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Foreword

IIASA, the Russian Academy of Sciences and several Russian governmental agencies,
signed agreements in 1992 and 1994 to carry out a large-scale study on the Russian
forest sector. The overall objective of the study is to focus on policy options that
would encourage sustainable development of the sector.

The first phase of the study concentrated on the generation of extensive and consis-
tent databases for the total forest sector.

In its second phase, the study encompassed assessment studies of the greenhouse gas
balances, forest resources and forest utilization, biodiversity and landscapes, non-
wood products and functions, environmental status, transportation infrastructure,
forest industry adn markets, and socio-economics.

The remote sensing activities within this project aims at the following three main
objectives:

• to produce an up-to-date forest information database of the Russian forest
sector;

• to develop and test methods to produce an up-to-date land use and land cover
database for Russia; and

• to develop and test operative forest information and decision support system,
with monitoring and revision capabilities, in a GIS environment.

This work, carried out by Gebhard Banko during his participation in the YSSP
(Young Scientists Summer Program), deals with the accuracy assessement of classi-
fications of remotely sensed data and provides a review of current European forest
inventory systems. Based on this review recommendations are given for the design
of the accuracy assessment for the forest variables derived within the SIBERIA-
Project. Examples from current national forest inventory systems demonstrate how
such data — derived from remotely sensed images — can be integrated in a forest
information system.
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A Review of Assessing the Accuracy of

Classifications of Remotely Sensed Data and of

Methods Including Remote Sensing Data in

Forest Inventory

Gebhard Banko (banko@edv1.boku.ac.at)

1 Introduction

1.1 Scope and Objectives

The scope of this study is to review the methods of assessing the accuracy of the
classifications of remotely sensed data and to review current forest inventory systems
in Europe. Special emphasis is given to forest inventory systems which include
remotely sensed data in the assessment of forest variables. The aim of these reviews
is to provide recommendations for the current SIBERIA-project in which the Forest
Resources Project at IIASA is involved. The overall objective is to contribute to
the development of a forest inventory system for Russia.

1.2 Accuracy Assessment

The accuracy of spatial data has been defined by the United States Geological Survey
(USGS) as: “The closeness of results of observations, computations, or estimates to
the true values or the values accepted as being true” (USGS, 1990). Nevertheless
it must be stated that “truth” has a certain subjective dimension (Janssen and van
der Wel, 1994).

Accuracy assessment is an important step in the process of analyzing remote sens-
ing data. Remote sensing products can serve as the basis for political as well as
economical decisions. Potential users have to know about the reliability of the data
when confronted with maps derived from remote sensing data. A RADARSAT-
scene of Whitecourt, Alberta, from the 6 April 1996, was used to derive a map
showing a forest and non-forest classification (Figure 1). The difference between the
backscatter from forest areas and clearcuts is due to the change in surface rough-
ness. Because Radarsat operates at C-Band (5,6 cm wavelength), only directional
reflectance occurs over a clearcut area compared to mostly diffuse reflectance over
forested areas. Thus, Radar-Images are a useful tool to detect clearcut areas in



– 2 –

Figure 1: RADARSAT-Image of Whitecourt, Alberta, and a unsupervised classifica-
tion showing clearcuttings in boreal forest (RADARSAT image copyright Canadian
Space Agency, 1996).

boreal forests. However, their utility depends on how well a user of the map can
rely on these classification results.

Users with a variety of applications should be able to evaluate whether the ac-
curacy of the map suits their objectives or not (Aronoff, 1982). Therefore error
matrices, also known as confusion matrices (see 4.2, have become a widely accepted
method to report the error of raster data. Different methods have been developed
to evaluate these error matrices (see 4). Non-statistical methods are included, those
based on coefficients of agreement and those based on the binomial distribution.
Although these methods provide a powerful tool to evaluate error matrices, they all
have certain assumptions concerning the collection of data filling the error matrices.
It is further assumed that misclassification of a given area can be unambiguously
determined (Ginevan, 1979).

The overriding assumption in the entire accuracy assessment procedure is that the
error matrix must be representative of the entire area mapped from the remotely
sensed data (Congalton, 1988a). The question is whether the proper sampling ap-
proach has been used on which future analyses are based (see 3. If this assumption
is violated then all the results of the accuracy assessment are void. Therefore, not
only the error matrix itself has to be evaluated but also the whole procedure of data
collection for the accuracy assessment.

Congalton (1991) suggests that the following factors should be considered:

• error sources;
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• sampling scheme;

– sample scheme,

– number of samples,

– sample unit (ground data collection and sample size).

Each of these factors provide essential information for the quality of accuracy as-
sessment. There are many opinions regarding accuracy assessment approaches. The
methodology should be chosen in accordance with the specific objectives and re-
quirements of an investigation.

In many investigations not all ground reference areas collected for classification must
be used for training areas. Consequently, it is common practice to use these areas for
accuracy assessment. These test areas, though, are designed to work as reference
areas for the image classification and as such present large homogeneous areas.
However, reference data derived from these homogeneous areas might not provide a
valid indication of classification accuracy of land cover variability at the individual
pixel level. The accuracy obtained from such reference data can represent at least
a first approximation to classification performance throughout the scene (Lillesand
and Kiefer, 1994).

1.3 Forest Inventory Systems

Accuracy assessment receives special attention due to the fact that remote sensing
data are a prefered information source for national forest inventories (e.g., Finland).
For such inventory systems the accuracy of every data acquisition level must be
known. Although most of the national European forest inventories are not yet
based on remote sensing data, great efforts are currently underway to integrate this
data into the process of collecting information on forests. The current European
approaches for national forest inventories are discussed in 5.

2 Error Sources

Although this review focuses on the thematic aspect of accuracy, one should bear
in mind that the thematic error is only one error source out of a variety of spatial
error data sources. Lunetta et al. (1991) list the errors associated with GIS data
acquisition, processing, analysis, conversion, and final product presentation (Figure
2). They stated: “In theory, the amount of error entering the system at each step can
be estimated. In practice, however, error is typically only assessed at the conclusion
of data analysis, if it is assessed at all”.

Constraints in both time and cost lead to a two-step accuracy assessment in most
projects. The first step is usually to evaluate the geometric accuracy and to assess
the thematic accuracy afterwards. This approach considers the two main transfor-
mations of remote sensing images (Janssen and van der Wel, 1994):
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Figure 2: Error sources and accumulation of error in a typical remote sensing infor-
mation process flow (Lunetta et al., 1991).

1. Registration of the image coordinate system into a certain map projection,
enabling other geodata to be used; and

2. Classification of the continuum of spectral data into nominal user-desired
classes (the most subjective transformation).

Geometric accuracy assessment benefits from the experience available in photogram-
metry. These methods to assess geometric accuracy are already well defined and can
be operationally used. Non-parametric methods are generally accepted as the most
realistic option as orbital geometry models used to describe the errors (parametric
method) are still incomplete and cause geometric distortions (Janssen and van der
Wel, 1994).

Ground Control Points (GCPs) are used to calculate a transformation from an image
coordinate system into the specific ground coordinate system. The accuracy assess-
ment is done by calculating the root-mean-square (RMS) error. It is combined from
the error in x-direction (RMSx) and the error in y-direction (RMSy):

RMSxy =
√
RMS2

x +RMS2
y (1)

where the RMS error in one direction can be calculated as:

RMSx =

[
1

n

n∑
i=1

(δxi)
2

] 1
2

(2)

where δxi = the residual of the ith GCP and n = the number of GCPs. Statistically,
it is more sound to calculate a standard deviation. The sum of the residuals is
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divided by the redundancy (r) which depends on the degree of freedom determined
by the applied polynomial

sx =

[
1

n

∑
i=1

n(δxi)
2

] 1
2

(3)

for large numbers of GCPs the RMS error and standard deviation converge.

There are many methods to incorporate the positional uncertainty in field surveys
and subsequent cross-tabulation of reference and classified data. A distinction be-
tween positional and thematic accuracy can be achieved by involving the contextual
information in the identification of the land-cover class of a pixel or to use only
homogeneous areas for sample points (Warren et al., 1990).

The US National Map Accuracy specifications (NMAS) for cartographic products
are used as a reference for the allowable error in many applications (Welch et al.,
1985). An accurate map in the terms of the US NMAS must fulfill the following
conditions: “For maps on publication scales larger than 1:20.000 not more than
10 percent of the points tested shall be in error more than 0,8 mm (1/30 inch),
measured on the publication scale; for maps on publication scales of 1:20.000 or
smaller, 0,5 mm (1/50 inch)” (Hord and Bronner, 1976).

3 Sampling Scheme

3.1 Sample Design

Assessing the accuracy of maps derived from remote sensing data is both time- and
money-consuming. Due to the fact that it is not possible to check whole mapped
areas, sampling becomes the means by which the accuracy of land-cover maps can
be derived (Congalton, 1988a). As stated by Ginevan (1979) any sampling scheme
should satisfy three criteria:

1. It should have a low probability of accepting a map of low accuracy.

2. It should have a high probability of accepting a map of high accuracy.

3. It should require a minimum number, N, of ground truth samples.

Therefore researchers have published formulas to calculate the numbers of sam-
ple plots which are dependent on the objectives of the project (van Genderen and
Lock, 1977; Rosenfield, Fitzpatrick-Lins and Ling 1982; Rosenfield, 1982; Congal-
ton, 1991). These formulas are discussed in 3.3. The sampling schemes that have
been used are:

• Simple Random Sampling (SRS).

• Stratified Random Sampling (STRAT).
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Figure 3: Sampling designs used for accuracy assessment and rough evaluation of
the different approaches.

• Systematic Sampling (SYS).

• Stratified Systematic Unaligned Sampling (SSUS).

• Cluster Sampling (CLUSTER).

Figure 3 illustrates the various sampling approaches and lists their major advantages
and drawbacks. The choice of sampling technique will depend upon several factors,
including the size of the study area, the type and distribution of features being
mapped, and the costs of acquiring verification data.

3.1.1 Random sampling

The simple random sampling (SRS) yields too many samples in larger areas and too
few samples in smaller areas (Congalton, 1988a). As the SRS is area-weighted, it
is generally accepted that some kind of stratified sampling should be used, thereby
ensuring that each class is adequately tested (Aronoff, 1985). The definition of
strata requires knowledge of the population that will be assessed; classification of
the remotely sensed data must therefore be performed before field verification (Fen-
stermaker, 1991). This can lead, in some projects, to serious problems because of
the temporal change of land-cover between the time of image acquisition and field
verification (Congalton, 1991). In these cases, only a spatial random distribution
can be used for sampling as it cannot be based on the distribution of the individual
classes (Janssen and van der Wel, 1994).

3.2 Systematic Sampling

In systematic sampling approaches, the sampling unit is selected at an equal interval
over space. The advantage of systematic sampling is the convenience of obtaining
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Table 1: Sample schemes discussed by different authors.

SRS1 STRAS2 SYS3 SSUS4 CLUSTER5

Congalton, 1988a Card, 1982 Congalton, 1988a Berry and Baker, 1968 Congalton 1998a
Aronoff, 1985 Hay, 1979 Warren et al., 1990 Aronoff, 1985 Stehman, 1997

Ginevan, 1979 Janssen et al., 1994
Congalton 1988a

Fitzpatrick-Lins, 1981
Hord and Bronner, 1976

Van Genderen and Lock, 1977

1 = simple random sampling, 2 = stratified random sampling, 3 = systematic sampling, 4 =

stratified systematic unaligned sampling, 5 = cluster sampling.

the sample and the uniform spread of the sampled observations over the entire
population (Cochran, 1977). An obvious problem in systematic sampled population
is the bias that exists if the population shows some kind of spatial autocorrelation. If
the presence, absence, or degree of certain characteristics affects those in neighboring
units, then the phenomenon is said to exhibit spatial autocorrelation (Cliff and
Ord, 1973). Work by Congalton (1988b) on Landsat MSS data from three areas of
varying spatial diversity (agricultural land, range land, and a forest site) showed a
positive influence, as much as 30 pixels. If spatial autocorrelation analysis indicates
periodicity within the data, then the use of systematic sampling schemes may result
in poor estimates of classification accuracy (Fenstermaker, 1991).

3.2.1 Stratified systematic unaligned sampling

A systematic sampling ensures that sample points of one class are sampled from
the entire area (see Figure 4). This assumes that the class areas are randomly
distributed over the area, but commonly most classes show some form of clumped
distribution (e.g., urban areas), or regular distribution (e.g., regular road network)
(Aronoff, 1985). If the distribution of the polygons tends toward a direction parallel
to the transects of the systematic sampling, a significant bias can be introduced.
An unaligned systematic sample can be used to eliminate this bias. As described
by Berry and Baker (1986), a stratified systematic unaligned sampling combines the
advantage of randomization and stratification with the useful aspects of systematic
sampling, while avoiding the possibilities of bias due to the presence of periodicities.

Table 1 lists the use of different sample schemes by author.

3.2.2 Cluster sampling

Cluster sampling is a technique of sampling in which units are not single pixels
but groups of pixels. The idea is that it is much easier and cheaper to visit a few
large areas than many small areas. Congalton (1988b) suggest that the rate of
homogeneity, a coefficient of intraclass correlation, determines whether the chosen
clusters are useful for accuracy assessment. The more heterogeneous the pixels
within one cluster, the higher the intraclass coefficient; which is favorable when
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Figure 4: Stratified systematic unaligned sampling approach.

using cluster sampling. The size of the clusters should be smaller than 10 pixels and
should never exceed 25 pixels.

3.2.3 Recommendations for the sampling design

Congalton (1991) suggested a combination of stratified and random sampling. The
stratified sampling can be done in conjunction with training data collection in an
early phase of the project. After the first classification results, stratified random
sampling completes the data collection necessary for accuracy assessment. Fen-
stermaker (1991) proposes a multistage sample approach for large area sampling.
Ecoregion types partition the area in the first phase of sampling. The stratifying
of a large population into homogeneous primary, secondary, etc., strata enables the
description of the entire population with a smaller number of samples. For the
sampling of the whole Russian area one should use an apriori stratification. This
stratification can be made on existing auxiliary data, e.g., based on ecoregions.
Ecoregions represent aggregated geographical information based on several factors
like climate, human impact, hydrology, etc. Figure 5 demonstrates one possible
stratification of the Russian territory.

Within those strata covering representative areas all classes are selected and strat-
ified random sampled, ensuring at least 50 points per class. At each verification
site, an area at least 3 × 3 pixels in size is examined. For the purpose of using
the Kappa coefficient (see 4.4) in the analysis of the confusion matrix, a random
sampling approach should be chosen.
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Figure 5: Ecoregions of Russia.
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3.3 Number of Samples

Once the sample scheme has been fixed, the exact number of samples to be taken
should be decided. The number of samples is a compromise between the effort to
minimize the costs of field sampling and the requirement of a minimum sample size
to be representative and statistically sound. In general, the larger the sample size,
the greater the confidence one can have in assessments based on that sample (Dicks
and Lo, 1990). Depending on the goal of the accuracy assessment the number of
sample plots can be calculated with different methods.

If only a right and wrong assessment is needed then binomial distribution may
be used to calculate the sample size (van Genderen and Lock, 1977; Hay, 1979;
Rosenfield, Fitzpatrick-Lins and Ling, 1982). However, if the project objective is to
test not only right versus wrong but also to look at the multiple classes of wrong then
a multinomial distribution should be used to calculate the sample size (Rosenfield,
1982).

3.3.1 Binomial distribution

The binomial probability density function can be used to calculate the number of
pixels for wrong and right assessment.

f(Y,N,Q) =
N !

(N − Y )!Y !
QN−Y (1−Q)Y (4)

This function describes the probability of getting Y misclassifications in a sample
of N drawn from a population with a parametric accuracy proportion Q (Ginevan,
1979). However, these techniques are not designed to choose a sample size for filling
in an error matrix (Congalton, 1991). Formulas for the extension of the binomial
distribution — the multinomial distribution — can be found in Rosenfield (1982).

In an investigation to compare sampling procedures Fitzpatrick-Lins (1981) used
the following equation (5) to calculate the sample number (cumulative binomial
probability distribution):

N =
Z2pq

E2
(Z = 2) (5)

where p is the expected percent accuracy, q = 100− p and E is the allowable error.
Congalton (1991) remarks on this work that it is not possible to fill an error matrix
of 30 categories with 319 samples resulting from equation 5. Only 35 of the 900
cells had a greater value than zero. These computations allow only the calculation
of overall accuracy.

3.3.2 Rule of thumb

As a rule of thumb Congalton (1991) recommends at least 50 samples per class.
If the area exceeds 500 km2 or the number of categories is more then 12, than at
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least 75–100 samples should be taken per class. These recommendations coincide
with those recommended by Hay (1979) and Fenstermaker (1991). The number
of samples for each category might be adjusted based on the relative importance of
that category for a particular application. Furthermore, sampling might be allocated
with respect to the variability within each category (Congalton, 1991).

3.3.3 Recommendations for the number of samples

As previously demonstrated, various approaches exist to calculate the number of
samples for accuracy assessment. Although the rule of thumb of having 75–100
samples per class is just an empirical approach, it should be favored. This method
provides sufficient measures in each stratum for later calculations. Especially the
error-matrix (4.2) and the Kappa-calculation (4.4) require a sufficient number of
samples.

3.4 Sample Unit

Sampling units applied to the accuracy testing of maps include points, transects,
and areas. Transect units have been used by Skidmore and Turner (1992). The
most common units are area units. Aronoff (1985) states that a point unit is, in
practice, also an area unit because a point can not be accurately verified. Sam-
pling units should be at least the size of one pixel but, in order to take geometric
distortions also into consideration, these sampling units should be more than one
pixel. Fenstermaker (1991) recommended, for a multistage approach, a 3 × 3 pixel
environment as the sampling unit.

A sampling unit should be at least as large as the minimum mapping unit (Aronoff,
1985). The sampling unit occupies an area and therefore more than one map class
can be found within this area. Aronoff (1985) suggests using plurality rules and
other more complex methods to describe the class at the test site. Other authors
recommend methods to guarantee the homogeneity of the area where the sample
unit is located (Warren et al., 1990). One way to overcome this problem is to
sample only those pixels whose identity is not influenced by potential registration
errors (e.g., points at least several pixels away from a field boundary) (Lillesand and
Kiefer, 1994).

4 Error Reporting

4.1 Overview of Error Reporting Methods

The most common way to express classification accuracy is the preparation of a
so-called error matrix also known as confusion matrix or contingency matrix. Such
matrices show the cross tabulation of the classified land cover and the actual land
cover revealed by sample site results. Different measures and statistics can be derived
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Table 2: The recommended layout of an error matrix as presented by Congalton
(1991).

Reference Data
F I U W

∑
users acc.

Forest (F) 68 7 3 0 78 87.2%
Classified Industrial (I) 12 112 15 10 149 75.2%
Data Urban (U) 3 9 89 0 101 88.1%

Water (W) 0 2 5 56 63 88.9%∑
83 130 112 66 391

prod. acc. 81.9% 86.2% 79.5% 84.8%
overall accuracy: 84%

from the values in an error matrix. The basic form of an error matrix and non-
statistical measures are described in 4.2. Procedures based on multivariate analysis
are described in 4.4 and methods based on the binomial distribution are described
in 4.5.

4.2 Confusion Matrix

A confusion matrix lists the values for known cover types of the reference data in
the columns and for the classified data in the rows. The main diagonal of the matrix
lists the correctly classified pixels. Some confusion exists concerning the layout of
the matrix. Most researchers use a layout as demonstrated in Table 2.

One basic accuracy measure is the overall accuracy, which is calculated by divid-
ing the correctly classified pixels (sum of the values in the main diagonal) by the
total number of pixels checked. Besides the overall accuracy, classification accuracy
of individual classes can be calculated in a similar manner. Two approaches are
possible:

• user’s accuracy, and

• producer’s accuracy.

The producer’s accuracy is derived by dividing the number of correct pixels in one
class divided by the total number of pixels as derived from reference data (column
total in Table 2. The producer’s accuracy measures how well a certain area has
been classified. It includes the error of omission which refers to the proportion of
observed features on the ground that are not classified in the map. The more errors
of omission exist, the lower the producer’s accuracy.

producer′s accuracy(%) = 100% − error of omission(%) (6)

If the correct classified pixels in a class are divided by the total number of pixels
that were classified in that class, this measure is called user’s accuracy. The user’s
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accuracy is therefore a measure of the reliability of the map. It informs the user
how well the map represents what is really on the ground. One class in the map can
have two types of classes on the ground. The ‘right’ class, which refers to the same
land-cover-class in the map and on the ground, and ‘wrong’ classes, which show a
different land-cover on the ground than predicted on the map. The latter classes
are referred to as errors of commission. The more errors of commission exist, the
lower the user’s accuracy.

user′s accuracy(%) = 100% − error of commission(%) (7)

The difference between these two measures is quite substantial and will be discussed
with an example (Figure 6). In this example a forested area was classified into four
different classes: coniferous, mixed, and deciduous forest, and non-forest. Let us
assume that two persons would like to get information from the classified map. One
is a forest-owner who wants to know if his forest is actually mapped; the other is
a biologist, who would like to investigate a coniferous o forest and must, therefore,
plan a field-trip using the map.

Given the example’s probabilities, the coniferous forest has 81 percent probability
(producer’s probability) of being classified as an coniferous forest on the map. This
means that almost one fifth of all coniferous forests have not been mapped as conif-
erous forests and almost 20 percent of all the forest owner’s property will not be
mapped. On the other hand, the biologist will be more successful. Due to a user’s
accuracy of 98 percent, he will encounter a coniferous forest in almost every case
when selecting a point on the map. He will be disappointed in only 2 percent of all
of his visits in the field because he will not find a coniferous stand on the specific
place marked on the map.

4.3 Matrix Normalization

With the descriptive techniques described in 4.2 it is rather impossible to compare
matrices generated from different numbers of samples or to compare cellvalues of
matrices derived from different interpretation or classification approaches. Congal-
ton (1991) developed a method to “normalize” the values. This technique forces the
sum of the rows and the sum of the columns to one. The values in the rows and in
the columns are iteratively balanced. This method should only be used if there are
not too many zero cell values, because the algorithm will change these values. The
normalized accuracy can then be computed analogue to the overall accuracy.

4.4 Kappa Coefficient

The Kappa coefficient is a measure of overall agreement of a matrix. In contrast to
the overall accuracy — the ratio of the sum of diagonal values to total number of
cell counts in the matrix — the Kappa coefficient takes also non-diagonal elements
into account (Rosenfield and Fitzpatrick, 1986).
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Figure 6: Examples for user’s and producer’s accuracy.
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Developed by Cohen (1960) the Kappa coefficient measures the proportion of agree-
ment after chance agreements have been removed from considerations. Kappa in-
creases to one as chance agreement decreases and becomes negative as less than
chance agreement occurs. A Kappa of zero occurs when the agreement between
classified data and verification data equals chance agreement (Fenstermaker, 1991).
The Kappa coefficient was introduced to the remote sensing community in the early
1980s (Congalton and Mead, 1983; Congalton et al., 1983) and has become a widely
used measure for classification accuracy. It was recommended as a standard by
Rosenfield and Fitzpatrick-Lins (1986).

Due to a typographical error in Congalton et al., (1983) there has been some con-
fusion about the correct computation of the Kappa coefficient. Hudson and Ramm
(1987) have clarified this confusion. Most articles cite Bishop et al. (1975) as a
source of formulation:

K̂ =
N

r∑
i=1

Xii −
r∑
i=1

Xi+X+i

N2 −
r∑
i=1

Xi+X+i

(8)

where

r = number of rows and columns in error matrix,
N = total number of observations,
Xii = observation in row i and column i,
Xi+ = marginal total of row i, and
X+i = marginal total of column i.

To interpret the formula of the kappa coefficient the following formulation is more
useful:

K̂ =
p0 − pe
1− pe

(9)

where

p0 = accuracy of observed agreement,
∑

Xii
N

,

pc = estimate of chance agreement,
∑

Xi+X+i

N2 ,

It should be stated that the Kappa coefficient assumes a multinomial sampling model
(e.g., a simple random sampling). The influence of sampling schemes other than
simple random sampling have not been investigated and, as Congalton (1991) noted,
“an interesting project would be to test the effect on the kappa analysis of using
a sampling scheme other than simple random sampling”. Nevertheless, researchers
have also used the Kappa coefficient for other sampling models (e.g., Dicks and Lo,
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1990). Stehman (1997) provides formulas for the calculation of the Kappa coefficient
under cluster sampling. There are only a few authors expressing critical remarks
on the calculation of the Kappa coefficient with equation 8. Foody (1992) states
that the degree of chance agreement may be overestimated. He proposes, as an
alternative, a Kappa-like approach discussed by Brennan and Prediger (1981). The
probability of chance agreement is considered to be 1/n and the alternative to the
Kappa coefficient is calculated as defined in equation 10.

kn =
p0 − 1/n

1− 1/n
(10)

The approximate large sample variance of Kappa, σ̂2, can then be used to construct
a hypothesis test for significant difference between error matrices (Cohen, 1960).
The equation for computing the variance of Kappa can be formulated as follows
(Hudson and Ramm, 1987):

σ̂2[K̂] =
1

N

[
θ1(1− θ1)

(1− θ2)2
+

2(1− θ1)(2θ1θ2 − θ3)

(1− θ2)3
+

(1− θ1)3(θ4 − 4θ2
2)

(1− θ2)4

]
(11)

where

θ1 =
r∑
i=1

Xii
N

,

θ2 =
r∑
i=1

Xi+X+i

N2 ,

θ3 =
r∑
i=1

Xii(Xi++X+i)
N2 , and

θ4 =
r∑

i=1,j=1

Xij(Xi++X+i)
2

N3 .

Cohen (1960) describes the test of significance between two independent Kappa’s
by:

Z =
K̂1 − K̂2√
σ̂1 + σ̂2

(12)

This test is possible because the large sample asymptotic distribution of Kappa is
normal. It can be used to test whether the classification accuracy differs signifi-
cantly from chance agreement or if there is significant difference between various
classification approaches. To demonstrate the use of the Kappa coefficient data for
error matrices of Congalton (1991) are used, which are listed in Table 3.

Table 4 provides a comparison of the overall accuracy, the normalized accuracy (as
discussed in 4.3) and the Kappa coefficient. All three measures agree about the
relative ranking of the two classification approaches. Nevertheless, their absolute
values are quite different, because each measure incorporates different levels of in-
formation (Congalton, 1991). The Kappa coefficient provides the lowest accuracy
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Table 3: Error Matrices (pixel counts) for two classification approaches (Congalton,
1991).

Supervised Approach
Reference Data
F I U W

Forest (F) 68 7 3 0
Classified Industrial (I) 12 112 15 10
Data Urban (U) 3 9 89 0

Water (W) 0 2 5 56

Unsupervised Approach
Reference Data
F I U W

Forest (F) 60 11 3 4
Classified Industrial (I) 15 102 14 8
Data Urban (U) 6 13 90 2

Water (W) 2 4 5 52

Table 4: Comparison of three accuracy measurements for the supervised and unsu-
pervised classification approach presented in Table 3.

Classification Overall Kappa Normalized
Algorithm Accuracy Accuracy Accuracy

Supervised classification 84% 77% 83%
Unsupervised classification 78% 70% 78%
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Table 5: Results of the Kappa analysis test of significance for individual error ma-
trices and for comparison between the matrices of Table 3.

Classification Kappa Coefficient Z Statistic Resulta

Supervised appr. 0.7687 29.41 Sb

Unsupervised appr. 0.6956 24.04 Sb

Superv. vs. unsuperv. 1.8753 NSb

aAt the 95 percent confidence level.
bS = significant, NS = not significant.

A significant result of the test means that the results of the error matrix are

significantly better than a random result (i.e., the null hypothesis: Kappa = 0)

in this example; but the ranking of the different error measures strongly depends
on the form of the error matrix. Many off-diagonal cells with values of zero can
force the normalized accuracy to differ significantly from the others. The Kappa
coefficient for the supervised classification approach results in a value of 77 percent.
This implies that the accuracy of the classification is 77 percent better than the
accuracy that would result from a random assignment.

The Kappa coefficient belongs to the family of bivariate agreement coefficients, in
the form:

Agreement = 1− observed disagreement

expected disagreement

These agreements, like the Kappa coefficient, are zero for chance agreement, one
for perfect agreement, and negative for less than chance agreement. The Kappa
coefficient can be used to test accuracy in two ways: between the classified matrix
and a random classification, and the difference between two classification approaches
(Table 5).

Rosenfield and Fitzpatrick-Lins (1986) presented further coefficients to describe cat-
egory accuracy, which belong to the family of bivariate coefficients. Their review
included the following coefficients:

• ground truth index by Turk (1979).

• mean accuracy index by Hellden (1980).

• mapping accuracy index by Short (1982).

As they conclude in their article: “A family of such coefficients exist which correct for
chance agreement, but the Kappa coefficient is one of few which also are defensible
as intraclass correlation coefficients”.

4.5 Procedures Based on Binomial Distribution

The user of remote sensing may be interested on whether the map failed or passed
a certain level of accuracy and/or in the confidence intervals of the overall accuracy.
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Based on probability density functions, Ginevan (1979) started his work to develop
a sound statistical methodology for map accuracy validation. Aronoff (1982, 1985)
endorsed this work and developed the minimum accuracy value.

The sampling problem defined for the use of the probability density functions is the
determination of the optimal number, N, of ground truth samples and an allowable
number, X, of misclassifications of these samples (see equation 4). If X of fewer
ground truth samples are misclassified the map is accepted as accurate on this
confidence level (Ginevan, 1979).

4.5.1 Confidence level

Confidence limits for the overall accuracy from the sample size N, and a signifi-
cance level α can either be read from the standard binomial nomograms as given in
statistical textbooks, or calculated using the exact binomial distribution (Janssen
and van der Wel, 1994). The confidence limits of the overall accuracy show that this
is the center of an interval in which the overall accuracy can be found with 1 − α
confidence.

4.5.2 Hypothesis testing

For many applications the classification should at least have a minimum overall accu-
racy. For these cases a statistical method — the hypothesis testing — is appropriate.
For hypothesis testing the following parameters are defined:

• H0...null hypothesis.

• H1...alternative hypothesis.

• α...significance level.

There are always two types of error. The type I error is defined by Aronoff (1982)
as the consumer risk and the type II error is defined as the producer risk. It
should be noted that the terms consumer’s risk and producer’s risk have a completely
different meaning to producer’s and consumer’s accuracy.

Consumer Risk (α): is the probability that a map of unacceptable accuracy will
pass the accuracy test (wrongly accepting H0); it has the largest consequence
for the user of the map.

Producer Risk (β): is the probability that a map of some acceptable accuracy
QH will be rejected (wrongly rejecting H0); it has the largest consequence for
the producer of the map.

The consumer’s risk can be calculated as follows:

CRISK =
X∑
Y=0

N !

Y !(N − Y )!
Q

(N−Y )
L (1−QL)Y (13)
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where CRISK= consumer risk,
QL = the minimum accuracy required,
X = number of allowable misclassifications,
N = total number of points sampled, and
Y = number of misclassifications.

QL can be calculated iteratively. The producer’s risk can be calculated as follows:

PRISK =
N∑

Y=X+1

Q
(N−Y )
H (1−QH)Y (14)

where PRISK= producer risk and
QH = a selected high accuracy level.

Values of consumer and producer risk have been tabulated by Ginevan (1979) and
Aronoff (1985) for specific sample designs (total number of samples and number of
misclassifications).

Ginevan used these tables to calculate the sample size to reduce field survey. As
Aronoff (1982) stated: “The selection of values for consumer’s and producer’s risk
depend on the value of information and cost of errors in a specific application”.
Both consumer’s and producer’s risk should be minimized, which is difficult because
of their interdependency: a smaller producer’s risk can be obtained by increasing
consumer’s risk or increasing the number of samples (Janssen and van der Wel,
1994).

The producer’s risk is closely related to the number of sample points. Assume a
situation demonstrated in Table 6. The producer’s risk is tabulated for 90 percent,
95 percent and 99 percent map accuracies. The least expensive accuracy test to
perform would use the smallest sample size (in this case: 19 points). The producer’s
risk for a class that has been mapped with an accuracy of 95 percent would be 0.6226.
This means that if the map would be repeatedly tested with 19 points the result
would fail the test approximately 62 percent of the time. Selecting a higher sample
size (e.g., 93 sample points) reduces the producer’s risk (as low as 43 percent). High
producer risk has additional costs:

• re-checking a sufficiently accurate map; and

• cost of the delay in providing information to the user.

These costs have to be balanced with the costs of increased sampling with lower
producer’s risk.

Aronoff (1985) introduced the minimum accuracy value, which is defined as the
lowest expected accuracy of a map given an observed accuracy test result and the
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Table 6: Critical value table for a required accuracy of 85 percent with a consumer
risk of 0.05 (Aronoff, 1985). The first six columns are for accuracy test design, and
the remaining columns are for interpretation purposes of the test result.

Producer Risk values Minimum Accuracy Values in
(Accuracy levels in%) Percent for Deviations from X

X N CRISK 90.0% 95.0% 99.0% -6 . . . 2 4 . . . 26
0 19 0.0456 0.8649 0.6226 0.1738 — ... 70.4 58.0 ... —
1 30 0.0480 0.8163 0.4465 0.0361 — ... 76.1 68.1 ... 2.7
2 40 0.0486 0.7772 0.3233 0.0075 — ... 78.5 72.5 ... 18.3
3 40 0.0460 0.7497 0.2396 0.0016 — ... 80.1 75.3 ... 30.1
: : : : : : : : : : : :
7 85 0.0478 0.6247 0.0624 0.0000 93.3 ... 82.2 79.4 ... 57.7
8 93 0.0496 0.5919 0.0432 0.0000 93.3 ... 82.4 79.9 ... 54.4
9 102 0.0471 0.5746 0.0318 0.0000 93.3 ... 82.7 80.5 ... 57.1

X= maximum allowable misclassifications; N=required sample size; CRISK=consumer’s risk

user selected consumer risk. It is a useful index to compare the results of accuracy
tests using different sample sizes and for use in a loss function for comparing the
relative expected maximum cost of alternative classification results.

The tables presented by Aronoff (1985) list the sample size (N), and exact consumer
risk (CRISK) for critical values (X) — the maximum allowable number of misclas-
sifications. The values of each table are calculated at a specific level of accuracy
(producer’s risk) (Table 6).

The use of the binomial distribution and the hypothesis test methods enables users,
when the accuracy test results are represented in an aggregate form (error matrix)
to evaluate if the map is suitable for a specific applications.

Aronoff (1985) illustrates the table with the following example: suppose 10 out
of 93 points were incorrectly classified. The critical value (X = 8) for 93 sample
points (N) for a required accuracy of 85 percent is exceeded, the map fails the test.
A user may be interested not only on whether the map failed the test, but how
it failed or how well it passed the test. The deviation listed in the interpretative
columns is the observed misclassifications minus the critical value (10−8 = 2). The
minimum accuracy value is 82.4 percent. This means that there is only a small
chance (consumer’s risk) of 5 percent that a map with an accuracy level as low
as 82.4 percent would give a test result as ten misclassifications out of 93 sampled
points.

4.6 Recommendations for the SIBERIA-Error Reporting

Performing Accuracy Assessement should not be the end of a project, but rather
the start for a discussion between the producer of spatial information and the user
of this information. Confusion matrices are relatively easy to understand and can
function as a basis for further accuracy discussion. The calculation of producer’s
and user’s accuracy guarantee an individual accuracy assessment based on the needs
of the customers. In addition, the Kappa coefficient is a statistical measurement to
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test whether the current classification approach is better than a classification solely
based on chance agreement or not.

5 Forest Inventory Systems

The methods used for assessing the thematic accuracy of classifications of remote
sensing data are closely related to the methods of forest inventory. Forest inventory
is defined as both the method of estimating the biomass and the estimates (the
inventory results) themselves (Cunia, 1981). Comparable to accuracy assessment,
the sampling design, the number of samples and stratification considerations are im-
portant aspects of the inventory methodology. Cunia (1981) classifies the inventory
systems as operational, management, or national (or regional).

Cunia assumes that an operational inventory is intended to supply information re-
garding the current values of forest biomass, whereas management or national in-
ventories are primarily designed to ensure a continuous flow of information about
the general conditions of the forest. According to these objectives the sampling
design for the two types of inventory can be quite different. Cunia points out that
a sampling design should present both a space and time dimension. The spatial
dimension regulates the distribution of the samples in the forest area. The time
dimension considers the selection of sampling units over successive points in time.
Temporary sample plots are commonly used in operational inventories, because they
are most efficient to gain information on current values of biomass. Permanent plot
techniques are more expensive than temporary ones, but allow for estimates for rates
of change to be derived more precisely from this sampling technique.

5.1 Inventory Sampling Design

5.1.1 Stratification

Stratification is a method to divide the population into smaller units called strata.
The homogeneity within the strata is greater than the homogeneity between the
different strata. For long term monitoring the strata, one may use prestratification
which would have to be defined on permanent geographic units (Cunia, 1981). Due
to the change of strata boundaries in time most inventory methods are stratified
through poststratification.

One exception is the use of a design named double sampling for stratification. It
has been used in the inventory system of the North-eastern United States (Cunia,
1981) and for a resource inventory in Central America (Dorigan, 1981).

5.1.2 Double sampling

In literature, double sampling is also referred to as two-phase sampling. This inven-
tory system belongs to the group of multiphase inventory systems. The basic idea is,
that in many cases the variable of interest is rather expensive to assess. But if these
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variables of interest exhibit a strong relationship to a so-called auxiliary variable,
then it is economically much more effective to sample the auxiliary variable in a first
level and to specify the variable of interest in a second level.

Remote sensing data is the ideal solution for data assessment of the first phase, as it
considerably reduces the assessment cost for auxiliary variables compared to the as-
sessment cost of the variable of interest using non-remote sensing means (European
Commission, 1997). Double sampling is used in the national forest inventories of Bel-
gium, France, Greece, the Netherlands, Portugal (two-stage sampling), Switzerland,
the United Kingdom (two-stage sampling), and for the Northern part of Finland.

Double Sampling can be divided into:

• Double sampling for stratification; and

• Double sampling for regression estimators.

Double sampling for stratification. The basic idea of the double sampling or
two-phase sampling is to reduce the number of points for ground measurements.
Therefore in the first phase a large number of points are located on remote sensing
data and classified according to a previous defined forest strata. The number of
points are used to calculate the area coverage of the particular forest strata. A
subsample of the points of the first phase are selected and the corresponding area
on the ground is measured for tree and stand characteristics. The measurement on
these ground plots is used to estimate the means and variances within each stratum.
The number of points can be calculated according to Neyman’s optimum allocation
formula (Cunia, 1981).

Double sampling for regression estimators. This double sampling method is
useful if an attribute, which is costly to assess, is closely correlated to a variable
which can be economically assessed.

5.2 Permanent vs. Temporary Plots

There are currently three different methods concerning the time dimension of a
forest inventory:

1. permanent plots — Continuous Forest Inventory (CFI);

2. permanent and temporary plots — Sampling with Partial Replacement (SPR);
and

3. temporary plots.

5.2.1 Permanent plots

The continuous forest inventory (CFI) consists of regularly spaced permanent sam-
ple plots. The design is efficient for estimating both current values and rates of
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Table 7: Plot design in current European forest inventories (European Commission,
1997).

Plots
Permanent Mixed Temporary
Austria Finland France
Belgium Norway Greece
Germany Sweden Iceland
Italy Switzerland Ireland
Netherlands Portugal
Spain United Kingdom

change. It is also expensive, however, since the permanent plots must be well main-
tained in the field, and the same sample plots are located and measured on every
occasion. Another disadvantage is that the system can not easily be adapted to fu-
ture estimates of different precision (Cunia, 1981). Besides the European countries
listed in Table 7 the CFI was widely applied for more than 40 years in the United
Sates, Canada, and Mexico.

5.2.2 Permanent and temporary plots

The efficiency of the CFI can be improved by remeasuring only some of the per-
manent plots and installing a set of new plots. This system makes use of the basic
statistical concept sampling with partial replacement (SPR). It is used in Scandinavia
and Switzerland.

Table 7 lists the currently used plot designs in European forest inventories (European
Commission, 1997).

Besides the use of two-phase sampling techniques, many researchers demonstrated
the usefulness of the sampling with partial replacement method also for large-scale
forest inventories. Most of them used aerial photos in the scale between 1:6000 and
1:25000 (Akça, 1989 and 1995, Kätsch, 1990, Wolff, 1992). Akça (1995) showed
that two-phase sampling required only 74 samples to achieve the same accuracy in
timber volume estimation, as the 130 samples needed for terrestrial sampling. The
conversion from aerial sampling plots to terrestrial sampling plots is calculated using
a cost ratio of 1:15 (aerial plot vs. terrestrial plot).

6 The Use of Remote Sensing Data in Forest In-

ventories

In most of the national forest inventories of the European countries remote sensing
data is already used or will be used in the next inventory period. Until now satellite
data has been used in the national forest inventory of Northern Finland and in
the regional inventory of Liguria (Italy). Because of the importance of the Finnish
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Figure 7: Effect of harmonization and new technologies on the number of attributes
and the accuracy on different scales (adapted from Köhl and Päivinen, 1996).

Multi-Source Inventory for applying remote sensing data, this inventory system will
be described in 6.3. In general, additional data received from remote sensing sources
can be used in several ways in the inventories (Köhl and Päivinen, 1996):

• for stratification for field inventory designs;

• for parameter estimating; and

• for map production.

The objective for using remote sensing data in forest inventory is to improve the
accuracy and efficency of estimates of forest attributes especially for broad scales.
Köhl and Päivinen (1996) state that the number of attributes for which results
can be estimated depend on the scale of the assessment. Thus, global inventories
report only a small number of attributes. There are two possibilities to improve this
situation:

• Harmonization, and

• New technologies (remote sensing).

The relation between the scale and both the number of attributes and the accuracy
can be seen in Figure 7.

In their review Köhl and Päivinen (1996) summarize the feasibility of remote sensing
techniques for the assessment of different forest attributes. The results are presented
for different forest attributes, sensor resolutions, and different area units.

6.1 Use of Aerial Photos

The main use of aerial photos has been to classify forest and non-forest areas, or in
the first phase of a double phase sampling approach (Figure 8).
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Figure 8: Use of aerial photos in national forest inventories (European Commission,
1997).

6.2 Use of Satellite Data

Satellite images are becoming an increasingly important data source in forest in-
ventories. The use of satellite images will be considered in the inventory of Private
Woodlands in Ireland, in Italy’s National Forest Inventory and regional inventory
of Emilia Romagna, and national forest inventories of Norway, Spain, Sweden, and
Switzerland (see Figure 9).

6.2.1 Italy

Landsat-TM data is already used in the multipurpose forest inventory of the Liguria
Region. A proposal for creating an inventory structure for the national forest inven-
tory enabling the acquisition and integration of information from different sources at
various levels has been made. For the regional forest inventory of Emilia-Romagna
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Figure 9: Use of satellite data in national forest inventories (European Commission,
1997).
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the integration with satellite and other remote sensing data is highly desirable and
should be deeply investigated (Tosi and Marchetti, 1997).

6.2.2 Norway

Experiments will be carried out in the near future to evaluate the possibility of
combining satellite images and other georeferenced information with sample plot
data. GPS will be used for an exact location of the sample plots (Tomter, 1997).
However in a case study in Norway, Gjertsen (1996) came to the conclusion that the
use of satellite data (Landsat-TM and SPOT) in forest inventory do not yet meet
national standards. The potential of volume stratification through satellite data
within a two-phase sampling approach was tested.

6.2.3 Spain

The possibility of using of satellite images for the actualization of forest areas will
be studied in the next inventory period. Due to recent changes in the Forest Ad-
ministrations Structure, however, the funding of the third inventory period is not
yet guaranteed. The sampling design is stratified systematically, in which the strata
are derived from existing maps by grouping polygons of the forest map. Principal
criteria for the stratification are species and forest types (Mart́ınez-Millán, 1997).

6.2.4 Sweden

The eighth Swedish National Forest Inventory is planned to be conducted between
2003 and 2012. New information demands on biodiversity and other environmental
information require new methods for field sampling and combination with remote
sensing (Söderberg, 1997). Currently the sampling design is a systematic cluster
sampling with partial replacement of plots. The attributes derived from aerial photos
are used for the simulation of real field plot data. Aerial photos are primarily used
for the assessment of plots in high mountains.

6.2.5 Switzerland

Satellite imagery might be used in addition to aerial photography. Aerial photog-
raphy is combined with field-assessed attributes by a double sampling for strati-
fication approach. The current interpretation of aerial photographs by analytical
instruments is likely to be replaced by digital photogrammetry (Köhl, 1997).

6.2.6 Other countries

There are also investigations to establish remote sensing technologies as a basis for
the national inventory and for the system of monitoring the forest status in Croatia
(Kusan, 1995). And as Hocevar et al., (1995) stressed the monitoring system which
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includes the analysis of satellite images, enforced in the Slovenian forestry, seems to
be an important contribution to the Slovenian environmental science and policy. For
Russia satellite images have been used since the 1960s as a forest information source.
Besides the lesoustroistvo — the forest inventory and planning (FIP) — they are the
most important data source for the Russian State Forest Account (SFA) (Shvidenko
and Nilsson, 1997).

6.3 Forest Inventory in Finland

In addition to the traditional field inventory, a new inventory system was developed
in 1989 (eighth inventory) and applied in the Northern part of Finland. The so-
called Multi-Source National Forest Inventory is a remote sensing and digital map
information aided extension of the field inventory, allowing an accurate estimation
of the results for small areas (Tomppo et al., 1997). So far, one fifth of the former
temporary plots have been substituted by permanent plots. Image analysis methods
are applied in a way that estimates of forest variables of the inventory are calculated
for each pixel (e.g., growing stock volume by tree species, increments by tree species,
site fertility class and mean age).

The basic classification method is a K-nearest neighbor classification (Tomppo,
1996). Field sample plots are used to form so-called plot pixels which are used as
ground truth information for the classification. The classification contains both a
feature and a geographic dimension, and can be interpreted in such a way that each
pixel represents a proportion of each of the K-neighboring pixels. The k-nearest
pixels are derived by calculating the Euclidian distance dp(i),p in the spectral space
of the satellite image channels from the pixel p (to be classified) to each field plot
pixel p(i) within a radius of 50 to 100km. The difference in elevation is restricted to
less than 50–100 m. The limitations in the geographic space avoid using sample plots
from different vegetation zones (Tomppo, 1996). The k-nearest field plot pixels are
denoted by p(1), ..., p(k). The field plot pixels are weighted inversely proportionally
to the squared distance in feature space.

wi,p =

k∑
j=1

d2
p(i),p

d2
p(i),p

(15)

So the weight for each field plot in a certain stratum (municipality), for matters of
area calculations of the variables, is calculated by summation over the weights of
each pixel in the stratum:

ci =
∑
p

wi,p (16)

The forest variable M can be estimated for the pixel p as:

m̂p =
n∑
j=1

wj,p ×mj,p (17)
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where mj,p, j = 1, ..., k is the value of the variable M in the sample plot j corre-
sponding the pixel pj which is the jth closest pixel in the spectral space to the pixel
p (Tomppo, 1991).

6.4 Examples for Combining Traditional Field Inventories
with Remote Sensing Methods

Additional data sources are important for forest inventory for various reasons. Since
field inventories constitute the major part of forest mapping costs (Hagner, 1990),
one interest is to reduce this cost through the combination of traditional field inven-
tories and remote sensing methods.

6.4.1 Compartment based methods

Although Gjertsen (1996) published non-promising results for the extraction of for-
est variables on a per pixel basis, Hagner (1990) developed a method to improve
traditional forest variables estimates on a per stand basis.

Hagner (1990) used merged SPOT-data for the purpose of segmentation. A t-ratio
method was applied for the merging of regions after the initial segmentation. This
method tests the hypothesis that the spectral intensities of the two regions are in
fact the observations on the same population (equation 18).

t− ratio =
X̄1 − X̄2

(
s21
n1

+
s22
n2

)
1
2

(18)

For multiple bands Hagner (1990) uses a value calculated as the square-root of
summed squared t-ratios:

T 2 =
∑

j = 1btbj (19)

where t is the t− ratio in band j and
b is the number of bands.

The results of the segmentation are comparable to visual interpretation. Regression
analysis was carried out using NFI-plots (National Forest Inventory of Sweden). The
models used are described in equation 20.

log(y) = bo + b1 ∗ x1 + b2 ∗ x2 + ...+ bn ∗ xn (20)

where y represents the forest variables mentioned in the following, and xi are the
band intensities of the original bands or derivates. On the basis of the stand, the
following estimates were determined:
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• volume/ha;

• mean diameter;

• mean age; and

• tree species mixture.

The average value of the pixelwise calculations within each stand were corrected
for the logarithmic bias of the regression with a correction factor obtained from the
regression analysis and the mean of real observed values were divided by the mean
of real predicted values.

The standwise calculations were combined with traditional field inventory data. The
combination of the two data sources could improve the result under the assumption
of uncorrelated errors. The estimates of both the field data and the remote sensing
data are inversely weighted according to their variance. With this method other
auxiliary data such as previous field inventory data and photo interpretation can
also be included in the combined estimates. The accuracy of estimates obtained from
satellite and NFI-data were found to be comparable to those obtained by traditional
field inventory, except for tree species composition.

6.4.2 Sample based methods

To overcome several problems linked with the mostly subjective delineation of forest
compartments, Poso and Waite (1995) demonstrated a sample-based forest inven-
tory and monitoring system as a substitution or supplement to compartment-based
analysis. In this approach a certain number of sample units (points) are systemat-
ically selected over the whole area based on required accuracy. The necessary field
data for the units are acquired by stratifying the sample plots using auxiliary data
sources such as remote sensing data. In Finnish applications the common point
distance is 25 m.

6.5 Conclusions for the Russian Forest Inventory

The use of remote sensing data must be strongly recommended for the future Na-
tional Russian Forest Inventory, although their use in National Forest Inventories
is still rather the exception than the rule. However, compared to European forest
inventory systems, the Russian system is also the exception, because remote sensing
data has been integrated since 1948 (Shvidenko and Nilsson, 1997). Since the 1960s
a three-stage stratified sampling procedure has been used to record an average an-
nual area of 10 to 25 million ha. The design of a new inventory system must make
use of knowledge and experience that has been gathered in Russia in the fields of
remote sensing.

Remote sensing data becomes essential when mapping forest variables of the whole
area is of interest. For deriving estimates of forested area, volume/ha, tree species
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composition, etc., remote sensing data can be integrated in multi-phase forest in-
ventory designs. Multi-phase inventory designs (see 5.1 are most flexible for the
integration of different data sources. This aspect is especially important for the in-
tegration of data from different sensors, because the variety of remote sensing data
will increase in the near future.

A new forest inventory system in Russia should reveal information about the current
status of the forest and of the dynamic processes. As expressed in 5.2.1 permanent
plots are the ideal design for monitoring changes. The sample design of these per-
manent plots has to be adapted to the varying information needs. The more or less
unmanaged forests in the north will show a rather wide sampling distance compared
to forests whose principal function is production of industrial wood. The permanent
plots should be designed as cluster samples. In addition to permanent plots, the use
of temporary plots enables forest management to be flexible on future information
demands (see 5.2.2).
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World Congress), Saramäki-Koch-Gyde Lund (eds.), University of Joensuu,
Faculty of Forestry, Research Notes 48, p. 67–79.

[38] Lillesand, T. and Kiefer, R. (1994) Remote sensing and image interpretation.
John Wiley & Sons, Inc., New York.

[39] Lunetta, R., Congalton, R., Fenstermaker, L., Jensen, J., McGwire, K. and
Tinney, L. (1991) Remote sensing and geographic information system data in-
tegration: Error sources and research issues. Photogrammetric Engineering and
Remote Sensing, 57(6):677–687.

[40] Mart́ınez-Millán, J. (1997) Country report from Spain. In: European Com-
mision (1997): Study on European forestry information and communica-
tion system- Reports on forestry inventory and survey systems, Luxembourg,
pp. 905–954.

[41] Poso, S. and Wait, M.-L. (1995) Sample based forest inventory and monitoring
system using remote sensing. In: Remote Sensing and Computer technology for
natural resource assessment (IUFRO XX World Congress), Saramäki-Koch-
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