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PREFACE

In this paper, the author presents an algorithm for mini-
mizing the sum of a convex function and a concave function.
The functions involved are not necessarily smooth and the re-
sulting function is quasidifferentiable. The main property of
such functions is the non-uniqueness of directions of steepest
descent (and ascent), and therefore special precautions must be
taken to guarantee that the algorithm converges to a stationary
point.

This paper is a contribution to research on nondifferentiable
optimization currently underway within the System and Decision
Sciences Program.

ANDRZEJ WIERZBICKI
Chairman
System and Decision Sciences
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We consider here the problem of minimizing a particular
subclass of quasidifferentiable functions: those which
may be represented as the sum of a convex function and a
concave function. It is shown that in an n-dimensional
space this problem is equivalent to the problem of
minimizing a concave function on a convex set. A
successive approximations method is suggested; this

makes use-of:some of the principles of e-steepest-descent-

type approaches.

Key words: OQuasidifferentiable Functions, Convex Functions,

Concave Functions, e-Steepest-Descent Methods.

Introduction

The problem of minimizing nonconvex nondifferentiable func-

tions poses a considerable challenge to specialists in mathe-—

matical programming. Most of the difficulties arise from the

fact that there may be several directions of steepest descent.

To solve this problem requires both a new technique and a new

approach. In this paper we discuss a special subclass of non-

differentiable functions: those which can be represented in

the form

f(x) = f1(x) + f2(x) '



where f1 is a finite function which is convex on En and f2 is a

finite function which is concave on En . Then £ is continuous
and quasidifferentiable on En , with a quasidifferential at
X € E which may be taken to be the pair of sets

DE(x) = {df(x) , af(x)] ,

where

af (x)

af1(x) {v € En|f1(z) - f1(x) > (v,2z=x) Vz € En} ,

Af(x) = 3£, (x)

{w € Enlfz(z) - f,(x) £ (w,2-%) Vze E ) .

In other words, 39f(x) is the subdifferential of the convex

function f1 at x € En (as defined in convex analysis) and 9f(x)

is the superdifferential of the concave function f2 at x € En .
Consider the problem of calculating
inf £(x) . (1)

e
X En

*
Quasidifferential calculus shows that for x € En to be a minimum

point of £ on En it is necessary that
~ * %
-0f(x ) Caf(x ) . (2)

We shall now show that the problem of minimizing £ on the space

En can be reduced to that of minimizing a concave function on

a convex set.



Let Q denote thg epigraph of the convex function f1 , 1.e.,
Q=epi £ =1{2z= [x,u] € En X E1|h(z) = f1(x) - u <0},

and define the following function on En X E1 :

p(z) = £,(x) +u ., z= [x,u] € E X E,

Set Q is closed and convex and function Yy is quasidifferen-

tiable at any point z € E X E1 . Take as its quasidifferential

at z = [x,u]l the pair of sets Dy(z) = [{0} , afz(X) x {1} ,
where 0 € E 41 -
Let us now consider the problem of finding
inf ¥ (z) . (3)

vAY)

It is well-known (see, e.g., [3]) that if a concave function
achieves its infimal wvalue on a convex set, this wvalue is

achieved on the boundary of the set.

* to be a solution of problem (1), it

Theorem 1. For a point X
18 both necessary and sufficient that point [x*,u*] be a solu-

tion to problem (3), where u* = f(x*)

Proof

Necessity. Let x* be a solution of problem (1). Then

W+ Ey(x) 2 E (%) + E,(x) 2 f.](x*) + f2(x*) Vu2f, (x), VYxSE_.

(4)



But (4) implies that

Y(z) 2 £,(x*) + £, (x*) = £, (x*) + u*,
1 2 2
where u* = f1(x*) . Thus there exists a z* = [x*,u*] € Q
such that
viz) 2 y(z¥) vz E€Q . (5)

This proves that the condition is necessary.
Sufficiency. That the condition is also sufficient can be proved

in an analogous way by arguing backwards from inequality (5).

2. A numerical algorithm

Set ¢ 2 0 . A point X € En is called an e-inf-stationary

point of the function f on En if
where

9 f(xy) =93 £,(xy) = {vEE|f(2) - £ (xq) 2

I\

(v1 ,z-xo) - Vx € En} ’

i.e., Qef(xo) is the e-subdifferential of the convex function

f. at x

1 Fix g € E, and set

0 °



aef(xo) )
35 = max (v,g) + Iin (wi9) . (7)
vegef(xo) wEaf(xo)
Theorem 2. For a point Xy to be an e-inf—stationary point of

the function £ on E, > it s both necessary and sufficient that

aaf(xo)

min >0 . (8)

Igi=1 %9

Proof

Necesstty. Let X, be an e-inf-stationary point of £ on E -
Then from (6) it follows that

0 Ew + Qef(xo) Vw € af(xo) .
Hence

min max (z,g) 20 Yw € 5f(x0) ’
Tgl=1 z€w+§€f(xo)

and thus for every g € E_, lgl=1 , we have

min max (z,9) 2 0 .
wEDE (x,) VeI _£(x,)

However, this means that

0 f(xy) (9)

min —x——2> 0
Igll=1 9

proving that the condition is necessary. That it is also suf-
ficient can be demonstrated in an analogous way, arguing back-

wards from the ineguality (9)



Note that since the mapping

E
3 £ : E_x [0, +o)—=2 "

is Hausdorff-continuous if € > 0 (see, e.g., [1]), then the

following theorem holds.

Theorem 3. If € > 0 then the function max (v,g) Zs con-
VEQEf(x)

tinuous in X on E, for any fixed g € E, -

Assume that X is not an e-inf-stationary point. Then we
can describe the vector

aef(xo)

ge(xo) =arg min 3g

Igh=1

as a direction of e-steepest—-descent of function £ at point

Xy -
It is not difficult to show that the direction
_ VOE + W
e 7T u
Voe + W
where v, € 3 .f(xy) » wy € 0f(x,) and

- max min lv+wl = =lv + w. l = a (x.) ,
WeAf (x,) VED_f(x,) Oe = 0 e 0

is a direction of e-steepest-descent of function f at point X,
Now let us consider the following method of successive ap-

proximations.



Fix € > 0 and choose an arbitrary initial approximation

x, € E - Suppose that the Lebesgue set

0

D(xy) = {x,€E |£(x) < £(x4)}

0

is bounded. Assume that a point x, € En. has already been found.

k
If —5f(xk) C QEf(xk) + then x, is an e-inf-stationary point

of £ on En ; 1f not, take

Xpeq = X + Aoy 7 O = arg zig f(xk+ag€k) '

where ep = gE(xk) is an e-steepest-descent direction of f at
Xy -

Theorem 4. The following relation holds:

lim a_(x =0

k=00

)

Proof. We shall prove the theorem by contradiction. Assume

that a subsequence {xk } of sequence {xk} and a number a>0 exist
s
such that

(The required subsequence must exist since D(xo) is compact.)

*

Without loss of generality, we can assume that X, TX
s

(clearly, x* 1< D(xo)). Then



f(x, +oag_, ) = f(x, ) + | = ar +
ks €ks ks f dg K
s
afz(xks)
+GT‘ + O(a,ggks) ’
s
where
O(G-Igek )
S. 0
o o0 —— +0

The term‘o(a,g€k ) appears in the above equation due to the con-
s

cavity of £ The fact that function £, is concave implies that

2" 2

o(a,geks) <0 Vva > 0 , Vgeks € En ’

and therefore

f(x + ag ) < f(x, ) + fa max (v,g ydr +
ks Eks ks 0 VGBf1(xk +TgEk ) Eks
s s
+ a min (w,g Kk )
WEdE, (%, ) €Xs

S

Since a€f1(x) i 3f1(x) for every x € En , we have

max (v,g ) =2 max (v,g )
ek "Zek '
Veaef1(xks+Tg€ks) s v€3f1(xks+1g€ks) s

and thus



f(xk

a
S+cxg€ks) < f(xk ) + S max (V’geks)dT +

S 0 Veaef1(xk +T9 )
S S

+ a min (w,g )
wEoa f2 (Xk )

S

eks
Since the mapping a€f1 is Hausdorff-continuous at the point x*
there exists a § > 0 such that
a *
a€f1(x) Cc a€f1(y) + - S1(0) Vx,y € Sé(x )
where Sr(z) = {x € Enlﬂx-z" < r} . Also, there exists a number

K > 0 such that

X GS(S/Z(X) Vks>K,

kS

and hence

£(x, +ag . ) < £(x, ) + ala_(x, ) + =)
ks eks ks £ ks 2
Va € (0 SL Vk > K
'2] ! s
Therefore
, 8
f(x ) = min f(x, +ag ) € f£(x, + =g ) <
ks+1 4>0 ks Eks ks 2 Eks
da
< f(xk) - = (10)

’
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Inequality (10) contradicts the fact that sequence {f(xk)} is

bounded, thus proving the theorem.
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