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PREFACE

The field of linear programming (LP) has perhaps the longest history among all modern
techniques in the decision sciences, at least if attention is restricted to techniques inherently
tied to the computer. For over a quarter century, there have been intensive and extensive
developments in theory, generalized systems of computer programs, and in applications.
However, these efforts have been carried out by three different classes of specialists whose
interaction has at times been minimal.

Exeept for two or three early conceptual developments, LP originated in practical
problems at about the same time as electronic computers became a reality, and the growth
of the two has been eontemporary. While theory tended to be the domain of the academic
world, computerized systems were developed by independent consultant organizations and
later computer manufacturers, and experience in applications was gained by large commercial
and industrial corporations spcarheaded by the petroleum industry. The result is that
different conceptual approaches, notations and viewpoints have developed that often inhibit
the adoption of existing capabilities by new potential users, particularly in academically-
oriented organizations.

The seientific staff at IIASA is more from the academic world than from the consulting
and commercial sectors. Consequently, there may be some unfamiliarity with thc viewpoints
and notations in use by the developers of computer systems for mathematical programming
applications. This paper summarizes the notation used over a long period by one of the
leading developers of such systems and by many of his associates and cven competitors.
Further, the mathematical viewpoints arc more those of an algorithm and software engineer
than of a theoretical mathematician, economist, or academie. These viewpoints are extended
to geometrical concepts which may help others to understand the somewhat capricious
performance of the simplex method on large problems. Since the various projccts which
IIASA is or will be engaged in will lead to the formulation and solution of large LP models,
some understanding of the viewpoints of builders of elaborate systems of programs should
be helpful in applying them succcssfully.
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ABSTRACT

In Part 1, the classical statement of an LP problem is compared with the
most general form which general-purpose LP software can usually accept.
The latter form is then simplified to the form used internally by such
software. An extended matrix representation of the conditions used in the
simplex method is given, plus a list of the various outcomes of pivot
selection. All this is merely a review and summary in consistent notation.

The remainder of Part I views an LP problem as a function of its
objective form and parametric algorithms as families of functions, The
simplex method, as a process, is also viewed as following a trajectory. The
ambiguity of extending this idea to the dual feasible subspace is indicated
as well as the difficulty of using this viewpoint for integer programs.

Part II begins with a fairly complete list of notation required in discuss-
ing details of the simplex method and its variants. Then a series of defini-
tions, lemmas and theorems are given to make precise such notions as
basic solution, distinct solution, adjacency, and dual basis. The main result
is a clarification of the phenomena of degeneracy and alternate solutions,
in both primal and dual senses. In particular, the complementary nature
of ambiguous solutions and multiple solutions is shown. Two trivial exam-
ples, easily followed, are sufficient to illustrate these ideas.

Part 1II applies the idcas of Part Il, plus one other, to the old problems
of exploring the vicinity of optimality, resolving revised models from an old
basis, and a few special problems for which the simplex method is sometimes
useful in a non-LP context.
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Some Additional Views on the Simplex Method

And the Geometry of Constraint 8pace

INTRODUCTION

There is a wide discrepancy between the terminology and
viewpoints used in classical and theoretical presentations of
linear programming (LP) and the simplex method, and those used
by software engineers who create and extend the systems of com-
puter programs without which LP would be only an abstraction.

On the one hand, the classical presentations are too condensed

and over-simplified, ignoring practical aspects of real model
formulation and solution. On the other hand, the excruciating
details of algebra and logic required to perfect a robust system
of programs are too tedious to permit overviews and facile manipu-
lation of concepts through manageable terminology.

A similar situation-- perhaps even more disparate -- exists
with respect to geometrical concepts which fortify our intuition
and make new ideas and hypotheses possible. Theories of convex
sets, simplices, supporting hyperplanes, dual spaces, and the like
are essential as a foundation to the whole field of optimization.
However, these are specialities for the few and certainly algorithm
and software engineers are seldom experts. Furthermore,
workers in the field tend to make statements such as "a basic
solution represents a vertex of the simplex". This is an
acceptable ellipsis among knowledgeable professionals, but,
taken literally, it is nonsense--an m x m matrix equation cannot
represent a point in E". our concepts of the intricate, inter-
lacing elements in constraint space-—even in E2 or E3 with
linear systems--are often inadequate to conceptualize and sort
out the algebraic phenomena which we encounter.

Part I of this paper starts with the typical classical
statement of an LP problem together with known results of the



simplex method. This is extended in similar notation to the
most general set of constraints accepted by standard, large
Mathematical Programming Systems (MPS). This, in turn, is
simplified by the same preliminary transformations used in
MPSs to give a workable but general framework for any LP
model. Following this, one primal simplex iteration is
described with a summary of the results of typical pivot selection
routines, which are not amenable to succinct notation. Up to
this point, the paper is simply a review and summary in con-
sistent notation.

The remainder of Part I presents some rather unorthodox
viewpoints on the role of the various LP quantities, the nature
of the "LP function" and the simplex method machinery, and some
preliminary discussion of the geometry of constraint spaces.

Part IT presents some theory regarding primal and dual
basic solutions and their combined geometry in constraint spaces.
The meaning of "representations" is clarified. Several definitions
and lemmas, and five theorems, create a succinct and rigorous
terminology for discussing movements through areas of E" which

have nonsingular representations.

Part II contains a complete list of notation used in dis-
cussing simplex transformations and similar operations. This
may be useful in itself. One switch in notation is made at
this point: superscripts are used to denote rows or row elements
in the basis inverse and the transformed LP matrix. Personally,
the writer prefers the use of superscripts for all row indices,
and has consistently used such notation for many years. However,

it is difficult to fight the tide: everyone writes ay and x.

. 3 3

ipstegd of at and x7. Nevertheless, the use of superscripts for
i r

AT, EJ, o and a: seems absolutely necessary for clarity in

Parts II and III.

Part IITI exploits the viewpoint of Part II in three areas.
First, the old problem of finding all optimal solutions and
their adjacent solutions is solved by means of an unambiguous
procedure, which is readily programmable. Second, some suggestions

are made to reduce the number of iterations when restarting a



revised model from an old optimal basis. Finally, a few special
model matrices are discussed, which may have some practical
value in special circumstances.

One of the motivations for this paper was to try to find a
more rational and elementary approach to integer programming.
This has not been achieved and only one short section on the
subject has been retained. From one viewpoint, the requirement
of integrality superimposes a third set of elements in the geometry
namely, either a lattice or a kind of "boxwork" of hyperplanes.
But this does not seem to help in finding optimal integer
solutions, or at least in proving them so. Perhaps someone will
yet conceive of a viewpoint which facilitates this. One expects
to have to do substantially more work to solve an integer program

but it is frustrating for it to be largely guesswork.
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PART I: THE SIMPLEX METHOD; TERMINOLOGY AND VIEWPOINTS

Classical Statement of LP Problem and Simplex Solution

Given:

An m x n (real) matrix A, an m x 1 column of constants b,
and a 1 x n row of objective coefficients c.
Find:

An n X 1 column of (structural) variables x such that

cx is max subject to

x>0 , Ax < b .

Simplex solution (assuming the problem is feasible and z

max
is finite):
X = x > 0 such that Ax < b (primal solution).,
1 x m row 1 such that TA > ¢ (dual solution),
Zax - X = mh .
Consequences and subsidiary gquantities:
Let u = b - Ax, and 4d = 1A - ¢. Then
u=b-AXx>0 , d=7Ta-c¢c2>0
and
Z =CcX =TA X - dx = TAX + mu = b .
But
dax >0 , ™ > 0 .
Therefore dx = ma = 0, i.e. '&j =0 if §j >0, ?i = 0 if Gi > 0, and

vice versa. Hence the complementarity or Kuhn-Tucker condition

is a consequence of the simplex method, not an assumption. This is



brought about by the use of a basis which is not indicated in
the classical statement.

Most General Form of LP Problem

Given:
An m x n matrix A (All quantities real);
A 1 x n row ¢ of objective coefficients;
Two m x 1 columns b and b of constant range limits;
Two n x 1 columns of bounds L and L; and
An initial value z,
where any gi, bi’ Ej or Lj may be 0,

finite or infinite provided

b, <b; Ej A Lj .

Find:

X = {xi,...,xn} such that

cx -z, is max subject to

L. < x. < L.
I I

and

<b. .

by < 1%y <Py

Simplification of Constraints (Rows)

(i) Since z, is a constant subtrahend, it can be ignored
during the solution process. Note, however, that it
may be modified by simplifications of the bounds.

(ii) If b, = -=, and Bi = +w, the i-th "constraint" is merely
a functional and does not affect the solution. It can
thus be ignored.

(iii) If Ei is finite and b, = -=, the constraint can be
written merely



(iv) If b, is finite and Ei = +», the constraint can be

rewritten

I (-a;)x, < - b, =b,

. 1
3 13 1
and Bi can be ignored.
(v) If b, = b, is finite, the constraint can be written
z ljxj = Ei .
J
(vi) I1f b, < Ei but both are finite, let b, = Bi and
R, = b, - b.. Then the constraint is

i i =i

b. - R, < ¥ a,.x. < b,
i R

Thus the true constraints can always be written

R. = +» {(iii or iv above) and can be ignored, or

> Q0 (vi above) , or

0 (v above)

It is assumed that this has been done in discussing
simplification of bounds on the structural variables

X..
3

Simplification of Bounds on x (Columns)

(vii) If Ej = Ej is finite, then x4 is fixed. It can be dropped,

writing the constraints as

- A.L.) - < (b = A.L.
(b AJEJ) R < Ax < | ]_])

and adding CjEj to Zg-



(viii) If Ej is finite and Ej = +o, let ij = %5 - Ej' Then
with ij > 0 replacing xj, write the constraints as

b - A.L.) - R< Ax < (b - A_.L.
( J~J) < Ax < ( J_J)

and add c.L. to z,.
-] 0
(ix) If Ej = <o and Ej is finite, let %X = -xj + IG and ij = -Aj.
Then with ij > 0 replacing xj, and Aj replacing Aj in A,

write the constraints as

b+ A.L.) - R< Ax < (b + A.L,
( 3 J) < < A 3 J)
and subtract c.L. from z,..
S| 0
(x) If Ly < Ej but both are finite, let %j = x; - Ly and
Lj = Ej - Ej' Then write the constraints(~3 replacing xj)as

(b - AJL) - R < Ax < (b - AsLy)
with 0 < xj < Lj and CjEj added to zg-
(xi) 1f Ej = -o and Lj = +», then xj is a free variable. Free
structural variables are rare. In an actual computer
code it is probably better to retain them (as is standard
practice) but, for simplicity of discussion, it is
desirable to eliminate them theoretically. Since this
has several possible complications, we will merely
assume it has been done. (Free x. in a valid model are
not in fact free but have limits implied by the con-
straints. Actual elimination, in addition to a con-
siderable amount of fixed work, requires that implied

constraints be checked.)

Thus bounds on x can always be written
0 <x <L

where any Lj > 0 and may be infinite.



All the above rules and transformations (except xi) are commonly
performed in LP software systems and the inverse transformations

applied to output.

Simplified Generalized LP Problem and Solution

In view of the foregoing, we write an LP problem in the
following form.

Given:
An m x n matrix A;
A 1 x n row ¢ of finite objective coefficients;
Two m x 1 columns: b finite, R non-negative but
with zero, finite or infinite elements; and
An n x 1 column of upper bounds, L, strictly positive
but with finite or infinite elements.

Find:
An n x 1 column x = {x1,...,xn} such that

cx is max subject to

X. < L.
] -

1A

and

b~R<Ax <b .

Known Results with Simplex Method

Assume that feasible x exists and Z ax is finite. (If not,
well-known terminations will so indicate.) Then:
1) An optimal basis B is obtained in a finite number of
iterations.

2) Letting u = b - Ax, an optimal primal solution
Iu + Ax = b , 0<uc<R , 0 <x <L
is obtained in the form

BB + AL* = b - R* , B >0



where L* is an n x 1 column of selected finite values
from L, zero elsewhere, and R*¥ is an m x 1 column of
selected finite values from R, zero elsewhere.
The solution vectors u and x are not directly evident
but are composed from non-overlapping segments of R¥*,
B and L*.
3) Letting c be a 1 x m row of values from ¢ corresponding
to basic x. and zero elsewhere, an optimal dual structural
vector is obtained:
T=cB -1
and, letting 4 = mA - ¢, an optimal dual slack vector
is obtained:

d=7mA-¢c .

The signs of Fi and aj are as follows:

T, > if R*, = 0 (i.e., u, < R,
i— i i i
= if uy is basic (i.e. in B)
1 * 1 a =
< if R i >0 (i.e., u; Ri)
d. > if L¥., = 0 (i.e., X. < L.
j Ty (1.e., xy 3
= if xj is basic (i.e. in B)
<0 if L*, > 0 (i.e., Xx. = L.)
- J J J
4) The value of z = Z i ax 1S given by either
Z = CcxX - zg
or
= b - R¥* - A.L*.) + L = * * -
m ( § 5 ]) cL zg nb* + cL z,

In the sequel, z, will be ignored.

0
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Extended Matrix Representation of Simplex Solution

The well-known results listed in the previous section are
virtually intractable in any closed form expressions. Our task
now is to represent them in more readily manipulative forms.

First we define expanded primal and dual matrix equations

as follows.

Primal Equation:

- R*
B A 8 = |P R ’ B is nonsingular, the basis

-1 | |L* - Lx

Let L be a m x 1 column with elements Eh = Ri if the h-th
basic variable is uy . and Eh = Lj if the h-th basic variable
is x.. Then the condition for primal feasibility is

j
0 <8 <L.

Dual Equation:

(r,d) B A = (c,c) .,

In order to describe dual feasibility conditions and also
to define the basis, five more matrices are needed. Let e; be
the i-th m x 1 unit column (orthonormal), and E. be the j-th
n x 1 unit column. Let P_ be an m x m matrix consisting of

B
selected columns e and otherwise zero. The initial P_ is Im.

Let PR be an m x m matrix which is all zero except wherz R*i > 0,
and then the column is -e;- The initial PR = 0. Also, let PZ
be m x m, all zero except “ey when R, = 0 and u; in non-basic.
The initial p, = 0.

Similarly, let QB be an n X m matrix consisting of selected
columns Ej, and otherwise zero. The initial QB = 0. Let QL be
an n X n matrix which is all zero except where L*j > 0, and then
the column is —Ej. The initial 9y, is an arbitrary selection

of this kind for Lj finite.
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Let p be the number of e, in Py (initially m), and g the
number of Ej in QB (initially 0). Then at every step the

following conditions must hold:

p +4g=m (complete basis);

B = PB + AQB is nonsingular (valid basis);
PBPR =0 , PBPZ =0 , PRPZ = 0;
QLQB = 0 (note that QBQL is nonconformable) .

The conditions for dual feasibility are then

Tr(Im + PZ + 2PR) >
d(In + 2QL) >
Let
M= |B A
-I
n
Then
-1 B! a
M =
-I
n
where
a = B_1A
Hence
-1
B B o b - R*
L* -1 ~ L*
n
L
(ﬂrd) = (Q,C)
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One Simplex Iteration

The two matrices

are pricing selection matrices. If mSp has any negative elements,
the corresponding u, are candidates to re-enter the basis. Since
o= 0 for uy basic, a basic uy cannot be selected. Note also

that the columns of SP corresponding to non-zero columns of PZ

are zero. Hence a uy restricted to the value zero, which has
left the basis, is never a candidate to enter again. Similarly,

if dSQ has negative elements, the corresponding Xj are candidates.
If x. is basic, then dj = 0 and cannot be selected. If neither
WSP nor dSQ has negative elements, and the primal solution is
feasible, then the solution is optimal.

Suppose either WSP or 4dS, has negative elements, and take the

Q -

algebraically smallest. If this is for L let ay = B 1es; if
it is for ds , let a = B-1AS. Now a pivot selection routine
must be used to determine a value 8. There are seven possible

outcomes for a primal feasible solution:

1) 6 = ?E_ with a g > 0. The candidate enters the basis
%rs
from zero at level 6, replacing the r-th basic variable

which goes to zero. Either P_ or QB changes in two

B
columns or each changes in one column. Er changes to
R or L_.
s s
B8 . . .
2) 8 = "r with drs < 0. The candidate enters the basis from

o
rs

upper bound at level RS + 6 or LS + 6 replacing the
r-th basic variable which goes to zero. PB or Op changes

as in 1 above. Also either PR or QL changes to zero in

the s-th column; this also changes R* or L* in one
element. Er changes as in 1 above.

3) 6 = Br - Er with ars < 0. The results are the same
o
rs

as in 1 above except that the r-th basic variable goes to
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upper bound and P_ or QL changes to non-zero in one

B
column; this also changes R* or L* in one element.
By = Ly
4) 9 = — —— with .o > 0. The results are the same as

OLI_S S

in 2 above except that the r-th basic variable goes to
upper bound. One column of PR or QL becomes zero and
another becomes non-zero. R* or L* changes in two

elements.

5) 68 = Rs or LS. The candidate goes from lower to upper
bound. One column of either PR or QL becomes non-zero
with a corresponding change in R* or L*.

6) 8 = -RS or —LS. The candidate goes from upper to lower

bound. One column of either PR or QL becomes zero with a
corresponding change in R* or L*.

7) 8 = 4o, Necessarily, RS or LS is infinite. A class of
unbounded solutions is determined.

Additionally, 1if the outgoing variable in the above cases
1 or 2 is u s for which Rr = (0, the r-th column of PZ becomes
-e . PZ is never reduced.

If the current solution is infeasible, the number of cases
is the same, but the selection rules are more complicated since
Bi < 0 exist; this gives rise to several new Bi’ Ol sign and
magnitude combinations.

The pivot routine is rigidly defined (though variations
are possible), and is the heart of the simplex method. Note
that the selection of infeasible m, or dS of greatest magnitude 1is
merely a rule of thumb. Any infeasible value is usable. However,
given a candidate, the above 7 cases are deterministic. This
characterizes the simplex method as iterative in nature, and no
closed form expression is possible. It is clearly impossible
to express the above solution changes in any kind of standard
matrix or functional notation. They are only describable by

cases which lead to improved solutions.
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Candidate and pivot selection maintain the necessary
conditions on PB’ PR’ Pz, QB and QL and hence on B. Complementarity

is maintained automatically.

Characterization of Simplex Variables

In some LP applications, the xj are regarded as control
variables and the u, as state variables. While this may be
appropriate in cases where LP is used as a simulation, in a
more general view it makes little sense. It is worth considering
just what kind of function an LP model is.

Given a matrix A, at least two geometries are implied; in
fact both are used as a framework for the simplex method. Con-
straint space is E" and m directions are implied, in addition
to the n orthonormal coordinate units. Activity space is jou
and n vectors from the origin are implied in addition to the
m orthonormal units. There is a strong relationship between
these spaces. (In an elementary model, the dual problem has
complementary spaces.)

One is not interested in the entire spaces but in a convex
manifold, or simplex, in constraint space. This is defined by

the vectors b, R and L, and the constraints
b-R<AX <Db , 0 <x <L

where x e E'. To begin with, all x of interest are in the positive
orthant, possibly further constrained by the hyperplanes xj = Lj'
(One can, in fact, start from other x, as in restarting a modi-
fied problem from an old basis.) The other facets of the sim-
plex are defined by the directions given by the rows of A and
the distances from the origin implied by b and b - R. Hence,
given A, b, R and L, a convex manifold FC E" is defined. Any

x € F is said to be feasible. F can be expanded or contracted
by changes in b, R and L which have the effect of moving hyper-
planes parallel to themselves. Clearly, this can change both
the number of facets and the number of vertices of F. Changes

in A, of course, can distort F in any way.
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. m
The correspondence between F and the vectors in the E

activity space is as follows. For every vertex of F, there

is a nonnegative linear combination of the m + n vectors in

Em, some m of which are linearly independent and the remaining
having their variables at a limit. This linear combination
gives b, regarded as a point in . A simplex basis is merely

a linearly independent subset of the linear combination, the
other vectors being combined by IR* and AL* and their variables
regarded as temporarily fixed. The converse is not true, that
is, given an R* and L* and a basis which gives the point b, this
is not necessarily a vertex of F. 1It is, however, a vertex of

a convex manifold which includes F. This fact is used in Phase 1
of the simplex method. (It is assumed that elements of R* and L*
are either 0 or upper limits. Otherwise, non-vertex points of

F are derived.)

All the foregoing is, of course, well known. The point is,
however, that the functional 2z is not a function of x but of c.
For, given A, b, R and L, the simplex F in E" is completely
determined. Only the points x € F are valid, i.e. feasible.

The value of z is specified by z = cx - x € F. Assuming

Znr
that the purpose of LP is to maximize z oger the manifold F,
this maximum is determined by the direction c in E". Except
for possible multiple x on a facet or edge of F orthogonal to
c, the value of z over F is uniquely determined once c is
specified. The simplex method is a process which, starting
from any vertex x in F (or even in En) moves toward and even-
tually reaches an optimal point. It takes advantage of the
fact that at least one optimal x is a vertex of F. (In general,
«© may have to be regarded as a vertex of F.)

Hence one is justified in regarding F as a function in ok
and z = F(c). Given any c, there is a unique (or infinite) value

z given by

Z = max ¢x , x e F .
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This assumes, of course, that the manifold F is not void which

is equivalent to saying the func

tion F is undefined.

Leaving A fixed, one can generate a family of F functions

by varying b, R or L. These can be generated by the well-known

parametric RHS algorithm (which can include upper bounds). In

the equally well-known parametric objective algorithm, one is

really calculating different values of z by parameterizing

the argument ¢ for the same func

tion F.

If A is varied numerically but not dimensionally,

extensive family of F functions

are generated. This can be done

by the less-utilized structural parametric algorithms.

a more

These

create hyperbolic changes rather than linear ones and can lead

to singularities. That is, let

1° As F1
(X(1) becomes infinite but this

the optimal point in F

unbounded FZ') If one attempts

F1 transform to F
-+ F

2'

and let x

(M

ot B may become singular;

can also occur because of an

to transform beyond F

27

say to

F, for which g~ exists, then Xy §(1) which is not in the

simplex F3.
If the dimension m of A is

hyperplanes defining F is change

changed, then the number of

d. This changes the basis

(activity) space E" but may or may not have any significant

effect on F. In general, if m is reduced, F becomes

larger and, if m is increased, F becomes smaller and may even

vanish. However, in particular

effect on F.

cases, there may be no material

_If the dimension n of A changed, say to n, then ok changes

to E". The mapping of FcE" into Fc EP may be many-one, one-one,

be

or one-many. In general, one has a different family of functions,

defined in a space of different

dimensions.

Simplex Iterations Regarded as a Trajectory; Phases 1 and 2

Given F, ¢ and any vertex X

ceeds in one of two phases depen

n

¢ E°, the simplex method pro-

ding on whether Xy € F or not.

If not, Phase 1 is performed. This amounts to partially solving

a series of LP problems over FO

1

DF,D ...:)FTZ>F. For each Ft’
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a different Cy is used. The final FT is completely solved and

the value Zp = CqpXp = FT(CT) is zero unless F is void, in which
case no feasible solution exists.

Instead of defining the c_ directly, z, is defined as

t
follows. Assume that R*¥ and L* are feasible. (There is never
any reason why they should not be.) Let f_ be the set

{i: Bi < 0}, and £, the set {i: Bi > Li}' at any stage t.

Then

Define f = (f1""’fm) by
£, = 0 if B. is feasible
i i
1 if Bi < 0

-1 if B, > L,

and

m o= fB_1 .

It is easily shown that using this m and mA for normal pricing,
and applying a somewhat enhanced pivot routine (as previously
indicated), will either increase z (until one or more members

of the sets f_ and f+ drop out, in which case the next stage

is commenced) or show that z cannot be increased. (F is void.)
When both sets are empty, z = 0. (One additional rule must be
imposed. Since 7B = f contains -1's, basic variables must not

be priced.)

One can thus consider Phase 1 as defining a piece-wise
linear trajectory from some initial point Xq outside F along
edges of enclosing simplices leading to a vertex of F. Phase 2
is then a trajectory along edges of F to an optimal vertex.

In general, these trajectories are not unique and depend on

chance selections and tie-breaking rules.
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It is sometimes hypothesized that a shorter total trajectory
can be found by combining the phases. This is done by defining
a scale factor o > 0 and pricing in Phase 1 with mA - oc. The
scale is varied in magnitude depending on progress. Experience
with this technique is mixed but, on the whole, it appears not
to be very effective.

Let X(c) be the set of x on edges of F for which z is maximum.
Then X(c) is a region of stability with respect to the simplex
method. Any random errors in the algorithm which are not per-
sistent (i.e., correct numbers are recalculated if necessary)
will not prevent the trajectory from reaching a vertex of X(c).
An arbitrary iteration made while on X(c) followed by a proper
iteration will return to a vertex of X(c). If a (nonbasic)
™, or dj of zero is used to select a candidate, the iteration
moves along an edge of X(c) to an adjacent vertex. Thus X(c),

as well as z, is a function of c.

Interpretation of Dual Feasibility as Another Simplex

It is possible to have a dual feasible solution which is
not primal feasible. We assume this to be a basic solution
in the foregoing sense. Although Phase 1 could be applied,
the well-known dual algorithm! can be used to follow a

trajectory to X(c) which is everywhere dual feasible. This

may or may not represent a practical advantage but it is in-
teresting in principle.

It seems superfluous to describe the dual algorithm, even
briefly. Rather we can consider FCE" and its related simplices.
Assuming that X(c) is finite, it lies in a hyperplane G defined by

cx = For any X on one side of this hyperplane, cx < z

max’
Hence G

Zpax”
this side contains F. On the other side, cx > 2 ax”
divides E" into two parts, one containing a dual feasible simplex
D and the other containing F. FND = X{c)C G. Other points on
G are primally infeasible but not necessarily dually infeasible
without qualification. We will further examine this phenomenon

in Part II.

TAlthough it is not straightforward to dualize a model with
ranges and bounds, it is relatively simple to adapt the dual
algorithm to a primal format with such conditions.
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Basic solutions which are doubly infeasible are common.
If there are extraneous primal constraints, it is also possible
to have hyperplanes through D that do not form a distinct
facet, but on which basic solutions exist that are primally
infeasible and dually feasible. The dual algorithm may pass
right through such points without stopping, as, for example,
when two or more primal infeasibilities are removed at once.
The existence of hyperplanes through D for which basic solutions
on each side are dually feasible (but not necessarily zero in
any dual basic variables) is one of the more disturbing aspects
of convex geometry. In effect, certain dual variables are
always feasible for any feasible values of the other dual
variables in a basic solution. Hence extraneous primal
constraints are translated into extraneous dual variables. It
is also true that extraneous primal variables translate into
extraneous dual constraints, but this is hardly surprising since
constraint space has an unnecessarily high dimension. (Note:
an "extraneous" constraint is one which is never binding for F,
but is not necessarily "redundant" in the sense of linear
dependence.)

Difficulties of Integer Programming

If one requires the xj (or some subset of them) to take on
only integer values, then the set of feasible solutions, say W,
is not compact but consists of either lattice points or disjoint
subsimplices. This causes three difficulties.
a) Zax is not, in general, achieved at a vertex of F.
Hence basic solutions in continuous variables do not
include Z ax
b) FNG does not, in general, include any part of W. Even

if it does, it is difficult to locate or identify. Hence,
it is not a region of stability for the simplex method.
¢} No continuously feasible trajectory exists which connects
two or more disjoint parts of W.
However, assuming that an integer solution exists within I', there 1is

a related function FWQEF for which the maximum point x = w of W
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is a vertex of Fw. For, suppose we knew w; then we could cal-
culate Aw and adjust b or R accordingly. Alternatively, we
could bound xj on one side or the other by wj. The latter
approach is the one taken by many branch and bound methods.
However, it has the disadvantage of introducing new hyperplanes
which cause extraneous dual variables and change the nature of
both F and D. Some penalty function approaches are essentially
an attempt to deform F into FW by changes in b and R. These
methods have the difficulty of identifying a point of W when

a hyperplane slides through it, since it-is not a vertex unless
a sufficient number of hyperplanes are moved together in various
precise proportions.

Suppose one solves the continuous problem and arrives at an
optimal point X, € X(c). (We will ignore the imponderables of
unbounded continuous solutions which may have finite integer
solutions. This requires irrational coefficients in any event.)
We can assume that L*j is an integer if X is an integer variable.
(Why should anyone put a noninteger upper bound on an integer
variable?) Therefore any nonbasic xj can move in only one
direction by a minimum of one unit. The cost of such a move
is dj, assuming that it is possible from X, while remaining in F.

A basic integer variable, on the other hand, can move in
two directions (though one may be by an essentially zero amount),
either of which gives an integer value, assuming that it is possible.
The cost of doing this depends on how it is done. One way is

to find a nonbasic variable to change. Suppose Xy is in basis

position r. Then letting Aj = +1 or -1 according as xj =0
or x. = L.
J J
d.
Fk = min _dj
)\jonrj<0L r]

gives the minimum rate of cost for movement of X, up, and
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gives the minimum rate of cost for movement of x, down, where

k
d. and o_. are understood to include Ty and nri((r,i)-th element

o% B-1) gger all nonbasic, moveable variables xj and u, - This
leads to three additional questions:
- whether it is possible to move the nonbasic variable
enough to effect the desired change;
- whether the nonbasic variable must itself move by an
integer amount; and
- whether the move, even if possible, will adversely
affect other basic integer variables already at
an integer value or nearly so.
Another main difficulty with integer programs is that complement-
arity cannot be maintained since an integer point will, in
general, be in the interior of F which is not representable by
a basic solution. Rather than belaboring these endless questions,
we turn to a more fruitful theory, which, however, does not seem

to help with the solution of integer programs.
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PART II: THE COMBINED GEOMETRY OF PRIMAL AND DUAL BASIC SQLUTIONS

The concept of a dual simplex D introduced in Part I is
not really very helpful and imposes awkward concepts such as
useless hyperplanes cutting through it. Identification of the

vertices in the half-space for which z > z is necessary but,

as now to be developed, a different interp?Ztation of dual
solutions is more fruitful.

The examples shown in Figures 2a, 2b, 2c, 24 and 3 will be
used to illustrate various points in this section and to motivate

certain definitions and theorems.

List of Common Notations, Identities, Conditions and Basis

Change Formulae

We establish common notation to be used throughout the
following definitions, lemmas and theorems.

The LP problem is assumed to have a finite maximum z =z

attained at one or more vertices PO with basis BO

Other points and bases are designated by P1,P2,..., with

bases B1,B2,..., respectively. Subscripting applies to

any quantity associated with a point or a basis; if a

subscript already appears, the point subscript is last.

Quantities associated with points and bases are:

{u,x}: complete primal solution (column) vector.

{m,d}: complete dual solution (row) vector.

R* : values of nonbasic u, at R,, zero elsewhere; an
m x 1 column.

L* : values of nonbasic xj at Lj’ zero elsewhere; an
n x 1 column.

: upper limit for i-th basis variable. Note: L may

: sometimes be regarded as an m x 1 column. However,
it must then contain infinite values. Ei refers to
a finite Ri or Lji.

g : column vector of basic variables. It will be assumed

that any u; € B (i.e., e, € ) is in its home
position to avoid second order subscripts. When

necessary, xj will denote Xj in i-th basis position.
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c : the subrow of c belonging to the basis, in basis

order. Hence T = cB .

-

any nonbasic column.

j
As : a particular Aj entering the basis or changing bound.
-1

ag : B As.

r -1

m : the r-th row of B .

of : the r-th row of B 'A.

a: : the pivot element in a change of basis.

dj : nAj - cj. Also includes T, o= Tey when discussing
all dual variables. If s is ambiguous for ug or x,
then

r
Xy v ds ’ AS ’ o P Og
are read to include
-1 r
us ’ ns ’ es r Bs ’ ﬂs .

N : the dual basis corresponding to B.

Br : the r-th basic variable leaving. 1In general, the
index r may refer to any quantity associated with a
variable leaving the basis.

Br : r-th column of B.

b* = b - R¥ - AL*, i.e., current adjusted right hand side
(rhs) .

Y : row vector of dual basic variables, i.e., the active

part of (7w,d), ordered in dual basis order.
Also note the following identities for any basic solution,

regardless of feasibility condition:

BB = b* (m x 1 column)
z = mb¥* + cL* (scalar)
mA - ¢ = d and hence 7A - d = ¢ (1 x n row) .

For any point x ¢ En, whether a vertex or not,
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z = CX

u+ Ax =b

Feasibility conditions at a vertex are:

Primal : 0 < B < L. (All nonbasic variables are at feasible

values.)

Dual oMy = 0 if u; is basic, by construction,
dj = 0 if xj is basic, by construction.
1f u, is nonbasic, xi = 1 if u; = 0; and
A, = =1 if u. = R..

i i i
Aiﬂi > 0 for dual feasibility.
If xj is nonbasic, Xj = 1 if xj = 0; and
A, = -1 1if x. = L.

J J J

Ajdj > 0 for dual feasibility.
For any change of primal solution starting from a vertex
B(B - Oas) + GAS = b¥* = b - R¥ - AL¥,
If

(i) x_ changes from 0 to LS, then § = LS and eAs is

S
transferred to the new AL*. AS changes from +1 to -1.
(ii) Xg changes from LS to 0, then 9§ = -LS and eAs is
cancelled on the left and in AL*. AS changes from -1
to +1.

(iii) X, enters the basis, then some xj leaves and
r

6=§’_1fx. > 0 ()\.—>1)
r Jr Jr
ol
S
6 =Pr " Lpifx, >L, =1L (. > =1)
r Jr Jr r Jr !
[¢]
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and Lj Aj is transferred to AL*. Also,
r ’r

Xy > xg  + 6, the new Br (AS now effectively 0).

If x =L _, then I, A 1is cancelled from AL*.
[ S s's

In all cases above:
> -
z z eds .

If x_is really u , read
s s

for x r A m_ for
Ug s €s fo s s ds !

Rs for LS and R* for AL* .

If xj is really u.. read

u_ for x. R e for A, ,
r ]r r Jr

Rr for Lj and R* for AL* .
r

In case (iii) above, the dual values change as follows:

r
m> T o+ oem

d +d + gat

where

€
it
) H'm

Note that the change in z is

-ed, =¥g or (g - L) .

Definitions, Lemmas and Theorems

Definition: A basic solution is one in which some m of the

m + n primal variables {ui, xi} have been identified whose
columns of coefficients are linearly independent and form

a basis B in Em, and all the remaining n primal variables
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are at finite limits. The finite limits on the nonbasic uy
are represented by R¥ > 0, and those on the xj by L¥ > 0.
The basic variables, both uj and xj, are represented in the
vector B given by

-1
=B (B - R¥ - I AL¥,) .
B ( 3 J)

Definition: An extreme point or vertex in primal constraint

space E" is one which can be represented by a basic solution.
It is said to be ambiguous if it can be represented by more

than one basic solution.

Lemma 1: A vertex is ambiguous if and only if B contains
a limit value, say Br, for which the representation of some
usable nonbasic column in terms of B, say

-1 -1

a._ =B A (or a«_ =B e_ for nonbasic u.)
s s s s i

has an element of # 0.
s

Proof: If for any i = r, all af for any nenbasic column
are zero, then the r-th basic variable cannot be replaced

and Br is a constant for any solution. If the only

ag # 0 are for the representation of some logical e;

(one of which then must in fact be er) and all such uy

are limited to the value 0, then all these e, are unusable
and B is constant.

If of # 0 for some usable column and Br = 0, then the j-th
variable can enter the basis at its current limit value
with the r-th basic variable leaving at zero. If B, = L.s
then the j-th variable can again enter the basis at its
current limit value with the r-th basic variable leaving

at Er' In both cases, the two solutions represent the

same point, i.e. they are ambiguous.

If a§ # 0 for some usable column and 0 < B, < Ly, and if the
j=th column enters the basis in position r, it must then
take on a value which drives B_ to either 0 or L. and hence

represents a different vertex.
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Finally, if any u, or Xy changes from one finite limit to

another, the new solution represents a different vertex.

Note that a vertex may be ambiguous while the u; for an equality

constraint is in the basis and maybe unambiguous once it has left.

Definition: Let X, and X, be the normally ordered columns

of all primal structural variable values in any representations
of vertices P1 and P
distinct if X, # Xy

respectively. Then P1 and P, are

2’ 2

Definition: Two vertices are adjacent if they are distinct
and there exist basic solutions for each such that a) either
only one variable changes its status in R* or only one in

L*; or b) exactly two variables change their status between B
and either R* or L* in going from one vertex to the other.
The locus of points defined by this change, regarded as a
continuous move, is called an edge. The two solutions are
called edge ends.

Note that if P1 and P2 are adjacent and either is ambiguous, then

the pair of edge ends is not unigue. Also, if P1 and P2 are

adjacent, P2 and P3 # P1 are adjacent; then P1 and P3 may also
—P

be adjacent. Furthermore, the edge P 5 may be contained in

2

P1——P3. In the illustration, for example, T and B are adjacent,

B and P are adjacent and T and P are adjacent, since if x

replaces u, in the basis for T, one gets the basis for P. The

3
points T and P are unambiguous but B is ambiguous. The possible

hasic sets are as follows:

B
r r By B (3)
U1 u1 U.] X X
Y X .4 U2 y
4z Y us hec! U3
u u y y u .
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One can also get from B to P from either B(1) or B(3) with one

change, but not from 8(2)' The same is true from B to T. To
get from B to E, either B(1) or B(2)

The third combination, either B(2) or B(3) but not B(1),

be used to get from B to either A or C. From B to 0, any of

can be used but not Bi3)'

can

the above three combinations can be used, but 0 is itself
triply ambiguous.
The foregoing makes clear the nature of so-called degeneracy.
Degeneracy is not a global phenomenon but is a characteristic
of ambiguous vertices. Only in very rare cases does it lead
to "cycling". However, it makes the choice among multiple
bases very uncertain with respect to finding the next edge.
Even if one knows the next edge, it may take several basis
changes to "turn the corner”.
or B

However, note that although either B may be

(1 (2)

used to get from B to E, only B leads to a dual-basic

(1)
intermediate solution, R. (See Figures.) ©Note further that the

dual solutions for

S =1/3T + Y,
= 5/218(1) + 16/21E,
P = (doubly basic),

which all lie on G: x + 2y = 29/6, all have the same dual
solution. Let us compute the solutions for Q to illustrate
how the composite solutions are obtained.

The value of 2z for Q is 29/6 since it lies on G. The values
of z for B and C, which straddle Q on the same edge, are 7/2
and 5. Since z changes linearly on the edge, we have the

proportions

z(BY = 7/2 = 21/6 ; z(Q) = 29/6 ; z (C) 30/6

Hence Q is 8/9 of the way between B and C, or

Q= 1/9B + 8/9C .
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There is no difficulty in computing the nonbasic primal solution
for Q, viz.:
ug u, u

u 4 X Yy

1/9B

7/18 0 0 1/9 0 1/18 3/18

8/9C = 40/9 0 -8/9 0 8/9 8/9 16/9

0
i

29/6 0 -8/9 1/9 8/9 17/18 35/18

To compute a valid dual solution, however, we must determine
which basis - B(1), B(z), B(3) - to use. Since we already guess
that Q should have the same dual solution as P, we can compare

the (m,d) rows for P and C.

c: 1 1/2 0 3/2 0 Q 0

P: 1 0 1/6 4/3 0 0 0

Hence the basis for B must have nonzero values for m and Mo
i.e., u, and u, out of the basis. This is B(3). It is readily

verified that

(ﬂ,d)Q = 1/9(ﬁ,d)B(3) +8/9(m,d), = (m,d)y

and also that this fails for B(1) or B(2)’
The preceding illustrates the following definitions and
theorems.
Definition: Let B be a primal basis for some vertex P. The
corresponding dual basis N in E" is defined as follows: Let
. be the i-th row of A,
Nj be the j-th row of N, and
Ej be the transpose of Ej
Assume that the basis B is ordered so that any e, € B

are in their home positions, i.e., B, = e;,. Then if

!
g

B, = A. , let N = ;

_gJ

ifa;¢B let N7
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Lemma 2: N is nonsingular.
Proof: By possible reordering of rows and columns, B has

the form

-
]l

o
>

where J is the number of Aj in B. Then A must be nonsingular.

Similarly

n-J

which is also nonsingular.
Note that both B and N are submatrices of M, defined earlier.
Also, if 71 is the row of n, for e; not in B, and d the row of
d. for Aj not in B, then, assuming proper ordering, (n,d)N = ¢

]
since all other T and dj are zero.

Definition: A valid dual solution is one which corresponds

to the solution

(_TLI g) = ¢cN
for some dual basis N. A valid dual solution is feasible
if, when 7 is embedded in the full form 7 and 4 in the full

form d (zero elsewhere)

Theorem 1: if Z nax is finite, there exists at least one

feasible dual basis No which is valid throughout the
hyperplane G defined by

cCX = 2
max
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If the corresponding 7,and d contain no zero elements, then
No is unique.

Proof: Since 2 ax is finite, there is at least one vertex
P, for which cx =

= 2 . If P
1 max 1
at least one basic solution which is both primal and dual

is ambiguous, then there is

feasible. All this follows from the proofs of the simplex
method. Suppose P1 is still ambiguous with doubly feasible,
i.e., optimal, basic solutions. Since the primal change value

8 between any two of these is zero, the dual change value

Y = = i i u
T (ds Ty for incoming S)

for a change of basis must also be zero. First note that

a change of bound cannot occur or else 6= tL_ Or iRs, which are
not zero. But a change of basis will cause the outgning
variable to have a new ar = ¢ with a sign opposite to optimal.
(All sign combinations are easily checked to verify this.)

Hence dS = ¢ = 0 if the new basis is dual feasible. But

the new 7 and d vectors are given by

r A
m + @1 =17
d+ea’t =2a

so there is no change.

If there is a second distinct and adjacent optimal vertex
P2, then the 6 for going from P1 to P2 is not zero. Hence
again ds = 0 or z would change by the value dse # 0 so that
either P1 or P2 is not optimal, a contradiction.
Consequently, there is at least one doubly feasible primal
basis which has a corresponding NO' If all usable T and
dj are nonzero, No is unique. If NO is not unique, then
other such dual bases differ only in rows which do not
affect the values of 7 and d so that any one such dual base
produces a valid dual feasible solution for any optimal basic

primal solution, excep+ for the assignment of indices.
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Let T and dO be the normally ordered rows computed by (any)
N and z, =z The equation

fe) max”

noA - do = C

does not depend on x. If X is any x € G, i.e., cx = z
then

(ﬂOA - do)x =z,

If X can be represented by an optimal basic solution with

basis B, then B implies some ﬁé which differs from N, only
in rows which do not affect m and d. 1If not, the original
NO gives the correct values for 7w and d.

Definition: Two vertices P, and P, are basically distinct

1 2
if the bases for their representations, B1 and B2, are

necessarily different. 1In particular, P1 and P2 are not
basically distinct if they differ only by a change of bound
in some x. or u; . If P1 and P2 are also adjacent, they

are called basically adjacent. If P, and P, differ by a

change of bound, they are limit adjacent.

Lemma 3: If P1 and P2 are basically adjacent, there
exists a pair of edge end bases, B; and B,, such that the
change from (ﬂz,dz) to (ﬂ1d1) involves only n + 1 dual

variables.
Proof: By definition of basically adjacent, there exist

bases B1 and B2 which differ in exactly one column, say

A. in position r of B

1. 27
AS in position r of B1
r dSZ
Then oy # 0 and ¢ = —r . Both dS1 and dr2 are zero but
s

dS2 may not be zero. In that case
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s2 r
dpq = dp2 = oF T2
S
i = r = =
but, since dr2 0 and ars 1, then dr1 ¢. Other than
dS and dr' only n - 1 other variables are affected, or

n + 1 in all.
The fact that dr1 = ¢ will be used repeatedly.

and B, in Lemma 3 are

Definition: The edge end bases B1 2

called dual adjacent.

Note that a pair of dual adjacent bases may not be unique
if P1 or P2 is ambiguous. This was already illustrated by the
pairs B

“)—ﬁE, B(Z)-—E. Both pairs are dual adjacent, but B E

2y
does not give a valid dual solution at R. (In fact, it gives
a valid dual solution at a point between R and E on a line
through C parallel to G.)
Theorem 2: Suppose that at an optimal vertex PO with basis
r
Bo some ds # 0, some 0 < Br < Lr’ and og # 0. (Br > 0

is sufficient for A.)

A
If ¢=_S > 0 and
r
-Q
s
dg - min dj of 0 , dj >0 '
r j r J r
-a -as -a;
S J ]

then there is a basically adjacent vertex P1 with B1

formed by replacing Bro with AS in Bo’ for which the dual

solution is feasible and z, > 24 At least Xg1 is infeasible.
d
Proof: Since of # 0, A_ can replace B_ . Since ¢ = _8_ > 0,
—_— s s ro T
-a
s
dr1 is feasible if Bro goes to zero. By the assumption

on ¢, (n1,d1) is feasible. The primal change is given by
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b4 = + 0
s1 SO
with
6 ="r#o0
r
%s
— -— r=
By = By = 00 (By = xgq)
z1 = z0 - Ods
Now if x = 0, thend_ > 0 and of < 0; hence 9 < 0 and z, > z,.
s s s 1 0

r .
If Xy = Ls’ then ds < 0 and oy > 0; hence 0 > 0 and again z, > zg-
Note that either Xoq < 0 or X4 > Ls’ which is infeasible in

either case.

B. Let K, = L. if L, is finite; K, = 0 if L. is infinite:
= i =i =i i =i

if
Br B Kr > 0 and
A af
s's
Br B Kr = min B1 - Ki ot £0 , B1 B Kl > 0f
i 1 s ;
o Ao o
s s's s

then there is an adjacent vertex P formed either by replacing

2’
Bro with AS in BO or by changing bound on Xgr for which the

primal solution is feasible and z, < z,. Either dS

2 0

2 or dr is

2
infeasible.
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Proof: Since ag # 0, As can replace Bro’ The assumed
minimum ratio is Ase > 0. 1If Xg = 0, then As =1 and o > 0.
If x, = Lg, then A, = -1 and 6 < 0. Hence if[6|< L,
X is feasible; if not, we can set A_6 = L_ so x_ goes

s2 S S S

to opposite limit. By the definition of Ase,
B - 6a

is feasible. 1If X goes to opposite bound without a change

of basis, then dsZ = dSO is now infeasible; all other Ty

dj remain feasible. 1If a change of basis is made, and if
r _ _ _r

Bro went to zero, then Asas > 0 and dr2 = ¢ = ds/( as) < 0,

; r . . -
since ds and ag have the same sign no matter which sign

A has. If B went to L_, then A ar < 0 and d
=r s s r

=¢ >0
S ro ’

2
since ds and a; have opposite signs no matter which sign Xs
has. (To see this, note that ks = +1 implies dS > 0 and

r . . r r . . r
> : < < 0. r
hence Xsas 0 implies oy > 0; Asas 0 implies oy 0 Fo
As = -1, ds < 0 and the contrary results occur.) In
either case, dr2 is infeasible.

In any case, z changes to

2, =2 - eds < 2

o] o]

since eds is always positive.

Corollary 2.1: Vertices may exist. with either z > 2, or

z <z where both primal and dual solutions are infeasible.
Proof: In the proof of Theorem 2, part A., suppose some

other nonbasic variable Xy has ai # 0 and

Then
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r + ¢al < 0. If d_ <0, the
If dt > 0, then oy < 0 and dt ap | &
opposite holds. Hence dt1 is infeasible.
In the proof of Theorem 2 part B., suppose some other basic

variable Bq has ag # 0 and

Then

_ q
B eas < 0 or B

- eaq > L
q S

g —-q

as is readily verified from the preceding inequalities.

For example, suppose Xs = 1 and Kq = Kr = 0. Then

B B
9.
o af
s s
so
B
- _r g
Bq T ag < 0
s

(Since we thus have shown one case, the corollary is proved.)

One would now like to show that, if P1 is geometrically
adjacent to Po and z, # z then P1 is either basically or limit
adjacent to Po for some pair of bases Bo and B1, at least if
B1 is either primally or dually feasible. Unfortunately, this
is not true. If Po is ambiguous and not all its bases are op-

timal, there may be no way to get to P1 from an optimal Bn in
one step. (See Figure 3.) The following question thus arises:

Suppose P2 is distinct from Po and some 32 is primal (dual?)
feasible; then is there always a P1 which is basically adjacent
to Po and primal (dual?) feasible? Before tackling this
guestion, two related questions must be answered.
(1) on G, there may be bases not primally feasible and
bases not dually feasible. 1Is it possible for some
Bo to be doubly infeasible?
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(2) If P1 # Po has a feasible primal (dual) basis, is it

possible for P, to also have an infeasible primal

1
(dual) basis? If not, why is Po special?
Both questions (1) and (2) are improper but it is instructive

to answer them. A feasible primal basis B, is a 1<+ 1 trans-

formation in E™. The solution vector B as;umes that the n nonbasic

variables are assigned limit values. If some Bi = 0 or Ei’ any

change of basis removing By will leave {u,x} unchanged. If Bs

is not at a limit, the change of basis moves to a different

vertex, interpreted in E". The same is true of a change in

limit. Hence a point P1 in E® which is primally feasible is

primally feasible for any B1.
Let Y represent the 1 x n vector of L and d. for which

u, and xj are non-basic. A feasible dual basis N1 is a 11

transformation in E". The solution vector y assumes that the m

dual-nonbasic (i.e., primal basic) variables have been assigned
the value 0. If some Y = 0, any change of basis which removes
Yy (i.e., brings some u; or xj into the primal basis) will
leave (7,d) unchanged. 1If Vi # 0, the change of basis moves
to a different dual solution, which is in fact a hyperplane in
constraint space, not a vertex. One must be careful to dis-
tinguish the E® of the dual basis from the E" of constraint
space.

Hence the answer to (2) answers (1) also. If BO is primal
feasible for Po, any 56 is also primal feasible, but the corre-
sponding ﬁo need not all be dual feasible. If NO is dual
feasible for the hyperplane G  : cx = z_, any ﬁo is also dual

(o]

feasible but the coyresponding ﬁb need not all be primal

feasible.
The main question is now also seen to be improper with
respect to dual bases. The proper question is:

Suppose hyperplane G, is distinct from Go and some N2 is

2
dual feasible. Then is there also an N1 which is dual-
basically adjacent to GO and dual feasible?

Both primal and dual questions are subtle. We already know

(restricting ourselves to the primal side for the present) that
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there can be Bo' B1 and B2 with zg < z1 < z, such that Bo and

B, are basically adjacent but BO and B1 are not. However,

this is not the proper question. Rather, suppose P2 is distinct
from Po and B2 is primally feasible; must there be a P, which is
basically adjacent or limit adjacent to Po with z, < zo?

If we start from B the simplex method will arrive at an

2!
optimal BO with primal feasibility maintained at each step.
If the last iteration changed from some B1 to Bo with z, <z
then we have found the desired P1. But suppose the trajectory
was as follows:

(1) (2)

> B
B"B"BO "BO °

2 1
(1y _ _(2) _
22 < Z1 < Zo = ZO Zo
where Né1) and Néz) are not dual feasible. Must there be a
B3 (possibly B1 itself) which is basically adjacent to Bo with

z, < z ?
3 o)

(1)

Now the reason that B, - B was not optimal is that either

1 o
there were ties for 91 leading to multiple Bi;) = 0, or some
Bi1 were already 0 and did not change. 1In the first case, a

, would have led directly to Béz)

In the second case, P1 is ambiguous, and we could have brought

different choice for 6 or Bo.

the other columns in BO into B1 first, provided these columns

and the AS which moves B1 to Bé1)

would be basically adjacent to Bo'

are not linearly dependent.

In either case, some B1

We have now reduced the desired theorem to one question.

Theorem 3: 1If P2 # Po' z., < L and P, has a feasible

2 2

27 then there exists a feasible P1 with z, <z,
which is either basically or limit adjacent to Po'

and let

basis B

Proof: Apply the simplex method starting at B2

B1 be the last basis for which z, < z,- By the preceding
discussion, we can assume that, if 61 is ambiguous, the
most favorable for dual feasibility has been chosen. If

the next iteration does not lead to an optimal Bo’ let
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Bét)
dual infeasible bases between B1 and Bo' Let As' B, be

the columns which enter and leave between B, and BO(1),
where Br1 may be simply AS with X  gone to opposite limit.
Let IN = {At} be the collection of columns which enter,
and OUT = {Bq g = qt} the collection of columns which

e ?
(t) (t) to B(t+1) where
o) o}

t =1,2,...,7, be the series of primal feasible,

leave bases B, in going from B

(T - p |
o] o]

Suppose first that AS simply goes to opposite bound. Then
the basis does not change and, by withholding AS, all
other basis changes can be made first. The resulting
solutions may not be primal feasible. However, assuming

that AS is not itself in IN, then the iteration from BAT) to

T+1 . . X
Bé ) produces a basis which differs from Bo by X being
at the wrong limit. This basis is therefore dual feasible
except for ds. The point for BéT+1)is exactly P1

which is primal feasible. Hence the result holds.

Now assume that AS is as above, but that A is in IN but

not in OUT (or in IN once more than in OUT). As must

(T+1)

0 r

column Bq must be out at a limit. Since this is the
s

same point as before, we must be able to replace AS

still be at the wrong limit in B and some other

with B and have the same situation as above. But
s
then, if Xg changes limit the solution is still not

dual feasible since AS should be in the basis. But

now it goes in at the proper limit and must replace Bq
s

which must itself have gone to an opposite limit.

Hence Xq must also have an upper bound, and changing

s
its limit in the first place would have achieved the

desired result.

Suppose now that AS enters the basis from B1 to Bé1)'

We can outlaw the case that As goes into the basis
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at opposite limit. Then AS enters at a nonlimit value

and can never leave since all succeeding Bt = 0. Hence

Br1

(8r1 or Er1

return to P

is out of the basis and made a nonzero change
B_,). If x is not in IN, then we can
ri ri

1 from Bo by replacing As with Br1' This
must be possible since B, has a nonzero component for
(1),

o i since all other columns in Bo are

linearly independent of As, this component cannot vanish.

As in terms of B

If Br1 is in IN, then some other column B is out of
r
B0 with a nonzero component for AS; but the component

in the corresponding 8 for Br1 is at a limit. 1In
(1)
B

o 7 B or some surrogate for it had a limit component

r
in B. If we invoke the assumption that the most favorable

61 for dual feasibility was selected, then the component

of Bq in 81 was also at a limit. Hence AS had a nonzero
r

component at B, for both Br and Bq ;i but Br was nonlimit

1 1 1

r

while the component in B for Bq was at a limit. Hence
r

P1 was ambiguous and replacing Br1 with Bq gives an

r
alternate basis. But we can get back to this basis from

Bo by replacing Br1 with Bq there. Any such change of
r

basis leads to a basically adjacent P, with zq < 2z,-

Theorem 4: Let the hyperplane G2 T ex = z,, be distinct

> z and a dual feasible basis N.,.
2 o 2

Then there exists a dual feasible G1 with z, > z, and

a pair of dual-basically adjacent bases No and N1.

from Go' with z

We will not give a formal proof of this proposition.
The arguments of Theorem 3 can be used almost intact by reading
"hyperplane" for "point", "dual" for "primal", y for 8, etc.
A change of bound does not arise for dj or m, in the same
sense as it did for xj (and, by extension, ui). However, the
analogue is as follows. 1Instead of d changing to d + ¢ur on
such an iteration, one can regard -E, as changing to +ES or
vice versa. The handling of change of limit on a u, can be

regarded as al changing to -A' or vice versa.
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We are now getting a fairly good view of the topography
of constraint space and particularly around the optimal facet.
The greatest complications come from ambiguous points in the
primal half-space (PHS) and ambiguous hyperplanes in the dual
half-space (DHS). The picture emerging is as shown in Figure 1
for E2, where primal basic solutions in PHS represent vertices,

dual basic solutions in DHS represent hyperplanes.

Definition: A functional cut or slice in primal

constraint space E" is one which can be represented
by a basic dual solution. It is said to be ambiguous
if it can be represented by more than one dual basic
solution. Such a slice is a hyperplane parallel to

CX = 2Z2 .
(o]

It is worth a few words to clarify what is meant by
the statements that a primal basis represents a vertex and a
dual basis represents a slice, however well-known they may be.
A basis in ET does not, of course, really represent a point in
E". What is meant is that if one selects a linearly independent
set of m coefficient columns (which must exist by construction)
out of the total of m+n ei and Aj, then, for an arbitrary
assignment of values to the other n variables, a unigue solution
exists for the selected m. If the n arbitrary values are set
to limit values, then the resulting solution must lie on corre-
sponding bounding hyperplanes of the manifold, represented by
the equations Aix = b; and xj = 0 or L.. Lemma 2 says that
the set of rows for these equations must also be linearly
independent and, by definition, form the dual basis. Since a
set of n linearly independent hyperplanes in E"” define a point,
we call this a vertex. The m basic variables represent
unnormalized distances from the other hyperplanes. The fact
that they represent a unique linear combination of vectors in

m . . . .
E" 1is only a convenient viewpoint.

The viewpoint for the dual basis is in terms of n linearly
independent hyperplanes for which a unique solution exists,

given that the other m dual variables are set to zero. Actually,
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both viewpoints are equivalent. Hence we shall not try to
prove a lemma to the effect that every slice contains at least
one vertex; this is really only a tautology since a dual
solution is only defined by reference to a primally-defined
vertex. However, we will show the uniqueness of the

complementary definitions.

Lemma 4: Every B R¥ and L* (taken as a set) imply

17 M 1

a unique N1 and conversely.

Proof: For summary purposes, we restate the definition
of a dual basis. Given a primal m x m basis B, and an

assignment of limit values R# for nonbasic u . L#

for nonbasic Xj’ the complementary dual basis is the

following n x n matrix N1:

If B., =A, and u, = 0 , then NJ = Al ;
i1 j i 1

if B,., = A, and u, = R, , then N3 = -at ;
i1 3j i i 1

. _ I B

if Aj £ B1 and xj =0 , then N1 E ;

if A, ¢ B, and x. = L, , then NJ = +g .
] 1 ] J 1

Clearly the assignments are unambiguous and complete,
and therefore reversible, as follows.

Given a dual n x n basis N1, the complementary primal
basis B, together with assignment of limit values for

nonbasic primal variables, is:

s | =
if N1 E ’ then Aj 4 B, and xj 0 ;
; J_ L] - .
if N1 E ; then Aj £ B1 and Xj Lj ;
if N3 = at then B., = A. and u, = 0 ;
1 i1 Jj i
1 j——:i' = =
if N1 = -2 P then Bi1 Aj and u, Ri

If any B, remain unassigned, they are filled with e -
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This characterizes B R* and L¥*¥ completely and unambigu-

17 M 1

ously (except for ordering of Aj in B positions not filled

with e.).
i
Lemma 5: If there are two distinct optimal vertices, then
G0 is ambiguous.

Proof: Let Pé1) and Péz) have optimal bases B1 and B2

together with their R¥, Lf and Rg, LE. Since x1 # Xy

there are corresponding dual bases N1 and N2,

However, since (W1,d1) = (ﬂz,dz), as computed by B1 and

also distinct.

Bz, Y=Y, and contain common zero values which span the
differences in rows between N1 and N2. Hence G0 can be

represented by either N1 or N both of which are feasible,

’
i.e., G0 is ambiguous. :
It is difficult to attach a meaning to "two distinct optimal
slices". However, there is an analogous phenomenon, as has
already been illustrated. Note first that, if m > n and all Aj
are linearly independent, all Aj may be in B. In this case
—In—J disappears. However, N is still nonsingular and unambig-

uous, provided proper identification of the i-indices is

maintained. The assumption that all e; in B are in their home

positions is critical.

Note further that if m > n (see Figures 2a to 3), then
the rows Ai must be linearly dependent. However, the phenomenon
under discussion does not depend on the linear dependence of
the Ai. Even if they are independent, the total number of rows

available to N for exchange must be dependent. Let us count

them. min max
(a) m rows Ai less number of equality constraints 0 m
(b) as many rows —Ai as there are finite R.l 0 m
(c}) n rows -gJ n n
(d) as many rows Ej as there are finite Lj 0 n
Total n 2(m + n)

If there are n, then only n - m rows of N can be exchanged.
This can only occur if m < n and all Al are independent (or if

m > n with m - n redundant but consistent equality constraints).
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In all cases, however, the number of rows available to N is
greater than the number of available positions.

Consequently, not only can more than one N represent the
same hyperplane as shown in Lemma 5, but dual solutions may
also be distinct (not merely ambiguous) and some may be feasible
and some not. This is different from the situation noted with
respect to vertices and primal bases, and deserves further

analysis.

Multiple Sheets for Functional Cuts

The reason that distinct dual solutions represent the same
hyperplane is clear enough algebraically: we have more than
n hyperplanes given in E" with which to represent a specific

hyperplane. If we return to the extended dual matrix equation

B A
(m,d) = (c,e)
- n

the ambigqguity disappears formally, since we have a nonsingular
system of m + n equations in m + n variables; this has a unique
solution. If we multiply both sides on the right by the column
{0,x} for corresponding x, we get the identity

(TA - d)x = ¢cx = 2

However, T is determined by the definition of B (which implies

c) and x is determined by B, R* and L*, whose determination is,
of course, the whole problem. Since the specification of B, R*
and L* is uniquely equivalent to the specification of N, we learn
very little from the above identities except as a means of
remembering complementarity. While we are at it, we may as well

display the dual identities:

B A B b - R*

-1 {|L* - L*
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Multiplying both sides on the left by the corresponding (w,d),

we have
)
(c,c) = (b* + AL*) - dL*
< Lk
or
cB + cL* = (b* + AL*) - (7mA - c}L* = 7b* + cL* = z

Note that here we had to use both m and d, whereas above we
used only x. The reason for not using u is that it is subsumed
in B and R* and keeps hiding, so to speak. But it is exactly
the alternate possibilities for u which cause distinct dual
solutions to represent the same hyperplane. In other words,

it is not sufficient to specify which Xj go in the basis: we
must specify which u; go out. Anyone who thinks the primal

slacks are not an essential part of the problem is mistaken.

One way to resolve the ambiguity of distinct dual solutions
is to allow the possibility that a hyperplane may consist of

multiple sheets.

Definition: A slice has multiple sheets, or briefly is

laminated, if it can be represented by two or more dual
bases whose solution vectors are nontrivially distinct,
i.e., have different numerical values. A sheet is feasible
if its dual basis has a feasible solution vector. A
laminated slice is feasible if all its sheets are feasible;

it is potentially feasible if some sheets are feasible.

Lemma 6: If any slice G is laminated, some vertex P
on G is ambiguous.

Proof: Let N1 and N, be two adjacent dual bases which

2
represent G with (W1,d1) # (Wz,dz). These imply two
primal solutions represented by the sets Bt' Rg, LE
(for t = 1,2) which have the same value for z. These

cannot differ by a change of bound since then the (Wt,d)
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differ only in one sign reversal, say for ds, and z would

change by tdsLS # 0. Hence B1 # B2. But since the dual

solutions change, ¢ # 0 and so ds # 0. Therefore 8 = 0

and B1 and B, are ambiguous.
In the preceding proof, the concept of adjacent dual bases was
used together with the assumption that these imply primal bases
differing in only one column. These seem obvious without formal
definition and proof since one can only define dual bases for
multiple sheets by going from one such B
B

1 to another such as
2° However, the lemma is somewhat more than a tautology since

the proof also gives the following non-obvious result.

Lemma 7: Multiple sheets are never implied by two primal

solutions which differ only by a change of bound.

Furthermore, the converse of Lemma 6 is not true since P may
be ambiguous without implying a change in (w,d). All we can
say is:

Lemma 8: If some P on G is ambiguous, then G is either
laminated or ambiguous, according as the bases for P give

different dual solutions or not.

Clearly individual sheets may themselves be ambiguous. Suppose
G contains two distinct point P, and P, but P, is ambiguous

1 3 1
with bases B1 and B, which give different dual solutions.

Suppose further that B, gives the same dual solution as B2.

3

Then N1 and N2 represent different sheets, but N, and N

2 represent

3
the same sheet. We also have the following.
Lemma 9: If G is laminated but not ambiguous, then G
contains exactly one ambiguous vertex.
Proof: Since G is laminated, there are two or more

N, which give Ye which differ. Since G is not ambiguous,

t
no two Y, are equal. Each Nt implies a primal set Bt, Ré,
L* By Lemmas 5, 6, 7, all primal sets represent the

b
same point P and do not differ by change of bound. Hence

the Bt are different and P is ambiguous.

Thus, in summary, G is ambiguous if and only if it has multiple

vertices. If G is laminated, it has ambiguous points. 1If it
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has ambiguous vertices, then it is either laminated or ambiguous,
or both.

We have still to explain (1) why we cannot get from an
ambiguous point to all adjacent points from all representations
in one step, and (2) why some pairs of dual solutions combine
linearly along an edge and others do not. Actually the two
questions are one and the same. 1In Figure 2a for example, the
point B is ambiguous and has three bases. The points P, C, E
are unambiguous but each pairs up with one of the B bases for
dual solutions, and with two of the B bases for primal solutions.
The points Q and R cannot be represented by basic primal
solutions but, since they all lie on Go' they all have the same
dual solution. 1If one tries to compute this by interpolating
between B and C or between B and E, one must use the proper
pair of edge ends.

if Gp is the slice through B, then it is laminated, with
three sheets, and also is unambiguous since no other vertex
lies on it. Each of the B bases can be regarded as representing
superimposed points on the three sheets. Each sheet has a dual
basis which is adjacent to the dual bases for Go containing P,
for G, containing C, and for G

C E
basis designations for identification, we have the following

containing E. Using the primal

adjacency relationships:

B(1) is dual adjacent to E, uy, is fixed (nonbasic), and uy

and u, can interchange;

B(Z) is dual adjacent to C, u, is fixed (nonbasic), and u,

and u, can interchange;

B is dual adjacent to P, u, is fixed (nonbasic), and u

(3) 2 1

and u, can interchange.

Hence R is between B(1) and E, but not between either B or

(2)
B(3) and E. Note that this adjacency is characterized by which

u, is out of both bases, i.e., which A’ remains in both dual
bases.
Nevertheless, B(2)’ for example, is adjacent to C also

since there is a point between R and E on G The dual solution

c
for this point can be interpolated between B(2) and E, i.e., it

is the dual solution for C and GC'
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Several other interesting relationships can be gleaned

from this simple example. We point out just one more. Consider
the vertex Y. It is unambiguous and has a dual basis for GY'

Y is primally adjacent to E, C and P, and in fact to X. Can

we extrapolate from B(1) past E for a point on the intersection
of this line and GY? The answer is no in any meaningful sense.
The (x,y) coordinates are (6/7,18/7) = 10/7E - 3/7B. If one
uses these proportions for the dual solutions, a nonbasic dual
solution is obtained entirely different from the dual solution
at Y. For one thing, there is no way to make dx go to 1, as

it is at Y. The nonbasic dual solution has 4 = 0 and
™= (0 -3/10 5/2 7/10) ,

which multiplied onto b gives the correct value of 6. Thus

the difficulty does not arise from the extrapolation. For,
suppose there was a vertex beyond E with z greater than 6.

We still could not interpolate and obtain (w,d) for Y since

dx would remain zero. The trouble is that one cannot interpolate
unless there is cancellation of one of the n + 1 dual variables
of Lemma 3. Consequently, dual adjacency, to be fully useful,
has a somewhat stronger requirement than has hitherto been
noted. The edge ends behave properly since ds and dr must be
zero at opposite ends. But unless ds was zero initially (and
hence both are zero along the entire edge), neither is zero

at any intermediate point. Hence a third dual variable must

go through zero, i.e., either be zero or change signs, for a
valid interpolation. This cannot occur if both edge ends are
dual feasible, unless both are zero in the same positions. 1In
general, one can only hope for valid interpolation if one edge
is dual feasible in DHS and the other is in PHS and hence not
dual feasible. This is particularly true if one stays on a
trajectory which is either primal or dual feasible. Since
extrapolation requires one weight to be negative, the opposite
is roughly true: both edge ends must be feasible or infeasible.
(No such situation occurs in Figure 2a.) However, extrapolation

incurs other considerations which we will not discuss.
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A converse question now arises which is more interesting.

If a third dual variable, nonzero at either end, vanishes

along an edge, must this point be on a slice? The answer is

yes!

Theorem 5: If B1 and 82 are edge end bases for P1—P2,
dual adjacent, where AS replaces Br1 to form Bz, and
a third dual variable dt (or nt) is nonzero at each
end and vanishes on the edge, then the point at which
dt (or nt) vanishes is on a slice defined by a vertex

basically adjacent to both P1 and P2.

Proof: Since d # 0 and dt2 # 0, but for some 0 < p < 1

t1
and g = 1 - p, pdt1 + th2 €1 and dt2

have opposite signs. Since dt2 - dt1 # 0, then ¢ # 0,

and hence ds1 # 0. Since B1 and 82 (i.e., P1 and P2)

are distinct, then 8 # 0 and hence B8 is not at a

= 0, clearly d

ri
limit. Clearly az1 # 0 and, since dt changes by

d =d - "s81 r ,
t2 t1 - %1
o
s1
then ai1 # 0. Now consider ¢t = dt1 # 0. 1If At reptaces
r
“e1

Br1 in B1 to form B3, a different vertex P3 is obtained
in which dt3 = 0. P, and P, must be distinct

1 3
since 6 = Br B Kr # 0. Hence P1 and P3 are basically
r
%1
adjacent. B3 has a dual basis N3 for a slice containing
pP1 + qP2. It remains only to show that P2 and P3 are
basically adjacent. Now azz = %51 # 0.
r
%1
Hence As can replace At in B3 to give B2. Since z3 = pz1
+qz2 # Zys the 6 from B3 to B2 is not zero, and so P1 and

P3 are distinct and hence basically adjacent.
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PART III: SOME ADDITIONAL SIMPLEX PROCEDURES AND APPLICATIONS

Exploring the Vicinity of Optimality

Definition: The vicinity of optimality, or Vo' is the
set of all solutions which are either optimal or adjacent
to an optimal solution, with either dual feasibility
maintained (z > zo) or primal feasibility maintained
(z < zo).
The term "neighborhood" is to be particularly avoided since
Vo may encompass a substantial part of E".
We give a procedure for stepping through all solutions in
Vo’ each just once, although the path to any particular one may
not be the most efficient. It is assumed that an optimal solution
, R¥

lo) oo’
L;o. This basis must be saved so that the procedure can return

has been obtained at some vertex Poo with primal basis Bo

to it from time to time. This will be termed "returning to Boo“.
We first define certain acts (i.e., subroutines) which are used
repeatedly. The identifying indices - £, g, p, 9 - can be
assigned or defined in any convenient way.
Act 1: Given some dual feasible primal basis ng, etc.
1) In the B for ng, search in order on i for Bi
at a limit. If there is none, Gg is not laminated
with respect to the current ng; exit. Else set
r = i for each such Bi in sequence.

2) For i = r, determine £q- If w1 = 0, proceed to

next i. Else 2 determines some j = s, and i
was (or could be) generated in the process.
3) Por j = s, (m,d) + (Wr,ar) gives a feasible dual

solution on a sheet Ggq at the same vertex ng.
Note that the row r is not reusable since, if the change

of basis were actually made, ds = 0 while Br remains at

a limit. Also, z does not change since 6 = 0.
Act 2: Given B__, etc.
_ 00
1) 1In the B for Boo' search in order on i for Bi not

at a limit. In this process, bounded basic
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3)

b)

Act 3:
1)
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variables must be treated as follows:
if Bi 0, treat it as not at gi;
if B; = L;, treat it as not at 0;

if 0 < B, < L;, two cases exist:
g, not at 0 , B; not at L; -

If no such Bi is found and there are no upper

limits in the problem, it is trivial and Vs is

the origin. If there are nonbasic variables with
upper limits, but no basic ones, then all Bi =0

and the constraints are equalities. Resolve the
problem with u; so specified. Hence we assume that
some B, not at a limit is found. Set r = i for each

such Bi in sequence. Regard this as some p-case

(possibly two).

For i = r, determine ¢2. I1f ¢2 # 0, add the triplet

(Az,r,s) to a g-list where

g B, - L
Az = —£—-ds or Az = L T ds
-of r
s

or both if Br is intermediate between 8, L.- Then
proceed to the next i.

if no ¢2 = 0 is found, Go is unambigquous with respect
to Pop' Else, if ¢2 = 0, make the change (or changes)
of basis indicated: AS replaces r-th basic column
(with possibly two es). This solution is itself

an adjacent primal solution on Go'

Execute Act 1 for Bop' When through, return to

Boo'

Given some primal feasible basis qu, etc.

In the vy for N search in order on k for y = 0.

fq’
If there is none, Pe is not ambiguous with respect
to the current qu, exit. Else set s = jk for

each such y, in sequence. (j, is some primally non-

basic u; or xj index.)
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3)

Act 4:

1)

2)
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For column s, determine 61. If 61 = 0, proceed

to the next k. Else 61 determines some i = r (as

was necessarily generated). Note: if Xg changes
bound, r = 0.

For i = r, B - eas (Br = Xg + 8 if r # 0) gives a
feasible primal solution at some vertex P on

fp
the same sheet qu
Given B__, etc.

0o

In the y for Noo’ search in order on k for Yk # 0.
If none is found, the problem is trivial: any
primal feasible solution is optimal. (More
accurately, VO is the entire simplex F.) Hence we

assume that some Yy # 0. Let s = for each such

bl
k
Yx in sequence. Regard this as some g-case.

For column s, determine 6,. If 9, # 0, add the
triplet (Az,r,s) to an f-list, where Az = —ads, and
ds is ¥y (r = 0 if a change of bound). 1In

either case proceed to the next k.

Steps of the Main Procedure:

1)

3)

Execute Act 1 for BO

This gives the optimal

o
solution on all other feasible sheets GOq (if
any) at vertex Poo‘

Execute Act 2. This gives all optimal solutions

on all feasible sheets GOq at all other vertices

Pop

(if any). It also generates a g-list.

Sort the g-list in ascending order on Az. (This

is optional.) Assign g-indices to items of the

resulting list. (g # 0, already used.) If the

list is empty, then no vertices exist in DHS, i.e.,

no feasible slices with z > z- (This could

conceivably happen if one constraint was itself

cX < 2

change of basis and call this B

0.) Else, for each g, make the indicated
go” at vertex Pgo'

This solution is itself an adjacent solution to an

optimal solution and is dual feasible. Now execute

Act 1. This gives all other dual feasible solutions,

i.e., on sheets G (if any), at vertex P
99 go
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4) Execute Act 4. This generates an f-list.

5) Sort the f-list in descending order on Az. (This
is optional.) Assign f-indices to items of the
resulting list. (f # 0, already used.) If the list
is empty, then no feasible vertices exist in PHS.
(This could conceivably happen if one constraint was
itself cx > zo.) Else, for each f, make the in-

dicated change of basis and call this B at

fo'

vertex P This solution is itself an adjacent

solutionfio an optimal solution and is primal feasible.

Now execute Act 3. This gives all other primal

feasible solutions at vertices pr on the same sheet G
Note: If in step 3, two or more successive g-indices have

fo*

the same value of z, these can be doubly indexed as gp. Thus

p runs through all sheets of slice g. The solutions are then
identified by gpg. If in step 5, two or more successive f-indices
have the same value of z, these can be doubly indexed as fq.

Thus q runs through all sheets of slice f. The solutions are

then identified by fgp.

Resolving a Revised Model from an 0ld Basis

Suppose we have an old basis B, for a revised model and,

from other considerations, we are n;arly sure z, > Zys where
these are values for the revised model at B1 and optimality.
Four situations can occur.

A. 81 and Y1 are both feasible. Solution is optimal.

B. 81 is feasible, and Y4 is infeasible. We were wrong
and z, < 2,- We can continue with Phase 2 of the
simplex method. However, maybe we were not completely
wrong. If we can find a B2 adjacent to B, such that
82 is infeasible and Yy is feasible, then by Theorem 5,

we can determine a Bo immediately from the last Yy

which changed to a feasible value in moving from B, to
B2.
C. 81 is infeasible and Y4 is feasible. We were right but

the solution is not optimal. We can continue with the
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dual algorithm. However, maybe we are closer to the
solution than we know. If we can find a B2 adjacent
to B, such that 62 is feasible and Yz is infeasible,

then1we can again use Theorem 5.
D. 31 and Yy, are both infeasible. This is most likely
unless the revision was a simple change in the rim
(c or b). We could apply Phase 1 of the simplex method
to get primal feasible and then Phase 2 to get optimal,
which is the standard approach. But maybe we can do
better.
The use of Theorem 5 in situations B and C above is not likely
to be very helpful since the BO that is found is adjacent to
B1 anyway. However, in situation D above, if our guess is right
that z, > 2, (it could happen that z, = z, even though doubly
infeasible), then Phase 1 and Phase 2 go from DHS to PHS and
back to Go' It would be helpful to know how we are infeasible.
We might, for example, be on an infeasible sheet of Go outside
the bounds of F, in which case we are fairly close to optimal.
If this were true, then we should look for both P1 and G1 to be
ambiguous, in complementary ways. More precisely,

(1) some B; is at a limit, some dj (or ﬂi) is infeasible,

G; #0and dj >0 ;
1

_aj

(2) some Bi is infeasible by Bi(= Bi if <0, = By - Ei

. S , i
if Bi Ei)’ some dj (or ﬂi) is zero, aj # 0 and

% > 9.

1
%3

Note that (1) can occur for situation B, and (2) for situation C.
It may be worth two BTRANs, two pricing passes, and an FTRAN to
check this out. It can be done as follows.

. If all 6i = 0, set r = 0.
Compute 7 and, if r # 0, then T

1) select i = r by max |§;

2) Price the entire matrix for two columns, As using q

and, if r # 0, then At using 7T and at. If r = o0, At

is ignored.) AS is selected normally, i.e., largest



3)

4)

5)

6)

dual infeasibility. At is selected by dual pricing

modified as follows,

r
a) If 5r < 0, then Atat < 0 and br

Hence Atdt > 0 required, i.e., dual feasible.

> 0 are required.

b) If ar > 0, then Atai > 0 and LS 0 are required.
Hence Asds > 0 is required, i.e. dual feasible.

Thus As is selected among dual infeasibilities and AL

among dual feasibilities with the sign requirement

on the denominator.

I1f either As or A, is found, FTRAN them to o and o, .

a) 1If no As is fgund, the solution is dual feasiblz.
If r = 0, the solution is also optimal. If no
As is found but r # 0, revert to dual algorithm
starting with At.
b) If no At is found and r # 0, there is no feasible
solution since |6r| cannot be reduced.
c) If AL is found but ey # 0, then:
(i) 1if no As is found, continue with dual
algorithm; or
(ii) if no As is found, continue but set flag
for step 6 below.
d) If At is found and Py = 0, continue.
If here, then As should exist (or else the procedure

terminated or reverted to the dual algorithm). Compute

es. If es does not exist, then the solution must be
primal feasible and therefore unbounded. If SS exists
but is not zero, continue but set flag for step 6
below. Else let i = g be the row on which es won
(cannot be a change of bound since 8 = 0).

_ B
Let 8, = _EF' (at exists or should not be here.)
t

Compute the reduction in primal infeasibility if A

o

t
replaces r-th basic vector. Call this AF, negative

if there is a reduction, or positive if there is an
increase.

Compute ﬂq(BTRAN). Now do another pseudo-pricing
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pass to compute the reduction in dual infeasibility if AS
replaces g-th basic vector. Call this AG, negative if there
is reduction, or positive if there is an increase.
FLAG: Step 6 is omitted if either ey # 0 or BS # 0,
and decisions are made as follows:
a) if es = 0, and @ # 0, use As (as in primal algorithm);
b) if es # 0, and ¢

t
c) if es # 0, and wt # 0, select As or At by choosing

= 0, use At (as in dual algorithm);

the min (|eSdS|,|¢t&r|) which changes z as little
as possible;
4a) if Bs = ¢t = 0 but both AF and AG are nonnegative,
revert to Phase 1:
e) else, choose min{AF,AG) and make the corresponding
change of basis.
7) Repeat steps 1 to 6 above as long as necessary or
possible unless 6(c) repeats. Then revert to Phase 1.
Note: The reduction in dual infeasibility in step 6 is carried
out as follows:
Let d. = nA., and at = nta.. Compute the amount of
infeagibiligy in d; (possibly 0) and the amount in dj + d§
(possibly 0), using absolute values; the second minus the

first is the change. Sum over all j (including 1i).

Examples: (1) X. at 0. dj = =3, dj + dg = 5. Reduction
is lo| - |-3| = -3.
(2) X. at L.. d. =2, d. + a% = 4. TIncrease
] J ] J ]
is 4| - j2| = 2.

Special Models with a Symmetric or Nonsingular A-Matrix

A. Maximally Independent Columns

Suppose m = n. Let w be a column of all ones and ~ denote
transpose. Now set b = Aw, and ¢ = W'A. Suppose A is also non-

singular. Then an optimal solution is

Aw

w'A
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But this is the only solution. For suppose there is an adjacent
vertex with e replacing Ar' Then to maintain primal feasibility
we must have ag > 0 so that

r
r
S

6 = > 0

o

but to maintain dual feasibility we must have az < 0 so that

Obviously this is impossible.
Now suppose A is singular, let us say that only m-1 of the

columns are independent. Without loss of generality we can

assume that a basis B contains A1""’Am—1 and en” Then if B_1Am

m_

=0, e = 0. We still know a feasible primal solution, Aw = b,

and a dual feasible solution, w'A = ¢, so that a basic optimal
solution must exist. Furthermore, Zax = w’ Aw. The representation
of column Am in terms of the basis is the following:

m-1 .
I A -A =0
j=1 7
m-1
I A, + A = b .
j=1 )
If all a% > -1, we can add the equations to get

. - . ro_ o sord
with all Bj =1+ a2 > 0. If some o < 1, let o mln{am}

and replace Ar with Am in B. Then

a >0 , xr = 0 and is nonbasic .



-58-

We can assume this has been done so that Am is not in B, but en
is in B. Hence we have a feasible basic solution.

Now since Am is a linear combinat%on of the other a,, A™
is a linear combination of the other A'. Since A" is itself

. . m
in the basis except for ar we have

m-1
X AlnT+Am=0
i=1
m-1
ZA1+Am=c .
i=1
If all w? < 1, we can subtract the first equation from the
second and have M, o= 1 - WT > 0. 1If not, let ﬂz = max{ﬂ?} and
replace e with eg- Then
_ - 1 m . .
T =W - T >0 , Ty = 0 and is dual nonbasic.
Ts
Note that this does not affect B since Bm =u, = 0. Hence, the

simplex method will put m-1 linearly independent columns in
the basis. It is easy to show that, in fact, any set of m-1
columns constitute an optimal basis with an appropriate e, if
normal simplex rules are followed. Hence one can explore the
multiple vertices on Go (which is single sheeted but highly
ambiguous) to adjust the xj to a desirable pattern.

Multiple applications to reduced systems show that the
process works for any rank of A. 1In fact it is just an
application of Theorem 1 of the simplex method applied to both

the primal and dual problems.

B. Symmetric A-Matrices

Suppose A is not only square but symmetric. Also assume
that A is nonsingular and ¢ = b”. Then if the entire A is

the basis,
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If x = A_1b > 0, then this is an immediate solution. All we have
is an unconstrained optimization problem except for x > 0 and,

if this is automatically satisfied, we are through. Suppose

x has negative elements; then we are doubly infeasible. For,
suppose X, < 0, then T < 0 also, since ﬂr = X. (assuming normal

r

ordering of the basis A). Now if LIRS 0, then bringing in u

r

]

gives 6 = —% > 0; but ¢ = ﬂrr < 0 so dr becomes infeasible., If

i -7

r r
ni > 0, then ¢ > 0 but u, < 0. Suppose X is the only infeasibility
and we bring in u. feasibly. After the change of basis, ai <0,
d_ < o0, X, =m. = 0, and u, > 0. If we now try to bring in X again
it must replace some other x_for which ag > 0. One must exist
for otherwise X, is unbounded and z + «. But x“Ax without con-
straints is an upper bound. Before the change of basis ng > 0
already since pivoting on a negative element does not change

signs elsewhere in the column. So we should have brought in

uq in the first place.
If we had to bring in u, infeasibly, then we must replace

it with some ug for which n: < 0. (This must also exist.) But

before the pivot, it had an opposite sign (row divided by negative

pivot) so we should have brought in ug in the first place. In
such a situation it is difficult to know, a priori, whether one
should use the primal or dual algorithm. (Good ©ld Phase !

will always work.) But, in any event, symmetry cannot be main-
tained.

If A is singular, and we attempt to invert it, we will be
stopped at some point for lack of pivots. 1In this case we
cannot assume that e, is out because Ar is in. But, in general,
symmetry can be maintained only if a nonsingular, symmetric
submatrix gives feasible values automatically. 1In effect, we

divide the system into three parts:
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5
b
v

bs for A, out
17 =M i

< b, for e; in

2

double equality for A, in and e, out

C. The Matrix T + HHY

Lemma 10: Let H be any real p x q matrix. Then both
Ip + HHT and Iq + H'H a;e nonsingular. T

Proof: Let J = Ip + HH® and K = Iq + H'H. It will be
sufficient to prove that J is nonsingular since K will
follow from symmetry. Let x be any real p x 1 column
and y = HTx. Then y is also real. Suppose Jx = 0.
Then, a fortiori, x“Jx = 0. But x"Jx = x"x + ¥’y

and both terms are nonnegative. Hence
x'x =y’y=0
and hence x = 0. Therefore the columns of J are linearly

independent, i.e., J_1 exists.

Lemma 11: Let H be any real p x g matrix. Then the

matrix
Ip H
S =
T
H -1
q
is nonsingular.
Proof:
T
I -H I + HH
P P
S = .
-1
1_||a® q
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The first factor is clearly nonsingular and, by Lemma 10,
so, 1is the second
For the S of Lemma 11,

J 0
Ss =
0 K
and so
T
572 = -1
K
and
571 s lu
s =57 = 1T =1
K 'H -K
but
g~! HK !
s7! = 5572 = T -1 1l -
HJ -K
Hence
gV - .
Multiplying on the right by HT
g T = I, - g7V = ux a7
or
gV =1 - wux'eT .
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Similarly, multiplying on the left by HT gives

-1 T -1
K =I_ - HJ H
d
These relationships are apparently rediscovered frequently.
Jewell2 gives various references. He states that the existence

of one inverse implies the existence of the other and both exist

when either does. But, both always do, which seems to have

escaped notice.
Suppose for some given b and c, we want to maximize cx
subject to the following:

x>0

Hx

~
I

x + H'y <b

If ¢ = b” and we ignore x > 0, then x = K—1b gives

z = TAXx = X“Kx = x"x + y'y = max

Yy = Hx

x + HTy = Kx =b .

One interpretation might be, for example:
x is a change in independent variables X;

y 1s a change in dependent variables Y:
Y.

H is the matrix of partials §§£ at X;

J

2 ; s
W.S5. Jewell, rwo Classes of Covariance Matrices Giving

Simple L?near Forecasts, RM~75-17, International Institute
for Applied Systems Analysis, Laxenbury, Austria, 1975.
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b is some upper limit, as shown, on the combined changes.

1

If X b > 0, we are satisfied. 1If not, and we solve the implied

LP problem and assuming that it is feasible, we get some 1 and

x such that

zZ = mMKx = 1x + (ﬂHT)y = max .
The strange looking term HTy might arise as follows. Suppose
we want to limit the sum of squares of changes in Y, i.e., y~y,

to no more then some multiple p of the sum of squares of changes

in X, i.e., x“x, assuming some average change Ej for xj. Let b

be a column of constants (1 + U)Ej- Then

x'x + y'y < xb

is implied by the constraint
X + HTy <b

since
TKX < x“Kx .

D. Eliminating the Null Space

Suppose we have a square matrix A which is singular and
we want to extract the "best" set of linearly independent

columns. Observe first that, if we attempt to invert A, we



-6U-

will be stopped after p basis changes from I because of a
lack of pivots. We can assume (I,A) has transformed to the

following, where g = m - p

_1 p
A 0 I 1 0 A A
p p % | .| P q
o9 |1 0 0 0 I a9 ad .
q q
Here
« =A'a ad = -a% 7"
q P g p
and
anq =0

If we form the g columns

these are linearly independent and span the null space of the
transformation A. 1In other words, these are eigenvectors for

the g eigenvalues of 0. For

The trouble is, there are 2 ways of selecting the null space.
We should like to do so in sucn a way that the columns in A

are as "linearly independent as possible", in other words sg
that the columns in Aq are as similar as possible, and the rows
in A9 are as similar as possible; or better, the columns of A
are as orthogonal as possible. It is perhaps worth pointing P

out that the 0 block below aq will not compute identically
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zero but will be "noise". This means that the exact value of
p may be uncertain. Furthermore, I_ may not be clean.

Suppose we had the best choice and formed the matrix

I o
p q
Q= -
0 -I
q
Then, noting that Q_1 = Q,
I a A A I [}
-1 p q P q P q
Q AQ =
0 -1 a9  a9fo -1
q q q
B q q
A + o A Aq+0th Ip aq
q a
-A -A 0 -1
L q q
A + and Aaq+aAqa-A—aAg
L -a4 294 + a9
q q
Since Apaq = Aq' Aqaq = Ag, the upper right term is
A +aal-a -oad=0

q Qa9 q 949

and the lower right term is 0. Hence
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_1 q _1
Let A=Q AQand A_ =A + aA*=A_+ A
- Q —P p q P

be another nonsingular matrix P such that

Aqu. There must

where Dp is a diagonal of the nonzero eigenvalues. Furthermore,

P must be of the form

P
P = , P1 nonsingular
P2 I
Then

p lap 0

-1 1 —p 1

P A_A_P=
- -1 - a9
(PyPy A, = AT)Py O

where the lower left corner is zero. Since P.I and ép are both

nonsingular,

= a9

]
]
>

I

p. = a% 'p
Zp
Finding P1 is a standard eigenvector problem which we will not
pursue. However, note that all the above manipulations depend

heavily on errors introduced by the two matrix products

a a9 = 2715 a9
g P Qg

qg,-1
A°A A
q P q

>
Q
Q2
I



-67-

The first is p x p and the second is q x g; both have the same
rant r < min (p,q). However, the assumption that A_is the
best choice means that the rows of AY and the columns of A
are the worst choices and the rank r is fuzzy. Moreover, if
we imbed A in an LP model, the rows a4 are the ones with zero
values of 7 and the columns A9 are the ones with zero values
of x so they contribute nothing to Z.

If we set up an LP problem which is very easy
to solve and rely on the robustness of MPSs, then we should get
a fairly good selection for Ap. As in Section A, set b = Aw.
However, if any bi < 0, multiply the row through by -1. We
are free to do this since we do not care about the solution
and it will not affect rank. Call the result A and b. Then
set ¢ = w'A. Since x = w is feasible, z > w'Aw. Since m = w”
is feasible, z < w’Aw. Hence we know z should go to w’Aw,
which is computed automatically by applying w” to b when
forming c¢. 1In fact by presetting ~2g = -w’Aw, we know z

should approach zero from below. Now solve
max ¢x - z, subject to
ax <b , x>0 .

Starting with B = I, the solution: u = b, and x = 0 is
immediately feasible so there is no Phase 1. Assuming that
no row of A is all zeros (which should be discarded a priori),
some rows may still sum to zero. (If all rows, or all columns,
sum to zero, there is no hope for a solution, and the problem
will have to be partitioned or scaled.) Hence zero § may occur.
Dual iterations should be applied to such rows first, as though
they were infeasible, in order to bring in KS with negative
elements in these positions (which must exist). This should
be done until either all such rows are pivoted or no good
pivot can be found.

As z approaches 0, all basic u; (in B) will approach zero
and all d. for nonbasic xj will approach zero. This means that

almost p columns are in the basis. When all these values are
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ambiquous, i.e., within standard tolerances of zero, the re-
maining columns can be transformed, i.e., a_ and ag computed.

If any element in ag

provides a reasonable pivot, the column
should be brought in. If not, we can assume p columns are in.

The matrix Q is then essentially in hand.

E. Minimizing Sum of Absolute Values of Deviations

For completeness, we describe the use of LP to minimize
the sum of absolute values - rather than sum of squares - in
fitting a matrix-vector product to a given column. This has
been done off and on for many years, sometimes awkwardly.

Suppose we have a matrix A with m > n, and a column b,

and wish to find a column x such that

z |Aix -b,| =min .
i

This can be stated as follows:
minimize w'u + w'v subject to
u-v +AXx =Db
u>0 , v>0 .
Note that x is unconstrained. If the MPS can handle free x.,

this is the place to use them. Otherwise, the constraints

must be written

]
o

u - v + AX - Ay
u>0 |, v >0 , x>0 , y >0 .

Note that u”v = 0 and x“y = 0 since not both e, and -&; and

not both Aj and -A. can be in the basis. If free xj are used,

then x - y is combined in one vector x. We cannot do this for
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u and v since free logical variables can never leave the basis.

There are advantages and disadvantages to using free xj and

also to not using them.

Using free xj

a)
b)

c)

Not

A-matrix need not be duplicated with a change of sign.
Any basic xj can change sign on any iteration and can
enter the basis with either sign.

Disadvantage: once x. is basic, it can never

leave even though some other X should replace it for
a better (i.e., more robust) solution.

using free xj

a)
b)

c)
We will

Now

A-matrix must be duplicated with a change of sign.
Distinct iteration is required for xj to change its
sign, either —Aj for Aj or vice versa.

Advantage: a basic x. can leave the basis.

assume that free x. are used.

the cost coefficients for u create a problem since the

cost row is included as a row 0 in most computer codes and

{eo + e;

} does not form an orthonormal set. This is easily

fixed by subtracting all rows i > 0 from row 0. We then have

minimize 2w’v - & (% aij) subject to
j i

-v + Ax > b

v >0 |, x free .
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Graphically, the model is

( 0 )(22...2)(-%...-%) = min .
Im —Im A u =
v
X

The constant -z, is - I bi' Noting that this is a minimization,

0
i
the result will be some u >0, v >0, and x, and a 71 satisfying

<2 all i,

' all J .

If m = n and A is nonsingular, then u = v = 0 and we have an
exact solution. If n were greater than m, then the condition
on ﬂAj cannot hold (in general) and the procedure would ter-
minate with an "unbounded solution" declared, or some other
nonsense. Using both A and -A would probably lead to trouble
also.

The value of 2z, regarded as a maximization, is

Z = =TV + TAX - L bi <0 .
i

At an exact solution, v = 0, w', and z = 0.
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Primal Solutions at points Shown

Y,
X Y Z
— O: 0 0 0
T a: 0 1 2
Y -D B: 1/2 3/2 7/2
P: 7/6 11/6 29/6
X: 3 0 3
\
g'\ \ c: 1 2 5
\'\ E N E: 3/4  9/4  21/4
R Y: 0 3 6
T Q\ C T: 0 5/4 5/2
P Non- Q: 17/18 35/18 29/6
~ Basic |S: 0 29/12 29/6
~ R: 29/42 87/42 29/21
T ~
H*f/ E \G
x .
:r* /// A ’*'ig
y;gg
6
%
S
n
J
d ) X
\ X
S :
_{ (Constraint Space) +
3 2
X Q>
o) N
max z = x + 2y subject to D = Dual Feasible Simplex: the line
= + y <1 through S and P plus open domain
-2x + 4y <5 above.
x+ y <3
-3x + y <0
- Dual Problem
X,y >0 . T . .
min y, + Sy2 + 3y3 subject to
+ 2y, - + 3 < =1
F = Primal Feasible Simplex: Y1 uyz Y3 Yy N 5
+ + +
Vertides: 0,B,P,X 1 Y2 T ¥3 T Yy =
Zoax = 3% at P If integer Y, are required, the

Figure 2a.

solution is Y.

Illustrated Model.
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Primal Feasible

Dual Feasible

U, 4, u, uy u; X y b LEQ u, u, uy; uy, x y g—w
Origin 0 Y{(arbitrarily from 0)
—
1 -1 =2 0 1 2 1 0 6
1 -1 1 |1 1 -1 -2 0 [-2
1 -2 4| 5 [ — 1 -y -6 0 [-7
1 1 @ 3 1 113
L 1 -3 @ o ‘ -1 1 €y o |-3
y replaces u, at 0 E (basic, dual feasible)
1 2 -7 0 0 1 7/4 1/4 0 21/4
1 -1 @ o0 |1 ztie 1 -1/2 X1/ © -1/2
1 -4 10 O 5 1-5/2 =3/2 © -5/2
1 -1 @ o |3 36 1/ 0 1| 9o/
1 -3 1 0 1/ =-1/4 1 3/4
L
B(Z)(degeneracy on u2) C (basic, dual feasible)
1 7/2 -3/2 0 7/2 1 1/2 3/2 0 5
1/2 -1/2 1 1/2 -1/2 1/2 0 1 1
-5 1 @ o o|l— | €3 1-1 o0 -1
-2 1 @ o 1 ~2 1 1 1
3/2 -1/2 0 1 |3/2 1/2 1/2 4] 1

|

8(3)(degeneracy on uu)

P (optimal)

1 -4 3/2 0 7/2 1 0 1/6
-2 172 (I 1/2 0 -1/6

-5 1 1 o |— 0 -2/3

@ -1 1 0 1 1 -1/3

J -1 1/2 0 1 13/2 0 1/¢

4/3
2/3
5/3
1/3
1/3

29/6
7/6
5/3
1/3

11/6

-

Figure 2b. Basic Solutions.

X < B £ N

£ £ X N

y
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u, u, uy; u; X Yy J b

Figure 2c.

Origin 0 T (both basic)
1 -1 =210 1 1/2 -2 0| 5/2
1 -1 1 |1 1 -1/ -1/2 0 |-1/4
1 -2 @) s |— 1/4 -1/2 1 | 5/4
1 M 1] 3 -1/4 1 3/2 0 | 7/4
1 -3 1|0 -1/4 1 -5/2 0 |-5/4
xl B1)
1 1 0 -1 10 17/10 -4/5 7/2
1 1 0 2| 4 0 1/10 ~2/5 1 1/2
1 2 0 (q 1 1 -1/5 -1/5 0
1 11|03 0 -2/5 1 3/5 1
3 1 0 0| 4 0 3/10 -1/5 11 3/2
Pl
1 1/6 4/3 0 |29/6)2
1 -1/3 1/3 o | 1/3|u,
1/6 1/3 1 |11/6ly
-1/6 2/3 10 | 7/6|x
-2/3 5/3 0 | 5/3|u,

Short basic, primal feasible path.
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S = 1/3T + 2/3Y

1/3( 1 0 1/2 0 0 -2 0 ) +
2/3( 1 0 0 2 0 1 0 )
= (1 0 1/6  4/3 0 0 0 ) = (m,Q)
1/3{ 5/2 -1/4 0 7/4 -5/4 0 5/4 1 +
2/3{ 6 -2 -7 0 -3 0 30}
= {29/6 -17/12  -14/3 7/12  =29/12 0 29/12} = {u,x}
R = 5/21B + 16/21E(B = B(z))
5/21( 1 7/2 0 0 -3/2 0 0 ) +
16/21( 1 0 0 7/4 1/4 0 0 )
= (1 5/6 0 4/3 -1/6 0 0 ) Infeasible
(B = B yy)
5/21( 1 0 7/10 0 -4/5 0 0 ) +
16/21( 1 0 0 7/4 1/4 0 0 )
= (1 0 1/6 4/3 0 0 0 ) = (m,4d)
5/21{ 772 0 0 1 0 1/2 3/2 } +
16/21{21/8  =-1/2 -5/2 0 0 3/4 9/4 '}
= {29/6 -8/21 -40/21 5/21 0 29/42 29/14) = {u,x}
Figure 2d. Dual-basic, primal-nonbasic solutions.
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B
3
A obj: y = max
1 -2x +y <0
2 -x +y <1
—|=—2K— —\—Ggex=2  ; x4y <3
Fb m 4x +y < 10
B
/ Uy Uy Uz uy o ou, Yy B
1 2/3 0 1/3 10/3
2/3 0 1/3 1 11073
X -1/6 0 1/6 5/3
Y
1 L -1/2 0 1 =172 -2
-5/6 1 -1/6 -2/3
0(0) R
uo u1 u2 u3 u X y B AAJ
1 0 -1 | o0 1 0 4/5 1/5 14/5
1 -2 O] o 0 4/5 1/5 1 |14/5
1 -1 1 |1 0 -1/5 1/5 9/5
1 1 113 0 -3/5 1 =2/5 -8/5
1 4 1 |10 1 6-/\% 1/5 4/5
— 7
(3)
0(114y in at 0 Po
11 -2 oo 1 1/3 0 2/3 2
1 -2 11]o0 1/3 0 2/3 1 2
-1 1 ® o1 r» -1/3 0 1/3 1
-1 1 ®, of3 -2/3 1 -1/3 0
-1 1 6 0 |10 | 10 £ 4
(1) (2) B
Po - Po AJ
1 -1 2 0 2 1 0 172 1/2 2
-1 2 0 1] 2 0 1/2 172 1 2
-1 1 1 1 0 -1 2T 1/2 1
2 -3 1 0 0 1¢3/2 172 0
g N,
0 4 0 3/2 -5/2 1 4

|

Figure 3.






