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Abstract 

The mean value of the catch and its variability 
due to environmental fluctuations are analyzed for a 
very general stock-recruitment model. Particular 
attention is devoted to the comparison of two standard 
fishing strategies (constant effort and constant 
escapement) in terms of mean catch, variance in 
catches and maximum deviation of catch. It is demon- 
strated analytically that constant escapement policies 
should always give higher mean catch, but should also 
give higher catch variance and more extreme catches 
only under certain conditions of environmental 
variability. 

1. Introduction 

There is a need for fisheries management models and 

strategies that explicitly take environmental variability and 

unpredictable recruitment into account. Ricker [ 4 1  was 

perhaps the first to make a serious attempt to deal with this 

problem for single-aged fish stocks such as salmon. He com- 

pared two different fishing policies or "strategies" (cf. Allen, 

[ 1 ] ) I  constant effort versus constant escapement. His main 

conclusions were that: 

I The average catch obtained by fishing at constant 
escapement is greater than the one obtained by fishing 
at constant effort, and the difference between the two 
increases with the variability of the environment; 

I1 The variability of the catch obtained in the case of 
constant escapement is greater than the one obtained in 
the case of constant effort. 
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Recently, the problem has been more deeply investigated 

by Ricker and other authors (Larkin and Ricker, [3]; Tautz, 

Larkin and Ricker, [ 5 I; Allen, [ 1 1  1 ,  whose work confirms 

properties I and 11. Nevertheless, these properties have 

been "proved" only by means of extensive simulation, thus 

making explicit use of particular assumptions concerning noise 

(and the stock-recruitment curve). The aim of this paper is 

to prove the validity of property I under very general assump- 

tions and then to point out that property I1 holds only under 

certain conditions, depending on whether variability is 

defined in terms of variance or of most extreme catches. 

2. Description of the Model 

Suppose a fishery is described by a discrete-time 

stock-recruitment relationship of the kind 

where St is the number of spawners at time t, Rt+l is the 

consequent recruitment and a is the growth factor which is t 
assumed to be a stochastic process with mean value and 

2 
variance o (a) . f (St) is the underlying density dependent 

recruitment function, for example St/(l + b St) in the 
well-known Beverton-Holt curve. 

Eq. (1) with St = Rt describes the natural evolution of 

the fishery, while the controlled evolution is described by 

Eq. (1) with 

where the catch Ct is a function (I of the recruitment 

Function (I, called fishing policy or fishing strategy (Allen, 

1 1  1 ) ,  can be specified by a curve lying in the cone 

0 - < C < R of the catch-recruitment graph. The constant t -  t 



effort and constant escapement policies are shown in Figure 1 

(curves (a) and (b) respectively). The point (R,C) where the 

two curves intersect is assumed to correspond to a unique 

point on the "average" stock-recruitment curve (R = if (S) ) . 
In other words, in a constant environment (a = i) the two t 
policies would give rise to the same equilibrium. Thus the 

following relations among the parameters specifying the 

fishing policies hold: 

The following reasonable assumption on the "normalized" stock- 

recruitment curve f and on the stochastic process at will be 

made : 

Stock-recruitment function 

i) f(0) = 0 

ii) f' (0) = 1 (f' (S) is the derivative of f (S) ) 

iii) f is bounded (f(S) - < F) 

iv) f is concave (bending over to the right). 

Stochastic process at 

V) a is a stationary and independent process t 
vi) at is bounded between two limits A and B (0 - < A - < at < B). - 
All these assumptions except iv) are satisfied by classical 

stock-recruitment curves (the Ricker curve is not concave for 

high spawner levels). Nevertheless, real fisheries are usually 

such that the stock-recruitment curves are concave over the 

normal range of variability of the escapement (Cushing and 

Harris, [ 2 1 ) and this is actually the property needed in the 

development which follows. 

3. Mean Value of the Catch 

Property I of Section 1 is now proved to hold under 

assumptions i) through vi) . 
In the case of a constant effort policy, Eq. (3) can be 



FIGURE 1. FISHING POLICIES: (a )  CONSTANT EFFORT 

( b  1 CONSTANT ESCAPEMENT 



specified as 

and the dynamics of the spawners described by 

As far as the constant-escapement policy is concerned, a 

satisfactory approximation in the mean value of the catch is 

obtained by assuming that S = S for all t. This is actually t 
not the case whenever the size of the recruitment is less than 

the prescribed escapement St a quite exceptional case indeed 

(Ricker, [ 4 I ;  Larkin and Ricker, [ 3 I ;  Tautz, Larkin and 
Ricker, [ 5 I ;  Allen, [ 1 1 ) .  Moreover, it is worthwhile to 

notice that if the lower bound A of the growth factor a is t 
sufficiently high (A 2 S S ) )  then the critical case Rt < S 

never occurs. Thus, the catch at any time t is given by 

and its average value CS is given by 

Now, observe that Eqs. ( 2 )  and (7) imply ck = (K/1 - K) gk 
while ~ q s .  (6) and (10) imply ES = (K/1 - K)S. Hence, in 

order to prove property I it only remains to verify that - 
Sk < S. Thus, notice that Eq. (8) gives 

where zK and ZK are the mean values of S and £(st) obtained 
t 

by fishing at constant effort. Eqs. (6) and (11) then give 



which implies 

because the function f is concave. Finally, inequality (12) 

and functions i) and iv) of f imply S < S (and hence 
K 

property I) . 

It is important to note that this proof of property (1) 
- 

gives some insight into the dependence of T - CK upon the 
S 

properties of the variability of the growth factor and the form 

of the stock-recruitment curve. In fact, for a given stock- 

recruitment curve the difference between S and s,, (and hence 
2 K 

between Es and ) will increase with o (a) and, conversely, K - 
for a given stochastic process a the difference S - SK will t 
increase with the curvature of the stock-recruitment curve. 

I,_ -1 . - .__. --... . -. .-. ,- - . .--. ,,,.. -.~. . -- 

4. Variance of the Catch 

In this section a precise meaning is given to the property 

of variability of the catch (property I1 of Section 1). More 

precisely, it will be shown that for sufficiently high values 

of the variance 02(a) of the growth factor, the variance of 

the catch obtained by fishing at constant effort (oZK(c)) is 

less than the one obtained by fishing at constant escapement 

(oZs (C) 

Since in the constant-effort case 

and a is an independent random variable, we obtain t 

where cK (c2 ) , E (a2) and cK (f ) are the mean values of C; , a: 
and f2(st). But, since f is bounded by F, we obtain 



As for the constant escapement policy it is straightforward 

to show that 

Eqs. (1  4) and (1  5) allow us to show that for sufficiently high 

values of a2 (a), i.e. for 

a2 (a) < E2 c2 - 
~ R 2 - ~ 2  R $1 

the variance of the catch is greater in the constant escape- 

ment case (see Fig. 2). Of course, this statement does not 

a priori imply that for low values of a2(a) the converse 

inequality holds for a;( (a) and a: (a) . 
5. Maximum Variation of the Catch 

This section is devoted to somehow reversing the con- 

clusions of the previous section. It will be shown that if 

one considers the maximum variation of the catch from the 

nominal value C as a variability index, then there are cases 

in which the constant effort policy implies a greater vari- 

ability than the constant escapement policy. 

To be more precise, define the two following indices of 

maximum variability 

AC+ = sup (Ct - C) 
at,t 

ac- =,SUP (C - ct) . 
at It 

C is the catch obtained by using a particular fishing policy t 
with initial condition 

+ + 
AC,, AC, and ACK, AC- are the indices for constant-escapement 

K 
and constant-effort policies, respectively. 
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FIGURE 2. THE VARIANCE OF THE CATCH VS. THE VARIANCE 

OF THE GROWTH FACTOR 



In order to compare AC+ with A C ~  and A C ~  with A C ~ ,  
S 

some relations between these indices and 

are first derived (note definitions of A and B in vi) above). 

For the constant escapement policy this is achieved 

very easily, since Eqs. (4-6) imply 

which, taking Eq. (9) into account, gives 

Similarly, 

+ + 
i.e. ACS and A C ~  are linear functions of 6a and 6a-.  

For the constant effort policy, the analysis is unfor- 

tunately more cumbersome. First, observe that from Eqs. (2,7,33) 

+ and define Ct and C; in the following way: 

+ 1-K + 
Ct+l = KBf (- K Ct) (c: = C) 
- 1 -K - 
Ct+l - KAf(- K c; 1 (C, = C) . 

Thus, it is easy to prove that 



for any t and for any at, provided that the function f is an 

increasing function over the range of variability of the 

spawners, a condition which apparently is usually satisfied 

in real fisheries. In fact, 

+ where B - > a and f is increasing. Thus Ct - Ct - > 0 implies t 
that the same condition is satisfied at time t+l, and similarly, - - + Ct - ct - > 0 implies that Ct+l - Ct+l - > 0. Since Co - Co = 0 

and Co - Co = 0, Eq. ( 1 8 )  follows. 

+ 
Now, call C and C- the equilibrium catch for at = B 

and at = A, respectively; i.e., 

1-K + C+ = KBf (- K c 1 

Then, 

+ + + lim Ct = C and Ct < C+ 
t+m 

- - 
lim C; = c and Ct > C- , 
t+m 

because f is an increasing function. The conclusion of this 

discussion is that 

+ 
which can be solved with respect to 6a and 6a-. Thus the 

+ + derivatives of ACK and AC; with respect to 6a and 6a- can be 

computed as 



while the analogous derivatives for the constant-escapement 

case can be easily obtained from Eqs. (16,17). A comparison 

of the two policies for values of A and B close to is now 
+ 

possible by evaluating these derivatives at 6a = 6a- = 0, 

thus obtaining (by cumbersome algebra) 

These two equations allow comparison of the maximum variations 

of the catch for different values of Gf' (S), the tangent to the 

average stock-recruitment curve. If Gf' (S) < 1 (see point P of 

Fig. 3), then the constant excapment policy gives rise to a 

higher variability of the catch because 



FIGURE 3. AVERAGE STOCK- RECRUITMENT CURVE AND MAXIMUM 
VARIATIONS OF THE CATCH : IN  POINT P THE MAXIMUM 
VARIATION IS OBTAINED BY FISHING AT CONSTANT ESCAPE- 
MENT; IN POINT Q THE MAXIMUM VARIATION IS OBTAIN ED 
BY FISHING AT CONSTANT EFFORT 



But if Ef (s) > 1 (see point Q of Fig. 3) , the higher maximum 
variation of the catch is obtained by means of the constant 

effort policy, a quite surprising result. 

6. Conclusion 

The aim of this paper has been to show general analytical 

conditions under which the numerical conclusions of Ricker 

and others are valid. We agree that the constant escapement 

policies should generally produce higher average catches, and 

that the price for higher averages will generally be higher 

variance of catches. However, the constant-effort and 

constant-excapement policies should produce similar extreme 

catches provided that the policies have been fixed on the 

basis of maximum sustained yield for the deterministic 

average. 
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