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Treatment of Hidden Heterogeneity 
in Event History Analysis 

Nancy B. k m a * .  AnatoLi I. Yashin**  

1. INTRODUCTION 

In recent years the re  has been a tremendous increase in analyses of temporal (or 

over  time) data on individuals t o  study demographic events, such as births, marriages, 

residential changes, and deaths. Since many phenomena studied by demographers in- 

volve discrete changes in l ife conditions that  can (in principle) occur at any moment in 

time, i t  i s  not surprising that  attention has been drawn especially t o  modeling these 

phenomena as finite-state, continuous-time stochastic processes and then to  estimating 

these models from event (or life) histories, which record the  date of every change of 

state of individuals in some time period (for example, t he  dates of birth of all children 

ever  born t o  women in some sample). 

The popularity of th is form of demographic analysis has been greatly enhanced by 

two factors. First, event history data pertaining t o  a wide range of demographic 

phenomena are becoming widely available. One of the  most notable examples of such 

data are the  ferti l ity histories collected from samples of women in 44 countries during 

the  last decade [ 11. But t h e r e  also exist data on marital histories, migration his- 

tories, job histories, and health histories. Second, new statist ical methods designed 

particularly f o r  event history analysis have been developed and incorporated into 

various computer software packages [2,3,4]. 

To date the  methods that  have been developed fo r  event history analysis have 

focused mainly on attempts t o  relate the  observed event histories t o  measured covari- 

ates thought t o  explain (or at least t o  predict) the  occurrence and timing of demo- 

graphic events in a person's life. These developments a r e  all t o  the  good. Y e t  fur ther  

developments are needed. In part icular,  most of the  statistical tools that  have previ- 

ously been developed fo r  event history analysis have ignored one universal problem-- 
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namely, the  life histories that  w e  observe a r e  influenced not only by the  covariates 

that  w e  measure but also by many things tha t  w e  do not measure. That is, individuals 

are not only heterogeneous in ways w e  observe (i.e., measured covariates), but also in 

ways that  w e  do not observe (i.e.. random "nuisance" factors). These unobserved fac- 

to rs  o r  disturbances influence a person's life history, and w e  a r e  likely t o  draw e r -  

roneous conclusions if w e  ignore them. 

A related argument in the  favor of treatment of the unobserved heterogeneity is 

as follows. There are already resul ts from many demographic, economic, sociological, 

and medical studies available in compact form (i.e., as models, descriptions, and other  

forms of knowleage). Since the  studies have different goals, the  variables o r  

processes tha t  were the focal point in one study may be  nuisance variables o r  

processes in o ther  research.  In theory one can combine data from several  studies and 

develop a unified approach to  analyzing the combined data. However, even if a huge 

data bank were created (which is unrealistic), some important causal variables o r  

processes are stil l unlikely t o  be  measured. 

In this paper  w e  descr ibe some statistical tools f o r  event history analysis when 

there  is unobserved heterogeneity of part icular types as w e l l  as measured covariates. 

For expository purposes w e  also discuss several  potential applications of these statist- 

ical methods. Actual application of these methods to  demographic data remains as a 

goal f o r  future work. 

2. PRELIMINARIES 

Let C t ,  t r 0 denote a finite-state stochastic process tha t  makes a f inite number of 

jumps fo r  any 0 S t < -. This process can also be  represented in terms of a sequence 

of random times at which jumps occur,  Tn, and random variables, Yn, where Yn = CT,. 

(We assume that  the t ra jector ies of C t  are right-continuous.) This process may be con- 

sidered as a part icular form of a multivariate point process as described in [5]. The 

realization of the process Ct  f o r  the i - th  individual on time interval [O,t] is just the  

event history f o r  individual i from time 0 t o  time t . W e  will denote i t  by to ( : ) .  
The simplest case of such a process is the discrete time Markov chain. If 

p j k ,  j ,k = l,$ are the unknown transition probabilit ies of change from state j t o  state 

k ,  then the  maximum likelihood rat io  approach leads to  the following formula f o r  the 

estimator of & (t ) using information about transitions (time is discrete) 



where njk ( t  ) is the  number of an individual's transitions from j t o  k on the  set of times 

IO,l, ..., t  j and n j ( t )  is the  number of times when the  individual occupies the  state j on 

the set 10.1 ,..., t  1. 

If the  available information about population movement consists of the  transition 

records f o r  I independent identical individuals, then the  estimator Fjk ( t  ) has the  form 

where the index i is related t o  t he  i - th part icular individual. Notice that  

where sj  (u )  i s  the number of the individuals who occupy state j at time u . 

More realist ic than a discrete-time model is a continuous-time model, represented 

by a finite-state continuous-time Markov process. Denoting the unknown constant tran- 

sition intensities by r jk , j ,k = 1,. . . .@, one can easily obtain the  maximum likelihood es- 

t imators ( t  ) when sample paths of individuals are observed: 

where njk ( t  ) i s  defined as above and r j  ( t  ) is the  time spent in state j during time in- 

terval  [0, t  ]. 

In real i ty the situation is even more complicated. Transition intensities usually 

change over  time and are subject t o  various impacts. Some of the influential variables 

are observed o r  measured; o thers a r e  not. All of these circumstances lead t o  the  fol- 

lowing general statement of the problem. 

3. STATEMENT OF THE PROBLm 

Assume tha t  the random variable z ,  random process t t ,  and an additional random 

variable x are given on probability space ( O , H , P ) .  We assume that  variable x and ran- 

dom process tt a r e  observed and that  random variable z i s  unobserved. W e  also as- 

sume that  the joint probability distribution of t t  and z depends on the  vector of meas- 

ured variables x. A s  before, t t  denotes a finite-state continuous-time process that  



makes a f inite number of jumps fo r  any 0 5 t < a. 

W e  let  q denote t he  value of the  observed vector f o r  individual i .  Finally. w e  as- 

sume that a vector  of unknown parameters a, which are the  same f o r  al l  individuals in 

the  population, indicate how the  observed x influences the  joint probability distribu- 

tion of z and t t .  When z ,  a ,  and x are known, t he  evolution of t h e  process t t  can b e  

described by t h e  transit ion intensities r jk ( t  , z  ,a ,x ) ,  j ,k = 1, ... ,* where I) is  t he  size of 

the  state space fo r  t he  process t t .  

The goal is  t o  estimate t he  unknown parameters a using data on the  event histories 

f o r  I individuals, ), i = 1,. . . , I .  

4. STRATEGY 

One of t he  most popular ways of estimating parameters in a model i s  t he  method of 

maximum likelihood. The functional form of t he  likelihood rat io  f o r  a multivariate 

point process is well known [5]. More traditional in sociological applications i s  t he  no- 

tion of t he  likelihood function. Denoting th is function f o r  individual i by Li ( to t )  and 

omitting index i from tot f o r  simplicity, w e  have: 

- (u. ,z ,a,z )du 

Lt (tot = n r4G4G(Tn ~ . ~ . ~ ~ x ) e  
T,r t  

where Tn , n = 1.2, ..., denotes t h e  times of jumps in the  history [ O t  (i.e., t he  times when 

events occurred),  and Tn 4 denotes an  instant before t he  n t h  jump. This form of t he  

likelihood cannot be  used direct ly because i t  depends on the  unobserved variables z ,  

as well as on the  measured variables x. I t  is  necessary, therefore,  t o  find a way of 

representing the  probabilistic character ist ics of t he  process tt tha t  does not depend 

on z .  The following theorem, which can b e  proved using the  resul ts f o r  predictable 

compensators in martingale theory [6 ] ,  implies that  such a form exists. 

Theorem The process t t  m a y  be represented in te rms of the i n i t i a l  d i s t r i b u -  

t i o n  p j  (0) = p Ito = j 1, j = 1, . . . , I ) ,  a n d  t r a n s i t i o n  i n t e n s i t i e s  r jk ( t  ,a ,x) ,  

j ,k = 1 , . . . , I ) ,  t ha t  h a v e  the form 

where  E denotes the opera tor  of mathemat ical  expectat ion w i t h  respect to z a n d  [o t  

denotes the h i s t o r y  of the process from t ime 0. 



Equation (1) means that the functional form of fjk (t ,a, x) depends on the initial 

distribution of the unobserved random variable z and the functional form of 

r (t .z ,a, x). Below we consider several special cases. 
jk 

Special Case L z is discrete and time invariant fo r  every individual i . 
I t  is sometimes reasonable to  assume that the random variable z has a finite 

number of values M ,  Izm 1, m = 1,. . . ,M ,  with known a p r i o r i  probabilities in the popula- 

tion, q1,q2,. . . ,qm . In this instance equation (1) simplifies to 

where .rr,(t ,a ,x )  is the conditional probability that z = zm given ( o t ,  x and satisfies 

the system of nonlinear stochastic equations 

Although this system of nonlinear equations can be solved analytically, in general 

the solution will appear very complicated. 

To clarify this approach, we apply it  to  a concrete problem-a youth's entry into 

the labor force fo r  the f i rst  time. Since we concentrate on the f i rst  event in a 

person's work history (i.e., the f i rst  job) and do not consider what kind of job the 

youth obtains, our application is a particularly simple case. 

We assume that there a r e  measurements on many personal attr ibutes of a youth 

related to  the speed with which he o r  she enters the labor force, fo r  example, gender, 

parents' educational levels and income, ethnicity, and grades in school. Moreover, w e  

assume that pr ior research and theory gives us confidence that the relationship 

between the ra te  of entering the f i rst  job 'and these attr ibutes x is a s  follows: 

where p(t ,a ,x )  has a known form, but z is unobserved for  every individual. In this hy- 

pothetical application, z might describe, fo r  example, a youth's relative opportunities 

to work in a particular geographical place, which depends on the place's industrial 



st ructure,  unemployment rate and the  extent of opportunities for educational advance- 

ment. Although these place-specific variables certainly affect the rate at which 

youths en te r  jobs, in many studies these variables are not measured. W e  also may not 

even know where youths in t he  sample live.' However, t he  data analyst often knows tha t  

respondents were selected from M different geographical regions in proport ions 
M 
'n ql, ...,qM, with qm = 1. One might assume tha t  t he  many unobserved character is-  

m =1 

t ics of region m affecting a youth's rate of finding a first job ra ise  or lower p(t  ,a ,x )  

by some unknown multiplicative factor z,. 

For th is example equation (2) becomes 

where fo r  convenience w e  also assume that  

This last assumption actually just normalizes t he  2's. W e  can also write equation (3) 

fo r  th is special case. I t  is  

M 
Since x nm (t ,a ,x )  = 1, th is system of equations can be solved explicitly. The resul t  

m =I 

(see [7 ] ) is 

'1n the U.S., for example, detailed information on place of residence i s  of ten withheld t o  protect 
the ident i ty  of respondents t o  a survey.  



where H(t ,a, x)  = j p ( u  .a, x ) d u  . Notice that equation ( 8 )  is just a generalization of 
0 

the usual logistic equation. Together with formula (5) f o r  K ( t  , a , x ) ,  th is equation lets 

a 
one write expressions f o r  g ( t  ,a, x) = Pr [ T  r t  I a, x] and F ( t  ,a, x)  = -Pr  ( T  5 t  I a , x )  

8t 

that can be used to  write a likelihood function 

where the b a r  over  L denotes the likelihood fo r  the  sample of I individuals with the  

transition rates given by function K ( u , a , x ) .  This likelihood function can then be max- 

imized with respect  t o  a.  

Assume that  h ( t  ,z . a , x  ) can be represented in a multiplicative form 

h ( t  ,z , a , x )  = X(t )e a* t a p  

where a. and al are unknown constants. This implies 

where 

One can see that  the  presence of unobservables in a traditional Cox regression scheme 

181 crea tes  a dependence of the  underlying hazard r a t e  [which equals h ( t ) r ( t  ,aO,al)]  

on unknown parameters. 

Special Case IL z is discrete but can jump from time t o  time. 

Sometimes z has a finite number of values M ,  izm 1, m = 1, ... ,M, with known proba- 

bilities in the population at time 0 (as in Case I), but an individual's value of z may jump 

from one value to  another according to  a finite-state jump process described by the 

transition intensities 

In this case equation (2) stil l holds; however, equation (3) does not. Instead, 

T, ( t  , a , x )  a r e  the  solutibns of the  more complex system of nonlinear equations: 



- j [ r kk (u . zmna*x )  - ' tutu ( u , ~ , x ) I ~ , ( u  . ~ , x ) c ~ u  
0 

f o r  m = 1 , .  . . ,M. Unfortunately the  exact  analytical solution of this system of equations 

is unknown. However, in principle, knowledge of t he  form of t he  equations permits 

them t o  be solved numerically. 

A slight generalization of our  ear l ie r  example i l lustrates this case. Suppose tha t  

w e  again are studying ent ry  into the  labor force by youths and observe personal a t t r i -  

butes x  of each youth in a sample but do not know in which region a youth is living. Be- 

fo re  w e  assumed tha t  a youth's region cannot change, which is a reasonable approxima- 

tion if the  length of ou r  observation period is short .  However, youths are often the  

most geographically mobile segment of a society. If the  observation period is not 

shor t ,  i t  would be reasonable t o  assume tha t  youths migrate from one region t o  anoth- 

er. In this situation z ,  is  not fixed f o r  a given youth but can change in discrete jumps. 

This situation provides an  example of Special Case 11. 

I t  is  both customary and usually fair ly plausible t o  assume tha t  the  histories of in- 

dividuals in a sample are statistically independent. Denoting an  individual's history by 

Li ( [ i t ) )  and taking into account t he  resul t  of t he  theorem given in ( I ) ,  w e  have 

where ~ f ,  are t he  jump times of t he  histories co(:). Then, t he  likelihood f o r  a sample of 

I individuals has the  form 

To maximize this function, t he  functional form of r jk  ( t  ,i , a , x )  should be specified. 

The presence of r r , ( t ) ,  m = 1. ... M ,  given by (10) in t he  formula f o r  r j k ( t  , a , x )  

predetermines t o  some extent t he  functional form of r jk  ( t  , a , x ) .  Note tha t  the  hazard 
- 
~ ( t  , a , x )  does not fac to r  into a product of time-dependent and covariate-dependent 

parts.  Moreover, t he  unknown parameters have become inextricably intertwined with 

the  dynamics of t he  proport ions rr, ( t  ), m = 1,  ..., M .  This means tha t  the  traditional 

Cox model [8]  is not applicable. Maximization of the  likelihood must occur  under con- 



straints ( lo),  which need to  be specified for every individual in the sample. 

5. CONCLUSION 

Note that this approach can be developed also for the case with discontinuous cu- 

mulative transition rates. In addition, i t  is sometimes more realistic to  assume that 

there is an observed random process Xt instead of a random vector of variables x. In 

this case the process Xt is also a par t  of the individual's history. Its trajectories can 

be continuous o r  piecewise continuous [9]. 
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