
International Institute for Applied Systems Analysis • A-2361 Laxenburg • Austria
Tel: +43 2236 807 • Fax: +43 2236 71313 • E-mail: info@iiasa.ac.at • Web: www.iiasa.ac.at

Interim Reports on work of the International Institute for Applied Systems Analysis receive only
limited review. Views or opinions expressed herein do not necessarily represent those of the
Institute, its National Member Organizations, or other organizations supporting the work.

Approved by

INTERIM REPORT

IIASA

IR-98-042 /June

Practical Aspects of Value
Efficiency Analysis

Pekka Korhonen(korhonen@iiasa.ac.at)
Aapo Siljamäki(aapo.siljamaki@numplan.fi)
Margareta Soismaa(soismaa@iiasa.ac.at)

Gordon MacDonald (macdon@iiasa.ac.at)
Director, IIASA



Contents

1. Introduction 1

2. Value Efficiency Analysis 2

2.1 Basic DEA-models 2

2.2 A Value Efficiency Model 4

3. Determining the Most Preferred Unit in Practice 7

3.1 Pareto Race 9

3.2 Practical Approaches to Locate one Most Preferred Unit ) 10

3.3 Practical Approaches to Locate Several Most Preferred Units 11

4. Concluding Remarks 15



Abstract

In this paper, we consider practical aspects for measuring Value Efficiency in Data
Envelopment Analysis. Value efficiency is an efficiency concept that takes into account
the decision maker’s preferences. It was developed by Halme, Joro, Korhonen, Salo,
and Wallenius [1998]. The decision maker is assumed to compare alternatives using an
implicitly known value function which reaches its maximum at the most preferred point
on the efficient frontier. The unknown value function is assumed to be pseudoconcave
and strictly increasing for outputs and strictly decreasing for inputs. The purpose of
value efficiency analysis is to estimate a need to increase outputs and/or decrease inputs
for reaching the indifference contour of the value function at the optimum. Because the
value function is unknown, the indifference contours cannot be defined precisely. Value
efficiency analysis never results in a more pessimistic evaluation than in the case of a
known value function. To carry out value efficiency analysis, we have to locate the most
preferred solution of the decision maker. In practice, this phase cannot be too
complicated. We propose a few alternative ways to locate it and discuss the use of those
ways in a practical application.

Keywords: Efficiency Analysis, Data Envelopment Analysis, Multiple Criteria
Decision Making, Value Function, Practical Application
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Practical Aspects of Value
Efficiency Analysis

Pekka Korhonen, Aapo Siljamäki, Margareta Soismaa

 1. Introduction
Data Envelopment Analysis (DEA) was originally proposed by Charnes, Cooper and
Rhodes [1978 and 1979] as a method for evaluating the Relative (Technical) Efficiency
of Decision Making Units (DMUs) essentially performing the same task. Each of the
units uses multiple inputs to produce multiple outputs. The purpose of DEA is to
empirically estimate the so-called Efficient Frontier based on the set of available DMUs
and to project all DMUs onto this frontier.  A DMU already lying on this frontier is
referred to as an efficient unit, and a DMU for which there exists another (different)
point on the efficient frontier which stands for an existing or virtual unit producing the
same amount or more of outputs by consuming the same amount or less of inputs is
inefficient.  DEA provides the user with information about the efficient and inefficient
units, as well as the efficiency scores and reference sets for inefficient units. The results
of the DEA analysis, especially the efficiency scores, are used in practical applications
as performance indicators of DMUs.

The basic DEA is value-free in the sense that efficiency evaluation is based on the data
available without taking into account the decision maker’s (DM) preferences. But it is
possible to incorporate into the analysis the DM’s judgments or a priori knowledge (see
e.g. Dyson and Thanassoulis [1988], Roll, Cook, and Golany [1991], Thompson et al.
[1986], Wong and Beasley [1990], Charnes et al. [1989]). To incorporate the DM’s
preferences into efficiency analysis, Halme et al. [1998] developed a method called
Value Efficiency Analysis (VEA).  Value efficiency analysis is based on the assumption
that the DM compares alternatives using an implicitly known value function. The
unknown value function is assumed to be pseudoconcave and strictly increasing for
outputs and strictly decreasing for inputs. It reaches its maximum at a point on the
efficient frontier. The point is called the Most Preferred Solution (MPS). The purpose of
value efficiency analysis is to estimate a need to increase outputs and/or decrease inputs
for reaching the indifference contour of the value function at the optimum. Because the
value function is unknown, the indifference contour cannot be defined precisely.
However, we can define the region consisting of the points surely less or equally
preferred than the most preferred solution. This region is used in value efficiency
analysis.  The analysis never results in a more pessimistic evaluation than in the case of
a known value function.
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To carry out value efficiency analysis, we have to explicitly locate the DM’s MPS, i.e.
the unit preferred to all other existing or virtual units available. Assuming that the DM
would like to produce outputs as much as possible and use inputs as little as possible,
the most preferred solution clearly lies on the efficient frontier. There are many ways to
locate the MPS.  We may, for instance, use an interactive Multiple Objective Linear
Programming (MOLP) search procedure for this purpose.

Using the knowledge of the MPS and the above mentioned assumptions about the value
function, the indifference contour of DM’s (unknown) value function at the MPS can be
approximated using a so-called tangent cone. This cone characterizes the region
consisting of the points surely less or equally preferred to the most preferred point. The
efficiency of each DMU is then determined with respect to this tangent cone. As a result
we obtain scores that we call Value Efficiency Scores, because the efficiency of each
DMU is determined by means of an approximation of the indifference surface of an
implicitly known value function at the MPS.

In this paper, our purpose is to consider the practical aspects of value efficiency
analysis. We discuss various techniques to locate the MPS. In practice, a DM may even
experience the use of an interactive multiple objective linear programming procedure
too laborious for this purpose. Simpler methods are more preferable. He/she may be
more comfortable with characterizing the MPS in terms of existing units. Furthermore,
we will discuss different variations to carry out value efficiency analysis, with emphasis
on the practical point of view.

The rest of this paper is organized as follows. In Section 2 we review the main
principles of value efficiency analysis. In Section 3 we consider the use of value
efficiency analysis in practice. Concluding remarks are presented in Section 4.

2. Value Efficiency Analysis

2.1 Basic DEA-models
Assume we have n decision making units (DMU) each consuming m inputs and

producing p outputs. Let X ∈ ℜ
m×n
+ and Y ∈ ℜ

p×n
+  be the matrices, consisting of

nonnegative elements, containing the observed input and output measures for the
DMUs. We further assume that there are no duplicated units in the data set. We denote
by xj (the jth column of X) the vector of inputs consumed by DMUj, and by xij the
quantity of input i consumed by DMUj. A similar notation is used for outputs. When it

is not necessary to emphasize the different roles of inputs and outputs, we denote u = 



 y

-x

and U =  



 Y

-X  . Furthermore, we denote 1 = [1, ..., 1]T and refer by ei to the ith unit vector

in ℜn.

We consider the set T = { u  u = Uλ, λ ∈ Λ}, where Λ =  { λ  λ ∈ ℜn
+ and Aλ ≤ b},

ei ∈ Λ, i =1,…, n, and A ∈ ℜk× n
  and  vector b ∈ ℜk

 . Matrix A ∈ ℜk× n
  and  vector b ∈

ℜk
   are used to specify the feasible values of  λ-variables. All efficient DMUs lie on the
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efficient frontier, which is defined as a subset of points of set T satisfying the efficiency
condition defined below:

Definition 1.  A solution (Yλ*, Xλ*) = (y*, x*), λ* ∈ Λ,  is efficient iff there does not
exist another (y, x) ∈ T such that y ≥ y*, x ≤ x*, and (y,  x) ≠ (y*, x*).

Definition 2.  A point (y*, x*) ∈ T is weakly efficient iff there does not exist another (y,
x) ∈ T such that y > y* and x < x*.

The original DEA-models as introduced by Charnes et al. [1978] are constant return to
scale models, and later on they are called CCR-models. They are fractional linear
programs which can easily be formulated and solved as linear programs. Later Banker,
Charnes and Cooper [1984] developed the so-called BCC models with variable returns
to scale. The CCR- and BCC-models are the basic model types in DEA. To unify the
presentation we formulate a general model (for short, GEN) which includes CCR- and
BCC-models as special cases. Note that following Charnes and Cooper, the original
primal formulation is currently called the dual and vice versa.

General Formulation for DEA-models

(Primal)

General Formulation for DEA-models

(Dual)

max Z = σ + ε(1Ts+ + 1Ts-)

s.t.                                              (2.1a)

           Yλ  - σwy - s+ = gy

           Xλ + σwx + s- = gx

                λ ∈ Λ

          s- , s+ ≥ 0

                ε > 0 ("Non-Archimedean") 1)

min      W = νTgx - µTgy

   + ξTb

s.t.                                               (2.1b)

            -µTY    + νTX  + ξTA ≥  0 T

              µT wy + νTwx            = 1

                                       µ, ν ≥ ε1

                                          ξ  ≥ 0

                                           ε >  0

First, we show how all basic DEA-models can be introduced from models (2.1a,b). We
next consider the primal models. We refer to the unit under consideration by superscript
‘0’. Thus the different models for measuring the efficiency of unit ‘0’ are obtained from
model (2.1a) as shown in Table 1 (Korhonen [1997]).

                                                
1) For details, see Arnold, Bardhan, Cooper, and Gallegos [1997].
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Table 1: Modifications of Model (2.1a) for Different (Primal) DEA-Models.

# Model Type wx gx wy gy Λ
1  Output-Oriented CCR-model

 (Charnes et al. [1978])
 0  x0  y0

 0
 ℜ

n
+

2  Input-Oriented CCR-model
 (Charnes et al. [1978]).2)

 x0
 0  0  y0

 ℜ
n
+

3  Combined CCR-model
 (Joro et al. [1998])

 x0  x0  y0  y0

 ℜ
n
+

4  Output-Oriented BCC-model
 (Banker et al. [1984])

 0  x0  y0
 0

 {λ λ ∈ ℜ
n
+ and 1Tλ = 1}

5  Input-Oriented BCC-model
 (Banker et al. [1984]) 2)

 x0
 0  0  y0

 {λ λ ∈ ℜ
n
+ and 1Tλ = 1}

6  Combined BCC-model
 (Joro et al. [1998])

 x0  x0  y0  y0

 {λ λ ∈ ℜ
n
+ and 1Tλ = 1}

7 General Combined model - x0 - y0 -

Each model 1-7 produces an efficient solution corresponding to the given g= 



gy

gx .  For

simplicity, we assume that g ∈ T. Which efficient solution is obtained depends on the

model type (= constraint set), the weighting vector w = 



wy

 wx  > 0, the value of ε, and the

possible weights used for the slack variables in the objective functions.
Refering to the value of the objective function, we can define that unit DMU0 with u0 =





 y0

-x0   is efficient iff

Z* = W* =  


 1,  for models 1 and 4

 0,  for models 3,  6 and 7

-1,  for models 2 and 5
 ;

otherwise it is inefficient (Charnes et al., 1994). Then all slack variables s-, s+ equal zero.
All efficient DMUs lie on the efficient frontier, which is defined as a subset of points of
set T satisfying the efficiency condition above. Note that the efficient frontier depends
on the model type used in the analysis.

2.2 A Value Efficiency Model
The idea of value efficiency analysis is to incorporate the DM’s preference information
regarding a desirable combination of inputs and outputs into the analysis. This is in
contrast with traditional DEA, which assumes that no single output or input is more
important than another one. As explained in Halme et al. (1998), the preference
information is incorporated via the MPS, i.e. a (virtual or existing) DMU on the
efficient frontier having the most desirable values of inputs and outputs.

                                                
 2) The input oriented models are usually in DEA solved as a minimization  problem by writing wx =- x0

and modifying the objective function accordingly.
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The purpose of value efficiency analysis is to evaluate efficiency of each unit in relation
to the indifference contour of a value function passing through the most preferred
solution. The evaluation could be done easily, if we explicitly knew the DM’s value
function. In practice, this assumption is not generally realistic. Because the value
function is unknown, we cannot characterize the indifference curve precisely. Our aim
is to find a region containing all vectors (y, x) ∈ ℜp+m surely less or equally preferred
than the most preferred unit. To do this, it is necessary to make some assumptions.
Halme et al. [1998] developed the requisite theory by assuming that the DM’s value

function v(u), u = 



 y

-x   ∈ ℜp+m is pseudoconcave, and strictly increasing in u (i.e.

strictly increasing in y and strictly decreasing in x) and with a (local) maximal value

v(u*), u* = 



 y*

-x*  ∈ T, at the most preferred solution u*. Because the value function is

pseudoconcave, then the region containing all vectors u ∈ ℜp+m surely less or equally
preferred than the most preferred unit can be characterized by using all possible tangent
hyperplanes as explained in Halme et al. [1998]. Those hyperplanes define a new
'Efficiency Frontier' and in relation to this frontier, efficiency is then defined using a
standard DEA-technique. Mathematically this reduces to a straightforward application
of linear programming. The resulting scores are called value efficiency scores. Because
of using an approximation described above for the indifference contour of the value
function, the resulting value efficiency scores are always optimistic approximations of
the true scores.
The basic idea of value efficiency analysis is illustrated in Figure1. We have five units
(A, B, C, D, E), which produce two outputs and use the same amount of one input. In
Figure 1, the problem has been described in the output space. Clearly all units but unit B

are efficient. The efficiency measure for unit B in standard DEA is the ratio: 
OB
OB1. In

value efficiency analysis, we would like to evaluate the ratio: 
OB
OB4, but because the

value function is unknown, we are not able to do it. If we could approximate the

indifference contour by a tangent, then we could use the ratio: 
OB
OB3. However, we cannot

even make an assumption that the tangent is known. That's why we have to consider all

possible tangents of the contour. This idea leads to the use of the ratio: 
OB
OB2 as an

approximation to the (true) value efficiency score. Because this approximation is the
best we can get, we will call this ratio simply value efficiency score.
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Figure 1: Illustration of Value Efficiency Analysis.

Value efficiency analysis can be carried out as easily as standard DEA using linear

programming. Point (unit) g = 



 gy

gx  ∈ T is value inefficient with respect to any strictly

increasing pseudoconcave value function v(u), u = 



 y

-x  with a maximum at point u*, if

the optimum value Z* of the following problem is strictly positive:

max Z = σ + ε(1Ts+ + 1Ts-)

s.t. (2.2)

Yλ  - σwy - s+ =  gy,

           Xλ +σwx + s-

  = gx,

                     Aλ + µ = b,

              s- , s+ ≥ 0,

                ε > 0, (“Non-Archimedean”)

                    λj ≥ 0, if λj* = 0,  j = 1,2, …, n

        µj ≥ 0, if µj* = 0,  j = 1,2, …, k

where λ* and µ* correspond to the MPS:

y*  = Yλ*

x*  = Xλ*.

A

B

C

D

E

B1

B2 B3

B4

O Output 1

Output 2

Most Preferred
Point

Efficient Frontier
Indifference Contour
of Value Function at
Most Preferred Point
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Note that model (2.2) corresponds to model (2.1a) with one exception. Nonnegativity
constraints referring to the basic λ- and µ-variables with positive values corresponding
to defining the MPS are relaxed. It is important that the MPS really lies on the efficient
frontier, otherwise the solution is unbounded (for a more detailed discussion, see Halme
et al., 1998). The model used to locate the MPS and the model used for value efficiency
analysis must have the same constraint set Λ; otherwise efficiency of the MPS cannot be
guaranteed.

3. Determining the Most Preferred Unit in Practice
To make considerations more illustrative, throughout this section we will consider

BCC-models, i.e. Λ = {λ λ ∈ ℜ
n
+ and 1Tλ = 1}, and calculations are made with output-

oriented BCC-models.

The first task in value efficiency analysis is to locate the MPS. It means that we have to
solve the following multiple objective programming problem (MOLP):

Max Yλ

       Min  Xλ
s.t. (3.1)

              λ ∈ Λ.

The solution of the MOLP model (3.1) is a point on the efficient frontier which
coincides with the efficient frontier of the corresponding BCC model (see, for example
Joro et al. [1998]). This can be found e.g. by using some available interactive multiple
objective programming method like Pareto Race (Korhonen and Wallenius [1988]).

In practice, a DM is not necessarily willing to make a free search on the efficient
frontier to locate the MPS. He/she may be more comfortable with some other (simpler)
method. For instance, the DM may

• prefer to point out a real unit instead of trying to find an abstract unit on the efficient
frontier, or

• like to name a set of real units as the "MPS", or

• not be willing to point one "MPS" to all units, but to point different "MPSs"
corresponding e.g. to different levels of input values.

In this section, we will consider in more detail various ways to determine the MPS. We
first consider the use of Pareto Race to locate a MPS, and then deal with other
approaches which may be more preferable in practice, before the DMs learn to take  full
benefit of interactive multiple objective programming methods.

Throughout this section, we will consider a data set consisting of 25 firms situated in
Finland belonging to the same group. The original problem is simplified by taking into
consideration only two output variables (Sales, Net Profit) and two input variables (Man
Hour, Sales Space). "Man Hour" refers to labor force available within a certain period
and "Sales Space" is the total sales area of the firm.
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Table 2: The Values of Output and Input Variables of 25 Firms.

Outputs Inputs
Sales NetProfit Man Hour SalesSpace

FIRM1 115.266 1.708 79.056 4.986
FIRM2 75.191 1.811 60.096 3.3
FIRM3 225.454 10.393 126.699 8.117
FIRM4 185.581 10.417 153.857 6.695
FIRM5 84.52 2.357 65.684 4.735
FIRM6 103.328 4.347 76.83 4.083
FIRM7 78.755 0.162 50.157 2.531
FIRM8 59.327 1.299 44.771 2.47
FIRM9 65.718 1.485 48.058 2.324
FIRM10 163.178 6.261 89.702 4.911
FIRM11 70.679 2.802 56.923 2.24
FIRM12 142.648 2.745 112.637 5.42
FIRM13 127.767 2.701 106.869 6.281
FIRM14 62.383 1.418 54.932 3.135
FIRM15 55.225 1.375 48.809 4.43
FIRM16 95.925 0.742 59.188 3.979
FIRM17 121.604 3.059 74.514 5.318
FIRM18 107.019 2.983 94.596 3.691
FIRM19 65.402 0.618 47.042 3.001
FIRM20 70.982 0.005 54.645 3.865
FIRM21 81.175 5.121 90.116 3.31
FIRM22 128.303 3.887 95.241 4.245
FIRM23 134.989 4.728 80.079 3.786
FIRM24 98.931 1.861 68.703 2.985
FIRM25 66.743 7.409 62.282 3.1

Applying model (3.1) to the data in Table 2 results in the MOLP model of Table 3. This
is used to search the efficient frontier.

Table 3: The Structure of the Multiple Objective Linear Programming Model for
Searching the Most Preferred Solution of the BCC-model.

FIRM1 FIRM2 … FIRM23 FIRM24 FIRM25
Sales 115.266 75.191 134.989 98.931 66.743 → max
NetProfit 1.708 1.811 … 4.728 1.861 7.409→ max
ManHour 79.056 60.096 80.079 68.703 62.282→ min
SalesSpace 4.986 3.3 3.786 2.985 3.1→ min
λ-constr. 1 1 … 1 1 1 = 1
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3.1 Pareto Race
To perform the search on the efficient frontier, reflecting on our own bias we
recommend the use of the VIG software (Korhonen [1987]). VIG implements Pareto
Race (see, Figure 2), a dynamic and visual free search type of interactive procedure for
multiple objective linear programming. It enables a DM to freely search any part of the
efficient frontier by controlling the speed and direction of motion. The objective
function values are represented in numeric form and as bar graphs on the computer
screen.

The theoretical foundations of Pareto Race are based on the reference direction
approach developed by Korhonen and Laakso [1986]. In the reference direction
approach, any direction r specified by the DM is projected onto the efficient frontier
using the following model:

max σ + ε(1Ts+ + 1Ts-)

s.t.                                                 (3.2)

           Yλ  - σwy - s+ = gy + try

           Xλ + σwx + s-

  = gx + trx

     λ ∈ Λ

s- , s+ ≥ 0

       ε > 0

when t: 0 → ∞.

The solution of model (3.2) is an efficient path starting from the current solution and
traversing through the efficient frontier until it ends up at some corner point of the
efficient frontier.

 Pareto Race is the implementation of the dynamic version of the reference direction
approach as proposed by Korhonen and Wallenius [1988]. In Pareto Race, a reference
direction is determined by the system on the basis of preference information received
from the DM. By pressing number keys corresponding to the ordinal numbers of the
objectives, the DM expresses which objectives he/she would like to improve and how
strongly. In this way he/she implicitly specifies a reference direction. Figure 2 provides
the Pareto Race interface for the search, embedded in the VIG software (Korhonen and
Wallenius [1988]).
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Pareto Race

Goal   1 (max ): Sales  ==>                                             

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■  180.989                    

 Goal   2 (max ): Profit  ==>                                              
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■   7.4427
 Goal   3 (min ): Working H     ==>                            

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■  100.283                                  

Goal   4 (min ): Size     ==>                            

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■   5.8279

Bar:Accelerator  F1:Gears (B)  F3:Fix      num:Turn
  F5:Brakes         F2:Gears (F)  F4:Relax   F10:Exit                            

Figure 2: Searching for the Most Preferred Values for Inputs and Outputs.

To implement these features, Pareto Race uses certain control mechanisms, which are
controlled by the specific keys (shown at the bottom of the screen in Figure 2).

Figure 2 displays one solution to the model in Table 3.

3.2 Practical Approaches to Locate one Most Preferred Unit 3)

In practice, the DM may be more willing to name one existing unit as the most preferred
unit (MPU) than to make a search on the efficient frontier. Existing units are often more
concrete to him/her than a "virtual unit" on the efficient frontier. Moreover, he/she can
also consider it as a target to other units. The DM may be willing to pick this unit
directly from the original data set. However, this approach has one drawback. Without
any help the DM may be unable to pick out an efficient unit. A simple solution to this
problem is to first project the unit (referred by superscript ’a’) onto the efficient frontier
by using the DEA-model under consideration. Because in these considerations, we use
the output-oriented BCC-model, the problem formulation should be as follows:

max Z = σ + ε(1Ts+ + 1Ts-)

s.t.                                              (3.3)

           Yλ  - σya - s+ = ya

           Xλ          +  s- = xa

                              λ ∈ Λ

                         s- , s+ ≥ 0

                                        ε > 0,
                                                
3) When referring to an existing decision making unit on the efficient frontier we use the term unit. As a
general term for a point on the efficient frontier we use the term solution.
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where vector 



 ya

-xa  is the point, the DM chose as the most preferred one.

The solution vector λ* ∈ Λ corresponding to the optimal solution of model (3.3)
determines a proper most preferred solution: y* = Yλ* and x* = Xλ*, and in value
efficiency analysis nonnegativity constraints are set up only for those components of
vector λ for which λj* = 0.

Another simple way to avoid the selection of an inefficient alternative is to first
compute the technical efficiency of the units, and then to make the choice from the set
of efficient units. If the number of efficient units is big, the DM may need some help to
pick his/her MPU from this set. For this purpose, he/she may use some existing discrete
MCDM-method like VIMDA (Korhonen [1988]).

In Table 4, we compute value efficiency scores assuming that alternatives #3, #8, and
#10 one at a time have been pointed out by the DM as his/her MPUs. Note that value
efficiency scores are never higher than efficiency scores.

3.3 Practical Approaches to Locate Several Most Preferred
Units
There are situations when the DM prefers to name a set of efficient units (yi, xi), i ∈ M,
as his/her "MPU". We call this set the most preferred set. Set M consists of indices of
units belonging to the named set. This seems to happen for two reasons:

1) he/she is simply unable to point out only one MPU. A group "represents" better
than one point the MPU he/she has in mind, or

2) he/she thinks that "good performance" means different things.

Let us consider the first reason. The MPS is clearly a combination of named units. How
to find out what the DM has really in his/her mind, requires the use of an analytic tool.
For instance, to find the "best" linear combination of the units to represent the MPS, we
may use e.g. the Analytic Hierarchy Process (AHP) (developed by Saaty [1980]).
However, in practice, the DM may feel that this approach is too time consuming. A
simple way is to use the unweighted mean for this purpose:

(ym, xm) = 
1

M ∑
i∈M

 
  (yi, xi),

where Mis referring to the number of elements in M.

All units (yi, xi), i ∈ M, may be efficient and on the same facet, efficient but from
different facets, or some of them may be inefficient. Only in the case when the efficient
units are picked from the same facet, is point (ym, xm) efficient. In other cases, it is
generally inefficient. When just picking out the units from the original data sets or on
the basis of efficiency scores, we can never be sure if the units are on the same facet.
That’s why in the case of several units, we always have to test the efficiency of the unit
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(ym, xm) by projecting it onto the efficient frontier by using model (3.3). The solution
vector λ* determines, which nonnegativity constraints are relaxed.

Table 4 illustrates two cases. First, we assume that the DM names units #3 and #10 as
his/her most preferred set. Because these units lie on the same facet, so does the mean of
those units, and in value efficiency analysis nonnegativity constraints corresponding to
those units are relaxed. Note that in this case value efficiency score is never higher than
the smallest value efficiency score computed for units #3 and # 10 separately. The
situation will change if the units are not on the same facet. That situation is
demonstrated by assuming that the DM has chosen units #3 and #8 to belong to the
most preferred set. However, these units are not on the same facet and the mean (ym, xm)
is therefore not efficient. When it is projected with model (3.3) onto the efficient facet,
we will get the facet characterized by units #8, #10, and #25. This means that the strictly
positive components of λ*-vectors correspond to those units. In value efficiency
analysis, the nonnegativity constraints of the components of the λ*-vector
corresponding to those units are relaxed, not the components corresponding to units #3
and #8. In this case, value efficiency score may be higher than the smallest one
corresponding to units #3 and #8.

In the case when the DM is thinking that "good performance" means different things,
and more than one MPU is needed to illustrate the pluralistic nature of good
performance, we may analyze the problem as follows. We perform value efficiency
analysis for each different MPU. Each observation is associated with each MPU a priori
or a posteriori. A priori association means that we select in advance the MPU used as an
example to a unit. The selection can be made according to some specific values of input
and output variables, or some uncontrollable characteristics of units. A posteriori
association means that the classification of units is made afterwards. Each unit is
associated to the MPU having the highest value efficiency score.
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Table 4: Efficiency and Value Efficiency Scores.

Efficiency Value Efficiency Score
Firm
# 3

Firm
# 8

Firm
# 10

Firms
# 3 & 10

Firms
# 3 & 8 ⇒
# 8 & 10 & 25

FIRM1 0.821 0.794 0.768 0.821 0.794 0.720
FIRM2 0.772 0.663 0.772 0.772 0.663 0.758
FIRM3 1.000 1.000 0.931 1.000 1.000 0.931
FIRM4 1.000 1.000 0.661 1.000 1.000 0.661
FIRM5 0.769 0.689 0.769 0.769 0.689 0.757
FIRM6 0.806 0.780 0.805 0.806 0.780 0.805
FIRM7 1.000 0.815 1.000 1.000 0.815 0.953
FIRM8 1.000 0.731 1.000 1.000 0.731 1.000
FIRM9 1.000 0.743 1.000 1.000 0.743 1.000
FIRM10 1.000 1.000 1.000 1.000 1.000 1.000
FIRM11 1.000 0.749 0.913 0.966 0.749 0.913
FIRM12 0.824 0.824 0.613 0.824 0.824 0.592
FIRM13 0.673 0.673 0.588 0.673 0.673 0.558
FIRM14 0.736 0.596 0.736 0.736 0.596 0.722
FIRM15 0.803 0.625 0.803 0.803 0.625 0.802
FIRM16 0.978 0.858 0.948 0.978 0.858 0.881
FIRM17 0.930 0.884 0.914 0.930 0.884 0.887
FIRM18 0.817 0.767 0.613 0.807 0.767 0.605
FIRM19 0.969 0.716 0.969 0.959 0.716 0.915
FIRM20 0.804 0.681 0.774 0.804 0.681 0.703
FIRM21 0.858 0.793 0.600 0.846 0.793 0.600
FIRM22 0.876 0.854 0.724 0.876 0.854 0.716
FIRM23 1.000 0.960 0.973 1.000 0.960 0.973
FIRM24 0.973 0.787 0.838 0.907 0.787 0.819
FIRM25 1.000 1.000 1.000 1.000 1.000 1.000

To illustrate the above considerations, we select two MPUs out of nine possible
(efficient) units. Firm #3 with the highest value of Sales represents the units with high
value on Sales and firm #8 with the lowest value of Sales (among the efficient ones)
those with low value on Sales. The units are then classified accordingly. The results are
presented in Table 5, where the units are ranked according to Sales.
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Table 5: Value Efficiency Scores with Different MPUs and Classification of Firms
Based on High and Low Values of Sales.

Value
Efficiency
Score
Firm # 3

Value
Efficiency
Score
Firm # 8

Sales Net Profit Man Hour Sales Space

FIRM3 1.000 0.931 225.454 10.393 126.699 4.986
FIRM4 1.000 0.661 185.581 10.417 153.857 6.695
FIRM10 1.000 1.000 163.178 6.261 89.702 4.911
FIRM12 0.824 0.613 142.648 2.745 112.637 5.42
FIRM23 0.960 0.973 134.989 4.728 80.079 3.786
FIRM22 0.854 0.724 128.303 3.887 95.241 4.245
FIRM13 0.673 0.588 127.767 2.701 106.869 6.281
FIRM17 0.884 0.914 121.604 3.059 74.514 5.318
FIRM1 0.794 0.768 115.266 1.708 79.056 4.986
FIRM18 0.767 0.613 107.019 2.983 94.596 3.691
FIRM6 0.780 0.805 103.328 4.347 76.83 4.083
FIRM24 0.787 0.838 98.931 1.861 68.703 2.985
FIRM16 0.858 0.948 95.925 0.742 59.188 3.979
FIRM5 0.689 0.769 84.52 2.357 65.684 4.735
FIRM21 0.793 0.600 81.175 5.121 90.116 3.31
FIRM7 0.815 1.000 78.755 0.162 50.157 2.531
FIRM2 0.663 0.772 75.191 1.811 60.096 3.3
FIRM20 0.681 0.774 70.982 0.005 54.645 3.865
FIRM11 0.749 0.913 70.679 2.802 56.923 2.24
FIRM25 1.000 1.000 66.743 7.409 62.282 3.1
FIRM9 0.743 1.000 65.718 1.485 48.058 2.324
FIRM19 0.716 0.969 65.402 0.618 47.042 3.001
FIRM14 0.596 0.736 62.383 1.418 54.932 3.135
FIRM8 0.731 1.000 59.327 1.299 44.771 2.47
FIRM15 0.625 0.803 55.225 1.375 48.809 4.43

It is interesting to notice from Table 5 that for firms with high sales there are five cases
out of 13 that would have obtained a higher value efficiency score if the MPU had been
firm #8 instead of firm #3. On the other hand, among firms with low values of sales
there is only one case where firm #3 would have been a "better" MPU than firm #8. A
plausible explanation for this is the mix of output and input values which resembles
more that of the other MPU.

In Table 6, we classify the units afterwards. From all nine efficient units we select as
MPUs the ones with the best values for the output and input variables. Additionally we
select one efficient unit representing "average" units. The bases for the selection can be
seen on the last row of Table 6. For each firm we then determine the highest score of
value efficiency, which is highlighted in Table 6. The DM can then use the results and
select one or more MPUs that correspond to her/his definition or opinion of  "good
performance".
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Table 6: Value Efficiency Scores with Different MPUs.

Value Efficiency Score MaxEfficiency
Firm
# 3

Firm
# 4

Firm
# 8

Firm
# 11

Firm
# 23

FIRM1 0.821 0.794 0.613 0.768 0.668 0.766 0.794
FIRM2 0.772 0.663 0.562 0.772 0.729 0.757 0.772
FIRM3 1.000 1.000 1.000 0.931 0.848 0.945 1.000
FIRM4 1.000 1.000 1.000 0.661 0.865 1.000 1.000
FIRM5 0.769 0.689 0.501 0.769 0.619 0.671 0.769
FIRM6 0.806 0.780 0.767 0.805 0.793 0.806 0.806
FIRM7 1.000 0.815 0.578 1.000 1.000 1.000 1.000
FIRM8 1.000 0.731 0.545 1.000 0.933 0.958 1.000
FIRM9 1.000 0.743 0.637 1.000 1.000 1.000 1.000
FIRM10 1.000 1.000 1.000 1.000 0.980 1.000 1.000
FIRM11 1.000 0.749 0.833 0.913 1.000 1.000 1.000
FIRM12 0.824 0.824 0.735 0.613 0.703 0.811 0.824
FIRM13 0.673 0.673 0.600 0.588 0.544 0.647 0.673
FIRM14 0.736 0.596 0.480 0.736 0.674 0.705 0.736
FIRM15 0.803 0.625 0.337 0.803 0.518 0.589 0.803
FIRM16 0.978 0.858 0.565 0.948 0.764 0.867 0.948
FIRM17 0.930 0.884 0.657 0.914 0.741 0.815 0.914
FIRM18 0.817 0.767 0.758 0.613 0.817 0.817 0.817
FIRM19 0.969 0.716 0.460 0.969 0.776 0.851 0.969
FIRM20 0.804 0.681 0.405 0.774 0.592 0.688 0.774
FIRM21 0.858 0.793 0.850 0.600 0.858 0.858 0.858
FIRM22 0.876 0.854 0.828 0.724 0.833 0.876 0.876
FIRM23 1.000 0.960 1.000 0.973 1.000 1.000 1.000
FIRM24 0.973 0.787 0.760 0.838 0.973 0.973 0.973
FIRM25 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Selection
Criteria

Sales Net
Profit

Man
Hour

Sales
Space

"Average"

We see from Table 6 that firm #25 is value efficient whichever firm from the proposed
five is selected as the MPU. It is important to notice that the degree of association
between any unit and a MPU depends on the compatibility of the mixes of output and
input values, not their absolute values.

4. Concluding Remarks
In this paper, we have considered the use of value efficiency analysis in practice. A key
issue for value efficiency analysis is to locate the most preferred solution or the most
preferred unit on the efficient frontier. In practice, the decision maker often seems to be
more willing just to pick out his/her most preferred solution or most preferred unit
without trying to find it using an interactive multiple objective linear programming
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technique. In this paper, we have proposed different ways to deal with this kind of an
approach.

We have illustrated the use of value efficiency analysis with the data set that was
extracted from a real application. In the numerical considerations we have consistently
employed the output-oriented BCC model. It is of course possible to perform a general
value efficiency analysis and use any of data envelopment analysis models.

Value efficiency analysis gives a response to many practical problems. Here we have
considered a few and showed how to use value efficiency analysis in those problems.
Value efficiency analysis provides a possibility to understand more deeply the nature of
performance at the units under considerations. In addition, value efficiency analysis is
as easy to carry out as DEA. It does not need any special models. The only difference to
a DEA model is the relaxation of the nonnegativity constraints of the strictly positive
variables determining the most preferred solution. People working in practice have
found efficiency analysis in general and value efficient analysis in particular useful.
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