but sequential specification
tests have yet to be developed.

The statistical basis of econometric methods might give the impression that "applied"
econometrics also possesses the robustness of a science. One tends to forget that the
raw material for such applications are economic data and the hypotheses of economic
theory. Any practitioner of empirical economics soon realizes that there is nothing more
changeable than the quality of economic data and economic models. Therefore, in a soft
science like economics, the element of judgment is of paramount importance if empirically
estimated models are to be of practical use. Some tools which are helpful for guiding one's
judgment are discussed below.

5.2 Predictive Model Evaluation

From the viewpoint of "classical" statistical inference the procedure and presentation of
model testing are straightforward. As soon a.s the distribution of the random variables is
determined, the computation of parameter estimators and test statistics with the desired
properties is possible. Tests of hypotheses are conditional on the assumed distribution of
the random variables of the model.

Disregarding the technical problems in the process of deducing estimators and tests
(which may be considerable), it seems as if efficient methods of model testing would resul t
from the application of the classical inference statistics. Yet one problem of classical sta­
tistical inference is that statements about the model's structure are dependent upon the
distributive assumptions. These distributive assumptions cannot be verified themselves.
Tests concerning the stochastic specification of an econometric model are always applied
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in connection with the implied economic hypotheses and are limited to the verification of
specific distributive assumptions within a certain set of distributions. The fundamental
problem wi th currently available specification tests is that only certain aspects of model
specification or only particular competing hypotheses can be examined. Other aspects of
the hypotheses are assumed to be correct and remain untested. The process of specify­
ing an econometric model therefore includes the decision about which assumptions will
remain untested. To avoid this conditional testing, we seek to evaluate the entire model
specification.

The first step in this direction was the development of resampling methods like the
jackknife or the bootstrap. The second step was the formulation of jackknife-based statis­
tics that shed light upon the predictive quality of a model. These statistics were suggested
by Stone (1974) and Geisser (1974) and are jackknife versions of the Q2 statistic originally
introduced by Ball (1963):

where Yt is the observed value, Y; is the predicted or estimated value, and y is the mean
of the observed values. Bergstrom and Wold (1983) used this Q2 and related statistics to
test the forecast properties of different estimators for general models. The Stone-Geisser
statistic is described in Bergstrom and Wold (1983) as follows: With T observations, a
model is estimated T times using (T - 1) observations, one observation being deleted
each time. (Observation 1 is deleted for the first estimation, observation 2 for the second
estimation, etc.) Using these estimates, forecasts are produced for the deleted observations
and the Q2 statistic is computed using these forecasts. For an early reference to the
jackknife, see Tukey (1958).

The jackknife and the bootstrap are nonparametric methods for assessing the errors
in a statistical estimation problem [Miller (1974)]. In the course of computing the Stone­
Geisser statistics, a jackknife-based estimate of the variance is obtained as a by-product.

Jackknifing is especially appealing in situations where no explicit formulas are available
for variances or the computations of varia.nces are too complicated. However, it is known
that jackknife variance estimates are biased upward [see Efron and Gong (1983)]. This
may be a disadvantage compared with estimates obtained through bootstrapping, but to
be on the safe side is an advantage not only in econometric modeling.

We recommend using the jackknife Q2 statistics as measures that shed light upon the
predictive quality of a model [see Abrahamsen (1986) and Abrahamsen and Schips (1989)].
We interpret poor predictive quality as revealed by these statistics as an indication of model
misspecification. First the usefulness of the Stone-Geisser statistics shall be examined by
using single-equation models that are a prio1'i specified incorrectly in different ways. For
these models there exists a large number of "standard" specification tests. The model
misspecifications examined are listed in Table 5.1 [see also Abrahamsen and Schips (1989,
p. 40)].
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Table 5.1: Types of misspecification (omitted variable, incorrect functional form).

Data-generating model a Estimation model b

Fl Ct = Ut Ct = b1 +b2Yt + Vt

F2 C t = 10 + 0.5Yi + Ut C t = b1 + b2Y t + Vt

F3 C t = 10 + 0.2Yi +0.375Ct - 1 + Ut C t = b1 + b2Yi + b3C t - 1 +Vt

F4 Ct = 10 + 0.3Yi +0.15Yt _ 1 + Ut C t = b1 +b2Yi + Vt

F5 Ct = 10 + 0.2Yi + 0.375Ct _ 1 + Ut C t = b1 +b2Y t + Vt

F6 Ct = 10 + 0.2Yi +0.375Ct _ 1 +Ut C t = b1 +b2C t - 1 + Vt

F7 C t = 10 + 0.3Yi +0.0015Yi2 + Ut C t = b1 + b2Y t + Vt

F8 Ct = 10 + 0.7y;0.9 + Ut Ct = b1 +b2Yi + Vt

a Ut ~ N(O, 1); the variances of the error terms correspond to the estimated standard deviation of
residuals in econometric modeling.

b Vt is assumed to be distributed as N(O, a;).

In the Monte Carlo simulations of the single-equation models, i.i.d. normal random vari­
ables were used as the error terms.

Abrahamsen (1986) presented a comparison of specification tests using jackknife Q2
statistics to reveal incorrect specification of single equation models. For the analysis
Abrahamsen (1986) performed Monte Carlo simulations. Monte Carlo simulation is a
natural tool to obtain knowledge of the finite sample properties of the estimation and
to test procedures for linear and nonlinear models. In his paper Abrahamsen applied~

besides the usual significant tests~modified jackknife versions of the original Q2 statistic
suggested by Stone (1974) and Geisser (1974). Instead of a comparison of the predictive
quality of the values for y; (these are the predictions for the observations which have been
omitted in the process of jackknifing) with the predictive quality of the mean value f} of the
observations, Abrahamsen (1986) made comparisons with other "naive" predictors. First,
he compared the values for y; with Yt-l, the predictor corresponding to a random-walk
model:

Second, he compared Y; with the prediction that extrapolates from the previous change

Yt-l - Yt-2:

Table 5.2 lists the criteria used for detecting misspecification in the first set of Monte
Carlo experiments. For the "classical" test statistics, which have known finite sample or
asymptotic distributions, misspecification was determined by a 5% significance level test.
For the other statistics a critical value of 0.8 was used. This value was chosen after informal
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Table 5.2: Criteria for detecting misspecification (the significance level of all tests is 0.05).

Criteria
K1 i-test Ho: b; = 0
K2 JK i-test Ho: b; = 0
K3 Durbin Watson test or Durbin's h-test
K4 R2 < 0.8
K5 Bartlett's M specification error test (BAMSET)
K6 regression specification error test (RESET)
K7 R 2 (SG) < 0.8
K8 R 2(RW) < 0.8
K9 R2(LC) < 0.8

inspection of Q2 when estimating the "correct" specification: For most models, a critical
value of 0.8 gives an acceptably small probability of Type I error. If one explanatory
variable is the lagged dependent, the OLS estimators are consistent and asymptotically
efficient. The usual tests are asymptotically justified. But even when the disturbances are
independent (as in these simulations), the situation is not favorable from the viewpoint
of a practitioner; the small sample properties of the familar estimators and tests are not
satisfactory [Abrahamsen and Schips (1989)]. In this case, the Q2 measures Q2(RW) and
Q2(LC) reflect the bias of the estimators. The question remains: How large must a sample
be to allow inference based on the asymptotic behavior of an estimator?

Abrahamsen and Schips (1989) also analyzed the problem of the possible instability
of the model's structure (i.e., a shift in the value of the coefficients for a subset of the
sample period). The Q2 statistics normally tend to increase according to the number of
observations in a correctly specified model. If a Q2 statistic for a sub-period exceeds the
corresponding measure for the complete period, we get a clear indication of instability in
the model's structure. The detection criterion for the Q2 statistic is accordingly simple:
There is misspecification if the Q2 statistic for the whole estimation period did not exceed
the Q2 statistic for both sub-periods [Abrahamsen and Schips (1989, p. 41)].

The frequencies of detected structural change suggest that the standard tests (Chow
tests, sequence of Chow tests, and CUSUM) are less sensitive to this particular form of
misspecification than the jackknife Q2 statistics. We gather from this and from the first
set of Monte Carlo experiments that at least nothing opposes the use of jackknife methods
in connection with prediction-oriented measures of model evaluation. At first glance, these
Q2 statistics seem to be more likely to detect model misspecification than the frequently
used tests originating from classical inference statistics. One interesting result is the
comparison of the "traditional" i-test and the jackknife i-test. The simulations show that
the power and decision outcome of both tests are roughly the same. This conclusion holds
if we increase the number p of deleted observations in the jackknifing procedure. Table 5.3
shows the frequency of misspecification detection using jackknife estimates with p 2 1.
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Table 5.3: Evaluation of the Monte Carlo simulations: Number of indicated misspecifica­
tions out of 100 simulations.

Criteria Model
F1 F2

K1 94 a
K2 p = 1 93 a

p = 2 93 a
p = 3 95 a

K3 6 6
K4 100 a
K5 17 17
K6 10 10
K7 P = 1 100 a

p = 2 100 a
p = 3 100 a

K8 p = 1 100 62
p = 2 100 38
p = 3 96 35

K9 p = 1 39 12
P = 2 53 22
p = 3 45 17

An econometrician might object to our choice of criteria (Table 5.2). Abrahamsen
(1986) used only two specification tests-the RESET and BAMSET test-out of the
whole battery of specification tests. [The justification for the combined application of
RESET and BAMSET was given by Ramsey and Gilbert (1972).] There exist some
other well-known specification tests, such as the Hausman test or the Lagrange multiplier
test. These tests, however, require knowledge about the specific type of misspecification,
and in practice we rarely have this information. In fact, this information exists only
for simulation experiments. Sometimes the model builder has ideas about alternative
specifications. Table 5.4 gives an impression of the usefulness of the Q2 statistics compared
with the Lagrange multiplier test under ideal conditions (the alternative hypothesis is the
"correct" specification used for the simulation).

If the errors are normal i.i.d., the familiar t-tests have the correct size and possess
optimal power properties. In practice, however, we are rarely sure about the proper
specification of the errors. Looking at the detection frequencies in Table 5.5, we see that
the jackknife Q2 statistics are useful not only for the "simple" case where only the error is
misspecified, but also for the more complicated case where variables are omitted as well.
However, the detection frequencies for the jackknifed t-test (second row) give cause for
concern regarding the jackknife variance estimators when errors are autocorrelated.

When the number p of deleted observations in the jackknife procedure is greater
than one, one can obtain Q2 statistics appropriate for evaluating the quality of the k-th
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Table 5.4: Evaluation of the Monte Carlo simulations: Number of indicated misspecifica­
tions out of 100 simulations.

Criteria Data-generating/estimation model
F4 F5 F6 F7

K1
K2, p = 3
K3
K4
K5
K6
LMtestC

K7, p = 3
K8, p = 3
K9, p = 3

a a 100 49
a a 100 76
3 35 (4°)/2b 7
a a a a

12 10 16 33
6 11 5 1

53 48 100 31
a a 4 a

79 94 100 26
52 73 99 14

a Durbin Watson test
b Durbin's h-test

c H 0: estimation model; HI: correct specification.

Table 5.5: Evaluation of the Monte Carlo simulations: Number of indicated misspecifica­
tions out of 100 simulations. Data-generating models with autocorrelated errorso.

Criteria Data-generating/estimation model
F2A F3A F5A F6A

a
100
100

o
67
29

a 25 100 100
a 52 100 100

20 (4b)/26c 71 (5 b)/3c

a a a a
19 21 13 12
10 15 27 4

78 100
a a

100 100
97 100

K1
K2, p = 3
K3
K4
K5
K6
LMtestd

K7, p = 3
K8, p = 3
K9, p = 3

a Ul =PUI_I + el; P = 0.3, el ~ N(O, 1).
b Durbin Watson test
C Durbin's h-test

d Ho: estimation model; HI: correct specification.

prediction within the p adjacent omitted periods, k = 1, ... ,po First we redefine the
Q2(SG) measures in a manner that gives predictions and comparisons on the same in­
formation base. For p = 1, we omit the observation t when calculating the "alternative
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Qtp,N(RW)

prediction", e.g., the mean. This implies that we now have to build T different means for
the observation set. The above-defined Q2 then becomes

For p > 1 we define the Q2 for predictions done for the k-th of the p adjacent omitted
observations in the following manner (N is the number of estimations, which equals Tip,
rounded to the nearest integer, if necessary):

,,\,N-l( .)2 ,,\,N-l( .)2
Q2 (SC) = 1 _ 6i=0 Yk+ip - Yk+ip _ 1 _ 6i=0 Yk+ip - Yk+ip

k,p,N ,,\,N-l( 1 "\' )2 - "\'N-l(. -.)2
6i=0 Yk+ip - N-l 6#i Yk+jp 6i=0 Yk+,p - y,

With k = p = 1, we have T = N and the formula is identical with the previous Q2(SC)
definition. For p > 1 we may compute p different Q2 measures, indexed by k in the
formula. We may reformulate the Q2(RW) and Q2(LC) in the same manner:

,,\,N-l( .)2
1 _ 6i=0 Yk+ip - Yk+ip

~~~l(Yk+ip- Yip)2

,,\,N-l( .)2
1 _ 6i=0 Yk+ip - Yk+ip

~~~l(Yk+ip- (k + l)Yip + kYip-l)2 .

The results for forecasts up to three steps ahead (p = 3, k = 1,2,3) are given in Table
5.6. An interesting finding is that in well-specified models the Q2 statistics have the
following pattern: With increasing k the number of Q2 statistics less than 0.8 decreases
fast (i.e., the model forecasts appear to improve). The range of the average percent error
and the maximum percent error for different k are roughly the same. Only in cases of
misspecification do the percent errors increase with k.

5.3 Evaluation of Multi-Equation Models

We now turn to the evaluation process of multi-equation models. Evaluation of this kind
of model is normally limited to verifying the economic interpretation of the estimated
parameters and the multipliers based on these parameters and to analyzing the statistics
concerning the ex post (and in some cases the ex ante) predictive quali ties ofthe estimated
structure.

However, this evaluation is problematic [Chong and Hendry (1986)]. These problems
become obvious when we consider forecasting models. In particular, conventional eval­
uation procedures which inspect prediction errors over the ex post period fail to detect
misclassification of variables as exogenous. By construction, the jackknife estimates and
the Q2 measures provide valuable information about this misspecification.
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Table 5.6: Analysis of k-step dynamic forecast simulations. Evaluation of the Monte Carlo
simulations: Number of indicated misspecification out of 100 simulations.

Criteria Data-generating/estimation model
F3 F3A F6 F6A

K1 p=3 54 25 100 100
K2 51 52 100 100
K3 (oa )/7b (4a)/26b (4a)/2b (5a)/3b

K4 a a a a
K5 17 21 16 12
K6 12 15 51 4
K7 p=l a a 4 2

p=2 a 1 49 55
p=3 a 3 80 13

K8 P = 1 89 97 100 100
p=2 50 67 100 100
p=3 25 43 100 100

K9 p=l 67 81 99 99
p=2 23 39 90 93
p=3 6 13 76 84

a Durbin Watson test.
b Durbin's h-test.

To illustrate the use of the jackknife for dynamic models, we use a simple multi-equation
macroeconomic model, whose structure and assumed "true" coefficients are given in Table
5.7. This model is assumed to have normal i.i.d. errors, with no cross-equation correlation.
The various estimation models are described in Table 5.8. Note that model Ml is correctly
specified; models M2, M3, and M4 have one misspecified equation, and M5 combines all
of these misspecifications. Tables 5.9 and 5.10 give the frequencies of detected misspec­
ifications for the different estimation models using the 0.8 cutoff. Examining the results
more closely it is found that the different Q2 measures easily detect a misspecification of
the models and even determine the grossly misspecified equations in M2, M3, M4, and
MS.

An interesting point is the behavior of the average percent errors and the maximum
percent errors for different k. (A similar pattern was evident in Table 5.6.) Table 5.11
shows the percent errors. The pattern of the percent errors in the evaluation of multi­
equation models is not easy to analyze. The Q2 measures are more sensitive compared to
the percent errors.

Finally, we examine the well-known model "Klein I" [Klein (1950)J. This model has
been used extensively as an example of the properties of econometric estimators. The
specification (Table 5.12) follows Bergstrom and Wold (1983).

Using US data for the period 1921-1941, the estimated coefficients of the three behav­
ioral equations are listed in Table 5.13. The estimates from OLS, TSLS, FIML, and FP
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Table 5.7: Data-generating model.

Equation
(1) Ct = 1.1433 +0.1997Yi +0.6942Ct_1+ u(l)t
(2) It = -93.4437 - 0.0453(Yi - Yi-I} +0.0381At + u(2)t
(3) X t = -15.8380 +0.0132 YFt +0.0891PXt + u(3)t
(4) Mt = -1.3594 +0.0389Yt + 1.2566Xt - 0.0787PMt + u(4)t
(5) Yt == Ct + It +X t - M t +Rt

Endogenous variables: C (private consumption), I (gross investment), Y (gross national product),
X (export), M (import).

Exogenous variables: A (labor supply), YF (gross national product of important foreign coun­
tries), PX (price index of exported goods), PM (price index of imported goods), R (other GNP

components).

Table 5.8: Estimation models.

Model
Ml (1)

(2)
(3)
(4)
(5)

M2 (1)

M3 (2)

M4 (4)
M5 (1)

(2)
(3)
(4)
(5)

Equation

Ct = bll +b12Yi +b13Ct- 1+ v(l)t
It = b21 +b22 (Yi - Yi-I} + b23 At + v(2)t
X t = b31 +b32 YFt +b33 PXt + v(3)t
M t = b41 +b42Yi +b43 X t +b44 PMt + v(4)t
Yi == Ct + It +X t - M t +Rt

Ct = bll +b12Yi +v(l)t

It = b21 +b22Yi +b23At + v(2)t

M t = b41 +b42 Yi +b43 PMt + v(4)t

Ct = bll +b12Yi + v(l)t
It = b21 +b22 Yi +b23At + v(2)t
X t = b31 +b32 YFt +b33 PXt + v(3)t
Mt = b41 +b42Yi +b43 PMt + v(4)t
Yi == Ct + It + X t - Mt + Rt
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Table 5.9: Interdependent models (Ml, M3, M4, and Msa). Estimation method JK-TSLS,
p = 3. Evaluation of the Monte Carlo simulations: Number of indicated misspecifications
out of 100 simulations, misspecificated equations in italics.

Criteria Equation Ml M3 M4 M5
K7 (1) 0 0 0 100
p=1 (2) 62 62 96 100

(3) 0 0 0 0
(4) 0 0 a a
(5) 0 0 1 46

K7 (1) 0 0 0 97
p=2 (2) 62 86 86 89

(3) 0 0 0 0
(4) 0 0 a a
(5) 0 0 0 46

K7 (1) 2 1 2 97
p=3 (2) 39 72 83 83

(3) 0 0 0 0
(4 ) 0 0 a a
(5) 0 0 6 51

K8 (1 ) 35 32 85 100
p=1 (2) 7 81 49 90

(3) 0 0 0 0
(4) 0 0 100 100
(5) 2 0 100 100

K8 (1 ) 11 9 62 100
p=2 (2) 7 13 8 25

(3) 0 0 0 0
(4 ) 0 0 100 99
(5) 0 0 94 100

K8 (1 ) 2 1 8 100
p=3 (2) 5 15 27 34

(3) 0 0 0 0
(4) 0 0 3 7
(5) 0 0 23 100

K9 (1) 51 50 85 100
p=1 (2) 4 29 18 40

(3) 22 22 22 22
(4) 12 14 100 100
(5) 0 0 89 100

K9 (1 ) 14 12 53 100
p=2 (2) 1 2 2 5

(3) 0 0 0 0
(4) 0 0 100 100
(5) 0 0 17 58

K9 (1 ) 2 1 8 99
p=3 (2) 0 a 0 1

(3) 0 0 0 0
(4) 0 1 89 84
(5) 0 0 0 8

a Result for model M2 are not reported because estimated equations yield an explosive simulta-

neous system. This is due to not imposing the adding up constraint (Y == C + I + ...) during

estimation when we use a limited information method like TSLS.
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Table 5.10: Interdependent models (Ml-MS), estimation method JK-FP, p = 3. Evalu-
ation of the Monte Carlo simulations: Number of indicated misspecifications out of 100
simulations, misspecificated equations in italics.

Criteria Equation Ml M2 M3 M4 M5
K7 (1) 0 100 0 0 100
p=I (2) 66 86 100 91 100

(3) 0 0 0 0 0
(4) 0 0 0 0 0
(5) 0 100 0 1 91

K7 (1) 0 100 0 1 100
p=2 (2) 62 90 80 79 90

(3) 0 0 0 0 0
(4) 0 0 0 0 0
(5) 0 100 0 1 76

K7 (1) 2 100 3 2 100
p=3 (2) 39 57 69 73 80

(3) 0 0 0 0 0
(4) 0 0 0 0 0
(5) 0 100 0 0 69

K8 (1) 40 100 39 79 100
p=1 (2) 9 19 81 41 87

(3) 0 0 0 0 0
(4) 0 35 0 100 100
(5) 2 100 1 100 100

K8 (1) 12 100 12 0 100
p=2 (2) 7 11 15 9 21

(3) 0 0 0 0 0
(4) 0 0 0 76 97
(5) 1 100 0 81 100

K8 (1 ) 2 100 2 19 100
p=3 (2) 5 9 15 18 31

(3) 0 0 0 0 0
(4) 0 0 0 8 36
(5) 0 100 0 25 100

K9 (1) 50 100 54 80 100
p=I (2) 4 8 28 15 32

(3) 22 22 22 22 22
(4) 14 81 19 100 100
(5) 0 100 0 66 86

K9 (1) 13 100 12 52 100
p=2 (2) 1 1 2 2 3

(3) 0 0 0 0 0
(4) 0 12 0 99 100
(5) 0 97 0 8 46

K9 (1) 1 100 2 17 100
p=3 (2) 1 0 0 0 1

(3) 0 0 0 0 0
(4) 0 1 0 93 97
(5) 0 30 0 0 11
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Table 5.11: Means of the average percent error (APE) and the maximum percent error
(MPE) in 100 Monte Carlo simulations of interdependent Models (M1-M5); estimation
method: JK-FP.

Ml M2 M3 M4 M5
APE MPE APE MPE APE MPE APE MPE APE MPE

k = 1 (1) 1.4 4.1 15.3 65.2 1.4 4.3 1.9 6.1 11.0 50.0
(2) 3.3 7.7 4.0 9.3 5.9 15.7 4.3 10.4 6.2 16.6
(3) 0.8 1.9 0.8 1.9 0.8 1.9 0.8 1.9 0.8 1.9
(4) 1.5 4.7 4.5 20.2 1.6 5.3 8.2 34.1 12.4 53.6
(5) 1.3 3.5 11.0 42.2 1.4 3.7 3.0 9.0 5.6 22.5

k=2 (1) 1.6 4.6 10.3 35.1 1.7 5.0 2.3 6.7 8.1 26.8
(2) 3.0 6.8 4.0 9.9 3.7 7.9 3.4 7.7 3.8 8.6
(3) 0.7 1.6 0.7 1.6 0.7 1.6 0.7 1.6 0.7 1.6
(4) 1.3 3.5 2.9 9.1 1.3 3.6 5.3 13.1 8.9 38.3
(5) 1.3 3.6 7.6 22.7 1.4 3.7 2.9 6.8 4.6 12.0

k=3 (1) 1.6 4.3 7.3 21.5 1.6 4.5 2.3 5.9 6.3 14.9
(2) 3.1 6.8 3.6 7.8 3.7 7.8 3.7 7.8 4.2 9.1
(3) 0.7 1.6 0.7 1.6 0.7 1.6 0.7 1.6 0.7 1.6
(4) 1.1 2.9 2.2 5.3 1.1 2.9 4.3 10.6 7.2 26.1
(5) 1.3 3.3 5.5 14.9 1.3 3.4 2.5 5.2 4.0 7.3

only hint at the misspecification of the model. The estimates of limited and full infor­
mation methods differ. The OLS errors in equation (1) may be autocorrelated, and the
coefficient of the variable (lIt-I) is not different from zero (0: = 0.05). In equation (2) and
(3) the intercept is not significant (0: = 0.05). The R 2 and the ex post prediction errors
are acceptable. The Chow tests and a sequence of Chow tests do not indicate structural
changes. The same holds for the CUSUM test. The specification tests of the Ramsey type
do not give any hints of a misspecification. These results are not surprising. The original
author did a good job.

This impression changes after looking at the jackknife estimates (a sequence of indepen­
dent jackknife estimates) and the Q2-measures (Table 5.14). These give some indication of
misspecification in the model. First, the coefficient estimates show a large variation over
the different subsamples (each sample period deletes three adjacent observations) and the
estimates are transformed in the following manner:

(3-i = T~ - (T - P)~i, i = 1, ... ,N.

Second, the jackknife-based t-tests show that at least two of the three equations are
not well specified (Table 5.15). These results may look surprising at first. However, the
t-test based upon a jackknifed system estimator, e.g., the fixed-point estimator, do not
neglect the interdependencies in the model.

Third, the Q2 measures (Table 5.16) display the patterns described earlier (see discus­
sion of Table 5.6): The Q2 measures decrease with k, and the percent errors increa,se in
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Table 5.12: Model Klein I.

Equation

Economic Structural Change: Analysis and Forecasting

1 Ct = 1311 + f312 II t + f313 II t-l + 1314 W t

2 It = 1321 + f322 II t + f323 IIt-l + f3241(t-l

3 W t = 1331 + f332 t + 1333 YUTMW2t + 1334 YUTMW2t _ 1

4 Tt == YUTt - Yt

5 Yi == Ct + It +Gt - Tt

6 lIt == Yt - Wl t - W2t

7 Wt == Wl t + W2t

8 1(t == ](t-l + It

9 YUTMW2t == Yi +Tt - W2t

Table 5.13: Estimated coefficients, model Klein I: FP = fixed point, JK = jackknife.

Estimation method
OLS TSLS FP FIML JK-OLS JK-TSLS JK-FP

p=3 p=3 p=3
C: (1)

f3u 16.2366 16.5548 16.5038 17.5800 16.6892 15.3195 16.1799

1312 0.1929 0.0173 0.0183 -0.1357 0.1833 0.4437 0.1802

1313 0.0899 0.2162 0.2588 0.3454 0.1214 -0.0584 0.1676

1314 0.7962 0.8102 0.7942 0.7968 0.7717 0.7527 0.7641

I: (2)
1321 10.1258 20.2783 22.0898 26.8377 12.7327 30.3629 17.7977

1322 0.4796 0.1502 0.0929 -0.6591 0.3736 0.1950 0.4410

1323 0.3330 0.6159 0.6621 1.0123 0.3992 0.5498 0.3443

1324 -0.1118 -0.1578 -0.1658 -0.1547 -0.1203 -0.2094 -0.1486

Wl: (3)
1331 1.4970 1.5003 2.3823 5.24.56 2.5448 2.4969 2.3644

1332 0.1302 0.1304 0.1607 0.2861 0.1381 0.1301 0.1847

1333 0.4395 0.4389 0.4013 0.2314 0.4134 0.4419 0.4280

1334 0.1461 0.1467 0.1704 0.2763 0.1.559 0.1267 0.1434
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Table 5.14: Estimated coefficients for sub-periods, model Klein I. Estimation method:
JK-FP, p = 3.

Sample period
1 2 3 4 5 6 7

C: (1) /311 7.5131 16.3683 16.5854 8.0321 22.2734 17.7774 24.7101
/312 -0.5189 -0.2263 0.2903 2.3773 0.1270 -0.3190 -0.4689
/313 0.7175 0.4871 0.4266 -1.2193 -0.1730 0.4079 0.5261
/314 1.0181 0.8096 0.6369 0.5473 0.7985 0.8543 0.6843

I: (2) /321 -18.5131 34.8404 -2.1168 65.8627 -3.7890 51.1875 -3.0524
/322 0.5147 -0.5179 0.1160 2.0196 0.6453 -0.5838 0.8329
/323 0.3620 1.2419 0.9636 -0.7811 -0.6110 1.1386 0.0961
/324 0.0167 -0.2253 -0.0647 -0.4461 -0.0281 -0.2956 -0.0530

WI: (3) /321 4.1085 3.6298 -1.0226 5.1956 5.2585 2.5654 -3.1842
/332 0.2343 0.2368 0.0669 0.2472 0.2063 0.0892 0.2118
/333 0.3185 0.4251 0.1133 0.6880 0.2758 0.4677 0.7075
/334 0.2292 0.1201 0.5376 -0.1862 0.2529 0.0928 -0.0429

Table 5.15: Jackknife-based t-tests, model Klein I. Estimation method: JK-FP, p = 3.

Dependent variable: C
Coefficient (311 (312 (313 (314
t-value 6.5774 0.4703 0.6612 12.9859

Dependent variable: I
Coefficient (321 (322 (323 (324
t-value 1.4509 1.3671 1.1072 -2.2046

Dependent variable: Wl
Coefficient (321 (322 (323 (324
t-value 1.9254 6.5593 5.2274 1.6395
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Table 5.16: Prediction quality of the model Klein 1. Estimation method: JK-FP, p = 3.

Dependent variable
C I II [( W W1 Y Y2

Q2(SG)
k = 1 0.7479 0.4343 0.1573 0.9561 0.8630 0.7946 0.6621 0.6341
k=2 0.4020 0.2199 0.1502 0.7183 0.6060 0.3906 0.3025 0.2808
k=3 0.3682 0.3935 0.4003 0.1158 0.6137 0.4742 0.4870 0.4944

Q2(RW)
k = 1 -0.0925 0.2302 0.0887 0.3994 0.1981 -0.0331 0.0629 -0.2028
k=2 -0.0796 0.4993 0.4479 0.1620 0.1330 0.0853 0.2555 0.1345
k=3 0.2798 0.4524 0.5936 0.1733 0.4612 0.4261 0.5118 0.4966

Q2(LC)
k = 1 0.2522 0.7451 0.5169 0.2302 0.6624 0.6898 0.5691 0.4641
k=2 0.4833 0.8632 0.7667 0.3947 0.6798 0.7138 0.7164 0.6915
k=3 0.6964 0.8861 0.8499 0.4799 0.8029 0.8241 0.8281 0.8237

APE
k = 1 6.9838 268.9733 21.5341 1.1490 7.0968 8.0566 11.1553 10.6882
k=2 9.9443 95.6556 24.0454 2.4712 10.9698 12.4910 14.2873 13.9305
k = 3 9.8606 106.1961 33.4684 3.4701 11.6398 13.4668 16.1759 15.5123

MPE
k = 1 10.7931 1202.4204 37.7318 1.6790 14.6196 16.1676 17.3324 17.4093
k=2 17.6180 165.5607 63.7750 4.1319 18.6419 21.2356 28.7902 27.3345
k=3 31.1117 262.9963 139.0147 7.9188 35.1095 41.5261 52.7205 49.1503

Y2= YUTMW2.

most cases wi th k. This leads one to suspect that the model is misspecified and is not
"predictive" in the sense of Wold.

5.4 Conclusions

In our opinion, the tools described in this chapter are useful for the applied econometrician.
These tools provide several advantages over the traditional approach. The tools are easy
to describe and can be applied to complicated model structures.

All estimation methods can be used to construct jackknife estimates. The jackknife
procedure provides estimates for the variances of the estimators used. As a by-product,
calculations of different versions of the Q2 statistic can be made. The computed k step ex
post forecast errors provide useful information on the operational properties of estimated
forecasting models. The analyses of dynamic ex post forecasts using the jackknifed estima­
tors and the percent errors give us a kind of confidence interval for the parameters of the
endogenous variables of a model. These confidence intervals reflect the different sources
of uncertainty in the model-building process.
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CHAPTER 6

Bayesian Inferences about the
Intersection of Two Regressions

Lyle D. Broemeling, Peyton J. Cook, and Juanita H. Chin Choy

Summary

Previous Bayesian studies of structural change in linear models have focused on the shift
point or on the transition function of the model. In this study we take a Bayesian approach
for making inferences about the intersection between two regression lines. Using a proper
prior density for all of the parameters, the marginal posterior density of the intersection
is derived. This density can be expressed in closed form, but it is not a standard den­
sity. With numerical integration, the density can be normalized and point and interval
estimators computed.

6.1 Introduction

Bayesian inferences for the parameters of a two-phase regression are well known and are
given in Broemeling (1985) and Broemeling and Tsurumi (1987). These studies, among
others, used the shift point or the transition function to model the change from one
regime to the other, and Bayesian inferences were focused on these parameters. For
example, Tsurumi (1980) examined the US demand for Japanese passenger cars by using
the transition function approach, while Chin Choy and Broemeling (1980) analyzed an
example of Quandt (1958) by finding the marginal posterior distribution of the shift point.

Very little has appeared from a Bayesian perspective [see, e.g., Holbert (1973) and
Chin Choy (1977)] in estimating the intersection in a two-phase regression problem, but
the problem has been studied by many, beginning with Hinkley (1969,1971). The prob-
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lem continues to attract attention and has been generalized to the intersection between
stochastic processes. A recent reference is Rosen (1986).

In this chapter, we return to the two-phase regression model with one change, from one
simple linear regression to another. All the parameters are assumed unknown, where the
prior information is expressed with a proper prior density, and the change is represented by
a shift point. Since the abscissa of the intersection point is a ratio of regression coefficients,
and the coefficients have a multivariate t-distribution, by transforming to the intersection
(using the fact that the expected value of the absolute value of a t-random variable is
known), the marginal posterior density of the intersection is expressed in a closed form. An
example that employs numerical integration illustrates the Bayesian approach to making
inferences about the intersection.

6.2 The Two-Phase Regression Model

Suppose that Yl, Y2, ... , Yn is a sequence of independent random variables, where

i = 1,2, ... ,m,
i=m+l, ... ,n,

(6.1)

and the ei '" N(O, r- 1
), i = 1,2, ... , n, and m = 1,2, ... , n - 1. The Yi are the known

values of some regressor and the unknown parameters are m, 8 = (at,{31,a2,fh)' E R4,
and r > O. Thus, one change will occur and the parameter of interest is the abscissa of
the intersection

(6.2)

The most general case is considered, and a proper distribution will express our prior
information.

Before finding the posterior distribution of /, we must know the posterior distribution
of 8, when the prior distribution of (m, 8, r) is given by

g(m,8,r) = go(m)go(8,r), (6.3)

where go( m) = (n - 1)-1, m = 1,2, ... , n - 1, and go(8, r) is a normal-gamma density

go(8, r) ex: r(a+2)-1 exp {-i [2b +(8 - 81')'Q(8 - 81')J) , 8 E R\ r > 0,

and a, b, 81" and Q are hyperparameters that must be specified by the user. We assume
that m is independent of 8 and r.

Under these assumptions, it can be shown [see Broemeling (1985, Chapter 7)] that the
posterior density of 8 is a mixture of multivariate t-densities. Thus, we have

n-l

g(8Iy) = Lg(m!Y)t[8j4,2a*,8*(m),P(m)], 8ER4
,

m=1

(6.4)
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where y = (Yl,Y2, ... ,Yn), g(mly) is the marginal p.m.f. of the shift point and t[.] denotes
a four-dimensional t-density for () with 2a* degrees offreedom, location vector ()*(m), and
precision matrix P(m). The parameters of the above density are given in detail in Chin
Choy and Broemeling (1980) and will not be repeated here.

We now transform from () to I and show that the marginal posterior density of I can
be expressed in closed form.

603 The Posterior Distribution of the Intersection

The transformation from () to I is done in two stages. First, consider the transformation
from () to W = (WI, W2), where

(6.5)

thus WI = 02 - 01 and W2 = /31 - /32, The second transformation is from W to (lb 12),

where 11 = WI/ W2 and 12 = W2. Since the distribution of () is a mixture of four-dimensional
multivariate t-densities, the distribution of W is a mixture (with the same mixing distri­
bution) of two-dimensional t-densities. This is because W is a linear function of () [see
DeGroot (1970)]. The posterior density of W is

n-l

g(wly) = L g(mly) t[w;2,2a*,w(m), V(m)], WE R2,
m=1

(6.6)

where w(m) = T()*(m) and V(m) = [Tp- 1(m)T't 1 . At the second stage of the transfor­
mation process from w to (/1,/2), the marginal posterior density is

n-l

g(lb/2ly) = L g(mly) k(m) l(l2,/l,m), Ii E R,
m=1

where

(6.7)

k(m)

1(12,/1, m)

A(/l, m)
B(ll,m)

c(m)

lV(mW/2r(a* + 1)/2a*71T(a*)

{1 + (1/2a*) [A(tl, mhi - 2B(lI, mh2 + c(m)] } -(aO+I)

= (11, 1) V (m)(11 , 1)'

(11 , 1) V (m ) T ()* ( m )

[T ()*(m)]'V(m)[T ()*(m)] .

This form (6.7) of the density can be simplified by completing the square on 12 In

l(l2,/bm), which results in

n-I

g(lI,/2,m) = L J((m)[G(ll,m)t(ao+l) 1/21 [H(l2,m)r(2ao+2)/2 ,
m=1

(6.8)
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where

H(-Y2, m)

G(-YI,m)

,i(-YI, m)

S(-YI,m)
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1 + [S(-yI' m )/(2a* + 1)][,2 - ,i(-Yt. m)]2

1 + (1/2a*) [c(m) - B2(-YI,m)/A(-YI,m)]

B(,I, m)/A(,I, m)

(2a* + 1)A(-yI,m)/[2a*G(-yt.m)] .

The variable 12 can now be eliminated by integrating (6.8) with respect to 12. This is
possible if we know the expectation of the absolute value of a t-random variable. Note that
H as a function of 12 is the kernel of a t-densi ty wi th 2a* + 1 degrees of freedom, location
Ii(11, m), and precision s(11, m). In the Appendix, the expectation of the absolute value
of a t-random variable is derived. When this is used to eliminate 12 from (6.8), one finds
that the marginal density of 11 is

f [(2a* +1)/2]
g(-yIIY) = f(a*)(27fa*)l/2 (6.9)

n-I

X L lV(mW/2g(mly) A- I/ 2(-yt. m) [G(-Yt. m)r(a·+1/2) Eh21, 11 E R,
m=I

and Eh21 denotes the expectation of the absolute value of 12 with respect to a t-distri­
bution with 2a* + 1 degrees offreedom, location ,i(-Yt.m), and precision s(-YI,m). Using
the result in Appendix A, we have

(2a* + 1)I/2f(a* + 1)
EI

'
21 = a*y'7rf[(2a* +1)/2]

X s-I/2(-yI,m){1 + [1/(2a* + l)]s(-YI,m)/i(-YI,m)}-a·

+,i(-YI,m) {2<I>(2a.+I) [,iC1I,m)sI/2C1t.m)] -I},

(6.10)

where <I>(d) denotes the cdf of a t-random variable with d degrees of freedom. Therefore
(6.9) and (6.10) complete the specification of the posterior distribution of the intersection
between two linear regressions. Although (6.9) is rather involved, it is relatively easy to
compute the median, mode, and credible intervals for 11.

If one knows m, where the change occurs, then the appropriate density is the condi­
tional density of 11 given m, which is

g(-yllm,y)

f [(2a* + 1)/2] IV(m)II/2A-1/2("11 m) [G("II m)]-(a·+1/2) EI"II I
(27fa*)l/2f(a*) ,I, ,I, ,2 ,

(6.11)

and this is easier to work with numerically. We will use densities (6.10) and (6.11) to
illustrate the Bayesian methodology in Section 6.4.
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6.4 An Example

81

Data from Pool and Borchgrevink (1964) proved a good example to illustrate Bayesian
inferences for the intersection in two-phase regression. The data are shown in Appendix B,
where the independent variable x is Warfarin and the dependent variable is blood factor
VII production. Hinkley (1971), Holbert (1973), and Chin Choy (1977) use this data set
to illustrate the techniques that they have developed.

For purposes of illustration, the parameters of the prior distribution (6.3) are given
the values

4>/-' (0,0.2,0.95,0)'

Q 14

a 2

b 0.0017, Le., E[r- 1
] = 0.0017.

These estimates were obtained by Hinkley. From this information, the mass function of
m is calculated and shown in Appendix B. The location estimators of m are the mode =
6 and the mean = 6.13. Thus, we are confident that the shift point is at m = 6. That is,
the first six observations follow the first regression, while the remaining nine observations
follow the second regression. Figure 6.1 gives the graphs of the marginal and conditional
(given m = 6) posterior densities of l' These were graphed from formulas (6.9) and (6.11),
respectively. In addition, point and interval estimates of 1 were computed by numerical
integration, and are listed in Table 6.1.

Table 6.1: Point and interval estimates of 11.

Point estimates
mode
median

HPD regions
90 %
95 %
99 %

4.81
4.81

(4.55, 5.07)
(4.49, 5.13)
(4.37, 5.26)

4.79
4.80

(4.56, 5.05)
(4.50, 5.11)
(4.41,5.23)

From examining the graphs and the computed estimates, we see how well the con­
ditional density approximates the marginal density. The intersection 11 is the ratio of
correlated t-random variables, thus the mean and variance do not exist and were not
computed.
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Figure 6.1: Marginal and conditional posterior pdf of,

6.5 Comments and Summary

We have shown that it is possible to make Bayesian inferences about the intersection
between two simple linear regressions when one uses a shift-point representation of change
and a normal-gamma density to express prior information. The marginal posterior density
of the intersection can be derived in closed form. The density is easily graphed, and the
point and interval estimates are computed. If one is not so confident of prior information,
is it possible to employ a vague improper prior density for the parameters? The answer is
yes, but certain adjustments have to be made. For example, suppose we let

g(m,8, r) = go(m) 90(8, r) (6.12)

with go(8,r) = r- I , r > 0, 8 E R4 , where go(m) is as before. Then one may show that
the posterior mass function of the shift-point m does not exist at m = 1 or at m = n - 1.
However, if one knows that the change cannot occur at these points, a priori, one could
use

m = 2,3, ... , n - 2, (6.13)

and together with (6.12), derive the posterior density of'l. This would be similar to the
result derived when using a proper prior density.
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Appendix A

Suppose X is distributed as a general t-distribution with n degrees of freedom, location
J.l, and precision T (n > 0, J.l E R, and T > 0), then

EIXI = 2ynT [en + 1)/2] (1 + TJ.l 2/n)-(n-l)/2 + J.l [2Pn(J.lyT) - 1] ,
(n - 1)y'1rTf(n/2)

where Pn(X) is the cdf of student's t-distribution with n degrees of freedom. This result
can be verified by integration.
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Appendix B
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Data from Pool and Borchgrevink (1964) and the posterior distribution of m:

Xj Yj m g(mly)
1 2. .370483 1 O.
2 2.52288 .53797 2 O.
3 3. .607684 3 0.00001
4 3.52288 .723323 4 0.00053
5 4. .761856 5 0.19744
6 4.52288 .892063 6 0.48151
7 5. .956707 7 0.31535
8 5.52288 .90349 8 0.00513
9 6. .898609 9 0.0002

10 6.52288 .953850 10 O.
11 7. .990834 11 O.
12 7.52288 .890291 12 O.
13 8. .990779 13 O.
14 8.52288 1.05086.5 14 O.
15 9. .982785



CHAPTER 7

N onparametric Sequential Surveillance
of Intervention Effects in Time Series

Peter Hackl

Summary

A nonparametric process procedure is proposed as a tool for continuous monitoring to
detect intervention effects in a time series. The procedure uses exponentially weighted
moving averages of the ranks of the post-intervention one-step-ahead forecast errors. The
forecasts are based on the pre-intervention model, and the errors are ranked with respect
to residuals in the pre-intervention period. The method is illustrated with the Los Angeles
oxidant data previously analyzed by Box and Tiao (1975).

7.1 Introduction

Box and Tiao (1975) provide a method to model intervention effects in time series. The
question that is answered by intervention analysis is whether or not an intervention has
changed the level of a time series. Box and Tiao use difference equation (ARIMA) models
to represent the dynamic characteristics of both the noise and the interventions effects.

In general, intervention analysis faces two difficulties .

• The pattern of the intervention effect is often difficult to determine a pri01·i; conse­
quently, the need to specify the intervention dynamics leads to arbitrariness in the
model choice. This fact, together with the weak discriminatory power of the avajl­
able model selection criteria (Box-Pierce statistic, Ljung-Box statistic), can affect
the conclusions.
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• Intervention analysis must be seen as a problem of sequential analysis. Although
the timing of the intervention is typically known, the number of observations that
contain information about this intervention effect increases over time and is not
fixed. In many applications, we want to reach a decision as soon as possible.

Process control techniques are ideally suited to address these two concerns. The means
of inferring whether the intervention can be assumed effective are diagnostic checks of the
differences between the observations and the one-step-ahead forecasts obtained from the
model for the pre-intervention time. Correspondingly, Abraham (1987) suggests to apply
CUSUM charts to the one-step-ahead forecast errors in the post-intervention period. This
possibility is already mentioned by Box and Tiao (1976). It is certainly a promising
topic to investigate the appropriateness and the relative merits of other sequential process
control methods.

Recently, interest in process control methods that are to a large extent independent
of distributional assumptions led to the development of nonparametric process control
procedures (Bakir and Reynolds, 1979; Bhattacharyya and Frierson, 1981; McDonald,
1986; Hackl and Ledolter, 1989). Such methods are comparable, in terms of average
run length, to the standard process control procedures, such as Shewhart and CUSUM
techniques. In addition, they have the adventage of being independent of distributional
assumptions. In this chapter I apply such a nonparametric process control procedure in
the context of intervention analysis. This procedure is based on the ranks of the one-step­
ahead forecast errors for the post-intervention data. The forecast errors are ranked among
the historic one-step-ahead forecast errors (that is the residuals) of the pre-intervention
period.

Section 7.2 presents a modification of a process control procedure that is based on
exponentially weighted moving averages of the ranked one-step-ahead forecast errors. The
application of this procedure to intervention analysis is discussed in Section 7.3. Section 7.4
analyzes the Los Angeles oxidant data given by Box and Tiao (1975). Concluding remarks
are given in Section 7.5.

7.2 The Rank-Based Sequential Control Procedure

Hackl and Ledolter (1989) derived a nonparametric process control procedure that is based
on sequential ranks. The sequential rank of an observation is defined as its rank among
the g most recent observations. The control procedure is based on exponentially weighted
moving averages of these ranks. The procedure is outlier-resistent and performs well if
one is concerned about changing process levels.

The use of sequential ranks makes sure that at each control point the actual observation
is compared with the most recent past of the process. In the intervention analysis situation,
however, information about the effectiveness of the intervention is obtained by comparing
post-intervention with pre-intervention data. A corresponding modification of the process
control procedures is presented in this section.
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The situation can be formalized as follows. Assume that g - 1 independent and identi­
cally distributed random variables Xi, i = 1, ... ,g - 1, are available as the ranking basis.
The probability distribution function of Xi is denoted by F. We want to test the null hy­
pothesis that independent random variables Yi, t = 1,2, ... , follow the same distribution
F, against a change-in-location alternative. We define the rank of Yi among the g - 1 Xi'S
as

g-1

R; = 1 + LI[Y.>X;J, t = 1,2, ... ,
i=l

(7.1)

where the indicator function I[y,>x;J = 1 if Yi > Xi, and 0 otherwise. The parameter g is
denoted as the ranking size. The standardized rank Rt is defined as

(7.2)

The Rt's are, for all t, uniformly and independently distributed on the g points {~ - 1,

~ - 1, ... ,1 - ~}, with expectation zero and variance Var{Rt } = (g2 - 1)/(3g2).

In the process control literature it is well established that control procedures that take
past observations into account are more powerful in detecting small and moderate changes
in the location parameter than procedures that are based on only the most recent obser­
vation. For this reason we use exponentially weighted moving averages of standardized
ranks as test statistics. Other possible choices are the cumulative sum and the moving
sum statistics. The exponentially weighted moving averages of standardized ranks are
defined recursively as

Tt = (1- A)Tt- 1 + ARt, t = 1,2, ... , (7.3)

where To is the starting value, usually set to equal zero, and 0 < A ~ 1 is the smoothing
parameter. If we want to test against increases in location, one considers a change as
effective if the series {Ttl crosses a suitably chosen critical limit h (that is, Tt > h for any
of the control times t ~ 1). The choice of a common h for all t is justified by the fact that
Var{Ttl is, except for small t, independent of t. Analogously, Tt < -h and ITtl > h for
any t ~ 1 are critical regions of the test against a decrease and a two-sided alternative,
respectively.

The performance of a process control technique is usually evaluated on its average run
length (ARL), which is the average number of observations that are needed to exceed the
critical limit for the first time. The parameters are chosen so that the average run length is
large if the process is under control, and small in the out-of-control case. Similarly, we want
our procedure to have a large average run length under the null hypothesis, but a small
one if a change in location is effective. This must be achieved through a sui table choice of
the parameters in our procedure: the ranking size g, the smoothing parameter A, and the
critical limit h. Crowder (1987) gives an integral equation for the average run length of the
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Table 7.1: Average run lengths for the exponentially weighted moving averages of inde­
pendent continuous random variables obtained from Crowder's (1987) integral equation
for three different smoothing parameters A and several critical values h.

h A =.9 A =.8 A =.7 A =.6 A = .5
0.85 34.83 89.62 254.94 920.97 5065.23
0.80 18.97 44.21 98.27 274.70 1056.91
0.75 12.63 25.84 50.80 116.49 343.14
0.70 9.45 16.88 31.08 60.93 149.49

exponentially weighted moving average procedure that is based on independent continuous
random variables. Hackl and Ledolter (1989) show that Crowder's approach can be applied
to derive approximate average run lengths for exponentially weighted moving averages of
sequential ranks. The approximation neglects the discreteness and the small correlations
among the ranks. The approximate average run lengths are in good agreement wi th
the respective Monte Carlo estimates for 9 larger than 30 and most values of h. The
same approximation can be expected to give an even better agreement for exponentially
weighted moving averages of the ranks in (7.1) and (7.2); in this case, consecutive ranks
are independent and the approximation neglects only the discreteness of the ranks. These
approximate average run lengths now depend only on A and h. Hence, for moderate to
large values of g, we can use the solutions of Crowder's integral equation to select the
parameters A and h. A typical choice of parameter values is A = .7 and h = .85, resulting
in a theoretical average run length of 255. The run length for other parameter values
are shown in Table 7.1. The average run length under the alternative when there is a
change of level depends, besides on the parameters A and h of the control procedure, on
the characteristics of the series {Yi}. General conclusions about average run lengths are,
even in an approximate form, difficult to obtain.

7.3 Sequential Surveillance of Intervention Effects

The intervention analysis model assumes that the observations X t = Zt + Nt are the sums
of two components: A noise component Nt and an intervention component Zt that affects
the level of the series. The noise component Nt follows the ARIMA model

¢>(B)Nt = O(B)at, (7.4)

where B is the backshift operator (BXt = Xt-d and where {ad is a sequence of inde­
pendent and identically distributed random variables with zero mean and variance a~.

Typically, ¢>(B) = ¢>1(B)¢>2(B S )(1- B)d(1- Bs)D and O(B) = Ol(B)02(B S
), where ¢>l, ¢>2,

01 , and O2 are polynomials of order PI, P2, ql, and q2, respectively. This representation
allows for seasonality (with seasonal period s) and nonstationarity. The roots of ¢>( B) and
O(B) lie outside the unit circle, and ¢>(B) and O(B) have no common roots.
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Intervention effects Zt are modeled by applying filters to indicator sequences
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(7.5)

where w( B) and 6(B) are polynomials of order rand s, respectively. The indicator variable

I/T) can represent a step input, that is It(T) = 0 if t < T and I/T) = 1 if t ~ T; or a pulse

input, that is I/T) = 1 if t = T and I/T) = 0 otherwise; here, T denotes the intervention
time. The dynamic model

(7.6)

is a very general model that allows for a variety of intervention effects as well as for
correlation among the errors [see Box and Tiao (1975)].

If the intervention effect is ignored and if the time series model alone is applied to X t

then the error series {an is given by

< 0-1(B)¢(B)Xt

at +0-1(B)¢(B)w(B)6- 1(B)I/T)

at + J.Lt· (7.7)

The error series {an reflects the intervention in the sense that the levels of a~ are for t ~ T

not necessarily zero. The correlation structure, on the other hand, is not affected by the
intervention. As it is obvious from (7.7), the intervention effect on the error series depends

both on the ARIMA model (7.4) and on the intervention model w(B)6- 1(B)I/T). Under
the assumptions implied on the roots of the polynomials it ca.n be shown that Ilt --> 0 for
increasing t, for both the step and the pulse input.

Figure 7.1 shows the levels J.Lt = E {(l~} as a function of t for the (0,0, 1) X (0, 1, 1h2

ARIMA model discussed in Section 7.4. There we find that ¢(B) = 1 - B 12, O(B) =

(1 + .435B)(1 - .7577B12 ), w(B) = WQ = 1, 6(B) = 1, and It(T) represents a step input
with T = 61. A suspected intervention effect can be assessed on the basis of the errors
{a~, t ~ T}. This can be done in a sequential manner, starting at the suspected intervention
time T, and by calculating a test statistic for each observation time T, T + 1. .... For that
purpose we use the sequential procedure that was introduced in the last section. Let J>T( B)
and OT( B) be the polynomials that are estimated on the basis of the pre-intervention data
Xi, i < T. The quantities that have to be ranked are the post-intervention one-step-ahead
forecast errors

It =Xt -Xt- 1(1), t=T,T+l, ... , (7.8)

where Xt - 1 (1) is the predicted value for X t that uses all observations Xi, i ::; t - 1, that
are available at time t - 1. The predictions are obtained from the pre-intervention model
and use polynomials J>T(B) and OT(B). The forecast errors are ranked among the residuals
(the historic one-step-ahead forecast errors) It = X t - ;kt- 1(1), t = 1, ... , T - 1, from the
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Figure 7.1: Expectations E{ai} as a function of t for the (0,0,1) x (O,l,lhz ARIMA
model with ¢>(B) = 1- B l2 , O(B) = (1 + .435B)(1- .7577B1Z

), w(B) = Wo = 1, o(B) = 1,

and It) represents a step input with T = 61.

pre-intervention model. The ranking size g now is T - 1 - p, where p is the order of the
polynomial ¢>(B). We denote the standardized rank of it, t = T, T + 1, ... , among ii,
i = 1, ... , T - 1, by Rt .

If the polynomials ¢>(B) and O(B) were known, the residuals it and the one-step-ahead
forecast errors it would coincide with the respective errors at; this implies that they would
be identical and independently distributed in the no-intervention case, and they would be
independent with expectations J.Lt given in (7.7) in the intervention case [Box and Jenkins
(1970)].

The exponentially weighted moving averages Tt of the ranks Rt

Tt = (1 - A)Tt- 1 + ARt, t = T, T + 1, ... , (7.9)

can be used as a diagnostic whether the intervention has had an effect: The intervention
is considered to have changed the process level if Tt > h (Tt < h, ITtl > h) for any t 2: T,

where h is the critical limit. The choice of the parameters g, A, and h determines the
performance of the test procedure: Having monthly data, an average run length in the
no-intervention case of 60 to 120 may be appropriate. If g is 30 or more we can use the
approximate average run length that is derived from Crowder's (1987) integral equation
to choose suitable values for A and h. This procedure can be applied in a sequential way
starting at time T and checking T t in all subsequent times t = T + 1" , " whenever a new
observation becomes available.
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Figure 7.2: Monthly averages of the oxidant level in downtown Los Angeles from January
1955 (t = 1) to December 1965 and one-step-ahead predictions from January 1960 (t = 61)
to December 1965 obtained by extrapolating a (0,0,1) x (0,1,lh2 ARIMA model fitted
to the data January 1955 to December 1960.

7.4 The Los Angeles Oxidant Data

Figure 7.2 shows the monthly averages of the oxidant level in downtown Los Angeles
from January 1955 to December 1965. The events of interest are the opening of the
Golden State Freeway and a new law (Rule 63) that reduces the allowable proportion of
reactive hydrocarbons in locally sold gasoline. Both events became effective in January
1960. Using the Box-Jenkins method, Box and Tiao (1975) identify a (0,0,1) x (0,1, 1h2
ARIMA model for the noise component of the series. Fitting this model

(7.10)

to the data of the pre-intervention phase, January 1955 to December 1959 (60 observa­
tions), leads to the parameter estimates and standard deviations (in parentheses) given
below:

81 = -0.4350
(0.2188)

82 = 0.7577
(0.1585)

Diagnostic checks, such as the residual autocorrelations and the Ljung-Box statistic, indi­
cate that the model in (7.10) gives an inadequate description of the time series.
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Figure 7.3: Residuals from January 1956 (t = 13) to December 1959 (t = 60) and
one-step-ahead forecast errors. Predictions are obtained from model (7.10), with parame­
ter estimates based on the data from January 1955 to December 1959.

The potential intervention starts with 1960. The plots of the post-intervention data
(Figure 7.2) and of the one-step-ahead forecast errors (Figure 7.3) indicate that the level of
the series may have changed. In the first two years after the intervention (observations 61
through 84), nearly all one-step-ahead predictions from (7.10) are greater than the actual
observations. This confirms the prior expectation that the interventions that become
effective in January 1960 (observation 61) have decreased the oxidant level. Figure 7.3
shows the residuals for t = 13, ... ,60 and the one-step-ahead forecast errors from January
1960 to December 1966 that are calculated from model (7.10) with parameter estimates
based on the pre-intervention data. For applying the diagnostic procedure introduced in
Section 7.3 the ranking basis is the g = 48 residuals of the pre-intervention phase. The
exponentially weighted moving averages {Ttl of the ranks of the one-step-ahead forecast
errors with ranking size g = 48 and smoothing parameter A = .7 are given in Figure 7.4;
T60 was set equal zero. The range of interest is the time immediately following the time of
the suspected intervention, T = 61. The trend of Tt , t = 61, ... ,71, is negative, reaching
a minimum at t = 71: Tt = -.808 and -.856 for A = .7 and .8, respectively. For the
case that there has been no intervention effect, it can be shown that the average run
lengths of the exponentially weighted moving averages of ranks with parameters (A = .7,
h = - .808) and (A = .8, h = - .856) are 111.8 and 99.5, respectively. The fact that such
limits are crossed indicates that it is very likely that the intervention has had an effect on
the process.

II
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Figure 7.4: Exponentially weighted moving averages of the ranks of the post-intervention
forecast errors, ranked among the pre-intervention residuals (g = 48, A = .7); T60 was set
equal zero.

7.5 Concluding Remarks

The sequential surveillance procedure that is proposed in this chapter is related to process
control methods. Process control methods are well suited for intervention analysis since in
many situations it is difficult to specify the intervention model. Furthermore, intervention
analysis, like process control, has to account for the increasing number of observations.

The application of the method requires the calculation of the ranks and the exponen­
tially weighted moving averages of the post-intervention one-step-ahead forecast errors
that are obtained from the pre-intervention model. For moderate and large ranking sizes
one can obtain approximate average run lengths that are in good agreement with the ex­
act ones. The nonparametric nature of the procedure proposed makes it independent of
distributional assumptions.

References

Abraham, B. (1987), Application of intervention analysis to a road fatality series in On­
tario. Journal of Forecasting, 6, 211-219.

Bakir, S.T. and Reynolds, M.R., Jr. (1979), A nonparametric procedure for process control
based on wi thin-group ranking. Technometrics, 21, 175-183.

Bhattacharyya, P.K. and Frierson, D., Jr. (1981), A nonparametric control chart for
detecting small disorders. The Annals of Statistics, 9, 544-554.



94 Economic Structural Change: Analysis and Forecasting

Box, G.E.P. and Jenkins, G.M. (1970), Time Series Analysis, Forecasting, and Control.
San Francisco: Holden Day.

Box, G.E.P. and Tiao, G.C. (1975), Intervention analysis with applications to economic
and environmental problems. Journal of the American Statistical Association, 70,
70-79.

Box, G.E.P. and Tiao, G.C. (1976), Comparison of forecast and actuality. Applied Statis­
tics, 25, 195-200.

Crowder, S.V. (1987), A simple method for studying run-length distributions of exponen­
tially weighted moving average charts. Technometrics, 29, 401-407.

Hackl, P. and Ledolter, J. (1989), A new nonparametric quality control technique. Tech­
nical Report No. 160, Iowa City: The University of Iowa.

Lucas, J.M. and Crosier, R.B. (1982), Robust CUSUM: A robustness study for CUSUM
quality control schemes. Communications in Statistics, Theory and Methods, 11,
2669-2687.

McDonald, D. (1986), A CUSUM Procedure based on sequential ranks. Technical Report,
University of Ottawa.



CHAPTER 8

A Monte Carlo Study of the Effects of
Structural Breaks on Tests
for Unit Roots

David F. Hendry and Adrian J. Neale

Summary

The effects of a shift in the intercept of an autoregressive process on the rejection frequen­
cies of standard tests for unit roots are investigated using Monte Carlo methods. Such
tests lose power compared with the equivalent parameter values when no breaks occur.
F-tests for structural breaks fail to detect shifts that are large enough to mimic unit roots.
The response surface summarizing a conventional Monte Carlo highlights the effects on
Dickey-Fuller (DF) and Augmented Dickey-Fuller (ADF) tests of the magnitudes of the
autoregressive parameter, the break, the cumulative break, the estimation sample, and
the percentage of the sample contaminated by the break. Diagnostic tests on the response
surface support its specification. A recursive Monte Carlo computes sequences of rejection
frequencies of DF and Chow tests and shows that these are low. Thus, care is required in
interpreting unit-root tests since failure to reject does not entail that the null is true.

8.1 Introduction

There has been considerable interest in unit-root tests as part of a research strategy to pre­
test for the degree of integration of economic time series. If a time series has all the latent
roots of its autoregressive representation inside the unit circle, then it is denoted by J(O); a
series that requires differencing d times to make it J(O) is denoted by J(d). [If a(L)Yt = Ct is
a p-th order autoregressive process where Ct is white noise, then lAP -2: a i.xp-il = 0 yields
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the latent roots Ai of the (scalar) matrix polynomial. Thus, an 1(0) series has IAil < 1
Vi.] The case of central interest is whether a series is 1(0) or 1(1), since the underlying
statistical distributions are different and empirical evidence suggests that many economic
time series behave like 1(1) processes [see, e.g., Nelson and Plosser (1982)]. Several tests
for unit roots have been proposed, including suggestions by Dickey and Fuller (1979),
(1981), Sargan and Bhargava (1983), and Phillips and Perron (1988): see Dolado and
Jenkinson (1987) for a survey. Here we focus on the Dickey-Fuller (DF) and Augmented
Dickey-Fuller (ADF) tests, implemented by testing the null hypothesis Ho: {3 = 0 in the
equation

tlYt = It + (3Yt-l +Et for t = 1, ... ,T, (8.1)

where Et '" IN(O, an and Yo = O. [The regression in (8.1) is extended by the inclusion
of", lags of tlYt for an ADF(",) test.] Under the null, tlYt = It + Et and the alternative
hypothesis is that (3 < O. The 1(1) versus 1(0) hypothesis is tested using the conventional
t-test on (3. However, the usual critical values are inappropriate for It = 0, since the test
statistic does not converge on a normal distribution asymptotically, but to a functional of
a Wiener process. Let W(r) denote a Wiener process for 0 s: r s: 1, so that W(r) is a
continuous random walk on (0,1), then when It = 0:

t({3 = 0) ~ ~ W(1)2 - 1 1 •

2 ud W(t)2dtJ2
(8.2)

For fixed r, W(r) '" N(O,r), so that W(1)2 in (8.2) is distributed as a X2(1). Critical
values for the t-test that {3 = 0 in (8.1) are reported in, e.g., Fuller (1976) and Dickey
and Fuller (1979). If It is constant and nonzero when (3 = 0, then t({3 = 0) reverts to a
standardized normal distribution [see Dickey and Fuller (1979, p. 429), West (1988), and
Hylleberg and Mizon (1989)].

The problem we investigate here is when (3 < 0 but It is nonzero and non-constant due
to a structural break in the economic subsystem of which {Yt} forms part. Our concern
arises from the fact that even small step changes in a time series have similar autore­
gressive characteristics to those of an 1(1) process. Indeed, since Working (1934) it has
been known that random walks can mimic many shapes, so it is unsurprising that autore­
gressive series with step changes can be mistaken for random walks. For example, Miller
(1988) reports different test outcomes of pre- and post-floating exchange rate regimes for
cointegration tests between savings and investment. In cases of structural shifts, therefore,
the discriminatory power of DF and ADF tests between 1(1) and I(O)+shift may be low.
Such a conjecture is consistent with empirical evidence reported by inter alias Perron and
Phillips (1987) and Rappoport and Reichlin (1989). Section 8.2 analyzes the impact of a
single shift in the intercept in a stationary model.

In Section 8.3, we investigate the rejection frequencies of DF and ADF tests using
Monte Carlo and discover that even for small shifts in the intercept, the tests may be
biased and reject the null less often when it is false than when it is true. A logistic response
surface is fitted to discover the main determinants of the power loss relative to an equivalent
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autoregressive process without a regime shift. Given the important role of structural
breaks and predictive failure in econometric modeling, in Section 8.4 we investigate the
rejection frequencies of a variant of the commonly used Chow (1960) test. In practice,
investigators often only report full-sample DF and ADF tests for scalar autoregressions,
conditioning the test outcome on the implicit assumption that the parameters of (8.1) are
constant over the sample period. In the present context, and we suspect in much empirical
research, that implicit assumption is invalid.

Even though pre-tests for unit roots may only be a step in a multistage modeling
strategy, there seem to be good grounds for applying rigorous testing procedures to (8.1),
especially recursive methods. Hendry and Mizon (1990) report an empirical example which
reveals substantial changes in inferences from unit-root tests on subsamples of quarterly
data on money, prices, incomes, and interest rates in the UK. In the absence of constancy
tests, it is difficult to ascertain which state of nature [J(l) or J(O)+shift] led to any given
non-rejection outcome. Thus, we undertake a recursive Monte Carlo study [see Hendry
and Neale (1987)] to investigate the rejection frequencies of DF and Chow tests on data
subsamples. We find uniformly low rejection frequencies, even when the break-point is
known, for intercept shifts that are large enough to greatly lower the powers of the unit­
root tests.

This issue is important not only because the statistical distributions alter between
J(O) and J(l), but also because if J(l) is incorrectly inferred when the process is J(O)
then two-step procedures for estimating cointegrating vectors, such as those proposed
by Engle and Granger (1987), need not be consistent. To illustrate that the problem
is nontrivial, Figures 8.1(a) and 8.1 (b) show the time series of two artificially generated
variables. Which is J(l) with constant parameters and which J(O) but with a mean that
is shifted by (J~/2 for a subperiod of the sample?

8.2 A First Analysis of the Effects of Shifts on 1(1) Tests

A closely related issue to the effects of structural breaks on time series is whether economics
variables are "trend stationary" or "difference stationary" [see, e.g., Nelson and Piosser
(1982) for analysis and bibliography]. In the former

Yt = flo + fll t + Vt ,

where Vt is J(O). If (8.3) holds

(8.3)

and hence flYt is at most J(O). The latter corresponds to (8.1) when (3 == 0, so that flYt is
also J(O). Thus, discriminating between (8.1) and (8.3) empirically has proved difficult.

Suppose a split time trend affected (8.3) so that Ito and fll switched at time To to Ito
and Ifi. Although Yt is still "trend stationary" for a correct specifica.tion of the trend,
fitting (8.3) may not reveal that, and hence in a direct test against (8.1), the latter may
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Figure 8.1: Artificial time series: Random walk or stationary + shift ?

be (incorrectly) selected [see Rappoport and Reichlin (1989) for an analysis of this case].
When f3 = 0, (8.1) can be interpreted as a limiting situation where the "trend" (i.e., flYt)
changes every period. An entire spectrum of models exists between (8.1) and (8.3)~and

these intermediate cases may be relevant for studying some economic time series.

Similar conclusions hold if only the intercept J1. shifts in (8.1), even when f3 < 0 as we
now show. Let a major institutional change or regime shift (such as the formation of an
Oil Cartel) impinge on (8.1). We model this as a change in the intercept from J1. to J1. + 6:

J1.t = J1. + 6t where 6t = 0 for t = 1, ... ,To, and 6t = 6 > 0 Vt > To. (8.4)

Thus, the time series undergoes a regime shift, which can be viewed as a surprise that
persists after To. If f3 = 0, then 6 involves a change in the trend of Yh which is easy to
detect, and {Yt} does not behave like a trend-stationary process: We will not consider
such a case any further. The case of interest here is 0 > f3 2 - 1, so that the process
is stationary when 6 = 0, but undergoes a change in its long-run mean when 6 f- O. By
allowing the regime shift process itself to be stochastic (with a Poisson distribution, say),
then {Yt} can remain stationary despite the structural break. To control the Monte Carlo,
however, we did not adopt this approa.ch, but fixed both the timing and the magnitudes
of the breaks deterministically.
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When (8.1) and (8.4) comprise the data generation process, for t S; To, then E[Yt] =
- J-t/ {3; however, when t ~ To, E[ytl = - (J-t + 0)/{3. The mean lag of the adjustment to

the shift depends on the value of {3. Figure 8.2 illustrates one possibility for a computer­
generated first-order autoregression like (8.1) with {3 = -0.2, J-t = 1.0, a~ = 1, T = 60, and
o= a(;. The break occurs at To = 30, and the graph shows the time series of Yt together
with the fitted values up to To, and the one-step-ahead forecasts thereafter, based on the
pre-break estimated parameters.

12 .--------------....,....------------,

---.post-break---+pre-break+--- ~ +---

OL-~___'_____'_~_ _'__~___'__'____~____'_~_ _'___~____1._~_'

-(J-t + 0)/{3 -----------+

4

8

1946 1948 1950 1952 1954 1956 1958 1960

Figure 8.2: Outcomes and fitted or one-step forecast values for an autoregressive process
with a shift in the intercept.

Two problems result from such a structural break:

1. Forecast errors from a model estimated on data up to To will be larger than antici­
pated from To onward-this is a predictive failure problem.

2. To minimize the mis-prediction in retrospect, coefficient estimates will alter if esti­
mated from the whole sample period-we show below that the estimated {3 is driven
toward zero, creating a unit-root problem.

A model in levels of Yt on Yt-l will not capture the changed mean and will persistently
mis-predict as Figure 8.2 illustrates. If re-estimated over a sample period that includes
some observations later than To, the estimate of {3 will tend to zero so that the model
can track the changed level of the data. A model in the differences of Yt, although it is
misspecified when {3 i- 0, will produce a few large forecast errors, then will continue to
behave as expected. Thus, comparison of the fit may favor the latter even when {3 < 0
and (8.1) subject to (8.4) generated the data.

Consider testing (8.1) for a unit root using a variant of the DF statistic where an
intercept is included, implemented (for analytical convenience) as a t-test for a unit root
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after an auxiliary regression of Yt on a constant:

T

tJ.it = <pEt-l +Wt where it = Yt - e when e= T- 1 LYt.
t=1

(8.5)

The null hypothesis of no unit root is rejected if t.;, is significantly negative (given appro­
priate critical values). Consider the extreme case where f3 = - 1, so that

12
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Figure 8.3: Logistic of the "power" of (a) the Dickey-Fuller test and (b) the ADF(l) test
with fitted values.

Yt = J-L + bt +Ct .

Let L = (T - To)/T denote the proportion of the sample that follows the break. The
estimated intercept has an expectation at any point T given by

E[e] = { ~ + Lb
for T ~ To
for T > To.

(8.6)

[We are indebted to Neil Ericsson for his help in clarifying the following derivation.] As
T -+ 00 for a fixed To such that L -+ 1, then E[e] -+ J-L + b. Thus for T > To

- - "L" {Ct - Lb
Ct=Yt-C~Ct+Ut- u= ct-(l-L)b

for t ~ To
for t > To.

(8.7)
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Both before To, and long afterward as L -+ 1, {YI - c} will be mean-zero white noise and
the estimate of r.p in (8.5) will tend to -1. However, for T greater than To:

T T T T

rp = (LELd-l(LEI-ltlEd = (LELl)-l(LEI-lEI) - 1.
1=2 1=2 1=2 1=2

(8.8)

The expectation of the numerator is given by (ignoring the T- l term which occurs at To)

E [t, EI-IEI] (8.9)

E {~(e,_, - L,)(e, - £0) +,=t+,[e,_, +(1- L)bllc, + (1 - L)bl}

(To - I)[L8]2 + (T - To)[(1- L )8]2

(T - I)[L 2+ L(I- 2L)]82 = (T - I)L(I- L)82.

Similarly, approximating the expectation of the denominator yields

{

To T }
E ~(EI-l - L8)2 + 1=~+l[EI-l +(1- L)8]2

(T - l)a; + (To - 1)[L8j2 + (T - To)[(I- L)8]2

(T - 1)[a; + L(1 - L)82].

(8.10)

To a first approximation, therefore, for large values of T and To

E[ '] '" -1 (T -l)L(I- L)8
2

r.p - + (T - 1)[a; + L(1 - L)82]
1

1 + L(I- L)(8/a,)2 .
(8.11)

Five features of (8.11) merit note. Firstly, the denominator is unity if L = a or L = 1,
replicating the earlier point that the effect of the break eventually wears off. Secondly, the
denominator is symmetric in the proportion of the sample over which the break occurs, as
it has the same value at L = L' and (1 - L) = L'; thus, (8.11) is minimized at L = 0.5.
Thirdly, the natural units for measuring the size of the break are (8/ a.). Fourthly, the
approximation in (8.11) is independent of T. Finally, the expected value of the least
squares estimator of cp is biased toward zero, i.e., toward a unit-root value. For example,
at L = 0.5 and (8/a.) = 2, so that the mean shifts in mid-sample by two error standard
deviations, then

E[cp] = - 0.5.

At the same value of L but with 8 = a,/2, then E[cp] c:::: - 0.94, so this second size of
shock has a very small effect. These implications will prove useful in interpreting the
Monte Carlo evidence in Section 8.3, especially when formulating a response surface for
the outcomes in dynamic models.
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The implications of (8.11) for the power of unit-root tests are indirect, since we have
not analyzed the properties of the estimated coefficient standard errors, which are needed
to deduce the outcomes of a t-test. In a pilot simulation of this case, when T = 30 and
a shift of size (J /2 occurs at To = 15 and persists to the end of the sample, then the
power of the DF test is greatly reduced from 99.9%, when there is no break, to 60.7% with
the break [based on 10,000 Monte Carlo replications]; the ADF(l) test loses even more
power. Thus, an econometrician using only full sample ADF or DF statistics to investigate
nonstationarity in a white noise process with a single break may be led to the erroneous
conclusion that the hypothesis of a unit root is not rejected.

More generally, for (3 i- 0 the process generating Yt in (8.1) can be written as

t t

Yt = L ,jJ-lt-j +L ,iEt_i

j=O i=O

(8.12)

where, = (1 + (3), so that Yt = at + btl say. Thus, E[ytl = at and when 1,1 < 1 (so Ho is
false), but J-l is constant, then at -+ - J-l/ {3 as t increases. Following a shift in J-l to J-l +6 at
To, at -+ - (J-l + 6)/{3. Finally, if 6 = 0 again at T1 , then at converges back to its original
value. If the sample period of the observed data is (1, ... ,T) and T1 - To is the proportion
L of T, then the sample mean of y over t = 1, ... ,T will be approximately equal to

- [L(J-l + 6)/{3 +(1- L)(J-l/{3)] = - (J-l + Lo)/{3.

This approximation matched the sample means in the Monte Carlo experiments examined
(Figure 8.8 below illustrates). The behavior of bt for estimated (3 is less clear analytically,
since the residual then contains part of the unmodeled shock.

This example is simplistic, but reveals potential problems in interpreting unit-root
tests. [As shown below, the DF and ADF tests are often biased ifthere is a structural break
and a root less than unity, rejecting less often than under the null of a unit root and no
structural break.] Certainly, if Yt had a unit root then the structural shift need not preclude
finding that. In more complex cases, such as structural shifts that involve changes to slope
coefficients, reflecting learning and adjustment to financial or technological innovation,
different conclusions could result. For instance, in processes that have a single unit root
but undergo a slope shift in a coefficient, tests for nonstationarity may imply that these
are 1(2). The problem is sufficiently intractable analytically that Monte Carlo seems a
sensible approach. This conclusion is reinforced by our desire to study recursive estimation
and testing methods to see if these can detect changes in parameter values.

8.3 A Distribution Sampling Study of Tests for Unit Roots

To investigate the impact of structural shifts on 1(1) versus 1(0) tests, we have conducted
the following distribution sampling study of (8.1), in four stages:
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1. We simulated the null distributions of the DF and ADF(l) tests of Ho: /3 = 0 in (8.1)
when p, = 0, for a range of values of the sample size T E [10,350] to calculate critical
values of the test statistics at the 5% level.

2. We computed the powers of the same tests when /3 < 0 and p, = 0, but there were no
structural breaks (so {j = 0) to establish baselines for "power losses" due to potential
structural shifts.

3. We calculated the rejection frequencies of the same tests for /3 < 0 and p, = 0 but
{j i- 0, so that the intercept is non-constant. The values of {j in case 3. were usually
zero up to To, then a/2 till T I , and zero again thereafter, where T I and T could
coincide.

4. We estimated response surfaces for the powers of these unit-root tests both to sum­
marize efficiently the experimental findings and to ascertain the main determinants
of their performance.

We investigated the DF and ADF(l) tests of the unit-root hypothesis as representative of
the tests most commonly applied in econometrics. Sample sizes up to 100 were considered
as a reasonable order of magnitude to illustrate the potential difficulties of testing for 1(1),
unaugmented by constancy and other diagnostic tests. Sample sizes of 350 were used as a
check on the behavior of our Monte Carlo response surface in a very much larger sample.
The simulations were undertaken on PC-NAIVE [see Hendry and Neale (1987)], and the
graphs and response surface estimates were produced using PC-GIVE [see Hendry (1989)].

The experiment was an incomplete design, intended to highlight the salient determi­
nants of the tests' rejection frequencies. Throughout, a~ = 1 and p, = 0, and we considered
three values of /3; three sample sizes; five break periods; and three structural break mag­
nitudes corresponding to step changes of 0, {j = a~/2, and {j = a~ over the relevant period
[To, T I ]. It is easy to verify that a~ = 1.0 involves no loss of generality, in that {j can span
the relevant set of experiments: As with (8.11) above, {j/a~ rather than {j alone determines
the deviation, if any, in rejection frequency in 3. relative to 2. in the tests. Thus the design
parameters were (/3, {j, T, To, Tt) with the following values:

/3 = -0.2, -0.1, 0.0;
T = 30, 100, 350;
{j =0.0 outside of [To, TIl and a~/2 or a~ otherwise;
[To/T -> Tt/T] =

(i) 0.3 -> 0.5; (ii) 0.5 -> 0.7; (iii) 0.7 -> 0.9; (iv) 0.3 -> 1; (v) 0.5 -> 1.

Such a design would have generated 99 experiments if fully implemented, noting that
there are only 11 different combinations of {j and [To, Ttl. However, several invariances
suggested by (8.11) were established as the experiment proceeded, and so only 23 "repre­
sentative" experiments were actually conducted. These are shown in Table 8.1. In each
sample, M + T data points were generated with M = 0 when /3 = 0, but M = 30 ob­
servations were discarded to remove the impact of Yo = 0 under HI (i.e., when 1/31 < 1).



104 Economic Structural Change: Analysis and Forecasting

Throughout, N = 10,000 replications were calculated to ensure well-determined test power
estimates. Standard errors of rejection frequencies are given by

SE(P) ~ JP(l- P)/100, (8.13)

where P denotes an estimated power. Such standard errors are always less than 0.5% and
are under 0.25% for P < 5%.

(a) Under the null that (8.1) is the data generation process with Jl = /3 = 0, the 5%
critical values of the DF and ADF statistics were calculated for the residuals from
a regression of Yt on a constant. Thus, the intercept is estimated even though
the population value happens to be zero when there is no break. Appendix A
records the critical values of these DF and ADF tests used in the experiments:
Any required intermediate values were calculated by linear interpolation. This set
comprised experiments 1 to 3. Thus, 5% rejections are ensured under the null by
the calculation of the critical values empirically: See rows 1, 2, and 3 in Table 8.1.

(b) The tests' powers were then computed using the critical values under the null hy­
pothesis established in (a) when 8 = 0 but /3 < O. This set comprised experiments 4,
5, 14, 18, and 22. As shown in Table 8.1, the tests' powers increase as T increases,
and as 1/31 increases; in no case is the rejection frequency lower under the alternative
than under the null in (a).

(c) As with (b), the tests' powers were calculated assuming the critical values in (a), but
in this set (the remaining 15 experiments) 8 =I- O. Cases (i)-(iii) were conducted once
(at /3 = -.1) to establish that the exact period of the break-point was essentially
irrelevant, whereas the proportion L of the sample affected by the break was crucial.
Thereafter, only cases (i), (iv), (v), and no break [denoted (0) below] were computed
for 8 = 1/2. Three experiments were undertaken for 8 = 1 (all at T = 30 and
/3 = -0.2). Finally, there were three experiments at T = 350 to test the constancy
of the response surface fitted in (d) below. The experimental findings are again
recorded in Table 8.1.

Since the rejection frequency is 5% under the null that Jl = /3 = 0, whereas in some
cases under the alternative that Jl + 8 =I- 0, fewer than 5% occurred, the tests are
biased: there is a lower probability of rejecting Ho when it is false than when it
is true. This is an example of the implicit null problem discussed by Mizon and
Richard (1986).

Three main conclusions can be drawn from Table 8.1. Firstly, cases (i), (ii), and (iii)
(experiments 6, 7, and 8) do indeed yield similar rejection frequencies. Next, the
rejection frequency [denoted by P(DF), etc.] falls as 8 rises (for /3 =I- 0), and rises
as 1/31 or T increases. Finally, the DF and ADF tests perform about equally well or
badly in almost every experiment. It is difficult to determine any finer details of the
tests' performance from the table alone.
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Table 8.1: The experimental design and test rejection frequencies.

Experiment Case (3 <5 T L P(DF) % P(ADF) %
1 (0) 0.0 0.0 350 0.0 5.0 5.0
2 (0) 0.0 0.0 100 0.0 5.0 5.0
3 (0) 0.0 0.0 30 0.0 5.0 5.0
4 (0) -.1 0.0 100 0.0 33.6 31.4
5 (0) -.1 0.0 30 0.0 8.2 8.9
6 (i) -.1 0.5 100 0.2 12.7 12.6
7 (ii) -.1 0.5 100 0.2 12.3 12.1
8 (iii ) -.1 0.5 100 0.2 12.4 11.9
9 (iv) -.1 0.5 100 0.7 6.3 5.5
10 (v) -.1 0.5 100 0.5 4.3 4.0
11 (i) -.1 0.5 30 0.17 5.7 6.0
12 (iv) -.1 0.5 30 0.67 2.9 2.9
13 (v) -.1 0.5 30 0.5 3.1 3.1
14 (0) -.2 0.0 100 0.0 88.9 80.1
15 (i) -.2 0.5 100 0.2 64.9 53.7
16 (v) -.2 0.5 100 0.5 44.0 33.1
17 (iv) -.2 0.5 100 0.7 52.8 41.4
18 (0) -.2 0.0 30 0.0 15.8 15.5
19 (i) -.2 1.0 30 0.17 4.6 5.1
20 (iv) -.2 1.0 30 0.67 1.2 1.0
21 (v) -.2 1.0 30 0.5 0.8 0.9
22 (0) -.1 0.0 350 0.0 99.9 99.8
23 (v) -.1 0.5 350 0.5 58.9 48.7

(d) To summarize this set of experiments, a response surface was fitted separately for each
test, following the approach in Hendry (1984). The fitted equations were designed
to have the following properties:

P[t((3 = 0) < C1H1 ] = P = 1f[a,(3,g(T),L,b],

where

P[t((3 = 0) < C1Ho] = 1f(a,O,T,O,O) = a, "IT

noting that a = 0.05 in the present experiments.

P E (0,1),

(8.14)

(8.15)

(8.16)

which is ensured by the logistic transformation C(P) = log[P/{l - P)]. Since
C(a) = -2.944 for a = 0.05, setting [(P) = C(P) +2.944 implies that 1f(.) does
not depend on a. We enforced the condi tion that 1f(.) only depended on T through
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13 when 8 = 0, so that P --+ 1 as T --+ 00 when 13 ::J O. Finally, we anticipated that
1/'(.) would decrease with increasing values of 8 and L (for L < 0.5), and decrease as
13 --+ 0, noting that 13 < o.

The forms of 1/'(.) and £(.) must be jointly selected to ensure that these properties are all
satisfied. Let T = T L = TI - To denote the total length of the break period, then following
the analysis in Section 8.2, we constructed a measure 0 of the total impact of the break:

r-I

80 = ~)1 +f3)i8.
i=O

Thus, 0 = T when 13 = 0, and 0 = (1 - "t)/f3 otherwise. Since L enters symmetrically in
(8.11), and since the effect of Lon P seemed independent ofthe period over which the break
occurred, we constructed K = min{L, 1 - L} as the relevant index of the break period. A
consequence of using K is that type (iv) becomes equivalent to [To --+ TI ] = [70 --+ 100].
From (8.16), C(.) guarantees admissible predictions irrespective of the specification of
1/'(.), and so can be taken as linear in the arguments of 1/'(.). From (8.15), £(P) need not
include an intercept. We used g(T) = >.T and restricted T to enter only as a product with
13 and 80. Thus, the postulated response surface was

(8.17)

and we anticipated Pi < 0 for i = 1,2,3. Following Cox (1970), since the Jacobian of the
transformation from P to £ is l/[P(1- P)], and the estimated probabilities have standard
errors as in (8.13), every variable was adjusted for heteroscedasticity, with correction
factors shown as Hd and Ha for DF and ADF, respectively, where H = INP(l - P),
which can be estimated using P from the Monte Carlo. If (8.17) is correctly specified,
then, after the H transformations, the residual standard deviation should be unity.

The estimated equations obtained from the 23 experiments were

Ha£(ADF) = - 0.208Ha(f3T)
(0.007)

6.15Ha(8K) - 0.0016Ha(80T)
(0.58) (0.00022)

(8.18)

R 2 = .995 (j = 5.69
Chow F[6,14] = 0.62
AR 1-2 F[2,18] = 0.01

F[3,20] = 1229.1 DW = 1.63
normality X2 (2) = 0.44
RESET F[1,19] = 0.43 W F[6, 12] = 0.54

Hd£(DF) = - 0.233Hd(f3T) - 6.23Hd(8K) - 0.0019Hd(80T)
(0.009) (0.66) (0.00014)

(8.19)

R2 = .996 (j = 5.24
Chow F[6,14] = 0.60
AR 1-2 F[2,18] = 1. 72

F[3,20] = 1690.5
normality X2 (2) = 0.37
RESET F[2, 18] = 1.08

DW = 1.35

W F[6, 13] = 0.94.
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The legend is as follows: R2 is the squared multiple correlation coefficient; a denotes
the residual standard deviation; F[3,20] tests for no relationship in the response surface;
Chow F[.,.] is the Chow test for constancy over the final six experiments; normality X2 (2)
is the Jarque and Hera (1980) test; AR 1-2 F[.,.] tests for autocorrelated residuals across
the experiments given the order in Table 8.1 (a test for functional form specification
relative to (3); RESET F[.,.] is the test in Ramsey (1969); W F[.,.] denotes White's
(1980) heteroscedasticity test; and ( .. ) below coefficient estimates denote heteroscedastic­
consistent standard errors.
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Figure 8.4: Heteroscedastic-corrected logistic of Dickey-Fuller test "power".

Figure 8.3 shows the two fitted and actual graphs of £(P) (without the heteroscedas­
ticity correction). The patterns for the DF and ADF tests are similar, and the biased
outcomes are clear in both cases (all values below zero represent rejection frequencies less
than 5%). The goodness of fit is reasonable for such simple response surfaces, albeit that
(8.19) reveals some residual autocorrelation and both values of a are far from unity. The
forecasts from (8.18) over the last six experiments, which include the only two cases where
f3 i- 0 and T = 350, are shown in Figure 8.4, and, despite the challenging nature of this
test, the equation predicts very accurately. Two illustrative time series from processes
with structural breaks are reported in Figures 8.5 and 8.6: Such data are easily mistaken
for 1(1) time series. The empirical frequency distribution of the DF test (scaled to have a
unit standard deviation) is shown in Figure 8. 7 for f3 = -0.1 and a break of type (ii) when
T = 100. Although the null hypothesis is false, and the rejection frequency at the nominal
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5% critical value is just over 4% (with a standard error of 0.2), the shape is nevertheless
close to that anticipated under the null distribution.
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Figure 8.5: Time series of Yt = 0.9Yt-l + Et with a step change of 0.5 at t = 100 to 120
(with 30 initial values); Et ""' IN(O, 1).
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Figure 8.6: Time series of Yt = 0.8Yt-1 + Et with a step change of 0.5 at t = 80 to 100
(with 30 initial values); Et ""' IN(O, 1).

Figure 8.8 records the behavior across sample sizes in the same experiment of the mean
estimate of c from the regression of Yt on a constant, together with ±2 ESE (the conven­
tionally calculated OLS coefficient standard error, which is not an appropriate measure of
uncertainty for that equation) and ±2 MCSD (the Monte Carlo sampling standard devi­
ation based on the empirical distribution of the 10,000 values of the intercept). Relative
to the correct MCSD, the coefficient change is small, matching the small magnitude of
the shock, but being less consonant with the accompanying substantial power loss. The
estimated intercept converges on -LfJ/fJ = 0.2 x 0.5/0.1 = 1.0.
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Figure 8.7: Standardized frequency distribution of the Dickey-Fuller test for N = 10, 000;
break of 0.5 from T = 50 to 70.
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Figure 8.8: Recursive estimation of the intercept with a break of 0.5 at T = 50 to 70.
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From (8.18) and (8.19), the following formula explains the power loss due to intercept
shifts:

P(DF) = A/(l + A), (8.20)

where A = exp [ - 0.23,8T - 6.2bK - 0.002bOT - 2.944]. Equation (8.20) (and a similar
formula for ADF) satisfies most of the response surface requirements above, including
anticipated signs. It highlights the respective roles of sample size T, the autoregression in
the data ,8, the size of the shift b, its total impact 0, and its relative duration K. The one
apparent failure of (8.18) and (8.19) is the value of (1: Instead of unity, it exceeds 5. From
the outcome of the White test, the residual variance is not a function of higher powers of
the included regressors, and no other explanatory variables suggested themselves although
23 is a relatively small number of experiments and higher-order interactions of parameters
with T may matter. The precise specification of the response surface can be rejected on
the basis that (1 ~ 1, but that outcome is unsurprising when N = 10,000. As N --+ 00,

any discrepancy between the true and the conjectured response surface would ensure that
(1 --+ 00 also, so the observed discrepancies are consistent with a reasonable specification.
To illustrate this claim, Figure 8.9 records the outcomes in terms of P and the predictions
from (8.20) (or the equivalent formula for the ADF test).
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Figure 8.9: Fitted and actual values for the "powers" of the DF and ADF tests using
equation (8.20).

Thus, the major remaining issue is whether an auxiliary test could detect the coefficient
shift and hence enable discrimination between cases where a unit root finding is due to

Ii
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a structural break and where it is not. Chow tests were computed to investigate the size
and power of a widely used test that might be employed to detect the possible existence
of structural breaks despite the nonstandard setting of (believed) unit-roots. However,
since the timing of structural breaks are usually not known, we decided to undertake all
the simulations using the recursive techniques advocated in Hendry and Neale (1987).

8.4 Recursive Monte Carlo

[This section is drawn from the doctoral dissertation in preparation by the second author.]
In this section, we focus on the DF and Chow statistics only, to investigate their behavior
at all intermediate sample sizes from T = 10 to 100. The Chow test is of a "break-point"
form, so the model is fitted up to each time period Ta , then over the whole period T,
and the goodness of fit compared. The test outcomes are reported in graphs where the
horizontal axis is Ta , so that for small values of Ta , long forecast horizons are entailed, and
as Ta tends to T, the horizon tends to zero. The three stages 1.-3. discussed in Section
8.3 were followed, but instead of 4., the rejection frequencies of the relevant tests as T
changes are summarized graphically. These graphs can be interpreted as nonparametric
descriptions of a projection of a response surface where only T is allowed to vary.

Figures 8.10 and 8.11 record the null rejection frequencies of the DF and Chow tests
when both f3 and fJ are zero. The DF test has an actual rejection frequency (called "size"
as a shorthand below) close to its nominal size of 5%. Deviations outside the range
5% ± 0.44% are significantly discrepant, but it must be remembered that the original
critical values are only recorded to three decimal digits and that intermediate values are
interpolated (also see Appendix A). The Chow test rejection frequencies generally exceed
5% for this unitcroot process, converging on the nominal size from about 8% as T increases
and the horizon falls. Even so, compared with the rejection frequencies we report below,
the "excess size" is relatively negligible and in the 'Wrong direction since the parameter
constancy tests will transpire to have lo'W po'Wer when Ho is false.

Figure 8.12 shows the bias in estimating f3 when f3 = 0, together with ± 2 MCSD
and ± 2 ESE. The bias decreases at about liT, and the comparison between ESE and
MCSD reveals that the ESE is usably accurate for MCSD despite the unit root in the data
generation process.

Figures 8.13 and 8.14 report the DF test rejection frequencies for f3 = -0.1 and -0.2,
respectively, for four values of the break period. When fJ = 0, the power of the DF test
to reject Ho: f3 = 0 increases steadily with T in both figures, reaching over 30% for the
former and almost 90% for the latter. However, when fJ = a,/2, the power loss is dra.matic:
for f3 = -0.1 and cases (iv) and (v), the test is biased by T = 100 and even for f3 = -0.2,
the power is less than 50% in those cases. [Remember that (0.3T ---> T) and (0.7T ---> T)
are equivalent in break length, and correspond to the same value of K. The rejection
frequencies here match those in Section 8.3 at T = 100 with perhaps slightly more bias.]
A degree of "power recovery" is visible for breaks of type (i), but overall the power loss
remains large. These recursive results are also consistent with the response surface in
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Figure 8.12: Recursive coefficient bias with ± 2 ESE and ± 2 MCSD: (3 = O.

(8.19), which correctly characterizes the final period outcomes.

Naturally, the detectability of the break is a vital issue both for empirical research
and for interpreting how big a shock b = a~/2 really is. Firstly, the actual null rejection
frequencies of the F-tests still exceed 5% for most values of T but are nevertheless close to
the correct nominal level by around T = 80. The excess size could be offset by increasing
the critical value, but this would lower the test power when the null of constancy is false.
As can be seen in Figures 8.15 and 8.16, the highest rejection frequency is about 12%
for a break-point, which coincides with the structural shift, and otherwise is very low.
These outcomes are when each test outcome is interpreted as the only test conducted. If
the complete sequence of tests is to be judged using an overall 5% critical value, the test
powers would again be much lower. Despite being designed to detect parameter change,
the test is often biased toward the end of the sample, due to ignoring the heteroscedasticity
created by the break. This highlights the dangers of computing only one Chow test at an
arbitrary point, and suggests also computing the variance ratio test.

To investigate the conjecture that the intercept shift of a /2 is simply too small to
be detectable, we reran many of the experiments wi th b = a. The Chow test rejection
frequencies now peaked at around 25%, but otherwise were similar in profile to those in
Figures 8.15 and 8.16, converging back toward 5% near the end of the sample. The DF test
outcomes did not alter much either, and retained profiles similar to those in Figure 8.13.
Extending this form of analysis to a range of values of b, Figure 8.17 plots the power
functions of the F-test for a break over [70 ---+ 100J against the corresponding values of
b, calculated at the break-point To = 70 and at T - 10, for a type (iv) experiment with
(3 = -0.1. The power rises rapidly at the break-point as b increases, but shows little
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movement for the test based on the last ten sample observations. These results contrast
with Perron (1989), since small step shifts in dynamic processes, which are sufficient to
induce apparent unit roots, can be very difficult to detect, so one would not know when
to add dummy variables, even though breaks larger than (j seem far easier to detect.

1

1

2

2 3

Figllre 8.17: Chow test power function at (a) To = 70 and (b) T - 10 as 8 increases.

8.5 Conclusion

Firstly, regime shifts can mimic llnit mots in stationary autoregressive time series. Sec­
ondly, such shifts may be very hard to detect using conventional parameter-constancy
tests. Consequently, uncritical application of unit-root pretests without associated di­
agnostic tests for constancy of the supposed unit root may yield misleading conclusions
empiricallY, and, even with conventional constancy tests, the existence of unit roots may be
incorrectly assessed. Thirdly, the power function of unit-root tests is open to Monte Carlo
response surface investigation despite their having nonstandard distributions. A number
of salient determinants of rejection frequencies were established. The same approach could
be applied to evaluate tests of parameter constancy when there are unit roots, in order
to evaluate the factors influencing the distributions in that case. Finally, recursive Monte
Carlo methods seem useful for investigating processes with structural breaks.

Did you guess which graph was which of Figllres 8.1(a) and 8.1(b)? In fact, Fig­
llre 8.1 (b) is the one with the break.



David F. Hendry and Adrian J. Neale

Acknowledgment

117

We are pleased to acknowledge that this research was financed in part by Grants B00220012
and R231184 from the Economic and Social Research Council. Helpful comments from
Neil Ericsson and John Muellbauer are gratefully acknowledged.

References

Chow, G.C. (1960), Tests of equality between sets of coefficients in two linear regressions.
Econometrica, 28, 591-605.

Cox, D.R. (1970), The Analysis of Binary Data. London: Chapman and Hall.
Dickey, D.A. and Fuller, W.A. (1979), Distribution of the estimators for autoregressive

time series with a unit root. Journal of the American Statistical Association, 74,
427-431.

Dickey, D.A. and Fuller, W.A. (1981), Likelihood ratio statistics for autoregressive time
series with a unit root. Econometrica, 49, 1057-1072.

Dolado, J.J. and Jenkinson, T. (1987), Cointegration: A survey of recent developments.
University of Oxford Applied Economics D.P. 39.

Engle, R.F. and Granger, C.W.J. (1987), Cointegration and error correction: Representa­
tion, estimation and testing. Econometrica, 55, 251-276.

Fuller, W.A. (1976), Introduction to Statistical Time Series. New York: John Wiley.
Hendry, D.F. (1984), Monte Carlo experimentation in econometrics, chapter 16 in Z.

Griliches and M.D. Intriligator (eds.), Handbook of Econometrics. New York: North
Holland.

Hendry, D.F. (1989), PC-GIVE: An interactive econometric modelling system. Oxford
Institute of Economics and Statistics.

Hendry, D.F. and Mizon G.E. (1990), Evaluating dynamic econometric models by en­
compassing the VAR, forthcoming in P.C.B. Phillips and V.B. Hall (eds.), Mod­
els, Methods and Applications of Econometrics. Cambridge: Cambridge University
Press.

Hendry, D.F. and Neale, A.J. (1987), Monte Carlo experimentation using PC-NAIVE.
Advances in Econometrics, 6, 91-125.

Hylleberg, S. and Mizon, G.E. (1989), A note on the distribution of the least squares
estimator of a random walk with drift. Economics Letters, 29, 225-230.

Jarque, C.M. and Bera, A.K. (1980), Efficient tests for normality, homoscedasticity and
serial independence of regression residuals. Economics Letters, 6, 255-259.

MacKinnon, J.G. (1990), Critical values for cointegration tests. Unpublished paper, San
Diego, University of California.

Miller, S.M. (1988), Are saving and investment cointegrated? Economics Letters, 27,
31-34.

Mizon, G.E. and Richard, J.-F. (1986), The encompassing principle and its application to
non-nested hypothesis tests. Econometrica, 54, 657-678.

Nelson, C.R. and Plosser, C.L (1982), Trends and random walks in macroeconomic time se­
ries: Some evidence and implications. Journal of Monetary Economics, 10, 139-162.

Perron, P. (1989), The great crash, the oil price shock and the unit root hypothesis.
Econometrica, 57, 1361-1402.

Perron, P. and Phillips, P.C.B. (1987), Does GNP have a unit root? Are-evaluation.
Economics Letters, 23, 139-145.



118 Economic Structural Change: Analysis and Forecasting

Phillips, P.C.B. and Perron, P. (1988), Testing for a unit root in time series regression.
Biometrika, 75, 335-346.

Ramsey, J.B. (1969), Tests for specification errors in classical linear regression analysis.
Journal of the Royal Statistical Society, B-31, 350-371.

Rappoport, P. and Reichlin, 1. (1989), Segmented trends and non-stationary time series.
Economic Journal, 99, 168-177.

Sargan, J.D. and Bhargava, A. (1983), Testing residuals from least squares regression for
being generated by the Gaussian random walk. Econometrica, 51,153-174.

West, K.D. (1988), Asymptotic normality when regressors have a unit root. Econometrica,
56, 1397-1417.

White, H. (1980), A heteroscedastic consistent covariance matrix and a direct test for
heteroscedasticity. Econometrica, 48, 817-838.

Working, H. (1934), A random difference series for use in the analysis of time series.
Journal of the American Statistical Association, 29, 11-24.

Appendix A:
5% Critical Values of the DF and ADF(l) Tests

T DF* ADF(I)* DF+

10 -3.32 -3.25 -3.22
20 -3.07 -3.02 -3.02
30 -2.99 -2.95 -2.96
40 -2.96 -2.93 -2.94
50 -2.93 -2.91 -2.92
60 -2.92 -2.90 -2.91
70 -2.91 -2.89 -2.90
80 -2.91 -2.89 -2.90
90 -2.90 -2.89 -2.89

100 -2.89 -2.88 -2.89
350 -2.88 -2.88 -2.88

Critical values from T = 150 up to T = 300 are equal to the final table entry to two
digits.

The entries given in the columns 2 and 3 (marked by *) are based on a minimum
of 10,000 Monte Carlo replications, using the critical value corresponding to observation
9,501. The entries given in column 4 (marked by +) are calculated from the relevant
response surface reported by MacKinnon (1990), namely,

GDF = -2.86 - 2.74/T - 8.4/T2

Ordinary least squares estimation of a response surface of the same form as that used by
MacKinnon but relating the critical values of the DF test to the sample size across our 11
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Monte Carlo estimates yielded:
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CDF = - 2.86
(0.004)

3.58/T
(0.25)

10.3/T2

(2.35)

with R2 = 0.9985 and a = 0.0056.

This equation and the tabulated numbers in column 2 both suggest that the Monte
Carlo-based critical values are too large in absolute value at the smallest sample sizes. Such
a finding could account for the underestimation of the rejection frequency in Fig'U.re 8.10
when T < 50, and would induce some power loss at small sample sizes relative to the
values based on MacKinnon's equation. The discrepancies relative to the results in column
4 are due in part to the estimator used for the critical values, which MacKinnon bases on
averages of the neighboring observations where 5% are above and 95% are below.
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CHAPTER 9

Forecast Encompassing and Model
Evaluation

Maozu Lu and Grayham E. Mizon

Summary

Tests for parameter constancy and the ability to encompass rival models are important
parts of model evaluation. It is shown that the recently proposed forecast-encompassing
test statistics have implicit null hypotheses that combine hypotheses of parameter con­
stancy and complete parametric encompassing. An additional attraction of these tests is
that they are easily calculated even for large-scale econometric models. However, just as
minimum MSE is a necessary, but not sufficient, condition for model congruence, so the
requirement that one model forecast variance-encompass another is a necessary condition
for the first model to have constant parameters and encompass the other model.

9.1 Introduction

Evaluation of the forecast performance of rival models for the same phenomena has long
been a topic of concern to both theoretical and applied econometricians. Indeed, in the
area of macroeconometric modeling there have been a number of recent contributions,
e.g., Fair (1985), Chong and Hendry (1986), and the survey by Wallis (1989). Since one
of the main purposes of macroeconometric model building is to provide sound forecasts of
the economic indices of interest, it is not surprising that the relative forecast performance
of these models has been a prominent feature of model evaluation exercises. Both the ex
ante and ex post forecast performances of models provide evidence on their coherence with
observation, and as such are important in "proving" models. Hence forecast performance
is a natural criterion for evaluating and comparing models.
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However, there are many different phenomena which a model can be used to forecast the
numerical value of, and there are numerous ways of assessing the quality of the generated
forecasts. To narrow the scope of this chapter we will concentrate on the use of forecasts
of modeled (endogenous) variables in the evaluation of model performance. Furthermore,
although we will argue that forecast performance is not the sole (nor the best) indicator
of model quality, in the context of evaluating large-scale macroeconometric models, it is
both natural and potentially valuable because it is feasible. Model congruence as discussed
in Hendry (1987) and Hendry and Mizon (1990)-which requires a model to be coherent
with information in sample data, the properties of the measurement system, and an a
priori theory, and to be able to encompass (Le., perform at least as well as) rival models
of the same phenomena-is not only difficult to achieve, but difficult to test in large
macroeconometric models. The large number of instrumental variables relative to sample
size and the presence of nonlinearities in these models are but two of the more obvious
impediments to rigorous evaluation. The fact that forecasts are usually readily available,
and that they can yield information about model quality, even though it is incomplete
information, makes the role of forecasts in model evaluation worthy of analysis.

The main purpose of this chapter is to present a class of forecast- based encompassing
test statistics, and to assess their potential role in model evaluation by comparing their
implicit null hypotheses with those of existing test statistics for parametric encompassing
and parameter constancy. Whilst the ideal would be to assess thoroughly each aspect
of model congruence, this is rarely feasible for large models. The argument in favor of
forecast-encompassing tests is that by using available information they are feasible tests
and that they compare models on the basis of a combination of parametric-encompassing
and parameter constancy hypotheses. Section 9.2 comments briefly on some of the com­
monly used methods for evaluating large macro models, and argues that there is a need
for new and valid means to evaluate alternative models. The population-encompassing
hypotheses associated with parametric encompassing, parameter constancy, and forecast
encompassing are presented and analyzed in Section 9.3. Conclusions are drawn in Sec­
tion 9.4.

9.2 Evaluation of Large-scale Macroeconometric Models

Ex ante forecasts from large macroeconometric models are rarely, if ever, purely dependent
on the models, but usually reflect the judgments of the model proprietors. Thus, although
such modifications to the pure model forecasts may produce more accurate forecasts, thus
pleasing the modeling teams' clients, this means that only limited evidence is provided
about model validity by the forecast track record [see Chong and Hendry (1986) and,
e.g., Wallis et al. (1986, 1987)]. Indeed the fact that "add factors" and "type I and type
II fixes" have assumed a permanent place in the production of macro forecasts is itself
an indication of model non-congruence. In addition to requiring "pure" forecasts based
on the model alone, accurate measures of forecast uncertainty, particularly in dynamic
models, are needed to test model validity appropriately using ex ante forecasts. Much
work remains to be done on this topic, though some progress has been made recently [see
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Ericsson and Marquez (1989) for an analysis and assessment]. These points remain as
caveats to much of the sequel.

One commonly used method for evaluating large dynamic models involves dynamic sim­
ulation, both within-sample and post-sample. This is indicated, for example, by the promi­
nent role that simulation plays in the influential text by Pindyck and Rubinfeld (1981),
in which it is argued that minimum root mean squared error of simulation residuals is an
important tool in model evaluation. The potential problems of such a strategy were dis­
cussed by Hendry and Richard (1982), and it was shown to be an invalid model selection
procedure by Chong and Hendry (1986). One problem arises from the fact that simulation
errors are the cumulation of reduced form errors, and so simulation residuals are highly
autocorrelated, which severely biases the conventional measures of their variability. More
importantly though, the accuracy of a simulation is determined by which, and how many,
variables are treated as strongly exogenous, and does not depend on whether or not they
are valid exogenous variables. In addition, Pagan (1989) has shown that in situations
such as within-sample prediction, and one-step-ahead post-sample forecasting, simulation
residuals are a one-to-one mapping of the estimation residuals. Hence, even in the context
of within-model evaluation (rather than cross-model validation), analysis of simulation
residuals per se can reveal no information beyond that obtainable from the corresponding
analysis of estimation residuals.

Tempting though it is to look for a single criterion adequate for model selection, this
is not a fruitful search on which to embark. However, one criterion that has been used
in this way is mean squared error (MSE), with models being ranked on the basis of their
MSE's and the model with minimum MSE being the preferred model. Similarly, there
are information criteria, such as the AIC of Akaike (1973), the Schwarz (1978) criterion,
Mallows' (1973) Cp , the Hannan-Quinn (1979) criterion, as well as the final prediction
error criterion, which have been used widely in selecting a preferred model from a set
of models. The principal difficulty in using such criteria to select models is that they
are at best necessary, but not sufficient, conditions for model congruence. Hence it is
possible to select, using one of these criteria, a model that has serially correlated and
heteroscedastic errors, invalid exogeneity, and nonconstant parameters. Indeed, for one
model to have minimum MSE, it is neither necessary nor sufficient that it have valid
exogeneity, constant parameters, or provide accurate forecasts. Thus very little is learned
about a model's validity from its having minimum MSE, either within-sample or in the
forecast period.

On the other hand, Hendry and Richard (1982) have shown that the ability of one
model to encompass another will ensure MSE dominance of the former, when both models
are otherwise congruent. The converse is not true though. Hence, for a model to have
minimum MSE is not in isolation a good indicator of model validity. Furthermore, Erics­
son (1988) in analyzing the relationship between parameter constancy and minimum mean
squared forecast error (MSFE) has shown that (i) parameter constancy is neither neces­
sary nor sufficient for minimum MSFE and (ii) parameter constancy and minimum MSFE
jointly are not sufficient for the best forecasting model. Therefore, as suggested by Hendry
and Richard (1982), Hendry and Mizon (1990), and Pesaran and Smith (1985) amongst
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others, model builders are living dangerously if they try to infer the statistical properties
of a model solely from its MSFE. A more robust strategy is to assess a model's congruence
with all available information. The role that forecast-encompassing tests can play in this,
and, in particular their role relative to those of tests for parametric encompassing and
parameter constancy, is now analyzed.

9.3 Parameter Constancy and Encompassing Hypotheses

Since a major purpose of this chapter is expository, the analysis will be undertaken in the
context of normal linear models. This has the advantage of using a class of models for
which the principal results on statistical inference are widely known, and for which it is
relatively easy to present new results. However, most of the results presented below can
be readily extended to more general models when appropriate assumptions and regularity
conditions are adopted. Andrews and Fair (1988) provide a framework for doing precisely
this for nonlinear dynamic simultaneous equations models, thus enabling analysis when
observations are heterogeneous and temporally dependent.

Consider the following non-nested linear regression models:

(9.1)

(9.2)

when (Xt, Zt) ~ Wt and t = 1,2, ... ,T. For notational convenience below, let c/ = (f3', (12)

and h' = (,', T 2 ). Note that the two models have common conditioning, and that the pa­
rameters are assumed constant so that there is only one regime. In this context the Wald­
encompassing test statistics developed by Mizon (1984) and Mizon and Richard (1986),
take the form

(9.3)

when ep = (b - ha ), b is any statistic which is a function of y and W that is of interest
in the context of M 2 , ha is the pseudo true value of b under M 1 , a is a VT-consistent

estimator of 0: (e.g., the MLE of 0:), and ep is such that VTep !!.Ml N[O, Veep)] with veep)
having rank r and a generalized inverse V( ep)+. The population-encompassing hypothesis
underlying the test statistic 1](b) is c.p = (h - ha ) = 0, when h = Eh(b) and ha = Ea(b)
with Ea and Eh denoting the expectation operator (or if appropriate plim) under M1 and
M2' respectively. If M1cM2 (i.e., M1 encompasses M2) then c.p = 0 for any h, and M1
parsimoniously encompasses the completing model Me (i.e., M1cpMe ), when Me is such
that Mi C Me for i = 1,2.

In the case that w; = (x;,z;), which will now be analyzed in more detail, an obvious
choice for Me is

(9.4)
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for which it follows that M 1cM2 == M 1cp M e == H p : J.L = 0 [see Hendry and llichard (1987)].
For this example J.L = 0 is equivalent to (-y - l'0) = 0 so that" the hypothesis that M1CM2
can be tested in practice using the complete parametric-encompassing test statistic ry(1')
[when l' = (Z'Z)-1 Z'y is the 01S estimator of 1'], which is equivalent to the traditional
F-test statistic for the hypothesis J.L = o. The parameters of M1 , M2 , and Me can also be
expressed as functions of the parameters of the joint distribution of y, x, and z (each of
which is assumed to have a zero mean without loss of generality) and this proves useful

later. Hence, l' = L;zl Lzy and 1'0 = II,8 when II = L;zl Lzx' ,8 = L;; Lxy' and
Lij for i,j = y,X,z are the population second moment matrices from the joint distribu-

tion of y, x, and z. Also, noting that J.L = [1 - l1P]-lh - II,8] when P = L;; Lxz'
the equivalence between J.L = 0 and (1' - 1'0) = 0 is easily seen. Finally, note that the
relationship between x and z can be written as XI = II'zl + VI with VI '" N 1(0, n) when

n = Lxx - Lxz L-;} Lzx·
It is now possible to exploit the generality and flexibility of this encompassing frame­

work to consider hypotheses relevant for cross-model, cross-regime, and cross-model and
cross-regime comparisons.

9.3.1 Single regime

Within a single regime (i.e., constant parameters across all observations) the following
hypotheses are relevant in the comparison of M) and M 2:

H p : (-y - II,8) = (-y - 1'0) = 0 (parameter-encompassing)

H v : (T
2

- 00
2

- ,8'n,8) = 0 (variance-encompassing)

Hd : 00
2 < T

2 (variance-dominance).

(9.5)

(9.6)

(9.7)

Hp is the hypothesis that M 1 provides a complete parametric encompassing of M 2 as
discussed above and in Mizon (1984) and Mizon and llichard (1986), and is a sufficient
condition for variance-encompassing H v • The variance-encompassing statistic for testing
H v is asymptotically equivalent to the Cox (1961) generalized likelihood ratio test statis­
tic, and the Davidson-MacKinnon (1981) J-test statistic. Noting that n is a covariance
matrix, and so positive semi-definite, means that Hv implies variance dominance H d . So
variance dominance, like minimum MSE, is a necessary, but not sufficient, condition for
encompassing [see Hendry and Richard (1982)]. Other choices of b (and hence b) lead
to further encompassing hypotheses that can be tested in comparing 1111 and A12, but Hp

and H v are the most commonly tested hypotheses in the context of a single regime.

An important example of there being more than one regime occurs when the available
data are partitioned into the sample period t = 1,2, ... ,T and the forecast period t =
T +1, T +2, ... , T + n. Clearly, if the length of the forecast period n is at least equal to the
number of regressors in x and z (k and £, respectively), and observations on the "forecast"
period values of y, x, and z are available, then the hypotheses H p and H v can be tested
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again, this time using the forecast data. It will often not be possible to perform these tests
though, either because n < k +£ or because the data for the exogenous variables in the
forecast period are not made available. However, when more than one regime is allowed
it becomes both possible and important to test for parameter constancy.

9.3.2 Two regimes

The importance of parameter constancy tests in econometric modeling has been stressed
by numerous authors, e.g., Chow (1960), Hendry (1979), and more recently by Anderson
and Mizon (1989). For economic and econometric modeling to be fruitful it is essential
that the phenomena being analyzed are capable of characterization by some invariants.
Such invariants will be the focus of attention in modeling, whether the statistical meth­
ods used are parametric, semi-parameteric, or nonparametric, though in this chapter only
parametric modeling is considered. Parameter estimates which within sample are sensitive
to minor changes in the sample period are of less value than those which are invariant
to such changes, and are an indication of model misspecification. Hence parameter con­
stancy tests, whether implemented via recursive estimation [see, e.g., Harvey (1981)], or
regime-shift tests such as those described in Chow (1960), are potentially powerful for
proving models. In addition, parameter constancy tests have recently been shown by
Hendry (1988) to playa critical part in discriminating between feedback (error correction)
and feedforward (rational expectations) models.

Economic structural change may induce impulse changes, gradual changes, or the
presence of one or more regimes in an econometric model. In addition to there being
potential uncertainty about the form of the impact of structural change on a model, there
can be uncertainty a priori about the timing of its impact. Anderson and Mizon (1989)
discuss of alternative ways to represent structural change in econometric models, as well as
methods for detecting the timing of its impact. In this chapter attention is confined to the
possibility of there being a regime shift between sample and forecast periods-this being
the most relevant consideration when the use of model forecasts in model evaluation is
being analyzed. Hence the potential break-point-the end of the sample period-is known.
This does not imply that within-sample parameter constancy checks are less important,
but simply reflects the fact that the focus of this chapter is on the use of forecasts in model
evaluation.

When one model (e.g., Md is to be tested for a regime shift, at a known break-point,
the following hypotheses are of interest:

(9.8)

(9.9)

(9.10)

(9.11 )
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Hpred : MSFE - a; = 0 or MSFE/a; = 1.
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(9.12)

Since the primary interest is in forecast tests, the two regimes are the sample period
t = 1,2, ... , T (denoted regime 1) and the forecast period t = T + 1, T + 2, ... ,T + n
(denoted regime 2). The combination of the two regimes, when parameter constancy is
assumed, is denoted regime O. Subscripts on parameters denote the regime for which that
parameter is constant. Hence Hep is the hypothesis that the regression coefficients are
constant across the sample and forecast periods, for which an appropriate test statistic,
provided Hev holds, is the analysis of variance (ANOVA) F-statistic-see Chow (1960).
Hev is the hypothesis of common error variances across the sample and forecast periods,
for which an appropriate test statistic is the variance ratio F-test, which is distributed
independently of the ANOVA F-statistic-see Phillips and McCabe (1983). These two
hypotheses together constitute He' the hypothesis of parametric constancy. For further
discussion of the relationship between these hypotheses, the corresponding test statistics,
and possible changes in the parameters of the joint distribution of y and x, see Anderson
and Mizon (1983).

It is often the case that the forecast period does not have enough observations to allow
132 and a~ to be estimated (i.e., n < k when k is the number of regressors in x), and
so tests have been proposed that rely on parameter estimates using the T observations
in regime 1 and the T + n observations in both regimes when parameter constancy is
assumed. The Chow (1960) prediction test is one such statistic, and its implicit null
hypothesis is given by H ehow ' Note that, Hehow hypothesizes that there is no change
in the conditional mean of y across regimes 1 and 2, Le., Ea(Yt - x~J3d = 0 for t E
{T+1,T+2, ... T+n} when it is maintained that Hev holds (i.e., a; = a~). This hypothesis
would need modification if the model being analyzed was dynamic (e.g., Xt includes lagged
values of Yt), to deal appropriately with the conditional expectation. Also note that Hehow

can be expressed as Ea(Jt) = Ea(Jt) = 0 for t E {T + 1, T + 2, ... ,T + n} when it and
it are the forecast error (Yt - x~131) and forecast residual (Yt - X~J31)' respectively, so that
it = it + X~(131 - 131), Hence using the fact that ft = (Y2 - X 2J31) has covariance matrix
Va(f) = [a~1n +aiX2(X~Xd-1 X~]-the second term being Va(X2J3d-enables the Chow
test statistic to be written as f:V(f)-lftin when V(f) = 0-;[1 +X2(X~X1)-1 X~] and Hev

is maintained. The Chow test statistic is distributed as a central F( n, T - k) variate under
H ehow n H cv .

If the sampling variability of 131 is ignored (it is asymptotically negligible) then aUn
can be used instead of V( f) to yield another test statistic frequently used in this situation,
namely, (f'f)/(nai), which is known as the X2 prediction test [see Hendry (1974)] and
has a limiting x2 (n)/n distribution under Hpred' The implicit null hypothesis of this
test statistic, Hpred' involves MSFE = Ea(Yt - x~13d2 for t E {T + 1,T + 2, ... ,T + n}
which is the mean squared prediction error with 131 treated as known. Hence, noting that
MSFE = (X~~13)2 + a~, when the expectation is with respect to the distribution of Y
conditional on the realized value of x without pa.rameter constancy assumed, it is clear
that the prediction X2 test statistic will be sensitive to changes in 13 and a 2 . Despite the
fact that this test statistic is closely related to the MSFE of a model, and hence might
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be thought of as a potential model selection criterion, this is not a modeling strategy to
be recommended-see Kiviet (1986). The fact that the prediction test statistic ignores
the sampling variability associated with /31 is one of its weaknesses. Schmidt (1974) and
Baillie (1979) though have provided an easily computable second-order approximation to
the exact MSFE for dynamic linear models, and Ericsson and Marquez (1989) have shown,
on the basis of Monte Carlo simulation results, that the approximation works well for closed
autoregressive models. However, further research is needed before such approximations can
be incorporated into a modified X2 prediction test statistic that allows for the uncertainty
associated with parameter estimation and is applicable for dynamic linear models with
exogenous variables.

The above analysis of parameter constancy within M1 obviously can be repeated for
M2 , but since all that is involved is the replacement of M2 and its parameters for M1

and its parameters, the details will not be presented. Instead, attention is now turned to
simultaneous inter-model and inter-regime comparisons, which are the essence of forecast­
encompassing tests.

Two obvious hypotheses that combine the inter-model a.nd inter-regime hypotheses
considered above are:

(9.13)

(9.14)

H fp is a forecast parameter-encompassing hypothesis, and is seen to consist of the sum of
H p : (1' - 1'0) = 0 and H cp : .0.1' = o. Simila.rly, H fv is a forecast variance-encompassing
hypothesis, which is the sum of H v and H cv . In that these hypotheses are combining inter­
model and inter-regime comparisons they are of potential interest, but to compute test
statistics for these hypotheses it will be necessary to estimate the parameters in 0: and 6
for both regimes. However, this will require n > k+£, which will often not be the case, but,
even if it were, it would then be preferable to test the constituent hypotheses separately
rather than as a linear combination. Hence H fp and H fv have no more significance than
that of illustrating the fact that forecast-encompassing hypotheses are a composite of
parameter constancy and parametric encompassing.

To avoid the difficulty associated with n < k +£ it is possible to consider the following
forecast-encompassing hypothesis:

(9.15 )

the motivation for which comes from asking whether M1 can explain the forecast generated
by M2 • In other words the hypothesis is that there is no difference between the means
of the two forecasts Z2"::fJ and Z21'01, when 1'01 = (Z;Zd-1ZlXl/31. The advantage of
this hypothesis is that the encompassing statistic for testing it is easily calculated using
sample period data and model forecasts. Indeed, if n > £ the resulting test statistic will
be identical to that for H p within-sample. However, the advantage is not a real one, for
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if the sample data are available it would again be preferabl~ to test Hp directly. Hence it
seems appropriate to consider alternative forecast-encompassing hypotheses.

The hypotheses above have been developed separately, and have been somewhat ad
hoc in nature. More is revealed about each hypothesis, and their relationship to each
other and the hypotheses for inter-model and inter-regime comparisons, by casting them
as restrictions on a congruent general model. Within this framework each hypothesis is
seen as a parsimonious encompassing hypothesis relative to the general model, and so
provided that the general model is congruent the resulting forecast-encompassing tests
will be valid (i.e., unaffected by misspecification errors, apart of course from the type I
errors associated with the misspecification testing of the general model). The relevant
general, or completing, model for both inter-model and inter-regime comparisons is M;:

(9.16)

with tlA = A2 - AI, tlJ1. = J1.2 - J1.l and Ai and J1.i, i = 1,2 defined as A and J1. above
but for each regime separately. It is also assumed that €i '" NI(O,w; I) so that the er­
rors are homoscedastic and serially independent within regimes, and independent across
regimes. Indeed, the congruence of M; here involves (i) valid conditioning, so that x and
z are weakly exogenous variables for the parameters of interest; (ii) no serial correlation
in the errors €; (iii) no heteroscedasticity in the errors within regimes; (iv) no ARCH
[Engle (1982]) effects; (v) no functional form misspecification; and (vi) the errors being
innovations relative to the appropriate information set. This implies that M; is appropri­
ately specified, i.e., contains the relevant parameters and includes a correct representation
of the regime shift. Within this framework it is relevant to consider the conditional in­
dependence hypotheses Lzy= LzxL;; Lxy and Lxy = Lxz L;zl Lzy' which lead to
Ml and M 2 , respectively, and the hypotheses asserting parameter constancy. For M1 to
encompass M 2 (Le., M l cM2 ), AIl should be a congruent model with constant parameters,
which requires tlA = 0, tlJ1. = 0, J1.1 = 0, (and hence J1.2 = 0) and wi = w~. This case
implies that M 1 is an acceptable simplification of M;, i.e., MlcpM;. Whilst less demand­
ing forms of encompassing, in which M I CM2 within either, or both, regimes separately,
without there being parameter constancy (Le., J1.i = 0, i = 1,2, tlA f: °and wi f: w~)

might be considered, they are less interesting because a model with such properties will
suffer from predictive failure.

Note that n > k + ewill be required for all the parameters of M; to be estimable,
otherwise only AI, J1.1' wi, X 2tlA and Z2tlJ1. will be estimable. Hence only if n > k +e
will it be possible to test fully the hypothesis that M I with constant parameters parsimo­
niously encompasses M;. When this case is being considered the important issue concerns
the choice of an appropriate procedure for testing M1cpM;. Although parameter noncon­
stancy is allowed for in M;, the rejection of parameter constancy in Me will usually be
prima facie evidence that all constant parameter models nested within M;, such as NIt
and M2 , are noncongruent, and so would probably lead to the consideration of alternative
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general models M; which do appear to have constant parameters. Even if the investigator
chooses to model the parameter nonconstancy via time-varying coefficient specifications,
parameter constancy is still required, but for a different set of parameters. It therefore
seems natural to test for parameter constancy first, and, only if this is not rejected, to
proceed to parameter- and variance-encompassing hypotheses using all the data. Within
the context of M; this provides a "natural" ordering of the constituent hypotheses of
MIt:M 2 , which suggests a sequence of tests that will yield a separate induced test of the
composite encompassing hypothesis-namely, (i) test wi = w~, and if this is not rejected
test (ii) AA = 0 and All = 0 conditional on wi = w~, and if neither of these is rejected
test (iii) Hp : 11 = 0 treating the sample and forecast periods as a single regime. Even if
there is a good reason to expect a regime shift at time T + 1, and there is an appropriate
interpretation of it, it still would be sensible to test the hypothesis of parameter constancy
before proceeding to Hp - and Hv-type hypotheses.

An alternative testing procedure to the three step one just described is implicit in the
discussion of the hypothesis of forecast model encompassing in Ericsson (1988), in which
it is hypothesized that the forecasts from M 2 have no power to explain the forecast error
of MI' If M I is of primary interest to an investigator and hence it has been thoroughly
tested within-sample (so that, for example, III = 0 has not been rejected), and its own
forecasting performance has been evaluated with AA = 0 not having been rejected, the
next hypothesis to consider in the context of M; is 112 = 0 (which of course is equivalent
to All = 0 when III = 0). Ericsson (1988) shows that a test of this hypothesis can
be implemented by regressing Yo on X o and Z*, when Z*I = (Jr, Z~), and testing the
hypothesis that the coefficients of Z* are zero via a statistic whose null distribution is
F(£, T + n - k - f). These two procedures are alternative ways for the investigator who
is primarily interested in M I to evaluate its performance in the context of M;-i.e., when
rival models and parameter nonconstancy are being considered. Whilst the procedure
described by Ericsson (1988) may well mimic accurately what many investigators do in
practice, the former "ideal" procedure has the advantage of testing whether the underlying
general model is congruent with constant parameters. An important feature of the "ideal"
procedure is that the first hypothesis to be considered is tested using all the data (sample
and forecast data on y, x, and z), and only when a hypothesis has been tested but not
rejected is it imposed for the subsequent testing of the remaining hypotheses. However,
such "ideal" procedures may not be feasible, and in particular it will often be the case
that n < k +£, and/or observations on the exogenous variables are not available to the
investigator, despite having been used in the generation of the forecasts from each model.

Concentrating attention now on situations where the forecast period contains insuffi­
cient observations to estimate all parameters of M;, the following modification provides
an appropriate general model:

M**'c . ;: 1] [ :: ] + [ :: ] , (9.17)

when v X2AA + Z2AIl. Again, to ensure that subsequent inference is valid, it IS
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necessary that M;* be a congruent model. The model to be assessed within this framework
is M l with constant parameters, which implies the restrictions v = 0 and ILl == 0 on M;*.
Clearly this joint hypothesis can be directly tested using an F-statistic, but as usual if
a joint hypothesis is rejected it is not known whether the rejection was "caused" largely
by a subset of the constituent hypotheses being strongly contradicted by the empirical
evidence. In particular, the rejection of the joint hypothesis implying M l , does not yield
information as to whether parameter constancy, or the hypothesis that M l parametrically
encompasses M 2 , would be separately rejected. In fact, in this context it seems "natural"
to test the hypothesis of parameter constancy (v == 0) first, and if this is not rejected
to test for parameteric encompassing. The Chow prediction test statistic applied to the
regression of y on x and z would be the appropriate statistic for testing for parameter
constancy.

Whilst such a test statistic would be easy to compute in theory, it does require in­
formation on y, x, and z for the two regimes, and particularly for large-scale macroe­
conometric models this may not be the case. This leads agajn to the consideration of
forecast-encompassing test statistics, since in using the available forecast information they
are likely to be feasible. It is important though to know how they fit into the above testing
framework.

Two such hypotheses have been proposed, and their properties will now be discussed.
Firstly, an obvious check on the validity of M l is to test whether its forecast errors are
orthogonal to Z2. This is the essence of the hypothesis of forecast model encompassing:

(9.18)

when 8 is a vector consisting of all the parameters of M; so that Eo denotes expectation
with respect to M;. Note that, if use is made of the relationship between the parameters
of the distribution of y conditional on x and z as defined in the joint distribution of these
variables, then it can be shown that H Jme is equivalent to Z~Z2[(''Y2 -'02) + II2~,l3] = o.
Hence this forecast-encompassing hypothesis also combines elements of parameter con­
stancy (~,l3 = 0) and parametric encompassing [IL2 == 0 or equivalently ('2 - 102) == 0],
which is a desirable characteristic if it is not possible to test separately these hypotheses. If
~,l3 == 0 is known, or assumed, then HJme is the hypothesis that lI'll completely parametri­
cally encompasses M 2 in the forecast period, i.e., (,2 -'02) = 0 provided that n> k +£,
or that Z2('2 - 102) == 0 if n < k + £. As mentioned above, Ericsson (1988), in first
proposing a form of H Jme, considered the case in which ILl == 0, ~A == 0, and n > k +£ so
that a test of the hypothesis can be implemented by regressing Yo on X o and Z*, using an
F-test statistic for the hypothesis that the coefficients of Z* are zero. However, whenever
n < k + £ the Ericsson form of this hypothesis can be tested by regressing Yo on Xo and
D' = (0, In), and testing the hypothesis that the coefficients of D (namely, Z2IL2 which is
v when ILl == 0 and ~A == 0) are zero. Note though, that in the context of M;*, if ILl == 0
is imposed (either a priori or after not being rejected within sample), the hypothesis that
the coefficients of D are zero may be rejected because X2~A i- 0 or Z2IL2 i- 0, and that it
is possible for X2~A i- 0 even though X2~,l3 == 0 has not been rejected, since X2~A == 0
and X2~,l3 == 0 are only equivalent if ILl == IL2 == O. It is therefore preferable to test the



134 Economic Structural Change: Analysis and Forecasting

hypothesis MlcpM;* via the procedure that tests (i) v = 0, and if this is not rejected (ii)
J1- = O. The alternative procedure of testing sequentially the hypotheses (i) X 26.(3 = 0,
(ii) J1-1 = 0, and (iii) Z2J1-2 = 0 has the drawback of not using all the available information
in testing the first hypothesis in the sequence, thus opening up the possibility of invalid
conditional inferences beyond those arising from type I error. Furthermore, it must be
emphasized that although it is relatively easy to implement tests for forms of H jme that
involve combinations of Hp and Hcp , and as such (subject to adopting an appropriate
testing procedure) they can have desirable properties, it has to be remembered that Hjme

is necessary, not sufficient, for Hp () Hcp .

Another feature of H jme is that tests of it require data on X 2 and Z2, which may not
always be available, particularly for large-scale macroeconometric models. When this is
the case a second form of forecast-encompassing hypothesis is relevant:

(9.19)

which is equivalent to I'~Z~Z2[Ih6.(3+ (1'2 - 1'(2)] = O. This hypothesis asserts that
the forecast error from MI [namely, f1 = (Y2 - X 2(31)J is orthogonal to the forecast
of M2, namely, Z2i'1 (which is equivalent in mean to Z21'1, though the former has a
nondegenerate sampling distribution under 1v[;*). This is analogous to the hypothesis
that the best combined forecast of Y2 is one that gives a weight of unity to that from M I

(X2t3d and a weight of zero to that from .!II2 (Z2i'1)' This is, in fact, the way that Chong
and Hendry (1986) motivated their forecast-encompassing test statistic, the behavior of
which they analyzed in the constant parameter case, i.e., 6.(3 = 0, 6.1' = 0, and wi = wi­
However, the form of their test statistic, a "t" -test of the hypothesis that the coefficient
of Z2i'1 is zero in the regression of it = (Y2 - X 2t31) on Z2i'1, is still applicable for
the more general hypothesis given in (9.19). Noting that I'~Z~Z2[II26.(3+ (1'2 - 1'(2)J is
asymptotically equivalent to I'~Z~X26.(3+ I'~Z~Z2(1'2 - 1'(2) - 6.1"Z~Z2(1'2 - 1'(2)' it
then follows that H jve is asymptotically equivalent to

(9.20)

using Lemma 2 of Mizon and Richard (1986). Hence, H jve combines Hchow type parame­
ter constancy (namely, X 26.(3 = 0 and Z26.1' = 0) and variance-encompassing Hv within
the forecast period (i.e., Ti -l1i - (3~n2(32 = 0). Therefore, the forecast-encompassing test
statistic proposed by Chong and Hendry (1986) is (i) numerically easy to calculate; (ii) fea­
sible to compute, even for large-scale macroeconometric models, since it only requires
model forecasts (albeit one-step-ahead forecasts in dynamic models); and (iii) valuable
in model evaluation because it has an implicit null hypothesis that combines parameter
constancy and variance encompassing. Despite these considerable advantages though, it
remains a hypothesis that is necessary, but not sufficient, for .AII cp 1v!;.

Finally, note that:

EO(Yt - X~(31? (9.21)

{Z~[(1'2 - 1'(2) +II26.(3]}2 + (6.(3 - P2J1-dn2(6.(3 - P2J1-z) +wi
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(9.22)MSFE2 E()(Yt - z~,d2 = (Z~~,? + >.~n2>'2 +w~

for t E {T + 1, ... ,T +n} so that

MSFE1 - MSFE2 = (9.23)

[II2~.B + (,2 -'(2) - ~']'ZtZUII2~.B + (,2 -'(2) + ~,] + .B~n2(.BI - 2>'2)'

Analysis of (9.23) reveals that it is not possible, in general, to sign MSFE1 - MSF~

uniquely. In fact, only if there are constant parameters and one model encompasses the
other, is it possible to determine the sign of this difference. For example, if ~.B = 0,
~, = 0, and ('-'0) = 0, then MSFE1 - MSFE2 ::; 0, and also E(MSFE1 - MSFE2 ) ::; °
when MSFE1 = (Y2 - X 2.BI)'(Y2 - X 2.BI)/n and MSFE2 = (Y2 - Z211)'(Y2 - Z211)/n.
Therefore, even within the simple framework of M;, choosing a model because it has
minimum WE does not ensure that it is a congruent model-i.e., does not ensure that
it would parsimoniously encompass M;. In particular, it does not guarantee that it has
constant parameters, or that it encompasses rival models that are nested within M;.
However, if M1cpM; when M1 has constant parameters then it will dominate M2 on the
criterion of MSFE. Another aspect of this last result is revealed by considering

(9.24 )

which corresponds to the forecast-encompassing hypothesis Hi: in Ericsson (1988). A
comparison of (9.20) and (9.24) shows that if ~.B =°and ~, =°then HIve and Hmsl e
are equivalent.

9.4 Conclusion

In this chapter the potential value of the recently proposed forecast-encompassing test
statistics in model evaluation has been assessed. It has been shown that, just as minimum
MSE (or MSFE) is necessary (but not sufficient) for model congruence, so the require­
ment that M 1 forecast variance-encompasses 1"[2 is a necessary condition for M 1 to have
constant parameters and M 1cM2 . Although forecast variance-encompassing tests are eas­
ily calculated, and have the advantage of having an implicit llull hypothesis, which is a
combination of parameter constancy and parametric encompassing, it is preferable to test
these last two hypotheses separately when this is feasible.

We have concentrated on model evaluation when there are two regimes, the sample and
forecast periods, respectively. In practice it will be advisable to check for the existence of
more than one structural break-by, for example, using recursive estimation techniques,
such as those implemented in PC-GIVE [see Hendry (1989)]. In addition, tests should also
be performed to assess a model's congruence with other sources of information, e.g., tests
for serial correlation, heteroscedasticity, non-normal skewness and kurtosis in residuals,
and wrong functional form. Whilst this chapter has sought to promote practical and feasi­
ble forecast-encompassing tests, particularly in the context of the evaluation of large-scale
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macroeconometric models, it has not sought to undermine the use of "ideal" standards in
model evaluation.

Finally, it should be pointed out that further research is needed to provide a detailed
extension of the results in this contribution to cover nonlinear and dynamic econometric
models; Mariano and Brown (1983) provide useful analysis of this problem. In addition,
the recent results of Andrews and Fair (1988) provide a framework within which to develop
these results.
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CHAPTER 10

An Introduction to Time-Varying
Parameter Cointegration

Clive W.J. Granger and Hahn S. Lee

Summary

The idea of cointegration is extended by allowing the coefficients in a dynamic model to
vary over time. Each variable in the system is individually nonstationary, but there may
exist a common factor or "permanent component" of the system. A richer concept of equi­
librium in dynamic structure is introduced, and an application of the varying parameter
regression (VPR) model to cointegrating regression is developed for testing the existence
of such a relationship. Some properties of the time-varying parameter (TVP) cointe­
grated process and of the estimation procedure are suggested, and an empirical example
is illustrated by using US data on prices and wages.

10.1 Introduction

Much of traditional time series econometrics have considered just stationary series, yet it is
an empirical fact that many actual macroeconomic time series appear not to be stationary
but to have the property that the differenced series can be classified as stationary. Thus
the level of these series is the accumulation of stationary components, and may be denoted
as 1(1). A series that needs to be differenced d times to achieve stationarity is denoted
I(d), so that a stationary series can be denoted 1(0).

A pair of 1(1) series, Xl and yt, when plotted on the (X, Y) plane may appear to lie
generally around a line y = Ax + m. If Xl and Yl are a pair of macroeconomic series,
the economy might appear to prefer to stay near to this line and this preference may
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Figure 10.1: illustration of 1(1) series having an attractor.

reflect the working of some markets or the use of effective government policies. This
line can be thought of as an attractor and might be associated with some types of long­
run equilibrium. A sufficient condition for the line to be an attractor is that the signed
minimum distance, Zt, from a point (xt,Yt) to the line is 1(0).

A simple way to generate series having this property is first to generate a pair of
independent series W t and Zt such that W t is 1(1) and Zt is 1(0), and then to form

Xt

Yt
= W t - Zt sin (j }

= AW t +m +Zt cos (j ,
(10.1 )

where tan (j = A. For example, W t and Zt could each be generated by

Wt-1+Et}

O:Zt-l + ~t '
(10.2)

with 10:1 < 1, and Et and ~t independent white noises. With this construction, it may be
noted that

Yt - AXt - m

Zt( cos (j + A sin (j) = ztI cos (j .

(10.3)
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Figure 10.1 shows the relationship of the variables in the generating mechanism. The
generating mechanism (10.1) has two factors, Hrt and Zt. TVt can be associated with the
"permanent component" of the system, and Zt with the "transitory component" provided
that an extra identifying condition is imposed, such as WI, Zt being independent series.

If Xt and Yt are both 1( 1), but there is a linear combination which is 1(0), the series
are said to be cointegrated, as discussed in Granger (1986). A simple method of testing
for cointegration is to estimate A and m from the regression

Yt = AXt + m + qt, (10.4 )

where qt is the residual, and then to use a Dickey-Fuller-type procedure to see if iit is 1(0).
This method is discussed in Engle and Granger (1987), but more powerful methods are
now available [see Engle and Yoo (1989) for a survey of the literature].

There are two important implications of cointegration. First, there must be a common
factor representation, with a single 1( 1) factor. The generating mechanism (10.1) provides
an example, with W t being this common factor. Second, there will be an error-correction
mechanism of the form

~Xt 'I Zt-l + lags (~xt, ~yd + residual

~Yt ,2Zt-l + lags (~xt, ~yd + residual ,

where the residuals are jointly white noises and a required condition is that at least one
of ,I, ,2 should be nonzero. These implications are discussed and interpreted in Granger
(1986).

These now standard cointegration models use constant parameters to consider a stable
long-run relationship among economic time series data. In a dynamic economy, however,
one may expect to encounter structural shifts as taste, technology, or policy changes over
time. Thus the possibility of time-varying parameter cointegration needs to be considered.
The natural generalization of constant parameter cointegration is that there exists a se­
quence At and mt such that the signed distance Zt from (Xt, yd to the line Yt = AtXt +mt

is 1(0)-or its generalization TVP-1(0) defined in Section 10.2, while Xt and Yt are indi­
vidually 1(1)-or the generalized TVP-1(1) also defined below.

In the generating mechanisms of the form (10.1), the "permanent component" of the
system, WI, and the "transitory component", Zt, could be generated without change, but
A and m might be replaced by At and mt, respectively, giving an attractor that varies
through time. There may be other nonstationarities in the system, such that ~Wt and Zt

are each generated by AR processes having time-varying coefficients. It is clearly difficult
to cope with all possibilities with a limited quantity of data.

It can be noted from (10.3) that Zt is 1(0) if qt = Yt - AtXt - 111t is 1(0), since
Zt = qt cos Ot where tan Ot = At. It is generally true that the product of a zero mean 1(0)
and an independent 1(1) variable is 1(0) in mean, or short memory as defined in Section
10.2 [see Granger and Hallman (1988)]. Even if At is 1(0), cosOt is bounded in variance
and has other 1(0) properties. Thus, a test that qt is 1(0) is sufficient for Zt being 1(0).
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The question discussed in this chapter is how to test if a pair of series are cointegrated
with time-varying parameters, and then how to estimate the attractor. In Section 10.2, the
basic theory of time-varying processes and the properties of TVP cointegration processes
are discussed, and Section 10.3 suggests various TVP cointegration models. There are
two basically different cases, in which At and mt change deterministically and in which at
least one sequence is stochastic. The testing procedures of TVP cointegration, by applying
the Kalman filter technique, are discussed in Section 10.4. Section 10.5 presents a brief
conclusion and suggestion for further research.

10.2 N onstationary Processes

It is shown in Cramer (1961) that any univariate process Xt with unconditional mean zero
and bounded variance for all t will have generalized Wold representation of the form

00

Xt = L CjtCt-j,
j=O

(10.5 )

(10.6)

where Cjt is a deterministic double sequence with the constraint that L~o CJt is finite
and bounded above for all t, and Ct is white noise with mean zero.

It is possible to associate an evolutionary spectrum with such a process, as discussed
by Priestley (1965, 1981), of the form

ft(w) = 2~ ILCjteiwjl2.
J

The evolutionary spectrum has the same physical interpretation as the spectrum of a
stationary process, i.e., that it describes a distribution of power over frequency. But, while
the latter is determined by the behavior of the process over time, the former represents
specifically the spectral content of the process in the neighborhood of the time instant t
[see Priestley (1981), p. 825].

Definition 10.1 If a series with no deterministic component has an evolutionary spec­
trum, ft(w), that is bounded above and positive for all t and w, the process is said to be
time-varying parameter 1(0), denoted TVP-I(O).

An example of such a process is

Xt = PtXt-l +Ct ,

where Ipt I < 1 for all t, which corresponds to that COt = 1, Cjt = PtPt-l ... Pt- j+l' It will
have the property that it is short memory in mean, in the sense that if ft,h is the optimum
linear forecast of Xt+h made at time t, then

E[Jt\] -t 0 as h Too, for all t . (10.7)
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This follows directly from the above result, as ft,h = L~o Cj+h,t Ct-j has mean zero and
variance that decreases to zero as h increases.

The natural generalization of 1(1) to TVP-I(l) is a process Xt such that an N-vector
process Xt with no deterministic components has a generalized form of Wold representation

( 10.8)

where Wt = l!B Ct = L~=l c. and Ct(B) is a time-varying matrix of linear functions of
the lag operator B, and

1. E(ct) = 0 for all t.

2. E(ctc~) = 0 for all t :j:. s.

3. E(ctcD =n for all t.

4. Ct(O) = IN for all t.

5. If Ct(B) = Lj CjtBj, then Lj CjtnCjt < 00 so that the variance of Xt = Ct(B) Ct
is finite.

The TVP-I(l) process Xt will be long memory in mean, so that the condition (10.7) does
not hold. The concepts of short and long memory in mean, as generalizations of 1(0)
and 1(1), are useful for discussion of nonlinear cointegration [see Granger and Hallman
( 1988)].

The moving average polynomial Ct(B) can always be expressed as

Ct(B) = Ct(1) +C;(B)(1- B)

by rearranging the terms. Using this expression, we can rewrite (10.8) as

(10.9 )

TVP cointegration, as defined in Section 10.1, will occur if there exists a vector Qt such
that

Q~Ct(1) = 0 for all t, (10.10)

so that the rank of Ct (1) is less than N for all t. When this rank is the same for all t,
the cointegrating rank can be defined as l' = rank{Ct ( I)}. The at tractor process (TVP
equilibrium error process) will then be derived as

(10.11)

provided that a;C;(B)ct is TVP-I(O). Using the equation (10.9), the following property
of TVP cointegrated process can be obtained:
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Proposition 10.1 Suppose there is TVP cointegration for a vector Xt of TVP-1(1) pro­
cesses such that Ct(B) -:I C.(B) for some t -:I s in equation (10.8). Then Xt will not be
cointegrated "on average".

Proof: Using the equation Ct(B) = Ct(1) + C;(B)(l - B) and (10.10), it is straight
forward to show that if Xt is TVP cointegrated then the spectrum of Zt is

(10.12)

where fz,(w) may be considered as an evolutionary spectrum. When Xt are TVP cointe­
grated, the equation (10.10) holds for all t such that 0i -:I OJ for some i -:I j, and we know
that Zt = O;Xt is TVP-1(0). Let it = ii'Xt where ii is a constant independent of t. Using
the equation (10.9), the integrated part of the average spectrum of it will then be

(10.13)

As n is a positive definite matrix, this is just a sum of nonnegative quadratic forms. Hence,
for this integrated part to vanish at the zero frequency, we require that ii'Ct (1) = 0 for all
t, which is clearly not possible when Ct(B) -:I C.(B) for some t -:I s so that Ct(1) -:I C.(l)
in general. 0

If c;(B) is absolutely summable (i.e., L~o ICJtl < 00), then the TVP cointegrated
process Xt has a "common factor representation", which is just the equation (10.9). [If
Ct(B) is the moving average representation polynomial matrix implied by a finite ARMA
model with stable roots, then Ct(B) is 1-summable (i.e., Lj ICjt! < 00), hence it follows
that c;(B) is absolutely summable; see Stock (1987).] Equation (10.9) shows that the
TVP cointegrated process Xt can be written in terms of a reduced number of common
1(1) factors WI, plus an additional transitory component C;(B)Et. It is now clear that
the bivariate generating mechanism (10.1) is a special case of (10.9).

10.3 Various TVP Cointegration Models

Consider initially the case with m constant, and equal to zero for convenience, so that a
sequence At exists such that qt = Yt - At.Tt is 1(0). The TVP cointegration relationship
wi th m = 0 will then be

(10.14)

where qt is 1(0). Two simple but interesting, relevant cases are

1. At is a deterministic, known sequence such as a constant plus cos At, to or some
parametric function of time, or a seasonal sequence, and

2. At = a +bDt , where Dt is some known, observed variable.
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The equation (10.14) can be rewritten as

145

(10.15)

where Xt = f(t)Xt with f(t) being a deterministic function of t or an observed variable
D t . Considering the fact that the product of a pair of independent 1(1) series is long
memory, each case is easily tested by just treating Xt as another 1(1) variable, provided
that Dt is 1(1). The remaining parameters are just constants and so can be estimated
super-efficiently as usual. Hence the standard testing procedures can be used in this case.
It is also clear that Xt and Yt are not cointegrated with constant parameters unless Xt is
1(0). However, if Dt is 1(0) with mean zero, the situation is very different, as Xt will then
be 1(0) or at least short memory in mean. In this case, Xt will not be involved in the
cointegration and Xt and Yt will be cointegrated with constant parameters.

If there are structural changes at known times, this can be included in the regression
model (10.4), using appropriate zero-one dummies. In practice, however, the possibility
of changes at unknown times or, more generally, with At changing in unknown ways­
because a causal variable such as Dt is unobservable-needs to be considered. In this
case, a sensible, parsimonious specification has to be applied to approximate the time
series behavior of At. An obvious way to proceed is to use the assumption that At is given
by a constant plus a low-order ARIMA process, for example, an AR(l) process At given
by

(10.16)

where ~t is i.i.d. with E(~t) = 0, or by a more general stochastic model. Such a scheme is
especially suitable whenever little information is available on the exact cause of parameter
instability and smooth rather than sharp variation in coefficients are desired. Moreover,
this kind of specification has the advantage that it can be estimated by using the well­
known Kalman filter algorithm. This kind of procedure should be considered as an attempt
to model unobserved deterministic or stochastic causes of variation in At. If Ipl < 1 in
(10.16), then one is back to an 1(0) time-varying parameter and this was shown above not
to affect any constant parameter cointegration that may exist between Xt and Yt.

The case that may be expected to occur frequently is when p = 1, so that any parameter
changes may persist with no inherent tendency to return to constant values. In this case,
the Kalman filter estimate of At will contain a unit-root and hence may cause a singularity
that will make it difficult to distinguish between a real and a spurious cointegration.
Suppose that Xt and Yt are independent 1(1) series both with positive values. Then the
choice of At such that At = Rt + .At, where Rt = YtiXt and .At is 1(0) with mean zero, gives

which is short memory and indistinguishable from any 1(0) in mean series when .At is unob­
served. Hence this choice of At will result in a spurious, apparent TVP cointegration. The
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difficulty associated with this situation occurs because an actual TVP cointegration model
has similar properties to this spurious case. Suppose now that Xt and Yt are generated by

(10.17)

with XI = Xt-1 +CI and Al = A I _ 1 +1]t, where ql is 1(0), independent of Xt and At, and Ct

and 1]t are independent white noises. Then it is clear that there is a TVP cointegration,
with Xt being the 1(1) common factor or permanent component. Dividing (10.17) by Yt,

assumed to be positive, gives

which results in a similar equation for i'l.t as occurs in the spurious case, with Al == -qt/Xt.

To examine the potential problems in this situation, a small simulation experiment is
designed. The data used are generated by

where

Xt XI-1 + ~xt

At a +b8t

8t 8t - 1 + ~8t

qt pql-1 + ~ql

with ~xt, ~81' ~qt rv I N(O, 1). The parameter Al is assumed to follow a random walk process
except for a constant term. The Kalman filter estimate Al of At is derived to examine
the relationships between At & At, and Rt & At. The cointegration test for each pair
of series is carried out, and the t-statistics in the cointegrating regression are reported in
Table 10.1 for various values of p. Five hundred replications of this design are computed
in each case with 200 observations.

When there is cointegration, one might expect the super-efficiency kind of property as
in constant cointegration case. In TVP cointegration framework, the following proposition
describes a property of the Kalman filter estimate At of At.

Proposition 10.2 Suppose that there is TVP cointegration. If the estimated residual
process iit is 1(0) or short memory in mean, then the estimate At and the true parameter
At are cointegrated where At is generated by a mndom walk process.

Proof: Using (10.17), the residual process iit can be written as

(10.18)

Now, as qt is 1(0) or short memory, the RHS of (10.18) citn be short memory only if
(At - Ad is 1(0) with mean zero. That is At and At should be cointegrated. 0



Clive W.J. Granger and Hahn S. Lee 147

Table 10.1: Cointegration test for At & At and At & Rt.

Percentile 5% 10% 25 % 50 % 75 % 90 % 95 %

p = 0.0 At & At 8.26 9.15 10.36 11.91 13.67 15.27 16.49

At & Rt 10.95 11.97 13.33 14.10 14.93 17.70 18.83

P = 0.5 At & At 6.72 7.31 8.07 8.93 10.14 11.21 12.59
At & Rt 10.85 11.66 13.17 14.10 15.13 17.24 18.95

P = 1.0 At & At 0.24a O.77a 1.67a 2.62a 3.45 4.20 4.92
At & Rt 10.35 11.24 13.08 14.08 14.90 17.61 18.81

Dickey-Fuller statistics are shown with minus signs omitted for simplicity.
a Indicates no cointegration at 5% level.

This statement is supported by the simulation result. As shown in Table 10.1, if TVP
cointegration occurs, i.e., 0 < P < 1, At and At are cointegrated so that At provides a
good approximation to the true At. On the other hand, when p = 1 so that there is no
TVP cointegration, At appears to be cointegrated with Rt but not with At, resulting in
the spurious TVP cointegration mentioned above. Hence the two-step procedure-first,
estimating At through the Kalman filter, and then testing for unit-root on the residual
process-seems irrelevant to testing for TVP cointegration in this situation. The potential
difficulty associated with this problem motivates an alternative approach, which will be
discussed in the next section.

IDA Testing Procedures for TVP Cointegration

As mentioned in Section 10.3, if there are structural changes of known break-points, this
information can be incorporated in the cointegrating regression model by using appropriate
dummy variables. This section begins with an example illustrating how the structural
changes affect the usual cointegration test. The example also shows how the usual testing
procedures for cointegration, e.g., the Engle-Granger two-step procedure, can be employed
in this case to figure out such shifting relationships. The choice of the example is motivated
by an earlier empirical study.

1004.1 Shifting regimes model

Engle and Granger (1987) have presented an evidence against cointegrating relationship
between prices and wages in the US. They, however, suggested that there might be a
cointegrating relationship if another variable such as productivity were considered. Fol­
lowing the basic Sargan wage- bargaining model, a time trend is inc!uded as a proxy for
the productivity factor, providing a regression model of the form

(10.19)
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Table 10.2: Cointegration test for WI and Pt.

Sample period
1947(i )-1986(xii)
1947(i )-1972(xii)
1973(i)-1979(xii)
1980(i )-1986(xii)
wi th dummies

T
480
312

84
84

480

DF
-2.80
-2.41
-3.06
-4.57a

-4.87a

ADF(1)
-2.71
-2.51
-2.76
-4.03a

-4.54a

ADF(4)
-3.02
-2.09
-2.38
-5.06b

-4.12

a No cointegration at 5% level.

b No cointegration at 1% level.

The data are the consumer price index and the index of production worker hourly wage in
manufacturing sector from 1947(i) to 1986(xii). The test statistics (DF, ADF) are shown
in Table 10.2, which indicates that we do not reject the null of no cointegration even at
10 % level. That is, the prices and wages are not cointegrated in the model (10.19).

In fact, there have been many empirical studies that consider the changes in the level
of economic time series data or the changes in the relationship between them due to the
oil shocks [see, e.g., Perron (1987)]. As shown in Figures 10.2 and 10.3, we can reasonably
suspect that regimes change would happen in the relationship between wages and prices.
Accordingly, two dummies are included in (10.19), resulting in the model of the form

(10.20)

where

and

if 1973(i) ~ t ~ 1979(xii)
otherwise

if t :::: 1980(i)
otherwise.

Following the two-step procedure, the unit-root test for the residual is carried out. As
shown in Table 10.2, the DF and ADF statistics have increased significantly so that we
can reject the null of no cointegration at 5 % significance level. [Since we have a regression
model with two dummy variables and a trend term, it is required to find appropriate
critical values for this case. Monte Carlo simulation suggests that the critical values in
Engle and Yoo (1987) for N = 5 be appropriate. That is, the trend term and the dummies
contribute to the left tan distribution as if they were additional 1(1) variables in the EG
two-step test.] That is, the prices and wages are cointegrated when we consider the regime
shifts. The unit-root tests for TVt and Pt are also carried out for the whole sample with
dummies as well as for each subsample period. The results are summarized in Table 10.3,
indicating that the unit-root hypothesis is not rejected even if the structural breaks are
considered. This contradicts the result in Perron (1987), who found evidences agajnst the
unit-root hypothesis for most economic variables.

In this example, A is assumed to be constant while mt == mo + m1D lt +m2D2t +m3t
is changing through time. As mt is a deterministic function of time, the result indicates
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Table 10.3: Unit-root test for Wt and Pt.

Sample period T Wt Pt
DF ADF(1) ADF(4) DF ADF(1) ADF(4)

1947(i )-1986(xii) 480 1.42 1.17 -0.17 2.49 0.63 0.00
1947(i )-1972(xii) 312 2.64 2.85 3.03 3.07 1.64 0.46
1973(i )-1979(xii) 84 1.93 1.75 1.51 4.81 2.51 0.47
1980(i)-1986(xii) 84 1.89 2.21 2.83 3.08 2.25 2.20
With dummies 480 -2.86 -2.80 -2.10 -2.03 -1.14 -0.86

Sample period T ~Wt ~Pt

DF ADF(1) ADF(4) DF ADF(1) ADF(4)
1947(i )-1986(xii) 479 -14.87 -8.07 -3.14 -7.56 -5.61 -3.48
1947(i )-1972(xii) 311 -16.55 -10.91 -6.37 -11.44 -7.90 -4.64
1973(i )-1979(xii) 83 -9.23 -6.18 -3.16 -4.00 -1.74 -0.44
1980(i)-1986(xii) 83 -8.76 -4.65 -1.43 -4.33 -4.42 -3.05
With dummies 479 -19.81 -11.36 -4.45 -9.70 -7.38 -4.62

For the unit-root test, a trend term is included, so that the critical value of f T from Fuller (1976,
p. 373) should be applied.
For LlWt and LlPt , a constant term is included, hence the appropriate critical values are given by

fl"
The critical values for the model with dummy variables are found to be similar to the Engle-Granger

critical values for N = 4 (for Pt , Wd, and N = 3 (for LlPt , LlWtl.

that the prices and wages share the same stochastic trend or "permanent component",
which is the basis for the cointegration concept. Hence, the standard implication and
interpretation of cointegration can be considered.

10.4.2 Random walk parameter model

In the context of a dynamic stochastic structure of real world, a model of particular interest
is the one in which little information is available on the exact cause of parameter variation.
In this case, the strategy in using regression models with stochastically varying coefficients
seems a reasonable attempt to model the unobserved deterministic or stochastic cause
of parameter changes. As discussed in the previous section, when TVP cointegration
occurs, such a scheme is capable of approximating the stochastic behavior of the true
relationship through Kalman filter algorithm. However, this case contains the possibility
of a spurious TVP cointegration, which makes it difficult to distinguish a real and a
spurious relationship.

To motivate an alternative approach to testing for TVP cointegration and hence to
detect the spurious relationship, the relative forecasting accuracy is examined for each
case where (i) the DGP is given such that the regression model with constant parameters
is correctly specified, (ii) the DGP is given such that TVP cointegration model is correctly
specified, and (iii) the data XI and Yt are generated by independent random walk processes
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Table 10.4: Relative forecasting accuracy of TVP cointegratlon model.

DGP Alternative model 5% 10 % 25 % 50 % 75 % 90 % 95 %
(1) Const. parameter -19.30 -11.45 -4.42 -1.76 -0.50 0.27 0.64

Naive forecast -6.25 -2.92 1.76 5.09 7.12 8.24 9.00

(2) Const. parameter -16.12 -10.24 -4.48 -1.69 -0.46 0.36 0.77
Naive forecast -4.74 -2.26 1.72 4.84 6.83 7.81 8.52

(3) Const. parameter -0.72 -0.41 0.24 1.08 2.52 3.80 4.96
Naive forecast -0.52 -0.20 0.66 1.69 3.38 6.43 8.28

(4) Const. parameter -0.72 -0.39 0.23 1.03 2.50 3.80 4.94
Naive forecast -0.52 -0.20 0.66 1.70 3.37 6.39 8.31

(5) Const. parameter -22.56 -18.08 -7.77 -2.89 -1.19 0.11 0.31
Naive forecast -22.85 -18.23 -7.94 -2.82 -1.18 -0.13 0.19

In each case, the constant parameter-forecasting model is given by a least squares regression such
that

tlYt = AtlXt + residual

and the forecasting model estimated by TVP cointegration is given by

Yt = AtXt + residual.

For cases (1) through (4), the data used for Xt is generated by tlXt = 0.6tlXt_l +[xt, [xl ~ N(O, 1).
The data for Yt is given by the generating mechanism:

(1) tlYt = 2tlXt +[t
(2) tlYt = 0.4 tlYt-l - O. ltlXt_l + [t
(3) Yt = AtXt + Ut where At = 2 + Dt for Dt = Dt-l + ~t and Ut = 0.4 Ut-l + [t
(4) Yt = AtXt + Ut where Ut = 0.7Ut_l +0.11tt _2 +[t with At and Dt as in (3)

For (5), the data Xt and Yt are generated by independent random walk processes.

[see Table 10.4].

One hundred replications of this design are computed in each case, with 100 observa­
tions used for fitting the initial model and 30 observations used recursively for one-step­
ahead forecasting, to generate one-step-ahead forecast errors. The forecasting accuracy
of the model estimated by TVP cointegration is compared with the constant parameter
regression model and naive time series forecasting model, i.e., the random walk model, in
terms of expected squared forecast errors. If expected squared error is the criterion for
the evaluation of two competing forecasts, a valid test of one-step-ahead forecast errors
can easily be derived under assumptions such that the individual forecasts are unbiased
and the forecast errors are not autocorrelated. Consider the sample correlation coefficient
between (eC + et ) and (e C

- et ) such that
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where ei and el are one-step-ahead forecast errors from the constant parameter model and
TVP cointegration model, respectively. Note that the two expected squared errors will be
equal if and only if this pair of random variables are uncorrelated. Now, the usual test for
zero correlation such that

(10.21)

can be employed to test for equality of expected squared forecast errors. It can also
be noticed that t > 0 implies that the TVP model performs better than the constant
parameter model.

Table 10.4 reports the distribution of the t-statistics. As is expected, it is clear that
there are always gains to using the correctly specified model. That is, when the data
are generated by DGP(l) so that the constant model is correctly specified, it performs
better than TVP model as indicated by negativity of the t-statistics. On the other hand,
if the data are given such that the TVP model is correct as in DGP(3), the t-statistics are
mostly positive implying that it performs better than the constant model. One can notice
that the constant parameter model performs better than TVP model ev€n when it is not
correctly specified as in DGP(2). One might not expect such a difference in the forecasting
performances of two misspecified models, but this can be explained by the well-observed
fact that increasing the in-sample fit of a model does not necessarily lead to a better
post-sample forecasting. Also the distribution of the t-statistics for the DGP(3) and (4)
in Table 10.4 are similar to each other, indicating a robustness of the procedure to the
specification of the residual process when TVP cointegration occurs. The naive forecast
based on the random walk model is also compared with the TVP model, indicating some
gains to using the information in Xt to forecast Yt. The results support the strategy of
using the relative forecasting accuracy for detecting the spurious TVP cointegration and
hence suggest that it can also be applied in testing TVP cointegration.

In a bivariate case discussed so far, the testing procedure for TVP cointegration based
on the forecasting performance can now be summa.rized as follows:

1. Test that both Xt and Yt are. 1(1) or TVP-I(l).

2. Run a TVP regression to estimate mt and At in the model

(10.22)

3. Find the best forecasting model among alternative models with constant coefficients.

4. Compute the t-statistic from (10.21) to see whether the TVP cointegration model
performs better.

In the first step, a test based on the estimation of evolutionary spectrum might be sug­
gested, but it is virtually impossible to cope with all possibilities with a limited quantity of
data available on the usual ma.croeconomic time series. In the case where the "permanent
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component", Wt, and the "transitory component", Zt, are generated without change as
in (10.2), while only A and/or m in the generating mechanism (10.1) are allowed to vary
over time, the usual tests for unit-root such as the DF and ADF testing procedure can be
applied.

For the second step, the parameter At is assumed to change very slowly over time
following the random walk coefficient model. The residual process qt is assumed to follow
AR(l) process, which can easily be extended to any ARMA(p,q) model of finite order. This
follows from the fact that any ARMA process can be expressed by a multivariate AR( 1)
model in a state space form [see Harvey (1981, p. 103)]. The AR(l) assumption seems
too strong, but is based upon the conjecture that the super-efficiency kind of property
can be expected when TVP cointegration occurs, as discussed in the previous section.
This conjecture is supported by the simulation result above (see Table 10.4), where qt
is generated by an AR(2) process, but is assumed to be an AR(l) in estimation. The
distribution of the i-statistics are similar to each other, indicating that the specification
of the residual process appears not to affect the result.

The restriction to constant coefficient models in the third step appears to be too strong.
Suppose that a nonlinear relationship is present between Xt and Yt. Then forecasting
models with constant coefficients are misspecified, so that one might falsely accept the
TVP cointegration, as varying parameters will usually better approximate the nonlinear
relationship. However, such a relationship is worth finding as an approximation to the true
relationship between Xt and Yt, unless one can figure out the nonlinear form, hence should
be distinguished from the pure spurious relationship discussed in the previous section.

In the fourth step, one is confronted with a trade-off between the size and power of the
test. The choice of usual significance level, say, 5 % level, appears to result in a conclusion
that is not very powerful. It is required to further investigate the distributional property
of the i-statistics in (10.21).

This approach to testing for TVP cointegration is applied to examine the relationship
between prices and wages discussed above. Table 10.5 reports the i-statistics from (10.21)
for each subsample period of interest. Even though there is no strong evidence found
for cointegration in the first two subsample periods [1947(i)-1972(xii), 1973(i)-1979(xii)]
using the usual Engle-Granger two-step procedure (see Table 10.2), an investigation of the
relative forecasting accuracy within each regime indicates that the error-correction model
performs better than any other consta.nt parameter model considered, which in turn is
outforecast by the TVP model. This result might be considered as an evidence for the
existence of cointegrating relationship in each regime.

For the forecasting periods outside each regime, however, the error-correction model
does not predict best among the alternative models considered, except for the periods
just after the first oil shock [1947(i)-1976(xii), 1947(i)-1977(xii)J. In fact, TVP model
turns out to perform generally better than any constant parameter model, as indicated by
the positivity of the i-statistics, although the i-values are not significant using the usual
significance level.

As discussed above, the choice of usual significance level, say, 5 % or 10% level, might
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Table 10.5: Relative forecasting accuracy of TVP forecasting model.

Sample period Alternative model t-statistics
1947(i )-1972(xii) ECM -0.475
1973(i)-1979(xii) ECM -1.359
1980(i)-1986(xii) ECM -1.088

1947(i)-1976(xii) ECM -0.977
1947(i)-1977(xii) ECM -1.311
1947(i)-1978(xii) ECM 0.437
1947(i)-1981(xii) VARD -2.240
1947(i)-1982(xii) VARD 0.147
1947(i)-1983(xii) VARD 0.476
1973(i)-1981(xii) VARD -2.365
1973(i)-1982(xii) VARD 0.802
1973(i)-1983(xii) VARD 1.098

The constant parameter forecasting models considered are least squares regression model in differ­
ence (OLSD), VAR form for boWt (VARD), and error-correction model (ECM) such that

OLSD: boWL

VARD: boWL

ECM: boWt

=canst + 8boPt + residual

= canst + tiboPt-l + bboWI_ 1 + lags(boWI _ b boPI-d + residual

=canst + i'Zt-l + lags(boWI' boPd + residual,

where z, =Wt - a - /3Pt is the residual from the cointegrating regression.

result in a test that is not very powerful so that one is confronted with a trade-off be­
tween the size and power of the test. Hence we have to reserve any conclusion about the
use of the relative forecasting accuracy in testing for TVP cointegration, unless a further
investigation into the distributional property of the test statistics is reached. However,
the positivity of the i-statistics, implying that root-mean-squared error of TVP forecast­
ing model is smaller than that from any consta.nt alternatives, suggests that the varying
relationships between prices and wages might better be captured by TVP cointegration
technique whenever there is any structural break.

10.4.3 TVP-error correction model

To motivate another approach to TVP cointegration testing, consider a pair of series Xt

and Yt which are jointly generated as a function of possibly correlated white noises, cit
and C2t, according to the following model:

Yt - (3Xt

Yt - AtXt

Ult = Ul,t-l +cit

U2t. = PU2,t-l +c2t·

(10.23)

(10.24)

The reduced form for this system becomes

1 1 1
Xt ---(Ult - U2t) = ---Ult - ---U2t

At - (3 At - (3 AI - f3
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(3 At (3
Yt A

t
_(3(Ult- U2t)+Ult= A

t
_(3Ult- A

t
_(3u2t,

which indicates that Xt and Yt share two common factors, Ult and U2h with Ult being
the permanent component of the system and U2t being the transitory component. As
equation (10.24) describes a particular time-varying relationship of the random variables,
which results in a stationary process, the variables Xt and Yt are TVP cointegrated, and
the question is then whether it is possible to detect the relationship and to estimate At.

The model (10.23) and (10.24) can be expressed in the AR representation as

I-p At-pAt- 1
At - (3Yt-1 - At _ (3 Xt-I + 'TIlt

(3(1 - p) (3(A t - pAt-d
At - (3 Yt-I - At _ (3 Xt-I + 'TI2t

or equivalently

(Pt[(1- P)Yt-1 -7J!t Xt-d + "7lt

(3<pd(1 - P)Yt-1 - 7J!t Xt-d + 1]2t,

(10.25)

(10.26)

where <Pt = 1/(At - (3) and 7J!t = At - pAt-I, and the l]t'S are combinations of the Et'S and
At's. In general, TVP cointegrated process Xt will have an AR model of the form

(10.27)

so that the lagged values of ~Xt'S are included in the model with a.ppropriate assumptions
imposed on the behavior of It and at. The AR representation (10.27) can also be inter­
preted as a TVP error-correction model with Zt = a~.'l:t being the attractor process of the
system.

In this specification, however, if we assnme At in (10.24) to follow a random walk
process, then <Pt in (10.25) and (10.26) can not be well approximated either by another
random walk process or by any other low-order ARIMA process in general. Suppose now
that the stochastic parameter At is governed by it pattern of variation such that

(10.28)

where ~t is assumed to be Li.d. with E(E,t) = 1 and ~t > 0 for all t. Notice that the
stochastic formulation of At is set up such that the disturbance term enters multiplicatively.
With initial condition Ao = 1, the equation (10.28) can be rewritten as

Hence one can show that



156 Economic Structural Change: Analysis and Forecasting

That is, the varying coefficient generated by equation (10.28) also follows a martingale
process, hence possesses some inertia as in the random walk parameter model. We argue
that unless there were strong a priori grounds for imposing an additive disturbance term as
in the random walk parameter model, the specification (10.28) would be more appropriate
in describing the evolution of parameters in the sense that l/At can well be approximated
by a similar pattern of parameter variation.

If the stochastic formulation of At is given by (10.28), substituting 1/8t for At will
then result in

which can be rewritten as

(10.29)

where Ct = l/~t. From the initial condition Ao = 1, it is easy to show that 80 = 1 and
that 8t follows a sub-martingale process with E(ct) > 1.

This indicates that whenever the true parameter At is assumed to follow a martingale
process as in equation (10.28), we can approximate it by estimating 8t through its con­
sistent counterpart (10.29). For a pair of regression models with stochastically varying
coefficients such that

Yt

(10.30)

(10.31)

where the variables Xt and Yt represent the observables in the system, this specification
of parameter variation might produce better approximation than any low-order ARIMA
schemes, hence is suitable whenever little information is available on the dynamic structure
of time series model. Under appropriate assumptions, the Kalman filter algorithm can be
applied in this case to estimate the parameter of interest At, which is shown in Lee (1989)
and is not attempted here.

10.5 Concluding Remarks

In a dynamic stochastic real world, we might reasonably expect that equilibrium relation­
ship is changing over time as technology, taste, and society change. Consequently, the fact
that a set of economic variables are not linearly cointegrated does not necessarily imply
that there is no equilibrium relationship among them. In fact, the regression model may
be subject to misspecification, since it ignores the effect of any changes in the unobserved
components on the behavior of the observable variables in the model. Hence, rather than
restricting to the linear, stable relationship, an introduction of the time-varying coefficients
in the cointegrating regression is suggested, giving us a richer concept of cointegration.
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Although many interesting results are obtained by introducing time-varying parame­
ters in the cointegration concept, much work still remains to be done. Suppose a theory
suggests some equilibrium relationships among a set of economic time series data, but
that the cointegration technique does not provide any evidence of equilibrium relationship
while the TVP cointegration procedure does. Then it might reflect the fact that the linear
cointegrating regression model is misspecified and that we have omitted variables that
should be included in the model. Hence, it is reasonable to try first to figure out the
omitted variables available, rather than to be just satisfied with the changing equilibrium
relationships.

Second, since the choice of the dependent variable for the TVP cointegrating regres­
sion is arbitrary, we may get conflicting results in practice for the same set of variables,
depending upon the direction in which the regression is performed. As we usually do
not know how the unobservable components affect the behavior of the observable data in
the model, we may have to consider the model in both directions. Moreover, we need to
consider the distributional properties of the attractor process and the power properties of
the test. This also implies that we still have some practical problems to investigate.
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CHAPTER 11

Disequilibrium Modeling, Switching
Regressions, and Their Relationship to
Structural Change

G.S. Maddala

Summary

Disequilibrium and self-selection models do not directly deal with structural change. But
both are switching regression models with endogenous switching and the techniques of
analysis for swi tching regression models can be used to study structural change. The
chapter discusses the different uses of these models in the modeling of structural change.
One class of such models is the Markov switching model which has been used to analyze
exchange rates, stock prices, and nonstationary time series. These are models with exoge­
nous switching. The other class of models, with endogenous switching, can be fruitfully
applied to analyze structural change which follow policy changes that eliminate opportu­
nities of self-selection that economic agents have.

11.1 Introduction

This chapter reviews developments in econometric disequilibrium modeling and switching
regressions, and outlines the relationship between this literature and the methods used
for the analysis of structural change. The basic structure of disequilibrium econometric
models can be described as one involving switching regressions with endogenous switching.
A commonly used method for the analysis of stnlctural change is also one of switching
regressions where the switch point is usually unknown and needs to be estimated from
the data. There is, thus, some similari ty in the methodologies used. The purpose of this
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chapter is to outline some modifications in the switching regression methods of analyzing
structural change that take into account gradual adjustments to, and expectations about,
policy changes that are usually the main source of structural change.

11.2 Disequilibrium Models and Switching Regressions

The classical switching regression model consists of two regression equations

Yt = ,8~Xlt +Ult

Yt = ,8~X2t +U2t

in regime 1

in regime 2.

(11.1 )

(11.2 )

The vectors Xlt and X 2t are exogenous variables. The dependent variable Yt is generated
either from regime 1 or from regime 2 but not from both. Suppose we define the indicator
variable It as

if Yt comes from regime 1
if Yt comes from regime 2.

If It is observed, we say that the sample separation is known. In this case equations (11.1)
and (11.2) can be estimated by ordinary least squares using the observations of Yt in the
two regimes. The indicator variable It may not be observed, but its determinants are. In
this case we define another variable Zt as

(11.3 )

and define

if Zt > 0
otherwise.

In this case we have probabilistic sample separation. Consider the model given by (11.1),
(11.2), (11.3) and let (u}, U2, U3) "V N(0, ~), where

Since Zt can be observed only as a dichotomous variable, we assume Var(Zd = 1. If
a13 = a23 = 0, we have a switching regression model with exogenous switching. Otherwise,
we have endogenous switching [see Maddala (1983, p. 284)]. With endogenous switching,
even if the sample separation is known, equations (11.1) and (11.2) cannot be estimated
by ordinary least squares.

The disequilibrium model

,8~Xlt +Ult

,8~X2t + U2t

min(Dt,Sd

demand function

supply function

(11.4)

(11.5 )

(11.6)
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is a switching regression model with endogenous switching. Because, whether Qt is on
the demand function or on the supply function depends on whether Dt - St < 0 or > 0,
respectively, that is, whether (,8~Xlt + 'uld - (,8~X2t + U2t) < 0 or > O. In this case
U3t = 'Ult - U2t· Thus, al3 = au - al2 and a23 = al2 - a22·

Another modification of the switching regression model is that by Lee and Porter (1984)
who consider the availability of a dichotomous indicator Wt that provides sample separa­
tion, but this indicator is imperfect. They postulate a transition probability matrix

w=l w=O

1=1 Pu PlO
1=0 POI Poo

If Pu = POI, the indicator Wt does not provide any information on sample separation. If
Pn = 1 and POI = 0, the indicator Wt provides perfect sample separation. In the case
Pn #- 1 and POI #- Pu (> Pod, we have imperfect sample separation. Lee and Porter
examine the transportation prices charged by the Joint Executive Committee railroad
cartel from 1880 to 1886, using the price equation

where It = 0 if there is a price war and It = 1 if there is cooperation. Thus, there is a
regime switch; Wt is an indicator obtained from the Railroad Review, which reported in
each sample period whether or not a price war was occurring.

The disequilibrium model given by (11.4), (11.5), and (11.6) is a switching regression
model with endogenous switching, and the estimated method to be used depends on
whether sample separation is available or not. One source of sample separation often
considered is that of 6Pt+l or the change in price. Several models using this information
have been proposed [see Maddala (1983) and Quandt (1988) for a more detailed discussion].
However, before any modeling of disequilibrium is done, it is important to consider the
sources of disequilibrium. This will dictate both the proper formulation of the model and
the estimation procedure to be used. Maddala (1983, p. 326) considers a classification of
disequilibrium models based on

• imperfect adjustment of prices, and

• controls on the movement of prices.

There are some conceptual problems associated with the argument of imperfect adjustment
of prices and condition (11.6). These have been discussed at length in Maddala (1983,
pp. 319-326) and will not be reviewed here. In the case of controlled prices, the market is
sometimes in equilibrium and sometimes in disequilibrium.

In these models of disequilibrium, there are regime shifts but the models do not fall
in the category of analysis of structural change. It is a case of partial observability rather
than changes in the economic structure. The methods of estimation, however, can be used
to analyze structural change, as discussed in the following sections.
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D-Methods for Analyzing Structural Change

Broadly speaking, structural change is defined as a change in the relative weights of sig­
nificant components of the national product and expenditures. Some examples are a shift
from agriculture to industry in the developing countries, the growth of the service sector
relative to the manufacturing sector in the US during the last 20 years, and a rise in
imports relative to exports (trade deficit). This chapter studies the structural change in a
more limited sense, namely, changes in the parameters of a given model following changes
in policies or occurrence of some major events. Though the model under consideration
would usually be a simultaneous equations model, for ease of exposition, the discussion is
confined to a simple regression model.

Consider the switching regression model given by equations (11.1) and (11.2) where
Ult '" IN(O,ai) and U2t '" IN(O,a~). Goldfeld and Quandt (1973a) assume that there is
an identifiable variable Zt such that if Zt 2: C, then the observations are generated by
(11.2). They then define the step function,

D( Zt) = 1 if Zt < C .

Later, instead of considering the step function, they consider D( Zt) to be a cumulative
normal given by

{~
if
if

Zt < C + Et

Zl 2: C +Et,

where Et '" IN(O, 1). The model considered by Goldfeld and Quandt is an exogenous
switching model because Et are assumed to be independent of Ult and U2t. Goldfeld and
Quandt give an extension of this D-method to simultaneous equations systems, but the
extension is still in the framework of exogenous switching. Lee et al. (1979) extend the
D-method to switching simultaneous systems with endogenous switching. They derive the
valid instrumental variables to use, the asymptotic covariance matrix of the suggested esti­
mator and test whether the coefficients in the earnings functions are significantly different
between the two groups: those with college education and those without.

The D-method combines the equations in the two regimes into a single equation. This
enables us to test for equality of specific coefficients in the two regimes. The alternative
to this procedure would be to use a likelihood ratio test every time the significance of a
particular coefficient needs to be tested.

11.4 Sources of Regime Shifts in Switching Regressions

The example considered in Lee et al. (1979) is one of structural change based on cross­
section data. The example considered by Lee and Porter (1984) refers to time series data
with two regimes, and each observation can be classified into one or the other regime. A
problem often considered is the estimation of break-points where the regime shift took
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place. For instance, regime 1 could be for t = 1,2, ... ,To a~d regime 2 for the remaining
observations. Based on the time series data available, the problem is to estimate the
break-point To and the parameters (31, (32, a?, and a~.

A more pertinent question to ask is why the structural change took place? Very often
this is a consequence of some policy change. In this case, the break-point To is known.
However, the adjustment to the new regime does not take place instantly. If there are
considerable time lags in the adjustment process, one might not be able to detect any
structural change in the regimes with the limited time series data. On the other hand, if
the policy change is anticipated, the break-point detected may occur before To, the time
when the policy change took place. A third possibility is that economic agents expect a
policy change and act as if there is a regime shift (to say regime 2); however, the policy
change does not occur, and the behavior reverts back slowly to that given by regime 1.

Thus, an analysis of structural change has to take account of two factors: gradual
adjustment to policy changes and expectations (fulfilled or not) about policy changes. In
both cases, there is disequilibrium, in the sense that the system does not instantaneously
adjust to the new equilibrium position given by, say, regime 2. These two factors in the
context of a simple switching regression model will be considered.

11.4.1 Partial adjustment to policy changes

The partial adjustment model is the earliest formulation of a disequilibrium model. In the
context of policy changes and structural change, one must consider changes in parameters
in response to changes in economic policies. If adjustment to the new situation is instan­
taneous, then one observes a sudden switch and the switching regression model given by
equations (11.1) and (11.2) is appropriate with regime 1 describing the system before the
policy change and regime 2 describing the system after the policy change. In practice,
the adjustment to the new regime is gradual rather than instantaneous because of the
permanent-transitory confusion. When there is a change in governmental policies eco­
nomic agents have to guess whether the change is permanent or temporary. Lewis (HJ88,
1989) and Kaminsky and Peruga (1988), for instance, argue that following the tightening
of the US money market in the early 1980s, many economic agents did not immediately
believe that the change would persist, but instead learned of the shift rationally.

11.4.2 Expectations about policy changes and structural change

If economic agents correctly anticipate future policy changes, then the structural shift
would take place before the policy change. On the other hand, agents can keep on expecting
a policy change that may not occur. This is known as the "peso problem". In this case
agents would put progressively less weight on the significance of a possible policy change,
the longer the interval over which the change has not occurred. The peso problem can
be modeled by time-varying probabilities of regime shifts or by using what are known
as Markov switching models with unknown states of nature. These latter models have
become very popular recently in the econometric analysis of structural change.
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Markov Switching Models

Goldfeld and Quandt (1973b) suggested a Markov switching regression model in which
the regime indicator It is a Markov chain with transition probabilities Pij denoting the
probability that the system moves from regime i at time (t - 1) to regime j at time
t. Cosslett and Lee (1985) point out that the maximization of the likelihood function
presented by Goldfeld and Quandt gives consistent but inefficient estimates. They present
the correct likelihood function and an iterative procedure of estimation that gives efficient
estimates. The paper by Cosslett and Lee extends the model by Lee and Porter (1984) to
the case of serially correlated errors.

These papers form the background for the recent work in the econometric literature
on Markov switching models. Hamilton (1988, 1989) suggests that many economic time
series can be characterized by Markov switching models. The model, as applied to the
foreign exchange market by Engel and Hamilton (1989), is the following: let Xt be the
dollar/mark exchange rate; Xt follows two regimes,

Xt",N(J11,a-;) when st=l

Xt",N(J12,17i) when st=2,

where St follows a two-state Markov chain:

P(St+1 = liSt = 1)

P(St+1 = 21st = 1)

P(St+1 = list = 2)

P(St+1 = 21st = 2)

pn

1 - Pll

1- P22

P22·

In this case St = 1 might denote upward moves so that I-L1 is positive and St = 2 might
denote downward moves so that I-L2 is negative. If J11 is positive and large and Pn small,
upward moves would be short but sharp. If I-L2 is negative and small in absolute value and
P22 is large, then downward moves would be gradual and drawn out. Other configurations
are possible. If J11 and I-L2 are opposite in sign and both Pn and P22 are large, both the
upward trend and downward trend would both be long and drawn out. If Pn = 1 - P22,
then we have a random walk.

The observed series Xt comes from a mixture of normal distributions (see Everitt and
Hand, 1981), but unlike the case of many mixture distributions the Xt are not independent.
The probability that Xt assumes any given value depends on the past values of Xt. For
instance, if St-1 = 1 and Pn is high, then Xt is more likely to have been generated from
distribution 1, whereas, if St-l = 2 and P22 is high, it is more likely to have been generated
from distribution 2.

The distribution of Xt depends on the parameter vector

o = (J11, J12 , 171 , 172, P11, P22 )' .

The states Sl, S2, ... , ST are unobserved.
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The sample likelihood function is found by summing the density P(Xl,' .. , XT, SI,. , "

ST, 0) over all possible 2T values of SI,,,,,ST' The algorithm for the ML estimation of
0, however, does not require actual calculation of the 2T terms appearing in the sample
likelihood function. Details of the algorithm can be found in Hamilton (1989).

Several variants of the Markov switching model have been applied to the foreign ex­
change by Kaminsky (1989) and to stock market data by Tyssedal and Tj¢stheim (1988),
Turner et al. (1989), and Inman (1989), Inman finds that the stock market can be char­
acterized as shifting between a normal, low beta state and an extreme, high beta state.
The advantage of these models is that they allow for discrete jumps in the parameters
and capture the non-normality and heteroscedasticity features of the data. They have
been found to give better characterizations for many economic time series than models
with smoothly varying parameters. However, when Lam (1989) compares the forecasting
performance of a generalization of the Hamilton model with that of the Hamilton model,
the ARIMA model, and the deterministic trend model for postwar quarterly GNP data,
he finds that the results are somewhat mixed with no model dominating the others.

11.6 Structural Change with Endogenous Switching

The Markov switching models discussed in Section 11.5 are exogenous switching models.
Several practical instances are available to analyze structural change within the context
of endogenous switching. As discussed in Maddala (1986), the disequilibrium models
and self-selection models fall in the category of endogenous switching models. A case of
structural change within the context of self-selection models is presented below.

Suppose that prior to the enactment of a policy, economic agents can choose between
two alternatives. The governmental policy eliminates this choice. Structural change in
this case involves both changes in the parameters and the elimination of the choice. An
example of this is the mandated accounting change in oil and gas exploration discussed in
Lys (1984) and Sawyer and Shehata (1989). The accounting change eliminated the full-cost
accounting method for oil and gas companies and mandated that they use the successful
efforts method only. A company using full-cost (FC) accounting capitalizes on unproduc­
tive exploration and drilling costs from one field and writes them off against future income
from productive reserves in another field, thus minimizing the earnings impact of unpro­
ductive exploration activity. A company using successful effects (SE) accounting, on the
other hand, capitalizes only on those expenditures that result in discovery, and immedi­
ately expenses the expenditures associated with unproductive efforts. The rule mandating
all oil and gas companies to use the SE method of accounting was subsequently reversed,
but many other similar rules of accounting changes were not reversed.

In problems like this the analysis of structural change has to take into account the fact
that there can be self-selection before the mandated change. A possible formulation of the
model would be

y = X /31 + Ul for group 1 adopting the FC method
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y = X f32 + 11.2 for group 2 adopting the SE method.

The group that a firm belongs to is determined by the choice function

r = Z, + v.

The firm belongs to group 1 if 1* 2: 0 and to group 2 if 1* < O. After the mandated
change, all firms belong to group 2. But how do we measure the impact of the mandated
change?

First of all, any analysis of parameter changes has to account for the fact that there
is self-selection before the mandated change and no self-selection thereafter. Thus, to test
for parameter changes, one has to estimate the parameters f31 and f32 for the two groups
taking the self-selection into account. Then we can use the estimated equations to get
predictions of y for the two groups using the data after the mandated change and apply
the predictive tests for stability.

If these predictive tests for stability show that parameter changes have occurred only
for group 1 and not for group 2, then only firms choosing the FC method before the
mandated change would have been affected by the new law. If the predictive tests show
that parameter changes have occurred for both groups, then changes would have occurred
in the oil and gas industry as a whole. In this case, the impact of the mandated change
on the firms in group 1 can be obtained only after deducting the industrywide effects. A
measure of the average effect of the mandated change is, therefore, given by

[
average prediction ] _ [ average prediction ]
error for group 1 error for group 2 .

Thus, the prediction errors can be used for both testing for structural change and esti­
mating the effect of the mandated change on the firms that now use the FC accounting
method.

In the accounting literature the effect of the mandated accounting changes has always
been estimated by using the changes in the rate of return on the securities of the firms.
The studies use the capital asset pricing model

Rit = Ui + biRmt , (11.7)

where Rit is the return on stock i in period t, and R mt is the return on the market portfolio
in period t. Equation (11.7) is estimated using weekly data prior to the issuance of the
proposal mandating the accounting change. Using the estimated values of Ui and bi, the
estimated returns for the post-enactment period are computed. These are compared with
the actual returns and the prediction errors computed. These prediction errors for the FC
firms and SE firms are then compared.

The problem with this methodology is that no distinction is made between the FC
firms and SE firms before the accounting change. The self-selection model captures the
fact that the firms have the option of choosing one or the other-whichever maximizes



C.S. Maddala 167

the firm's rate of return. This problem is tackled in Sawye~ and Shehata. Furthermore,
it is important to consider other explanatory variables besides the market rate of return
to explain the rate of return to securing i. Finally, in previous studies no statistical tests
have been applied to check the significance of the observed effects.

There are alternative ways of formulating the self-selection model. One is the union
and wages example of Lee, discussed in Maddala (1983, p. 356). In this formulation the
differences in the rate of return for the FC and SE firms occurs as an explicit explanatory
variable in the choice equation. Thus, firms choose the method of accounting that gives
a higher rate of return for stockholders. Another formulation that includes explicitly the
benefits and costs of choosing between the two methods is that outlined in Bj\lrkland and
Moffitt (1987).

It is important to note that the estimation of the model prior to the passage of the
law has to be done taking into account the fact that firms have the opportunity to choose
between two alternatives. Tests for structural change and measurement of the significance
of the effects of the mandated accounting change can be done using the predicted residuals
for the period after the accounting change.

11.7 Conclusion

Disequilibrium and self-selection models are, as discussed in Maddala (1986), examples
of switching regression models with endogenous switching. In recent years two types
of switching regression models have received considerable attention in the econometric
literature to model structural changes. The first of these is the Markov switching regression
model. This model has been applied to analyze long swings in the exchange rates, peso
problems in exchange rates, the study of stock market volatility, and the study of non­
stationary time series. These models fall in the category of switching regression models
with exogenous switching.

The second category of models, switching regression models with endogenous switch­
ing, can be fruitfully applied to study structural change in those cases where some laws
eliminate the opportunities of self-selection that economic agents have. Examples of this
are the mandated accounting changes that require firms to follow only one of two or more
possible alternatives. These problems are too numerous and the empirical literature too
extensive to be reviewed here. This chapter has outlined the two categories of switching
regression models-the Markov switching models and the self-selection models-that have
been used extensively in recent econometric literature to study structural changes.
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CHAPTER 12

Stochastic Trends in Simultaneous
Equation Systems

Andrew C. Harvey and Mariane Streibel

Summary

The formulation of an econometric model sometimes requires a trend component in one, or
more, of the equations. This is to account for factors, such as technical progress, which are
difficult to observe directly. Stochastic trends are more flexible than deterministic trends,
and have successfully been used in a number of applications involving single equation
dynamic regression. In this chapter the implications of including stochastic trends in
simultaneous equation systems are considered. The issue of identifiability is discussed,
and full information and limited information maximum likelihood estimation procedures
are developed.

12.1 Introduction

Stochastic trend components are introduced into econometric equations when the level of
the dependent variable cannot be completely explained by observable explanatory vari­
ables. Thus in Harvey et at. (1986) a stochastic trend played a key role in the specification
of an equation relating employment to output where it picked up productivity effects stem­
ming from changes in the capital stock and technical progress. Since technical progress
features in many economic relationships, and since it cannot normally be measured, there
may be a good case for using stochastic trends in a wide variety of applications. The
aim of this chapter is to examine the issues raised when stochastic trends are specified in
simultaneous equation models.
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Stochastic trends playa central part in structural time series models [see Harvey
(1989)]. The essence of such models is that they are formulated in terms of components
that have a direct interpretation and are often of interest in themselves. Incorporating a
stochastic trend in a regression model yields

Yt=/1t+x~6+Et, t=1, ... ,T

/1t = /1t-1 + (3t-1 + Tit }
(3t = (3t-1 + (t

(12.1 )

(12.2)

where Xt is a k x 1 vector of weakly exogenous variables, 6 is a k x 1 vector of regression
coefficients, and /1t is a stochastic trend. The white noise disturbances, Tit and (t, allow
the level, /1t, and the slope, (31, to evolve over time provided that their respective variances
a~ and a~ are nonzero. The disturbance term Et is also white noise, with variance a;,
and is usually specified to be uncorrelated with Tit and (to The hyperparameters, 1/J =
(a~, a~, a;)', can be estimated in the time domain or in the frequency domain. Once this
has been done, the model can be used for prediction. In addition the smoothed estimates
of /1t can be made available for interpretation. Both operations are carried out using
filtering techniques based on the state space form.

If a~ and a~ are both zero, the above model collapses to a regression model with a
deterministic trend,

Yt = a + (3t + x~6 + Et , (12.3)

where a = /10. Models of this kind are easy to estimate and appear frequently in applied
econometrics. However, if a deterministic trend is assumed when a stochastic one is
appropriate, considerable distortion arises and the estimator of 6 will, in general, be
inconsistent [see Nelson and Kang (1984)]. Similar distortions will arise when deterministic
trends are employed in simultaneous equation systems.

Section 12.2 in this chapter discusses the identifiability of models containing stochastic
trends and generalizes the classical rank condition. Maximum likelihood estimation is
considered in Section 12.3.

12.2 Identifiability

A system of N simultaneous equations with stochastic trends may be written as

(12.4)

where Yt is an N x 1 vector of endogenous variables, Xt is a K x 1 vector of weakly exogenous
variables, and ILt is an N x 1 vector of stochastic trends. The set of exogenous variables
may be extended to include lagged endogenous variables. The matrices rand Dare N x N
and N x K, respectively. The specification of ILt is just a vector generalization of (12.2)
with Var(77t) and Var(t) both N x N covariallce matrices, and 77t and (t uncorrelated
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with each other and with the disturbance term e:r, in all thne periods. The disturbance
term e:t also has an N x N covariance matrix. Identifiability is therefore concerned with
the three covariance matrices as well as with rand D.

The model in (12.4) is identifiable if no other observationally equivalent structure
satisfies the same set of prior constraints. Two structures may be regarded as being
observationally equivalent if, in the reduced form, the expected value of Yt and its co­
variance matrix are identical for all t. Under normality, observational equivalence implies
identical distributions. An observationally equivalent structure can be produced by pre­
multiplying (12.4) by a nonsingular N x N matrix F [see Hsaio (1983) for a full discussion].
If the identity matrix is the only F matrix that can yield a structure satisfying the con­
straints on the structure, the model is said to be identifiable.

Suppose that the identifiability of a single equation within the system is to be assessed.
Without loss of generality, this equation may be regarded as the first and may be written
as

(12.5 )

where Y;t and 1'1 are (n1 -1) x 1 vectors and Xlt and <5 1 are k1 x 1 vectors. This equation is
identifiable if pre-multiplication by the row vector (1 f') only yields an equation satisfying
the same a priori constraints if the (N - 1) x 1 vector f is null. In a classical model
with no stochastic trends, a necessary condition for identifiability is the order condition,
J( ~ n1 + k1 - 1. A necessary and sufficient condition, the rank condition, requires that
the matrix

4J = [r: D] (12.6)

has full column rank, where rand D are the (N - 1) x (N - nd and (N -1) x (/( - kI)
sub-matrices of rand D corresponding to coefficients of the variables in equations other
than the first, which do not appear in the first equation.

This section seeks to extend the above conditions to take into account the role played
by stochastic trends in identifiability. Whether or not stochastic trends play an active role
in helping to identify the first equation depends on whether the first equation contains a
stochastic trend of the same form as those in the other equations.

12.2.1 Random walk trends

The simplest kind of stochastic trend is a random walk, and a good deal of insight into
the problem can be obtained by considering this case first.

Suppose, initially, that N = 2 and that there are no exogenous variables. The model
is then

Ylt

Y2t

= /12Y2t + Itlt + flt

/21 Ylt + J-l2t + f2t
t = 1, ... ,T, (12.7)
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where
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/lit = /li,t-l +1/it, t = 1, ... ,T, (12.8)

where 1/iO is fixed for i = 1,2. Obviously neither equation is identifiable, but if /llt
is not stochastic, that is Var(1/lt) = 0, the first equation is identified since any linear
combination involving the second equation would yield a stochastic trend, hence violating
the distributional assumptions of the first equation.

It is instructive to rewrite (12.7) so that 1/it is expressed in terms of a deterministic
and a stochastic part. Thus

where

Ylt
Y2t

/12Y2t + /l1O +/lit +Elt

= /21 Ylt + /l20 + /ltt +E2t
t = 1, ... ,T, (12.9)

/l~ = /l;t-l + ']it, t = 1, ... , T (12.10)

with /l~ = 0 for i = 1,2. The exclusion of the stochastic component, /It, from the first
equation is similar in its effect to the exclusion of an explanatory variable, insofar as it
allows the permanent shifts in the second equation to trace out the first equation.

Some of the implications of identifiability can be illustrated by looking at the relation­
ship between the reduced and structural form parameters. When /llt is deterministic, the
reduced form of the model is

Ylt
Y2t

(12.11)

where

7["11 (/l1O + /12/(20)/(1 -/12/21)

7["21 (/21/l1O + /l20)/(1 -/12/21)

'l/Jl /12/(1 -/12/2I)

'l/J2 1/(1-/12/21)'

This reduced form contains a common stochastic trend component, /ltt. Estimators of the
parameters 7["11, 7["21, 'l/Jl, and 'l/J2 can be computed by ML and unique estimators of the
structural parameters /110 and /12 obtained by noting that

(12.12)

and

(12.13)
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The first equation is therefore exactly identified. If it were known that /110 were zero,
it would be over-identified as "Y12 could also be estimated from 'Trll/'rr12. Thus both the
deterministic and the stochastic part of a stochastic trend can help in identification, but
as will be seen in the general case they do not count in quite the same way.

The assumption that the initial values /110 and /120 are fixed is not necessary. The iden­
tifiability arguments that follow could all be carried out with respect to a diffuse prior for
/110 and /120. A general treatment of diffuse priors can be found in de Jong (1988). How­
ever, in the context of (12.7) we can proceed by defining a likelihood function conditional
on Yll and Y21' The model is then written as

Ylt
Y2t

= "Y12Y2t + /1il + /1tt +Cit }
= "Y21Ylt + Ilil + /1ft +cit '

t = 2, ... ,T, (12.14)

where /1il = Yll -"Y12Y2h /1il = Y21 -"Y21Ylt, and Cit = cit - cil, i = 1,2. The same rules
can be applied as when POI and 1/02 are fixed.

A final aspect of identifiability of (12.7) concerns restrictions on the covariance ma­
trices of (1]1I,1]2t)' and (clt,c2t)'. Specifying either of these to be diagonal results in both
equations being identifiable. This condition generalizes in a fairly obvious way, but since
it would seem difficult to verify in practice we will not pursue it further.

Now consider the identifiability of the first equation in a general model of the form
(12.4). If a stochastic trend component does not appear in the first equation, the model
may be written as

(12.16)

where JLt is an (N -1) x 1 vector, JL6 = 0, and S is a lower triangular (N -1) x (N -1)
matrix. A necessary and sufficient condition for the identifiability of the first equation is
that the matrix

ip = (r D Jio S] (12.17)

has rank N - 1. The result follows because, for any value of t, pre-multiplying by (1 f/)

will only give an equation for Ylt satisfying the required structural restrictions of f = O.

As a simple illustration of the above result, suppose that N = 3 and that no exogenous
or endogenous variables are excluded from the first equation. Then

ip = [JI20 822 0]
JI30 832 833 .

(12.18)

Hence identifiability is achieved if at least one of the trend components in equations two
and three is stochastic; that is 822 or 833 is strictly positive. On the other hand, if there
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is no trend component at all in the third equation, all the entries in the bottom row of ~
are zero and the identifiability condition does not hold.

If the first equation contains a constant term, then

(12.19)

Hence, for ~ to be of full rank, both trends must be stochastic and they must not be
perfectly correlated-in other words they must not be what Engle and Granger (1987)
call cointegrated.

12.2.2 Local linear trends

The local linear trend model, (12.2), can be split up into a deterministic and a stochastic
part by wri ting

where

fit-I +TIt, fit = 0 ,

2jJr-l - f3r-2 + (t-l ,
t=l, ... ,T

f3t = f3t = 0 , t = 2, ... ,T.

(12.20)

(12.21 )

(12.22)

(12.23)

If the first equation does not contain a trend component, the model is

[ 1,-,~ 0']
r* r Yt

[ 6~ 0] [0 0] [1] [0'] + [0'] +D* D Xt + Jio /30 t + Sf) J-Lt + S, 13 t +Ct ,

where J-Lt and 13t are (N - 1) vectors obeying equations of the form (12.21), and Sf) and
S, are lower triangular matrices of order N - 1 such that the covarialice matrices of the
(N - 1) x 1 disturbance vectors J-Lt and (t are identity matrices. Hence

(12.24)

The appearance of some kind of trend component in the first equation leads to a modifi­
cation of this matrix. For example, if the first equation contains a stochastic trend that
is a random walk plus drift, then Jio, /30' and Sf) disappear from (12.24) and only S, can
help identifiability.

Note that in (12.24), the deterministic components, 1 and t, are treated in exactly
the same way as the exogenous variables in Xt. The stochastic components, J-Lt and f3t,
both contribute to identifiability since the first is white noise in first differences while the
second is white noise in second differences a.nd so they cannot be confused. Indeed if the
model contains no lagged endogenous variables, it is possible to let 7Jt and (t be stationary,
invertible stochastic processes without affecting the identifiability conditions.



Andrew C. Harvey and Mariane Streibel

12.2.3 Seasonality
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A stochastic seasonal component, '"'ft, can be incorporated in a model. One specification is
to let

8-1

L '"'ft-j = Wt,
j=O

(12.25)

where Wt is white noise. The seasonal component, '"'ft, can be expressed as the sum of a
deterministic function of s - 1 initial values and a stochastic component depending on Wt.
The matrix if> can be extended to take into account these factors.

Finally, a contribution to identifiability of the first equation may arise if the disturbance
term cIt is excluded. The if> matrix is then augmented by a matrix Se, such that S~Se is
the covariance matrix of the disturbances in the other equations.

12.3 Maximum Likelihood (ML) Estimation

The FIML estimator is straightforward in principle. It also forms the basis for the LIML
estimator.

12.3.1 FIML

Consider the model

rYt = Ztat + DXt + E:t, t = 1, ... , T , (12.26)

where the stochastic term Ztat could incorporate trend and seasonal components, with
at being a state vector obeying a suitably defined transition equation. Assume that all
disturbances are normally distributed. To find the likelihood function of the observations,
first let yi denote the stochastic part of the right-hand side of (12.26), tha.t is,

(12.27)

(12.28)

The distribution ofYi, conditional on the information at time t -1, is multivariate normal
with mean Y~t-l and covariance matrix Ft. Hence the distribution of Yt, conditional on

the same information set, is also multivariate normal with mean r-IY~t_l+r-1DXt and

covariance matrix r- l F t ( r- l
)'. The likelihood function of the T sets of observations

Y = (y;, ... ,Yr)' is therefore

) TN 1 L I 1 1 ,log L(y = - -log 27r - - log r- Ft(r- ) I
2 2

t

_ ~ '" ( _ r- 1-+ _ r-1D )' [r-1F (r- I ),]-1') ~ Yt Ytl t- l Xt t
- t

X (Yt-r-lY~t_l-r-lDXt).
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This can be rewritten as
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where

(12.29)

The Vt'S are the innovations and the Ft's the covariance matrices obtained by running
theKalman filter appropriate for the model for yt on the 'observations' rYt - DXt. Hence
conditional on all the parameters in the model, the likelihood function is straightforward
to evaluate. Difficulties arise because, just as in the application of FIML to a static
simultaneous equations system, the presence of the Jacobian term, log Irl, in the likelihood
severely limits the number of parameters that can be concentrated out of the likelihood
function. Thus the problem of estimating the model is really the practical one of having to
carry out numerical optimization with respect to a large number of unknown parameters.

12.3.2 LIML

If interest centers on a single equation, say the first, and there is not enough information to
specify restrictions on the remaining equations, a limited information estimation procedure
is appropriate. In a classical model the LIML estimator of the parameters in the first
equation can be obtained by applying ML to a system consisting of the first (structural)
equation and the reduced form for the endogenous variables appea.ring in that equation.
Since the Jacobian of this system is unity, the estimator can be computed by iterating a
feasible SURE estimator to convergence [see Pagan (1979)].

Now consider the application of LIML in a system with stochastic trends. For simplic­
ity, these will be assumed to be generated by a multivariate random walk. It will also be
assumed that the system contains no lags. The model as a whole is

= ILt + DXt + et, Var(etl = E, }
ILt-l + Tft Var(Tft) = Ery

Hence the reduced form is

(12.30)

Yt

Ji.;
IL; + IIxt +Vt Var(vtl = E v = r- 1 E,(r- 1r
IL;-l +Tf;, Var(Tf;) = E~ = r- 1 E,/( r- 1

)' ,

(12.31)

(12.32)

where ILl = r- 1 ILt. The equation of interest, (12.30), may be written as

lilt +yr/1'l + X~tOl + Ell }

111,t-1 + 1)lt
(12.33)

where Y~t and Xlt denote the vectors of included endogenous and exogenous variables,
respectively. The disturbances Ell and 1)lt may be correlated with the corresponding
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disturbances in the other structural equations. Prior knowledge may suggest the presence
of a stochastic trend (12.33), but there is no information on whether or not stochastic
trends are present in the other structural equations in the system, and so they must be
included for generality.

The reduced form for the endogenous variables included in (12.33) may be written as

y~t = /-lit + lll Xt +Vit } (12.34)
/-lit = /-li,t-1 + 7]it

The LIML estimator is obtained by treating (12.33) and (12.34) as though they were the
structural form of a system and applying FIML. The complication of the Jacobian term
in the likelihood is absent as

-I~ 1- 1I -. (12.35)

The model can therefore be regarded as a multivariate structural time series model with
explanatory variables, that is,

_ [Yi/ X~t 0 ] [11
]

Yt - 0 0 I 0 x' h 1
t 7r1

(12.36)

where 7r I =vec( ll~ ). Estimation can be carried out in the time domain by generalizing the
algorithm of Kohn and Ansley (1985) or in the frequency domain using the approach set
out in Fernandez (1989). Whichever procedure is used, it must be iterated to convergence.
Because of the endogeneity of Yit, applying GLS based simply on a consistent estimator
of the covariance matrices of (Clt' vi/)' and (7]lt, 1Jit')' will not necessarily yield consistent
estimators of II and hi [see Pagan (1979)]. The question of finding initial consistent
estimators of II' hi, and 7r1 is considered in Section 12.3.3.

The covariance matrices of (Clt' v~/)' and (7]lt, 1Ji/)' are taken to be unconstrained,
unless the specification of the first equation excludes a stochastic trend. In this case,
Var(7]lt) is obviously zero and the parameters to be estimated are all contained within the
unconstrained covariance matrix of 1Jit.

The LIML estimator in a simultaneous equation system with vector MA disturbances
was derived by Hall and Pagan (1981). Although the system in (12.30) has a vector
MA representation when first differences are taken, estimating it by LIML is considerably
easier than the LIML estimation of a model with unrestricted MA disturbances. As Hall
and Pagan show, the presence of an unrestricted MA disturbance vector means that the
reduced form for all endogenous variables in the system, apart from YlI, must be used
to form the LIML estimator for the first equation. Hence LIML is not a particularly
attractive proposition in this case. Furthermore the limited information setup in which all
disturbances follow a vector MA, apa.rt from the one in the first equation does not seem
to be a very natural one. On the other hand, the specification in (12.33) in which both
Clt and 7]lt may be correlated with the corresponding disturbances in the other structural
equations seems a very reasonable one.
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12.3.3 Starting values

We now consider the question of obtaining consistent starting values for the LIML esti­
mator of the first equation in (12.30).

If the first equation contains a stochastic trend, consistent estimators of 11 and 01
can be obtained by applying 2SLS to first differences (assuming that there are no lagged
values of the dependent variable, Ylt). If there is no stochastic trend in the first equation,
consistent estimators may be obtained by OLS provided that the variables in Xlt are
integrated of order one [see Stock (1987)].

As regards the reduced form parameters, 71"1, these may be estimated by running
OLS on the differenced variables. Such estimators are consistent when lagged dependent
variables are absent.
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CHAPTER 13

Tinl.e-Varying Nonlinear Regression

Peter M. Robinson

Summary

This chapter discusses the estimation of time series models that are possibly nonlinear
in parameters, which change smoothly but nonparametrically over time. We describe a
time-varying, kernel-based analog of nonlinear least squares and establish consistency and
asymptotic normality for the estimates, with allowance for serial dependence of a general
kind in the disturbances. These results draw on general theorems for extremum estimates,
which can also be applied to more general time-varying models.

13.1 Introduction

A time-varying, possibly nonlinear, regression model for a time series Yt is

(13.1)

Here, Xt is a d-vector-valued time series that is independent of the zero-mean disturbance
Uti neither need be serially independent. The function f is of known form. The p-vector Bt

is allowed to vary with t in an unknown fashion. This model combines a finite-dimensional
regression function f with an infinite-dimensional sequence {Btl, and in the latter sense
it might be termed nonparametric. In case Bt is a priori constant over t we revert to a
standard parametric nonlinear regression. With variable Bt, the model (13.1) extends the
linear regression with time-varying parameters considered by Robinson (1989), in which
f(x; B) = x'B, and the Ut were assumed to be serially independent. The latter model itself
extends a model that has been greatly discussed in the nonparametric function fitting
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literature, where f(xj 0) == °and the Ut are serially independent [see, e.g., Benedetti
(1977)].

A part of the motivation of Robinson (1989) was to allow for the presence of explana­
tory variables Xti this might be important in an econometric context. For example, we
also relaxed the usual assumption of the nonparametric function fitting literature of ho­
moscedesticity of the Ut across time, though these were assumed serially independent. This
chapter is concerned with allowing for nonlinearity of f in the time-varying parameters Ot,
as well as serial dependence in the disturbances Ut. Even in the simple model f(x; 0) == °
the latter possibility has only recently been considered. We describe estimates of the 0t and
establish their consistency and asymptotic normality. We also indicate that corresponding
results can be obtained for more general models involving time-varying parameters.

Robinson (1989) briefly compared this approach to alternative ones in the literature for
dealing with time-varying parameters. Perhaps the most attractive of these has involved
taking 0t to be generated by a stochastic process, depending on finitely many parameters,
such as a random walk, reducing the problem to a parametric one. Apart from the pos­
sible misspecification introduced when the parametric model for 0t is seriously incorrect,
which was the main reason for proposing the nonparametric approach for linear models in
Robinson (1989), in models nonlinear in 0t stochastic modeling of 0t is in general not even
likely to produce a mathematically tractable model for Yt that is amenable to estimation.

While not necessary for the purposes of computing nonparametric estimates of the
Oil in deriving statistical properties it is convenient to regard 0t as being generated by a
function O(t) on [0,1],

0t = °(~) , t = 1,2, ... , N ,

where N is the amount of data available. As indicated by Robinson (1989), this approach
is in the spirit of the nonparametric function fitting literature. The Ot are made to depend
on sample size due to the fact that estimates will not be consistent unless the number of
observations on which they are based increases. Increasing N will not be sufficient for this
unless we regard the 0t as ordinates of a smooth function on a grid that becomes finer as
N ~ 00, in view of the local character of the estimates.

13.2 Estimation of the Ot

As in Robinson (1989) we employ a kernel estimation method. We introduce a kernel func­
tion k that is bounded, real-valued, integrable, nonnegative, continuous (except possibly
at finitely many points), and nonincreasing over the positive real line and nOlldecreasillg
over the negative reallille, such that

I: k(t)dt = 1
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[ef., e.g., Benedetti (1977)]. Let

(
NT - t)

kTt=k ~ ,

where h is a positive "bandwidth" number. Let

for some set 0, where
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Note that nonnegativity of k implies the same of QT(B), a standard requirement of objective
functions.

A simple example of k is

k(t) = { t if It I :s: 1
if It I > 1.

(13.2)

With this k, for all large enough h, B(T) is the nonlinear least squares estimate of Bo in
the standard time-invariant nonlinear regression

Yt = f(xt; Bo) +Ut·

For small enough h, Bt = B(t/N) using (13.2) is a type of moving nonlinear regression
estimate, summands of the objective function being progressively replaced as t increases:
we have

Qt/N(B)= L {Ys-f(x s;B)}2.
It-sl::;Nh

Notice that for given N, h must be large enough that p :s: 2Nh + 1. Alternative choices
of k are discussed by Robinson (1989). Robinson also discusses a cross-validation method
of choosing h when f( X; B) = B' x. In principle, this method can be extended to nonlinear
models. The discussion for the linear model in Robinson (1989) of rapid computation of
all the Bt = B(t / N) via the fast Fourier transform can be likewise extended, with respect
to computing both the objective function Q and the iterative steps of, say, the Gauss­
Newton-type toward B(T). Naive formula for the latter iterates, not using the fast Fourier
transform, are

N

Bj+l(T) = Bj(T) +{L kTt m[Xt;Bj(T)] m/[Xt;Bj(T)]}-1
t=1

N

X LkTt m[Xt;Bj(T)] {Yt - f[Xt;Bj(T)]}
t=1

for j = 1,2, ... , where m(x;B) = (D/DB)f(x;B) and we commence from an initial Bl (T).
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Consistency of B(T)

We find it convenient to begin by mentioning a consistency theorem for quite general
extremum estimates. It is one of several variants of such results in the literature [ef., e.g.,
Malinvaud (1970)] but their application has generally been to standard time-invariant
models. Let S( rp) be an objective function on Rq depending on N observations such that

ijJ = argminS(rp)
~

for some set if>. For a point rpo E if>, let S( rp) - S(rpo) = a( rp) + b( rp), where a( rp) is
nonstochastic, nonnegative, constant with respect to N, and bounded away from 0 outside
of a neighborhood of rpo, while sup~ Jb( rp)1 ~ O. Then ijJ ~ rpo. The proof of this result
follows by noting that, for any c > 0, with N = {rp : rp E if> , IIrp - rpoll :s; c} and N = if> - N,
we have that ijJ E N implies infNS(rp) :s; infNS(rp), which implies infNS(rp) ::; S(rpo).
The last event occurs with probability

P[i!if{a(rp)+b(rp)}:S;O] < P[igfa(rp)::;suplb(rp)/J
N N ~

< P[suplb(rp)I~7]J
~

for some 7] > 0, and the last probability tends to 0 as N -+ 00 by assumption.

Let us apply this result to 8(r), for some arbitrary, fixed To We assume f( x; 0) is a
measurable function of x for each 0, and is continuous at O( r) for each x. Let the set 0 be
compact. Let:=: be the set {O: O(t),O:S; t::; 1}. Let O(t) be continuous for t E [0,1]. Let

sup E f2( Xt; 0) < 00 .
/iEElu2

(13.3)

In a neighborhood N of O(r) let there exist a function f.(xt) such that for all 0 E N,
f(xt; 0) ::; f.(xt) where Ef.(xt? < 00. It follows by dominated convergence that

(13.4)

is continuous at O(r). Condition (13.3) entails some weakening over the corresponding
moment condition o~ Xt of Robinson (1989). For identifiability we assume

a(0) > 0, oi- O(r). (13.5 )

We assume that Xt is strictly stationary and strongly mixing. The latter assumptions are
very strong. Stationarity could easily be rela..xed to allow for some sort of non-trending
heterogeneity at cost of some extra complexity in the conditions. Trending behavior in
explanatory models is generally hard to handle in ordinary nonlinear regression, and even
harder in this time-varying version. Incidentally the mixing condition in Robinson (1989)
is equivalent to strong mixing. We assume that Ut is also strictly stationary and strongly
mixing, independent of X s for all t, s, and

Elutl < 00.
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We could somewhat relax strong mixing on Ut if we instead imposed a higher moment
condition, such as assuming finite variance. Finally we assume the conditions on k at the
beginning of Section 13.2 and

h +(N h) -1 -> 0 as N -> 00 .

To prove that

8(r) x.. 8( r ) ,

we take rp = 8 and S( rp) = Q(8), then a(8) is as stated in (13.4) and, writing

9t(8) = f(Xt;8) - f[xt;8(r)]

b(8) = a(8) (~h ~ krt - 1) + ~h ~ krt {9;(8) - a(8)}

2 2 4

+ NhLkrtUt9t(8)+ NhLkrt9t(8)9t(8d= L b;(8).
t t ;=1

By (13.5) and continuity of a(8), it follows that a(8) is bounded away from 0 outside a
neighborhood of 8( r). By compactness of 0 and continuity, sUPe a(8) < 00, while

1
Nh Lkrt -> 1, as N -> 00

t

(13.6)

slightly extending Lemma 1 of Benedetti (1977). Thus SUPelbl(8)1 x.. O. For some C < 00,

let 9;(8) = gt(8)1(9M) :S C) and 9;'(8) = 9t(8)- 9;(8), where 1(.) is the indicator function.
For any fixed 8,

which can be made arbitrarily small for C and N large enough, d. (13.6). Writing

,"- ,
~ - ~

t IrN-t\>BNh

for some B < 00, we have

as N -> 00 and B -> 00, as in Robinson (1989), in view of Lemma 1 of Benedetti (1977).
Next
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where OJ is Xt'S j-th strong mixing number. This term is of order

as N -> 00, using monotonicity of the OJ. Thus b2 (B) ~ 0 for each fixed B. Uniform
convergence follows from compactness of 0 and a standard equicontinuity argument. Next
consider b3 ( B). We have

as N -> 00, B -> 00. For some D < 00, let u; = Ut1(IUtl ~ D), u;' = Ut - u;. Then

as D -> 00, whereas

as N -> 00, where (3j is Ut'S mixing number. Thus b3 (B) ~ 0 for each B, and again
compactness implies uniformity. By the Schwarz inequality and the previous proof we
have b4 (B) ~ 0 uniformly on 0 if

Now

as N, B -> 00. On the other hand

as h -> 0 by continuity of a at B(T).
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13.4 Asymptotic Normality of 0(7)
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A central limit theorem for B( r) will be useful to set approximate confidence intervals.
Again it is possible to adapt a general theorem for extremum estimates, with implications
for more general models than (13.1).

Let the general objective function S( 'P) of the previous section be twice differentiable
and suppose that for a sequence M such that M -> 00 as N -> 00,

M 1 / 2 oS( 'Po) ~ N(O, G),
o'P

and that for any sequence r:p such that r:p ~ 'Po

(13.7)

(13.8)

as N -> 00, where H is nonsingular and nonstochastic. Then if r:p ~ 'Po and 'Po is an
interior point of <I>, as N -> 00

This follows easily from the conditions, because with probability approaching one as N ->

00, r:p satisfies

where 'Pi is the i-th element of 'P, H j is the i-th row of H('P) == 02S(r.P)/Or.POr.P', and
IIr.pi - 'Poll::; IIr:p - r.poll·

So far as B( r) is concerned, we assume that the regularity properties of Section 13.3
are in force, as well as the following. The function O( t), 0 ::; t ::; 1, satisfies a Lipschitz
condition of order TJ > O. Let O( r) be an interior point of 0. For some neighborhood N of
O( r), f(x; 0) is twice continuously differentiable in 0 and

( .0) = of(x; 0)
m x, 00'

satisfy

n(x.O)= om(x;O)
, 00'

IIm(x;O)II::; m.(x), Iln(x;O)II::; n.(x), 0 EN

where 11.\1 means Euclidean norm and

(13.9)
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We define R()") to be a p X P matrix that is continuous in ).. from the right, satisfies
R( -7r) = 0, has Hermitian nonnegative increments, and satisfies

where mt = m[Xt; B(r)). The existence of such R follows from stationarity of Xt and
(13.9). Let R(7r) be nonsingular, a local identifiability condition. Let the strong mixing
coefficients, f3j, of Ut satisfy

00

L f3J/(2+5) < 00

;=1

for some 0 > 0, where also

The conditions imply that Ut has a bounded spectral density, r()..), where

1 ~>.r()..) = - L '"/ie-I) ,
27r

-00

and 1j = E( UtUt+j). We assume also that

00

Llhjl < 00.

j=1

Finally, let k(t) have support (-1,1) and be boundedly differentiable, and let

Nh 1+2'1-.0, asN-.oo.

In fact discontinuities in k at finitely many points, as in (13.2), can be handled. Under
these conditions

where

We have to check conditions (13.7) and (13.8). First,

(13.10)
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The last term has variance bounded by

187

The first factor is clearly O( 1). In view of the domination condition on m( x; 8) it follows
that

Eg;(8t} = 0(1181 - 8(r)11 2
) = 0(h2'1)

for It!N - rl :$ h. Thus

L IkTtI Eg;(8t} = 0(Nht+2'1)
I

as N ----> 00. This establishes that the second term on the right of (13.11) is op(1). Denote
the first term v. Conditional on {xd

where I is the p X P identity matrix. The proof of this statement follows from an extension
to triangular arrays of Theorem 18..5.3 ofIbragimov and Linnik (1971), and the ergodici ty
of XI. Now

E(vv'l{xd) = :h L L kTlkTs/l-smlm:,
I s

which differs from

(13.12)

by a quantity whose absolute expectation is bounded by

For each fixed j

;h L k;lmlm;+J !:. ",E(mlm;+j)
I

by a proof very similar to that used for b2(8) in Section 13.3. By a standard truncation
argument and summability of the 7j it follows that

00

(13.12) ~ 4", L 7jE(mtm;+J) = 4h:~.
-00
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To verify (13.8) note that

Q~(B)

The fact that

iPQT(B)
8B8B'

~h L kTtm(xt; B)m'(xt; B) - ~h L kTdYt - f(xt; B)}n(xt; B).
t t

Q~[B(T)] ~ 2R(1r) (13.13)

follows by means of some of the techniques used to deal with the b;(B) in Section 13.2.
The condition (13.8) is verified by (13.13), consistency of B(T) and

sup IQ~(B) - Q~[B(T)]I £. 0,
1l11-1I(T)II<~

which follows from dominated convergence as N ---> 00, E ---> O.

With respect to its allowance for disturbance serial correlation, the result (13.10) is
an extension of Eicker's (1967) central limit theorem for time-invariant linear regressions,
and of subsequent results for other time-invariant models. An estimate of R(1r) is

A possible estimate of I; is

M

t = L f j ,

j=-M

where for j ~ 0

N-j

rj = ~ L(kTdYt - f[xt;B(T)]} m[.'l:/;B(T)])
t=1

X (kT,t+j{Yt+j - f[xt+j;B(T)]} m[x/+j;8(T)])'

and r_j = rj. The consistency of these proposals, with M increasing suitably slowly
with N, remains to be established. As in the linear case considered by Robinson (1989),
(Nh)I/2{B(T) - B(T)} and (Nh)I/2{8(v) - B(v)} can be shown to be asymptotically inde­
pendent for T f::- v.



Peter M. Robinson 189

13.5 Final Comments

This chapter has presented a time-varying version of the methodology and asymptotic
statistical theory of nonlinear regression, with allowance for disturbance serial correlation
of unknown form. The statistical properties discussed here are relatively basic and among
the more useful ones. However, it would no doubt be possible to study the asymptotic
theory of the estimates at greater depth and establish a number of the other properties
considered in the nonparametric function fitting literature.

The results of Sections 13.3 and 13.4 did not allow the Xt to contain lagged Yt, a major
drawback in view of some econometric applications. In principle there is no reason why the
methodology presented in Section 13.2 cannot be used when there are lagged dependent
variables, the difficulty is establishing the asymptotic theory under reasonably attractive
and primitive conditions.

The form of the limiting covariance matrix of B( T) in Section 13.4 suggests that effi­
ciency improvements are possible by correcting for the disturbance serial correlation.

In some applications it is likely that only some of the parameters will be allowed to
vary with time, the remainder being constant a priori. In models where the time-invariant
and time-varying parameters can naturally be estimated separately it is easy to see how
to proceed, but in general, and in special cases such as where the regressors with time­
invariant and time-varying parameters are not orthogonal, matters are more complicated.

The form of our estimate of 8(T) suggests how time-varying versions of standard es­
timates of a wide variety of models can be constructed. Time-varying modifications of
maximum likelihood estimates were indicated by Robinson (1989). Versions of robust
M-estimates are easily constructed [ef. HardIe and Gasser (1984)], as are the various in­
strumental variable-type estimates of linear and nonlinear simultaneous equations and
transformation models. One simply replaces any sum over the N observations occurring
in the objective function by a weighted kernel sum. Many of the techniques of asymp­
totic theory developed in this chapter for the nonlinear regression model are relevant to a
similar analysis of more general models.
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CHAPTER 14

Stability Analysis Using Kalman
Filtering, Scoring, EM, and an Adaptive
EM method

Wolfgang Schneider

Summary

This chapter gives a detailed description of the implementation of ML estimation using
scoring and EM for the hyperparameters of a particular econometric state-space. Kalman
filtering enters these methods in an essential way. The EM method can be turned into
an on-line (adaptive) estimation method, which can be conveniently used for speeding up
the ML estimation procedure. We apply these techniques to a random walk parameter
model of a standard (Goldfeld type) West German money-demand function testing its
stability via testing the variances of the random walk for zero. We compare these results
to a descriptive stability analysis that uses so-called flexible least squares-a nonstochastic
variant of Kalman filtering.

14.1 Introduction

The organization of the chapter is as follows: In the first part of the chapter we develop
the techniques to be used here in the more general context of a regression relationship
with time-varying parameters. To this end we first cast this system into the framework
of an econometric state-space. We then apply Kalman filtering to this model to calculate
estimates of the time-varying parameters (the states) and to set up the likelihood function
for its hyperparameters.
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Starting from an elementary exposition of scoring and the EM method we then show
in detail how these methods may be applied to the estimation of the hyperparameters of
the econometric state-space considered here.

The EM estimators turn out to have a familiar Aitken structure involving the smoothed
states and their cross products. Approximating the smoothing solution by the correspond­
ing filtering solution allows us to turn the EM method into a fully recursive estimation
method for the state-space hyperparameters ("adaptive filtering" as it is called in the
engineering literature). This filter will considerably reduce the storage requirements for
intermediate results as compared with the usual EM procedure.

Apart from serving as a tool for estimation within a stochastic framework, the Kalman
filter can also be used as a purely descriptive technique assessing the potential gains of
parameter variation in terms of reduction in the error variance of the regression equation
at the cost of "complicating" the model in terms of additional parameter variance. This
interpretation of Kalman filtering has recently been introduced into the econometric lit­
erature by Kalaba and Tesfatsion (1986, 1988a, 1988b) under the name of flexible least
squares. It is closely related to the estimation of time-varying means in time series using
certain smoothness priors.

In the second part of the chapter we apply this simple yet powerful tool of exploratory
data analysis as a preliminary descriptive stability analysis to the standard West German
money-demand function (Goldfeld-type specification). We then compare the outcome
with the results obtained from maximum likelihood estimation of individual parameter
variances in a random walk model for the parameters of the money-demand function.

It turns out that the simple descriptive technique already reproduces the main features
of the Kalman smoothing solution in a state-space containing hyperparameters estimated
by maximum likelihood. Looking at the computational search process for these estimates
it is also demonstrated that a lot can be gained in terms of likelihood increase per computer
time unit by using scoring in combination with one of the EM methods. The latter methods
generate large, computationally cheap likelihood increases during their first iteration steps
and produce a convenient starting point for a final step of scoring.

14.2 Setting up the Econometric State Space

We will consider the following regression equation with time-va.rying coefficients:

Vt = U~tXt + ll;t(3 + Vt

Xt PXt-l + Wt ,

(14.1)

(14.2)

where Yt is an observable scalar to be explained as a linear function of observables Uit.

i = 1,2, superimposed by white noise {vd; the coefficient vectors Xt and (3 are of order k X 1
and Lx 1, respectively; the coefficients Xt of Ult are time-varying, whereas the coefficients (3
of U2t do not vary over time. The behavior of Xt obeys the law of motion (14.2), which is a
first-order autoregressive scheme driven by a white noise process {wd. Also higher-order
dynamics may be reduced to this parametric setup [see, e.g., Aoki (1987)].
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Observables are available over the time span t = 1,2, ... , N; the variables in U;t are
taken to be nonstochastic. We, however, note that under Gaussian assumptions we can also
allow lagged dependent variables among the Uit and other stochastic regressors indepen­
dent of all random variables in (14.3) and still preserve the linear structure of Kalman filter­
ing; for a discussion of stochastic regressors in state-space filtering see Ruskeepaa (1985).
The stochastic properties of {yd will be derived from the joint distribution of the random
vectors {xo,wo, ... ,WN,VO, ... ,VN}. We assume that

The vectors {xo, Wo, . .. ,WN, Vo, . .. , VN} are mutually uncorrelated and form a multi­
variate normal distribution, where

Xo '" N(!-to, ~o), vi'" N(O, R), wi'" N(O,Q), i = 0,1, .... (14.3)

Equations (14.1) and (14.2) and the stochastics (14.3) specify a particular econometric
state-space model, (14.1) being the measurement equation and (14.2) being the transition
equation of the states Xt.

This econometric state-space encompasses a number of interesting models as special
cases, e.g., "the return to normality model" [Rosenberg (1973)], the "mixed model" [Sal­
las and Harville (1981, 1988)], "stochastic polynomial trend models" [Gersch and Kiti­
gawa (1988)]. A stochastic linear trend in the time-varying coefficients Xt translates into
a simple random walk model in (14.2). This will also be the parameter dynamics into
which we are going to embed a test on the hypothesis which of the parameters are time­
varying and which are not. This test will amount to testing the variance components of Q.
Stated in Bayesian terms: Given the system parameters (q" Q, !-to, ~o), the transition law
(14.2) and assumption (14.3) specify a prior distribution on the time-varying coefficients
{Xt : t = 0,1, ...}; whereas the complete system (14.1) and (14.2) yields in conjunction
with (14.3) a likelihood function f(Yl,"" YN; 0) for the whole set of hyperparameters
o= ({3, q" Q, R; !-to, ~o). The Bayesian viewpoint of state-space modeling is taken, e.g., in
Sarris (1973), Harrison and Stevens (1976), and Meinhold and Singpurwalla (1983). In
the case of a simple random walk, Xt - Xt-l = WI, (14.2) defines a "smoothness prior"
on deviations from parameter constancy. This interpretation is the one in Gersch and
Kitigawa (1988). Viewed from this perspective the estimation of variance components in
Q is an instance of an empirical Bayes procedure in the sense of Morris (1983).

The purpose of the statistical analysis of (14.1) and (14.2) will consist in the solution
of the following four problems:

(a) Reconstruction of the historical and future path of the time-varying coefficients {Xt:
t = 0,1, ... } by their conditional means {E(XtIYl,"" YN; O)}. Given a quadratic loss
function these means are optimal Bayes estimators of Xt based upon the available
sample information y(N) := {Yl,'" , YN}. Depending on whether t < N, t = N, or
t > N, they are called smoothing, jiltering, or prediction solution, respectively.

(b) Calculation of a measure of precision for the estimated parameter path, e.g., the
covariances {Cov(Xtly!, ... , YN; O)}.
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(c) Calculation of an estimate jj for the unknown hyperparameters 0 according to the ML
principle.

(d) Derivation of an asymptotic measure of precision for the model parameters thus
estimated, e.g., by an appropriate description of the likelihood curvature.

14.3 The Kalman Filtering Algorithm

14.3.1 Kalman recursions

The Kalman filter algorithm provides a convenient instrument for solving problems (a)
and (b). The filter permits one to calculate recursively arbitrary a posteriori distributions
for the states Xt given any sample information y(s) = {YI,""Ys} along with predictive
distributions for the observables Yt given sample information y(t - 1). Under the above
assumptions these distributions are normal with parameters:

Xtis := E[Xt/Y(s); 0),

fit := E[ytly(t - 1); 0),
I:tl s := Cov[Xt/Y( s); 0)

Dt := Cov[Ytly(t - 1; 0)).

(14.4)

(14.5 )

The smoothing solutions (s = N) are computed via a series of forward and backward
recursions [Anderson and Moore (1979)):

Initialization

XOIO := /10 I:% := I:o,

Forward recursions

Xtlt-l cI>Xt-llt-l, I:tl t- l = cI>I:t-llt- 1 cI>' +Q
fit U~tXtlt-1 + u~d3, Dt = U~tI:tlt-IUlt +R

xtit = Xt/t-l + J(t(Yt - yd, I:tlt = (I - J(tU~t)I:tlt-1

Backward recursions

XtlN = Xtlt + At(xt+IIN - Xt+llt), I:tl N = I:t1t - At(I:t+llt - I:t+II N )A;

where

J(t .- I: t1t - 1UltD;-I, Kalman filter gain

At I:tltcI>'I:;:llt' Kalman smoother gain.

There are several ways to derive these recursions:

(14.6)

(14.7)

(14.8)

(14.9)

(14.10)

(14.11)

(14.12)

(a) They can be viewed as an application of the Gram-Schmidt procedure for the com­
putation of the least squares projections Yt = E[Ytly(t - 1)) in the space of square
integrable random variables {YI, Y2, ... }. This procedure orthogonalizes the random
variables {YI, ... ,YN} into the sequence {YI, ... ,YN}, where Yt = Yt - Yt, which are
mutually uncorrelated [Luenberger (1969, chapter 4)J.



Wolfgang Schneider 195

(b) The recursions are implied by the standard updating formulas for Gaussian posterior
distributions in the present normal setup [Meinhold and Singpurwalla (1983)J. There
is a close relationship between the standard formulas for mixed estimation and the
Kalman recursions [Cooper (1973)J.

(c) One can exploit the duality between the smoothing problem in the Gaussian stochastic
environment specified here and the optimal linear regulator problem [Kwakernaak
and Sivan (1972)J. The smoothing solution as given in (14.11) and (14.12) is the
outcome of maximizing the objective function

J[x(N)J
n

(14.13)

= L R- 1(Yt - U~tXt - u~d3)2 +W;Q-I Wt + (xo - jiO)'~OI(XO - jio)
i=1

as a function in x(N) = {XO,Xl,'" ,XN} subject to the constraint (14.2). The solu­
tion can be found by doing a standard exercise in dynamic programming [see, e.g.,
Jazwinski (1970, p. 225), Mayne (1966)J. Note that in the present Gaussian setup
(14.13) can be interpreted [up to a few constants that do not depend on x(N)J as
the joint distribution of yeN) and x(N) [see (14.26) below]. The smoothing solution
{XtIN: t = 0,1, ... , N} is the posterior mean and mode and thus the maximum of
f[x(N)ly(N)], which is the ma..x.imum of (14.26) as a function in x(N). This fact
is at the heart of the equivalence of penalized least squares techniques, which start
from a criterion like (14.13), and state-space smoothing. We will come back to this
equivalence during our discussion of flexible least squares.

14.3.2 Enhancement of numerical precision

The recursions, (14.7)-(14.10), are known as the standard covariance form of the Kalman
filter. A disadvantage of this numerical variant consists in the fact that taking differences
in (14.10) and (14.9) might produce rounding errors which possibly accumulate as to
render the computed covariance matrices no longer positive, (semi)definite. This problem
may be avoided by using the so-called square root filter [Kaminski et al. (1971), Morf and
Kailath (1975)J. There are fully recursive square root versions of the combined filter and
fixed interval smoothing recursions for the so-called information filter [Bierman (1974,
1977), Fraser and Potter (1969), Carraro and Sartore (1986)], which process the inverse of
the covariance matrices ~tl.' A version of combined filtering and fixed interval smoothing
for the standard covariance filter can also be found [Schneider (1986, 1988)J.

14.3.3 Calculation of smoothed cross products of the state

For the implementation of the ML estimation in this econometric state-space we also need
the smoothing solution for the cross products ~t-l,tIN of successive states, where

(14.14)
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One way to do this is to expand the state to include Xt_1 along with Xt [as, e.g., suggested
by Watson and Engle (1983, p. 395)]. This, however, unnecessarily blows up the dimension
of the filtering problem, since there is a very simple relationship between the cross moments
(14.14) and the filtering solution at the horizon N. We have

(14.15)

An easy proof using projection arguments in the spirit of Ansley and Kohn (1982) would
proceed along the following lines. From the smoothing recursions (14.10) we derive the
following difference equation for the errors Xtl. := Xt - xtl.:

(14.16)

Post-multiply (14.16) by Xt+1 on both sides, recalling that Xt+! may be decomposed into

then take expected values on both sides. Observing that Xtl. has zero expectation given
y(s) one can deduce result (14.16). This result may also be inferred from Cooley et
al. (1977) and Rosenberg (1977), who use a more complicated approach. A generalization
of the above projection argument to arbitrary covariances of smoothed states can be found
in de Jong and MacKinnon (1988).

14.3.4 Setting up the likelihood function

The Kalman filter recursions (14.8) provide us with the parameters of the conditional nor­
mal densities j[ytly( t - 1); 0]. Hence the log-likelihood for 0 may be recursively calculated
(except for a constant) as:

1 N .
LN(O) = - :2 L {logIIDt(O)I] + [DM)tI[Yt - Yt(OW}

t=1
(14.17)

This function is to be maximized in O. We assume that the solution can be found by
differentiation within the interior of the parameter space, i.e., the solution ON may be
characterized as VLN(ON) = 0 and V 2 LN(ON) < o.

14.3.5 Scoring

The scoring method [Rao (1973)] for the computation of ON is an iterative search procedure
consisting in the following iterations:

(14.18)

The parameter 0' denotes an appropriate step length [optimized as, e.g., in Lasdon (1970,

pp. 11-13)] and [jN(O~))], an estimate of the information matrix IN(O) = E[-V 2 LN(0)]
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evaluated at B = otl . Following the rules of matrix differentiation [see, e.g., Magnus and
Neudecker (1988)], we compute the derivative of (14.18) with respect to the i-th component
of B as

N

\7iLN(B) = -~L [D~I\7iDt(I - D~lim - 2 D~lfit v\y,] ,
t=1

(14.19)

where {fir} := {Yt - yr} is the so-called innovation sequence of the Kalman filter. In a
correctly specified model this series is (Gaussian) white noise with mean zero and vari­
ance D t [as defined in (14.8)]. Exploiting the moments of the innovation sequence, one
can deduce the (i,j)-th element of the information matrix as [Gupta and Mehra (1974),
Pagan (1980)]

1 N
[IN(B)]ij = 2L [D~I\7iDtD~I\7JDt + 2 E(\7iYtD~I\7jyd]

t=1

(14.20)

Neglecting in (14.20) the expectations operator, one derives an estimator for the infor­
mation matrix, which only depends on first-order derivatives of the moments Yt and Dt.
These derivatives are taken numerically during two filtering runs in a small neighborhood

of the current iteration solution Or;). The scoring method is a modified Newton method
(the modification consists in substituting the Hessian matrix for its estimated expecta­
tion). Near the likelihood maximum scoring has quadratic convergence properties, but
far-off the maximum this method may generate misleading search vectors due to a bad
approximation of the Hessian matrix. As an alternative one may use the EM method,
which converges only linearly near the likelihood maximum [Dempster et al. (1977)], but
which-as experience shows-also generates satisfying increases in likelihood far-off the
likelihood maximum. In addition the computational burden of the EM method is far less
than that of scoring. In the framework of model (14.1) and (14.2) the EM method amounts
to the solution of a standard least squares regression problem.

14.4 EM method

14.4.1 The basic algorithm

The general situation where the EM method is applicable is the following: There is a joint
distribution fx,Y(x, y; B) of "observables Y" and "latent variables X". We are looking for
an ML estimate of B based upon the likelihood derived from the marginal distribution
Jy(y; B). The EM method starts from a decomposition of the log-likelihood into two
auxiliary functions. The definition of condi tional densities implies

LN(B):= logJy(y;B) = logix'y(x,y;B) -logixlY(xly;B).
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If one takes expectations on both sides with respect to the distribution f xlY (x Iy; B) one
arrives at

10gfy(y;B) = E[logfx,Y(X,YiB)ly,B] - E[logfxlY(xly;B)ly,B]

or briefly in obvious notation

10gfy(y;B) = Ax,y(B,B) - AxlY(BIB).

(14.21 )

(14.22)

Starting from an iteration solution B(i) the next solution B(i+1) is constructed in two steps:

(1) Expectation step: form the auxiliary function Ax,y[B,B(i)j (14.23)

(2) Maximization step: find B(i+1) such that for all BE 0 (parameter space)

(14.24 )

(14.25)

For all iteration sequences {B(i)} constructed according to (14.23) and (14.24) the corre­
sponding likelihood sequence {L[B(i)]} is nonincreasing. It will converge to a stationary
point of the likelihood function under suitable continuity and differentiability conditions
on AX,y(B1,B2 ) [see Dempster et al. (1977), Wu (1983)]. The EM method does not guar­
antee convergence to the global likelihood ma:cimum. In addition, oue cannot exclude
convergence to a saddle point; the situation has to be checked numerically by an analysis
of the Hessian. The great advantage of the EM method lies in the fact that usually the
maximization problem ofthe auxiliary function Ax,y(B1,B2 ) is far simpler than direct max­
imization of L(B). This is also the case in state-space models [Watson and Engle (1983),
Shumway and Stoffer (1982)]. In this framework the latent variables X may be identified
with the state vectors X = (Xo,Xl, .. ' ,XN), and the observables with the output vectors
Y = (Y1,"" YN). The joint distribution of X and Y is determined by the stochastic
specification (14.3) as

log fx,y(x, Yi B) =log fX(N),Y(N)[x(N), y(N)i B]

= log fY(N)jX(N)[y(N)/x(N)i Bj +10gfx(N)[x(N);B].

Exploiting the special Markovian structure of this econometric state-space we have
N

logfx,Y(x,Yi B) = L [logf(YtIXt;B) + logf(xtI Xt-1i B)] +10gf(xoi B) (14.26)
t=l

N

= L [logN(Yt : U~tXt +u;tf3; R) + logN(xt : <PXt-1 i Q)] +10gN(xo : J.loi ~o) .
t=l

Expectation step

The auxiliary function Ax,Y(B,B(i)) is the expected value of (14.26) with respect to the
conditional distribution fX(N)lY(N)[x(N)ly(N)i B(i)] given the last iteration solution B(i).
It will be convenient to decompose the function Ax,Y into the partial sums

3

Ax,y[B,B(i)] = E[logfx,Y(x,y;B)/y;B(i)] = L Aj[Bj;B(i)]
j=l



Wolfgang Schneider

where

N

L EX,!Y(N) [logN(Yt : U~tXt + u~d3; R)jy(N); O(i)]
t=1

N 1 N .
= const - 2 log IRI- 2L {R- 1 E[v;ly(N); o(·)]}

t=1
N

A2[02,0(i)J = LEx"x(t-I)lY(N)[logN(xt: '1>Xt_1;Q)!y(N);0(i)J
t=1

N 1 N .
= const - 2loglQI- ZLtrace{Q-1E[wtw~ly(N);0(')]}

t=1

A3[03,0(i)J EXoIY(N) {logN[xo : /10; 2:oly(N); O(i)]}

1 1 ()
const - zlogl2:ol- ztrace{2:oIE[wow~ly(N);O']}
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(14.27)

(14.28)

(14.29 )

The cross moments of {vt} and {wd in (14.27)-( 14.29) can be deduced from the Kalman
filter recursions (14.6)-( 14.10) using model specification O(i). For this purpose the following
decompositions of the noise vectors turn out to be convenient:

, '(3' , -Yt - UltXt - u2t = vtlN - UuXtIN,

Xt - '1>Xt-1 = WIIN + [XtIN - '1>Xt_IIN],

Xo - /10 = vaiN + xOIN ,

t = 1, ...

t = 1, ...

(14.30)

(14.31)

(14.32)

where VtlN and WtlN are the smoothed system errors given specification O(i), i.e.,

Yt - U~tXtIN - lt~d3, t = 1,2, ...

.- XOIN - /10; l/\IN := xtlN - '1>x t_IIN, t=I,2, ....

(14.33 )

(14.34)

The prediction errors XtlN := XI - xtlN, where itlN = E[Xtly{N); O(i)], have zero expecta­

tion given y( N) and O(i). Since WIIN and VtlN are linear functions in y{ N), we have

E[VtINX:INly(N);B(i)J = 0

E[WtINX:INly{N);O(i)J = 0
for arbitrary s, t = 0,1, .... (14.35 )

Observing these orthogonality conditions in (14.30)-(14.32), we can complete the expec­
tation step as

E[v;ly{N); O(i)J

E[wtW~ly(N); O(i)J =

,2 , '"
Vtl N + ltlt"-'tlNltlt

WIINW;IN + ~IIN - '1>2: t _ l ,tIN

- 2:;_I,tIN'1>' + '1>2:/- 1IN '1>'

WOIN1V~IN + ~olN .

(14.36)

(14.37)

(14.38)
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(14.41)

(14.40)

(14.39)

Maximization step

Obviously we can maximize (14.26) by maximizing each component Aj separately. Each
ma.x.imization corresponds to a well-known regression problem. All critical points may be
found by differentiation, but their actual computation may involve the (iterative) solution
of nonlinear systems. We compute the derivatives with respect to the components of 0 as

N

L [uu(Yt - U~tXtIN - U~t,B)] R- I

t=1
N

L [Mt-l,tIN - Mt_1INcI>'] Q-I
t=1

N 1 N
- 2 + 2LR-2E[v;ly(N);0(i)J

t=1

(14.42)

(14.43)

(14.47)

( - ),,,,-1XOIN - Jlo 00
8A3

8jj~

8A3 1'"-I [ " _ , _, ,] '" _ 1 ()
8r.

a
- 20a "~aIN - XalN Jta - llaXalN + JlaJla 0a ' 14.44

where M t - IiN and Aft-l,tIN are the smoothed cross moments of the states, which are [using
(14.15) and (14.12)]

Mt_IIN .- E[Xt_Ix:_1Iy(N); O(i)J = r.t-1IN + xt_IINX;_IIN (14.45)

Mt-l,tlN := E[Xt_1 :c: Iy( N); O(i)J = ~1-llt-1 cI>'~~tl_1 ~tlN + Xt-IINX;,N . (14.46)

Collecting all nonzero elements of cI> in the vector <p, such that vec(cI>') = C<p, hence
~ = C'vec(~), where C is an appropriate selection matrix, we arrive at the final set

of equations determining the EM solution (~, <j;, il, Q, ria, ta) at step (i +1) given model
specification O(i) [assumed in the computation of all smoothed moments used below and
indicated by the superindex (i)]

N N

L Uu . (Yt - U~tXtIN) = (L U2IU~t) . ~
t=1 t=1

N N

[C'(Q-I (9 h)vec(L M1-I,tIN)J = [C'(Q-I (9 L Mt_IjN )C]· <j;
t=1 1.=1

p.o = :rOIN, ~o = r.OI N
N

R = ~ LE[v;ly(N),O(i)J
t=1
N

Q= ~ L E[wtw:ly(N),O(i)].
t=1

(14.48)

(14.49)

(14.50)

(14.51)
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(14.55)

(14.52)

(14.53)

(14.54)

(14.56)

(14.57)

(14.58)

N
1 "'[ .(i) (i), W(i)]
N L WtINWt/N + tiN'

t=l

, .(i) , a(i+l)
Yt - UltXt\N - U2W

.(i) _ .i.(i+l) .(i)
X tlN 'it Xt-liN

~(i) + <I>(i+l)~(i) ~(i+l)' _ <I>(i+l)~(i) _ ~(i) I~(i+l)'
tiN t-IIN t-l.tIN -'-'t-l.tIN .

il(i+l)

Q{i+l)

where

• (i)
Vt /N .-
• (i)

W
tlN

W{i) .-
tiN

The solution for Mo, ~o is trivial, since it coincides with the smoothing solution. The
solution for (3 and R are the standard OL5 estimate formulas for a single regression
equation. The normal equations for If! and Q are nonlinear in these parameters, and we
can exploit the usual estimation techniques available for systems of seemingly unrelated
regression equations [Zellner (1962)], i.e., two-step or iterated Aitken estimators. The
two-step Aitken estimator consists in updating If! given the last iteration solution for Q
and then substituting these updates for (14.51) to generate a new solution of Q, i.e.,

pli+<) = [t,u"u;r' {t,IY, -u;,i~i~JU"}

0Ii+'1 {C' [IQlilt' ®t, M,I~'IN] Cf'
X C'{[Q(i)t

l
0h}vec [~Mt(~I,tIN]

N
1 ",[.(i) 2 ,,,,(i) ]
N L V tlN + 1IW '-'tIN Ult

1=1

Note that w~t1, as defined in (14.58), should be positive definite. It is a quadratic form

in the smoothed covariance matrix of (x:_ 1 , x: )'. We have

(14.59)

The iterated Aitken estimator for If! and Q is computed iterating between (14.53) and
(14.55). The convergence of these (sub )iterations are guaranteed if the matrix series {Q},
obtained during these subiterations, can be uniformly bounded from above and below by
positive definite matrices [Oberhofer and Kmenta (1974)].

The EM iterations will generate increases in the likelihood in each step. If there
are no ridges in the likelihood, they will converge to a stationary point of the likelihood
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[Wu (1983)]. Since convergence to a saddle point or to the global maximum is not guar­
anteed a final step of scoring is required to check the curvature of the likelihood at that
point. The Hessian or an approximation of it is also needed for generating confidence
intervals for the complete set of hyperparameters B.

14.4.2 Adaptive EM estimation

There is an obvious way to turn the EM algorithm into an on-line estimation technique for
all hyperparameters. This is simply done by approximating the smoothing solutions X/IN,
I:/IN by the corresponding filtering solutions available at time t. Substituting t for N in
all subindices of (14.52)-(14.58) denoting the information set being conditioned upon, we
arrive at a series of equation systems that can be built up recursively during one filtering
run. Making the relevant substitutions we have for N = N,N + 1, ... (where N is set in
such a way that invertibility in the formulas below is assured)

~(N+l)

<p(N+I)

Q(N+I)

where

[~ u",,;,] -, {~"" [y, - ,,; ,x::il }

{c' [IQ(N1r' ®~ M,(<)",] c} -,
X C'{[Q(N)r 1

0h}vec [t.MI(~I'/I/]
N

1 ~[.(/)2 , (I) ]
N LVIII + u1l I:11t u1l

1=1

N
1 ~[' (I) (I), (I)]
N L will wilt + Will '

1=1

(14.60)

(14.61)

(14.62)

(14.63)

Y - u' x(I) - u' (3'(/+1)
I 11 lit 21

.(1) _ .j,(I+1) .(/)
x lit xI-III

.- I:(/) + .j,(/+I)I:(/) .j,(I+1)' _ .j,(I+1)I:(i) _ I:(i) '.j,(/+l)'
tit t-III I-l,tlt t-I,tlt

(14.64)

(14.65 )

(14.66)

All estimators can be computed in a fully recursive fashion for N = N, N + 1, ... using
the Kalman filter recursions (14.7)--(14.9) as well as those for the so-called one-step back
smoother, which is just a special version of (14.10) (substituting t for N) [Anderson and
Moore (1979, pp. 187-190)]:

XI-I1t = XI-11/-1 + At-I(Xtll - xtl/-d

I:/-1It = I: t-II/-1 + AI_I(I:tl l - I:/lt-dA;_1 ,
(14.67)

(14.68)
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(14.69)

(14.70)

(14.72)

(14.73)

(14.74)

(14.75)

At-I := ~t-Ilt-I<I>'~~LI'

The superscript t for the state moments in (14.60)-(14.63) indicates that the most recent
model specification n(t) is used for the recursions (14.7)-(14.9) and (14.67) and (14.68).
Approximating the usual EM method in this way substantially reduces the storage re­
quirements for intermediate results.

Some comments on the character of the variance estimators follow. The decomposition
(14.30)-(14.32) is also valid for N = t, whence we have

E[v;ly(t)] v;lt' + U~t~tltUlt

E[wtw;ly(t)] WtltWtlt' +Wtlt ,

where

Wtlt = ~t1t - <I>~t-I.tlt - ~;_I.tlt<I>' + <I>~t-qt<I>'· (14.71)

Taking expected values on both sides of (14.69)-(14.71) we get in a correctly specified
state-space:

R = E (~ t vilt) + ~ t U~t~tltUlt

Q = E (~ t,WtltWtlt') + ~ tWtIt.

Hence the variance estimator (14.62) and (14.63) may be interpreted as a special "method
of moments estimator", where E[k 2:;:1 V;lt] and E[k 2:;:'1 Wtlt~iitlt'] are substituted by
the corresponding observed values and where all moments have been calculated as the
filtering solution based on some prior [or recursively updated as in (14.60) and (14.61)]
values for the state-space hyperparameters. This estimator is very closely related to an
adaptive filter proposed by Louv (1984), whose approach amounts to the solution of a
slightly modified version of (14.72) and (14.73), namely:

N N
1 ~(' I) 1 ~.2N L...J I - ult~tltultRO R N L...J Vtlt

t=1 1=1

N
1 ~. . ,
N L...J WtltWtlt ,

t=1

where Qo and Ro are prior values for Q and R, "not too different" from the true specifi­
cation. Louv actually only equates the diagonal elements of the matrix equation (14.74)
and (14.75) and computes the filtering solutions for a fixed prior specification, where <I> is
known and f3 is zero. This procedure may be interpreted as an approximation to Rao's
(1971) minimum norm quadratic unbiased estimator's (MINQUE) for the variance compo­
nents of Rand Q in the stochastic setup of state-space model (14.1) and (14.2) [for details
see Schneider (1989)].
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14.5

Economic Structural Change: Analysis and Forecasting

A Descriptive Interpretation of Kalman Filtering

In three recent paper~ Kalaba and Tesfatsion (1986, 1988a, 1988b) have suggested an
interesting descriptive reinterpretation of Kalman filtering.

As pointed out in the Introduction the model assumptions (14.1)-(14.3) amount to
specifying a model for the observables y :== {YI, Y2,' .. ,YN} given the unobservable states
x :== {xo, XI, ... , xN} and a prior distribution for the unobservable states x, thus yielding
the common distribution for x and y:

N

log f x,Y( x, y; 0) == L [log f(ytlXt; 0) + log f( Xt/Xt-I; 0l] + log f( Xo; 0) ,
t=I

(14.76)

which under the normal setup used here yields (14.26).

Kalman filteriug can be viewed as a computational tool for calculating the marginal
distribution of the observables y in a recursive fashion according to

N

log jy(y; 0) == L log f(YtIYt-I; 0),
t=I

(14.77)

which under assumption (14.3) reduces to (14.17) (except for a constant). The essence of
the argument in Kalaba and Tesfatsion (1988a, 1988b) is that going from (14.76) to (14.77)
amounts to a forced scalarization of what should better be regarded as a multi-criterion
objective function consisting of conceptually distinct types of model specification error,
namely:

Measurement specification error

N

CM(X) :== LV;,
t=1

(14.78)

Dynamic specification error

N

CD(X) :== L w;Q-Iwt,
t=)

where Wt == Xt - iI>Xt-I . (14.79)

Initialization specification error

(14.80)

These three sources of specification error are collapsed into one aggregate cost measure
given by the log likelihood (14.17). This scalarization (computationally done by Kalman
filtering) is achieved using the stochastic framework (14.3) parameterized by O.
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Figure 14-1: Residual efficiency frontier [FLS of (14.87)J.

If, however, we are very uncertain about the stochastic parameterization e (in par­
ticular, not knowing which coefficients are constant and which are not), then we might
want to start out with a purely descriptive stability analysis using a simplified version of
(14.78)-(14.80), namely:

N

CM(X) = 'l)Yt - U;Xt)2
t=l

N

CD(X) 2)Xt - Xt_rl /Q-1(Xt - Xt-rl
t=l

C[(X) 0,

(14.81 )

(14.82)

(14.83)

where (14.81) mirrors our belief in an approximately linear regression model, (14.82) our
preference for a simple (i.e., constant) model, and (14.83) our complete ignorance of a
plausible initial state. The matrix Q contains prior weights, which we attach to deviations
from constancy in particular coefficients.

Our goal consists now in finding a time path {Xt: t = 0,1, ... , N}, which vector
minimizes both error types simultaneously. Obviously there is a trade-off between CM and
CD: The more we allow x to vary (i.e., the higher the deviations from the preferred model
of constancy) the better will be the fit in the measurement equation and vice versa.

This trade-off becomes explicit in the so-called residual efficiency frontier, which is the
set of all points {eM (x) , cD ( X)} , where it is not possible to decrease both eM and cD. This
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set is a convex curve in the first quadrant of the Euclidean R 2 plane (see Figure 14.1). It
can be traced out by maximization of the cost aggregate

C = ),CD(X) + CM(X) (14.84)

and letting), parametrically vary in the interval [0,00). The maximum is achieved if
x:= {XO,Xl, ... ,XN} is set to the Kalman smoothing solution {XtIN: t = 0,1, ... ,N}
computed from (14.7)-(14.10) using

R =)" Q = (j, f3 = 0, cI> = I, (14.85)

and initializing ~o as a very large number. Alternatively one can use the information
variant of the Kalman filter and set the inverse of ~o formally to zero, thus suppressing
the initialization cost term. The equivalence between the FLS solution and the Kalman
smoother using (14.85) can be inferred from comparing (14.81 )-( 14.83) and (14.84) with
(14.13).

Kohn and Ansley (1988) also showed the equivalence between certain Bayesian smooth­
ness priors in state-space smoothing and optimal smoothing for function estimation using
penalized least squares, i.e., minimizing a criterion of the form

N N

L[Yt - f(tW +), L[6k f(tW
t=1 t=1

(14.86)

of which the FLS criterion is just a special case (6 is the difference operator).

Having computed the FLS solution for several values of ), the researcher has at his
or her disposal a collection of time paths {x tiN (),): t = 0, 1, ... , N} with associated cost
vectors {CM(),),CD(),)}.

If ), approaches infinity, the OLS solution is eventually obtained. The lower), is
specified the more time variation we allow-), may be interpreted as a kind of smoothing
parameter controlling the "resolution" of parameter variation (analogous to the size of a
spectral window). In a stochastic setting an increase in ), for fixed Q can be interpreted as a
decrease in the ratio of transition noise to measurement noise. Multiplication of (14.13) by
a scalar does not change the corresponding smoothing solution for x(N); it only depends
on the ratio (Q/R). The graphs in Figures 14.1 to 14.7 visually demonstrate the effect of
decreasing this ratio.

There still remains the problem of how to specify the weights in Q. A good case can
be made for Q to be set to (2=~1 UtU;)-I, since for this particular choice the residual
efficiency frontier remains invariant to the units of measurement for lit, otherwise one
implicitly weighs the components of dynamic cost by the units of measurement in the
corresponding regressor.

A judgment on stability must now resort to descriptive criteria, e.g., the issue can be
made dependent on how favorable the trade-off between CM and CD is, or dependent on the
range of )" over which certain characteristic features of the parameter paths persist. To this
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end it will be convenient to normalize>. to the interval [0,1]' e.g., by a reparameterization
of >. as 8 = '\~l' The particular choice of the normalization entails some arbitrariness,
however.

Confidence intervals for the parameter path or significance tests on individual parame­
ter variances can of course not be made. This requires a stochastic model for the parameter
transition process.

In Section 14.6 I will apply flexible least squares as a preliminary descriptive stability
test to a standard form of the West German money-demand function and will check how
the ML estimation via Kalman filtering will pick an "optimal" time path for the regression
coefficients, when the descriptive cost functions CM and CD are reinterpreted as elements of
a likelihood function generated from a random walk model for the regression coefficients.

14.6 Stability Analysis for a Standard Demand Function
for West German Ml

Standard West German money-demand functions have already been subjected to a series
of stability tests [see, e.g., Buscher (1984), Gaab and Seitz (1988)]. The results have been
somewhat mixed depending on the specification used, the particular stability test employed
and the estimation period. We will use a slightly extended version of the so-called Goldfeld
specification [Goldfeld (1976)] for West German Mi, namely,

6

Yt = L U:tXt +Vt ,

;=1

(14.87)

where

Yt = log ofreal Mi (using the implicit GNP deflator with 1980=100, quarterly averages,
seasonally adjusted)

UIt = 1

U2t = log of real GNP (quarterly data, seasonally adjusted)

U3t = log of three month money-market rate at Frankfurt (quarterly averages)

U4t = log of yield on fully taxed newly issued bonds (quarterly averages)

USt = 90-day swap rate (DM/US $), quarterly averages

U6t = lagged dependent variable

t = 1960(II)-1988(II) (quarters, 113 observations)

The data were derived from monthly issues of the Deutsche Bundesbank.

One problem with the CUSUM tests and variants thereof [Brown et al. (1975)] and the
Cooley-Prescott test [Cooley and Prescott (1973)] is the fact that they constitute what
might be called a global stability test. They do not allow one to identify the particu­
lar source of instability once global instabili ty is detected. Garbade (1977) pointed out
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this in a simulation study comparing CUSUM, recursive residuals, Cooley and Prescott
tests, and ML estimation of random walk variances. This is the advantage of flexible
least squares (FLS) and ML estimation of individual coefficient variances-methods, which
analyze individual time paths.

The graphs in Figures 14.1 to 14. 7 illustrate the results of FLS when applied to (14.87).
The main features to be deduced are that seemingly only the coefficients for the interest
rates and the swap rate exhibit a distinct time-varying behavior. Especially the behavior
of the short-term interest rate is remarkable: an apparent stabilization from 1974 onward
coincides with the date when the German central bank officially switched from an interest­
rate target regime to a money target regime. Some marked troughs in the swap-rate
coefficient occurred when there was massive speculation against the US dollar. There
are also slight upward movements in the coefficients for the constant, real income and
the lagged dependent variable, but these increases are small relative to the size of the
coefficients. The level of these latter coefficients change substantially at resolutions from
A = 5 onward.

The pattern of the individual FLS path remains persistent for all A < 10 (corresponding
to 0 < fJ = ~;l < .9). If we pick that degree of parameter resolution, where the trade-off
between measurement residual error and dynamic residual error substantially deteriorates
(see Figure 14.1), we should choose some A between 1 and 5.

We want to check now how maximum likelihood estimation picks an "optimal" time
path from the above collections, when the parameter variances are estimated individually.
We assume a random walk model for the regression coefficients

Xt+l = XI + WI. Cov( Wt) = Q, Q being diagonal. (14.88 )

We specified the initial state as the OLS solution of the regression coefficients calculated
from data over the time span 1960(11)-1970(1). Starting from scveral points in the param­
eter space for () we arrived at the following ML estimates for the random walk variances.
The estimated standard deviations taken from thc estimated information matrix and the
corresponding t-ratios are also supplied. Apparently the likelihood had several local max­
ima, but a common feature of those local maxima was the "stability ordering" given in
Table 14.1.

Little, however, is known about the sampling distributions of these ML estimators.
For particular econometric state-spaccs (e.g., stationary ARMA parameter processes and
nonstochastic regressors) consistency and asymptotic normality rcsults are known [Pa­
gan (1980)]. Also the asymptotic normality results in Pagan (1980) are only obtained if
the true parameter vector is an interior point of the parameter space. In the case of pa­
rameter constancy the true variances arc on the boundary of the parameter space (namely,
zero).

It is to be expected that some part of the measurement error will be transformed into
parameter variation in a constant coefficient model. A simulation study was undertaken to
find out to what extent this phenomenon might have taken place here. A simulation study
using 500 replications of a constant coefficicnt model (14.87), which assumed the OLS
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Table 14.1: Estimates of the variances in Q and estimated precision.

Parameter Estimate Std. Dev. t-ratio
X 10-6 X 10-6

Constant 10.38 244.59 0.05
Real income 0.18 16.88 0.01
Short-term interest 5.48 11.76 0.45
Long-term interest 4.49 15.07 0.32
Swap rate 8.83 8.30 0.79
Adjustment parameter 1.73 16.41 0.12

Table 14.2: Percentage points of the ML estimators.

Percentage points x 10 6 90.0 95.0 97.5 99.0
Constant 12.3 12.7 17.4 17.7
Real income 1.05 1.34 1.53 1.86
Short-term interest 5.02 5.09 5.24 5.45
Long-term interest 5.08 5.46 5.58 5.68
Swap rate 5.84 6.23 6.37 6.45
Adjustment parameter 2.34 2.51 2.76 2.77

estimates from 1960(II) to 1988(II) to be true, turned up with the (thus bootstrapped)
percentage points of the ML estimators for the random walk variances shown in Table 14.2.

According to these results the movements in the coefficients for the short-term interest
rate and the swap rate are significantly identified to be time-varying (within this particular
model of parameter dynamics) at a type I error level of 1% (not taking into account the
sampling variation in the estimates of the percentage points, though). We note that the
simulated distributions of the variance component estimators resemble much more highly
skewed chi-square distributions heavily concentrated at zero than a symmetric normal
distribution, which at best turns the i-ratios quoted in Table 14.1 into "stability ordering
indices". This is also in line with asymptotic results from Garbade (1977) and Nabeya
and Tanaka (1988), whose test statistic for parameter constancy essentially is an estimate
of (QIR) for a single time-varying regression coefficient [corresponding to t in (14.84)].

The low estimates of the variance components are to be expected with the particular
parameter transition model used here, since the random walk model spreads out the time
variation over the entire sample period. The FLS paths of the short-term interest rate at
levels of high parameter resolution do suggest that also a step change might have occurted
in 1974 due to a regime shift of the West German central bank. A similar case for a
step change can be made for the introduction date of flexible exchange rates; note the
movement of the swap-rate coefficient around that time. So a different type of parameter
dynamics might also produce an adequate model for the data.
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Another possible explanation of the parameter variation observed here is the different
degree of capital market integration in the 1960s as opposed to the 1970s; During the
1970s new financial instruments have been developed and this to a greater extent in the
short-term range than in the long-term range. The 1970s have opened a broader menu of
possibilities to exploit the opportunity cost captured here as a short-term interest rate-a
fact, which makes the increased sensitivity to this opportunity cost variable appear very
plausible.

An obvious test for the adequacy of the model estimated here consists of course in
an analysis of residuals. Conveniently, Kalman filtering provides us with the innovation
sequence {Yt := Yt - yd. Normalizing this sequence with the estimated standard deviations
in Dt [see equation (14.8)] should result in a sequence, which behaves like a Gaussian
white noise process, if the model is correctly specified. A test on the correlations and the
periodogram of this sequence could not reject the hypothesis of a whi te noise process at
the 5% level. Also the first four moments of the normalized innovation sequence matched
those of a Gaussian process fairly well (using a simple 95% confidence interval for the first
four sample moments of the estimated innovations fh).

Table 14.3 illustrates a particular search process in the likelihood space (the starting
values being the OLS measurement variance and Q being set to one-hundredth of that
variance). ML estimation was not able to generate good search vectors at these starting
points, whereas both EM and adaptive EM generated large likelihood increases initially
and propelled the search procedure to points from where scoring could converge in one
step.

Furthermore, the EM methods were in this particular case an order of magnitude faster
than scoring (the time difference grows exponentially wi th the number of parameters to
be estimated). Adaptive EM requires 70% of the time needed for a full EM cycle and
saves the need to store the whole set of filtering solutions that would be required for EM
(which makes adaptive EM especially attractive for memory-sca.rce environments as in a
PC).

It seems that during the first iteration cycles adaptive EM generates larger likelihood
increases than full EM but then slows down considerably in comparison with EM, which
leads to a slightly higher number of iterations required for convergence of adaptive EM.
This experience was also confirmed in other simulation experiments [Schneider (1989)].

Inserting the maximum likelihood estimates for Q and R into the state-space permits
us then to compute the corresponding estimates of the a poste7'iori distributions

(14.89)

The graphs of Figures 14.8 to 14.13 show the mean and a two-lT-band from the above
distributions (14.89). They essentially exhibit the same features as the FLS solution in
the range 1 < oX < 5.

We finally note that the specific behavior in the short-term interest-rate coefficient ob­
served here does not seem to depend on the particular type of money-demand specification
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Table 1403: Increases of log likelihood for EM and adaptive EM.

Iteration EM method Adap. EM method
1 89.31 105.77
2 36.75 39.68
3 20~6 22~3

4 13.75 14.65
5 10,40 9.07
6 8.07 9.08
7 6.27 2.98
8 4.85 1.61
9 3.71 0.86
10 2.83 0,46

Convergence in step
At log-likelihood
Final scoring increase

16
434.60
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Figure 1408: Time path of the constant [Kalman smoothing of (13.87)J.
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Figure 14.13: Time path of the lagged money coefficient [Kalman smoothing of (13.87)].

used; the pattern persists also in a more elaborate error correction model of money de­
mand, which Gaab and Seitz (1988) found to be an adequate description of West German
data. Defining U3t to be the short-term interest rate (taking no logs), an FLS analysis of
the model

(14.90)

yielded FLS time paths for X5t as shown in Figure 14.14.

14.7 Conclusion

Summing up we detected instability of a standard M1 function for West Germany, and we
attribute that instability to variability in the coefficients for interest rates and the swap
rate. A very simple excercise in exploratory data analysis (flexible least squares) was able
to detect that phenomenon and could be confirmed in a formal hypothesis-testing setup
within a random walk model for the parameters.

The movement in these coefficients may reflect the adjustment to regime changes of
monetary policy in the 1970s. Increasing sensitivity with respect to short-term interest
rates and decreasing sensitivity with respect to long-term interest rates may also be a
plausible feature when economic agents become increasingly aware of the risks of money
holding and increasingly reluctant to engage in long-term nominal commitments when ex­
posed to prolonged inflationary experiences as happened in the 1970s and in the beginning
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Figure 14.14: Time path of the lagged short-term interest coefficient [FLS of (13.90)].

of the 1980s. The observed parameter varia.tion is also compa.tible with a higher degree of
financial innovation in short-term capital markets than in long-term capital markets.

As far as the technical question of computational procedures is concerned, the relative
performance of EM and adaptive EM suggests that for convergence enhancement the faster
adaptive EM technique may be used.
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CHAPTER 15

A Note on Bayesian Forecast
Combination Procedures

Francis X. Diebold

Summary
The properties of Bayesian composite forecasts are studied. It is argued, and illustrated
with an example, that the asymptotic performance of such composite forecasts depends
on the validity of a maintained assumption, namely, that one of the models among those
whose forecasts are combined is the true data-generating process. The implications of this
phenomenon are explored.

15.1 Introduction

Scientific knowledge obtained from research in one area often proves useful in others. Such
has been the case with the Bayesian theory of econometric model selection, as developed
by Geisel (1970, 1974) and Zellner (1971, 1972, 1979, 1984), which has generated insights
useful not only for model selection but also for prediction. In particular, it is now known
that under certain conditions the posterior probabilities associated with various forecasting
models may be used as weights in forming a linear composite forecast, and that the
resulting composite forecast is optimal, in the sense of minimizing posterior expected loss.

In this chapter, I focus on one of those "certain conditions"-in particular, the as­
sumption that one of the models among those whose forecasts are combined is the true
data-generating process (DGP)-and I explore the effects of its failure on the performance
of Bayesian composi te forecasts. I argue that, if the assumption is satisfied, such Bayesian
composite forecasts will have certain desirable asymptotic properties relative to their clas­
sical counterparts, but that the result is reversed if the assumption is not satisfied.
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In Section 15.2, I give an explicit derivation of the Bayesian composite forecast, and
I show that (under certain conditions) it minimizes posterior expected loss. I explore the
linkage between the maintained assumption of truth of one of the models and the resulting
good performance of the Bayesian composite forecast. In Section 15.3, I illustrate the
argument with a simple example involving the combination of forecasts from two linear
regression models. In Section 15.4, I conclude with a summary and directions for future
research.

15.2 Bayesian Model Selection and Forecast Combination

The Bayesian solution to the model selection problem (under symmetric loss) is well
known: It is optimal to choose the model with highest posterior probability. Zellner (1972,
1984), Zellner et a1. (1989), and others have suggested that the posterior probabilities may
be used fruitfully not only for model selection, but also for forecast combination. Forming
a composite forecast with weights equal to the posterior probabilities seems reasonable,
and the case for doing so is easily formalized.

Consider two models, .~11 and M 2, with associated posterior probabilities PI and P2,
respectively, where PI +P2 = 1. [The generalization to the case of more than two competing
models is immediate.] Then posterior expected loss is given by

(15.1)

where fj is any point forecast. Let iil Uh) be the mean of the predictive probability density
function for M I (M2 ). Then we can write

E[(y - fj)2/Mi] E{[(y - Yi) - (fj - YiWIM;}

= E{[(y - Yd 2 + (fj - Yi)2 - 2(y - Yi)(fj - y;)IIMi}
E[(y - y;?IMi] + (fJ - y,)2

Ci +(fj-Yi)2, £=1,2,

where Ci = E[(y - Yi)2IMi]. But then

(15.2)

E(y _ fj)2 pIlCI + (fj - yd] +P2[C2 + (ij - Y2)2]

C + lJI(fj - Yl)2 +P2(fj - Y2)2,

(15.3)

where C == PI C1 + P2C2 • The first-order condi tion for minimization of (15.3) with respect
to fJ is

or

2f/ - 2(PIYI +P2Y2) = 0

fj* = PIYI +P2Y2 .

(15.4)

(15.5 )
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On what does this standard Bayesian result depend? Most important is the assumption
that the posterior probabilities associated with the models being combined sum to 1. This
is equivalent to the assumption (often made explicitly) that one of the models is true.
To see this, note that PI +P2 = 1 is equivalent to PI +P2 - P(MI n M2) = 1, because
P(MI n M 2) = 0 so long as M I f:- M 2. But PI +P2 - P(MI n M 2) = 1 is equivalent to
P( MI U M2 ) = 1. The motivation for the assumption seems to be the idea that it should
be possible to write down an exhaustive listing of candidate models, one of which must
(by construction) be the true DGP. In practice, of course, the forecasts of only a small
number of models are combined; enunciation of an exhaustive set of candidate models for
the true DGP is always infeasible and probably impossible. In short, it seems difficult to
take seriously the assumption that the true DGP is among the candidate models whose
forecasts are being combined.

To better understand the effects of the assumption, let us first suppose that it is true.
Without loss of generality, assume that M I is true. Then, if the Bayesian model selection
procedure is consistent, PI will approach 1 as sample size (T) gets large. The implication of
consistency of the Bayesian model selection procedure for Bayesian forecast combination,
of course, is that progressively more weight is placed on M I as T gets large; in the limit,
M I receives unit weight and M2 receives zero weight. In other words, the Bayesian model
selection and Bayesian forecast combination procedures coincide asymptotically. This
result is natural and desirable, if the true DGP is among the models whose forecasts are
combined.

But what happens when the true DGP is not among those whose forecasts are com­
bined, as is likely to be the case in practice? Is there any harm in maintaining the
assumption of truth of one of the models, in order to make the Bayesian analysis opera­
tional? Recent work on estimation and testing in misspecified models [e.g., White (1982),
Gourieroux et at. (1984), Vuong (1989)] furnishes a useful perspective on this question.
We now know that, under general conditions, an estimator of the parameter of a mis­
specified model will converge to a pseudo-true value, that is, to a parameter configuration
closest (within the misspecified class) to the true DGP. Furthermore, the metric defining
"closeness" is induced by the estimation procedure.

Now, if the true DGP is not among the models entertained, it is of course impossible
for any model selection procedure-Bayesian or otherwise-to be consistent for the true
model. But, as the discussion above indicates, we might expect the model selected by
the Bayesian procedure to be consistent for something, namely, the model closest to the
true DGP. Without loss of generality, assume that M I is closer. Then it is reasonable
to expect that PI will converge to 1, as was the case when 1111 was true. For model
selection, such a property is very useful-it is often desired to determine which among
a set of models provides the best approximation to the true DGP. The implications for
forecast combination, however, appear less desirable. Consistency of the Bayesian model
selection procedure for the closest model implies that Bayesian composite forecasts will
asymptotically place unit weight on M I and zero weight on M 2 • But M I and M 2 are
both false models; the fact that M1 is closer to the true DGP does not mean that the
information contained in M 2 cannot be usefully combined with that in M I to produce
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a superior composite forecast. (Contrast this with the case where M I is in fact the true
DGP.) This insight, of course, is the entire motivation for forecast combination [see Clemen
(1990)].

In summary, then, it would appear that Bayesian composite forecasts will perform well
in large samples, placing all weight on the forecast of the true model, if the true model
is among those whose forecasts are combined. Otherwise, it would appear that Bayesian
composite forecasts will perform poorly in large samples, placing all weight on the forecast
of one false model, and thereby discarding the potentially valuable information contained
in other false models. In the next section, the truth of these conjectures in the context of
simple linear regression is illustrated.

15.3 Combination of Forecasts from Regression Models

Consider a simple comparison of two regression models, as in Zellner (1971, pp.

M I : Yt = X lt13l +Mit,

M2: Yt = X 2t 132 +M2!l

t = 1, ,T

t = 1, ,T

306-312),

(15.6)

(15.7)

one of which is the true model, where Xl and X 2 are nonstochastic matrices of maximum
and equal column rank, 131 and 132 contain no common elements, and the disturbances
of the true model are i.i.d. Gaussian with zero mean and constant variance. Then, in a
Bayesian analysis with diffuse priors over parameters and models, the posterior odds for
M l versus M 2 are given by

PI = [S2] T ,
P2 Sl

(15.8)

where Sj is the square root of the usual unbiased estimator of a;, i = 1,2. [The result
also holds for informative-prior Bayesian analyses if T is large and certain other regularity
conditions are satisfied.]

Consider now the implications of the earlier-derived Bayesian forecast combination
procedure. Rearranging (15.8) yields

or, because PI +P2 = 1 by assumption,

PI + [:~] T PI = 1.

Thus,

(15.9)

(15.10)

(15.11)
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Therefore, PI depends only on the ratio sI/S2, which is emphasized by writing

1
PI = -1-+-[~-2-]mT .

Note that

229

(15.12)

lim PI = { ~/2
T --+00 1

if aI > a2

if aI = a2

if aI < a2·

(15.13)

Now compare the weight arising from the Bayesian forecast combination procedure
(15.5) with the weight arising from the classical variance-covariance forecast combination
procedure. [By classical variance-covariance combining weight I mean the weight that
minimizes combined prediction error variance, as developed by Bates and Granger (1969)
and discussed in Granger and Newbold (1987).] As is well known, the classical forecast
combination is

y = ¢*it +(1 - ¢*)h , (15.14)

where it and h are forecasts (possibly but not necessarily the means of predictive prob­
ability density functions),

¢* _ 1 - SI2/S~
-1+sils~-2s12/s~

(15.15)

and SI2 is the usual estimator of the covariallce of the forecast errors associated with M 1

and M 2 • If Sl2 = 0, the classical weight is

* 1¢ = 2'

1 + [~]
(15.16)

While the Bayesian and classical combining weights are very similar, several interesting
differences are apparent. For example, the Bayesian weights are required to be convex,
while the classical weights need not be. The convexity restriction is not necessarily ben­
eficial. A forecast with a negative weight can play the same useful role in producing a
combined forecast as an asset sold short plays in producing the return on a portfolio. Con­
vexity of the Bayesian weights follows immediately from the definition of probability and
the assumption that one of the two models is true. In addition, the Bayesian weights do
not exploit covariance information, while the classical weights (in general) do. Presumably
this again reflects the assumption that one, and only one, of the models is true.

These differences are of minor importance, however, compared with those associated
with the nature of dependence on sample size. Both the classical and Bayesian weights
cllange implicitly with sample size, as the underlying estimators of the relevant variances
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(and, in the classical case, covariances) converge to their pseudo-true values. The Bayesian
weight changes explicitly with sample size, however, as is made clear by the appearance
of T in (15.12).

To understand the significance of the role played by sample size in the construction of
the Bayesian combining weight, it will again prove useful to segment the discussion into
two parts, according to the truth of the assumption that one of the two models is the true
DGP. Suppose first that the assumption is true, and with no loss in generality assume
that M 1 is true; then by (15.12) and (15.13) the Bayesian weight placed on M 1 converges
to unity, while that placed on M 2 converges to zero. (The truth of M 1 implies that it has
a smaller disturbance variance.) As argued earlier, it is desirable that this should happen,
and it is made possible by virtue of the validity of the assumption that one of the two
models is true. The desirability follows from the fact that the true model encompasses
all rivals. [For a discussion of encompassing in its relation to forecast combination see
Diebold (1990).]

Suppose now that neither lvh nor M 2 is the true DGP. Suppose also, without loss
of generality, that M 1 is closer than M 2 to the true DGP, in the sense that plim(sd <
plim(s2)' As before, the Bayesian weight placed on Ali converges to unity, while that
placed on M 2 converges to zero. Such convergence is no longer desirable, however, because
asymptotically all weight is placed on a false model, MI. The essential insight of forecast
combination, of course, is that loss may be reduced by pooling the information contained
in false models, all of which represent different approximations to reality.

15.4 Concluding Remarks

I have conjectured that the asymptotic performance of Bayesian composite forecasts is
intimately linked to the truth of a maintained assumption, namely, that the true DGP
is among the models whose forecasts are combined. The conjecture was verified in the
context of a particular linear regression example. The argument points to the desirability
of exploring Bayesian approaches to forecast combination that do not assume the truth
of one of the underlying models. Is such a problem well-posed? If so, how would such an
analysis proceed? [The difficulty is related to the fact that the calculations for posterior
expected loss, (15.1)-(15.3), are apparently not meaningful unless one of the models is
assumed true.] What relationship would the resulting combining weights have to the
Bayesian and classical weights discussed in this chapter?

It is worth noting that, regardless of the answers to the questions posed above, Bayesian
insights will likely contribute in other ways to the advancement offorecasting methodology
and forecast combination methodology. Shrinkage techniques, for example, have been used
advantageously by Zellner and Hong (1987) and Zellner et ai. (1988, 1989) to forecast
international growth rates and turning points, and by Diebold and Pauly (1990) to shrink
classical composite forecasts toward a prior location, such as the sample mean.

Finally, I am happy to report on concurrent and independent work by Zellner (1989)
who has recently initiated development of Bayesian methods for combining forecasts from



F'rancis X. Diebold 231

sets of models whose posterior probabilities do not sum to unity. I hope that my paper
will stimulate additional work along similar lines.
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CHAPTER 16

A New Approach to Statistical
Forecasting

Spyros M akridakis

Summary
Available approaches to statistical forecasting suffer from several deficiencies that can
render their predictions for real-world economic/business series inappropriate. In this
chapter I illustrate such deficiencies, with real-life data and propose an approach that
corrects their negative impact. The proposed approach is based on three premises: First,
model selection is based not on historical information but rather on accuracy measures
computed from out-of-sample data. Second, two types of model selection are done on out­
of-sample-the first chooses the best model from those available within a single method,
while the second selects the best among four methods run in parallel. Third, the within­
method or among-methods model selection is done for each forecasting horizon separately,
making it possible to have different models or methods or both to predict each of the m
horizons. In addition to being theoretically appealing, this new approach outperforms the
best method of the M-competition by a large margin when tested empirically.

16.1 Introduction

The last ten years have become a learning ground for those working in the field offorecast­
ing. Large-scale empirical studies [Ahlers and Lakonishok (1983), Makridakis and Hibon
(1979), Makridakis et al. (1982), Zarnowitz (1984)] have provided us with invaluable in­
formation to judge the accuracy of statistical methods and to help us better understand
their advantages and limitations. Few will disagree that the findings of these studies are
fundamentally changing the field of forecasting. The fact that relatively simple methods
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were found to be as accurate as complex or sophisticated ones, and the conclusion that
combining methods by a simple arithmetic average did better than the individual methods
being combined, brought a great deal of disappointment. The initial disillusion, however,
has been replaced by a sense of realism. The alternative of abandoning statistical forecast­
ing does not seem attractive, since the accuracy of judgmental forecasts has been found to
be even worse than those of statistical methods [Dawes (1979), Dawes (1986), Goldberg
(1970), Hogarth and Makridakis (1981)]. Furthermore, statistical forecasting is, usually,
substantially less expensive. It became evident, therefore, that the problems facing sta­
tistical forecasting had to be understood and new, imaginative ways of correcting them
found.

In this chapter I use several real-world economic/business series to illustrate the de­
ficiencies surrounding the prevalent approach to statistical forecasting and to discuss the
reasons for such deficiencies. Second, I propose and empirically test a new approach to
deal with these problems. The results obtaincd are superior, by a large margin, to the
best method of the Makridakis or M-competition [Makridakis et al. (1982)J.

16.2 Deficiencies of Statistical Forecasting

The most positive outcome of the empirical findings has been the realization and accep­
tance by a majori ty of those working in the field of the disappointing conclusion that major
problems beset the area of statistical forecasting. Problem awareness has brought a gradual
but also fundamental change of attitudes. It is now accepted that the prevalent approach
to statistical forecasting cannot adequately deal with many real-world series [Armstrong
(1986), Clemen and Winkler (1986), Mahmoud (1984), Makridakis et al. (1982), Makri­
dakis (1986, 1987), Gardner and Makridakis (1988)]. In this section I summarize the
two major deficiencies of the prevalent approach, and provide examples to illustrate these
deficiencies.

16.2.1 Model fitting versus forecasting

In the prevalent approach to statistical forecasting, a model of a method (or methodology)
is fitted to all available data. The choice of the method (or methodology) is a matter of
personal preferences with some guidelines drawn from previous empirical studies. Once a
method (or methodology) has been selected, the specific model that best fits the available
historical data for one-period-ahead forecasts is selected and used to predict for the future
(post-sample). This is done by making at period t, m forecasts: X t+i , i = 1,2, ... , m.
"Best fit" commonly means the model that minimizcs the Mean Square Error (MSE), the
Mean Absolute Percentage Error (MAPE), Mean Absolute Deviation (MAD), Median,
Akaike's information criterion, or some analogous function. Theoretically, models that
minimize m-period-ahead forecasting errors (by making at period t forecast X[+m, aimed
at m-periods later) also exist, but in practice their usage is limi ted. This is due to three rea­
sons: (a) the theoretical advantages of these models over those making one-period-ahead
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forecasts are not clear; (b) empirical evidence has shown no real differences in post-sample
forecasting accuracy [Meese and Geweke (1984), Makridakis et al. (1982), Andersen and
Carbone (1983)] between one- and multi-step-ahead forecasts; and (c) available software
rarely includes options for multiple-period forecasts.

In some methods such as ARIMA or regression, model errors or the random distur­
bances need to be independent, constant, and normally distributed. In other methods
(exponential smoothing, Bayesian forecasting) there is no restriction about the distur­
bances although it is desirable that they be random, constant, and normally distributed.
None of the methods can know the post-sample forecasting errors, which are assumed to
possess properties analogous to those of the model's disturbances, although this is not
ordinarily true [Makridakis and Winkler (1988)]. Two assumptions are implicit in the
prevalent approach to model selection. First, it is assumed that the model that "best" fits
the available data will also be the best model to predict beyond these data (post-sample).
Second, it is assumed that the model that "best" forecasts for one-period ahead, will also
be best for predicting two-, three-, ... , m-periods ahead. Both assumptions, however, do
not hold true for many real-world economic/business series. Figure 16.1, for instance,
shows the ranking of five methods for one-, two-, ... , 18 forecasting horizons at different
chronological time periods. That is, the best (denoted by 1), second best (denoted by 2),
... , worst (denoted by 5) method at each time period was found for one-, two-, ... , and
18-period-ahead forecasts. Such rankings are not consistent at different time periods or
forecasting horizons. The series in Figure 16.1 is typical of those of the M-competition.

The same conclusion can be drawn by computing the rank correlation between how well
the methods in the M-competition fitted past data versus how well they forecast beyond
these data. Such rank correlations were small to start with (about 0.20) and dropped to
zero after forecasting horizons oflonger than four periods [Makridakis (1986)J.

The implications of the fact that the model that best fits the available data might
not be the best model for post-sample forecasting have not been adequately considered
[Priestley (1979)]. Even during the 1970s this possibility was not mentioned in the most
popular forecasting or econometric textbooks [Box and Jenkins (1970), Johnston (1972)].
Furthermore, no serious effort has been made to validate the ability of the selected model to
forecast accurately for out-of-sample periods. [A practice followed by those using regression
is to split the data into two halves and validate that the regression coefficients of the
two parts are not statistically different. Although such validation allows us to test for
nonrandom changes in the regression coefficients, it cannot tell us how well the model will
predict out-of-sample data.] This is partly because all data are being used to develop the
"best" model, and partly due to the belief (originated in natural/physical sciences) that a
"true best" model exists, and that such a model could be correctly identified and used for
forecasting. In as much as most series used in the social sciences are short, measurement
errors abound, and controlled experimentation is not possible, the basic premise that the
"best" model fitted to past data exists and can be identified, and that such a model is
also the best model to forecast beyond these data is invalid.
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Figure 16.2: International airline passengers, 1949-1981.

16.2.2 Constant versus changing patterns/relationships

Figure 16.2 shows monthly international airline passengers (in thousands) between 1949
and 1981. The data are divided into three parts. Part (a) consists of 144 observations
(1949-1961), which are the airline data widely used in the forecasting literature since the
early 1960s [Box and Jenkins (1970), Brown (1963)J. Part (b) includes data from 1961­
1967, while the data in part (c) are after 1967. There is an obvious change in the pattern
of international airline passengers after 1967 [part (c)J. Both the exponential trend and
the seasonal fluctuations are different from those existing before 1967. The prevalent ap­
proach to statistical forecasting assumes constancy of patterns or relationships or both.
Such an assumption permits the use of the best model fitted to available data to fore­
cast beyond these data. Unfortunately, however, constancy is not a realistic assumption
[Makridakis (1981, 1986)] as far as business or economic data are concerned, which raises
a major issue about the validity of the prevalent approach to statistical forecasting.

Since constancy of pattern/relationships is a prerequisite of the prevalent approach,
"nice" series such as the airline data [part (a) of Figure 16.2] had to be found to test new
forecasting methods and to illustrate their alleged "superior" performance. Furthermore,
it was considered normal to test a new method on a single series (such as the airline data)
and then generalize that the same accuracy level would hold for any other series. Having
followed this practice myself [Makridakis and Wheelwright (1977)], I can now say that
from a methodological point of view it is ludicrous to consider it possible to generalize
from the past to the future and from a single series to all series. As pa,rt (c) of Figure 16.2
shows this is not even possible for what seemed to be the perfect series back in the 1960s.

In addition to patterns, relationships can and do change. Figure 16.3 is the scatter
diagram between paper orders in France and pulp prices. At least four relationships can
be identified (A, B, C, and D), as well as two cases (E and F) where pulp price increases
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did not affect (reduce) orders. Assuming that the relationship between price and orders is
constant is not realistic and would result in inaccurate forecasts. Econometricians might
argue that the factors causing the relationship between paper orders and prices to shift
could be found (if no factors can be found they include dummy variables). Although in
some cases this might be possible, it cannot help to forecast more accurately (although the
R2 of the model fit could be high) since the majority of the factors causing the relationship
to change are exogenous and, therefore, unpredictable themselves.

Although most forecasting methods would provide equally good forecasts for data series
when there are no changes in established patterns or relationships or both, the forecasts
and their accuracy will vary substantially when changes in patterns or relationships or both
occur. It is necessary, therefore, to understand how various methods forecast when such
changes do take place, since this is the key to understanding the deficiencies of available
methods and to becoming capable of forecasting in the real world when constancy of
patterns/relationships cannot be assured. Although changes of relationships also need to
be considered, the remainder of this chapter concentrates on the effects of pattern changes
on forecasting.

Figures 16.4, 16.5, and 16.6 (the data of the three figures have been deseasonalized
to better illustrate pattern changes and their consequences) show three kinds of pattern
change during forecasting. In Figure 16.4 the exponential growth trend changed into an
abrupt decline. There was nothing in the past data to indicate that such a change was
forthcoming. It was impossible, therefore, to have anticipated a pattern change without
exogenous judgmental knowledge. All methods, except for single exponential smoothing,
forecast a continuation of the established trend (single exponential smoothing always fore­
casts horizontally at the most recent smoothed data level). In Figure 16.4 exponential
smoothing performs the best, since all methods (except linear trend regression) forecast
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Figure 16.4: A monthly series (MNM61) of the M-competition (with an unexpected pat­
tern change while forecasting) and the forecasts of eight methods.

by extrapolating the established exponential trend.

The data of Figure 16.5 start increasing at period 34 and do so until period 39. The fig­
ures then decrease for two consecutive periods. Two methods (Box-Jenkins and quadratic
smoothing) ignore the latest two-period decline and forecast a continuation of the recent
increase from periods 34 to 39.Bayesian forecasting assumes that the decline in period 39
and 40 is not random, and forecasts by extrapolating the downward trend implicitly as­
suming the latest decline to be permanent. By so doing, the Bayesian procedure produces
forecasts that beat all other methods. Linear trend regression ignores all fluctuations
around the trend line, assuming them to be random, and extrapolates the trend to arrive
at linearly growing forecasts. The forecasts of the other methods are between those of
regression and Box-Jenkins. Interestingly, the forecasts of single exponential smoothing
are fairly accurate although they ignore both the initial increase (periods 34 to 39) in the
actual data and the subsequent two-period decline (see Figure 16.5). The series in Figure
16.5, contrary to that of the series in Figure 16.4, has in the past indicated that it might
decline after several periods of continuous increase. Such a decline has happened twice in
the past. One could therefore have anticipated that a similar decline might occur in the
future and have forecasted in this light.

The data of Figure 16.6 reach a trough at period 96, then increase (with small inter­
ruptions) until period 120 at which point they start declining until period 125. Finally,
there is a single increase at period 126. Bayesian forecasting, although doing best with
the data of Figure 16.5, does the worst with those of Figure 16.6. It assumes a growing
trend, thus providing increasing forecasts. Quadratic exponential smoothing, which did
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the worst with the data of Figure 16.5, now does the best by ignoring the increase in the
last period and forecasting a continuing decline from periods 120 onward. The forecasts of
the other methods are in between those of quadratic smoothing and Bayesian forecasting.
The series of Figure 16.6 is similar to that of Figure 16.5 in that several declines after
persistent increases, similar to the latest one, have occurred in the past. It is not un­
reasonable, therefore, to anticipate that similar declines might occur in the future during
forecasting (although the exact timing might not be predictable).

Three observations are worth making at this point. First, the forecasts of the var­
ious methods are allover the graph when the data pattern changes (see Figures 16.4,
16.5, and 16.6) during the forecast period (this is one reason why combining various
methods by simple arithmetic averaging does well). Second, the accuracy of the methods
depends upon whether the latest nonrandom change in pattern is temporary or permanent
[Makridakis (1986)]. Some methods, such as Bayesian forecasting, are reactive in extrapo­
lating recent nonrandom changes in the data pattern by assuming them to be permanent.
Other methods are slower in identifying and extrapolating the continuation of nonrandom
changes in the data. Linear trend regression, for instance, ignores all changes around
the long-term trend, while single exponential smoothing assumes a no-change situation.
Third, single exponential smoothing seems to do well, not because it can predict pattern
changes, but rather because its forecasts are robust, staying in the middle of the data
and usually being in the middle of the forecasts of the various methods when patterns
change. This seems to be a good strategy, at least for the short term, since empirically
the accuracy of single exponential smoothing for one-period-ahead forecasts was found to
be the best of all methods in the M-competition.

16.3 The Proposed Approach

For any forecasting approach to be realistic and practically relevant it must avoid the two
major problems facing the prevalent approach to statistical forecasting~thatis, selection
based upon how well a model fits historical data for one-step-ahead forecasts, and assuming
constancy of patterns/relationships. In addition, it needs to incorporate what we have
learned from empirical studies (see Table 16.1 for a summary), and it must permit one to
test forecasting performance on out-of-sample data [see also Fildes (1986)].

Initially, the desired characteristics of the new approach might seem contradictory.
Any time series model, for instance, must be based on past data. At the same time, it
seems that the future might be different from the past. Furthermore, all data should be
used to develop the forecasting model (otherwise some information might be lost), while
at the same time it is advocated that out-of-sample testing needs to be done. These
seemingly contradictory requirements can be simultaneously achieved if we are willing to
reconceptualize our approach to statistical modeling and forecasting.

Figure 16.7 shows an approach to model selection, which, instead of using all n data
points to develop a forecasting model, only s < n data points are initially used and m
forecasts are made. Since actual data exist beyond s, the actual forecasting accuracy
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Table 16.1: Major empirical evidence and its implications.

Major findings
1. Simple methods

2. Seasonality

3. Combining

4. Short versus long
term

5. Dampening the
trend

Empirical evidence
Simple, automatic and inex­
pensive methods give realistic
forecasts.

Seasonality can be accurately
predicted no matter what ap­
proach is being used.
Combining different methods
(by a simple ari thmetic aver­
age) improves forecasting ac­
curacy and reduces the vari­
ance of errors.

Some models are more accu­
rate for the short term (e.g.,
single exponential smooth­
ing) others are more accurate
for the long term (e.g., long­
term ARARMA models).
Dampening the trend im­
proves forecasting accuracy.

Implications
Use simple methods to a greater ex­
tent unless specific reasons exist that
can be substantiated by concrete em­
pirical evidence. For instance, use ex­
ponential smoothing methods.
Deseasonalize the data to develop
a model and forecast. Then re­
seasonalize forecasts.
No matter what the approach utilized,
use several methods and combine their
forecasts. Choose methods in such a
way as their forecasts will be as com­
plementary (therefore independent) as
possible.
In addition to traditional methods
also use an AR(p) model where the
length of p is large. Such AR(p)
(called long memory) is appropriate
for capturing and extrapolating the
long-term trend.
Dampen the trend extrapolation using
a dampen-trend exponential smooth­
ing model.

of the model can be tested for' each of the 171 forecasts. Accuracy measures (such as
MAPE, MSE, or median) for one, two, ... , m-period-ahead forecasts can, therefore, be
found. Subsequently, one more data point can be used, m forecasts made, and their actual
forecasting accuracy recorded. The process can be done, each time using one more data
point, until all observations except one have been used. This type of testing (sliding
simulation) can be called out-of-sample and is shown schematically in Figure 16.7.

Once the sliding simulation has been completed, J( (where J( = n-s, and where n is the
number of data and s the start of the simulation) olle-step-ahead accuracy measures, J( -1

two-step-ahead accuracy measures, ... , A' - '/71, + 1 m-step-ahead accuracy mea.sures are
available (see Figure 16.7). The average of these measures can subsequently be computed
for each of the 17l forecasting horizons (see Figure 16.7). Consequently, model selection can
be based on actual out-of-sample forecasting performance without any loss of information,
since in the final analysis all data have been used for making the final forecast. Such a type
of model selection is fundamentally different from the prevalent approach in two respect's.
First, model selection is based on forecasts of out-of-sample data. Second, forecasting
performance is measured, in addition to one-period-ahead, for two-, thr'ee-, ... , and 171­

step-ahead forecasts. Once a model has been selected for each of 171 forecasting horizons
based on its out-of-sample performance, it can then be used to predict for the future-that
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is, for making post-sample forecasts, for the specific period(s) it has been found to be the
"best" .

16.3.1 Among-methods model selection

Several authors [e.g., see Jenkins (1982)] have pointed out that combining forecasts makes
no sense from a theoretical point of view. Yet, the empirical evidence showing a "consen­
sus" forecast to outperform the individual methods being combined is indisputable [Clemen
and Winkler (1986), Gupta and Wilton (Hl87), Mahmoud (1984), Zarnowitz (1984)]. Rea­
sons contributing to the more accurate performance of combining over individual methods
can be deduced from Figures 16.4, 16.5, and 16.6. In Figures 16.4, 16.5, and 16.6, the
forecasts of the different methods vary widely, thus making their average robust and closer
to the center of the unpredictably changing pattern. This average, therefore, provides not
only more accurate forecasts, but also forecasts with smaller variance [Makridakis and
Winkler (1983)].

There is another fundamental reason why combining works well with real-data series,
one that relates to our concept of what constitutes the "best" model to represent reality.
In the frictionless physical/natural sciences a best model might exist. This is hardly the
case, however, in the business/economic fields where the "best" model will be different
from series to series (e.g., see Figu1'es 16.4, 16.5, and 16.6), and where the best can vary at
each period and with each forecasting horizon (see Figure 16.1). Under such circumstances,
combining different methods or models or both provides a satisfactory solution that seems
to forecast more accuratly than the individual methods being combined.

Although additional research might be required to decide which methods to include,
four nonseasonal methods can be used in parallel, with the ultimate selection to be made
from the "best" among them. The reasons for proposing these four methods are the
following:

1. Empirical evidence has shown that these methods are accurate.

2. They are simple.

3. Their forecasts are intuitive.

4. They can produce forecasts and confidence intervals in an automatic, push-button
manner.

5. They are complementary, specifically (a) single exponential smoothing assumes that
changes cannot be predicted; (b) Holt's exponential smoothing extrapolates a linear
trend (weighting recent data more heavily); (c) dampen-trend exponential smoothing
[Gardner and McKenzie (198.5)] is similar to Holt's except, as its name implies, it
dampens the trend for longer forecasting horizons; and (d) a long-term trend [a
long nonstationary auto-regressive (AR) model similar to the long-memory ARAR
models proposed by Parzen (1982)] model that captures the long-term tendency of
a series.
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Figure 16.7: A forecasting simulation of six forecasts using the jackknife approach assum­
ing selection criterion is MAPE.
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During the sliding simulation the aforementioned four methods are run in parallel,
using an optimal model from each method that minimizes some error-selection criterion.
Although within-method model selection is discussed below, for the moment assume that
the "best" model for each method is selected by minimizing the MSE at each period of
the simulation. Thus, the model that minimizes the one-step-ahead model-fitting errors
for the first s data points is selected and m forecasts are made. Then, the first s + 1 data
points are used, the "best" model is found, and m forecasts are made; and so on until
all data points except one have been used. The process allows us to compute m forecasts
(based on the "best" model as defined by the prevalent approach to statistical forecasting)
at each period of the simulation, compute the square error, the absolute percentage error,
or other accuracy measures, at each step of the simulation. Once the simulation has
been completed the average of the error function used for each of m forecasting horizons
can be found (see Figure 16.7). There will be ]( one-period-ahead forecasts, ]( - 1 two­
period-ahead forecasts, ... , ]( - m + 1 m-period-ahead forecasts (see Figure 16.7) whose
out-oi-sample average accuracy can be computed.

Unlike the prevalent approach, a different method can be selected for each series and
each of the m forecasting horizons, depending upon the out-of-sample performance of each
method during the sliding simulation. Furthermore, confidence intervals based on actual
forecasting errors can be constructed [see Williams and Goodman (1971)J. In addition,
information (i.e., standard errors) can be obtained about the sampling variation of the
accuracy measure we are concerned with (e.g., the MSE or MAPE), since the individual
values of such measures are known through the sliding simulation. Knowing the empirical
sampling distribution can provide us with invaluable information not available through
the prevalent approach to statistical forecasting (or statistical modeling in general) which
can permit us to select the "best" method among the four using criteria other than the
smallest MSE, MAPE, or median.

Table 16.2 shows the forecasting performance of the proposed approach, together with
the results of the most accurate and important methods ofthe M-competition as well as the
accuracy of dampen exponential smoothing [Gardner and McKenzie (1985)]. The model
selection for each method was done using the prevalent approach of choosing the model
that minimizes the one-step-ahead fitting e1'r'Ors. The first part of Table 16.2 shows the
individual accuracy of the four methods as well as the accuracy of their combined forecasts.
The second part lists the accuracy of the remaining most accurate and important methods
of the M-competition.

The third part of Table 16.2 shows the accuracy when the method among the four
with the smallest MSE or MAPE was selected to forecast for m-periods ahead using the
procedure of the prevalent approach if more than one method is involved (i.e., select the
method, among the four, with the smallest oue-step-ahead IvISE or MAPE when the best
model is fitted to the past data). The MSE and 1IAPE of such selection are worse than
that of combining the four methods by a simple arithmetic average. Notice, however, that
the MSE and MAPE for the model fitting are better than the corresponding ones of the
four individual methods. The evidence in Table 16.2 demonstrates that the strategy of
selecting the method that minimizes the MSE or 11IAPE when a model is fitted to past
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Table 16.2: Among-methods model selection using different selection criteria. Average
MAPE; all data (111).

Filling Foreeailling hOrlzonil Average or roreea~Hng horlzonoi
Method model 1 2 3 4 6 8 12 18 1·4 1·6 1·8 1·12 1·18

( 1) 8.6 7.8 10.8 13.1 H.ll 17.'2 16.oS 13.6 30.1 U.6 13.2 14.1 H.D l6.8
(2) 10.1 7.8 10.2 12.4 14 .• 16.8 18.1 14.0 30.6 11.2 12.9 14.2 14.3 17.2
(3) 8.6 7.9 lO.~ 13.2 l~.l 19.0 23.1 l6.~ 3'.2 11.7 13.8 16.1 L6.4 19.7
(4) 6.8 9.6 8.6 10.3 12.2 11..1 14.7 14.7 24.~ 10.2 11.4 1'2.3 12.7 14.3
(.) 8.2 7.7 9.2 10.8 1'2.9 1~.2 14.8 13.8 26.6 10.1 11.1 12.6 13.2 B.2

(6) 10.8 9.8 11.3 13.7 1~.1 188 23.3 16.2 33.9 12.~ 14.3 16.3 16.2 19.0
(7) 13.3 10.3 12.8 13.6 14.4 17.1 19.2 16.1 30.6 12.8 14.1 l~.2 l~.O 17.6
(8) 0.0 10.3 10.7 11.4 14.~ 17.1 18.9 16.4 34.2 11.7 13.4 14.8 l~.l 18,0

(9) 12.3 11.6 12.8 14.~ 1~.3 17.6 18.9 17.0 28.6 13.~ 14.7 l~.b loS.a 18.6
(10) 8.9 10.6 10,1 10.7 13.oS 14.7 16.0 13.7 'l6.oS 11.4 1'2.4 13.3 13.4 IbA

(ll ) 6.7 8.4 8.3 11.'2 13.8 16.0 17.8 17.0 34.6 10.4 12.0 13.oS 14.1 18.0
(12) 6.1 8.4 89 11.9 tb.O L6.7 19.b lbA 31.6 11.0 12.7 14.3 144 It.oS

(13) n.' 7.6 8.' 10.0 12.3 14.2 16.1 14.'2 20.4 9.6 10.9 12.2 l'2.b 13.8
(14) 7.0 8.4 9.6 12.3 14.6 16.4 14.2 20.oS 9.3 10.9 12.1 12.b 13.8

(1') 7.4 8.8 10.0 12.1 14.1 1~. 7 13.4 20.6 9.6 10.9 12.2 12.3 13.9
(16) 7.3 8.6 9.8 12.6 14.9 16.7 12.7 20.' 9.6 11.1 12.6 12.7 14.l
(17) 7.2 8.6 9.7 l3.0 14.8 l7.9 l2.6 21.l 9.6 ll.2 12.8 l2.9 l4.4
(18) n .• 7.3 88 9.6 ll.8 14.2 1~.6 l3.3 20.7 9.4 lO.8 12.0 12.2 l3.8
(19) n.' 7.1 8.3 9.8 12.6 l4.9 16.4 l2.8 20.~ 9.4 11.0 12.~ l2.6 14.0
(20) 7.1 83 9 7 13.0 14.9 11.8 12.6 21.1 9.' 1l.1 12.7 12.9 14.3
(21) 7.2 8. 9.3 12.2 l4.3 1~.9 14.2 20.4 9.3 10.7 11.9 l2.3 13.7
(22) 7.7 8.7 10.0 12.7 13.8 l~.3 14.4 20.7 9.8 1l.0 12.2 l2.~ 13.7

(23) 7.' 8.2 9.8 12.8 l3.9 l~.3 l3.7 20.9 9.6 10.9 ll.9 l2.3 13.4
(24) 7 .• 8.4 9.8 12.3 13.6 14.4 14.0 20.~ 9.' 10.7 11.6 12.0 13.2

The methods are: (1) single exponential smoothing; (2) dampen-trend exponential smoothing; (3)
Holt's linear exponential smoothing; (4) long term memory AR(p) model; (5) above four methods
combined; (6) automatic AEP filter; (7) Bayesian forecasting; (8) Box-Jenkins' ARIMA models;

(9) Lewandowski's FORSYS; (10) Parzens' ARARMA models; (11) method with best MSE model
fit; (12) method with best MAPE model fit; (13) best MAPE for out-of-sample; (14) best MSE
for out-of-sample; (15) combine two best MAPE out-of-sample; (16) combine three best MAPE
out-of-sample; (17) combine four best MAPE out-of-sample; (18) combine two best MSE out-of­

sample; (19) combine three best MSE out-of-sample; (20) combine four best MSE out-of-sample;
(21) combine best MSE and MAPE out-of-sample; (22) combine best MSE, MAPE, and rank

out-of-sample; (23) reference; (24) best in confidence interval.

data does not improve post-sample forecasting accuracy.

The remainder of Table 16.2 shows the accuracy of the four methods when the selection
among the four methods was done with out-of-sample information. Several selection cri­
teria for choosing one of the four methods for each series and for each of the m forecasting
horizons were tried. The effect of combining the best two, three, or four methods is also
shown.

There is a large improvement if, instead of using the MSE or MAPE of model fit, the
method with the best MSE, MAPE for each of the m-forecasting horizons is selected to
forecast for that specific horizon. (The improvement in MAPE using this selection scheme
beats the best method in the M-competition-Parzen's ARARMA models-by more than
ARARMA models did better than single exponential smoothing.) The results seem equally
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accurate for short- as well as long-forecasting horizons. Moreover, combining the forecasts
ofthe methods with the best MAPE or MSE for each forecasting horizon does not improve
the results. This is contrary to previous findings [Makridakis and Winkler (1983), Russell
and Adams (1987)] and suggests a model selection process where a combining does not
beat the best method chosen.

An overall MAPE of 13.2 %is found by choosing all methods whose MAPE is within
the range of the MAPE of the best method plus the error bound that is found by taking
into account the sampling variation (as measured by the standard error) of the MAPE's of
the methods involveq [see row (24) "best in confidence interval" in Table 16.2]. Another
selection criterion used was to choose a method that prior experience with the results of
the M-competition and their accuracy has indicated to be the most appropriate, called
reference method, and to retain it unless evidence shows that another method produces
forecasts which are statistically more accurate; that is, there is statistical evidence to reject
the null hypotheses postulating that the reference method is not the best. Several other
selection criteria were utilized, and their results can be seen in Table 16.2. The differences
in forecasting accuracy caused by most of these criteria do not seem to be large. The
important factor is the selection of a "best" method(s) among the four, run in parallel,
based on the out-of-sample accuracy performance of these four methods for each of the m
forecasting horizons.

16.3.2 Within-method model selection

Given a particular method, some optimization criterion can be used to select an appro­
priate model. This means finding seasonal indices and optimal parameter values. This
selection can be done in two ways. The first requires using the first s data points and
finding the model that best fits these data points. This "best" model can be subsequently
used to make m forecasts and compute various errors measured during the sliding simu­
lation. Then, the first s +1 data points can be used to find the model that best fits this
augmented set and make m new forecasts. This optimization process can continue, each
time computing the optimal model until aU but one of the data points have been used in
the model-fitting process. Alternatively, the "best" model can be found by using all n
data points, and then this model, once found, can be utilized to make m forecasts with s
data points, s + 1 data points, ... , and so on until all the data points but one have been
utilized in the simulation.

Originally, the first approach was used. Then it was decided to compute the seasonal
indices using all data points (finding seasonal indices requires at least 3-4 years of data
which put a serious constraint on the starting period of the simulation) and still optimize
the model used at each step of the simulation. The results were comparable. Later on,
the parameters of the "best" model for aU n data points were found and used at each
step of the simulation without re-optimizing the model's parameters at each step. To
my surprise overall post-sample forecasting accuracy did not change. It was, therefore,
decided to use the second approach, which involved considerably fewer computations. The
results of Table 16.2 are based on such an approach to within-methods model selection.
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[The method of Brown's quadratic exponential smoothing was used instead of the Long
AR model, to compute out-of-sample forecasts. At present, I am exploring ways of finding
out-of-sample forecasts using the Long AR method.]

The best model for each of the four methods can be used to make m forecasts at each
step of the sliding simulation. Although the model selection procedure is the same as
that of the prevalent approach, it allows us to know the actual forecasting performance
of the optimally selected model for each of m forecasting horizons. Such performance
can be subsequently used to choose the best of the four methods, as described above, by
comparing their out-of-sample accuracy at each of the m-forecasting horizons. This can be
done by basing the model selection not on past data, but on the out-of-sample forecasting
performance. This means using the first s data points, making m forecasts, and recording
the errors for each of the m horizons. Then, using the first s + 1 data points to make m
forecasts and obtain their MSE's or MAPE's. This procedure would continue with s +2,
s + 3, ... , n - 1 data points. If this simulation, starting with s and ending at n - 1 data
points, is repeated using alternative models of the same method, the model that minimizes
the one-period-ahead, out-of-sample forecasting errors can be selected, as can the model
that minimizes two-periods-ahead, three-periods-ahead, ... , and m-period-ahead errors.
Although the specific model is fitted to past data, the selection is done on out-of-sample
forecasting performance for each forecasting horizon.

Table 16.3 shows the results of the prevalent approach to model selection based on min­
imizing one-period-ahead MSE for the model fitting, and that of model selection based on
out-of-sample MSE performance for each of the m-horizons. Although the results for a
one-period-ahead forecasting horizon are similar between the two approaches, the improve­
ment of the proposed out-of-sample, within-method model selection starts at forecasting
horizon two and becomes larger as the length of the forecasting horizons increases. The
improvement is considerable. The accuracy of single exponential smoothing with the new
approach is slightly better than that of Parzen's ARARMA models, the best method of
the M-competition. Furthermore, if yearly data (for which single exponential smoothing is
inappropriate since it assumes no trend) are excluded, the performance of single exponen­
tial smoothing is much better than that of ARARMA models. The accuracy of ARARMA
models, or any other method, will probably also improve if the model selection is based on
out-of-sample data for each of the m foreca.sting horizons. (Research for selecting other
models than smoothing based on out-of-sample performance is being done at present.)

16.4 Discussion and Directions for Future Research

The approach to statistical forecasting proposed in this chapter makes theoretical sense.
Equally important, when tested empirically with the M-competition data, it provides
superior results in terms of improved forecasting accuracy. More academic research and
usage of such an approach in applied settings is, therefore, required to verify its value.



250 Economic Structural Change: Analysis and Forecasting

Table 16.3: Within-method model selection using as criteria the model that minimizes the
MSE for each forecasting horizon.

FIUIng ForeclLsilng hOrizons Average or rorecll.dtlng hOrizons
Method model I 2 3 12 18 1·4 1·6 1·8 1·12 1-l8

Average MAPE: all da.ta (ill)

(I) 8.9 lO.6 lO.7 LO.7 13.5 l4..7 16.0 13.7 26.~ 11.4 12.4 13.3 13.4 13.4

(2) 8.6 7.8 lO.8 13.1 14.:) 17.2 16,:) l3.6 30. L 11.6 13.2 H.I 14.0 16.8

(3) n .• 7.8 10.4 12.2 l3.~ 15.7 14.9 13 .• 2~.1 1.1..0 12.3 13.1 13.0 l~.2

( 4) 10.1 7.8 10.2 12.4 14.4 16.8 l8.1 14.0 30.6 11.2 12.9 14.2 14.3 i7.2
(~) 8.2 96 12.1 12.7 17.2 18.6 It...5 27.3 lO.6 12 .• 13.9 14.2 16.6

(6) 8.6 7.9 10.5 13.2 15.1 19.0 23.1 16.5 3~.2 11.7 l3.8 16.1 16.• 19.7

(7) n .• 7.9 10.3 1l.9 13.6 15.7 17,8 14.0 26.8 10.9 12.4 l3.8 14.1 L6.•
(8) 8.7 8.8 Ll.8 15.0 16.9 24.1 35.7 29.7 63.6 13.1 16.4 20.3 22.2 30.2
(9) 8.8 il.a 14.9 14.6 18.6 22.3 26.b 4. 7.2 12.3 14.1 15.8 16.9 22.3

Averll.ge MAPE: }'early dll.tll. (20)

(I) 9.6 7.6 7.7 12.8 16.0 18.0 0.0 0.0 0.0 11.0 13.8 13.8 13.8 13.8
(2) 11.4 6.2 9.1 16.3 21.0 25.4 00 0.0 0.0 13.1 16.9 16.9 16.9 16.9
(3) 6.1 8.0 15.7 20.9 24.~ 0.0 0.0 0.0 12.1 16'" 16.4 16.4 16 ...
(4) 1~.1 6.9 96 Ib.2 20.3 20.9 0.0 0.0 0.0 13.0 16.0 16.0 16.0 16.0
(~) 6.6 7.1 11.9 18.1 24.4 0.0 0.0 0.0 11.1 15.8 15.8 15.8 15.8
(6) 12.9 ~.6 7.2 11.9 16.2 16.5 0.0 0.0 0.0 10.2 12.7 12.7 12.1 12.7
(7) ~. 7 6.7 10.9 14.1 1b.9 0.0 0.0 0.0 9.4 L1.8 11.8 H.8 11.8
(8) 11.1 7.0 8.6 118 16.0 11.4 00 0.0 0.0 10.9 13.6 13.6 13.6 13.6

(9) 7.3 6.8 H.3 12.4 15.1 0.0 0.0 0.0 9.~ H.4 It.4 11.4 LL.4

Avera.ge MAPE: qua.rterly da.la (23)

(I) 7.7 6.8 7.6 12.0 16.5 20.4 21.0 0.0 0.0 10.1 14.1 16.7 16.7 16.1
(2) 77 90 12.0 14.4 20.b 21.9 22.6 0.0 0.0 14.0 16.5 18.5 18.5 18.5
(3) 9.1 10.7 11.4 15.6 11.4 18.1 0.0 0.0 11.7 13.6 15'" 15.4 1b.4
( 4) 9.6 8.8 8.6 11.9 19.7 24.8 266 0.0 0.0 12.2 16.0 19.3 19.3 19.3
(.) n.' 9.~ 8.6 12.7 13.7 21.9 22.0 0.0 00 11.1 13.9 16.6 16.6 16.6
(6) 7.2 9.2 10.4 17.1 25.1 32.2 39.2 0.0 0.0 1b.4 20.7 2b.9 25.9 25.9
(7) 7.4 10.6 14.4 20.3 21.5 21.2 0.0 0.0 13.5 15.9 17.9 17.9 17.9
(8) 7.9 11.1 12.b 21.1 32.0 46.0 66.6 0.0 0.0 19.2 27.0 35.6 3~.6 35.6

(9) 10.0 12.1 22.4 25.2 29.5 34.0 0.0 0.0 17'" 21.2 24.6 24.6 24.6

Average MAPE: monthly da.ta (68)

(I) 9.0 12.7 12.6 96 11.7 11.8 14.3 13.7 26.' 11.7 11.4 12.1 12.6 Ib.4

(2) 8.0 7.9 10.9 11.7 10.6 13.2 14.4 13.6 30.1 10.3 11.0 12.0 12.6 16.5
(3) 7.9 11.1 11.4 10.6 12.5 13.8 13.4 25.1 10.2 10.7 11.6 12.0 U.l
(4 ) 87 7.8 II ,0 11.8 10.9 12.9 Ib.2 14.0 30.6 lOA 11.0 12.] 13.0 17.1
(.) n .• 8.2 lO.7 12.0 10.5 13.5 17.'1 15.5 27.3 lOA 10.9 12.5 13.4 16.7
(6) 7.9 8.2 11.5 12.3 1l.4 Ib.2 17.7 16.5 3'.2 10.9 U.8 13.5 14.8 19.5
(7) 8.7 1l.3 11.3 112 13.7 16.7 14.0 26.8 10.6 11.4 12.8 13.6 16.6
(8) 8.2 8.6 12.5 13.8 12 I 18.7 25.3 29 7 63.6 11.7 13 7 16.6 20.4 31.0
(9) 8.8 11.8 13.5 11.6 16.0 18.4 2£.~ 472 11.4 12.5 13.9 16.0 23.0

The methods are: (1) Parzen's ARARMA (lVI-competition); (2) single (optimal model fitting);
(3) single (optimal ou t-of-sample); (4) dampen-trend (optimal model fitting); (5) dampen-trend
(optimal ou t-of-sample); (6) Holt (optimal model fitting); (7) Holt (optimal out-of-sample); (8)
quadratic (optimal model fitting); (9) quadratic (optimal ou t-of-sample).
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In the last five years countless hours of CPU time have been used to come up with new
ways of forecasting more accurately. Innumerable decision rules, combining procedures,
error measures (MSE, MAPE, median, MAD, geometric mean, etc.), new methods, clas­
sification schemes (e.g., use method A for macro data, method B for micro data, method
C for industry, or method A for monthly, B for quarterly, and C for yearly data), and
method and model decision rules were attempted. As in similar work reported in the
literature [Schnaars (1986)] any gains in post-sample accuracy were found to be marginal.
Once the best method, however, among four runs in parallel, was selected based on out­
of-sample accuracy measures, important gains in post-sample accuracy were observed (see
Table 16.2). Furthermore, when the out-of-sample within-method model selection (see
Table 16.3) was used important improvements in forecasting accuracy were also observed.
At present, additional work is being done on model-method selection that combines the
within- and among-methods rules using out-of-sample criteria for each of the m-forecasting
horizons. The initial results seem encouraging although much more work is required before
definite conclusions can be drawn. My hope is that replications and more research will
provide addi tional insights to contribute to a better theoretical foundation for statistical
forecasting and to even greater improvements in forecasting accuracy in organizations.

The idea of this sliding simulation provides additional possibilities beyond improved
forecasting accuracy. First, realistic confidence intervals can be built for each of the m
forecasting horizons. Such intervals need not be symmetric since information is collected
about underestimates as well as overestimates around the most likely out-of-sample fore­
casts. In addition, through an analysis of extreme errors it is possible to warn forecasting
users about unusual errors and help them think of ways to be prepared to face similar
errors when they occur in the future. Moreover, the analysis of such errors can be done
for each of m-forecasting horizons since unexpected errors tend to become larger as the
forecasting horizons become longer.

Addi tional improvements in forecasting accuracy are possible by the appropriate choice
of the methods to be run in parallel. Moreover, the forecasts of advanced methods might
prove to be superior to those of simple ones, if the best model among such methods is
selected based on out-of-sample performance. In addition, other decision rules for select­
ing methods based on out-of-sample forecasting errors might further improve foreca,sting
accuracy. These and similar issues need to be investigated through additional theoretical
and empirical research. A rather encouraging conclusion of the empirical work carried out
in this chapter is that combining methods seem to provide little or no gains in forecasting
accuracy. This means that individual methods adequately capture underlying patterns in
a way that their forecasts cannot be improved through combining.

16.5 Conclusions

In this chapter a new approach to statistical forecasting has been proposed and tested.
Such an approach aims at eliminating the deficiencies of the prevalent approach to statis­
tical forecasting. It is based on the principle that model selection must be done on actual,



252 Economic Structural Change: Analysis and Forecasting

out-of-sample forecasting performance. Such selection can be made at two levels. First,
the best model (within-method selection) of a single method can be chosen. Second, the
best method among several, run in parallel, can be selected. Both the within-method and
among-methods selection is done on out-of-sample comparisons. It is not assumed that
there exist a unique method that can forecast best for all series and forecasting horizons.
This means that a different model or method or both can be selected for each series and
for each forecasting horizon, based on the actual out-of-sample forecasting performance of
the model and method for this specific series and forecasting horizon.

The empirical testing of the proposed approach shows important improvements in
forecasting accuracy. Such improvements extend to short-, medium-, and long-forecasting
horizons; different types of data (yearly, quarterly, monthly); and other classifications.
Finally, the improvements come both within-method, when the best model is chosen based
on out-of-sample information (see Table 16.3), and among-methods, when the best method
is chosen based on out-of-sample performance (see Table 16.2). Combining the within­
and among-methods selection might further improve post-sample forecasting accuracy, and
research currently aims at exploring and measuring the advantages of such combining.
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CHAPTER 17

The Relation between Economic Growth
and Structural Change

Wilhelm Krelle

Summary
The relation between economic growth and structural change is analyzed by a dynamic
multi sector world model, where production follows demand and demand changes with
higher income. It shows that economic growth is inevitably connected with structural
change. If structural change is restrained, the growth rate is reduced. The model covers
not only structural change in the sense of changes in the proportion of production and
demand of different commodities. Structural change in the statistical sense, i.e., change
in the parameter values of the behavior equation, is not considered.

17.1 The Problem

There is no question that the long-term economic growth of an economy is connected with
different kinds of structural change. What are the reasons for this interdependence? In
this chapter we try to answer this question and to model the interrelationships in such
a way that they can be tested econometrically. Some tests have already been performed
and will be presented below.

Economic growth is measured by the growth rate of real GDP (or NMP in the case of
CMEA countries) and its components, or by growth rates of GDP per capita. The concept
of structural change is more difficult. It comprises many economic fields, e.g.:

1. Change in the sectoral composition of GDP, e.g., measured by the ratio of the value­
added in specific industries to total GDP. This includes also the appearance of new
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2. Change in the commodity composition of demand. This also includes the emergence
of new products.

3. Change in the size, composition, and employment of the labor force.

4. Change in trade relations, i.e., in the direction, size, and commodity composition of
trade flows between different countries and in the ensuing asset and debt positions
of countries.

5. Change in the relative size and international importance of different countries.

6. Change in the distribution of income and wealth of households and social groups.

7. Change in the general economic and political order, e.g., the degree of planning,
state intervention, and regulation.

8. Change in the location of industries and households.

The structural changes may be smooth and continuous or abrupt and discrete, so that
separate regimes may be identified with different behavioral characteristics in each regime.
In this chapter we shall concentrate OIl points 1 and 2, give some hints with respect to 3,
4,5, and omit 6, 7, and 8.

The statistical data and the econometric estimations presented in this chapter are
mostly results of the IIASA-University of Bonn Research Project on Economic Growth
and Structural Change, a common undertaking of the International Institute for Applied
Systems Analysis (IIASA) in Laxenburg, Austria, and of the University of Bonn (Depart­
ment of Economics). The research was carried out from 1985 to 1987 in Bonn under my
supervision. The results are published in Krelle (1989).

17.2 Economic Growth and Commodity Composition of
GDP and of Production Functions: A Look at the
Statistics

The growth rates of GDP declined from the mid-1960s until the early 1980s in almost all
countries and started to rise after that in most countries. Figure 17.1 shows this declining
phase in terms of the growth rates. Figure 17.2 shows the observations in terms of absolute
values of real GDP per capita in 1975 $ and some trend forecasts of the IIASA-University
of Bonn Research Project [see Krelle (1989, p. 70)]. The forecasts are made under the
assumption that the statistical sources for the CMEA countries are reliable and that there
are no wars or internal troubles. Judging from Figm-es 17.1 and 17.2 we may state
that the long-term growth process has continued worldwide, though at a changing pace.
This growth in aggregated terms was accompanied by important structural changes in
the production structure. These changes are visible even on a highly aggregated sectoral
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Figure 17.1: Growth rates (in percent) of GDP (for OECD countries) or NMP (for CMEA
countries), five-year moving avarages. Source for OECD countries: GECD, National
Accounts, Volume I: Main Aggregates, Paris, different years. Sources for CMEA coun­
tries: UN Yearbook of National Accounts Statistics, 1970-1982; Statistical Yearbook of the
CMEA (Statistics), 1970-1982; Statistical Yearbook of the CMEA (Statisticheskij Ezhe­
godni Stran Chlenov SEVY, 1971-1983; United Nations Yearbook of International Trade
Statistics, 1977, 1982; National Statistical Yearbooks of USSR, Bulgaria, CSFR, GDR,
Hungary, and Poland for various years; own calculations. The figure is taken from Krelle
(1987, p. 380).

basis. Figure 17.3 shows this graphically for the USA. For the most important OECD
and CMEA countries actual figures and forecasts are given in Tables 17.1 and 17.2. These
figures show that agriculture is declining in almost all countries. Manufacturing gives a
mixed picture; it is declining in some OECD countries (UK and Canada), expanding in
others (Japan, France, Italy), and more or less stable in the rest. Services are expanding
almost everywhere with the exception of Japan. Since NMP does not contain services, the
figures in Table 17.2 are not directly comparable with the OECD figures of Table 17.1.
With respect to the NMP concept, agriculture is also declining, but industry is expanding
everywhere. The same is true for developing countries [see Krelle (1989, p. 677)J.

These figures refer to real value-added and real GDP. They change if we apply nominal
terms. In this case services are expanding and agriculture and manufacturing are declining
in almost all OECD countries [see OECD (1989, pp. 120-122)J.

If we go into more detail and consider a longer time range, much more structural change



260 Economic Structuml Change: Analysis and Forecasting

Table 17.1: Sectoral composition of GDP, OECD countries (% of GDP).

Agric. Min. & Malmf. Public Constr. Services
Quar. Serviceso

USA 1962 4.3 3.0 23.9 2.2 6.6 59.9
1984 3.0 2.5 24.0 2.7 4.9 63.1

1999 medium
scenariO 2.1 2.1 25.9 2.6 3.3 64.5
pessimistic
scenariO 2.3 2.2 24.9 2.0 3.3 65.8

FRG 1962 4.0 3.0 36.3 1.8 8.4 46.6
1984 2.7 0.9 36.4 2.9 5.9 52.2

1999 medium
scenario 1.2 0.5 35.9 3.6 5.8 54.1
pessimistic
scenario 1.5 0.6 36.5 3.5 4.8 53.1

Japan 1962 11.9 1.1 22.9 1.9 7.9 54.3
1984 4.8 0.7 30.4 2.2 9.7 52.3

1999 medium
scenariO 4.3 0.5 34.3 2.3 10.5 49.7
pessimistic
scenarIO 5.4 0.5 34.3 2.1 9.9 49.6

France 1962 8.9 2.1 26.8 1.3 7.7 53.2
1984 4.5 0.7 28.7 2.1 5.5 58.4

1999 medium
scenariO 3.2 0.4 30.0 2.2 6.1 57.4
pessimistic
scenario 3.5 0.5 26.9 2.2 4.2 62.6

UK 1962 2.7 3.1 27.2 2.2 8.4 56.4
1984 2.9 3.0 25.3 3.3 6.3 59.1

1999 medium
scenario 2.9 3.3 25.4 3.7 5.4 55.2
pessimistic
scenario 3.2 7.9 22.6 3.5 4.6 54.3

Italy 1962 10.6 2.5 25.2 3.9 12.0 45.7
1984 7.4 2.4 31.2 5.0 7.3 46.9

1999 medium
scenario 6.1 2.2 31.1 5.9 6.6 47.0
pessimistic
scenario 6.8 2.4 34.5 4.8 5.9 46.6

Canada 1962 7.6 4.3 21.3 1.8 8.6 56.4
1984 4.4 3.0 19.5 3.5 6.6 62.3

1999 medium
scenario 3.8 3.1 18.6 4.2 6.5 64.8
pessimistic
scenario 4.2 3.0 19.2 3.3 6.1 63.7

° Electricity, water, and gas.
Source: Krelle (1989, p. 675).
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Table 17.2: Sectoral composition of NMP, CMEA countries (% of NMP).

Agric. Industr. Constr. Trade Traffic Others
Comm.

USSR 1960 38.3 37.4 11.5 7.8 5.0
1985 14.5 60.3 10.4 8.3 6.4

1999 medium
scenano 6.9 67.7 10.3 8.3 6.8
pessimistic
scenario 7.9 68.3 9.3 7.9 6.6

Bulgaria 1960 57.5 24.3 6.3 3.1 3.9 5.0
1985 19.9 48.4 9.1 10.7 8.4 3.5

1999 medium
scenario 14.3 52.6 9.8 11.2 9.0 3.0
pessimistic
scenano 16.2 51.1 9.3 11.4 8.9 3.0

CSFR 1960 16.9 51.4 11.0 15.2 4.9 0.6
1985 9.8 55.4 12.2 16.8 4.7 0.7

1999 medium
scenano 8.6 55.5 13.0 17.6 4.6 0.7
pessimistic
scenario 9.0 56.7 13.0 15.6 4.7 1.0

GDR 1960 17.6 58.2 5.9 10.5 5.1 2.7
1985 7.4 69.7 5.4 10.1 4.5 3.0

1999 medium
scenario 5.2 71.0 5.9 10.1 4.3 3.4
pessimistic
scenario 5.3 71.3 5.7 10.0 4.3 3.3

Hungary 1960 35.5 36.7 10.5 12.3 4.8 0.4
1985 17.9 52.2 10.3 13.0 5.7 1.0

1999 medium
scenario 15.4 52.8 11.3 12.3 6.6 1.6
pessimistic
scenario 17.4 54.2 11.0 9.2 6.9 1.4

Poland 1960 38.2 31.9 13.2 13.1 3.0 0.7
1985 18.2 48.9 12.3 15.0 4.4 1.3

1999 medium
scenario 11.9 53.1 12.7 16.0 4.8 1.5
pessimistic
scenario 9.5 54.4 13.1 16.5 4.8 1.7

Romania 1960 53.2 22.9 8.7 8.2 4.0 3.0
1985 22.0 54.3 7.8 6.0 7.7 2.2

1999 medium
scenario 16.0 60.1 7.5 6.2 7.8 2.3
pessimistic
scenario 14.0 61.4 6.5 6.4 8.6 3.1

Source: Krelle (1989, p. 676).
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Figure 17.2: Real GDP per capita (OECD) or GDP "type 2" (CMEA) under the as­
sumptions that the optimistic scenario will be realized for the USA, USSR, and UK; the
pessimistic scenario for the FRG and Japan; and the medium scenario for all other contries.
Source: Krelle (1989, p. 70).

becomes visible. New products and (connected with these) new production processes
appear. Figure 17.4 shows this for the sector of telecommunication, Figures 17.5 and 17.6
for the iron and steel industry. We see that there are discontinuities in the structural
composition of production: Starting from a certain date a new product and (or) a new
production procedure appears and joins the series of older products and substitutes for
them partly or (very rarely) totally. Thus structural breaks in the growth process may be
partially or totally concealed by aggregation.

This type of structural change induced by technical progress is superimposed by
changes due to the changing advantages of different locations, e.g., low-grade steel pro­
duction is moving to the developing countries so that steel production in OECD countries
is declining [see Figure 17. 7].

It is clear from these figures that economic growth demands and is based on structural
change. If structural change is hampered by social resistance, there will be no growth; the
society will fall behind in international competition, and in 100 years will end up as an
underdeveloped country.
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Figure 17.3: The structure of production, USA. Source: Krelle (1989, p. 11).
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Figure 17.5: Innovations in steel production and manufacturing.
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Figure 17.6: Rolled steel production; there are about 2500 different types of steel.



266 Economic Structural Change: Analysis and Forecasting

1------..- forecast

600

o
...., 400
:::i·s

200

CMEA countries

OECD countries

199519851965

L._----------;;::;:::-;:;---------~..:E::.u:r:.::opean Community
FRG

O-t---..,---------,,-----,------.,------,---------,,-L-'------r--+

1975
year

Figure 17.7: Trend in crude steel production. Sources: FiinJzehn Fragen und Fakten zur
Europiiischen Stahlpolitik, Wirtschaftsvereinigung Eisen- und Stahlindustrie, Dusseldorf,
Dezember 1987; Marktversorgung mit Stahl, Wirtschaftsvereinigung Eisen- und Stahlin­
dustrie, Dusseldorf, 01. 02. 1988.

17.3 A Theory of the Interrelation of Growth and
Structural Change

17.3.1 The real part of the model

In this section I present a theory where growth and structural change (in the sense of
points 1 and 2 listed in Section 17.1) are simultaneous and inseparable. For econometric
estimations this theory has to be simplified. This will be done in Section 17.4. The
theory assumes the form of a disequilibrium growth model for a closed economy, since the
growth rates of the different sectors do not stay constant and are not equal. But it will
be an equilibrium model in the sense of short-run income and employment theory, since
we assume that demand equals supply in each period. The total model can only be solved
numerically, but for parts of it analytical solutions are possible.

Let us suppose that for a certain number of periods (say, years) there are n production
sectors in the economy, each one producing one commodity (or category of commodities).
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In the course of technical progress new commodities and thus new productive sectors
emerge. We model this fact by always assuming that one new sector comes into being after
the "state of technology" 1l' passes certain thresholds. Defore that time the new product
and the new production functions are unknown. Each production sector is described by
a neoclassical production function with Harrod-neutral technical progress. In principle,
each commodity may serve as a capital good as well as a consumption good. Thus, if there
are n sectors working in the period considered, say for t ::; to and 1l' ::; 1l'o, we assume for
the production side that

(17.1 )

i=1,2, ... ,N, ...{~fJ•

with i = 1, ... , n, in the current period, and i = 1, ... , n,
periods, where (for b > 0 and 1l' being exogenous)

for 1l' ::; 1l'o + ib
for 1l' > 1l'o + ib

and n* is the maximal number of commodities in the period considered In' = n in equation
(17.1) for the current period], Y; is the production (value-added) in sector i, L i is the labor
employed in sector i, and J(ij is the ca.pital of type j used in sector i.

The functions Fi,n* are assumed to be homogeneous of degree one in all nonzero vari­
ables and quasi-concave. We consider a period, where 1l' ::; 1l'o + b, Le., n* = n. The
productivity index 1l' is taken to rise in time: 1l' = 1l'(t), 1l" > O. We call a time span
where all fJi are constant a regime (i.e., there is a fixed number of commodities known and
produced in the society). We may rewrite eqnation (17.1) as

Yi = 1l' . gi( KIi, ... , Kni, ... ) , (17.2)

where Yi = f, Kji =!jf, gi(-) = Fi (l,Kli,oo.,l'i: n i,."). We start with some basic defini­
tions. Production of commodity i per capita is defined by

y.
- .
Yi = L' so that Yi = 1l' (Xi gi(') , (17.3 )

where (Xi = 7 is the proportion of labor employed in sector i. The actual price level p is
defined as a weighted average of all market prices p';:

00

P= LXjpj
j=I

(17.4)

the weights x) obeying 2:j.rj = 1 and .rj = .rj(61 ,62 , ... ) 2: 0, and

J = 1, .. "n if b} == 62 == ... == 0; thell ·'fn+l == X n+2 == ... == 0

J 1, ... , n + 1 if fJ1 = 1,62 = fJ3 = ... = 0; then X n +2 = X n +3 = '" = 0

j 1, ... , n + m if fJ1 = 62 = = fJ m = 1, fJ m +1 = 6m +2 = ... = 0;

then xn+m+l = x n +m +2 = = O.
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In the following we use normalized prices pj such that the price level py of real domestic
product is always unity:

(17.5 )

Therefore the following restrictions are valid for the normalized prices:

(17.6)

Let w* be the nominal wage rate (equal for all sectors). Then w = 'f,' is the real wage
rate (to be used in the following); r is the real-interest rate. Furthermore we define:

and

LiPiY; = GDP
Lj PjKji = total capital used in sector i
Li Kji = capital goods of type j used in all sectors
L J Li pjKJi = total capital in the economy

(17.7)

()
ogi("-li, ... ,"-ni, ... )

gij . = !"lK" •
U J'

(17.8)

We now return to the supply side. We assume that there are no pure profits in the economy,
i.e., that the proceeds from selling each commodity cover the costs of production (including
interest on capital):

wL+r""pK"• L...J. J J'J

!!:. + r"" P'''-''L...J. J J'
11' J

PiYi or (17.9 )

(17.10)

Furthermore, we assume that the entrepreneurs employ labor and capital such that the
production costs are minimized, given the factor prices and the price of the final product:

wLj +r LPjJ(jj =!llin. !
J Li,l\li, ... ,!\ni

This yields

, (K Ii Kni )s.t. 1j-11' L ig 11'Lj""'11'L
i
"" =0.

(17.11)

(17.12)

where 11j is a Lagrangian multiplier. These are the marginal product rules. Substitutin~

(17.12) into (17.11) and comparing it with (17.10) yields: pj = Pi. Thus, considering
(17.12), equation (17.11) is equivalent to (17.10). Therefore, we retain the equations
(17.10) and (17.13) where

(17.13)
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Since we are in a period where 7l" = 7l"0, i.e., only n commodities are known and produced,
we have n 2 equations (17.13), n equations (17.10), and one equation (17.6) to determine
the n2 unknowns Kji, the n unknowns Pi, and the two unknowns wand 7'. One equation is
lacking. It will be provided by the demand side. The same applies for the absolute values
of Li and J(ji. From the supply side we may solve for all but one of the above-mentioned
unknowns as a function of the remaining one (say, Kll), e.g.,

Pi = Pi(Kll), i = 1, ... , n. (17.14)

In Krelle (1988, p. 461), this has been done for CES and Cobb-Douglas production func­
tions and for arbitrary n. I reproduce the result for n =2 and Cobb-Douglas production
functions

2

y" = (~L.·){3oi }(·{3I.,li }(2f32., i, ~ - 1 2 f3' > 0 '" f3" - 1
" 1 1 • - " j. 'L...J)' - ,

j=O

where the remaining unknown is chosen to be Kll' The results are

Kli

1/p2

7'

w

f3

A is the wage-interest ratio (or wage-profit ratio, as it is often called) where the wage rate
refers to labor in efficiency units. It is interesting to note (but not surprising) that the
prices PI and P2 also depend on the weights Xl and X2 used to normalize the price level
to unity. This is due to the fact that we are using real values. Their definitions depend
on the weights. A proof of the existence and nonnegativity of the solution for CES and
Cobb-Douglas production functions may be found in Krelle (1988, p. 463).

For CES and Cobb-Douglas production functions and for an arbitrary number n of
sectors the following relations may be proved:

1. ~; < 0: the wage-interest ratio declines with rising interest rates.

2. ~ > 0: all capital-labor ratios (labor in efficiency units) increase with a rising
wage-interest ratio.
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For a proof see Krelle (1988, p. 464).

We now turn to the demand side. Again we start with some definitional equations:

C = L,C,p, = (l-s)Y,

where C is the real consumption, s is the exogeneous savings ratio,

I = L/'p, = sY,

and I is the real gross investment. Thus

Y = C + I, Y; = Ci + Ii .

From definitions (17.2) and (17.3) follows

Kij = 7r Laj"'ij , Li = aiL, Y; = 7r Lai9i

and

00

La, = 1
,=1

ai is the proportion of labor employed in sector i, where ai 2: 0 and

a n +l a n +2 = ... = 0, if 61 = 0

a n +1 > 0, a n +2 == a n +3 == ... == 0 , if 61 == 1

a n +l > 0, a n +2 > 0 , a n +3 == a n +4 == ... == 0, if 62 == 1, etc.

Capital accumulation is defined by

(17.15)

(17.16)

(17.17)

(17.18)

(17.19)

(17.20)

where d,j is the rate of depreciation of Kij. In (17.15)-(17.20) and in the following equa­
tions the indices i and j run from 1 to n in the current period and to 61 (n +1), 62 (n+ 1), ...
in later periods.

The consumption function is assumed to be dynamic:

(17.21)

where Ii is inhomogeneous in p and Y [but homogeneous in pi, ... ,p~; see (17.5)].

For economic estimations we may specify fi as a dynamic linear expenditure system:

(17.22)
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where Yj = Jr LCtjgj, Ci :::: 0, Ii :::: 0, (3i :::: 0 are given constants,

00

I)i = 1,
i=1

271

(17.23)

and

Cn+1 =

Cn+1 >
C n+2

Cn+1 >
Cn+3

Cn+2 = ... = In+l = In+2 = ... = (3n+l = (3n+2 = ... = 0, if 01 = 0

0, In+l > 0, (3n+l > 0 and

Cn+3 = ... = In+2 = In+3 = ... = (3n+2 = (3n+3 = ... = 0, if 01 = 1

0, Cn+2 > 0, InH > 0, In+2 > 0, (3n+l > 0, (3n+2 > 0 and

Cn+4 = ... = In+3 = In+4 = ... = (3n+3 = (3n+4 = ... = 0, if 02 = 1 ,

etc. The Ci, Ii, and (3i depend on 01,02, .... Equation (17.22) may be written as

(17.24)

where (i = SZLL" ,(i = eLi (exogenous), a = "L-"1,1 L-l the growth rate of Jr L (exogenous).
1r 1f 1r-l -1

The investment function is constructed under the assumption that in each period capi­
tal goods are produced that are necessary to provide the cost-minimizing capital equipment
in all sectors, given the existing capital stock and its depreciation:

(17.25)

which, considering equation (17.18), may be rewritten as

(17.26)

Because of equation (17.16) we require

(17.27)

Thus, in the case of the dynamic expenditure system, total demand for commodity i is

YiPi CiPi + liPi = JrLCtiPi9i (17.28)

CiPi + lipiCi,-1 + (3i [0- s)JrLL jCtjpj9j - LJ(CjPj + IjpjCj,-d]

+PiJrLL CtjK-ij - P'L A"J,-I(I- eli)
J J
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- 1
O'.iPigi = (iPi + =--,iPi(i,-1

1r L +1

+,Bi [(1- s)L °jPjgj - L((jPj + ~,jpj(j,-d]
J J 1rL+1

1
+ PiL Cijl"ij - Pi=-- L"ij,-10'.j,-1(1- dij)

J 1rL+1 J

under the constraint of (17.27), which may be rewritten as

" [p'1rL" 0'." - P" K_1(1- d)] = s1rL" O'.p-g'Li I Lj J'J 'Lj 'J, IJ Lj J J J

or

L [Pi L CiJ"ij - ~Pi L Kij,-1 O'.j,_I(l - di j )] = S L O'.jPjgj·
I J 1rL+1 J J

In addition we have from (17.19)

(17.29 )

(17.30)

(17.31 )

(17.32)

where s, 1r, and L are exogenous. In the current period where we have n sectors the
equations (17.28), (17.30), and (17.32) or (17.29), (17.31), and (17.32) consist of n + 2
equations, one equation more than the n + 1 unknowns 0'.1,"" O'.n and 1';;11. To obtain
the absolute values of Yo, Li and KiJ' the definitional equations (17.18) must be used in
addi tion.

We can get rid of the superfluous equation by vValras's law. One equation in the system
(17.28) depends linearly on the others, taking into account equations (17.30) and (17.24).
Thus one equation (say, the n-th equation) Illay be dropped. This completes the model.
It can be solved given the ini tial conditions (which are the solutions of the last period)
and given the exogenous variables.

We illustrate this solution for n = 2 and for the dynamic expenditure system. From the
supply side we get PI, P2, 1';;12, "21, 1';;22, w, and r as functions of 1';;11, see above. Similady,
we get g1 and 92 as functions of I';;n. Because of equation (17.32), 0'.2 = 1 - 0'.]. Thus the
only equation left in the system (17.28) for i = 1 may be written as

given the initial conditions. Similarly, (17.30) now becomes

These equations determine "11 and 0'.], given the initial conditions and the exogenous
variables 1r and L. Thus the total system is solved for each period. Unfortunately, only a
numerical solution is possible.

The general solution of the total system is provided by the following algorithm:
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1. For a given period, where n commodities are produced, solve the system (17.6),
(17.10), (17.13) (where i,j:::: 1, ... ,n) for PI, ... ,Pn,"'12, ... ,"'nn, w, r as a function

of "'n: Pi("'n), "'ij("'n), W("'11}, r("'11)' From "'12("'n), ... , "'nn("'n) determine
9i(-):::: 9i("'n) from the definition of 9j in equation (17.2), i:::: 1, ... ,n. Of course,
all solutions depend also on the weight s Xl, ••• , X n, see (17.6), but we do not indicate
this explicitly.

2. Introduce these functions into equations (17.28) and (17.30).

3. Solve the system (17.28) (where i:::: 1, ... ,n -1), (17.30), and (17.32) for O'l, ... ,O'n
and "'11, given the initial conditions CI,-1,""Cn,-I, Kn,_I, ... ,Knn,-I and the
exogenous variables s, 11", L.

4. Determine PI,. ··,Pn,"'n, .. ·,"'nn,9j from pj :::: Pj("'n), "'jj
i,j:::: 1, ... ,n.

5. Determine C1"",Cn from (17.22), where Yi :::: 1I"LO'j9j, and K11, ... ,Knn from
(17.18). This provides the initial conditions for the next period.

6. Start the solution for the next period at 1.

Instead of steps 2, 3, and 5 the following equivalent algorithm may be used:

2a. Introduce these functions into equations (17.29) and (17.31).

3a. Solve the system (17.29) (where i :::: 1, ... , n - 1), (17.31), and (17.32) for 0'1, ... ,O'n,

and "'n, given the initial conditions (l.-l, ... ,(n,-l''''11,-I''''''''nn,-l,O'l,-l, ... ,
O'n,-I and the exogenous variables s,;t.

5a. Determine (1, ... , (n from equations (17.24), i :::: 1, ... , n. Thus the initial condi tions

(1,'" ,en' "'11,"" "'nn,O'I,··· ,O'n are provided for the next period.

From the definitions C; :::: 1I"L(j, Y; :::: 1I"LO'j9j, Kj j :::: 1I"LO'j"'ij we obtain the absolute
figures.

17.3.2 Asymptotic behavior within each regime

The supply system, (17.6), (17.10), and (17.13), is a static one. It determines the wage and
interest rates, the prices, and the capital-labor ratios as functions of one of these variables,
say, "'n. Thus this system yields

The demand system, (17.24), (17.29), (17.31), and (17.32), is a dynamic one. It determines
the consumption demand for each commodity, the distribution oflabor over the production
sectors, and the capital-labor ratio "'11 as a function of time:

(i :::: (i(t), O'i:::: O'j(t), "'n:::: "'n(t).
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Assume that each regime exists for such a long time that the asymptotic behavior of the
system becomes interesting. The dynamic properties follow from the demand system. If it
converges, then it converges to the solution of system (17.24), (17.29), (17.31), and (17.32)
where (i = (i,-I, ai = ai,-I, Kll = Kll,-I. In this case (17.24) becomes a linear system in
(i, given Kll, the solution of which is (;(Kll)' Equation (17.29) becomes a linear system in
aI, ... ,an-I, given (i and KIt. the solution of which is ai(Kll), i = 1, ... , n - 1. Equation
(17.32) provides a~ as a function of ai, ... ,a~_l' Finally, equation (17.31) is a nonlinear
implicit function of Kll alone, which has to be solved for Kll to yield Ki l' Thus we get
the convergence values (i, ai, Ki l'

But will the system converge? This cannot be proved in general, though there are some
indications that this is true. To test the stability one has to estimate the parameters and
to solve the system numerically. In this case two general tests are available, which are easy
to apply. For both tests the system (17.24), (17.29), and (17.31) [after the substitution of
an = 1 - ~j~: aj, see (17.32)] has to be linearized at the convergence point (i,ai,Ki1'
i = 1, ... , n. This yields the system

A~t = B~t-1 + c, or, if IAI =f. 0: ~t = D~t-1 +d, (17.33)

where e = ((1'''',(n,a1, ... ,an-1,Kll), A and Bare (2n x 2n) matrices, and c' =
(C1, ... ,C2n) is a 2n-vector; D = A-1B, d = A-Ic.

This system has the static solution e = (I - D)-ld, which reproduces the convergence
values of the dynamic demand system (17.24), (17.29), (17.31), and (17.32). The general
solution of (17.33) is

where ai are vectors that also depend on the ini tial conditions and Pi are the characteristic
roots of D, i.e., the solutions of IpI - DI = O. The system converges to e if IPil < 1 for
all i.

There are systems for which this may easily be checked. Assume that E = I - D has
the property eii > 0, eij s: 0 for i =f. j and that it has a dominant main diagoncil, i.e.,
there are positive real numbers dl , ... ,dn such that for all j = 1, ... ,n

djejj > L -die;j ~ O.
if-)

Then all Ipi! < 1, and the system converges.

A second test consists of the Brauer-Solow conditions (which are sufficient, but not
necessary). If D ~ 0 and indecomposable and if all Ti = ~j=l dij s: 1 and Ti < 1 for at
least one i (i.e., if all row sums or equivalently column sums are smaller than or equal
to 1), then all IPi I < 1 and the system converges. For details, see Krelle (1988, pp. 750
and 760), or Takayama (1974, p. 381).
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Whether these conditions hold cannot be said without numerical specifications. But
there are some indications that the system may converge. First, we observe that the
production structure changes only slowly and that this change is mostly due to the intro­
duction of new products and new production methods. If our system reflects this feature
appropriately, we may expect it to converge if there is no technical progress in the sense
stated above. Second, the two main parts of our dynamic system treated separately con­
verge under mild conditions, so that we may also expect the total system to converge
under these (or similar) conditions.

The dynamic system consists of the partial system (17.24), (17.29), and (17.31), after
equation (17.32) has been eliminated by introducing Q n == 1- 'L.'l~l Qj into the other equa­

tions. Consider first the system (17.24); assume that (1 - s)y :== :L == (1 - s) 'L. j Q jPjgj
stays constant during the period in question, as well as during the period of the growth
rate ;t. From equation (17.15) we get

n

LPi(i = y(l- s)
i=l

or
1

(n =­
Pn [

n_1]
(l-s)y-L(jPj .

J=l

This will be introduced into system (17.24) so that we only need the first 11 - 1 equations
to determine (1, ... , (n as functions of (1,-1, ... ,(n-1,-1' If all the other variables Qi, gi ,Pi
have already converged so that they may be considered as constant, the system (17.24)
becomes a linear difference equation of the first order:

(I = D(I-1 + d,

with

D=

d=

aOl - ~: 'L.'l=l aOjpJ + ~: (1 - (lln)Y( 1 - s)

(l02 - ~ 'L.j=l (lOjPJ + ~(1- (lln)y(l- s)

I3n-1 "n + 13,,-1 (1 ) (1 )(lO,n-1 - -- L.J"-l (lojPj -- - (lIn Y - S
Pn-l - Pn-l

> 0,

where ~ai := ali - a1n, and aOi := (i, 0 ~ aOi < 1, ali := --Ji...-. Now we regroup the
".L+1

sectors such that a1n 2: alJ , j = 1, ... , n - 1. In this case D 2: O. If the al i are not too
different, i.e., if

(17.34)
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the Brauer-Solow conditions are fulfilled and 1- D has a dominant main diagonal. Thus
the system converges. Since the alj are essentially the ,i, the condition (17.34) means
that the remanence effect of the former consumption should not be too different between
commodi ties.

Similarly, we consider the equations (17.29) as a system of difference equations for
O'I"",O'n-l, where an = 1- L:;~;O'j; see (17.32). This has to be introduced into tIle
n - 1 equations in (17.29). All other variables (i, Pi, gi, KiJ are assumed to be constant at
their convergence values. We also keep y = Lj O'jPjgj and Ki. = Lj O'jKij constant. Thus
(17.29) may be written as

at = D*O't-l +d* ,

where

D*

--L (KIn - Kl n-d ]9t{1fL+l) ,

1--- (Kn-l n - !;'n-l n-l)
9n-1 (1fL+l)

0< d*
[

uOl+A(1-s)y-(31Ln_ Uo +~- '5l.!' ]1',91 J-l J 9' 91(1fL+l)

b + 13n-l (1 _ S)1 - (3 ",n b + "n-I. _ "n-I,n
O,n-l I'n-'9n-' Y n- 1 6J==1 OJ 9n-l 9n-t{;;:L+l)

If a sector n exists, which is more capital intensive than all the others, the sectors may
be regrouped such that

Kin ~ Kij for all i,j == 1, ... , n - 1 .

Then we have D* ~ O. If the differenees in the capital intensities are not too large, i.e., if

1 n-l
- '2)l>:in- K ij) < 1 fori==1, ... ,n-1,

gi(7fL+1) j=1

then the system converges.

Finally, consider equation (17.31) as a lineal' difference equation in Kll, whereas the
other variables Pi, ai, Kij (i, j == 1, ... , n; !;,ij =I- Kl1) are assumed to stay at their conver­
gence levels. This yields

Kll == al>ll,-l +U,
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where

277

a

b

J =

1 - d11-=---- < 1
7f'L+ 1

sy - t [PiL. 0P'Ij - PiL. "'IjOj 1 - d
ij_] > a

i=I JEJ JEJ 7f'L + ].

{
1, , n if i::J 1
2, , n if i = 1.

The solution is

t b
"'11 t = "'11 0 a +-- ,, , 1- a

where bj(1 - a) is the convergence value.

Thus we have shown that there is reason to believe that the real system will converge
in each regime, if the regime lasts long enough and if y = Yj(7f'L) stays constant during
this period.

17.3.3 Introduction of money into the model

The model presented above does not contain a monetary sector and therefore does not
explain the absolute prices pi and the general price level p [see equation (17.4)]. But
these values are needed to explain exports and imports and the exchange rates, when
one proceeds from the model of a closed economy to a world model with several open
economies. In this section I give some hints as to the theoretical background of the
approach and present some empirical results.

Tobin (1965) was the first to introduce money into an aggregated growth model. Hahn
(1969), Fischer (1972), Stein (1971), and others followed. Ramanathan (1982) reviews this
development. Krelle (1988) analyzed different models with and without money illusion.
Most of these models suffer from instability because they do not limit the velocity of money
from above. There are no analytically tractable models that include money and consider
the growth process of disaggregated economies connected by foreign trade.

Here we extend the approach of Krelle (1988, p. 416), in the following way. Money
supply M in a country (I took M2) was assumed to be exogenous and forecast separately
under the assumption that the supply behavior of the central banks would continue in
the future as it was observed in the past. Money demand was estimated in the form of a
function for the veloci ty, v, of money. It is defined as

pY
v=-

M

and estimated by
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Figure 17.8: Velocity of money (M2). Source: Ross (1989, p. 116).

where x means the logarithm of x, k = K/Y is the capital coefficient, 11" = f is the labor
productivity, An is the accumulated foreign trade surplus, and y n is the GDP at current
prices. The estimates showed that 0 < al < 1, a2 :$ 0, a4 :$ O. For details see Ross
(1989, p. 95). The actual development and forecasts for the velocity of money are shown
in Figure 17.8.

17.4 A Simplified Model of the Interrelation of Growth
and Structural Change

17.4.1 The upside-down approach

The real part of the model presented in Section 17.3 is much too complicated to be
implemented in practice and estimated econometrically. If we want to test the theory on
actual data, the model has to be simplified such that the necessary statistical data are
available for all countries considered and that such a project can be carried out with the
available means in the available time. On the other hand, for many important countries
foreign trade plays a decisive role so that it cannot be disregarded. Thus the model of
Section 17.3 has to be extended to cover also exports and imports and capital flows. These
corrections are the topic of this section. We start with the simplification of the real part
of the model; see equations (17.1) to (17.32).

The endogenous unknowns of this model are Kij, Qi, Pi, 'W, and r, i,j.= 1, ... , n. They
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are determined as functions of the exogenous variables 1r, L, s; the parameters of the
production, consumption, and investment functions; and the lagged variables. Let there
be N such exogenous variables. We change their notation to Zj, ... ,ZN. Thus the solution
of the model gives us

K.ij = K.ij(Z), aj = ai(Z), Pi = Pi(Z), w = w(z), r = r(z), Z := (Zl ... ,ZN).

From (17.3) we get

Li = aiL,

and therefore from (17.2)

Assuming that the production function Fj in equation (17.1) is linear homogeneous we
may rewrite equation (17.1) for a specific period as

(17.35 )

Since only figures for the aggregate capi tal !{ in the economy are available, we have to
aggregate the different capital goods to a compound capital [(.j in sector i, where

Ki = LPj(z)J(jj = LPj(z)II:Jj(z)ai(z)1rL,
j j

and relate it to the total capital J( in the society by

Ki
J(

L:jPj(Z) K.jj(z) ai(z)
=L:'---j-="L:=-J-P-j-(z-)-""-jj-(z-)-a-i(-z) =: Yj(z).

Now we approximate equation (17.35) as

Yi [ L HL]y=Gi a i(z)1r y ,'Pi(Z)LY"" +fj,

where fi is the error term. This may be formulated as

(17.36)

+ fj, (17.37)

where, e.g., Zl = 5, Z2 = ... (see above).

If Gj is of the Cobb-Douglas type, the equation explaining the production structure
would be

(17.38)
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when Li ¥ = 1 and Vi is an error term.

Thus equation (17.37) or (17.38) gives us the production structure, if total GDP Y,
total capi tal g, and total employment L are given. We estimate these totals first by
solving the system (17.1) to (17.32) for the aggregate economy; the index i describing the
sector has to be dropped everywhere in equation (17.1) to (17.32). Thus we have instead
of (17.1)

Y = F(1r L, g, ... )

and instead of (17.2)

Y = 1rg(K" ... ).

Equations (17.4), (17.5), (17.6), and (17.7) are not applicable; instead of (17.8)

I og
9 = OK, ,

(17.39)

(17.40)

(17.41)

and so on.

This provides the "upside-down" approach. We first estimate the totals and afterward
introduce the structure by applying equation (17.37) or (17.38).

17.4.2 The introduction of foreign trade

The model of Section 17.3 as well as the simplified model of the foregoing subsection refers
to a closed economy. If we want to test the theory we have to consider the interrelationships
of different economies by foreign trade and capital flows. This means that the aggregate
production function (17.39) must include foreign factor imports:

Y = F(1rL,J(,IMR, . .. ),

where 1MR means imported secondary inputs (e.g., raw materials).

The GDP identity (17.17) for the closed economy has to be substituted by

Y = C + I + EX - 1M ,

(17.42)

(17.43)

where EX are the total real exports, and 1M are the total real imports. There is a relation
It( z) such that

1MR = Il(Z) 1M .

Exports and imports also influence the sectoral composition of GDP. The vector Z =
(Zj, ... , ZN) must be reinterpreted to include also foreign prices and exchange rates whi'ch
codertermine exports and imports. Thus equation (17.36) becomes

(17.44)
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which may be reformulated as

Y; - (L J( 1M ) *Y =Gi Y'L,·y,7r,S,Z2, ... ,ZN, ... +fj.

The exogenous variables 7r, S, Z2, . .. ZN codetermine the export ratio EX /Y:

Therefore we change equation (17.45) to

Yi . (L J( 1M EX )G Z + f*,' *.Y = Y'L,y,y,7r,S,Z2,"" N, .. ·

281

(17.45 )

(17.46)

We assume G to be of Cobb-Douglas type. Since ~ and 7r are correlated, we omit ~.

Thus our structural equation to be estimated finally becomes

(17.47)

Ross (1989) carried out the estimations.

Donges et al. (1989) used a simplified approach that explains the % ratio Ai =
(Y;jY) 100 as a function of per capita GDP ~, where P is the population. They es­
timated the parameters of the equation

A- Y Y
log 100 ~ Ai = ao + al P + a2 10g P +a3 . (17 .48)

The structural changes forecast by equation (17.4 7) are presented for some OECD coun­
tries in Table 17.1 and for some CMEA countries in Table 17.2. The figures for 1962 and
1984 are the actual figures; those for 1999 are forecasts under different assumptions. For
details, see Krelle (1989, p. 42) and Ross (1989, p. 97).

The forecasts of Donges et al. (1989) by equation (17.48) are reproduced in Table 17.3.
There are some differences in the definition of sectors and offuture scenarios between Ross
and Donges et al., but there are also substantial differences in the results. Donges et al.
predict a decline of the manufacturing sector in West Germany from about 33% in 1985
to about 25% in the year 2000. Ross predicts a constancy of this figure at about 36%.
It remains to be seen which approach is more appropriate. I have more confidence in the
economic approach of equation (17.47).

We used the upside-down approach also in foreign trade: First we estimated total real
exports and imports, and afterward we disaggregated the totals to get their commodity
compositions. The usual foreign trade theory is static and therefore not suitable for ana­
lyzing economic growth and structural change; c.f., e.g., Ohlin (1967), Takayama (1972),
Schittko (1976). There are some dynamic approaches in Gabisch (1976) and Ramanathan
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Table 17.3: West Germany: Sectoral and branches shares (%) of GDP and employment.

Gross Domestic Product Employment
Actual Predicted for 2000 a Actual Predicted for 2000 a

Sectors/branches 1970 1985 A B C 1970 1985 A B C
Primary sector" 4.6 2.8 2.5 2.3 2.3 9.7 6.3 4.3 3.7 3.6
Secondary sectorb 50.4 41.1 33.0 30.2 28.8 47.7 40.1 32.1 29.8 28.5
Tertiary sectorb 45.0 56.1 64.5 67.5 68.9 42.6 53.6 63.6 68.5 67.9

Agric., forestry, fishing 3.4 1.7 1.5 1.4 1.4 8.5 5.4 3.5 3.0 2.9
Mining and quarrying 1.3 1.1 1.0 0.9 0.9 1.2 0.9 0.8 0.7 0.7
Manufacturing: 40.2 33.2 27.5 25.2 24.0 38.1 32.0 27.2 25.1 23.9

Intermediate goods 11.8 8.8 6.2 5.5 5.0 8.4 6.5 4.7 4.2 3.8
Investment goods 15.0 15.7 14.8 14.0 13.7 16.3 15.9 15.1 14.3 14.0
Consumer goods 12.5 8.7 6.5 5.7 5.3 13.3 9.6 7.4 6.6 6.1

Electricity, gas, water 2.2 2.8 2.5 2.3 2.2 0.9 1.1 0.9 0.9 0.9
Construction 8.0 5.1 3.0 2.7 2.6 8.7 7.0 4.0 3.8 3.7
Wholesale, retail trade,

restaurants, and hotels 11.4 10.9 9.7 9.4 9.2 15.1 16.2 15.9 15.7 15.5
Transport, storage, and

communications: 5.9 5.9 6.6 7.4 7.7 5.3 5.6 6.4 7.1 7.4
Transport and storage 4.1 3.4 3.1 2.9 2.7 3.6 3.6 3.3 3.0 2.8
Communications 1.8 2.5 3.5 4.6 5.0 1.7 2.0 3.1 4.1 4.6

Finance, insur., real estate,
and business services: 10.7 15.9 21.6 22.4 23.4 4.3 6.2 12.2 13.2 14.1
Financial institutions 2.6 4.5 5.2 5.5 5.7 1.5 2.3 3.0 3.3 3.5
Insurance 0.7 1.1 1.4 1.4 1.5 0.7 0.8 1.2 1.2 1.3
Real estate, busin. servo 7.4 10.3 15.0 15.5 16.2 2.1 3.1 8.0 8.7 9.3

Personal services, other
private producers 7.2 11.8 15.2 17.1 17.7 6.7 9.6 13.3 14.8 15.4

Government services 9.7 11.6 11.4 11.2 10.9 11.2 16.0 15.8 15.7 15.5

a The predicted percentages of the year 2000 refer to three different assumptions on the expected
annual growth rate of per capita income: A = 2%; B = 3%; C = 4%. For method of projection,
see text.
b For definition see Table 16.1 in Donges et al. (1989, p. 387).
Source: Donges et al. (1989, p. 396).

(1982). A dynamic theory of international trade may be found in Krelle (1988, p. 502).
But all these theories consider only two commodities and two countries of approximately
equal size or two commodities and one relatively small country vis-a-vis a large world
market. There is one exception. In a recent paper Grossman and Helpman (1989) deal
with a two-country three-sector dynamic model of a very specific kind. One sector is the
R&D sector, which produces non-tradable blueprints as well as disembodied knowledge,
which is disseminated immediately and without cost all over the world. The second sector
produces intermediate goods, the third consumption goods. There are no capital goods,
and thus there is no capital accumulation. The production functions for the two countries
are equal. Consumers allover the world have equal homothetic preferences. Money is not
included in the model. Equilibrium growth paths are analyzed. The advantage of this
model is that technical progress is endogenous and that the model can be solved analyti-
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cally. The disadvantages are evident: The model is too removed from reality to be tested
econometrically.

Fortunately, there is a whole literature on import and export functions [see, e.g., ·Welsch
(1989, pp. 257-258)]. In the IIASA-University of Bonn Research Project we used a
dynamic linear expenditure system to explain total imports of a country:

en r EX n Py
1M = aoIM -I + al-- + a2-- + a3-- - a4-- Y- 1 ,

PIM PIM PIM PIM

where en is the nominal consumption (in current prices), In is the nominal investment,
EXn are the nominal exports, Y is the real GDP, Py is the price level of GDP, and PIM is
the price level of imports. Exports are explained as imports of the rest of the world.

The commodity breakdown of exports and imports is not identical with that of produc­
tion, owing to statistical problems. We also used a dynamic linear expenditure system to
explain and forecast the structural composition of exports and imports. We only present
the estimation equation for exports:

EX'] = apj EXj,_1 +b EXn
- L Ck Pk EXk,_1 ,

kfj

(17.49)

where EX n are the total expenditures on commodity exports, EX'] the same for com­
modity j, EXj the volume of exports of type j, and Pj its export price. The commodity
breakdown is SITC 0+1, SITC 2+4, SITC 3, SITC 5+...+9. For imports a similiar equa­
tion has been used. The results for OECD countries may be found in Welsch (1989a,
1989b). They are quite satisfactory but not reproduced here, owing to lack of space.

17.5 The Driving Forces of Economic Growth and
Structural Change

The driving forces of economic growth and structural change are the rate of technical
progress irf 1r = ir (which measures the inventiveness and imaginative power of a society
and its willingness to put new ideas into practice), the rate of saving s (which measures
the sacrifice in current consumption that a society is willing to make for the advantage of
future generations), and the rate of growth LfL = i of the labor force which is related
to population growth. All three forces are deeply embedded in the fabric of a society
and cannot be explained by economic variables alone. They show characteristic trends
and long-term fluctuations that generate Kondratieff-type cycles in the economic sphere.
Figure 17.9 shows the rate of technical progress for the USA, the FRG, Japan, and the
USSR from the 1950s to the beginning of the 1980s. A long wave is visible with an
upswing till the end of the 1960s and a downswing after that. The savings ratio shows
a similar long wave superimposed by shorter waves originating from the business cycle,
see Figure 17.10. Labor input follows more complicated rules. Table 17.4 shows some
observations and forecasts. Labor input (L, in billions of working hours) follows from
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Figure 17.9: Rate of technical progress. Source: Krelle (Hl89, p. 26).

the size of the population (p, in million persons), the labor participation rate A, the
employment rate f, and the hours of work h per week:

L = p A f h 52/1000.

Each determinant follows its own rules and has to be estimated separately.

We cannot deal with the complicated problems of population and employment growth ..
Starting with Malthus (1798) quite a few models of population growth have been devel­
oped, mostly in connection with growth models [see, e.g., Hagen (1959), Beckmann (1965),
Niehans (1963), Krelle (1988, p. 196)J. But we shall briefly indicate a possible explana­
tion of the long-term cycles of the rate of technical progress and the savings rate, a special
research project on this under way at the University of Bonn.

The rate of technical progress depends basically on the generation of new knowledge
and on the transfer of this knowledge into practice in the form of new commodities and
new production processes. Knowledge production is a stochastic process that depends
on capital and labor allocated to the research and development sectors of the economy..
Figure 17.11 shows estimates of the rate of growth W F of knowledge, of the transfer
coefficient 0, and of the rate w_ of technical progress. There are no cycles to speak of
in the process of knowledge creation, but there are long-term and short-term cycles in
the economic application of this knowledge. It needs entrepreneurship to put theoretical
knowledge into practice, i.e., energy, optimism, willingness to undertake risks. But it
also needs enough freedom in the society and discipline and diligence in the labor force.
These are psychologically and sociologically determined variables that are not directly
measurable .. We group them into two aggregate latent variables: organizational efficiency
and degree of activity of a population. There are many indicators for these that allow
one to estimate them by LISREL, PLS, or other methods. This latent-variable research
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Figure 17.10: Development of the savings rate since 1950. Source: Data base of the
IIASA-University of Bonn Research Project; see Ross (1989, p. 101).

is now in progress. First results concerning the "degree of activity" are already available
[see Krelle (1989, p. 31)J.

The relation between the rate of growth i of technical progress, the degree of activi­
ty 0, and the organizational efficiency w may be modeled as follows: Let a,w, j be the
"normal" or average values of o,w, i. Retracting forces in the society retard economic
activity and organizational efficiency if they are "too large", and improve them if they
are considered "too low". Similarly, "too high" organizational efficiency and "too high"
technical progress tend to reduce economic activity and organizational efficiency since
society resists too much change, whereas a higher degree of economic activity may improve
organizational efficiency. The rate of technical progress is positively related to 0 and w.

In the linear case this yields the system

6: -all(o - a) - a12(w - w) - a13(i - i)
w a21(o - a) - a22(w - w) - a23(i - i)

i b10 +b2w,

where all aij and b; > O. After substi tution of the third equation for the first two equations,
the system may be rewritten as

X -CllX - C12Y +clli +C12Y

iJ = C2IX-C22Y-C2Ix+C22Y,
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Table 17.4: Observations and forecasts of labor input (OECD countries).

wpOP Foree. WLPR Foree.
Observed means 1985- Observed means 1985-

Country 61-84 71-84 76-M 2000 61--84 71--84 76-84 2000
01 USA 1.1 1.0 1.0 1.0 0.9 1.2 1.1 0.8
02 FRG 0.4 0.06 -0.1 -0.2 -0.3 0.1 0.4 0.4
03 Japan 1.0 1.0 0.8 0.6 0.1 0.0 0.4 0.1
04 Franee 0.8 0.6 0.4 0.3 0.1 0.2 0.4 0.3
05 UK 0.3 0.1 0.1 -0.1 0.1 0.4 0.4 0.3
06 Italy 0.6 0.4 0.2 0.3 -0.3 0.4 0.8 0.6
07 NL 1.0 0.7 0.6 0.4 0.4 0.7 1.3 0.6
08 BJL 0.3 0.2 0.1 0.1 0.3 0.6 0.6 0.4
09 Canada 1.4 1.2 1.1 1.4 1.4 1.6 1.3 0.9
10 Rest of

OECDo 1.4 1.3 1.2 1.2 -0.1 0.0 0.0 0.0

WER Foree. WWH Foree. wt Foree.
Observed means 1985- Observed means 1985- Observed means 1985-
61--84 71--84 76--84 2000 61-84 71--84 76-84 2000 61--84 71--84 76--84 2000

01 -0.1 -0.2 -0.2 -0.1 -0.4 -0.4 -0.2 -0.3 1.6 1.7 2.0 1.4
02 -0.3 -0.6 -0.5 -0.2 -0.9 -0.8 -0.4 -0.4 -1.1 -1.2 -0.7 -0.4
03 -0.04 -0.1 -0.1 -0.1 0.0 -0.3 0.5 -0.2 0.6 0.6 1.6 0.4
04 -0.4 -0.6 -0.7 -0.5 -0.7 -1.0 -1.0 -0.8 -0.25 -0.8 -0.9 -0.7
05 -0.4 -0.7 -1.0 -0.5 -0.4 -0.3 -0.03 -0.2 -0.4 -0.5 -0.5 -0.5
06 -0.2 -0.4 -0.6 -0.4 -1.0 -1.0 0.3 -0.2 -1.0 -0.6 0.8 0.3
07 -0.6 -1.0 -1.1 -0.5 -0.8 -0.6 -0.2 -0.3 -0.04 -0.2 0.6 0.2
08 -0.5 -0.9 -1.2 -0.7 -0.9 -1.2 -0.3 -0.5 -0.7 -1.3 -0.8 -0.7
09 -0.2 -0.4 -0.5 -0.4 -0.2 -0.2 -0.02 -0.2 2.4 2.2 1.9 1.7
10 -0.2 -0.4 -0.6 -0.4 -0.7 -0.7 -0.1 -0.5 0.3 0.1 0.4 0.3

a The means for country 10 are calculated only up to 1982 (instead of 1984).
b By definition:

WL =Wpop + WLPR + WER + WWH,

where WL is the growth rate of employed labor (in working hours), WPOP is the growth rate of
population, WLPR is the growth rate of the labor participation rate, WER is the growth rate of
employment rate, and WWH is the growth rate of average working hours. The precision is up to
the rounding errors.
Source: Krelle (1989, p. 74).

where x := a, Y := w, Cll, C12, C22 > 0, C21 = a21 - a23bl < 0. If the characteristic roots of

C = (C
ll

C
12

) are conjugate complex (which happens if a; - b < 0, a = Cll +C22 > 0,
-C21 C22

b = CllC22 +C12C2d, we get as a solution

x(t) e'Yt(Allcos</>t+A12 sin</>t)+x

y(t) e'Y t(A 21 cos </>t + A 22 sin </>t) + fj .

Here '"Y = -a/2, </> = arcsin6/r = arccos"J!r, 6 = Vb - a2 /4, r = V'"Y2 + 62 • This theory
could explain long-term cycles in the driving forces of economic growth that in turn yield
long-term fluctuations in the structure of production and foreign trade.
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Figure 17.11: Rates of growth of technical progress, W n and knowledge, WF, and their
ratio b, the "transfer coefficient" for West Germany. Source: Krelle (1987, p. 390).

17.6 Empirical Results

In this section results with regard to the interdependence of economic growth and struc­
tural change are presented. They are derived from the econometric world model outlined
above. Econometric models exist for almost all countries of the world. All of them include
foreign trade, many of them also a monetary sector. But they do not take into account the
repercussions of their own economic activities on other economies. They are built under
the assumption of "a small country in a very large world". Only world models allow for the
general interdependence that actually exists. The best-known and currently used world
models are those of Project Link (directed by Lawrence Klein), the Wharton-Econometric
Model, and the EPA model of the Economic Planning Agency of Japan. But there are
others as well. I only mention the Globus Model developed by K.W. Deutsch and pub­
lished recently by Bremer (1987), the world model of Mesarovic and Pestel (1974), and
the UN model constructed by Leontief et al. (1977).

The latest model of this kind is the IIASA- University of Bonn Research Project pub­
lished in Krelle (1989). It comprises models for nine OECD countries and an aggregated
"country" called other developed market economies, seven CMEA countries and the rest
of the European CMEA countries, India, six groups of developing countries, and the rest
of the world. The approach is basically that of Section 17.3 and 17.4. We estimated fore­
casts for three scenarios: An optimistic one wi th relatively high rates of technical progress
and high savings ratios, a medium one, and a pessimistic one with low figures for these
two driving forces. Figm'e 17.2 shows the growth paths of some countries under plausible
assumptions for the scenarios. Of course, possible wars, revolutions, and other internal
troubles are not taken into account. The accompanying structural change of production
is indicated in Tables 17.1 and 17.2 for some OECD and CMEA countries. More detailed
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Figure 17.12: Development of the standard of living.

results follow from similar estimates of Donges et al. (1989, p. 385), and are reproduced
in Table 17.3. Though the percentage changes seem to be small, the changes in absolute
values are large. Many persons have to change their profession, lose their job, look for an­
other one, and move to other places. This is not easy to accomplish and becomes socially
more difficult the higher the standard of living is.

Figure 17.12 shows structural changes in the average standard ofliving between OECD,
CMEA, and developing countries. The developed market economies are still running faster
than theCMEA countries. The fate of the developing countries is deplorable: Their
average progress is very slow, though their growth rates of GDP are higher than those
of the OECD countries. The excessive population growth prevents them from keeping
pace with the OECD countries. Thus the international distribu tion of income will become
more unequal in the future-with all the unpleasant political and social consequences.
Figure 17.13 shows the current trade balances of these three groups of countries in the
past and forecasts up to the year 2000. According to these forecasts the debts of the
developing countries will continue to rise-also an unpleasant outlook.

17.7 Conclusion

Economic growth (in the sense of a rise in GDP per capita) is inevitably connected to
structural change. If the structural change is restrained, the growth rate is reduced. We
demonstrated the relation between growth and structural change by a dynamic multisector
world model, where production follows demand and demand changes with higher income.
But this model could only cover structural change in the sense of changes in the proportions
of production and of demand for different commodities, not the emergence of new products
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Figure 17.13: Current trade balance (including services), world regions.

or new production methods. That means structural change in the statistical sense, i.e., a
sudden or slow change in the parameter values in the behavior equations is not considered.
Slow changes may be treated by time dependent structural parameters, using a Kalman
filter approach. This has been done by Kirchen (1988) at Bonn University. But structural
breaks in the sense of sudden parameter changes can till now only be discovered ex post.
The theory of Section 17.3 may give some hints as to the forecasts of such events-of
course, only in probability.
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CHAPTER 18

Structural Change in Swedish and
Finnish Monthly Industrial Output
Series

Timo Teriisvirta

Summary

This chapter considers the hypothesis of no structural change in Swedish and Finnish
industrial output series. The alternative hypothesis to a linear regression model is a
rather flexible parametric form of structural change called smooth transition regression.
Its parameters may thus be estimated if the null hypothesis is rejected. The null hypothesis
may be tested without actually estimating the alternative using a simple F-test. The test
procedure is derived in this chapter. The null hypothesis is rejected for both Swedish
and Finnish autoregressions. There may be other reasons for rejection than structural
change; however, a smooth transition model corresponding to the alternative is successfully
estimated by nonlinear least squares for both countries. The results indicate that the
structural change has been similar in both countries but has occurred in Sweden about a
decade earlier than in Finland. The two time series are also found not to be cointegrated.

18.1 Introduction

In a recent paper, Luukkonen and Teriisvirta (1990) investigated the asymmetry of business
cycles in a number of OECD economies. The business cycle indicators used in their paper
were the quarterly unemployment rate and the industrial production, and they applied
univariate time series techniques to analyze their data. Like some other authors who used
different techniques [see, e.g., Brock and Sayers (1988)] they found nonlinearities in some
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of the analyzed series. However, the Swedish and Finnish unemployment and industrial
output series clearly passed the linearity tests, so that no evidence in favor of asymmetry
of business cycles in these two neighboring countries was found. The observation period
comprised the years 1960-1986.

In this chapter we shall reconsider the issue for Sweden and Finland using monthly time
series of industrial production starting from 1960(i) and extending to 1989(iv). Granger
and T.-H. Lee (1989) recently argued that even if a discrete process is nonlinear, its
temporal aggregates may sometimes seem linear. Thus, even if the quarterly industrial
output series for the two countries look linear, the monthly processes may display nonlinear
behavior. In fact, this is exactly what happens here. When linearity of the two processes
is tested against smooth transition autoregression it is rejected. [However, in practice one
may sometimes reject linearity with monthly but not with quarterly data simply because
the number of monthly observations happens to be larger than that of quarterly ones unless
the significance level of the test is an appropriate function of the number of observations.]
The auxiliary regression used in these Lagrange multiplier-type tests suggests, however,
that in both cases the nonlinearity may be related to changes in seasonality rather than
to cyclical asymmetry. This leads to testing for structural change with a new technique
with the advantage that a rejection of the constant parameter hypothesis at the same
time suggests a time-varying parameter alternative. In this chapter the constancy is in
fact rejected and the alternative model for the monthly industrial output is estimated for
both countries.

After analyzing the two time series separately the question of their possible cointegra­
tion is raised. Although the industrial structures of the two countries are rather similar,
the graphs of the series indicate that the two output series do not have a common trend.
For the years preceding the first oil crisis the series seem to follow a rather similar pattern,
but the hypothesis of no cointegration between them cannot be rejected with pre-1974
data either.

The plan of the chapter is the following. In Section 18.2 the smooth transition re­
gression model is considered. Section 18.3 discusses the results of testing linearity against
smooth transition autoregression. Section 18.4 contains results of the analysis of possible
structural change in the framework of smooth transition regression models. Section 18.5
is devoted to the cointegration analysis, and Section 18.6 concludes the chapter.

18.2 Smooth Transition Regression Model

Consider the nonlinear model

Yt = (3'Xt + (B'xtlF(Zt) +Ut, t = 1, ... ,T, (18.1)

where (3 = ((3I, ... ,(3p)' and B = (BI, ... ,B,,)' are]J X 1 parameter vectors, and Xt =
(Xtl, . .. , Xtp)', XlI == 1, say, is a]J X 1 observation vector. Furthermore, Ut '" nid(O, 0'2),
EUtXt = 0, EUtZt = 0, for all t; and F is a bounded, monotonically increasing function of Zt.
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A parametric functional form for F may be assumed to estima.te (18.1); for instance, Chan
and Tong (1986) proposed the cumulative distribution function of the standard normal
distribution. Luukkonen et at. (1988) suggested the cumulative distribution function of
the logistic distribution, i.e.,

- 00 < Zt < 00, (18.2)

where it = ,(Zt - c), , > 0; , and c are parameters. If, -+ 00, (18.2) becomes a Heaviside
function

F(id = { ~ if Zt ::; c

if Zt > c.
( 18.3)

In that case (18.1) with (18.2) becomes a switching regression model in which switching
is deterministic and based on the varia.ble Zt. For a discussion of switching regression
models, see Goldfeld and Quandt (1973).

Testing linearity of (18.1) constitutes an interesting and relevant statistical problem.
When F is a Heaviside function and c unknown, the likelihood function of the model does
not meet the conventional regularity conditions. The likelihood ratio test statistic thus
does not have the usual X2 distribution under the null hypothesis. This is one reason why
the smooth transition regression is often preferable to the switching regression: Testing
linearity is easier if the alternative is smooth transition regression than if it is switching
regression. In testing linearity of (18.1) the functional form of F need not be fully specified.
The following assumptions [see Luukkonen et at. (1988)] suffice:

• Function F(z) is odd, monotonically increasing, possessing a nonzero derivative of
order (28 + 1) in an open interval (-a,a) for a > 0, 8 ~ O.

• F(O) = 0 and [dhF(z)/dzh]z=o #- 0 for h odd and 1 ::; h ::; k = 28 + 1.

The condition F(O) = 0 is convenient in deriving the testing procedure, but it is not
restrictive. For instance, in connection with (18.2) it only means replacing F(z) by F(z)­
F(O).

A difficulty inherent in (18.1) is that the model is not identified under the linearity
hypothesis. If () = 0 in (18.1), , and c in the argument of F can take any value. Conversely,
the null hypothesis may be formulated as Ho: , = 0, which leaves () and c unidentified.
This problem may be circumvented by approximating F at z = 0 by a Taylor series
expansion. Assuming 8 = (k - 1)/2, one may apply the k-th order approximation

where gj = F(j)(O)/j!, j = 1,3, ... ,k. Furthermore, as z = ,(Zt - c) we may write

(18.4)
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where a = (al,a2, ... ,ad' and St = (zhzl, ... ,z~)'. Substituting (18.4) for Fin (18.1)
yields

k p

Yt = </>' Xt + (0' xd(a'St) + T}t = </>' Xt + L L 1/JijZ;XtJ + T}t ,

i=1 j=1

where </> = f3 + aoO.

The null hypothesis of no structural change is

Ho: 1/Jij = 0, i = 1, ... ,k, j = 1, ... ,p.

Luukkonen et al. (1988) applied (18.5) in the case where

p

Xt = (l,Yt-I, ... ,Yt-p)' and Zt = LajYt-j.

j=1

(18.5)

(18.6)

(18.7)

In (18.7) aj, j = 1, ... ,p, are unknown parameters with aj = 0 if j i- d and ad = 1
if d S; p. This leads to combining terms and reparameterizing (18.5) and amounts to
testing linearity against a (univariate) smooth transition autoregressive (STAR) model
with the delay parameter unknown [see Luukkonen et al. (1988) for details]. The STAR
model was the nonlinear altemative to autoregression in the business-cycle investigation
of Luukkonen and Terasvirta (1990).

If Zt and Xt are fixed, testing (18.6) against (18.5) involves testing a linear hypothesis
in a linear regression model (18.5). If we assume T}t '" nid(O,O'~) in (18.5), then under
(18.6)

SC = (SSER - SSE)/kp
k SSE/[T - (k + l)p] ,

(18.8)

where SSER is the residual sum of squares from the restricted and SSE that from the
unrestricted model, follows an F[kp, T - (k +1)p] distribution. If Zt is a linear function of
time, for instance, the time index itself, then (18.8) is a test of linearity against structural
change. The alternative assumes that except for 0'2, the parameters of the model change
monotonically over time. This way of defining the alternative and of using a Taylor series
approximation of F circumvents the complications arising in testing for structural change
with a switching regression as the alternative [see Kramer and Sonnberger (1986, p. 49)
for discussion about this problem]. If the first-order Taylor series approximation is applied
[k = 1 in (18.4)], the test statistic (18.8), SCI, is the same as that of Farley et al. (1975)
with one exception: These authors exclude a change in the intercept. A further discussion
of the test for structural change based on smooth transition regression and its properties
is deferred to a forthcoming paper.
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18.3 Analyzing Output Series: Nonlinearity
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In this section I shall begin the study of the monthly Swedish and Finnish industrial
output series. The focus will be on testing linearity against STAR; the STAR models are
capable of generating asymmetric realizations. The time series are the monthly volume
of industrial production in Sweden and Finland. They are published in the DEeD Main
Economic Indicators, comprise the months 1960(i )-1989(iv), and are seasonally unadjusted
but adjusted for the number of working days in the month. I shall consider logarithmed
series and denote them Yt.

Both series are trending, and the first question then is how to difference them to
achieve stationarity. The autocorrelation functions of both series display prominent peaks
at lags 12,24, ... , and they die out very slowly. A heuristic argument [Box and Jenkins
(1970)] would be that seasonal (12-month) differencing would stationarize the logarithmic
series. This may be checked more formally by defining the moving sum Yt = ~~~o Yt-j
and testing if it is integrated of order one [I( 1)] against the hypothesis that it is trend­
stationary. Kunst (1989) recently adopted this approach. Because V'}~ = Yt - Yt - 1 =
V'12Yt = Yt - Yt-12, Yt being 1(1) means that V'12Yt is stationary. This may be done by
considering the following regression model

V'Yt = J1, + at + .60}~-1 + 'l:.6jV'Yi-j +Ut, Ut '"" nid(0,cr2)
j

(18.9)

(18.10)

and testing Ho: .60 = O. The Dickey-Fuller test does not reject the null hypothesis for either
country at the significance level 0.05, and 0- does not appear significant; see Table 18.1.
Thus I shall work with the seasonally differenced series V'12Yt.

Consider now the possible cyclical asymmetry of these series, which is done by testing
linearity OfV'12Yt against STAR. Luukkonen and Terasvirta (1990) explained why a STAR
model is a feasible alternative in investigating cyclical asymmetry. First, an adequate
linear autoregressive representation is estimated for both countries. For Sweden (setting
Xt = V'12Yt),

Xt = 0.0059 + 0.35Xt-l + 0.18Xt-3 + 0.15Xt-4
(0.0024) (0.050) (0.055) (0.056)

+ 0.17Xt-6 + 0.17Xt_7 0.24Xt-12 +u/,
(0.056) (0.056) (0.047)

R2 = 0.547, s = 0.036, z(12) = 5.65 (0.93),

where the figures in parentheses are estimated standard deviations of the parameter esti­
mates, and z(12) is the Ljung-Box test (p-value in parentheses) against autocorrelation of
order 12 at most. For Finland,

Xt = 0.013 + 0.54x/_l + 0.25Xt-3
(0.0032) (0.049) (0.050)

R 2 = 0.490, s = 0.033, z(12) = 19.4 (0.07).

0.065Xt_12 + ilt
(0.042)

(18.11)
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Table 18.1: Results of testing the degree of integration and the cointegration of Swedish
and Finnish monthly logarithmic industrial ou tput series, 1962(i )-1989(i v).

Country Lags in model "t-value"
(18.9) 71" 7 T of time trend

Sweden 1,3,4,6,7,12 -2.62 -2.47 1.35
Finland 1,3,12 -1.86 -1.06 0.75
Critical
values (0: = 0.05) -2.87 -3.43

Tit and TT are the Dickey-Fuller test statistics without and with a time trend, respectively [see
Dickey and Fuller (1979)]. The lag structure of the models was simplified to include only sig­
nificant lags before carrying out the tests. The critical values are response surface estimates of
MacKinnon (1990).

Cointegration
Sweden/Finland

Lags in ADF
autoregression

1 to 7 -1.88

Critical value
(0: = 0.05)
-3.36

The test is an augmented Dickey-Fuller test. The critical value is a response surface estimate of
MacKinnon (1990).

Next I assume that lags in (18.10) and (18.11), respectively, constitute the linear part
of (18.1) and test the null hypothesis of linearity using the first-order test SI (based on
the first-order Taylor series approximation) and an augmented first-order test SA [see
Luukkonen et al. (1988)]. The results are, in Table 18.2. In the case of Finland, linearity
is rejected, extremely strongly when the test statistic is SA. As to the Swedish series,
the null is rejected at the 0.10 but not at the 0.05 level. Yet the number of regressors
in the auxiliary regression for SA (28) is much larger than in the previous case (13), so
that the evidence for nonlinearity is in part swamped by other, insignificant, regressors. A
closer look at the auxiliary regressions reveals that the power of the test against the null
hypothesis originates in "seasonal" regressors xi-12 and xt-12; see Table 18.2. This may
indicate a misspecification of seasonality in a constant parameter linear autoregressive
model rather than cyclical asymmetry. For quarterly series, i.e., four-quarter differences,
Luukkonen and Terasvirta (1990) did not reject linearity when the alternative was STAR.

18.4 Analyzing Output Series: Structural Change

The results of the previous section seem to suggest the possibility that the rejections
of the linearity hypothesis are due to structural change. The viability of this idea can
be investigated by testing linearity using (18.9) and (18.10) as a startingpoint against
smooth transition regression where the transition variable is the time index or a linear
transformation thereof. This means considering (18.1) with Xt = (1, Yt-l, ... , Yt-p)', Zt

being a linear function of the time index. The hypothesis to be tested is H 0: () = 0 in
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Table 18.2: Results of testing linearity against STAR using Swedish and Finnish monthly
logarithmic industrial output series, 1963(i )-1989(iv).

Statistic
p-value
Degrees of freedom

0.248 0.081
21 27

0.294 0.00015
6 9

Under Ho, both SI and SA asymptotically follow a X2 distribution with h(1I+l)/2 and 1I(h+l)/2+h
degrees of freedom, respectively, h being the number of lags in the autoregressive part of the model.
SI is identical to the linearity test of Tsay (1986). The following (nonlinear) regressors turned out
to be significant (in parentheses: i-values of coefficient estimates) in the auxiliary regression for

SI (Sweden): yL2 (3.03)
SA (Sweden): yL12 (3.37), yr-I (-3.13), Yr-12 (1.99)
SI (Finland): Yt-IYt-3 (2.17)
SA (Finland): yL 12 (-3.40), yL2 (4.78)

Table 18.3: Results of testing linearity against smooth transition regression using Swedish
and Finnish monthly logarithmic industrial output series, 1963(i)-1989(iv).

Statistic
p-value
Degrees of freedom

0.263 0.608
7 21

Finland
SCI SC3

0.423 0.012
4 12

The following (nonlinear) regressors turned out to be significant (in parentheses: i-values of coef­
ficient estimates) in the regression to compute

SCI (Sweden): Z;Yt-12 (-2.37)
SC3 (Sweden): z; (1.99); closest: Z;Yt-12 (-1.75)
SCI (Finland): none

SC3 (Finland): Z; (3.39), ZtYt-1 (-2.39), Z;Yt-12 (-3.38); closest: ZrYt-12 (-1.89)

(18.1). This can be transformed into the problem of testing (18.6) in (18.5). Because
Xt contains lags of Yt, the null distribution of (18.8) is not an F distribution, but the F
distribution is still a reasonable approximation. For the test statistics SCI and SC3 , see
(18.8), the results are in Table 18.3.

For the Swedish industrial production series, the test statistics do not reject linearity.
However, the individual coefficient estimates suggest that the seasonality might be chang­
ing over time. For Finland, using SC3 leads to a rejection at the 0.05 level. Because even
the Swedish data bear some evidence of seasonal structural change, I shall fit the smooth
transition regression model (18.1) to both the Swedish and the Finnish data assuming
that F equals (18.2), where Zt = O.OOl(t - 170) [t = 1 at 19600)] and () = (0'00' ,0,(}I2Y.
The estimated model for the Swedish series becomes

Xt = 0.0050
(0.0026)

+ 0.34 Xt-I + 0.17 Xt-3 + 0.12 Xt-4

(0.050) (0.054) (0.055)
(18.12)
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0.043Xt_12
(0.097)

+ 0.040)})-I Xt _12
(0.037)

0. 18Xt_7 ­

(0.055)

exp{ -30.9 (Zt
(26.5)

+ 0. 17X t-6 +
(0.055)

0.27 (1 +
(0.11 )

R 2 = 0.497, S = 0.033.

[The conditional least squares estimation of smooth transition regression models appears
very sensitive to the initial values. It seems that reasonably good startingvalues can
often be obtained by conditioning on " estimating the model at various values of this
parameter, and selecting the initial values from the model with the smallest sum of squared
residuals.] The coefficient estimates for the linear part of (18.12) are similar to those in
(18.10). The only exception is the estimate for the seasonality parameter 1312. Indeed, the
seasonality seems to have changed during the observation period; note that c = -0.040
corresponds to t = 1970(x), and the standard deviation of c, 0.037, is equivalent to 37
months. This estimate has to be interpreted together with i = 30.9 (which has a large
standard deviation, 26.5) and the correlation between cand i (which equals -0.90). Thus
a small increase in c with a simultaneous decrease in i may have little effect on the
residual sum of squares. This indicates, together with the large standard deviations, that
the structural change may have been smoother than the high value i suggests. However,
(}12 is estimated fairly accurately, so that an overall interpretation is available. In the 1970s,
there was a smooth structural change in the seasonality of the monthly Swedish industrial
production series. After being constant in the 1960s (no seasonality parameter 1312 was
needed to complement seasonal differencing) in an autoregressive model, the seasonality
became variable in the 1970s (the estimated seasonality parameter ~12 + 012 ::::: -0.31 ±
0.11).

Estimating model (18.1) using the Finnish data yields the equation

Xt 0.015
(0.0034)

0.23 (1
(0.12)

+ 0.53Xt_1 + 0.24Xt_3 - 0.043Xt_12
(0.049) (0.051) (0.044)

+ exp{ -83.8 (Zt 0.085)})-I Xt _12 + Ut
(106) (0.024)

(18.13)

R 2 = 0.499, S = 0.033.

This smooth transition regression model resembles in many respects its Swedish coun­
terpart (18.12). Again, it seems that the seasonality was constant at first and became vari­
able later. Here, c= 0.085, which corresponds to t = 1981(iii), and its standard deviation
is equivalent to 24 months. Thus the change in seasonality indicated by the model occurred
later in Finland than it did in Sweden, but the pattern is similar: ~12 +012 ::::: -0.27 ±O.ll.
The estimates of c and i in (18.13) are again correlated (-0.79), and the high standard
deviation of i indicates that the joint estimation of c and I involves substantial uncer­
tainty.

It is of course by no means clear that the sole reason for rejecting the null hypothesis
when testing against structural change actually is structural change. Nevertheless, it is
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interesting to see that a smooth transition regression model tan be successfully fitted to
both data sets and that the results for the two output series are both interpretable and
remarkably similar.

18.5 Cointegration Between the Swedish and
Finnish Series

The analysis of the two industrial production time series has been univariate. In this
section I shall briefly consider both processes together and see if they are cointegrated.
Because seasonal variation is not of interest here, I shall consider the 12-month moving
sums Y/ (Sweden) and y/F (Finland). Both economies are small and open, and are de­
pendent on foreign trade. The countries are neighbors, and their main industries compete
in several markets. This might speak in favor of some form of cointegration. On the other
hand, a look at the output series is enough to see that they are not cointegrated. The
effects of the first oil crisis and the consequent recession on Swedish manufacturing were
more severe and lasted longer than those on Finnish industries. The formal cointegration
test, see Table 18.1, confirms this assertion; the null hypothesis of no cointegration cannot
be rejected when the observation period is 1962(i)-1989(iv). I also checked if the two series
had been cointegrated before 1974, the oil crisis disrupting this harmony. However, the hy­
pothesis of no cointegration cannot be rejected for the observation period 1962(i)-1973(xii)
either.

The cointegration is a linear concept, and the above results thus relate to a search of a
linear, constant parameter, long-term relationship between ~s and y/F. If one allows for
time-variation (structural change) in the parameters, the concept of cointegration becomes
much more flexible. Granger and H.S. Lee (1990) discuss time-varying cointegration in
Chapter 10. The considerations in Section 18.2 could constitute a basis for an alternative
approach to time-varying parameter cointegration. Nevertheless, the matter will not be
pursued further here.

18.6 Conclusions

The results of the chapter show that the differenced monthly logarithmic time series of
Swedish and Finnish industrial output since 1960 are nonlinear, although the correspond­
ing quarterly series appear linear. It seems that the auxiliary regressions in many linearity
tests contain information about causes of possible nonlinearity. In this chapter, that in­
formation hints at structural change in seasonal parameters of univariate autoregressive
models. Indeed, a parametric model for the change can be estimated for both countries.
The estimation results suggest that the seasonality in both Swedish and Finnish industrial
production series has changed from constant to variable during the period of observation
and that the change occurs a decade or so earlier in Sweden than in Finland.
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CHAPTER 19

On the Estimation of Time-varying
Parameters in Transfer Function Models

Lennart Claesson and Anders H. Westlund

Summary

Transfer function models are here used to identify empirically economic dynamic systems.
An iterative recursive instrumental variables estimator for transfer function estimation,
originally suggested by Young [see, e.g., Young (1984)], is here applied in estimating struc­
turally varying transfer function models describing leading indicator relations for business­
cycle forecasting. A series of numerical examples clearly indicate the good capability of the
estimator to discover parameter changes. At least for single-input models the estimator
converges well enough toward the correct and time-varying parameter values within a few
iterations, as soon as the signal-to-noise ratio is not too small.

19.1 Introduction

The identification and estimation of dynamic structure represent one very significant ele­
ment of economic structural analysis, besides being generally crucial to economic forecast­
ing. For example, some basic features of business-cycle theory presume dynamic models,
and business-cycle forecasting often focuses on so-called leading indicators and their dy­
namic relations with business-cycle reference series.

The identification of dynamic structures is essentially an empirical task. Economic
theory seldom gives more than minor support to the specification efforts. At best, theory
provides the analysis with a number of vague restrictions, such as whether leads or lags are
to be expected. Obviously there is a need for efficient and general empirical procedures
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to assist in generating and testing hypotheses with respect to the dynamic elements of
economic structures.

In econometric modeling, dynamics is often introduced by various types of finite dis­
tributed lags. Infinite lag structures are sometimes used to increase the generality. AR­
MAX and transfer function models are well-known examples, which represent very general
dynamic structures. Such models, taken from time series analysis following the lines of
Box and Jenkins, will be applied in this chapter to help analyze dynamic structural re­
lations. For an excellent discussion on the relative importance of theory and empirical
data to the modeling of dynamics, and for a survey of various models to be used in this
connection, see Hendry et al. (1984).

Economic structures, in general, and dynamics, in particular, are traditionally as­
sumed to be time invariant. There are, however, empirical as well as theoretical rationales
to relax that assumption. Numerous contributions to methodological research, e.g., sta­
tistical test and estimation procedures to identify and determine parameter variability,
have been published over the last decade [see Hackl and Westlund (1989)]. Furthermore,
econometric and time series literature now also includes an increasing number of impor­
tant empirical studies with the focus on structural variability problems. For example, the
above-mentioned leading indicator dynamics often tends to vary between different time
periods, in particular between the upswing and downswing business-cycle periods. This
means that parameters related to a certain lag structure might be significant over one
period and nonsignificant over another, i.e., some kind of parameter variability is present.

To render the analysis of parameter variability feasible, some limiting assumption is
required. A lack of relevant theoretical a priori restrictions often means a tacit assump­
tion that the parameters vary according to Markovian models. Kalman filtering is then
often suggested as an approach to estimate structurally varying econometric models and
time series models [see, e.g., Athans (1974) and Ledolter (1981)]. However, time series
models with moving average terms include nonlinearities which make recursive estima­
tion procedures such as Kalman filtering complex. Such nonlinearities also characterize
ARMAX and transfer function models. One possible way to reduce complexity involves
linearizing by instrumental variables and the use of an iterative recursive instrumental
variables procedure [see, e.g., Young (1984)].

The purpose of this chapter is to introduce such a recursive procedure to econometric
analysis of dynamics through transfer function models. In particular it will be used to
analyze possible variabilities in the dynamic structures. As the need for recursive esti­
mation of structurally varying transfer function models has been noted in relation, e.g.,
to some attempts to forecast business-cycle processes, the chapter starts with some com­
ments on the theory of business-cycle dynamics in Section 19.2. Some comments are also
given on the leading indicator approaches, which have gained general attention among
business-cycle forecasters. Some empirical indications of varying dynamics among such
leading indicator relations are pointed out. Section 19.3 introduces the transfer function
model, and briefly discusses some related general identification and estimation problems.
A recursive instrumental variable estimation procedure for transfer function estimation is
then presented. In particular, parameter variability is assumed and necessary modifica-
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tions with respect to the recursive estimation procedure are emphasized. The empirical
application of transfer function models and the recursive estimation procedure is in general
very difficult. Partly, this is due to the small data sets typically available, and partly to
the often badly specified models (low signal-to-noise ratios). Such complications are gen­
erally accentuated in the case of varying parameter structures, e.g., when the dynamics
are not time invariant. Section 19.4 provides, by a Monte Carlo study, some numeri­
cal illustrations to the earlier-given theoretical statements. Section 19.5 then returns to
business-cycle forecasting by structurally varying transfer function models. A number of
dynamic leading indicator relations are recursively estimated, and the results discussed.
Section 19.6, finally, summarizes the study and gives some suggestions for further research.

19.2 Dynamic Models for Business-Cycle Forecasting

A majority of the commonly accepted theories of the business-cycle mechanisms entail
dynamic models. This is the case both in "external" theories identifying the origins of the
business cycle outside the economic system and in "internal" theories that try to explain
business cycles through mechanisms within the economic process itself (for a review of
business-cycle theories, see, e.g., Zarnowitz, 1985).

The "internal" or basically endogenous theories often focus on the multiplier-accelera­
tor effects, i.e., on the internal dynamics of the economic system (involving lagged reactions
among such components as consumption and investment levels). On the assumption that
consumption is lagged behind income and that induced investment is lagged behind change
in output, such a multiplier-accelerator mechanism is expected to produce a fluctuating
output model. The theories thus postulate that as a result of such dynamics industrial
economies will be characterized by recurrent fluctuations with a certain regularity.

Various exogenous and endogenous shocks are also expected to propagate cycles. Such
influences, however, generally cannot by themselves generate fluctuations without some
internal dynamics of the economic system. The monetarist interpretation that connects
the cycle with contractions and expansions in the money supply is based on the assumption
of lengthy (and possibly varying) lags of output behind the monetary changes. Laidler
(1975) exemplifies these ideas by discussing a dynamic model where the lagged and current
exogenous monetary growth and current inflation cause output changes, which in turn give
impulses to inflation, etc.

Equilibrium theories also require some dynamics propagation mechanisms to explain
the output and employment movements occurring over the business cycles. For example,
it has been observed that rapid adjustments of production and employment rates are very
costly. In general, order and construction lags are rather long with the consequence that
investment often adds first to demand and later to capacity. Thus, the effects on supply
from increased capacity are delayed.

Irrespective of the theoretical perspective used to explain the business-cycle mecha­
nism, the elements of dynamics are always crucial. It is also obvious tha.t the mechanism
is complex, and that the set of factors and relations that constitute the business-cycle
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system will vary significantly over time.

Business-cycle theories touch a wide set of economic time series, e.g., production, em­
ployment, income, investment, various financial series. Several of these show recurrent
cyclical fluctations that more or less consistently will lead an appropriate aggregate that
represents the business-cycle series. So far this is consistent with different business-cycle
theories, but the way in which leading indicators in practice are used for business-cycle
forecasting is often just rudimentarily related to economic theory. Still, dynamics is the
basic element of the model. Some of the used indicators will measure activities that ac­
tually are taking place, and that will lead the aggregate economic business-cycle series.
Examples are housing starts and output from industries that first reflect economic recov­
ery. Other leading indicators are taken from business surveys aimed at indicating future
business tendencies.

One of the most important cri teria according to which leading indicators are selected
concerns degree of stability in the dynamic structure. As business-cycle forecasts based
on leading indicators usually concentrate on turning points, the interest in the dynamics
stability of the indicator will also focus on turning points. In principle, however, this
stability requirement holds for the business-cycle process as a whole.

During the late 197015, OECD creatcd a system of leading indicators to be used for
business-cycle forecasting in its member countries. An examination of the leading indicator
system in the case of Sweden shows that the stability assumption hardly is satisfied. A
simple measure of instability over a time period is the mean deviation from the observed
median lead time between each leading indicator and the business-cycle reference series
(here "industrial production"). Figure 19.1 illustrates the lead instabili ty as measured by
this criterion for 12 leading indicators based all Swedish data since 1960. Obviously, the
lead stability hypothesis does not receive much support.

One possible and partial explanation to the observed lead instability might be related
to differences between the two categories of turning points (i.e., from upswings to down­
swings, and from downswings to upswings). Figure 19.2 shows that this might be the
case. Obviously, most of the indicators lead the refercncc series by shorter time periods at
the points where upswings change into downswing phases. Consequently these two kinds
of turning points should be predicted on the basis of different assumptions concerning the
dynamic structure. This problem needs further theoretical as well as empirical analysis.

Below, varying dynamics will be discussed with reference to the general dynamic struc­
ture, and not be confined to turning point leads. In the following sections, transfer function
models and recursive estimation proccdures are applied to analyze possible dynamics.

19.3 Transfer Function Models and Recursive Estimation

19.3.1 The transfer function model

Modeling dynamics generally means the matching of thcoretically postulated lag reactions
to empirically observed auto- and cross-correlation structures among the relevant time
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indicator

---0- X;t (order books; tendencies)
---0-- X7t (employment, industry)
~ x6t (purchase of raw materials; tendencies)

---0--- Xit (notices of lay-offs)
---0-- x 4t (finished goods stocks; level)

-------.0)----- Xit (dwellings in progress)
~ Xit (new orders, mining and manufactoring)
~ X12t (share prices, Stockholm)

-----<0>-.---- X gt (unit labor costs)
~ Xit (export order inflow; tendencies)

---0-- Xiot (Ml + quasi-money)
----<0)....-- xilt (yield of long-term government bonds)
___....l...1__l...-_...J--_----I__...J--_....J..----..

-20 -15 -10 -5 0 5
lead (months)

Figure 19.1: Median lead times for Swedish leading indicators at all business-cycle turning
points 1960-1988 (intervals show mean deviations from median lead).

series data. Economic theory, however, provides Iittle prior information about such lag
reactions. As the time series to be applied often are very short, and the way they are
linked together is characterized by a high degree of complexity, the paucity of dynamic
theory causes problems in the modeling process. Completely unrestricted estimation is
probably valueless, and will at least imply an imprecise and inefficient estimation of the
underlying dynamic structure. Thus, although we focus on a very general class of dynamic
models, it should be emphasized that all relevant theoretical information must be utilized
in order to strive for parsimonious specification.

A general class of models used in describing dynamic economic structures is the au­
toregressive (AR) moving average (MA) model with explanatory (X) variables (i.e., the
ARMAX models) with the following form:

M

fo(B)Yt = L h(B)xj,t-Tj + fM+l(B)et,
j=1

(19.1 )

where Yt denotes the output at time t, Xjt denotes the j-th input at time t, Tj is an
integer-valued pure delay of the j-th input, ft denotes a sequence of independent random
variables let '" IN(0,a 2 )], B denotes the backward shift operator, i.e., BSxt = Xt-s, and

t .
!i(B) = Lj'=0!ijB3 (i = O,I, ... ,M + 1), where foo = f1l1+1,0 = 1.

The transfer function model is given by re-expressing (19.1) as

M bj(B) d(B)
Yt = L a (B)Xj,t-Tj + c(B)et ,

3=1 3

(19.2)
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Figure 19.2: Median leads at turning points (max. and min., respectively) for Swedish
leading indicators.

where all common factors have been cancelled in the polynomial ratios, and where

nj

aj(B) = 1 + L ajiBi
i=l

ffij

bj(B) L bji Bi

i=O
p

c(B) 1 + L ci Bi

i=l
q

d(B) = 1+LdiBi
i=1

Identification entails determining the integer set n = {Tj,nj,mj,p,q;1 :<::; j:<::; M}. Tra­
ditionally, so-called impulse response functions {Vjk; k ;::: O}, given by the infinite poly­
nomial expansion of each of the M single-input single-output systems (represented by
bj(B)BTj laj(B) = l:~o VjkBk), are determined. Comparing each impulse response func­
tion with a catalogue of such functions, determined from known transfer function struc­
tures, yields information to help identify the model structure. Identification through
evaluating observed impulse response functions is in practice often very complicated. The
only parameter that is relatively easy to determine is the pure delay integer Tj. These
identification complications are always accentuated when allowing for time-varying param­
eters. An alternative identification procedure that might be more efficient for such models
is given by Young et al. (1984). The following discussion presupposes a well-identified
model structure, i.e., our interest will focus on estimation problems. Given n, maximum
likelihood estimates of the paTameters in (19.2) can be computed in a straightforward
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manner.
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(19.3)

It is a well-known fact that ordinary least squares estimation of (19.2) will yield es­
timates that are asymptotically biased and inconsistent. To simplify, let us consider the
single-input special case of (19.2), i.e.,

b(B) d(B)
Yt = a(B)Xt + c(B) ,et

where a(B) = 1 + L::':1 aiBj, b(B) = L::l bjBi, c(B) = 1 + L:f=1 ciBi, and d(B) =
1 + L:f=l djBi, and where to simplify notations it is assumed that Tj = O. It is easily
found that by multiplying both sides of (19.3) by a(B)

Yt = u~a + 1]t ,

where

u~ = (-Yt-l, ... , -Yt-n, Xt,· .. , Xt-m)

a (al, ... ,an ,bo, ... ,bm )'

n

1]t 6 t +L ai 6 t-i ,
i=1

where 6 t = ~i~l et· But the vector Ut is contaminated by the noise

Ut = Zt + .::it ;

here

(- Zt-I, . .. , - Zt-n, Xt, ,l:t-m)'

(6t - 1,· •. , -6t- n ,0, ,0)',

(19.4)

(19.5 )

where the unobservable Zt variables in Zt constitute the deterministic output from (19.3),
i.e.,

Thus, if at is the 018 estimate based on t-observations of a in (19.4), we find that

plim(at - a)

where Rx,y = t L:~=1 xiYi·

This shows that the 018 estimates for at are asymptotically biased and inconsistent.
A remedy for achieving consistency and, possibly, asymptotic efficiency is the introduction
of instrumental variables.
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19.3.2 Recursive estimation

One way of deriving recursive estimators of the parameters in (19.2) is to determine the
estimates that minimize 2::;=1 et, where

(19.6)

[To simplify notations without loosing generality, Tj = 0 is assumed in the following.] It
is now possible to reformulate (19.6) as

(19.7)

and 611 = (-{jl,I-I, . .. , -(jl,l-ne' Xlt, ... , Xl,l-me)"

P fil . (j d b e(B) .re tenng II an XlI y ae(B)d(B) means creatmg

(j* _ c(B) (j
II - al(B)d(B) II

and

c(B)
:rll = XlI'

al(B)d(B)

As a function of {jll and xlI' (19.7) is then rewritten as

(19.8)

But since the {jll variables in (19.8) are contaminated by noise [c.f. (19.5)], we have here
an errors-in-variables type of situation. One approach to obtain consistent estimates of
the parameters in such models is to use

(19.9)

as instrumental variables for (jtt [see Jakeman et al. (1980)]. The normal equations ob­
tained when minimizing Let subject to (19.8) may be written in recursive form as

(19.10)
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h '* ('* '* * * )' dwere Zit == -Z(,t-l, ••• ,-Z(,t_nl'X(P.··,X(,t_mt an
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and where Vet denotes the estimated covariance matrix for au, which in turn may be
recursively updated by

(19.11 )

,*'The corresponding "nonsymmetric" algorithms are obtained, if zl: is replaced by bu.
In applications characterized by paucity of data and low signal-to-noise ratios (typical
for economic processes), such algorithms often yield better robustness and convergence
characteristics.

Prefiltering by c(B)j[a((B)d(B)], which requires estimation of the residual process,
proves au to be asymptotically efficient [see Jakeman et at. (1980)]. Although et is colored
noise, it is often possible to assume c(B) == d(B) == 1 and thus avoid the fully refined,
but also rather complex, procedure. The estimation is still consistent and yields estimates
that for most practical purposes are tolerably efficient statistically. The recursive formulas
(19.10) and (19.11) are still applicable, but the prefilters are reduced to 1ja((B).

To apply this estimation procedure we obviously need estimates of the parameters in
the polynomials to perform the prefiltering operations. These estimates should also be
utilized to generate suitable instrumental variables from (19.9). In practice this can be
achieved in an iterative-recursive manner, that is, by doing several iterations through the
whole time series.

On some arbitrary k-th iteration, the recursive estimates a(t and Vit are given by
(19.10) and (19.11), respectively. The estimates ir 2 , Zit and 6;t are based on the estimates
of au from the final recursion in the previous (k - 1)-th iteration. The estimates of the
noise-model polynomials c(B) and d(B) are obtained from recursive formulas similar to
(19.10) and (19.11), using the residuals generated by the final estimates of au. Thus, the
deterministic and noise models are estimated separately, but they are coordinated in each
iteration. At the final recursion on iteration k, new estimates are obtained and the process
is repeated until convergence is reached.

This iterative-recursive estimation procedure calls for some kind of initialization before
the first iteration. Initial estimates of bu , t == 1, ... ,T, could be obtained by estimating
each input-output relationship separately. The parameter estimators au are initialized
at t == 0 with zero elements, and the initial 1fu matrices are chosen diagonally with all
elements set to some large number. This choice of Via can be interpreted as if we put little
confidence in the initial estimates a(o. Since neither instrumental variables nor prefilters

A" A.'
can be generated before the first iteration, Zlt (and zl;) are replaced by b(l (and bu ) in
(19.10) and (19.11) during the first iteration. The resulting estimates are biased but prove
to be of sufficient quality to get the process started.
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In the subsequent iterations ato is set equal to the final estimates from the previous
iteration. The matrices Vio are set to the values obtained in some specified recursion
in the preceding iteration. This setting of Vto is heuristic and the appropriate recursion
is typically given by T / I, where T is the number of observations and I the number of
iterations.

A final iteration (I +1) is recommended in which Vio again is set with large values in
the diagonal. This is done to get a satisfactory estimate of the error-covariance matrix.
Even if the nonsymmetric version of (19.10) and (19.11) has been used in the "regular"
iterations, it seems preferable to utilize the symmetric form in this last iteration.

The need for time-variable parameters in (19.2) is indicated in Section 19.2. There are
several ways in which such time-variable parameter modifications may be considered. A
general form of stochastic models for parameter variations, adapted to the requirements by
simple recursive estimation algorithms, is given by the following Markovian assumption:

(19.12)

where ajt = (ajlt, ... ,ajnjt;bjo/, ... ,ajmjt}', and where <I>j and f j are assumed known,
and E[ejtl = 0, E[ejtejt'] = QjOtt" and E[ejtet'] = 0 for all t, t' and finally 0tt/ denotes
the Kronecker delta.

Thus, it is now possible to proceed in line with Kalman filtering [see Kalman (1960)]
by adding the following prediction relations to the previously given recursive updating
formulas (19.10) and (19.11):

(19.13)

and

(19.14)

Furthermore, 8.i,t-1 and Vi,t-l are replaced by ai,tlt-l and Vi,tlt-I, respectively, in (19.10)

and (19.11) (where ai,tlt-I and 1l[tlt-1 denote estimates for parameters at time t based on
data up to t - 1).

19.4 A Monte Carlo Study

19.4.1 The design of the study

The recursive estimation procedure (19.10) and (19.11) has some attractive asymptotic
qualities. The instrumental variable approach makes it consistent and sometimes asymp­
totically efficient. To judge its capacity to contribute to the analysis of dynamics in
economic systems, it is also important to verify its small-sample properties and, perhaps
above all, to study how the procedure may identify parameter variabilities.
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As theoretical finite sample evaluation will be mathematically intractable, we must rely
on empirical observations or on numerical Monte Carlo studies. The Monte Carlo simula­
tions involve transfer function models with constant as well as time-varying parameters.
The following models are considered:

Model I

Model II

Model III

In the case of constant parameters, true parameter values are as follows:

all = -.6
a21 = -1.4 an = .5

blO = 2
b20 = -.1 b21 = .2 .

In the case of time-varying parameters the following assumptions are made:

Model

I

II

True parameters
{ -.6 t= 1, ... ,90,181, ... ,T

all = -.4 t=91, ... ,180
blO constant, as above

The time series length T equals 300 and, in cases of constant parameters and the one-input
system, 100. In all experiments the smaller samples consist of the first 100 observations
of the corresponding larger samples.

For all simulation experiments presented in this chapter, 500 replicates were performed.
The same stationary input series .'lIt and X21 were used throughout all replicates. The
noise series were generated as pseudorandom observations from a normal distribution
with variance appropriately chosen to give the selected signal-to-noise ratios SIN. Two
levels of this ratio selected for this study: a high level (SIN,:::, 10) and a (very) low level
(SIN':::' .5). To demonstrate the explicit effect of increased random disturbances, the noise
series for the experiments with low signal-to-noise ratios were generated as v'2O times the
noise series used in the experiments with high signal-to-noise ratios.

In the estimation of model III the initialization before the first iteration, i.e., deter­
mining the starting values of bft, was based on a first estimation run through the data..
Experimentation showed an improvement in convergence if the deviations from their re­
spective means were used in place of the original variables in this first estimation run.
This modification was not necessary in estimating models I ane! II since bft = Yt in single
input models.
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19.4.2 The case of constant parameters

In this section the proposed estimation technique is applied to the models with constant
parameters. Several results from the simulations are displayed in Tables 19.1 (a-c). The
values given in the tables are the means and the standard deviations (in parentheses) of
the 500 estimates of each coefficient. Some of the results are based on fewer replicates due
to convergence problems (c.f. notes below the tables).

The results are in accordance with what was expected, with the exception of the
estimates of the autoregressive parameters in model II, Table 19.1(b), with T = 100 and
low signal-to-noise ratio. The mean values differ markedly from the true parameter values,
and the standard deviations are higher than expected in comparison with the other results.
This indicates that the number of iterations are too few, at least for some replicates, to
obtain fully converged estimates for these two parameters.

Model complexity, sample size, and signal-to-noise ratio all have their influence on the
performance of the recursive estimation procedure. In some of the experiments, where less
favorable combinations of these factors were tried, we had some problems with numerical
instability. This showed itself in the form of exploding IV series. Since the autoregressive
part of model II (or the second input of model III) are "close to" being nonstationary, the
resulting estimates could with a little bad luck generate a nonstationary transfer function
to be used in constructing the IV series for the next iteration. This could in turn result
in even poorer estimates and even tually in numerical overflow. The risk of this of course
depends on the quality of the estimates in previous iterations. Thus, the risk is higher for
short and noisy series but decreases with each iteration since the quality of the estimates
should be improved by the iterative process.

The problems encountered could surely, at least to some extent, be solved by a more
sophisticated approach than the quite straightforward application of the estimation proce­
dure described in Section 19.3, which was used here. Applying some kind of convergence
criteria instead of a fixed number of iterations should, for example, solve the earlier­
mentioned problem of too few iterations.

19.4.3 The case of varying parameters

The simulation results for the models with parameter shifts are presented in Figures 19.3­
19.8. All results are based on 500 replicates, and the mean and standard deviation were
calculated at each recursive step. The four series plotted in each figure are the mean (solid
line), the mea.n ± one standard deviation (dotted lines), and the true coefficient (dashed
line).

Figures 19.3 and 19.4 show the recursive estimates for model I wi th high signal- to-noise
ratio. In Figure 19.3, estimation was carried out under the usual assumption of constant
parameters. As expected, the parameter shifts in coefficient all are not reflected in the
recursive estimates. Figure 19.4 displays the same estimates when a random walk model
for both coefficients are incorporated to allow for possible parameter changes. The shifts
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Table 19.1: Simulation results for (a) model I, (b) model II, and (c) model III.

(a) T = 100 T = 300
High SIN Low SIN High SIN Low SIN

all = -0.6 -0.599 -0.594 -0.600 -0.598
(0.015 ) (0.067) (0.009) (0.039)

blO = 2.0 2.004 2.031 2.001 2.010
(0.074) (0.333) (0.043) (0.193)

( b) T = 100 T = 300
High SIN Low SINa High SIN Low SIN

a21 = -1.4 -1.397 -1.330 -1.400 -1.391
(0.032) (0.224) (0.018 ) (0.086)

a22 = 0.5 0.498 0.436 0.500 0.492
(0.029) (0.208) (0.016) (0.078)

b20 = -0.1 -0.101 -0.104 -0.100 -0.102
(0.011) (0.050) (0.006) (0.028)

b21 = 0.2 0.201 0.210 0.200 0.203
(0.013) (0.057) (0.008) (0.033)

(c) T = 300
High SIN Low SINb

all = -0.6 -0.603 -0.605
(0.012) (0.050)

blO = 2.0 2.009 2.020
(0.045 ) (0.196)

a2l = -1.4 -1.400 -1.389
(0.018) (0.091)

a22 = 0.5 0.500 0.491
(0.017) (0.084)

b20 = -0.1 -0.101 -0.104
(0.007) (0.029)

b21 = 0.2 0.201 0.204
(0.008) (0.033)

a13 replicates were omitted.
b 18 replicates were omitted.
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Figure 19.3: Recursive estimates of model I assuming constant parameters; high sig­
nal-to-noise ratio.

in all are rather rapidly detected by the estimation procedure. Not surprisingly, the shifts
cause a temporary turbulence in the recursive estimates of the constant parameter bID as
well.

Figures 19.5 and 19.6 show the corresponding results for model I with low signal-to­
noise ratio. Consequently, the standard deviations are higher, but this is the only obvious
difference.
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Figure 19.4: Recursive estimates of model I assuming a random walk model for the pa­
rameters; high signal-to-noise ratio.
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Figure 19.5: Recursive estimates of model I assuming constant parameters; low sig-
nal-to-noise ratio.

As we shall see in the following, the very a,ppealing results for parameter au in model
I are somewhat coincidental (dependent on design).

When the same estimation procedures were applied to model II with high signal-to­
noise ratio, the inherent weaknesses of the refined IV approach in connection with random
walk modeling for parameter shifts were exposed.
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Figure 19.6: Recursive estimates of model I assuming a random walk model for the pa­
rameters; low signal-to-noise ratio.
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Figure 1g. 7: Recursive estimates of model II assuming constant parameters; high sig­
nal-to-noise ratio.

Figure 19.7 shows the recursive estimates assuming constant parameters. One can
note the rather peculiar estimates of the autoregressive coefficients.

Figure 19.8 shows the recursive estimates using the random walk approach. The shifts
are still detected, although it takes a while longer to reach the right level (on average)
compared with the results for model 1. The poor estimates in the beginning of the series
are obvious. They have to do with the construction of the instruments (and to some extent
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Figure 19.8: Recursive estimates of model II assuming a random walk model for the
parameters; high signal-to-noise ratio.

the prefilters) and, furthermore, with the starting values of the algorithm, which all are
determined by the final estimates (at recursion 300) in the previous iteration. The effect of
this is that the parameter changes are not reflected in the IV series, and that explains why
the first recursion gives estimates close to the final level of the coefficient. To avoid this,
the construction of the IV series has to be made more adaptive. Note that this problem
did not appear in model I, since parameter all shifted back to its original level.
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The need to make the instruments (and prefilters) more adaptive would be even more
necessary when there are two or more inputs. Otherwise, the explicit effects of the pa­
rameter changes on the series Sit will be mixed up by effects from determining the other
input series.

19.5 Empirical Observations on
Transfer Function Variability

In Section 19.2 we briefly indicated that various economic theories explaining business­
cycle phenomena include assumptions about dynamic relations. We also stated that such
dynamic structures, for the purpose of business-cycle forecasting, often are measured by so­
called leading indicators. We have here estimated a number of leading indicator relations
modeled by transfer functions. By splitting the sample period in various ways we will
get an idea about the degree ofstructural variability involved and also indications whether
and, if so, to what extent dynamics will vary over time. Some typical results are given in
this section. The variability thus observed clearly justifies the use of a recursive estimation
approach, e.g., according to the principles described above. A few empirical results are
given.

Analysis and forecasting of business-cycle behavior requires some reference series to
represent the cyclical growth of the aggregate economy. Here we use an index of indus­
trial production (covering mining, manufacturing, and public utilities) and concentrate
on the Swedish case. The leading indicators selected by DEeD for Sweden are listed in
connection with Figure 19.1. They are chosen with respect to various criteria. Besides the
above-mentioned need for consistency of the lead of the indicator over the reference series
(especially at turning points), some other criteria are worthwhile mentioning. "Economic
significance" is, of course, the basic criterion according to which an indicator is accepted.
Furthermore, it is desirable that an indicator shows cyclical profiles highly correlated with
that of the reference series, and that these profiles are smooth enough to allow turning
points to be distinguished from random movements.

Transfer function models are identified and estimated for several relations between
leading indicators and the reference series. Multiple-input as well as single-input models
are determined. Furthermore, transfer function relations between some alternative inter­
national indicators (and foreign reference series) and the Swedish industrial production
index are studied. Finally, the relation between the Swedish composite index (based on
the set ofleading indicators) and the Swedish industrial production index is analyzed. The
total time series period (covering 1960:1-1988:11) is split up into numerous subperiods.

To analyze variability in structures (particularly in dynamics) different approaches
can be used. One means is to identify a single-model structure, which is used over all the
different sample sets. Varying parameter estimates indicate structural variability, subject
to the particular model actually used. Another procedure allows for new identification as
well as estimation for each new sample. This approach, of course, more efficiently indicates
changes with respect to dynamics, but at the same time also makes it.more difficult (or
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Table 19.2: Swedish industrial production (ytl = j[Swedish share prices (Xlt), Swedish
yield of long-term government bonds (xu)] for 1963:10-1988:9, and subperiods thereof.

9 0/ .02

Univariate (input variables are rejected)

Univariate (input variables are rejected)

Univariate (input variables are rejected)

MA(l) .41

MA(l) .65

MA(l) .70

Noise
MA/AR

MA(1) .53

1 / -.800/.01

0/-.04

0/.01

7 0/ -.003

8

9

Pure lag Estimated parameters
Input lag Output lag

Xit X2t Xu X2t Xit X2t

Diff.
(order, degree)

y, Xu X2'

(1,1) (1,1)

(1,1) (1,1)

(1,1) (1,2)

(1,1) (1,1) (1,1)

63:10-88:9
(T = 300)

76:4-88:9
(T = 150)

63:10-76:3
(T = 150)

82:7-88:9
(T = 75)

76:4-82:6
(T = 75)

70:1-76:3
(T = 75)

63:10-69:12
(T = 75)

Time period
(T)

impossible) to compare estimates of different periods. As the identification procedure is
extremely complicated and time-consuming, the second approach requires very efficient
computer software. In the entire study we have applied AUTOBOXPLUS [see Shumway
(1988)], which permi ts automatic transfer function identification.

The overall and very general results obtained through these extensive exercises are (i)
most transfer function relations studied show high instability with respect to the dynamic
structures involved and (ii) subject to a specific transfer function model, in most cases
the parameter variability is significant. In conclusion, the above-mentioned requirements
with respect to lead consistency is very rarely satisfied.

It is of course not possible to demonstrate all our results. We restrict ourselves to a
few typical examples. These include Swedish industrial production as a function of (i)
Swedish long-term interest rates and share prices; (ii) an OECD composite leading index;
and (iii) industrial production indices in the UK, the United States, and West Germany.

Tables 19.2-19.5 above summarize some results obtained when transfer function models
are reidentified and re-estimated over various time periods.

Recursive estimation according to (19.10)-(19.11) is now used to determine various
transfer function models. Some results are given in Figures 19.9-19.11.

19.6 Conclusion

Transfer function models are used here empirically to identify economic dynamic sys­
tems. As economic structures in general, dynamic relations (and, thus, transfer function
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Figure 19.9: Recursive estimation: UK industrial production.
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Figure 19.10: Recursive estimation: FRG industrial production.
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Table 19.3: Swedish industrial production (yd = f[Swedish share prices (Xlt)] for
1963:10-1988:9, and subperiods thereof.

Time period Diff. Pure Jag Estimated parameters Noise

(T) (order, degree) Input lag Output lag MAlAR
y, XII XII XII XII

76:4-88:9 (1,1 ) (1,1 ) 9 01 .017 MA(1) .65
(T = 150)

76:4-88:4 Univariate (input variables are rejected)
(T = 145)

76:4-87:11 Univariate (input variables are rejected)
(T = 140)

76:4-87:6 Univariate (input variables are rejected)
(T = 135)

76:4-87:1 (1,1 ) (1,1) 2 o I .026 1 I -.39 MA(I) .59
(T = 130) 2 I -.74

76:1-86:8 (1,1 ) (1,1) 9 o I .027 MA(1) .77
(T = 125) MA(3) -.17

76:4-86:3 Univariate (input variables are rejected)
(T = 120)

76:4-85:10 (1,1) 5 o I .032 MA(I) .75
(T = 115) MA(3) -.18

76:4-85:5 (1,1 ) 9 o I .076 AR(I) .49
(T = 110) 4 I -.053 MA(3) .45

76:4-84:12 Univariate (input variables are rejected)
(T = 105)

parameters) are often assumed to be time-varying. An iterative recursive instrumental
variables estimator for transfer function estimation, originally suggested by Young [see,
e.g., Young (1984)], is applied here in estimating structurally varying transfer function
models describing leading indicator relations for business-cycle forecasting. A series of
numerical examples clearly indicate the good capability of the estimator to discover pa­
rameter changes. At least for single-input models the estimator converges well enough
toward the correct and time-varying parameter values within a few iterations, as soon
as the signal-to-noise ratio is not too small. As a whole, the results are promising, but
the estimator is still to be systematically evaluated. Besides further empirical studies,
the only possible and meaningful strategy involves well-designed Monte Carlo studies. It
is also suggested that various dynamic economic models should be re-estimated by this
approach. For example, the study of lead stability through transfer function analysis by
Koch and Rasche (1988) is expected to give us new insights when allowing for time-varying
parameters, and after recursive parameter estimation.
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Table 19.4: Swedish Industrial Production (yd = ![OECD Composite Index (X3t}J for
1963:10-1988:9, and subperiods thereof.

Time period Diff. Pure lag Estimated parameters Noise
(T) (order, degree) Input lag Output lag MAlAR

y, X3' Xu Xu X3'

63: 10-88:9 (1,1) (1,1 ) 0 01 .53 AR(I) -.66
(T = 300) AR(2) -.47

AR(3) -.24
MA(24) .19

76:4-88:9 (1,1) (1,1) 0 01 .43 MA(I) .77
(T = 150) MA(3) -.18

63:10-76:3 (1,1) (1,2) 11 o I 1.57 MA(I) .53
(T = 150) 4 I -1.83

82:7-88:9 (1,1) (1,1) 10 01 .63 MA(I) .76
(T = 75)

76:4-82:6 Univariate (input variables are rejected)
(T = 75)

70:1-76:3 Univariate (input variables are rejected)
(T = 75)

63:10-69:12 (1,1 ) (1,1) 8 o I -1.93 MA(I) .75
(T = 75) 1 I -2.77 MA(24) .39
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0.1
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Figm'e 19.11: Recursive estimation: US industrial production.
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Table 19.5: Swedish industrial production (yt} = f[US industrial production (X4,), West
German industrial production (X5t), UK industrial production (x6t}1 for 1970:1-1988:9,
and subperiods thereof. Output va.riable alwa.ys differentiated by (1,1).

Time period Diff. Pure lag Estimated pa.ra.meters Noige
(T) (order, degree) Inpu& lag MA/AR

zit Z~t Z6t zit :r5f Z6t Xi t zar Z6t
70:1 88:9 (l,lp,l) ( I,t) I 9 o 7 .26 o 7 .26 MA(I) .b7
(T = 22b) 7 / -.bl MA(3) -.18

8 / .26 MA(12) 22

70:11-88:9 (I, 1)( I ,I) (1,1) o / .26 o / .29 AR(12) -.19
(T = 21S) 7 / -.49

8 / .23 MA(I) .M

7L ,9-88,9 (I, 1)( I, I) (1,1) o / .26 o / .27 MA(I) .b4
(T = 20b) 7 / -.49 MA(12) .26

8 / .2S

72,7-88,9 Univariate (input variable;; are rejected)
(T = 19b)

73:.5-88 :9 (1,1)(1,1) (1,1) o / .23 o /30 MA(l) .b6
(T = 18b) 9 / -.32

16/ -.b4
17 / .30

74,3-88:9 (1,1) (I, 1)2 (1,1) o / .30 o / .30 o / .26 MA(I) S8
(T = In) 16 / .21 7 / -.b9 MA(l2) .28

8 / .36 AR(I) .21

75:1-88:9 (I, I) (1,1)(1,1) (1,1) 16 o / .29 o / .49 MA(I) .b7
(T = 16S)

7.5:11-88:9 (1,1) (1,1)(1,1 ) (1,1) 16 o / .44 o / .26 o / .64 MA(I) 66
(T= 1M) I / .49 MA(12) 34

76,9-88 :9 (1,1) (1,1)(1,1) (1,1) o /24 o / .30 o / .2b MA(I) .72
(T = 14b) 9 / -.31

16 / -.38

77:7-88:9 (1,1) (1,1) (1,1) o / .29 o / -.3b o / .30 MA(l) 71
(T = 13b) 9 / -36

16 / - 49

78:.5-88:5 ( 1,2) (1,2) ( 1,2) o / .67 o / .36 o / .43 AR(I) -.69
(T = 12b) AR(2) -.39

MA(6) -.28

79:3-88 :5 (1,1) (1,1) (1,1) o / .bO o / -.40 o / .39 MA(I) .80
(T = llb)

80:1-88,9 (1,1) (1,1) o / 43 o /32 MA(I) .79
(T = lOb)

80,11-88,9 Univaria.te (input variable::; are rejected)
(T = 9b)

81:9-88,9 (1,1) (1,1) (1,1) o / .60 o / - .b7 o / .68 MA(l) 66
(T = 8b) 13 / ." I / .b2

82:7-88:9 (1,1) (1,1) (1,1) o / .68 o / -61 o / .74 MA(l) .66
(T= n) 13 / .27 I / .M

83:5-88:9 (1,2) (1,1) (1,2) o / -.73 o / .44 0/ 66 MA(e) -.97
(T = 6b) 13/ -.26 19 / - 48

84:3-88:9 (1,1) o / 68 o / - .34 o / .74
(T=M)

In the case of 80:1-88:9, the output lag parameters for X6t were 1/ - .62. No ot.her significant

output lag parameters were observed for this or other cases.
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CHAPTER 20

Abrupt and Gradual Structural Shifts
State-Space Models

Hiraki Tsurumi

Summary

•In

A Bayesian procedure is proposed to estimate an unknownjoin point and the speed of
transition from the old to new regimes in the state-space model with an autocorrelated
and heteroscedastic error term. The procedure is applied to detect a stuctural shift in yen­
US dollar foreign exchange rate models using monthly observations from January 1981 to
September 1988. A join point around the Plaza Hotel agreement of late September of
1985 is identified.

20.1 Introduction

Assuming that there is one unknown join point in a sample and the change of regimes is
either abrupt or gradual, Bacon and Watts (1971) introduced a class of transition functions
to estimate the unknown join point and the speed of transition from the old to new regime.
Tsurumi (1980) modified Bacon and Watts' parametric transition function.

In this chapter I propose a Bayesian procedure to estimate an unknown join point
and speed of transition in the state-space model whose error term is autocorrelated and
heteroscedastic. This Bayesian procedure is applied to detect a structural shift in yen-US
dollar foreign exchange rate models.

The organization of the chapter is as follows. In Section 20.2 I derive the Bayesian
procedure, and in Section 20.3 after a brief survey of empirical models of foreign exchange
rates I apply the Bayesian procedure to regression models of the yen- US dollar exchange
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rate determination using monthly observations from January 1981 to September 1988.
Concluding remarks are given in Section 20.4.

20.2 Bayesian Estimation of a Structural Shift in the State
Space Model with an Autocorrelated and
Heteroscedastic Error Term

Let the state-space'model with a shift be given by

Yt

f3t

Xtf3t +Ut

f3t-1 +a"lt" ,t +Vt ,

(20.1)

(20.2)

where Yt is the t-th observation on the dependent variable; Xt is a (1 X k) vector of
regressors; f3t is a (k xl) vector of time-varying regression coefficients; a is a (k xl) vector
of unknown jump parameters; ''It" ,t is a scalar to detect a jump point. The exact value of
''It.,t is given in equation (20.3). The variable Ut is the t-th error term with Ut = PUt-1 + ft,
and Eftfs = a20t., where a 2 follows

2 _ { ara - 2
a 2

for t :s; t*
for t > t*

and Ots is the Kronecker delta with 1 for t = sand 0 otherwise. The variable Vt is a
(k X 1) vector of disturbances with EVt = 0; EVtV~ = a 2ROt.; Ut is uncorrelated with v.;
EUtv. = 0 for all t and s. Since we have from (20.2)

f31 = f30 + a"lt· ,I +VI

f32 f30 +a"lt·, I + a"lt· ,2 +VI +V2

f3t f30 +a("lt·,l + '" + ''It·,t) +VI + '" +Vt·

Let

''It·,1 +... + ''It· ,t = trn(StO ,

where trn(St() satisfies

(20.3)

and

(i)

(ii)

(iii)

lim trn(St() = 1
St-+OO

trn(O) = 0

lim trn(StO = 1
(-+00

o
t - t*

for t S t*
for t > t* .

Ii
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Given the initial value, Yo, equation (20.1) may be expressed as

327

Yt - PYt-1

for t = 1, ... ,no Let

xd3t - PXt-l(3t-1 + ft

(Xt - pXt-d(3o + [xttrn(St() - pXt-Itrn(St-I()]a

+ (Xt - PXt-I)VI + ... + (Xt - PXt-I)Vt-1 + XtVt + ft

[

YI - PYo ]

Yt* - ~Yt*-l [

Yt*+l ~ PYt* ] _ [ Xl ~ pxo ]
, Yz = : , Xl - :

Yn - PYn-1 Xt* - PXt*-1

r

trn(St*+I()Xt*+1

Xi ~ t,n(>,·+,Ox,.+, -p t,*,... Ox,.+,

tl1l(Sn()X n - P tl1l(Sn-lO Xn-1

(
fl ) + AU,

Wf2

[

UI -. PUo] _ [ Ut*+l ~ PUt* ]
fl ; f2 - :

Ut* - PUt*-1 Un - pUn-l

then equations (20.1) and (20.2) may be expressed as

Z X(3o +Va + f

W~+f,

where

Z = ( W~~ ), X = ( W;~ ). V = ( wt )
~=(~), f=

o

A = Xt*(p) Xt*(p)

Xt*+I(P)

o
o

o

Xt*(p) Xt* 0 0
WXt*+I(P) WXt*+1 0

o
o

o
o

WXn(p) WXn

n = [In + A(I 0 R)A'] ,
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where Xt(p) = Xt - PXt-1'

Let f be given by the multiple student (MS) t-distribution

( )

[

, .. -I ] -(n+vol/2
2 gvo fHf

p( f I va, a , R) =~ va +~ , (20.4)

where g(vo) is a scaling constant. If we assume that the value of va is given and the prior
pdf of (30, 0', a 2

, t*, (, w, P, and R is given by

(20.5 )

then the posterior pdf for t*, (, w, P, and R, after integrating out (30,0', and a 2 is given by

p( t*, (, w, P, R 1 data) ex (v s2)-(n-2kl /2 , (20.6)

Remark 20.1 We assumed that the vector of error terms, f, has a MS t-distribution.
In the regression analysis, the MS t-error vector was first introduced by Zellner (1976).
Instead of the MS t-distribution we could use an elliptically symmetric distribution, h( f) =
h1(f'n- 1f). In equation (20.5), I w'n- 1w 1

1/ 2 is used to make sure that the prior pdf is
zero for t* ::; 1 or t* ~ n.

Remark 20.2 The posterior pdf in equation (20.6) is independent of va. We obtain
equation (20.6) if we assume that f is normal. This is because we used the diffuse prior
pdf in equation (20.5). If we employ natural conjugate priors for a and (30, the posterior
pdf will contain an auxiliary parameter that needs to be integrated out. If this auxiliary
parameter is equal to 1, the posterior pdf is identical to that which is derived when the
error term, f, is normal. Consequently, we may examine the validity of assuming normally
distributed error terms by testing whether this auxiliary parameter is unity or not. For
more on this point, see Tsurumi (1977).

Remark 20.3 Cov(Vt) = R is assumed to be constant over time, and thus Vt is stationary.
One could make Vt nonstationary by letting Cov(Vt) change over time. However, we shall
focus our attention on the nonstationary state-space process of (31 rather than on a time
varying Cov(Vt) since our primary interest is in estimating t*.

20.3 A Shift in Yen- US Dollar Exchange Rate Models

We shall apply the Bayesian methodology given in the previous section to the yen-US
dollar foreign exchange rate models using monthly observations from 19S1(i) to 19S5(ix).
The starting point, 19S1(i), is chosen since in 19S0(xii) a new foreign exchange law came
into effect in Japan to lift various controls on foreign exchange transactions.
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Empirical studies offoreign exchange rates may be classified into three groups. The first
group consists of the studies that analyze time series data on foreign ('xchange rates either
to fit distribution functions or to test random walk hypotheses. The main point of interest
is to analyze time series data per se without looking at the relationship between a set of
variables and a foreign exchange rate. Boothe and Glassman (1987), for example, fit three
non-normal pdf's to daily data on the changes in logarithms of exchange rates and conclude
that there is evidence that distribution parameters may vary over time. Westerfield (1977)
and So (1987) also fit time series data on foreign exchange rates to some pdf's. Hakkio
(1986) argues that one reason why the tests of random walk of foreign exchange rates
have yielded mixed results is that the tests on a random walk have low power. Kariya
and Matsue (1988) test to see whether daily and weekly foreign exchange rates follow a
random walk. They use nonlinear conditional heteroscedastic variance models of Taylor
(1986) and find that daily exchange rates follow a stochastic trend, and that Monday rates
follow a random walk while other weekly rates follow autoregressive processes.

The second group of studies consists of regression models of foreign exchange rates.
Based on economic theory a relationship between a set of regressors and a foreign exchange
rate is specified and estimated. Comprehensive surveys are given in Levich (1985) and
Isard (1988). Many regression models of foreign exchange rates use some form of monetary
theory, and depending on how it is used they may be labeled as the flexible-price monetary
models [Frankel (1979), Bilson (1978, 1979)], sticky-price monetary models [Dornbusch
(1983)], and sticky-price asset models [Frenkel (1983), Hooper and Morton (1982)]. Kariya
and Fukao (1988) develop a mtional expectation model based on a simultaneous equations
system.

The third group of studies is the combination of the first two groups: Within regres­
sion framework random walk or cointegration tests are carried out or regression models are
specified in state-space form in which regression coefficients follow a random walk. Enders
(1988) tested the purchasing power parity under fixed and flexible exchange rate regimes
and showed that the regression error processes have unit roots. Baille and Selover (1987)
estimated the flexible monetary model of Fl'ankel (1979) and sticky-price monetary model
of Dornbusch (1983) in addition to other monetary models and concluded that many of
the regression coefficients are significant but the sign and magnitude are different from
what one expects from theory and that the error terms tend to have unit roots. They find
that the regressor possesses different orders of cointegrability, implying that the regression
models do not exist as a stable long-run relationship. State space models of foreign ex­
change rates have been made by Wolff (1987) and Fukao (1988), among others. Wolff used
the Kalman filter to improve the predictive performance of certain monetary exchange
rate models. Fukao, on the other hand, used the Kalman filter to trace the changes in
the regression parameters associated with interest rate differentials and trade balances.
He concludes that the importance of the interest rate differential has increased while the
influence of the trade balances on the foreign exchange rate has been reduced in recent
years reflecting the internationalization of the major financial markets of the world.

Common findings among the three groups of studies appear to be that the parameters
of the distributions of the foreign exchange rates are not stable, and they appear to change
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Table 20.1: Various foreign exchange rate equations.

Flexible-price
monetary model

NC
NCb
NC
NC
o
o

Sticky-price
monetary model

NC
NCb
NC
NC
NC
o

Sticky-price
asset model

NC
NCb
NC
NC
NC
NC

llisk-premiuma

model
NC
o
o

NC
o

NC

NC = no constraints.
a The risk-premium model is given in Fukao (1988).
b Flexible-price monetary model, sticky-price monetary model, and sticky-price asset model all
assume that the exchange rate is homogeneous of degree 1 in relative money supply (,82=1), but
in this study this assumption is relaxed.

over time. In short, the foreign exchange rates exhibit characteristics of nonstationarity.
One way of modeling a nonstationary process is to use, after confirming unit roots, cointe­
grated and error-corrected models or to specify a regression model with changes in means
(or regression coefficients) over time or to combine both approaches in a regression model
as done in this chapter.

I shall use single equation models of foreign exchange determination with state-space
regression coefficients and with autocorrelated and heteroscedastic error. Equation (20.1)
becomes

St (31 + (32(mt - mn + (33(Yt - yn + (34 (r.,t - r:,t)

+ (35(Pt - pn + (36tb +Ut , (20.7)

where St is the logarithm of the domestic currency price of foreign exchange currency
(spot exchange rate); m - m* is the logarithm of the ratio of domestic to foreign money;
r. - r; is the short-term interest rate differential; Pt - Ii; is the differential of the expected
inflation rates, and tb is the domestic trade balance. Table 20.1 presents the constraints
on parameters to obtain various exchange rate regression equations.

Using data from 1981(i) to 1988(ix), we estimated the join point to, the speed of
transition (, autocorrelation coefficient p, and the ratio of standard deviations w, for each
exchange rate model. (Data are explained in the Appendix.) Table 20.2 presents the
results for each exchange rate model given in Table 20.1 and for two values of EVtv;. We
used the hyperbolic tangent, tanh( St(), as the transition function.

From Table 20.2 we may obtain the following observations:

(1) Regardless of the models and of assumed values for EVtv;, the point estimates given
by the posterior means and posterior modes for to, (, w, and p are quite similar.

(2) The join point, to, is estimated at 1985(v); the speed of transition, (, is about .03;
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Table 20.2: Estimation of join points for foreign exchange rate equations.

Flexible-price monetary model
R=t, R = 0
P-Mode P-Mean PSD P-Mode P-Mean PSD

t* 1985(v) 1985(v) 1.67 1985(v) 1985(v) 1.68
( .030 .035 .017 .050 .045 .019
w 1.15 1.18 .13 1.14 1.15 .087
p .838 .803 .064 .840 .808 .060

AIC= -1060.33 AIC=-997.45

Sticky-price monetary model
R=t, R=O
P-Mode P-Mean PSD P-Mode P-Mean PSD

t* 1985(v) 1985(v) 1.72 1985(v) 1985(v) 1.72
( .026 .035 .017 .025 .035 .017
w 1.15 1.19 .14 1.15 1.18 .13

P .838 .805 .060 .840 .805 .063
AIC=-1049.83 AIC= -1002.87

Sticky-price asset model
R=t, R = 0
P-Mode P-Mean PSD P-Mode P-Mean PSD

t* 1985(v) 1985( v) 1.63 1985(v) 1985(v) 1.62
( .025 .039 .027 .025 .039 .027
w 1.15 1.24 .20 1.16 1.24 .20

P .725 .756 .088 .725 .7.56 .088
AIC=-1120.69 AIC=-1111.29

Risk-premium model
R=t, R = 0
P-Mode P-Mean PSD P-Mode P-Mean PSD

t* 1985(v) 1985(vi) 1.39 1985(v) 1985(vi) 1.39
( .025 .039 .025 .025 .039 .025
w 1.15 1.16 .089 1.15 1.16 .088

P .838 .801 .064 .838 .801 .064
AIC=-1113.10 AIC=-1114.54

i* = join point; ( = speed of transition; w = 0'J!0'2; P = aut,ocorrelation coefficient; P-Mode =
posterior mode; P-Mean = posterior mean; and PSD = posterior standard deviation.
The variance-covariance matrix EVIl'; is specified by t and 0, where i; is the estimate of the
variance-covariance matrix of the OLS regression parameters assuming no jumps for the entire
sample period, 1981(i)-1988(ix).
Ale is the Akaike information criterion: n log o-2( R) + 2p where p is the number of regressors.
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Table 20.3: Values of the transition function with ( = 0.03, tanh(0.3stl.

month tanh(0.3s t ) month tanh(0.3s t ) month tanh(0.3st)
1985(v) 0 1986(vii) .336 1987(ix) .605
1985(vi) .025 1986(viii) .358 1987(x) .620
1985(vii) .050 1986(ix) .380 1987(xi) .635
1985(viii) .075 1986(x) 0401 1987(xii) .650
1985(ix) .100 1986(xi ) 0422 1988(i) .664
1985(x) .124 1986(xii) 0442 1988(ii) .678
1985(xi) .149 1987(i) 0462 1988(iii) .691
1985(xii) .173 1987(ii) 0482 1988(iv) .704
1986(i) .197 1987(iii) .501 1988(v) .716
1986(ii) .221 1987(iv) .519 1988(vi) .728
1986(iii) .245 1987(v) .537 1988(vii) .740
1986(iv) .268 1987(vi) .555 1988(viii) .751
1986(v) .291 1987(vii) .572 1988(ix) .761
1986(vi) .314 1987(viii) .,588

the ratio of standard deviations, w = aI/a2, is about 1.2; and the autocorrelation
coefficient is between.73 and .84.

Although in Table 20.2 we only report two cases of EVtv;, we have varied the values
of EVtv; =,t by setting, at .7, A, and .1. The results are virtually the same regardless
of the values of ,.

Among the four models, which one should one choose? If we use the AIC as a model
selection criterion, we may choose the sticky-price asset model with EVtv; = t on the
grounds that the minimum AIC is obtained for this model. We use the AIC as the model
selection criterion, since it is easy to use, and, compared with other model selection criteria
such as Cox's tests of separate families, the AIC tends to have a better power of choosing
the correct model. [See Tsurumi and Wago (1988).]

Regardless of model specification, it appears that the yen-US dollar exchange rate
experienced a structural shift at around 1985(v). The speed of transition, ( = 0.03,
indicates a very slow adjustment to the new regime. The transition function is given by
the hyperbolic tangent. The values of the transition function are presented in Table 20.3
for the period of 1985(v) to 1988(ix). Although the regime change started from 198,5(vi),
at least for a few months the transition is virtually negligible; thus for practical purposes,
we may say that the transition to the new regime started in the last quarter of 1985, and
the transition to the new regime is only 76.1% complete in 1988(ix), the end of the sample
period.

The transition point around the last quarter of 1985 may be explajned by the Plaza
Hotel agreement of 1985(ix). Since the agreement, the five industrialized countries (the
USA, France, West Germany, the UK, and Japan) have intervened in the foreign exchange
markets with coordinated purchases and sales of dollars and other currencies, and they
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Table 20.4: Sticky-price asset model with EVtv; = t: Estimated coefficients.

Estimate of /30 Estimate of a /30 + a

o

.056

.036

2.184

-.050

5.197 -.808 4.389
(7.60) (.57)
.045 -.009
(.34) (.03)
-.041 .097
(.41) (.51)
.004 -.054
(.77) (2.08)

-7.514 9.698
(1.49) (1.01)
.001 -.001

(1.90) (1.80)

y - y.

p - p.

m-m·

Intercept

Figures in parentheses just below the estimated coefficients are the t-ratios.

The regression coefficients are the posterior means conditioned on the posterior means of t* , (, w,

and p. The t-ratios are the posterior means divided by posterior standard deviations.

have backed up their actions with economic cooperation. The fact that the ratio of stan­
dard deviations, w = ada2, is 1.2 means that the standard deviation of the regression
term is smaller in the second regime, perhaps indicating that the economic cooperation
among the industrialized countries is responsible for this reduction in the variance.

The direction of jumps of regression parameters is given in Table 20.4. The first set
of regression parameters is the estimates of the random parameters /30, The second set
is the estimate of a, and the third is (30 + a. Examining the values of /30 + a one sees
that these results support Fukao's (1988) findings that the importance of the interest rate
differential has increased while the influence of the trade balances has decreased in recent
years.

What can one say about a unit root in the regression model in (20.7)? In the Bayesian
analysis we may test the null hypothesis of whether the error term, 1L/, which follows an
autoregressive error of order 1, AR(l), has a unit root or not (i.e., the null hypothesis of
H: p::= 1) by checking whether a highest posterior density interval (HPDI) contains p::= 1
or not. This Bayesian test has an advantage over the sampling tests of a unit root such
as those proposed by Dickey and Fuller (1979) and by Phillips and Perron (1988) at least
on two accounts: (i) the Bayesian HPDI test is a test with a finite sample size rather than
an asymptotic test and (ii) the HPDI test can allow for inclusion of regressors other than
a time trend. As is well known the asymptotic sampling distributions of unit roots are
sensitive to model specification [see, for example, Dickey and Fuller (1979)]. Sampling
experiments in Wago and Tsurumi (1990) show that the HPDI test is robust, and it has
in general more power than the Dickey-Fuller or Phillips-Perron tests.

Table 20.5 presents 95% HPDI's for the sticky-price asset model for the two cases:
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without switching

Table 20.5: 95% Highest posterior density intervals (HPDI) for p: Sticky-price asset model.

Regression model
with gradual switching

R="E
R=O

(0.562, 0.950)
(0.561, 0.948)

(0.810, 1.02)
(0.811, 1.03)

The 95% HPDI's are computed from the marginal posterior pdf's of p given R.
Model with gradual switching has t·, (, and w. The model without switching is equation (20.7)
without the transition function and with w = l.
Sample period is 1981(i)-1988(ix).

(i) the gradual switching regression model with to, (, and wand (ii) the regression model
with no switching and heteroscedasticity (i.e., w = 1). The values of R are set at f; and
O. The results show that the regression model without switching and heteroscedasticity
exhibits the possibility of a unit root since the 95% HPDI's for R = f; and for R = 0 both
include p = 1, whereas the gradual switching regression with heteroscedasticity leads one
to say that the error process is stationary, since the 95% HPDI's are between .56 and .95.
This result indicates that if one neglects a structural change and heteroscedasticity, then
one tends to accept the unit-root hypothesis.

20.4 Concluding Remarks

In this chapter I proposed a Bayesian procedure to detect join points with an abrupt or
gradual shift in the state-space model when the regression error term is autocorrelated
and heteroscedastic, and I applied the procedure to single equation models of the yen- US
dollar exchange rate determination using monthly data from 1981(i) to 1988(ix). The
estimates of a join point, speed of transition, the ratio of standard deviations, and auto­
correlation coefficient are insensitive to model specification. I identified a join point at
around 1985(vi). This shift may be due to the Plaza Hotel agreement of late September
of 1985.

In this chapter, I assumed that the number of join points in a sample is known. If it
is not known, one needs to make inferences on the number and timing of shifts. Tsurumi
(1989) proposes a Bayesian sequential test procedure when one does not know the number
and timing of shifts. In the control literature, shifts in state-space models are often
tested by the generalized likelihood ratio test (GLRT) that was proposed by Willsky and
Jones (1974, 1976), but the Bayesian sequential procedure tends to be more robust to the
specification of the covariance matrix for the state-space equation error terms. A critique
of the GLRT is given in Kerr (1983) and Isermann (1984).
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Appendix: Data Sources

St is the logarithm of the yen price of the US dollar (spot rate), taken from Interna­
tional Financial Statistics (lFS).

m - m* is the logarithm of the ratio of the Japanese money supply to the US
money supply. Money supplies are seasonally unadjusted M1 figures, taken from
Main Economic Indimtors (MEl), published by the Organisation for Economic Co­
operation and Development for the US, and from lFS for Japan.

y - y* is the logarithm of the ratio of Japanese to US real income. Seasonally
unadjusted industrial production indexes are used for real income, taken from the
MEL
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r. - r; is the short-term interest rate differential: T. is the call rate and T; is the US
treasury bill rate, both taken from IFS.

p - p* is the expected inflation rate differential; 12-month moving averages of con­
sumer price indexes over the preceding 12-month period are used as proxies for
expected price levels. Consumer price indexes are taken from IFS.

tb are the accumulated Japanese current accounts: tb,! = L::'~972(xii) c., where c. is
the current accounts at time s deflated by the consumer price index at time s.





CHAPTER 21

Structural Changes in the Real GNP
Interdependence of the USA, West
Germany, and Japan: 1970-1986

Masanao Aoki

Summary

This chapter first locates quarters in the early 1970s at which the cUovariance matrices
of the innovation vectors have shifted for the real GNPs of the USA, West Germany, and
Japan treated as univariate series. The chapter then exhibits differences in the impulse
response time profiles of the two models estimated from the data primarily before and
after the break as a concise summary of the changes in dynamic interactions of the three
real GNPs.

21.1 Introduction

This chapter uses the state space modeling method for "trending" time series, i.e., time
series with roots close to one, to locate possible breaks in the real GNPs and money stock
series of the USA, West Germany, and Japan by the likelihood ratio test. The real GNP
series are first treated separately as univariate series to locate a likely quarter at which
changes in some characteristics of the data-generating process have occurred.

The chapter then jointly treats the three real GNP series as a trivariate series. The
focus in this part of the chapter is to examine the differences in the structure of dynamic
interdependence by the time profiles of impulse responses (dynamic multipliers), rather
than pinpointing the quarter of structural shifts.



340 Economic Structural Change: Analysis and Forecasting

Several methods have been proposed in literature to detect sudden (or gradual) changes
in parameters of data-generating processes [Andrews and Fair (1988), Goldfeld and Quandt
(1976), Lo and Newey (1985) in the econometric literature and Willsky and Jones (1976)
and Basseville et al. (1987) in the systems literature]. We are interested in detecting
structural changes in vector-valued macroeconomic time series, such as money stocks and
real GNP. Most of the methods are for univariate series although some extension for
vector-valued series are available.

In the context of state space innovation modeling of time series, the innovation vectors,
et = Yt - Ytlt-I, where Ytlt-I is the orthogonal projection of Yt onto the manifold spanned
by its own past data, are modeled as approximately normally distributed with mean zero
and sample covariance matrix ~. The joint probability distribution of YI,' .. ,YT has only
~ as the parameters when the innovation representation is used.

A parameter shift in the data-generating process manifests itself then as changes in
the covariance matrix ~ of the innovation vector. [We need not adopt ad hoc assumptions
on the breaks of "slope" or intercept points of the time series.] Given that a single shift
in the covariance matrix has occurred in a sample period, we can adopt the method of
Goldfeld and Quandt (1976) to locate the time instant which is the most likely instant of
the parameter shift by ma.:..:imizing the joint likelihood function over the sample period.

Suppose that te is the instant of the parameter shift so that Cov{ed = ~I for t :::; te

but Cov{et} = ~2 for t > te .

The joint likelihood function is

where

t e

SI = L et e;
t=l

and

T

S2 = L et e;.
t=te+l

The regime shift is identified with the te , which maximizes the joint likelihood function.

21.2 Univariate Series

Episodes in the late 1960s and early 1970s such as the demise of the Bl'ettonwood accord
and the oil shocks tell us that a regime shift is likely during a period spanning from the
late 1960s to the early 1970s. The procedure outlined above is applied to the quarterly
US money stock data from the first quarter 1947 [1947(1)] to 1982(11). The total of 141
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data points is split into two periods, and separate modes are estimated for each subperiod
to calculate the joint likelihood function. This data produces 1970(IV) as the most likely
quarter in which the US monetary regime has shifted. The method is then applied to the
US real GNP series. It produces 1971(1) as the most likely shift point for the quarterly US
real GNP series based on 152 data points from 1949(1). The shift in the real GNP series
occurred one quarter later than that for the M2 series.

Since both money stock and real GNP series are apparently trending with (near) unit
roots, we apply the two-step modeling procedure outlined in Aoki (1989, 1990a, 1990b) to
separately model the largest eigenvalue, which is near one (slowest dynamic model). For
example, for the US real GNP series, the model before the break is

Yt = 0.482 Tt + (0.779, 0.144)Zt + et,

where

] [

0.984 1.606 0.296] [ ] [2.063]
= 0 0.429 -0.569 Tt + -0.585 et

o 0.569 0.484 Zt 0.402

with Cov{etJ = 0.931 x 10-4 . The model after the break is

Yt = 0.238 Tt + (0.598,0.021 )Zt + et ,

where

[
Tt+1
Zt+1 ] [

0.974 2.512 0.087] [ Tt] [4.200.]
= 0 0.612 -0.337 + -0.402 et

Zto 0.337 0.9.56 0.064

with Cov{ et} = 0.114 X 10-3 . The statistic T(p-1) is about -1.5 for the largest eigenvalue,
and the largest eigenvalue mayor may not equal 1. \Ve treat both series not as random
walks, but rather as nearly integrated series as in Chan (1988).

When we examine the real GNP and money stock series of Japan and West Germany
on the assumption that there is a simple break. the method of Goldfeld and Quandt
applied to the estimated state space innovation models place the breaks during 1971 well
before the episode of the first oil shock.

21.3 Three Real G NPs

Our preliminary analysis of the three real GNP series of the USA, West Germany, and
Japan as univariate series indicates that they are likely to have individually experienced
shifts in the paramerters of the data-generating process somewhere ill 1970-1971. This
section treats them as a trivariate series. It wonld be useful to break the data at 1972(1).
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Since the data set at our disposal covers the period from 1965(11) to 1985(IV), a total of
83 data points, this choice would leave only about 30 data points for the initial period. To
increase the data points of the first subperiod to about 40 to balance the magnitudes of
statistical errors in the two models for the two subperiods, we break the data at 1974 and
estimate two models for the two subperiods 1965(11)-1974(11) and 1974(I)-1985(IV). We
are now more interested in learning what differences if any are exhibited by the two models
rather than locating the break-point exactly. To this end, we evaluate the differences in the
time paths of the impulse responses, i.e., dynamic multiplier profiles implied by the two
models. The greater the discrepancies measured, the more significant are the consequences
of the structural shift.

To calculate impulse responses we need to identify the matrix D, which relates the
time series innnovation vector, ell with the shocks, nt, in the structural model

[See Bernanke (1986) or Sims (1986) for several ways for identification.] As explained
in these references, the matrix D may be thought of as ¢o180 in the structural model
¢(L)Yt = 8(L)nt, where Yt is the three-dimensional vector composed of the real GNP of
the USA, West Germany, and Japan in that order, and ¢o and 80 are the 3 x 3 constant
matrices in the lag polynomination matrices ¢( L) and 8(L), respectively. The covariance
matrix Cov{ nr} is normalized to be h x 10- 4

• Thus

Cov{er} = ~ = DD' X 10-4 . (21.1)

There are nine elements in D, and there are six elements in ~ that are estimated. Thus,
we need three additional conditions to uniquely specify the matrix D. Once the matrix D
is specified, the multiplier profiles are given by 8if>k 'It D, k = 0,1, ... , where the matrices
appear in the innovation model

Yt 8Xt + et

Xt+l <I>Xt + 'Itet,

which are estimated as in Aoki (1989) by the two-step procedure series since Yt is "trend­
ing" .

One way to identify the matrix D is to use the Wold causal chain structure, i.e., to
use the Cholesky decomposition. Instead, we use the decomposition into a common shock
and uncorrelated country specific shocks, i.e., we model et by

where v, nu, nc, and nJ all have variance 1 x 10- 4 and are mutually uncorrelated, i.e.,
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The elements of the vector 11 indicate how the common shock impinges on the three
countries. The set of six algebraic relations in (21.1) can be solved for the three components
of 11 and di' i = 1,2,3, uniquely in general. [A related work by Gerlach and Klock (1988)
covers a period roughly comparable with the second subperiod. They jointly model six
real GNPs with VAR. Our model is equivalent to vector ARMA.]

Then the multiplier profiles 8~kiJ1ll, k = 0,1, ... , show how the three real GNP respond
to a common shock and the profiles 8~kdi1f;i, i = 0,1,2,3, where 1f;i is the i-th column
vector of the matrix iJ1, show how the three real GNP respond to a shock originating in
one country only. Note that d}, dz , and dJ affect the relative magnitudes but not the
shapes nor the timings of peaks and troughs in the multiplier time profiles, if any.

The parameters of the estimated models are as follows:

The first period model

[ 0.182 0.084 -0.065 ] [ 1.808 -1.038 1.372 ]
8 = 0.207 -0.280 -0.105 iJ1= 1.038 -2.279 0.884

0.502 -0.120 -0.106 -4.376 0.427 1.381

[ 0.071 0.000 0.010 ] [ 026' ]
~ 0.000 0.941 -0.132 11= 0.995

0.000 0.147 0.869 0.483

d1 = 1.078, dz = 0.660, dJ = 1.093.

The second period model

[ 0.148 0.212 -0.051 ] [ -0.233 1.413 3.017 ]
8 = 0.120 0.157 0.070 iJ1= 5.266 1.142 -1.155

0.282 -0.029 -0.061 -6.145 8.435 -3.181

[ 0.066 0.009 -0.007 ] [ 06'6 ]
~ 0.000 0.805 -0.052 Jt = 0.671

0.000 0.213 0.783 0.356

d1 = 0.655, dz = 0.504, dJ = 0.604.

(When the whole period is modeled jointly, then 11 = (0.485,0.891,0.522)' and d l = 0.896,
dz = 0.894, and dJ = 0.904.)

Even before we examine the multiplier profiles, some differences are clea,rly evident.
The eigenvalues of ~ of the second model is slower, for example. The common shock affects
West Germany more than the other two in each period, but less so in the second period.
The country-specific shocks of the USA and Japan are smaller in the second period. The
USA economy is more exposed to a common shock in the latter period, while the Japanese
exposure remains about the same.

The differences in the dynamic interactions in the two periods are clearly visible from
the multiplier in Figures 21.1-21.8. Figures 21.1 and 21.2 show responses to a common
shock in the first and second period. The model dimension is three in both periods, i.e.,
dim Tt = 1, dim Zt = 2 where Tt is the state variable with the slowest decay, and the vector
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Figure 21.1: Response to a common shock of the first model from 1965(II).

Zt is for the shorter-run dynamics. Figures 21.3-21.5 are for the first period and Figures
21.6-21.8 are for the second. The solid lines are for the US responses. The US shocks
affect West Germany with opposite signs in the two periods. Japan is less affected by the
German shock in the second period, while the opposite is true for the USA. The Japanese
shock affects the USA and West Germany less in the second period than in the first.

21.4 Concluding Remarks

A state space modeling method for apparently nonstationary time series and the resulting
impulse responses are used to portray concisely the qualitative differences in the interaction
characteristics of the three real GNPs that apparently took place in the early 1970s. See
Aoki (1990b, chapter 7) for results with a different identification scheme.
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CHAPTER 22

Interactive Poverty and Affluence of a
Society: Change-Point Models for
Structural Changes

Pranab K. Sen

Summary

For any society or community, there is ample room for a prismatic view of its income
distribution. Conventional measures of income (distrib1Ltional) inequalities, such as the
Gini coefficient, may not depict a realistic picture across the individual sectors of an in­
come distribution. Stratification into poor, middle-class, and aJfiuent sectors generally
provides a better understanding of the socioeconomic intricacies of such income distri­
butional inequalities. Combining such component measures into a single index requires
careful statistical considerations and entails a detailed analysis of the entire income distri­
butional data. Economic structural changes may occur within each sector and in plausibly
rather diverse directions, so that the usual linear models may fail to be very appropriate
for a composite analysis. A formulation of a change-point model in a setup of constancy
of regression surfaces is therefore incorporated in the development of methodology for
studying structural changes for such income distributions. Proper emphasis is placed on
nonparametric as well as robustness consider·ations underlying such a nonstandard analy­
sis. Such considerations also playa vital role in forecasting of economic structural changes
with respect to some income inequalities.
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22.1 Introduction

Economic Structural Change: Analysis and Forecasting

In any society or community, the distribution of real income (or wealth) is characterized
by distinct heterogeneity even within individual sectors of relatively homogeneous groups.
The extent of this divergence generally depends on various socioeconomic factors that may
affect the individual sectors in a rather different manner. For example, a drought year may
have serious impact on the income distribution of the agricultural households sector, quite
perceptible by the lower income and the poor classes, but not so much by affluent people.
There are literally thousands of such socioeconomic factors influencing the income patter-n
and distribution of any society, and their impacts are generally perceived rather differently
across the different strata. Thus, for a better understanding of the intricacies of various
socioeconomic factors affecting an income distribution and to relate them adequately to
plausible structural changes, it may be wiser to encompass a rational stratification of an
income distribution. This stratification may be accomplished by identifying the relative
levels of income (viz., poor, middle-class, and a]fiuent people) resulting in non-overlapping
strata, or by the conventional agricultural, industrial, and professional sectors resulting in
possibly overlapping income distributions. A combination of the two is also a possibility.
With such a stratification, for drawing a neat picture for the entire spectrum, one needs
to take into account both the intra-strata and inter-strata var·iations. In this chapter,
we shall mainly confine ourselves to the interactive features of poverty and affluence of a
society, and incorporate them in the change-point models for a better understanding of
some structural changes that may arise in this context.

In Section 22.2, we outline the general statistical considerations underlying the afflu­
ence and poverty indexes, and based on these findings, we consider a general breakdown
of an overall index in terms of some component indexes. It turns out that in the case
of nonoverlapping strata, the Gini coefficient for the composite income distribution is ex­
plicitly expressible in terms of the component Gini coefficients, the relative proportion of
the people in these strata, and their relative total incomes. Some additional parameters
enter into the picture when the strata income distributions are possibly overlapping. This
gives us a strong motivation to incorporate these component Gini coefficients and related
income inequality indexes in the formulation of a so-called response surface model, which
may be more conveniently used to study suitable structural changes for such income dis­
tributions. This is considered in Section 22.3. The change-point model is then introduced
in Section 22.4 with a view to studying plausible structural changes over a span of time.
The model is generally more complicated than the classical change-point model as here
progressive realignment of the strata may be necessary to cope with the chronological
changes in life-styles. These findings are finally incorporated in the last section in the
forecasting of economic structural changes pertinent to the usual income distributions.



Pmnab K. Sen 353

22.2 Income Inequality Indexes: A Prismatic View

The Lorenz curve for an income distribution provides a clear graphical picture of the overall
concentration and dispersion of incomes of individuals or families in a society. However, as
is generally the case, part of the income variation (or inequality) may be explained better
in the light of between-sector variation when a suitable system of sectors is brought in the
picture. For example, a stratification into three strata (poor, middle-class, and affluent
sectors) may explain some of the variations as due to inter-strata variations while the rest
are confined to the intra-strata ones. Hence, to study the income inequality picture more
extensively (for the individual sectors as well), it may be wiser to look into the Lorenz
curve a little bit more thoroughly with a view to depicting the picture for the component
as well as the overall income inequality indexes. The sectors to be considered here are
based on the relative levels of real income leading to a system of nonoverlapping strata.
For simplicity (and practical relevance too), we confine ourselves to the case of three basic
strata: poor, middle-class, and afftuent people. A brief treatment of the general case of k
(~ 2) (possibly overlapping) strata is also appended. In this context, there is a genuine
need to pay attention to the following:

(i) For the correct labeling of the strata and real income, an assessment of real income
of individuals or families in terms of a single quantitative criterion is needed. Once
the real income is quantified, the drawing of the Lorenz curve and the associated
indexes may not pose a serious problem. However, the issue of robustness remains
as a pertinent one in such a quantification scheme.

(ii) Demarcation of the three strata rests on the proper fixation of the line of poverty
and the affiuence line. Poverty is usually defined as the extent to which individuals
in a society or community fall below a minimal acceptable standard of living. Thus,
quantified in terms of real income, the poverty line cuts off the lower tail of the
income distribution: The truncated income distribution over this left-hand tail is
often called the income distribution of the poor. Affluence of a society or community
is similarly quantified by the proportion of its rich (or affluent) people and by the
concentration of their wealth or real income. Again, in terms of real income, this
amounts to the right-hand tail of the income distribution where the cutoff point (the
affluence line) is determined by various socioeconomic factors. The truncated income
distribution over this right-hand tail is often called the income distribution of the
rich. The income distribution truncated from below and above by the poverty and
affluence line, respectively, is termed the middle-class income distribution. It is quite
clear that in the determination of poverty and affluence lines, various socioeconomic
and related monetary utility functions playa basic role. Statistical considcrations
are very important in this respect too.

(iii) For each sector, some measures of concentration or inequality of wealth (or real
income) need to be developed. Statistical considerations are very pertincnt in this
context too.
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Arbitration of affluence and poverty lines is generally a very delicate task. The criteria
may differ considerably from a socialistic to a capitalistic society. Even for the same
society, they may vary progressively over time. These criteria appearing as deterministic
in this context are also very relevant in the study of plausible structural changes of income
indexes. In addition, there may be other important factors that should be taken into
account in a proper formulation of a suitable response surface model for income inequality
measures. Moreover, quantifications of all such basic factors are important for a proper
formulation of real income on which everything is based.

With due considerations to this basic quantification of real income, we denote the
income distribution (of a society or community in a given time period) by F = {F(x), x E
R+}, R+ = [0,00). Also, with a proper arbitration ofthe poverty line (w) and the affluence
line (p), we have two positive number (w, p) :°< w < p < 00, such that the income in the
ranges [O,w], (w,p), and [p,oo) characterizes the poor, middle-class, and affluent sectors,
respectively. Thus, the income distribution of the poor is given by

Fp = {Fp(x) = {F(X)/F(W) O:s; x:s; w }}
1 x> w

and the proportion of the poor people is denoted by

ap = F(w).

Similarly, the income distribution of the affluent people is given by

{ { o x<p}},
FR= FR(X)= [F(x)-F(p)]/[I-F(p)] x?p

and the proportion of affluent people is given by

aR = 1 - F(p).

Finally, the middle-class income distribution is

(22.1 )

(22.2 )

(22.3 )

(22.4)

FM ~ { FM(X) ~ { \F(X) - F(w)IJ[F(p) - F(w)]

and the proportion of the middle-class people is

aM = F(p) - F(w) = 1 - aR - ap.

x:s; w }}w:S;x:S;p ,
x> P

(22.5 )

(22.6)

Assume that for the entire income distribution F, the mean real income it = JR+ ydF(y)
is finite and positive. Also, let F-1(t) = inf{x: F(x) ? t}, °:s; t :s; 1. Define then
~ = {~(t); t E [0, I]} by letting

F-1(t)

~(t) =1l-1{1 ydF(y)} , t E [0,1]. (22.7)
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Thus, the relative contributions of the poor, middle-class, and the affluent people to the
total income are given by IP, 1M and IR, respectively, where

IP = ((op), 1M = ((1- OR) - ((op), and IR = 1- ((1- OR). (22.8)

Hence, the relative mean incomes of the poor, middle-class, and the rich are given by

Vp ((op)jop (::;1)

VM = IMjoM = [((1- OR) - ((Op)]joM

VR = IRjoR = [1 - ((1 - OR)]joR (~1),

(22.9)

(22.10 )

(22.11)

where VM may be <, =, or > 1 depending on (w,p) and the income distribution F. Recall
that

Vp p,-l{lW

ydF(y)}jF(w)

{average income of the poor} j {mean income of all}

{average income of the middle-class}/{mean income of all}

{average income of the rich} / {mean income of all}

(22.12)

(22.13 )

(22.14)

and these reflect the between-sector dispersion of the relative mean incomes; we must have
Vp ::; VM ::; VR.

In a conventional setup, one plots ((t) against t (0 ::; t ::; 1) and obtains the classical
Lorenz curve for the income distribution F. To obtain the Lorenz curves for the individual
sectors as well as for the entire distribution, we consider the decomposition of the classical
Lorenz curve shown in Figure 22.1.

The entire picture is dictated by the proportions Op, aM, oR, Vp, VM, VR, and the
individual sector Gini coefficients Gp, GM, and GR. In terms of the shaded areas A, B,
C, and D, the Gini coefficient (G) for the entire income distribution is given by

G=2(A+B+C+D). (22.15)

Similarly, the Gini coefficients of the income distributions for the poor, middle-class, and
the rich are given by

(2A)j(oPIP)

(2B)j(OMIM)

(2C)j( 0RIR) ,

(22.16)

(22.17)

(22.18)

respectively. Moreover, D is a polygon whose area can easily be determined by some
standard manipulations. Thus, we have

2D 0RIR - ok +0PIP - I~ +(l- OR -,P / - 0M,M

C!R - OR) + ,M(OP -,P) + IP(,lIt - OM)

ORC!RjOR - 1) +opIM(I- , pjop) +0M,P(,MOM - 1)

QRC!RjoR -1) +OPOMC!M/OM -,pjop)

(VR - l)oR + (VM - Vp )OPOM· (22.19)
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Figure 22.1: A prismatic decomposition of the classical Lorenz curve.

Also, note that from (22.9) through (22.14), we have

Vp :::; VM :::; VR, vp:::; 1, and VR 2': 1. (22.20)

Thus, the first term on the right-hand side of (22.19) represents the contributions of the
affluent people [through their excessive relative income (VR - 1) and their proportional
representation (aR)], while the second term depicts the differential picture of relative mean
incomes of the middle-class and the poor people, adjusted by their relative proportions
too. From (22.15) through (22.19), we have

G arfpGp +aMiMGM + aRiRGR +aR(vR -1) +aMap(vM - vp)

= a~vpGp + a 'it VM GM +ahvRGR + aR(vR - 1) +aMap(vM - vp)

G(ap,aM,aR;vp,vM,vR;Gp,GM,GR ), say. (22.21)

This clearly shows the structural dependence of the overall Gini coefficient, G, on the
individual sector Gini coefficients (Gp, GM, and G R), the relative proportions (ap, aM,

and aR) and the relative mean incomes (vp, VM, and VR). Thus, for a better understanding
of any plausible structural change in G [due to a complex interplay of a (usually large)
number of socioeconomic factors], it may be better to look back into the vectors a =
(ap,aM,aR), v = (VP,VM,VR), and G = (Gp,GM,GR ), and to examine the extent of
coherence of such a change across the three sectors. We shall consider this model in greater
details in the next section.
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Let us next sketch the general case of m (~ 1) sectors with individual income distri­
butions F1 , •.. , Fm and the relative proportions 0'1, ... , am, respectively. Then

m m

La; = 1 and F(x) = L O'iF;(X), x E R+ .
i=l i=l

Note that these Fj need not be all nonoverlapping. Then, we have

roo m roo m

/-l = in ydF(y) = L O'i in ydFi(Y) = L O'i/-li,
o ;=1 0 i=l

where the /-li are the individual sector mean incomes. Also let

m

Vi=/-l;//-l, i=l, ... ,m (sothatLO'iVi=l).
;=1

Further, we let

Then, note that

Wii = 2/-l-1/-liGi = 2v;Gi, i = 1, ... ,m,

(22.22)

(22.23)

(22.24)

(22.25)

(22.26)

where the Gj is the usual Gini coefficient for the income distribution Fi (i = 1, ... , m);
for this definition of the Gi, we may refer to Sen (1986). For i i- j, Wij stands for some
average distance between Fi and Fj. For the income distribution F, we have

m

(2/-l)-1{L 0'7 2viG; +2/-l L O'iO'jWij}
i=l l~;<j~m

m

L 0'7viG; + L O'iO'jWij,
i=l l~;<j~m

(22.27)

so that the overall Gini coefficient can be expressed in terms of the individual ai, Vi,
Gi and the Wij, i ::; j = 1, ... , m. In particular, if the strata income distributions are
nonoverlapping (as in the case of the poor, middle-class, a.nd affluent sectors), then for
F1 ~ F2 ~ •.• ~ Fm , we have

Wij = Vj - Vi for 1 ::; i < j ::; m, (22.28)
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so that in this special case (22.27) reduces to

m

G = L Q7 viGi + L QiQj(Vj - Vi)

i=1 1~i<j~m

(22.29)

and, for the particular case of m = 3, (22.29) reduces to (22.21). Thus, for the general
case of m (2: 2) and possibly overlapping income distributions, the only extra adjustment
needed is to bring in the additional parameters Wij, 1 :s i < j :s m, which account for the
between-sector distances. With this remark, and for the sake of simplicity of presentation,
we shall only consider the case of m = 3 and nonoverlapping income distributions; a
similar picture holds for the general case.

Analysis of income pattern may be done in a parametric setup where F is assumed to
be of a specified form (viz., Pareto law) and involves a set 0 = (B1 , .• . , Br )' of unknown
parameters, or in a more general nonparametric setnp where the functional form of F
is not assumed to be given (and it is assumed that F belongs to a general class, say,
F). In a parametric model, the Qi, Vi, and Gi may all be expressed in terms of suitable
functions of 0, so that the whole analysis may simply be done ill terms of suitable para­
metric constraints on O. There are, however, some general concerns with such parametric
procedures:

(a) In practice, the actual functional form of the income distribution may never be known
precisely, and any simple form (such as the Pareto law) may not quite adequately
fit the model for the entire range.

(b) As has been mentioned before, some of the socioeconomic factors may affect the
different sectors rather differently; as such, in any structural model, with different
roles of different input variables, it may be quite counter-intuitive to conceive of a
common form of the income distribution for all the strata. That is, merely by varying
the associated parameters (0), it may not be feasible to describe the component
income distributions (i.e., Fp , FM , and Fn) in terms of a single parametric F.
Inclusion of a large number of parameters may drastically reduce the sensitivity of
the parametric models.

(c) With scope for plausible departures from an assumed parametric model (rather dif­
ferently in different sectors), the issue of robustness is quite an important one. The
parametric models thus may not have good robustness properties (against possible
departures from the assumed models).

(d) In a parametric framework, to describe a model adequately with a view to studying
plausible structural changes, it may be necessary to bring in a large number of
parameters (0). With the increase in the number of such parameters, the usual
simplicity of a parametric approach may evaporate fast; moreover, the efficiency of
a parametric procedure may drastically go down.
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For Fp, the income distribution of the poor, the average is J.lp = J.l,p!ap, and it lies
below the set poverty line w. Thus, the income gap ratio (fJp) for the poor people is
defined by

a 1 -I 1 -I -IIJp = -w J.lP = -w J.la p ,p. (22.30)

A crude index of poverty is given by 1rp = apfJp, while a refined one is formulated in
terms of the triplet (ap,fJp,Gp). A popular form [due to A.E:. Sen (1976)], based on a
set of axioms, is

1rps = ap{fJp + (1 - fJp )Gp},

and a more robust version [due to Sen (1986)] is given by

* {al-Gp}1rps = ap IJp .

(22.31)

(22.32)

An alternative poverty, due to Takayama (1979), is based on the censored (not truncated)
income distribution of the poor, and it can be expressed as

(22.33)

where 0 ::; Gp ::; fJp. It is known [viz., Sen (1986)] that

(22.34)

for all income distributions. Other forms [viz., Blackorby and Donaldson (1980)] will not
be considered here.

For the income distribution FR (of the affluent people), the average is J.lR = Il,R!aR,
and, by definition, J.lR 2 p. Thus, a different definition of the income gap ratio is needed
here. One way to define fJR, the income gap ratio of the rich, is to take

(22.35)

In this context, we may recall that wealth (in a form other than income) needs to be
transferred into an income form, and there may be real difficulties for accurate assessment
of wealth of excessively rich people. From this point of view, J

p
oo ydF(y) may not be very

robust, so that fJR in (22.35) may not be robust against such measurement errors as well.
The use of a harmonic income gap measure generally leads to a better robustness property
[viz., Sen (1988)], and based on this consideration, we may set

(22.36)

it is known that fJR ::; fJR [Sen (1988)]. For the Gini coefficient GR (for FR), the same criti­
cism (i.e., lack of robustness against measurement errors) can be la.beled to a grea.ter extent,
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and for this reason a harmonic Gini coefficient (GR) has been advocated by Sen (1988).
This is defined by

(22.37)

where Y1 and Y2 are independent random variables each having the distribution FR. Then
parallel to (22.31) and (22.32), we may consider some indexes of affluence as

7rR1 aR{,BR + (1- BR)GR}, 7rR2 = aR{,BR + (1 - ,BR)GR} (22.38)

7rR3 = aR{,B1-GR } and 7rR4 = aR(,BR)1-G~. (22.39)

From what has been discussed in Sen (1988), we are biased toward the use of GR, 'oR'
and 7rR4( = 7rR, say). The situation with the middle-class income distribution is generally
more manageable for two basic reasons:

(a) The real income of a person/family in the middle-class group is bounded from below
by w (> 0) and from above by p « 00); within these two bounds, the variation may
be more smooth than in the affluent or the poor groups.

(b) There are generally far less difficulties in measuring the real income for the middle­
class people than for the rich or the poor ones. Thus, the robustness considerations
relevant to the poor or rich sectors may not be that crucial for the middle-class.
Note that the average income for the middle-class sector is IlM = IlY laM, and, by
definition, w ::; IlM ::; p. As such, by analogy with (22.30), we may define 'oM, the
income gap ratio for the middle-class people, as

'oM = (p - IlM )/(p - w) = 1 - (IlM - w)(p - w)-1 .

With this, an index of middle-classness (7rM) may be defined as

(22.40)

(22.41)

For the general case of m (~ 2) strata with possibly overlapping income distributions,
similar indexes can be defined for the individual sectors, and these will usually provide a
more comprehensive picture than the alternative ones solely based on ab' .. ,am or the
component Gini coefficients G1 , ••• ,Gm • For this reason, we propose to replace the a by
the 7r, and to employ (7r1' ... ,7rm), (Vb . .. ,vm ), and (Gb ... ,Gm) for a better understand­
ing of plausible structural changes of various socioeconomic factors affecting the original
income distribution.

22.3 Income Inequality Structures and Response Surface
Models

The results in Section 22.2 are incorporated in formulating a stochastic model for which
some conventional response surface methodologies can be adopted. For simplicity of pre­
sentation, we consider the case of three strata (poor, middle-class, and affluent sectors); the
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general case can be handled in a similar manner. As has been mentioned before, instead
of the overall income inequality measure G, we shall deal with the following vector:

(22.42)

where the 1r stand for the individual sector income inequality indexes, the v for their rel­
ative mean incomes, and the G for the corresponding Gini coefficients. We may also note
that the v are essentially measures of central tendencies (relative to the overall mean),
while the 1r and G are suitable within strata indexes. Although there may be some general
concordance between 1r and the G, the multi-collinearity problem is not likely to arise here
(as the 1r depend on 0: and (3, in addition to the G). This dependent vector (J is conceivably
related to a number of socioeconomic factors (as independent variables or regressors). It
is quite clear that a formulation of a suitable response surface methodology may require
that all the relevant input variables are capable of being quantified, at least, on an ordinal
categorical basis. Actually, for convenience, we assume that these input variables are more
or less continuous. Among possible socioeconomic variables, the arbitration of the poverty
and affluence lines (i.e., wand p) as well as the usual cost-of-living index (say, K) are the
most important ones. Again, it may be advantageous to decompose K into suitable com­
ponents (food and drinks, energy, education, housing, transportation, medical expenses,
recreation, etc.) which may have differential effects on the components of (J. In addition,
distribution of social welfare or other forms of compensation may constitute relevant fac­
tors (especially, if they are likely to vary over time). Other economic factors, such as the
prime interest rate, unemployment index, productivity index (for agricultural/industrial
and other products), and GNP index may all be quite appropriate for explaining plausible
variations in the components of (J (over time). In due considerations of all such plausible
regressors, we conceive of a vector

~ = (6, ... ,~q)' (for some q 2: 1)

of relevant input (factor) variables, and formulate a regression model:

(J = 'l/J(~, F), F being the income distribution,

(22.43)

(22.44)

where 'l/J = ('l/JI, ... ,'l/J9)' and each 1/Jk is a functional of the distribution F and a function
of ~, k = 1, ... ,9. The forms of these nine functionals need not be all similar (or linear in
nature).

The picture presented above relates to a given time period. In practice, we are inter­
ested in the composite picture over a span of successive time periods. For example, these
time intervals may be the fiscal years, half-years, or even the quarters, and we may like to
study plausible changes over such intervals. In this setup, a change-point model becomes
quite relevant. Keeping this in mind, we conceive of an index set

(22.45)
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where tj refers to the j-th time interval, quantified as its midpoint, j = 1, ... , n. For
the time period indexed by tj, we denote the income distribution by Fj (for the entire
population), and let

(22.46)

We may even allow the form of the functional in (22.44) to be timedependent, and set

(22.47)

The functional forms of the components of 1/Jj in (22.47) remain stationary (over j) or
may follow a change-point model. In this case, an abrupt change is likely to occur if the ~j

or Fj itself undergoes an abrupt change at some point in time-a case that may arise due
to some structural changes in the socioeconomic factors affecting the income distributions
Fj. It is in this general response surface model formulation that we intend to consider
a change-point model for plausible structural changes over time. In this context, certain
order relations and invariance properties ofthe income indexes [viz., Sen (1986)] need to be
taken into account, and this results in a somewhat different formulation of the problem.

22.4 Change-Point Modeling for Income Distributions

Looking at the OJ and ~j, we may gather that the OJ are parameters (estimable functionals)
of the distribution Fj while the ~j are also parametric quantities (depending on some other
distributions). The arbitration of the poverty and affluence lines or the adjustment for
the cost-of-living index may change the form of the Fj over time and also the OJ may
vary accordingly. Thus, we may have an implicit functional relationship between the 8j
and the ~j' To make this point clear, consider the simple situation where the poverty and
affluence lines Wj and Pj are adjusted by the cost-of-living index, so that denoting by "'j

the cost-of-living index at time tj, we have

Wj = W"'j and Pj = P"'j for j = 1, ...• n, (22.48)

where wand P are suitable positive numbers. If the income distributions Fj (at time point
tj) satisfy the condition that

Fj(Y) = F(y/cj) , j = 1, ... , n, [F arbitrary], (22.49)

where the Cj are proportional to the cost-of-living indexes "'j, then it is easy to show that
the income indexes 7rp, 7rM, and 7rR, as well as vp, VM, and VR and Gpo G M , and GR

remain the same over the entire time period. Thus, the parameters OJ remain stationary
over the span of time. On the other hand, if the income distributions Fj do not satisfy
the scale-model in (22.49) and/or the poverty and affluence lines are not adjusted by the
proper scale factors, the different components of the OJ may be affected rather differently.
In this context, it may also be noted that a change in ap (or aM or aR) may not necessarily
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lead to a change in lip, Gp (or 11M, GM or IIR, GR ) in the same direction, so that (J may
not satisfy a partial ordering with respect to the Q or the other parameters. However, the
scale-model in (22.49) and the cost-of-living adjustment in (22.48) may work out quite
well if the span of the time in T is not too large and there is no abrupt change in some
socioeconomic factors affecting the income distributions. As such, we may consider cost­
of-living adjusted real income as well as poverty and affluence lines, so that in the ideal
situation (J based on this adjusted distribution would not depend on the cost-of-living
index /\', so that we have

(J j = (J for all j = 1, ... , n . (22.50)

On the other hand, when a cost-of-living adjustment may fail to induce a scale-equivariance
of the income distributions at different time points, the 7r, II, and G may not remain the
same; hence, the constancy of the elements of the (Jj over j may not hold. In this case, the
components of ej may provide suitable explanation for the variation in the components
of the (Jj. This explains why in (22.47) for the 1/Jj being sufficiently smooth (i.e., locally
linear), we may actually assume a linear response surface model for the (Jj in terms of the
ej (provided we use the cost-of-living adjusted income distributions). In the sequel, we
therefore take the income distributions Fj as the cost-of-living adjusted ones. In passing,
we may remark that the elements of (Jj are regular functions of the distribution Fj; hence,
when the input variables ej affect the Fj only locally, usual expansion of such functionals
ensures the linearity of the elements of (Jj in terms of the ej'

In practice, the distributions Fj as well as the (Jj and ej are unknown, and we need
to estimate them. This does not pose any problem as usually large data sets are available
for each of the time periods, and our estimates cau be based on them. We denote such
estimators by

(22.51 )

for j = 1, ... ,n. It may be qui te reasonable to assume that Fj is a consistent estimator
for Fj (and other asymptotic optimality properties of these sample distributions may also
be assumed). We may write

(22.52)

where, for each j, (£j,'11j) has a (9 +q)-variate joint distribution. As is usually the case,
one may have a large sample size pertaining to each time period, so that by an appeal to
the classical large sample theory, we may claim that

(i) The stochastic variability of (£j,'11j) would be small.

(ii) When suitably adjusted by these sample sizes, normalized version of these vectors
(£j, '11j) would have closely some multivariate normal distribution, although this
asymptotic distribution may differ from one time period to another.
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Based on the above observations, we may therefore assume that for each j (= 1, ... , n),
the conditional distribution of Qj given V j is closely normal with the mean vector

OJ + ,6j(Vj - ~j) [where,6j is a 9 x q matrix of regression parameters] (22.53)

and a dispersion matrix Lj' In this setup, borrowing the (approximate) linearity of the
OJ [as has been discussed after (22.50)], we may regard that the OJ - ,6j~j behaves more
or less as stationary, so that the main source of variabili ty comes from the regression
,6jV j (for j = 1, ... , n). Note that in this setup, both,6j and Lj are unknown matrices
and these can be estimated from the sample data as well. Generally, the matrices Lj
depend on the sample sizes (say, N j ) on which the estimators Qj and Vj are based,
and they depend also on some underlying dispersion matrices. Since we assume that
these Nj are all large, we may use the classical jackknifing, bootstrapping, or some other
resampling method to estimate these Lj consistently. On the other hand, the role of the
,6j is somewhat different, as they enter into the specification of the change-point model
(and hence need to be estimated in a more refined manner). As such, for our statistical
analysis, we may assume that the Lj are all given although they may not be assumed
to be homogeneous (i.e., Lj = L, for all j). Usually the characteristic roots of the Lj
are all small (when the Nj are large), but the homogeneity of the Lj may demand more
restrictive conditions on the underlying dispersion matrices.

From what has been discussed above, we may conclude that in the formulation of our
income pattern, structural changes, if any, should be attributed to the regression matrices
,6j, j = 1, ... , n. In this setup, we therefore confront a constancy of regression surface
model where the homoscedasticity (of the Lj) is not a part of the model (assumptions).
As such, we frame the null hypothesis of no change-point as

Ho :,61 = ... = ,6n =,6 (unknown)

and, side by side, we let

H r :,61 = ... = ,6,. ::P ,6r+1 = ... = ,6n, for 7' = 1, ... ,n - 1.

Then, the usual change point alternative hypothesis is

n-l

H* = HI U ... U Hn- I = UHr.
r=1

(22.54)

(22.55 )

(22.56)

In testing Ho against H*, we treat the Lj as given (but not necessarily homogeneous).
For this testing problem, we consider the following:

I) Pseudo Two-Sample Approaches. For each l' (1 ::; 7' ::; n - 1), consider a breakup of
the data set into two parts: {(Qj, V j, Lj),j ::; r} and {(Qj, V j, Lj),j > 7'}. From the
first set, by using the classical weighted least sq1Lares method, we obtain the weighted least
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squares estimator (WLSE) /3(r) of {3. Similarly, let (n-r)/3 be the WLSE of (3 from the
second set. Let then

Z~ = /3(r) - (n-r)/3 and Z(r) = vec(Z~), for r = 1, ... ,n - 1. (22.57)

Thus, the Z(r) are 9 x q-vectors. Using the normality in (22.53) and the linearity of
the WLSE, it is easily seen that under Ho in (22.54), Z(r) has closely a multi-normal
distribution with null mean vector and dispersion matrix (say,) F(r)' The F(r) can also be
consistently estimated from the data set; hence, we assume that these F(r) are all given.
Let then

and

Tnl = max{IIZ(r)ll} : 1::; r ::; n - 1}.
( r)

(22.58)

(22.59)

In this context, recall that the F(;.) are the generalized inverses of the F (r) and the charac­

teristic roots of the F (r) are all small (when the Nj are all large), so that the characteristic
roots of F(;.) are all large. If the null hypothesis Ho holds, for each r (= 1, ... , n - 1),

(22.58) is bounded in probability, so that Tnl is also stochastically finite. On the other
hand, if Ho does not hold and H r holds for some r (= 1, ... ,n - 1), then at least some of
these Z(r) would have a non-null mean vector; hence, Tnl will be large. Hence, the null
hypothesis Ho is to be rejected in favor of H* if Tnl in (22.59) is significantly large. Thus,

our main task is to find out a critical value r~~l, such that

where a (0 < a < 1) is the desired level of significance of the test.

Instead of (22.57), we may also consider

Z~* = /3(r) - /3(n) and zt,.) = vcc(Z~*), for 7' = 1, ... , n - 1

denote the dispersion matrix of Ztr) = Ft,.), and let

Tn2 = max{IIZtr)II}* : 1 ::; r ::; n - 1}.
( r)

(22.60)

(22.61)

(22,62)

In this setup, parallel to (22.60), we need to find out a critical level r~~l for Tn2 , such

that Howould be rejected in favor of H* whenever Tn2 2 r~~l. \Ve shall consider suitable
approximations for these critical levels later 011.
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II) Recursive Residual CUSUM Procedures. With the WLSE 13(r) defined as before in
(22.57), let us define the recursive residuals as

yo
r

SO
r

Qr-13(r-l)u, forr=2, ... ,n; Yf=O

LYk and SIr) = vec(S~), for r = 2, ... ,n.
k<r

(22.63)

(22.64 )

Thus the SIr) are the CUSUM (vectors) of the recursive residuals (using the WLSE),
and we denote the dispersion matrix of SIr) by A" r = 2, ... , n; again these A r can be
consistently estimated from the data set; hence, we assume that they are given. Let then

Tn3 = max{IIS(r)ll~r : r = 2, ... , n}. (22.65)

The null hypothesis Ho is to be rejected in favor of H· whenever Tn3 exceeds a critical
(3) 1 P{ (3) I }level Tn,en W lere Tn3 ~ Tn,Of Ho :::: 0'.

These test procedures are formulated by analogy with the usual change-point tests
for the classical regression model [viz., Brown et al. (1975)]. However, to accommodate
possible heteroscedasticity, WLSE have been used instead of the classical least squares
estimators. Consistency of these WLSE ensures the consistency of the proposed tests
against any fixed alternative covered by H· in (22.56). The crux of the problem is therefore

to find out suitable approximations for the critical levels TA~l for j = 1,2,3. Given that
the sample sizes Nj, j = 1, ... , n, are all large (leading to the asymptotic normality in
(22.53), for these WLSE, we may as well assume that the asymptotic normality holds,
and this is then transmitted onto the Z(r), Z(,.), and SIr)' Thus, we are able to reduce
the whole thing to a multi-normal setup. In this context, attention should be paid to two
basic points:

(i) The dispersion matrices of these vectors are in general complicated, so that the results
for multi-normal distributions with identity dispersion matrix may not always be
applicable.

(ii) The number of time points (i.e., n) mayor may not be small. For large values of
n, the computational complexities may call for some further asymptotic approxima­
tions. In either situation, we shall see that suitable simulation techniques work out
well. The basis for this simulation study is provided by the weak convergence results
for the partial sequence Z(r» Z(,», or S(,». In either case, the asymptotic multi­
normality results for the finite dimensional distributions follow by an appeal to the
classical Cramer-Wold theorem and the central limit theorem for WLSE (which are
all linear estimators). In this context, one also needs to establish the tightness or rel­
ative compactness of the stochastic processes constructed from these vectors. When
n is small, one does not need to construct such processes, so that the desired simula­
tion results would directly fit with these asymptotic multi-normal laws, and we need
to use consistent estimators of the associated dispersion matrices to generate these
multi-normal vectors. On the other hand, for large n, the process may turn out to
be extremely tedious, and sui table Gaussian process approximations (in law) for the
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associated stochastic processes may provide simpler simulation prospects. In this
context, the tightness condition may be verified by standard techniques (applicable
for linear processes); hence, we omit the details here. In the context of survival
analysis (or in life-testing models), for the weighted Kolmogorov-Smirnov statistics,
a similar problem arises, and in Sinha and Sen (1982) some of these simulation
studies have been reported in detail. In view of the similarity, we therefore avoid
these details. In some specific (simple) cases, one may use some standard results
on the so-called Bessel Processes [this is particularly the case where the homogene­
ity of the dispersion matrices (over j) can be assumed], and the detailed tables of
DeLong (1981) can be used with some advantage. In this context, we may note
that there are some simple relations between the critical levels of tied-down Bessel
processes over a part of [0, 1] and the usual Bessel process on a part of R+ [viz., De­
Long (1981) and Sen (1981, eh. 2)], so that for Tn! or Tn2 such relations can be used
to adapt the critical levels from DeLong's tables. If n is large enough then to apply
these Bessel process approximations it is not necessary to assume the homogeneity
of the dispersion matrices at various time points (all we need that the transformed
points of the time arguments are dense on [a, b], for some 0 < a < b < 1, and this can
be justified when these dispersion matrices are not very different from each other).

22.5 Forecasting of Economic Structural Changes

The main focus of this study has been on a breakdown of the overall Cini coefficient
in terms of a number of component Cini coefficients, relative mean incomes for these
sectors, and their relative proportions. It has also been shown in earlier sections that
the usual income inequality indexes when suitably modified may provide some further
insight in this probe. Thus, given the basic formulation of the (vector-) model in (22.42)
and the subsequent analysis in Section 22.4 [viz., (22.48) through (22.56)], it seems quite
appropriate to concentrate on a set of pertinent socioeconomic factors [giving rise to the
regressors ~j (or their estimators Vj)]. The basic issue is therefore to choose these ~j in
a most judicious manner. This choice is of course dependent on the particular society or
community and the major socioeconomic factors affecting the same. Although it may be
intuitively appealing to have a large number of components in the ~j (to provide more
explanation of the impact of various socioeconomic factors), from the statistical analysis
point of view, there is a mixed reaction: The larger the dimension of the regressor vectors,
the greater should be the sample sizes so that the associated regression matrices can be
estimated with comparable precision. The quadratic norms used in (22.59), (22.62) and
(22.65) all relate to the dimension of the Z(r) [or Z(r)] and Sir)' The larger the value of q,

the greater will be the (stochastic) variability of these norms, so that the critical levels [T~~l]
will be larger. This automatically points out that unless all the explanatory regressors are
informative, the power or sensitivity of the tests in Section 22.4 may not increase with
the increase in q. The situation is quite comparable with the usual chi-squared (goodness
of fit) tests where an increase in the degrees of freedom may not necessarily lead to an
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increase in the power (unless the noncentrality increases at a commensurate rate). Thus,
in choosing q and the subset of the regressors, sufficient care must be taken to ensure that
unnecessary loss of efficiency does not arise owing to redundant regressors or because of
omission of some relevant ones.

For forecasting purposes, the above findings are quite important. First of all, if q and ej
are chosen properly then a change in the structural form may be studied in terms of these
explanatory regressors, and the model in Section 22.4 can be used with advantage. On the
other hand, it may be such that some factor (or regressor) may be quite insignificant up
to a certain time point and, then due to some extraneous factor, it may become quite an
important one at some stage. Thus, if no attention is paid to this factor (based on its past
history), a forecasting formula may not work out that well. Thus, in a forecasting situation,
one needs to pay attention to a possible change point model with respect to the regressors
ej; a progressive examination of these factors with a view to eliminating the redundant
ones and accommodating new important ones should lead to a better forecasting.

Second, in Section 22.4, to eliminate the redundant variation due to plausible scalar
adjustments, the income distributions were taken as cost-of-living adjusted ones. It pro­
vided us with a reasonable way of achieving a linear model (c.f. Section 22.4) when the
regressors are not too different from each other (Le., there is no abrupt change in their real­
izations over the time period considered). In the context of forecasting, this cost-of-living
adjustment for the Fj should also be examined carefully. If a cost-of-living adjustment
fails to bring two distributions (say, Fj and Fj ,) close to each other, the approximate linear
expansion in Section 22.4 may not be that appropriate; hence, a forecasting based on this
model may not work out that well. This may be particularly important when an existing
important regressor phases out of the system and a new one enters into the scheme and
the cost-of-living adjustment as adapted might not have paid due importance to this new
factor. Nonlinear regression models may be necessary for the forecasting problem if no
such cost-of-living adjustment is made to the income distributions and the regressors may
vary considerably over time. Finally, in forecasting for a very near future time period,
the methodology in Section 22.4 can be used with greater confidence. However, as the
time gap between the time domain under study and the projected time increases, the
effectiveness of forecasting models may decrease drastically, especially, in the context of
structural changes. Nevertheless, the decomposition considered in Sections 22.2, 22 ..3, and
22.4 provide us with pertinent insight into the structure of such income patterns (and
inequalities), and a forecasting based on such a decomposition should be much more effec­
tive than the usual one based on the overall Gini coefficients or some other conventional
measure of income inequali ty.

This section concludes with a remark on the WLSE used in Section 22.4 (and in this one
too). The justification for the WLSE is based on the asymptotic multi-normality result in
(22.53). This is generally quite appropriate. If, however, (22.53) is not that appealing (but
still the linearity of regression may be tenable), one may use some robust estimators instead
of the WLSE. For the constancy of regression relationships over time, suitable AI-tests
based on recursive M-estimators have been considered by Sen (1984), Huskova (1988), and
Huskova and Sen (1989), among others, and these may be considered here too. However, in
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all the other works, homoscedasticity has been a vital part of the basic model; while in the
current setup, there may be good evidence that such an homoscedasticity assumption may
not hold. Thus, the effect of heteroscedasticity of the original model on the performance
characteristics of such recursive M -tests for change-points or M-estimators in forecasting
remains to be studied. The basic reason for using the WLSE instead of the ordinary LSE
is to take into account the possible heteroscedasticity in the model, and this approach is
likely to generate sufficient interest in other areas too.
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