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Adaptive dynamics: the continuity argument 
Géza Meszéna 

Department of Biological Physics, Eötvös University 
Pázmány 1A, H-1117 Budapest, Hungary 

 
 

In reply to the target review by Waxman & Gavrilets (2005), I wish to explain why I consider 
adaptive dynamics as something simple, understandable, robust and beautiful.  
 
Adaptive dynamics, as I see it, is a continuity argument. The following statement will be 
referred to here as the Continuity Tenet: 
Relative abundance of similar strategies has little effect on the adaptive landscape. 
 
First, note that this statement makes sense only for a continuous strategy (phenotype, trait) 
space. This raises the single most important assumption of adaptive dynamics: we are talking 
about a continuous trait (for simplicity, I will consider a single one) and the small 
evolutionary changes of it. We can use a continuity argument only in the case of continuity, 
after all. (But see Meszéna & Szathmáry, 2001 about the delicate interplay between the 
continuous phenotype and the sequence space of the genotype.) 
 
Secondly, note the mathematical non-triviality of the simple-looking statement. If someone 
intends to formalize it, he/she should consider the interactions of the populations (i.e. of their 
combined population dynamics) of several strategies, which are “similar”, i.e. the difference 
between them – in all respects – goes to zero. Forget it for the purpose of this reply. I am 
talking to our common sense here. 
 
Thirdly, note that the Continuity Tenet is self-evident. It is just inconceivable to be false. Can 
anyone imagine a significant dependence of the fitness landscape on the relative abundance of 
phenotype A and phenotype B, when the only difference between them is that their optimal 
size of food differs by 1 µm? Probably A and B will not even be recognized as different. 
 
Let us accept the Tenet and talk about its consequences. We will assume large population 
sizes, which allow us to use a deterministic treatment. As ecology-dependent selection tends 
to be complicated, we will start by considering an asexual context. 
 
Consequence One.  
Invasion of a rare type against a resident implies that the invader will eventually win, and oust 
the resident, provided that the fitness gradient is non-zero and the two strategies are 
sufficiently similar. If the two strategies are not similar, initial invasion predicts nothing 
because the increasing abundance of the invader may change the situation such that its 
advantage is lost. However, if they are similar, the Tenet guarantees that the direction of the 
fitness gradient will not be reversed by the increase of the invader. That is, the initial 
advantage survives until the final victory. This answers the questions raised in Section 2.6 of 
the review from the common sense point of view. The formal proof appeared only recently 
(Geritz, 2005, see also Jacobs et al., in prep.), so the Reviewers were right to consider the 
issue as unsettled. 
 
Consequence Two.  
Consider now an arbitrary population, sexual or asexual, with a sufficiently small, but 
nonzero variance. Then, it will evolve in the direction of increasing fitness, with or without 
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frequency dependence. While this statement looks trivial, it is not. It would not be true 
without the validity of the Continuity Tenet. Specifically, see Dieckmann & Law (1996) for 
the gradient dynamics for mutation limited asexual populations. It is analogous to, but 
different from, the Lande equation (Lande, 1976) of population genetics.  
 
Surprise One.  
From the intuitive point of view, the most surprising feature of frequency-dependent selection 
is that directional evolution towards increasing fitness may end up in a local minimum, 
instead of the maximum, of the fitness. We need to de-learn our notion of a fixed fitness 
function to accept it. Ecology helps. Being different from the rest of the population may be so 
advantageous that the majority strategy is a fitness minimum, even in cases when it would be 
an optimum without the presence of the population. I consider the discovery of this 
possibility, which predates the emergence of adaptive dynamics, as the single most important 
contribution in understanding frequency dependence. As far as I understand, the discovery 
was made by several people independently. I am not sure whether the following list is 
complete: Eshel (1983), Taylor (1989), Christiansen (1991), Abrams (1993). 
 
From a strictly formal point of view, the possibility of convergence to a fitness minimum is 
not a result, but a lack of it. If evolution can change the adaptive landscape on the way, there 
is no reason to conclude that we should reach a local maximum. While frequency dependence 
should be weak locally, it may be strong enough to affect the global outcome. 
 
Consequence Three.  
The argument for Consequence One loses its validity when the fitness gradient becomes zero, 
i.e., at the “singular” points. An arbitrarily small change can tilt the horizontal fitness 
landscape in either direction. Initial increase no longer guarantees the final outcome. In 
particular, two arbitrarily similar strategies may be able to coexist near to the singular 
strategy, both of them invading the other, when rare. Nevertheless, we can re-use the 
argument for the curvature of the fitness function, which is supposedly non-zero. This leads 
to the classification of the singular points (Gertiz et al., 1997, 1998). Especially, strategies 
near to a fitness maximum evolve towards each other, while strategies near to a fitness 
minimum evolve away from each other. After Surprise One, this is a highly non-trivial result 
of the general theory (Metz et al., 1996; Geritz et al., 1997, 1998). See Meszéna et al. (2001) 
for the comparison with matrix games, where the linearity of the fitness function, i.e., the zero 
curvature, introduces peculiarities. 
 
Surprise Two: Evolutionary branching.  
As a result of Consequence Three, an asexual population that has evolved to a fitness 
minimum, will branch and the two branches will evolve away from each other. Then, adaptive 
dynamics argumentation can be applied, again, to the branches. This is the other big thing. 
The people who recognised Surprise One, also usually expected something like this. 
However, it was the great achievement of my colleagues, Stefan Geritz and Hans Metz (Metz 
et al., 1996; Geritz et al., 1997, 1998) to develop the theory of the (asexual) branching and 
note the generality and importance of the phenomenon. It is difficult to not see some 
resemblance to speciation, but I will come back to this point later. 
 
Most importantly, this is the End of Complications, as far as continuous evolution of asexuals 
is concerned. (And modulo continuity, differentiability, genericity, etc. assumptions, of 
course.) This is the beauty of adaptive dynamics. We do know that the properties of the 
singular strategies control the qualitative picture, and we do know the possibilities there. We 



 3 

cannot hope for a general analytic theory of frequency-dependent selection, just as we cannot 
hope for a general analytic solution for all possible dynamical systems. However, we have a 
fixed-point analysis for both of them, which helps a lot. 
 
There are several ways to tell a single story. Often, it depends on personal taste. Meszéna et 
al. (1997), Vukics et al. (2003) relied on this intuitive argument of continuity. To concentrate 
on the issue of singular point classification, and to avoid the mathematical complications, 
Geritz et al. (1997, 1998) assumed rare mutations (i.e. at most a single mutant is present at 
any specific time) and assumed that the outcome of the contest between two strategies is 
unequivocally determined by the mutual invasibilities. (That is, contrary to the Reviewers’ 
suggestion of the hidden assumptions, we were overcautious in these papers in stating the 
conditions.) The precise mathematical treatment of the continuity argument is coming 
(Meszéna et al., submitted). 
 
As the initial population size of the mutant population is small, we have to deal with Initial 
Stochasticity. Fortunately, the situation is simple. As mentioned in the review, the mutant has 
a positive probability to invade if, and only if, the deterministic criterion of invasion is met. 
The actual probability is proportional to the invasion exponent. That is, stochasticity affects 
the speed of evolution, but not the location and the classification of the singular strategies. 
The issue was known to the adaptive dynamics community from the very beginning and 
mentioned already in Metz et al. (1996). It played a key role in Dieckmann & Law’s (1996) 
development of gradient dynamics for mutation limited asexual evolution. (Without taking 
into account the Initial Stochasticity, the speed of evolution would be independent of the slope 
of the landscape, which would be absurd!) Individual-based simulations (like those of 
Dieckmann & Doebeli, 1999; Mizera & Meszéna, 2003) took the effect into account 
automatically, so there was no reason to discuss stochasticity separately. I hereby 
acknowledge that we made a mistake in Meszéna et al. (1997). We simulated population 
growth deterministically without taking into account Initial Stochasticity. This affects the 
exact shape of the branching curve on Figure 3, but nothing else. Figures in some other 
publications may suffer from the same problem. As the relative speed in different directions is 
an important issue for a multidimensional trait space, we discussed Initial Stochasticity 
carefully in Vukics et al. (2003). The Reviewers’ claim, that the adaptive dynamics literature 
neglects the issue in an essential way, is overstated. 
 
When we declare victory against frequency-dependent selection for continuous evolution of 
asexuals, the Reader may feel that we have not yet met the real enemy. At the end of the day, 
we have to face the Complications of Sex, especially because of the appealing connection to 
speciation. Will sex change the conclusions? It is obvious/known that the directional 
evolution, the end of evolution at a fitness maximum, and the possible arrival to a fitness 
minimum, are the same for asexuals and for sexuals (see Taylor & Day, 1997, among others). 
However, the consequences of the disruptive selection at a fitness minimum differ. They will 
depend crucially on genetic assumptions. In a random mating population frequency-dependent 
disruptive selection tends to increase and maintain genetic variance (Christiansen & 
Loeschke, 1980). Some of us think that conditions may exist under which disruptive selection 
ends up in the development of reproductive isolation. Why not, when it selects against the 
intermediate types? Call the phenomenon, if it exists, as Adaptive Speciation irrespective 
whether the process is sympatric or allopatric. The very first condition is to have an evolvable 
trait controlling the assortativity of mating, i.e., abandoning the assumption of random mating. 
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Does a “branching” type singularity of adaptive dynamics predict adaptive speciation? 
Certainly, not. First, because we have got a new problem: the evolution of the sexual 
behaviour. It is not fully determined by the adaptive dynamics of the ecological trait, where 
our branching point has appeared. Secondly, because we lost the applicability of the 
Continuity Tenet even for the ecological trait when we let the variance increase under 
disruptive selection. We can no longer suppose that only the first, or second, derivative of the 
fitness matter. (I thank Freddy Christiansen for pointing me to the second issue.) From a 
mathematical point of view, it is not mandatory for a “practitioner of adaptive dynamics”, as 
the Reviewers call us, to believe in adaptive speciation. Note also, that one can use all the 
arguments of adaptive dynamics in a continuous allele model (Kisdi & Geritz, 1999; van 
Dooren, 1999). Then, it is a sexual application of adaptive dynamics, without caveats. Then 
evolutionary branching of the allelic value corresponds to an increase of variance of the 
population, instead of speciation. 
 
I happen to be a fan of adaptive speciation. My reason is that ecology must be a part of the 
story, anyway. Without ecological segregation, the new species will not be able to coexist 
with the already existing one. (One can, of course escape from this requirement in a non-
complete model.) From a biological point of view, the simplest possible idea of speciation is 
the adaptive/competitive/ecological one (Rosenzweig, 1978): suppose that speciation is driven 
by adaptation to an empty niche. As one can learn from Christiansen (1988), ecology 
generates frequency dependence. In turn, frequency dependence may result in convergence to 
a fitness minimum, i.e. to disruptive selection. Things seem to fit. 
 
For reasons that I do not fully understand, the many people consider adaptive speciation as an 
extremely difficult possibility, at best. Turelli et al. (2001) states explicitly that the 
“allopatric” theory of speciation goes well without mathematical modelling, because it is 
intuitively clear. However, ecological speciation supposedly depends on detailed 
mathematical analysis in a crucial way. But this tilts the playing field. While it is a widely 
accepted assumption of the allopatric theory that mutual infertility arises as a consequence of 
diverging evolution in allopatry, the Reviewers asks whether the emerging reproductive 
isolation of Dieckmann & Doebeli (1999) is robust against introducing a cost of assortativity. 
The issue of adaptive speciation, i.e. equating asexual branching with sexual speciation, 
would be trivial by assuming that ecological divergence results in reproductive isolation 
automatically. 
 
There are several models supporting the possibility of adaptive emergence of reproductive 
isolation. Matessi et al. (2001) is one of them – even if it was written to stress that the 
selection force should be strong enough. Obviously, the Reviewers are right in claiming that 
any cost of assortativity will decrease the parameter range allowing speciation. I could 
suggest many other factors, which would either help or prevent adaptive emergence of 
reproductive isolation. But the same could be done for any evolutionary process. It will take 
several years to see the full picture, I am sure. 
 
In particular, I do not think that the model of Dieckmann & Doebeli (1999) is the final word 
on the issue. Nevertheless, I am puzzled that the Reviewers seem to suspect trivial-level 
mistakes in it. (I happen to know how clean and reliable the code behind this work is and how 
careful the authors are in avoiding the traps.) Why should it be a problem that they start the 
simulation with the maximal variance, when the maximal variance is the stable fixed point 
under disruptive selection (Bulmer, 1980, p. 171), anyway? Why should it be a problem that 
they chose a mutation rate higher than the natural one just to compensate for the fact that they 
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use small population size and small number of loci for numerical convenience? When the 
whole model is far from the quantitative fidelity, anyway? Why should it be a problem that 
the model is not about generating variance, which is a solved problem, but about sorting them 
out to different species, which is their topic? I am sure the authors of this model will falsify 
the “easily falsifiable” hypothesis of the Reviewers. But here the point is why are our 
intuitions so different? 
 
Contrary to Turelli et al. (2001), I feel that ecological speciation is at least as intuitively 
appealing, simple and understandable, as anything else. (Nevertheless, it needs quantitative 
modelling, as anything else!) I am sure it is related to my involvement in adaptive dynamics. 
The behaviour of Occam’s razor depends on whether one considers frequency-dependent 
selection and convergence to the fitness minimum something strange and complicated, or an 
elementary fact of ecology that is easy to interpret and which is under control. My version of 
Occam’s razor implies studying the consequences of ecology-generated fitness landscape 
first. While adaptive dynamics does not imply adaptive speciation in any mathematical way, it 
is not an accident that some of the adaptive dynamicists support adaptive speciation. 
 
As I consider adaptive dynamics something transparent, I disagree with the judgement of the 
Reviewers about the “hidden limitations and unconscious or implicit assumptions”. Of course, 
adaptive dynamics, as any other theory, has limitations in describing the real word. For 
instance, if speciation is a process driven by neutral evolution, as Gavrilets (2003, 2004) 
supposes, then it has nothing to do with adaptive dynamics. Adaptive dynamics is, by 
definition, concerned with adaptive evolution. However, this is something different from the 
Reviewers’ claim that AD overlooks genetic drift, in its own context, as a hidden assumption. 
 
Similarly, if the evolutionary process is dominated by a small number of large mutational 
steps, instead of a roughly continuous evolution of a trait, the simplification of the Continuity 
Tenet does not apply. An exact mathematical wording would require “infinitesimal” 
mutational step for the applicability of adaptive dynamics. The real-word-oriented translation 
is that “it should be small in any relevant comparisons”. For instance, and most importantly, 
the mutation step size should be too small to jump to the other side of a fitness minimum, or 
the description cannot be based on gradient dynamics. Practitioners of adaptive dynamics 
meet this issue each day in each of their model. Again, this is not a hidden assumption, but the 
very essence of the approach. 
 
Similarly, if the genetic details are important, then one should not attempt to describe the 
evolutionary process on the phenotypic level. In general, applicability of adaptive dynamics in 
a given context depends on the nature of the phenomenon we are investigating. If there is a 
disagreement on the biological essence of the speciation process, then we will disagree on the 
applicability of adaptive dynamics, of course. But this is natural; it has nothing to do with the 
supposedly hidden assumptions of adaptive dynamics. 
 
As far as I understand, the theory itself is fairly stable by now.  
 
Last, but not least, I wish to apologise for the apparently arrogant nature of this commentary. 
Neither the expected length, nor the supposed style, allowed me an in-depth discussion of all 
specific points the Reviewers raised. I could not discuss technical details of the mathematical 
issues, either. My only goal was to express and motivate my general judgement: Adaptive 
dynamics is transparent. I thank all of my colleagues for the rewarding years of learning 
together and the Reviewers for the possibility of this exchange. 
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