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ABSTRACT 

Matrix scaling is an operation in which the rows and columns 
of a matrix are multiplied by positive scalars such that the ele- 
ments of the scaled matrix are similar in absolute magnitude. 
This can be very important when dealing with models in which matrix 
elements can take a wide range of values, especially since certain 
mathematical codes, such as MINOS, require that the absolute values 
of all non-zero elements should be "reasonably" close to one. 

This paper describes the implementation of an optimal scaling 
method proposed by Curtis.and Reid. The algorithm is outlined and 
a users' guide to the program implemented on the VAX at IIASA is 
given. (The scaling algorithm has been linked to the MINOS package 
at IIASA by Zenon Fortuna, who has also developed a rescaling rou- 
tine linked to this package.) 

Two other programs useful in linear programming are also de- 
scribed: the first is designed to print out a matrix by rows, and 
also gives diagnostic aid; the second makes it possible to merge 
up to five LP models into one, generating a resultant MPSX file 
that may be used to solve multicriteria problems. 
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1. INTRODUCTION 

Matrix scaling is an operation in which the rows and columns 

of a matrix are multiplied by positive scalars such that the ele- 

ments of the scaled matrix are similar in absolute magnitude. 

Many techniques have been proposed; these include geometric-mean 

scaling, arithmetic-mean scaling, and optimal scaling methods. 

Tomlin (1975) surveys the use of scaling in LP problems and 

presents a comparison between several scaling algorithms. His 

conclusion is that scaling is not necessary if the LP problem is 

formulated by an experienced model builder who uses sensible units 

and avoids unnecessarily large or small matrix elements. However, 

this is only true for a few models, and building a model which is 

well-scaledcanbe atime-consuming process. We gained some expe- 

rience of this problem while constructing a model for water system 

development in the Note6 region of Poland (Makowski 1981). Since 

observed data were used in this model, we had to deal with a wide 

range of values and hence a problem-oriented scaling procedure 

was necessary. Moreover, certain mathematical programming codes, 

for example MINOS (Murtagh and Saunders 1977), require that the 

absolute values of all non-zero elements should be "reasonably" 

close to one. However, in practice these coefficients are often 

considerably greater than one. 



The advantages of scaling can be briefly summarized as 

follows: 

1 .  Reduction in the number of simplex iterations 

required to solve the problem. 

2. Improvement in the numerical behavior of the 

simplex method (through a decrease in the con- 

dition number of the basic matrix). 

3. Simplification of checking procedures and the 

setting up of tolerances. 

This paper describes an implementation of the optimal scaling 

method proposed by Curtis and Reid (1972), and discusses two other 

programs useful in the examination and formulation of LP problems. 

2. OPTIMAL SCALING METHOD 

Let us consider a linear program with constraints 

The row representing the goal function can be treated (for con- 

sistency and to ease implementation) in the same way as any other 

row, because, for a medium-sized problem, this would not reduce 

the scaling effect significantly. 

Scaling involves the substitution of the set of equivalent 

constraints (2.3)-(2.5) for the original constraints (2.1) and (2.2). 

Here R = diag ( r1 . . . rm)  and C = diag (c ,... ,cn) are two diagonal 1 
matrices with ri > 0, c > 0. In other words, we are multiplying 

j 



the ith row by ri > 0  and the jth column by c > 0 .  If aij is 
j 

an element of matrix A, then the corresponding element a' of ij 
matrix RAC is given by 

Let Ji be the index set of non-zero elements in the ith row, and 

hi be the number of non-zero elements in this row. 

Ji = {jlaij # 0 1  I hi = dim Ji I (2.7) 

i = l,...,n 

Similarly, we define for the columns 

I = {ilaij Z 0 1  I m = dim I 
j j j I 

According to Curtis and Reid (19721, matrix A can be described 

as well-scaled if 

for some acceptable v. Note that only non-zero elements are in- 

cluded in the left-hand side of (2.9) . 
A matrix may be adjusted to fulfill criterion (2.9) through 

the use of scaling coefficients. These may be determined by mini- 

mizing the following function: 

Note that for numerical reasons it is advisable to use 2 as a 

logarithmic base and ri and c should be integer powers of 2. 
j 

Let us define 



Then minimization of (2.10) is equivalent to minimization of 

We start by determining real values of wi and z which are later 
j 

rounded to the nearest integer value. The function F is quadratic 

with a non-negative definite Hessian with respect to w = (wl, ..., wm) 

and z = (zl, ..., 2,). The gradient of the function F is defined by 

the simple formulae 

The simple formulation of the gradient makes it possible to use a 

special version of the conjugate gradient method to minimize the 

function F. After minimization, the elements of the matrix A' 

are close to + 1 and have only a small variance. 

Consider the original problem: 

min 1 pj xj 
j=1 

The scaled problem now takes the form 

I 1  
min 1 pj x 

j = 1 j 



where 

I f  xj and i I  a r e  t h e  pr imal  and dua l  s o l u t i o n s  of t h e  sca led  prob- 
I 

lem, then t h e  pr imal  and d u a l  s o l u t i o n s  of t h e  o r i g i n a l  problem 

may be c a l c u l a t e d  e a s i l y  us ing  t h e  r e l a t i o n s  

3. THE ALGORITHM 

The code developed f o r  s c a l i n g  i s  composed of two r o u t i n e s .  

The f i r s t  handles t h e  i n p u t  of an MPSX f i l e  and t h e  ou tpu t  of t h e  

sca led  MPSX f i l e .  I t  a l s o  performs formal  and cons is tency  checks 

on t h e  i npu t  f i l e s  ( see  t h e  u s e r s '  guide i n  Sec t ion  4 ) .  This  r o u t i n e  

should be modif ied i f  l i n k e d  d i r e c t l y  wi th  an LP package. The 

second r o u t i n e  performs t h e  a c t u a l  s c a l i n g .  

Funct ion (2.13) may be minimizedby so l v ing  a  system of l i n e a r  

equat ions  bu t  t h i s  problem would have dimensions (n  + m )  x (n + m )  

compared wi th on ly  n  x m f o r  a  s c a l e d  problem. Fence, and because 

of t h e  s t r u c t u r e  of t h e  problem, it seems reasonable t o  use  a  spe- 

c i a l i z e d  conjugate g r a d i e n t  method, and we have t h e r e f o r e  adopted 

one such method proposed by Tomlin (1975) .  We w i l l  no t  desc r ibe  

t h i s  method i n  d e t a i l ;  i t i s s u f f i c i e n t t o  no te  t h a t  no p r e c i s e  

minimizat ion of (2.13) i s  requ i red .  C u r t i s  andReid (1972) have sug- 

ges ted  round ing the  resultstothenearestinteger, andwehave fo l lowed 

thisapproachtoensurethatscaledandrescaledproblems a r e  i d e n t i c a l ,  



even at the expense of increasing v (although this increase should 

not be significant) . 
Several applications of the program confirmed an obvious ex- 

pectation that the value of function (2.13) (v) should decrease 

rapidly during the first few iterations. A typical run (274 col- 

umns, 250 rows) is presented as an illustration in Table 1 .  The 

following notation is used: gn is the square of the gradient norm; 

v represents the value of function (2.13) (i.e., the sum of the 

squares of the logarithms of the absolute values of the non-zero 

matrix elements), here divided by the number of elements considered; 

var represents the variance; min. coeff. and max. coeff. give the 

values of the smallest and largest matrix elements, respectively. 

We do not use the gradient norm as the stop criterion; we have 

chosen instead 

k-' > E )  stop if (v /v - 

where vk is the value of (2.13). in the kth iteration and e is a 

number slightly less than one. We found that less than 10 itera- 

tions are usually required to obtain a solution with e - 0.97, ir- 

respective of the size of the problem; this was also reported by 

Tomlin (1975). Also, if changes have been made to the matrix, the 

program may be started using scaling coefficients obtained in a 

previous run, and a satisfactory solution can often be obtained 

after only 2-4 iterations. 

Murtagh and Saunders (1977) have suggested that the optimal 

yalue of the variables is less than 100, but at the same time not 

too close to zero - presumably to deal with nonlinear problems. 

In addition, there is no unique solution for scaling factors, 

despite the fact that the scaled matrices obtained are the same. 

We have therefore introduced an option that makes it possible to 

scale the non-zero bounds by the same factor as the corresponding 

column. This is achieved by replacing (2.13) by 
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Table 1. A typical run of the algorithm 

1 ter g n v var min. coeff. max. coeff. 

1 .20977+006 67.352 .13760+007 .14380-004 .37330+008 
1 94430. 11.427 18133. .25970-004 .40538+006 
2 61623. 5.3163 21.325 .42776-003 208.52 
3 37230. 2.6221 27.075 .39398-002 360.18 
4 14181. 1.8025 18.839 .20074-001 258.64 
5 7309.9 1.0908 2.6722 .15036-001 27.820 
6 4430.6 .84754 2.0175 .21887-001 17.189 
7 1061.5 .69083 2.3809 .40653-001 23.570 
8 325.92 .62609 1.8142 .45586-001 18.333 
9 145.86 .59842 1.9773 .37408-001 22.794 
10 121.04 .58523 1.8956 .48150-001 21 .I10 
1 1  43.111 .57784 1.9173 .37568-001 23.233 
12 26.163 .57360 1.8912 .42186-001 22.261 
13 38.864 .57117 1.8778 .39494-001 21.851 
14 44.528 .56992 1.8784 .38709-001 21.791 
15 27.583 .56712 1.8997 .38330-001 21.792 
16 30.357 .56329 1.8520 .31154-001 20.227 
17 36.233 .56021 1.8234 .27431-001 18.884 
18 31.218 .55898 1.8139 .26274-001 18.239 
19 20.215 .55661 1.8150 .24535-001 16.787 
20 19.159 .55436 1.8044 .23443-001 14.981 
2 1 16.702 .55206 1.7956 .22364-001 15.098 
22 11.132 .55055 1.7839 .20904-001 15.740 
23 19.509 .54940 1.7663 .19637-001 15.352 
2 4 5.1783 .54903 1.7595 .19179-001 15.225 
25 2.8303 .54864 1.7477 .18479-001 15.375 
2 6 4.7975 .548 14 1.8083 .18001-001 15.975 
27 1.6822 .54794 1.7514 .17199-001 15.416 
28 1.9503 .54765 1.7702 .16381-001 15.722 
2 9 2.3080 .54756 1.7722 .16105-001 15.683 
30 1.0800 .54746 1.7684 .I571 5-00 1 15.554 
3 1 .4 1004 .54735 1.7766 .15392-001 15.738 
32 .41714 .54730 1.7744 .I531 4-001 15.713 
33 .40357 .54729 1.7751 .15284-001 15.720 
34 .I279 1 .54726 1.7776 .15203-001 15.755 
35 .I2263 .54725 1.7751 .15238-001 15.717 
36 .72795-001 .54724 1.7777 .15046-001 15.765 

I 



where B i s  t h e  set  of  i n d i c e s  f o r  t h e  non-zero bounds and bnd a r e  
j 

t h e  va lues  of t h e  bounds. 

Hence, i n s t e a d  o f  (2.15)  w e  have 

where 

The o r i g i n a l  program i s  n o t  reproduced i n  t h i s  p a p e r ,  b u t  i s  a v a i l -  

a b l e  on t h e  VAX (see S e c t i o n  4 ) ;  d e t a i l s  may be ob ta ined  from t h e  

au tho rs .  

S = 

4. USERS' G U I D E  

0 i f  bnd = 0 
j 

l g 2  1 bnd . 1 o the rw ise  
7 

The program i s  w r i t t e n  i n  FORTRAN ASCII and h a s  been imple- 

mented on t h e  VAX a t  IIASA. Both t h e  sou rce  code and t h e  compi led 

program a r e  a v a i l a b l e  on /uc/makowski/ lp; t h e  sou rce  code i s  on 

f i l e  " s c a l e . £ "  ( o r  "sca1e . f .C"  i f  compacted) ,  wh i l e  t h e  compiled 

program i s  on f i l e  " s c a l e " .  

4.1 D i m e n s i o n s  

The program can hand le  problems o f  t h e  f o l l ow ing  d imensions 

i n  i t s  p r e s e n t  form: 

No. of m a t r i x  e lements  8000 

No. o f  columns 1000 

No. o f  rows 700 

No. of bound sec. c a r d s  1000 

No. of ranges  100 

I f  it i s  wished t o  s o l v e  problems l a r g e r  t h a n  t h i s ,  c e r t a i n  changes 

must be made (see comment i n  source  prob lem) .  



4 . 2  ~nput/output units 

The following list gives the units used for various files: 

2  - Matrix to be scaled (in MPSX format) 

3  - Control cards (nine items, first seven in free format) 

1. Given starting (or optimal) point? (logical) 

2 .  Optimal scaling desired? (logical) 

3 .  Iteration log requested? (logical) 

4 .  Check for parallel rows requested? (logical) 

5. Maximum number of iterations (integer) 

6. Epsilon (stop criterion) (real) 

7. Eta (weight coefficient) (real) 

8. Right-hand side set (format A8) 

9. Bounds set (format A8) 

4  - Starting or optimal point (scaling coefficient) 

6 - DiagnosticsofMPSX file and information on program flow 

7 - Output of optimal scaling coefficients 

8 - Iteration log (if requested) 

9 - Scaled matrix (in MPSX format) 

4 . 3  Suggested values of control parameters 

The program uses the nine parameters listed in the previous 

section; a sample set of parameters is available on /uc/makowski/ 

lp/consc. The following points should be noted when setting the 

parameters: 

1. It is best to use previously obtained scaling 

coefficients as the starting point (in the same 

way that an old basis is used in LP). 

2. Optimal scaling should not be suppressed unless 

there is some special reason for it. 

3 .  The iteration log is useful only in certain 

applications, and hence it is generally better 

to avoid it. 

4 .  A check of parallel rows should be performed 

only during the first run and after major 

changes have been made to the problem. 



5. The maximum number of iterations should be about 15. 

6. The recommended value of the stop criterion is 

slightly less than one (0.95 -0.97). 

7. The weight coefficient is concerned with the values 

of bounds and can be either zero or non-zero. Non- 

zero values of eta are recommended for problems 

that have significantly large (or small) bounds. 

There is no universal rule for choosing eta, and 

hence we advise starting with eta = 0.5 and going 

up to eta = 5; should the values of the bounds 

still be unsatisfactory, eta should be increased 

even further. (However, note that very high 

values of eta may reduce the efficiency of seal- 

ing.) On the other hand, if the values of the 

bounds are satisfactory then eta should be set 

at zero in the next scaling of the problem, pro- 

vided that the same starting point is used. 

8. The values of the right-hand side set and bounds 

set should obviously correspond to the desired 

sets of relevant values. 

4 . 4  F o r m a l  a n d  c o n s i s t e n c y  c h e c k i n g  p e r f o r m e d  b y  t h e  p r o g r a m  

The program checks for the following errors or inconsistencies: 

- formal errors in the input file (also garbage and 

premature eof ) 

- illegal sequence of sections 

- duplicated or undefined names (columns, rows) in 

all sections 

- illegal indicators (describing rows and bounds) 

- split columns 

- inconsistency in the section dealing with bounds 

- parallel rows (if requested) 

- columns and rows that have zero or only one entry 

- zero elements 



4.5 I n f o r m a t i o n  prov ided  b y  t h e  program 

All of the computer printout is self-explanatory, and hence 

there is no need to describe it in detail. It is only necessary 

to define the variables: v represents the value of (2.13) divided 

by the number of non-zero elements; var represents the variance; 

rhs represents s; ranges, bounds, coeff. refer to the numbers of 

the corresponding quantities that are non-zero. 

4.6 R e l i a b i l i t y  

The program has been operational only since July 1981, and 

therefore only a small number of problems have been investigated. 

This also means that we may not have traced all of the bugs, and 

we would be grateful if future users could let us (or Zenon Fortuna 

at IIASA) know of any problems that they encounter. 

The responses of the program to various situations that may 

occur in practice are summarized below. 

1. Any error in the control cards (see Section 4.3) 

will cause the program to terminate. 

2. The program continues reading the MPSX input file 

even if errors are detected, unless the errors are 

very serious (for example, if part of a row is 

missing). 

3. If major errors are detected while the input file 

is being processed, the program terminates when 

processing is complete. 

4. If errors are detected in the file of starting 

points (previously computed scaling coefficients) 

a new starting point is assumed and the process 

is continued; this is also done if the dimensions 

of the problem are inconsistent with those of a 

given starting point. 

5. If the determination of scaling factors is inter- 

rupted on reaching the iteration limit, the current 

coefficients are stored. 



4.7 C a l l i n g  s t a t e m e n t  

Assume that the input MPSX file is on file "data". The call- 

ing sequence is then as follows: 

File "ctr" should contain control cards - see Sections 4.2 and 

4.3 and the example on uc/makowski/lp/consc. Files "old" and 

"new" contain scaling coefficients (previously computed values 

and current values), and file "fil-9" contains the MPSX file ready 

for use by MINOS. 

The scaling algorithm has recently been linked to the MINOS 

package at IIASA by Zenon Fortuna, who has also developed a re- 

scaling routine linked to this package. (Please contact Computer 

Services for information on using these programs.) 

4.8 Other  programs u s e f u l  i n  L P  

There are two other programs that are useful in LP problems, 

and both are available in /uc/makowski/lp. The first not only 

provides the diagnostic help described in Section 4.4, but also 

makes it possible to print out the matrix by rows. This is the 

most concise way of printing matrices and is also the most useful 

format for examining them. We recommend that the matrix should be 

examined in this way after any major changes have been introduced 

into the problem. The printout generated should be self-explanatory. 

The following list- gives the units (note control cards on 

unit 3) used for various files: 

3 - Control cards (four items, first two in free format) 

1 .  Matrix printout by rows requested? (logical) 

2. Checking for parallel rows requested? (logical) 

3. Right-hand side set (format A8) 

4. Bounds set (format A8) 

4 - Matrix printout (by rows) 

6 - Diagnostics and information on program flow 

1 1  - Matrix to be examined (in MPSX format) 



The program can handle problems of the following dimensions in its 

present form: 

No. of matrix elements 8000  

No. of columns 1000 

No. of rows 700  

No. of bound sec. cards 1000  

No. of ranges 100  

If it is wished to solve problems larger than this, certain changes 

must be made (see comment in source problem). The calling statement 

for this program is: 

The second program makes it possible to merge up to five LP 

models into one, generating a resultant MPSX file that may be used 

to solve multicriteria problems, and/or aggregating rows selected 

according to the second character in the name of the row. This 

program can also print out the final matrix by rows. 

It is possible to generate a problem equivalent to solving 

1 x = arg max min - (qi- qi) 
4 a444 

where x belongs to a set defined by the aggregated model, qi is - 
the ith criterion, qi is the reference point for the ith criterion, 

ai is the corresponding weighting coefficient (positive if the cri- 

terion is to be maximized and negative if it is to be minimized), and 

To solve this problem we must prepare a file which defines the 

criteria and reference points used. The first and second lines of 

the file contain the name of the first criterion (which must not be 

used as a row or column name in any of the other models or files to 

be read), and the values of the corresponding reference point qi 
and weighting coefficient a respectively. The third and fourth i ' 
lines give the corresponding information for the second criterion, 

and this process is continued until the names, reference points, 



and weighting coefficients of all criteria have been listed. An 

asterisk is entered on the next line to indicate that this part 

of the file has been completed. 

The next three lines give the name of the first criterion, 

the name of one of the variables included in this criterion (xi), 

and the corresponding coefficient pi. This information is re- 

peated for all of the variables in the first criterion, and then 

for all variables in all other criteria. The list is once again 

concluded with an asterisk. 

As an illustration, consider the following problem. We have 

two criteria 

goal 1 = 0 . 5 ~  + 0 . 9 ~ ~  - 0 . 3 ~ ~  1 

goal 2 = 0 . 3 ~ ~  - 0 . 4 ~ ~  

and wish to maximize the first and minimize the second with (17,9) 

as the reference point. The file should be prepared as follows: 

goal 1 

17,1 

goal 2 

9 ,-1 
* 
goal 1 

xl 

0.5, 

goal 1 

x2 

0.9, 

goal 1 

x3 

-0.3, 

goal 2 

xl 

0.3, 

goal 2 

x4 

-0.4, 
* 



Note t h a t  t h i s  approach may be used t o  d e f i n e  a new goa l  func t ion  

wi thout  invo lv ing  any change i n  t h e  aggregated model. Note a l s o  

t h a t  t h i s  approach cannot be used simply by supply ing an empty 

f i l e  on u n i t  2 .  

A l l  of t h e  a c t i o n s  performed by t h e  program ( i nc lud ing  t h e  

d i a g n o s t i c  a i d  d iscussed above) a r e  repo r ted  c l e a r l y  and unambig- 

uously.  The on ly  ques t i on  r e q u i r i n g  any comment i s  t h e  problem 

of dup l i ca ted  columns. I n  t h i s  case ,  i f  we a l low t h e  same name 

t o  be used f o r  columns i n  d i f f e r e n t  models, t h e  ou tpu t  mat r i x  must 

be s o r t e d .  However, t h i s  should no t  be confused wi th  t h e  problem 

of  s p l i t t i n g  columns i n  one model, which i s  always repor ted  a s  an 

e r r o r .  

The fo l lowing l i s t  g i v e s  t h e  u n i t s  used f o r  va r ious  f i l e s :  

2 - D e f i n i t i o n  o f  m u l t i c r i t e r i a  problem ( i f  r equ i red )  

3 - Contro l  c a r d s  ( 1 1  i tems,  i n  f r e e  format i f  no t  s p e c i f i e d )  

1 .  T i t l e  of aggregated model ( format A8) 

2 .  Matr ix p r i n t o u t  by rows requested? ( l o g i c a l )  

3. Checking f o r  p a r a l l e l  rows reques ted? ( l o g i c a l )  

4 .  Number of models t o  be merged ( i n t e g e r )  

5. Right-hand s i d e  s e t  ( format A8) 

6 .  Bounds s e t  ( format  A8) 

7 .  Dupl icated columns al lowed? ( l o g i c a l )  

8 .  Number of  c h a r a c t e r s  i n d i c a t i n g  aggregat ion ( i n t e g e r )  

9. Charac te rs  (second i n  row name) i n d i c a t i n g  aggrega- 

t i o n  ( format  1 X , S A 1 )  

10. Number of  c h a r a c t e r s  i n d i c a t i n g  change of row type 

( i n t e g e r  1 
1 1 .  Charac te rs  (must be subse t  of  t h a t  desc r ibed  i n  9)  

i n d i c a t i n g  change of row type  and a new type  of row 

( format  5 ( 1 X 1 2 A 1 )  ) 

4 - Matr ix p r i n t o u t  (by rows) 

6 - Diagnost ics  and in format ion on program f low 

9 - Output mat r i x  i n  MPSX format 

1 1  - F i r s t  mat r i x  t o  be merged ( i n  MPSX format)  

1 2  - Second mat r i x  

13 - Third mat r i x  

1 4  - Fourth mat r i x  

15 - F i f t h  matr ix  



The program can handle problems of the following dimensions in its 

present form: 

No. of merged models 5 

No. of matrix elements 8000 

No. of columns 1000 

No. of rows 700 

No. of bound sec. cards 1000 

No. of ranges 100 

If it is wished to solve problems larger than this, certain changes 

must be made (see comment in source program). The calling statement 

for this program is: 

/uc/makowski/lp/merge 3=ctr 4=matr 9=fil-9 ll=datal 12=data2 etc. 

where datal, data2,etc.contain the MPSX input files, one for each 

model. It is possible to merge up to five models, in which case 

units 11-15 are used to input the data. 

5. VERIFICATION AND EVALUATION OF THE ALGORITHM 

Two problems have been used to test the scaling algorithm dis- 

cussed in this paper. The first involved a model for water system 

development in the Upper Note6 region, which was constructed using 
+ 7 observed data with widely varying magnitudes (largest 3.37 x 10 , 

smallest 4.77 x The specialized scaling program has been 

used on the model both in Poland and at IIASA. We have found it 

impossible to solve the problem by MINOS without scaling. After 

several trials using different tolerances (some of which were 

really unacceptable), we were forced to give up, although the MPSX 

file is still available for other trials*. However, the scaled 

problem has been solved without difficulty. Our second example 

was a model describing individual farms. Although the difference 

between the largest and smallest elements is not very great (800 

and 0.001, respectively) the application of scaling has cut down 

the number of iterations by almost half (1257 without scaling com- 

pared with 623 after scaling), only slightly decreasing the dif- 

* 
The data for the LP problem that cannot be computed by MINOS 

without scaling are stored on the file uc/makowski/lp/sample. 



ference between the largest and smallest coefficients (43.47 and 

0.012, respectively). Other advantages of scaling will be reported 

in a separate publication in the near future. 

6. CONCLUDING REMARKS 

It is very easy to use the MINOS package in combination with 

the scaling algorithm: it is only necessary to specify the units 

as described above. Furthermore, it is hoped to employ the specs 

file in the near future to make scaling techniques even more access- 

ible to the user. 

More generally, our experience has shown that it is really 

worth scaling and verifying a matrix after any change in the prob- 

lem being solved. Although it may seem ridiculous, it often happens 

that when introducing a simple modification the user makes an uncon- 

scious change, producing an error that is very difficult to detect, 

especially if the LP code declares: "status - optimal solution". 
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