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Abstract

The Land Use Change (LUC) project at IIASA in which the Centre for World Food
Studies participates, is currently engaged in the development of a case study for China
(Fischer et al., 1996). Its focus on land use and land cover change makes it necessary to
ensure that geographic detail and statistical information on conditions prevailing within
these regions be preserved to the extent possible. This raises two issues that are
addressed in this paper. First, while it is not practical to formulate a regional optimization
model with a very large number of sub-regions, over two thousand in the case of China,
one would like to avoid the loss of information associated with aggregation. For a
generalized version of the Mitscherlich-Baule yield function that is commonly used in
agronomy the paper describes a consistent aggregation procedure over sub-regions,
which leads to simple aggregate functions at regional level, but has the special property
that, once the regional model has been solved, all results can be recovered fully at sub-
regional level. Secondly, agronomy studies commonly use yield functions in which the
per hectare yield of a particular crop depends on inputs per hectare. Unfortunately, in the
case of China, as for most countries, input use is not available by crop and only recorded
for a particular geographical unit. The paper proposes a more crude formulation whose
parameters, however, can be estimated by cross-section on the basis of the available
data.
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Formulation and spatial aggregation of
agricultural production relationships
within the Land Use Change (LUC) model.

M. A. Keyzer

1. Introduction

The Land Use Change (LUC) project at IIASA is currently engaged, among others, in the

development of a model for China (Fischer et al. (1996)). This model maximizes intertemporal social

welfare for a national economy consisting of a small number of economic regions. Its focus on landuse

and land cover change makes it necessary to ensure that geographic detail on conditions prevailing

within these regions be preserved to the maximum. This raises the issue of consistent aggregation over

farm models within each region. This paper discusses the estimation of crop (and livestock) production

functions at sub-regional level as part of a static revenue maximizing decision by the farmer at the sub-

regional level, typically with a large number of sub-regions, to be aggregated to economic regions.

Every sub-region distinguishes three consumer groups: crop farmers, livestock farmers and

nonagriculturalists who jointly constitute one dynasty and face a common intertemporal budget

constraint. We will restrict our attention to the formulation and analysis of a static revenue

maximization problem for a crop producing farm in a particular sub-region, using a generalized version

of the Mitscherlich-Baule yield function (Section 2) and the possibility of determining the parameters of

this model by cross sectional estimation over sub-regions (Ssection 3), and, finally, of aggregating the

relationships over sub-regions, so as to serve as technical relationships within the regional model, from

which the results at sub-regional level can be recovered, once the optimal solution has been found

(Section 4).

2. The static decision problem of a crop producing farm

2.1 The decision problem

Agronomic studies commonly use yield functions in which the per hectare yield of a

particular crop depends on inputs per hectare. To estimate such relations statistically it is necessary to

avail of data on these variables. However, input use is rarely measured by crop and often only available

for a particular geographical or social unit. This makes it necessary to specify a more crude formulation,

and for this we propose to use a transformation function. The revenue maximizing problem of a given

sub-region is then written:
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max p Y p V

V 0,  Y 0

y v−
≥ ≥

  (1)

subject to

T(Y, V, A,x)− − ≤ 0 , where the choice variables are

V =  (V ,...,V ) 1 K  for inputs,

Y =  (Y ,...,Y )1 C  for outputs,

and the given parameters are A =  (A ,...,A )1 S  for land quality types, x =  (x ,..., x )1 N  for natural

conditions.

We also define the vectors of purchasing prices for inputs pv and selling prices for outputs py which are

of dimension K and C, respectively. For sub-regions that are net purchasers, the purchasing price of

goods governs the unit value of the crop on the local (sub-regional) market, and for net sellers, the farm

gate price will perform this role. Program (1) does not determine land types, as these follow from

intertemporal decisions. Usually the transformation function is taken to be quasiconvex continuous,

nondecreasing in (Y, −V, −A) and linear homogeneous in (V,A). However, we will use a slightly more

general formulation to accommodate a particular form that is often used by agronomists. First, we

impose a separation between inputs and outputs:

T Y V A x( ) =  Q(Y) F(V,A;x), , ,− − − (2)

where Q is linear homogeneous, convex nondecreasing aggregate output index and F(V,A;x) an input

response or production function that is linear homogeneous and nondecreasing in (V,A). We postpone a

discussion of the concavity properties of this function until the next section. Since Q(Y) is linear

homogeneous, it defines the convex revenue index function R(py):

R(p ) max{ (u) }y = =
≥

p u Q

u

y 1

0
(3)

Hence (1) reduces to:

Π( ;A,x) max R F(V,A;x)

V 0

R p p Vy v, = −
≥

(4)

The value function ∏(R,py;A,x) of this problem is the so-called restricted profit function and in

applications the optimal input is often obtained as the derivative of this function w.r.t. py. However, to

keep incorporation within a larger welfare program simple, we will maintain purely primal formulations

of the input response function F(V,A;x), for which we still need to specify a functional form.
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2.2 Analysis of a generalized Mitscherlich-Baule yield function

We analyze the properties of the Mitscherlich-Baule yield function (MB for short), a

functional form for yield functions that has gained much popularity in the agronomy literature. For

example, Llewelyn and Featherstone (1996) report that MB-yield function performs better for an

extensive set of synthetic data on irrigated corn derived from a crop model. Franke et al. (1990) came to

similar conclusions on the basis of data from experimental plots.

Even though agronomists usually apply this function in a purely experimental context, they derive

recommendations on application of fertilizer and other inputs on the basis of this function. Hence, they

at least implicitly assume the function to be usable in a context of constrained optimization. We will

show that when there is more than one input the pure MB form exhibits increasing returns to scale,

which are not based in empirical findings but only on the choice of functional form. Consequently, the

agronomist who bases his recommendation on this function will suggest input applications that exploit

returns to scale, and are therefore high by necessity. We will also propose introduction of additional

parameters in this functional form which make it possible to measure the returns to scale. The pure

Mitscherlich-Baule is a yield function for crop j:

y f vj kj kj= +∏ ( ) y (x)kj jk β γ  (5)

where vkj, yj, y j  the application of input k, the realized yield and the maximum attainable yield,

respectively, all measured per hectare. The maximal yield is given and was, say, computed on the basis

of a crop model as a function of natural conditions x. The function f(A) is specified as f g e g( ) = − −1 ; it

thus maps nonnegative values of g on the unit interval with f(0) = 0 and f(g) asymptotically approaching

unity as g goes to infinity. Since the product multiplies values that lie on the unit interval, yc will not

exceed the value  and approach it asymptotically as all inputs go to infinity. We already notice that the

product form is purely arithmetic: there are no coefficients to describe the substitutability among inputs.

The production function defines output as a function of applied inputs and land. The production

function Fj(V,A;x) that follows from (5) is:

Q f( V /A ) N Aj kj kj kj jk j j= +∏ β γ ( ; y (x))

where Vkj, Qj, Nj are the application of input k, the realized output and the maximal attainable output,

respectively on the surface Aj, and N A y Aj j j j( ); y = .

We now analyze a more general production function. First, we include various landtypes AS, s = 1,...,S,

as inputs. This facilitates the parameter estimation when the application of inputs Vk to various land-

types is unknown. Secondly, we introduce positive parameters θk as exponents of the functions f(⋅) to
measure returns to scale. Then, after dropping the subscript j, the production function becomes:

Q f( V N(A (x))k k k
k

k= +∏ β γ θ/ H(A)) ; y (6)
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where A = (A1, ..., AS) is the vector of areas AS, y = ( y1 ,…, yS ) is the vector of maximal agronomic

yields on landtype s (withys the maximum yield of a reference crop), βk, γk and θk are given positive

parameters (to be estimated from empirical data);1 H(A) is a concave, linear homogeneous area index

(say a Constant Elasticity of Substitution (CES) function), andN(A ); y is an index of maximal

production capacity, that is concave in A while we write N(A) for short; (H(A) and N(A; )y  possibly

also contain parameters to be estimated. For given land inputs A and natural conditions x, we consider

the problem of optimal input application:

max  Q pV

Q 0,V 0

−
≥ ≥

subject to (7)
Q F V A= ( ;x),

where the positive K-dimensional vector p is the given ratio of input prices to the price R(py) of

aggregate output. The following proposition further characterizes this problem.

Proposition: Let the production function F(V,A;x) be of the generalized MB-form (6) with returns to

scale parameters, then

(i) F(V,A;x) is strict log-concave in V,

(ii) Input demand in program (7) is nondecreasing in Q

(iii) if K = 1 or Σkθk ≠ 1 program (7) has a single stationary point, but for K > 1 or Σkθk > 1 stationary

points can be multiple, though not exceeding 2K,

(iv) the optimum is reached at the stationary point with the largest output value F.

proof:

(i) For given A, let q(V) = Σkθ ln(f(βk+γkVk/H(A)), whose derivative w.r.t V is: ∂q/∂Vh =

γkθk exp(−(βh+γhVh/H(A)))/f(V k) while the second derivative is: ∂2q/∂Vk∂Vh = − θkγk/H(A)

exp(−(βh+γhVh/H(A))) < 0. Hence the logarithm of F is strictly concave in V (and F is strict log concave

in V). Note that since q(V) is concave in V, the cost function C(p, q0) = minV≥0 pV | q(V) ≥ q0) is convex

in q0; solving program (7) amounts to maxq≥0 [exp(q) − C(p,q)].

(ii)  We rewrite (6) as F(V,A;x) = exp(Σkθkln f(gk (Vk))) N(A; y (x));

hence ∂F/∂Vk = F(∂ln f(gk)/∂gk)θkγk/H(A) and the first-order condition of profit maximization reads, for

Vk  > 0:

ζk = F exp(−gk)/(1−exp(−gk)),

     = F (1/f(gk) −1)

                                                  
1 These parameters can be made dependent on x. This also applies to the area index H(A).
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hence

− ln [ζk/F + 1] = ln f(gk),

for ζk = pk H(A)/(γk θk), which shows that input demand in nondecreasing in F.

(iii) As the cost function is strict log-concave, the input combination associated with a given value of F

is unique. Therefore, we can at every value F (and for fixed ζ) determine a unique set L(F) such that Vk

is positive for each k ∈ L(F). By (ii) the use of positive inputs can only increase with F; therefore, the

set L(F) will not decrease with F.  After multiplication by θk, summation over k yields,  in the stationary

point:

M*(F)  =  Σkθkln [max(f(βk), ζk/F) + 1] + ln F/N = 0 (8)

After differentiation:

dM =  Σk∈L(F) θk dln [ζk/F + 1] + dln F

dM = {Σk∈L(F) θk/[ζk /F + 1] (-ζk/F
2)} + 1/F) dF;

hence

dM/dF = {Σk∈L(F) −θk/[F/ζk + 1] + 1}/F (9)

and d2M/dF2 > 0

Note that if Σk∈L(F) θk < 1 (e.g. if there is a single positive input), the derivative dM/dF will be positive

for all F > 0. However, if Σk∈L(F) θk > 1, it will be negative at small F, and then turn positive. Since

d2M/dF2 is positive there will then exist two stationary points for every index set L(F). It follows from

(8) that M*(F) will be continuous in F. The effect of a shift in F is only a downward jump in the

derivative. This may, for Σkθk > 1, lead to a large number of intersections, that will, however not exceed

2K. The value F* at which M*(F) is zero and F − pV is largest, will be the global optimum.
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Figure 1 maps out the relationship between M*(F) and F; L1, L2 and L3 denote the convex segments of

the curve, associated to three consecutive values of the index set L(F). Computation can proceed via a

line search that increases F, starting at a small positive value and until a right-hand intersection is found

where M*(F) = 0. The calculation proceeds until L(F) contains all inputs and the inter-section with the

largest value for profits is chosen. This analysis of the Mitscherlich-Baule function shows that it has a

part with increasing returns to scale, due to the multiplication of f-functions. We conclude that since in

the pure MB-function the (unit) exponents of this multiplication are not the result of estimation,

recommendations about input applications that are based on this function have an a priori bias towards

high input intensities.

2.3 Embedding within the intertemporal optimization model

Note that since A is given, concavity in (V,A) was of no concern in (7). Yet the static

model will eventually be embedded within a dynamic one where A becomes a variable. For Σkθk < 1,

linear homogeneity in (V,A) ensures that we can derive a unit value function W(R,pv) that maximizes

the value per unit of N(A) (a concave function) and work with it in the land allocation problem. For Σkθk

> 1 there may be discontinuities as prices change. In this case embedding within a wider optimization

becomes problematic. We also mention that the MB-form is only one out of several alternatives. It is for

example possible to use other functions, such as:

 Q(Y) =  g(Z(V)/H(A)) N(A) (10)

where Z(V) is a Cobb Douglas, CES or other constant returns production function. The same holds for

the index function H(A). This form has the advantage of allowing for a more flexible representation of

substitution effects among inputs k and it avoids the convexity problems. Since the number of options is

so large, a definite choice will have to be made on the basis of data availability and observed patterns,

using a nested procedure as described in Llewelyn and Featherstone (op. cit.).

3. Cross section estimation

Let us briefly discuss the procedure for estimating the parameters of functions (4) and (6), or (10).

The variable y (and x, if introduced) will often be autocorrelated spatially, and this has to be accounted

for via spatial regression (see e.g.. Keyzer (1996)). The cross section is to be done across counties r,

possibly with some time index to address the issue of productivity shifts under land-cover change.

Hence, we distinguish the following index sets:

C crop rotations (land use types)

R sub-regions (counties)

Associated to C and R are the subscripts c and r. The focus will lie on estimation of parameters α of the

output index Q(Y) and β, γ and θ of the input function F(V,A;x). It might be necessary to specify the
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parameters of the aggregations functions H and N on a priori grounds, to ensure consistent aggregation,

as will be discussed in the next section.

It follows from the linear homogeneity of the functions Q and F that the optimal ratios Ycr/Nr and Vkr/Hr

will be constant across r. Therefore, if we assume that this conforms perfectly with the data, we may

write:

Ycr =   νcNr (11a)

 Vkr =   φkHr  (11b)

where Nr and Hr are evaluations of the functions N(Ar) and H(Ar), and νc and φk. These values can be

obtained as follows. After substitution of the production function (6), the original problem (1) becomes:

This problem can be partitioned in two parts: the determination of product mix (as in (3)) and the

determination of output scale and input demand (as in (7)):

R(py) = max u ≥ 0 {pyu  Q(u) = 1} (12a)

The second problem can be reformulated into:

max R(p )

Q 0,V 0

y Q p Vv−
≥ ≥

subject to (12b)

Q N f V Hk k(A; y) ( (A))k
k

k= +∏ β γ θ

This enables us to write:

max q

q 0, 0

−
≥ ≥

pφ
φ

subject to (12c)

q f k k= +∏ ( )k
k

k β γ φ θ

after the substitutions q = Q/N(A; y ), φk = Vk/H(A) and pk = pk
v H(A)/(R(py)N(A; y )). For νc = ucq, the

optimal values for outputs and inputs will be determined as in (11a,b).

Estimation of the relationships (12a) can proceed in the standard way, with a regression on:

max p Y p V

V 0,  Y 0

 y v−
≥ ≥

subject to 

Q(Y) f( V N(A (x))k k k
k

k= +∏ β γ θ/ H(A)) ; y
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[∂Q(Yr;α)/ ∂Ycr)]/[ ∂Q(Yr;α)/ ∂Y1r)] = py
cr/p

y
1r (13a)

or, alternatively, if the function Q is a (convex) CES-function on:

[∂R(py;α)/ ∂py
cr)]/[ ∂R(py;α)/ ∂py

1r)] = Ycr/Y1r (13b)

For (12b) there is a choice. The estimation can either be applied to the first-order conditions of the cost

minimization problem, in which case the problem of the endogeneity of Q has to be addressed, or on

(12b) directly. The parameters of the functions H(A) and N(A; y ) can be estimated simultaneously or

must be given a priori.

4. Aggregation to an economic region

The LUC-welfare model will be specified at the level of the economic region. We investigate the

possibilities for consistent aggregation via a representative producer construction. After summation over

r and optimal νc and φk:

Yc = νcΣrNr (14a)

 Vk = φkΣrHr (14b)

Now assume that the original distribution of land uses over sub-regions is kept fixed within a particular

time period

Asr = Asαsr (15)

where As is the regional total over sub-regions. Also assume that the functions Hr and Nr are both of the

Cobb Douglas form, then, we can, by homogeneity of these functions, define aggregate functions N° and

H° in terms of the aggregates As, of the form:

N°(A1, ..., AS) = κN(A1, ..., AS) (16a)

H°(A1, ..., AS) = ηH(A1, ..., AS) (16b)

these functions describe a so-called representative (rather than average) index. Next we assume that

econometric estimation shows a multiplicative "fixed effect" that creates heterogeneity. This can be

accommodated by multiplying the functions N(Ar) and H(Ar) by a correction term:

Ycr = νcεcrN(Ar) (17a)

 Vkr = φkζkrH(Ar) (17b)

This enables us to perform consistent aggregation, while at the same time accounting for variations

within the sample. Alternatively, we can seek to generalize the specification beyond the Cobb Douglas



9

form. One easy way is to restrict the model described so far to some fraction of land and output and

specify exogenously some "committed" land utilization, input demand and production. Furthermore, we

can decide to compute the Cobb Douglas coefficients of the aggregate function N° and H°, not through

direct summation over Cobb Douglas forms but through first-order approximation in the logarithms of

the analytical form ΣrN(Ar), ΣrH(Ar) with respect to aggregate utilization As using (14) at observed

values, but this will only yield an approximate correspondence that may become imprecise when the

values of As change.

For any of these options, once we have computed a solution of the national welfare program, the

consistent formulation makes it possible to recover all the necessary production relationships at the sub-

regional level and map these out within a geographical information system. We conclude with two

remarks.

The first is that the Cobb Douglas formulation can only be operational if all land types As are positive.

In practice this will not be the case. Furthermore, the Cobb Douglas formulation leads to rigid patterns

of elasticities. Both difficulties can be alleviated by generating Ars as a transformed quantity:

Ar = T Lr (18)

where L has the same dimension as A and denotes the original (true) land types and T is a semipositive

matrix, thus ensuring positivity of Ar. Calculations at sub-regional level can proceed in terms of the

transformed land types with the transformation from L to A occurring in the regional model. Since land

balances need only be maintained in terms of L, the transformed values Ars can, for example, be

generated as Ars = Lrs + Σs lLrs, where l is some positive fraction. Such a form ensures that nonnegative

values of Lrs can be recovered after applying the sharing rule (15) to the regional values. In addition, the

larger the value of the parameter l, the smaller the effect of transformation of land types on production.

Obviously, the formulation (18) can be generalized in various ways.

Finally, the land types Ars will change in a lagged manner as a result of land conversion activities. As the

sharing relationship (15) can be viewed as a production function of a special kind, it is possible to treat

it as the outcome of an intertemporal revenue maximization that only specifies exogenously the

distribution of land transformation activities over sub-regions.
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