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Abstract

We study the evolution of selfing in hermaphrodites to reveal the demographic
conditions that lead to intermediate selfing rates. Using a demographic model based on
Ricker-type density regulation we first assume that independent of population density,
inbred individuals survive less well than outbred individuals and, second, that inbred
and outbred individuals differ in their competitive abilities in density-regulated
populations. The evolution of selfing, driven by inbreeding depression and the cost of
outcrossing, is then analyzed for three fundamentally different demographic scenarios:
stable population densities, deterministically varying population densities (resulting
from cyclical or chaotic population dynamics), and stochastic fluctuations of carrying
capacities (resulting from environmental noise). We show that even under stable
demographic conditions evolutionary outcomes are not confined to either complete
selfing or full outcrossing. Instead, intermediate selfing rates arise under a wide range of
conditions, depending on the nature of competitive interactions between inbred and
outbred individuals. We also explore the evolution of selfing under deterministic and
stochastic density fluctuations to demonstrate that such environmental conditions can
evolutionarily stabilize intermediate selfing rates. This is the first study to consider in
detail the effect of density regulation on the evolution of selfing rates.

Keywords: self-fertilization; adaptive dynamics; inbreeding depression; density- and
frequency-dependent selection
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The Evolution of Self-Fertilization in
Density-Regulated Populations
Pierre-Olivier Cheptou
Ulf Dieckmann

1. Introduction

The evolution of self-fertilization has been a focus of interest in evolutionary biology
and is considered as being driven by both ecological and genetic factors (Uyenoyama et

al. 1993). Although widespread in plants, hermaphroditism also exists in animals (Jarne
and Charlesworth 1993), underlining the role of selfing as a fundamental genetic system
of sexual reproduction. Explanations for the evolution of selfing are based on the
dynamics of selfing genes: Fisher (1941) has been the first to point out that a gene
causing selfing will experience a twofold gain in transmission, compared with a gene
causing outcrossing. However, this strong selective advantage of selfing (resulting in a
cost of outcrossing) is counteracted by the tendency of selfed progeny to have reduced
fitness owing to increased levels of homozygosity (inbreeding depression, Charlesworth
and Charlesworth 1987). The balance between these two antagonistic selection
pressures is key to the evolution of selfing in hermaphrodites. However, most models
incorporating both selection pressures predict that complete selfing or full outcrossing
are the only two evolutionarily stable selfing rates that can result from this balance
(Lloyd 1979; Lande and Schemske 1985; Charlesworth et al.; some exceptions based on
ecological mechanisms like dispersal limitation or pollen discounting are reviewed in
Uyenoyama et al. 1993). Such results conspicuously contrast with empirical
observations that demonstrate a high diversity of intermediate selfing rates, in particular
in plants (Barrett et al. 1996).

One limitation of previous models is their simplified treatment of population
dynamics. Yet, it is obvious that inbreeding depression lowers population growth rates
and must thus be expected to impact on population dynamics (Halley and Manasse
1993; Saccheri et al. 1998). Moreover, empirical evidence indicates that competitive
interactions can modify the magnitude of inbreeding depression, an effect that has so far
remained unexplored in theoretical studies. Already Darwin (1876) observed that the
relative height of selfed plants in many plant species decreases with the presence of
competitors. This pattern of competitive interaction has recently been confirmed in
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many taxa, including house mice (Meagher et al. 2000), Drosophila (Bijlsma et al.

1999) and plants (Schmitt and Ehrhardt 1990; Wolfe 1993; Cheptou et al. 2000).
Moreover, studies on Drosophila have demonstrated that competitive ability is the one
component of fitness that is most severely affected by inbreeding (Lynch and Walsh
1998).

Although much studied elsewhere in theoretical ecology (Tilman 1988), the
consequences of competitive interactions have not been incorporated in models dealing
with inbreeding depression (see however Lloyd 1980). Since population density may
influence the severity of inbreeding depression, it can, in turn, modify the selective
advantage of selfing. This realization has led Uyenoyama et al. (1993) to emphasize the
necessity of accounting for demographic detail and competitive interactions in future
models for the evolution of selfing.

In this paper we construct a general demographic model for hermaphrodites and
employ it to study the evolution of selfing. Based on Ricker-type density regulation
(May and Oster 1976), the fitness of inbred and outbred progeny is derived as a function
of the underlying ecological parameters. Because of the inherent frequency dependence
of selection on reproductive traits in density-regulated populations (Maynard Smith
1982; Morgan et al. 1997), we carry out an evolutionary invasion analysis within the
framework of adaptive dynamics theory (Metz et al. 1992; Metz et al. 1996; Dieckmann
1997). For simplicity, the evolution of selfing rates is modeled phenotypically, a
classical approach in models of evolutionary game theory (Maynard Smith 1982). On
this basis, we derive expressions for the outcome of selfing evolution governed by
inbreeding depression and the cost of outcrossing. The evolution of selfing is first
considered under stable population dynamics before we extend our analysis to non-
equilibrium population dynamics and fluctuating environments. The main conclusions
from this study are that both population dynamics and the nature of competitive
interactions critically affect the evolution of selfing and are likely to give rise to
evolutionarily stable intermediate selfing rates.

2. Model Description

In this section we describe a general demographic model for an annual hermaphroditic

organism. Self-fertilization occurs at a rate R , and each individual produces S ovules.
In a monomorphic population and in the absence of selection, the growth ratio of the

population is therefore given by the sum of RS inbred zygotes and )1( RS − outbred

zygotes.

(a) Inbreeding depression and density regulation

As a result of inbreeding depression, the organism’s growth ratio can be lowered in two
ways. First, we define a density-independent and constant component of inbreeding
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depression, denoted by 0δ , that describes the decreased relative fitness of inbred

individuals (Lloyd 1992). When the population density tN at time t is close to zero, its

dynamics can be described by

tt NRRSN )]1()1([ 01 −+−=+ δ . (1)

This dynamics does not yet incorporate density regulation. Second, based on
Ricker’s model (May and Oster 1976; Warner and Chesson 1985), we therefore

consider the differential probabilities inF and outF for inbred and outbred individuals to

survive density regulation,

)/exp( KNfF tinin −= , (2a)

)/exp( KNfF toutout −= , (2b)

where K is the population’s carrying capacity. Since in each generation before density
regulation the fractions of inbred and outbred individuals are given by the selfing rate

R and by R−1 , respectively, inf and outf are given by

)1()( RcRaRfin −+= , (3a)

)1()( RdRbRfout −+= , (3b)

where the competition coefficients a and b measure the competition effect exerted by

inbred on inbred and by inbred on outbred individuals, respectively. Similarly, c and d

define the effect of outbred on inbred and of outbred on outbred individuals,
respectively. The dynamics of the density-regulated population with selfing rate R is
thus described by the following difference equation,

ttouttint NKNfRKNfRSN )]/exp()1()/exp()1([ 01 −−+−−=+ δ . (4)

Given a population density tN , the inbreeding depression δ can be determined. It is

defined as 1 minus the relative fitness of selfed progeny (Charlesworth and
Charlesworth 1987),

)/exp(

)/exp()1(
1 0

KNf

KNf

tout

tin

−
−−

−=
δδ . (5)

For the sake of simplicity, we choose the unit of population density such that 1=K

for the evolution of selfing (except when fluctuating carrying capacities are considered).

(b) Dynamical properties of the demographic model

The equilibrium density eqN is found by solving equation (4) for teqteq NN ,1, =+ . The

non-trivial equilibrium 0≠eqN can be obtained analytically for 0=R ,
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dSKN eq /)log(= , (6a)

and for 1=R ,

aSKN eq /))1(log( 0δ−= . (6b)

For other selfing rates, equilibrium densities are determined numerically.
The non-trivial equilibrium may be dynamically stable or unstable. A full bifurcation

analysis is not straightforward because of the number of parameters. However, for
parameters a, b, c, d of the same order of magnitude (such as those used in this paper),

the demographic behavior is dominated by the fecundity S . The equilibrium is stable
for low fecundity, whereas, analogously to Ricker’s model (May and Oster 1976),
cyclical and chaotic dynamics appear for higher fecundities. Figure 1 illustrates the
dynamical behavior for two particular sets of parameters.

(c) Mutant growth rate and evolutionary invasion analysis

Our approach utilizes the framework of adaptive dynamics theory, which is based on the
concept of invasion fitness (Metz et al. 1992; Metz et al. 1996; Geritz et al. 1998). The
ability of a mutant phenotype to invade a given resident population is evaluated by
studying the growth ratio of the mutant when it is rare. As is customary in evolutionary
ecology, we assume a separation of ecological and evolutionary timescales (see, e.g.,
Doebeli and Dieckmann 2000) such that mutations are rare enough for mutants to
appear in populations that have come close to their ecological equilibrium.

The fitness of an individual is measured as the number of gametes transmitted to the
next generation (Uyenoyama et al. 1993) and is thus given by the sum of three
components: selfed zygotes, outcrosses zygotes, and zygotes of other individuals
produced by fertilization with exported male gametes (Lloyd 1992). Selfed zygotes
receive two gametes from their mother, whereas outcrossed zygotes receive only one.
We assume that the number of male gametes used for self-fertilization is negligible.
Thus the selfing rate does not influence the export of male gametes. As long as the
mutant phenotype is rare, it competes virtually exclusively with resident phenotypes.

Accordingly, the dynamics of a mutant phenotype with selfing rate R′ in a resident
population with selfing rate R is

ttouttnint NKNfRRKNfRSN ′−−+′−+−−′=′+ )]/exp()11()/exp()1([ 2
1

01 δ , (7)

where tN ′ is the density of mutants at time t . The ratio tt NN ′′+1 defines the growth

ratio of the mutant at time t , and thus the mutant’s fitness in the resident’s environment,

),( RRW ′ (Metz et al. 1992). Values of ),( RRW ′ larger than 1 imply that the mutant

can grow and invade the resident population, whereas values of ),( ' RRW smaller than

1 imply that the mutant dies out.
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Figure 1. Bifurcation diagrams for the demographic model described by equation (4). From left to right:
stable equilibria (white); cyclic dynamics with 2-, 4-, and 8-cycles (grey to black); and chaotic dynamics

(white). Parameters: (a) 1== ca , ,5.1== db and 7.00 =δ ; (b) 1== da , 5.0=b , ,3.1=c and

2.00 =δ .

The fitness gradient )(Rg is given by the first derivative of W with respect to R′

evaluated at R . A positive value of )(Rg means that in the vicinity of R mutants with

RR >′ can invade the resident phenotype R , whereas a negative value of )(Rg means

that mutant with RR <′ can invade (Geritz et al. 1997). Evolutionarily singular

phenotypes *R are defined as those that lead to a vanishing selection gradient, *)(Rg .

Two properties of singular phenotypes are regularly considered (Dieckmann 1997;
Geritz et al. 1998). First, a singular phenotype *R is convergence stable or
evolutionarily attainable (Eshel 1983; Christiansen 1991) if a resident population that is
close to but not at *R can be invaded by mutants that are closer to *R . A convergence
stable singular phenotype (or convergence stable strategy, CSS) is an evolutionary
attractor in the sense that gradual evolution by small mutational steps will converge
towards it, whereas a singular phenotype that is not convergence stable acts as an
evolutionary repellor. Second, a singular phenotype *R is locally evolutionarily stable
if no nearby mutant can invade the resident population at *R . The properties of
singular phenotypes are characterized either by analytical criteria or by the graphical

evaluation of so-called pairwise invasibility plots (PIPs), in which the sign of 1−W is
depicted for every possible combination of mutant and resident phenotypes (Metz et al.

1996; Dieckmann 1997; Geritz et al. 1997, 1998). Examples of such plots are shown in
Figure 2.
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Figure 2. The two possible evolutionary outcomes of selfing evolution under stable demographic

conditions. The resident selfing rate R varies along the horizontal axis and the mutant selfing rate R′
along the vertical axis. Each of the two pairwise invasibility plots (Geritz et al. 1998) depicts the sign of

1),( −′ RRW , where W is the mutant’s invasion fitness (its time-averaged growth ratio) in the resident’s

environment. Grey areas indicate positive values: here the mutant can invade. In the white areas, 1−W is

negative and the mutant cannot invade. On the main diagonal 1−W has to vanish because the resident

phenotype is neutral in its own environment. At the singular selfing rate *RR = , 1−W also vanishes:

under the linear model in equation (7) any mutant is neutral at *R . The convergence stability of *R is

determined by the relative position of gray areas around *R . (a) Here *R is convergence stable (an

evolutionary attractor) since whatever is the initial resident population, any mutant closer to *R will be

selected for. The resulting phenotypic substitutions are shown as arrows, and *R evidently represents the

outcome of this evolutionary substitution process (black dot). (b) Here *R is not convergence stable (an

evolutionary repellor) since the course of evolution leads away from *R . The evolutionary outcomes of
selfing evolution depend on the initial condition in R and are given by the lower and upper bounds of the

selfing rate (black dots at 0=R and 1=R , respectively).

3. Evolution of Selfing Under Stable Demographic Conditions

(a) The singular selfing rate and its stability

For a non-trivial demographic equilibrium eqN , the singular selfing rate *R for which

the selection gradient vanishes,

0
),(

*)(
*

, =
′∂
′∂

=
==′ RRR

R

RRW
Rg , (8)

is obtained as

)()(

/))1(2log(
* 0

cbda

dcN
R eq

+−+
+−−

=
δ

, (9a)

provided that 0)()( ≠+−+ cbda . As shown in Appendix A, solving equation (8) is

equivalent to solving for 2
1=δ with δ being a function of *R and eqN ; this means

that, at the singular selfing rate, the cost of outcrossing is exactly balanced by the cost of
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inbreeding. The equilibrium density eqN at the singular selfing rate *R is obtained

from equation (4),

*)1(*

*))1(log( 2
1

RdRb

RS
Neq −+

−= (9b)

(the detailed calculations are given in Appendix A). The singular selfing rate *R and

the corresponding equilibrium density eqN are then obtained by solving equations (9)

numerically.
The singular selfing rate would be locally evolutionary stable if *R were a local

maximum of the fitness function W ,

0
²

),(²

*

<
′∂
′∂

==′ RRRR

RRW
. (10a)

However, from the linearity of the fitness function in R′ , equation (7), we
immediately see that, at the singular selfing rate, the fitness function’s second derivative
with respect to the mutant phenotype is zero, which means that all mutations are neutral
at the singular selfing rate (Meszéna et al. 2000).

The singular selfing rate is convergence stable if at *R the selection gradient g is a

decreasing function of R (Geritz et al. 1998),

0
²

),(²),(²)(

**

<





′∂
′∂+

′∂∂
′∂=

==′= RRRRR R

RRW

RR

RRW

dR

Rdg
. (10b)

Since the second term in the square bracket vanishes due to the linearity of the fitness
function, the convergence criterion reduces to

0)()]()([
),(²

**

<−−−+−−=
′∂∂

′∂

===′ RR

eq

outineq

RRR dR

dN
ffNdbca

RR

RRW
(11a)

with

*)(*)1(2*)(*

1)](*)1(2)(*[

*
RfRRfR

NbdRacR

dR

dN

outin

eq

RR

eq

−+
−−−+−

=
=

(11b)

(the detailed calculations are given in Appendix B). From these results we can conclude
that only two types of configuration are possible for the pairwise invasibility plots
describing the evolution of the selfing rate, see Figure 2.

In the general demographic model investigated here, the competitive effects of

inbred on inbred (competition coefficient a ), inbred on outbred (b ), outbred on inbred

( c ), and outbred on outbred ( d ) individuals are allowed all to be different. However, in

the special case ca = and db = , competitive effects become independent of the
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frequency of inbred and outbred individuals, see equations (3). We refer to this case – in
which inbreeding depression is only affected by the total density of inbred and outbred
individuals, see equation (5) – as the “density-dependent model.” By contrast, the

general case without any restrictions on the competition coefficients a , b , c , and d –
in which inbreeding depression is not only affected by population density but also by
the relative frequencies of inbred and outbred individuals – is referred to as the
“frequency-dependent model.”

(b) Evolution of selfing in the density-dependent model

In the most trivial case in which inbred and outbred individuals are equally affected by

density, dcba === , the selection gradient never vanishes and depends only on 0δ .

For 2
1

0 <δ we have 0)( >Rg for all R , and complete selfing at 1=R will evolve,

whereas for 2
1

0 >δ we have 0)( <Rg for all R , and complete outcrossing at 0=R

will evolve. These simple results directly correspond to the classical predictions (Lloyd
1979).

For the slightly more general density-dependent model, ca = and db = , equations
(9) do not apply, since the denominator in (9a) vanishes. In this case, the singular
selfing rate is instead determined from

]/)exp(1[2* SNbR eq−= (12a)

with

ba
N eq −

−
=

))1(2log( 0δ
. (12b)

The condition for convergence stability of *R in the density-dependent model is

given by ba < (see Appendix B). The biological interpretation of this result is

straightforward. As can be seen from equation (5), the condition ba < implies that
inbreeding depression is a monotonically decreasing function of the density. Since at

*R the density eqN decreases with the selfing rate, see equation (11b), a further

evolutionary of selfing rates becomes increasingly difficult as the selfing rates are
already high, because of the simultaneous increase of inbreeding depression. This effect
can stabilize intermediate selfing rates. An important conclusion from this is that in the
density-dependent model a necessary condition for the evolution of intermediate selfing

rates is that inbreeding depression decreases with population density. Since 2
1=δ at the

singular selfing rate, this implies 2
1

0 >δ as a necessary condition for evolution to result

in intermediate selfing rates. Figure 3a illustrates how, in the density-dependent model,

the resultant intermediate selfing rates increase with fecundity S .
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Figure 3. Evolution of selfing rates under stable demographic conditions as a function of fecundity S .

(a) Density-dependent model. All depicted selfing rates are convergence stable. Parameters: 1== ca ,

5.1== db , and 7.00 =δ . (b) Frequency-dependent model. For small S , two singular selfing rates are

found, one is convergence stable (attractor: continuous line) and the other is not convergence stable

(repellor: dashed line). Parameters: 1=a , 6.0=b , 1.1=c , 1=d , and 35.00 =δ .

(c) Evolution of selfing in the frequency-dependent model

We now consider the evolution of selfing in the general model, which allows for
differential competitive interactions between all four combinations of inbred and
outbred types. The singular selfing rate *R is given by equations (9) and its
convergence stability is determined by inequality (11a). The expression on the left-hand
side of this inequality has two terms. The first term is directly determined by the four
competition coefficients, whereas the second term depends on how the equilibrium
density varies around the singular selfing rate. In most cases the second term is small
compared to the first one.

To facilitate understanding, let us explore the case da = , which means that the
competitive effects exerted by inbred on inbred individuals equal the effects exerted by
outbred on outbred individuals. Let us also assume that the competitive effects exerted

by outbred on inbred individuals are high ( dac => ), whereas those exerted by inbred

on outbred individuals are low )( dab =< . In contrast to the density-dependent model,

inbreeding depression is now an increasing function of density, see equation (5). Under
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these conditions, stable intermediate selfing rates can be maintained. Figure 3b
illustrates how, in the frequency-dependent model, the resultant intermediate selfing

rates decrease with fecundity S .
In the general frequency-dependent model we have thus identified an additional

second mechanism that can lead to the evolutionary origin and maintenance of
intermediate selfing rates. Contrary to the results for the merely density-dependent
model, this phenomenon occurs even if inbreeding depression increases with density. If

within-type competitive effects are equal for inbreed and outbred types, da = , the
evolution and maintenance of intermediate selfing rates occurs if the competitive effect

of inbred on outbred individuals, b , is sufficiently lower than the competitive effect of

outbred on inbred individuals, c , with sufficiency being determined by the magnitude
of the second terms in inequality (11a). This means that the outbred individuals have to
excel in the between-type competition with the inbred individuals. The between-type
advantage of outbred individuals required for intermediate selfing rates can even be

lower if they also have a direct within-type advantage, da > , whereas it must be higher

if the within-type advantage instead favors inbred individuals, da < .

4. Evolution of Selfing in Fluctuating Populations

In this section we consider the outcome of selfing evolution by relaxing the assumption
of stable population dynamical equilibria. Fluctuations in population density can arise
because of the demographic properties of the model. Specifically, since generations are
discrete, a high density in one generation induces high mortality and thus low density in
the next generation: this can lead to deterministic cyclical or chaotic dynamics. Another
option is stochastic fluctuations in the carrying capacity K ; here we explore a simple
case of environmental fluctuations in which the carrying capacity in a given generation

is given by 1K with probability p and by 2K with probability p−1 .

Since the mutant growth ratio given by equation (7) is not constant over time when

densities fluctuate, the fitness function ),( RRW ′ is determined numerically as the time-

averaged growth ratio of the mutant population. This ratio is easily obtained by
introducing a mutant at a very low frequency into the stationary resident environment
and observing its dynamics, as described by equation (7), for a few hundred generations.
Graphical illustration of the results in terms of pairwise invasibility plots is then
straightforward.

Our aim here is to show that the convergence stability and evolutionary stability of
singular selfing rates is crucially affected by fluctuating population densities, and that
therefore the evolution of selfing can take a radically different course under such
conditions. For greater clarity, we focus our analysis on the density-dependent model.
This shows most clearly how density fluctuations can broaden the scope for the
evolution of intermediate selfing rates, which otherwise is rather limited in the merely
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density-dependent model. For the same reason, we consider the case dbca =>= , for
which inbreeding depression increases with density. As we have shown above, this case
does not allow for the evolutionary maintenance of intermediate selfing rates under
stable demographic conditions.

(a) Deterministic demographic fluctuations

We choose the fecundity S sufficiently large for non-equilibrium population dynamics
to ensue. Figure 4a illustrates the population dynamics for the case of a two-cycle.
Figure 4b shows the resultant pairwise invasibility plot. Comparing this plot to figures
2a and 2b, we see that the density fluctuations cause the singular selfing rate to become
evolutionarily stable, and inequality (10a) is now fulfilled: once the population has
reached *R , no mutant can invade. The singular selfing rate *R is not convergence
stable since, in a resident population near *R , a mutant closer to *R cannot invade;
inequality (10b) therefore is not fulfilled. This first example thus illustrates that the
evolutionary stability of the singular selfing rate can be qualitatively affected by density
fluctuations.

As a second example we consider a four-cycle population dynamics, figure 4c.
Figure 4d shows the resultant pairwise invasibility plot. We immediately see that the
singular selfing rate now is evolutionarily stable as well as convergence stable. The
second example thus illustrates that the convergence stability of the singular selfing rate
can be qualitatively affected by density fluctuations.

(b) Stochastic environmental fluctuations

It is interesting to confirm whether the conclusions for deterministic density fluctuations
also hold if such fluctuations are stochastic; a common mechanism for the latter are
random variations in the carrying capacity of a population between generations
(Mathias et al. 2001). We show here that the same qualitative results apply.

For this purpose we choose a low value for the fecundity S that does not give rise to
cyclical or chaotic dynamics. In a first example, we consider a small variance of the

carrying capacity ( 11 =K , 32 =K , and 2
1=p ). The resultant population dynamics are

depicted in Figure 5a and the corresponding pairwise invasibility plot in Figure 5b.
Similarly to the two-cycle dynamics, the singular selfing rate *R becomes

evolutionarily stable. A larger variance of the carrying capacity ( 11 =K , 52 =K , and

2
1=p ) results in a convergence stable singular selfing rate, Figures 5c and 5d.

These two examples of stochastic density fluctuations reveal a very interesting
property of evolution around the singular selfing rate *R : the dependence of the two
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Figure 4. Evolution of selfing rates under deterministic density fluctuations. Panels on the top illustrate

population density fluctuations at *R , whereas panels at the bottom show the corresponding pairwise
invasibility plots. (a) and (b) Population densities exhibit a two-cycle; the singular selfing rate is

evolutionarily stable but not convergence stable. Parameters: 3.1== ca , 1== db , 2.00 =δ , and

10=S . (c) and (d) Population densities exhibit a four-cycle; the singular selfing rate is both

evolutionarily stable and convergence stable. Parameters: 3.1== ca , 1== db , 00 =δ , and 15=S .

types of stability on the dynamics of the population. This allows us to identify a third
mechanism for the evolutionary origin the maintenance of intermediate selfing rates.
Under stable demographic conditions, convergence stable intermediate selfing rates

require inbreeding depression to decrease with selfing rates, ( dbca =<= ). When
population densities fluctuate, this condition no longer applies and intermediate selfing
rates evolve under a wider range of ecological conditions. Although we have shown
only a few specific examples here, increasing the variance of density fluctuations
generally facilitates the existence of convergence stable intermediate selfing rates.

5. Discussion

Based on the antagonistic selection pressures resulting from inbreeding depression and

the cost of outcrossing, previous models have predicted that only complete selfing or

full outcrossing are possible as outcomes of the evolution of selfing rates (Lloyd 1979).
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Figure 5. Evolution of selfing rates under stochastic density fluctuations. Panels on the top illustrate

population density fluctuations at *R , whereas panels at the bottom show the corresponding pairwise
invasibility plots. (a) and (b) The singular strategy is evolutionarily stable but not convergence stable.

Parameters: 3.1== ca , 1== db , 3.00 =δ , 5.4=S , 11 =K , 32 =K , and 5.0=p . (c) and (d) The

singular strategy is both evolutionarily stable and convergence stable. Parameters: 3.1== ca , 1== db ,

3.00 =δ , 5=S , 11 =K , 52 =K , and 5.0=p .

The same conclusion holds when inbreeding depression is caused by partially recessive

deleterious mutations (partial dominance hypothesis; Charlesworth and Charlesworth

1987), since inbreeding depression decreases with selfing rate (Charlesworth et al.

1990); the evolution of selfing then experiences a positive feedback. In general, the

maintenance of partial selfing instead requires the gain in fitness to decrease with

selfing rate, thus resulting in a negative feedback.

In this paper we have shown that embedding studies on the evolution of selfing in
population dynamical models of inbreeding depression can radically modify these
conclusions, even though the evolution of selfing remains governed by inbreeding
depression and the cost of outcrossing. Specifically, we have identified three types of
negative feedback that all allow for the evolutionary origin and subsequent maintenance
of intermediate selfing rates.

First, a negative feedback on selfing can arise when inbreeding depression decreases
with density (as demonstrated by our merely density-dependent model). It is
questionable whether this condition applies to many natural populations since it is
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generally assumed that stressful conditions (in this case, increasing density) lead to the
increase of inbreeding depression (Wright 1977). Beyond this widely accepted rule of
thumb, however, the general pattern is probably not that simple. An empirical study by
Cheptou et al. (2001) could not identify any effect of density on inbreeding depression
in the outcrossing plant Crepis sancta, whereas Koelewijn (unpublished) has found that
inbreeding depression in Plantago coronopus actually decreases with density, which,
according to our analysis here, could create a negative feedback selecting for
intermediate selfing rates.

Second, for the general frequency-dependent model analyzed in this paper, we have
identified another biological mechanism for creating the required negative feedback.
Even when inbreeding depression increases with density, the evolutionary maintenance
of intermediate selfing rates is expected if outbred individuals excel in the competition
with inbred individuals. No empirical data is yet available to confirm or refute that such
a competitive asymmetry can occur. Our model suggests analyzing the nature of
competitive interactions within and between inbred and outbred types by estimating the
corresponding competition coefficients directly from experimental studies.

Third, we have shown that fluctuations in population densities can induce a negative
feedback on selfing. This result agrees with recent work by Cheptou and Mathias
(2001), which has shown that stochastic inbreeding depression can maintain
intermediate selfing rates (see also Cheptou and Schoen, in press). To a certain extent,
our results can be considered as a particular case of fluctuating inbreeding depression
caused by fluctuating population density. However, it is interesting to note that
stochastic variations in carrying capacity generate the same type of negative feedback.
In natural populations, variation in carrying capacities is a rather common phenomenon
(McPeek and Holt 1992) and can result from a wide range of natural causes, like
variations in precipitation, temperature, nutrient inflow, prey abundance, or a species’
exposure to predators or interspecific competitors.

This paper emphasizes that linking the fitness associated with particular selfing rates
to the environmental conditions experienced by individuals expressing such rates
modifies the evolution of selfing by influencing inbreeding depression. This implies that
the dynamics of deleterious mutations causing inbreeding depression is not only
affected by inbreeding itself (which has been studied in supposedly constant selective
environments by considering the genetic processes that purge deleterious mutations;
Charlesworth et al. 1990) but also by the ecological and environmental conditions
experienced by individuals. Kondrashov and Houle (1994) distinguished types of
mutation depending on the dependence of their expression on environmental conditions
and showed that the estimation of mutation rates in Drosophila is affected by the
environments in which these mutations originate. Recently, the process of purging of
deleterious mutations has also been found to be less efficient under benign
environmental conditions than in harsh environments (Bijlsma et al. 1999). Clearly,
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future theoretical work on these issues could benefit from combining the study of
genetic effects with an ecologically explicit perspective on fitness as developed in this
paper.

It should be noted that taking into account other ecological mechanisms beyond
intraspecific competition, such as pollination mechanisms, can modify the transmission
bias of selfing (changing, in turn, the cost of outcrossing) and thus also allow for the
maintenance of intermediate selfing rates (Holsinger 1996). The present paper has
demonstrated that no such interspecific interactions need to be considered for
understanding qualitative departures from classical expectations regarding the evolution
of selfing.
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Appendix A:
Singular selfing rate at the stable demographic equilibrium

Assuming a stable demographic equilibrium eqN , the growth ratio of a mutant is given

by equation (7),

)})]1([(exp)1()11()])1([(exp)1({),( 2
1

0 eqeq NRdRbRRRNRcRaRSRRW −+−−′−+−+−+−−′=′ δ .(A1)

The singular selfing rate is obtained from solving

0)}*)]1(*[(exp)*)]1(*[(exp)1{(
),(

2
1

0
*

=−+−−−+−−=
′∂
′∂

==′
eqeq

RRR

NRdRbNRcRaS
R

RRW δ , (A2)

(It appears that (A2) implies 5.0=δ ) which leads to the solution

)()(

/))1(2log(
* 0

cbda

dcN
R eq

+−+
+−−

=
δ

(A3)

for 0)()( ≠+−+ cbda . At *R , we obtain from equation (A2)

)*)]1(*[exp()*)]1(*[exp()1( 2
1

0 eqeq NRdRbNRcRa −+−=−+−−δ . (A4)

Substituting equation (A4) into equation (4) gives

1)*)]1(*[exp(*)]1([ 2
1 =−+−−+ eqNRdRbRRS , (A5)

which allows to determine eqN at *R ,

*)1(*

*))1(log( 2
1

RdRb

RS
Neq −+

−= . (A6)

Solutions ( *, RNeq ) are found numerically by solving equations (A3) and (A6).

For 0)()( =+−+ cbda , solving equation (A2) yields

dc
N eq −

−
=

))1(2log( 0δ
, (A7)

and R* is then obtained from substituting equation (A7) into equation (A6).

For the density-dependent model, ca = and db = , explicit solutions ( *, RNeq ) can

be found,

]/)exp(1[2* SNbR eq−= (A8)

and

ba
Neq −

−
=

))1(2log( 0δ
. (A9)
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Appendix B:
Convergence stability at the stable demographic equilibrium

Because of the linearity of (A1) in R′ , the criterion for convergence stability reduces to

0
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From equation (A2) one obtains
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At *R equation (A4) can be used to show that condition (B2) is equivalent to

0)()]()([
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=RR
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The first derivative in this expression is obtained by differentiating equation (4) with
respect to R and evaluating the result at ( *, RNeq ), which gives

1})]1([(exp)1())]1([exp()1({ 0 =−+−−+−+−−= eqeq NRdRbRNRcRaRSG δ . (B4)

Differentiating the implicit function G ,
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This yields
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In the density-dependent model, ca = and db = , the criterion for convergence
stability reduces to
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0)(
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It can easily be shown that the derivative in this expression is negative. Since
cafin == and dbfout == , convergence stability in the density-dependent model

applies if ba < .
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