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ABSTRACT

There are many examples of size-structured populations where individuals sequentially exploit
several niches in the course of their life history. Efficient exploitation of such ontogenetic niches
generally requires specific morphological adaptations. Here, we study the evolutionary implica-
tions of the combination of an ontogenetic niche shift and environmental feedback. We present
a mechanistic, size-structured model in which we assume that predators exploit one niche when
they are small and a second niche when they are big. The niche shift is assumed to be irreversible
and determined genetically. Environmental feedback arises from the impact that predation has
on the density of the prey populations. Our results show that, initially, the environmental
feedback drives evolution towards a generalist strategy that exploits both niches equally. Sub-
sequently, it depends on the size-scaling of the foraging rates on the two prey types whether the
generalist is a continuously stable strategy or an evolutionary branching point. In the latter
case, divergent selection results in a resource dimorphism, with two specialist subpopulations.
We formulate the conditions for evolutionary branching in terms of parameters of the size-
dependent functional response. We discuss our results in the context of observed resource
polymorphisms and adaptive speciation in freshwater fish species.

Keywords: Arctic char, bluegill, cichlids, evolution, feedback, ontogenetic niche shift, perch,
population dynamics, resource polymorphism, roach, size structure.

INTRODUCTION

In size-structured populations, it is common for individuals to exploit several niches
sequentially in the course of their life history (Werner and Gilliam, 1984). The change
during life history from one niche to another is referred to as an ontogenetic niche shift.
The shift can be abrupt, such as that associated with metamorphosis in animals like
tadpoles and insects, or gradual, such as the switch from planktivory to benthivory in
many freshwater fish species (Werner, 1988).
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Ontogenetic niche shifts have been interpreted as adaptations to the different energetic
requirements and physiological limitations of individuals of different sizes. The profitability
of a given prey type generally changes with consumer body size because body functions
such as capture rate, handling time, digestion capacity and metabolic rate depend on body
size. For example, using optimal foraging theory, both the inclusion of larger prey types in
the diet of larger Eurasian perch (Perca fluviatilis) individuals, and the ontogenetic switch
from the pelagic to the benthic habitat, have been attributed to size-dependent capture rates
and handling times (Persson and Greenberg, 1990). Determining the optimal size at which
an individual is predicted to shift from one niche to the next, and how the optimum depends
on the interactions between competing species, have been at the focus of ecological research
during the last two decades (Mittelbach, 1981; Werner and Gilliam, 1984; Persson and
Greenberg, 1990; Leonardsson, 1991). Research has concentrated on approaches based on
optimization at the individual level, assuming a given state of the environment in terms
of food availability and mortality risks. An important result of this research is Gilliam’s
µ/g rule, which states that (for juveniles) the optimal strategy is to shift between niches in
such a way that the ratio of mortality over individual growth rate is minimized at each size
(Werner and Gilliam, 1984).

Individual-level optimization techniques do not take into account population-level
consequences of the switch size. In particular, the size at which the niche shift occurs affects
the harvesting pressures on the different prey types and hence their equilibrium densities.
In an evolutionary context, this ecological feedback between the strategies of individuals
and their environment has to be taken into account. On the one hand, the optimal strategy
depends on the densities of the resources available in the different niches. On the
other hand, these resource densities change with the ontogenetic strategies and resultant
harvesting rates of individuals within the consumer population. A framework for the study
of evolution in such an ecological context is the theory of adaptive dynamics (Metz et al.,
1992, 1996a; Dieckmann and Law, 1996; Dieckmann and Doebeli, 1999; Doebeli and
Dieckmann, 2000). In this framework, the course and outcome of evolution are analysed
by deriving the fitness of mutants from a model of the ecological interactions between
individuals and their environment. An important result from adaptive dynamics theory
is that, if fitness is determined by frequency- and/or density-dependent ecological inter-
actions, evolution by small mutational steps can easily give rise to evolutionary branching.
However, although most species are size-structured (Werner and Gilliam, 1984; Persson,
1987), the adaptive dynamics of size-structured populations have received little attention
so far. Although there have been several studies of adaptive dynamics in age- or stage-
structured populations (e.g. Heino et al., 1997; Diekmann et al., 1999), only one of
these explicitly accounted for the effects of the environment on individual growth and on
population size structure (Ylikarjula et al., 1999). One motivation for the research reported
here, therefore, is to determine similarities and differences between evolution in structured
and unstructured populations subject to frequency- and density-dependent selection.
We can even ask whether population size structure has the potential to drive processes
of evolutionary branching that would be absent, and thus overlooked, in models lacking
population structure.

In this paper, we examine a simple size-structured population model that includes a single
ontogenetic niche shift. The ecological feedback is incorporated by explicitly taking
resource dynamics into account. We assume that individuals exploit one prey type when
they are small and another prey type when they are big. The ontogenetic niche shift is
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thought to represent a morphological trade-off: if efficient exploitation of either prey type
requires specific adaptations, shifting to the second prey type results in a reduced efficiency
on the first prey type. The size at which individuals shift from the first to the second niche
is assumed to be determined genetically and is the evolutionary trait in our analysis. The
shift is assumed to be gradual; we investigate how evolutionary outcomes are influenced by
the width of the size interval with a mixed diet.

We focus on two specific questions. First, what is the effect of the ecological feedback
loop through the environment on the evolution of the ontogenetic niche shift? The size at
which individuals shift to the second niche affects the predation rate on both prey types
and hence their abundances. The relation between strategy and prey abundance is likely
to be important for the evolution of the ontogenetic niche shift. Second, what is the effect
of the scaling with body size of search and handling rates for the two prey types? The
profitability of prey types for an individual of a certain size depends on how these vital
rates vary with body size. Data exist for several species on how capture rates and handling
times depend on body size. Thus, if different evolutionary scenarios can be attributed to
differences in these scaling relations, the results reported here may help to compare different
species and to assess their evolutionary histories in terms of the ecological conditions they
experience.

THE MODEL

As the basis for our analysis, we consider a physiologically structured population model of
a continuously reproducing, size-structured population. We assume that the structured
population feeds on two dynamic prey populations. Our model extends the Kooijman-Metz
model (Kooijman and Metz, 1984; de Roos et al., 1992; de Roos, 1997) in two directions:
first, by introducing a second prey population and, second, by the generalization of the
allometric functions for search rate and handling time that determine the functional
response.

Individuals are characterized by two so-called i-state variables (Metz and Diekmann,
1986): their current length, denoted by x, and the length around which they switch from the
first to the second prey type, denoted by u (Table 1). Individuals are assumed to be born
with length xb; subsequently, their length changes continuously over time as a function of
food intake and metabolic costs. The switch size u is constant throughout an individual’s life
but, in our evolutionary analysis, may change from parent to offspring by mutation. In our
analysis of the population dynamic equilibrium, we assume monomorphic populations, in
which all individuals have the same trait value u. The per capita mortality rate, denoted µ,
is assumed to be constant and size-independent. Possible consequences of relaxing this
assumption are addressed in the Discussion, under the heading ‘Assumptions revisited’.

Feeding

Individuals start their lives feeding on prey 1 but shift (gradually or stepwise) to prey 2 as
they grow. We assume a complementary relation between foraging efficiencies on the two
prey types, which is thought to be caused by a genetically determined morphological change
during ontogeny. Figure 1 shows two sigmoidal curves as a simple model of such an onto-
genetic niche shift. Immediately after birth, individuals have essentially full efficiency on
prey 1 but are very inefficient on prey 2. At the switch size x = u, individuals have equal
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efficiency on both prey types. Larger individuals become increasingly more specialized on
prey type 2.

The ontogenetic niche shift is incorporated into the model by assuming that the attack
rate on each prey type is the product of an allometric term that increases with body length,
and a ‘shift’ term that is sigmoidal in body length and that depends on the switch size u.
Using a logistic sigmoidal function for the shift term (Fig. 1), the two attack rate functions
become:

A1(x,u) = a1x
q1

1

1 + ek(x − u) (1)

A2(x,u) = a2x
q2 �1 −

1

1 + ek(x − u)� (2)

where a1 and a2 are allometric constants and q1 and q2 are allometric exponents. The
parameter k tunes the abruptness of the switch; k = ∞ corresponds to a discrete step from
niche 1 to niche 2 at size x = u, whereas a small value of k (e.g. k = 20) describes a more
gradual shift. In the latter case, there is a considerable size interval over which individuals
have a mixed diet.

Table 1. Symbols used in model definition for state variablesa and constant parameters

Symbol Value Unit Interpretation

Variablesa

x cm i-state: length
u cm i-state: length at ontogenetic niche shift
n(x, u) — b p-state: population size-distribution
F1, F2 m − 3 E-state: population density of prey type 1, 2

Constants
xb 0.5 cm length at birth
λ 0.01 g · cm − 3 length–weight constant
a1, a2 (1–10) m3 ·day − 1 · cm − q maximum attack rate scaling constants (prey types 1, 2)
q1, q2 (1–3) — maximum attack rate scaling exponent
k (1–1000) — abruptness of ontogenetic niche shift
h1, h2 (10–100) day ·g − 1 · cm − p handling time constant, prey type 1
p (1–3) — handling time scaling exponent
ε 0.65 — intake coefficient
ρ 2.5 × 10 − 4 g ·day − 1 ·mm − 3 metabolic rate constant
κ 0.7 — allocation coefficient
σ 1.25 × 10 − 3 — energy for one offspring
µ 0.1 day − 1 background mortality rate
r1, r2 (0.1) day − 1 prey 1, 2 population growth rate
K1, K2 (0.1) g ·m − 3 prey 1, 2 carrying capacity

a To avoid excessive notation, we dropped the time argument.
b The dimension of n is density (m − 3) after integration over i-state space; that is, ∫ n(x, u) du dx.
Note: For the parameters that are varied between runs of the model, the range of values or the default value is
given in parentheses.
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If we let the switch size u increase to infinity, the attack rate on prey type 1 approaches the
allometric term for all lengths. Similarly, if we let the switch size decrease to minus infinity,
the attack rate on prey type 2 approaches the allometric term. In the rest of this article, we
frequently make use of these two limits, denoted Âi (x):

Â1(x) = lim
u ↑ ∞

A1(x,u) = a1x
q1 (3)

Â2(x) = lim
u ↓ −∞

A2(x, u) = a2x
q2 (4)

Since the functions Âi(x) correspond to the highest possible attack rates on prey type i at
body length x, we refer to them as the possible attack rates. Accordingly, the functions Ai(x,
u) (equations 1 and 2) are referred to as the actual attack rates.

The digestive capacity is assumed to increase with body size, which results in handling
times per unit of prey weight that decrease with body size, Hi(x):

H1(x) = h1x
−p (5)

H2(x) = h2x
−p (6)

While we assume that the same allometric exponent −p applies to both prey types, these
types may differ in digestibility and the allometric constants h1 and h2 may therefore differ.
We assume a Holling type II functional response for two prey species:

f (x,u,F1,F2) =
A1(x,u)F1 + A2(x,u)F2

1 + A1(x,u)H1(x)F1 + A2(x,u)H2(x)F2

(7)

where F1 and F2 denote the densities of the two prey populations, respectively.
Extrapolating the terminology that we use for attack rates, we refer to the function

f (x,u,F1,F2) as the ‘actual’ intake rate. In the analysis below, we use the term ‘possible’
intake rate to refer to the intake rate of an individual that focuses entirely on one of the two
niches. It is given by

f̂i(x,Fi) =
Âi(x)Fi

1 + Âi(x)Hi(x)Fi

(8)

with i = 1 for the first niche and i = 2 for the second one, and where Âi(x) is the possible
attack rate on prey type i. Note that f1(x,F1) and f2(x,F2) are obtained by taking the limit of
f (x,u,F1,F2) as u approaches ∞ and −∞, respectively.

Fig. 1. A simple model of an ontogenetic niche shift. Size x = u is referred to as the ‘switch size’ and
is assumed to be a genetic trait (u = 0.7, k = 30).

Ontogenetic niche shift and evolutionary branching 193



Reproduction and growth

The energy intake rate is assumed to equal the functional response multiplied by a con-
version efficiency ε. A fixed fraction 1 − κ of the energy intake rate is channelled to repro-
duction. Denoting the energy needed for a single offspring by σ, the per capita birth rate
equals

b(x,u,F1,F2) =
ε(1 − κ)

σ
f (x,u,F1,F2) (9)

To restrict the complexity of our model, we assume that individuals are born mature
and that reproduction is clonal. The fraction κ of the energy intake rate is used to cover
metabolism first and the remainder is used for somatic growth. Assuming that the metabolic
rate scales with body volume (proportional to x3), the growth rate in body mass becomes:

Gm(x,u,F1,F2) = εκ f (x,u,F1,F2) − ρx3

where ρ is the metabolic cost per unit of volume. Assuming a weight–length relation of
the form W(x) = λx3, and using dx/dt = (dw/dt)(dx/dw), we can write the rate of growth in
length as:

g(x,u,F1,F2) =
1

3λx2 (εκ f (x,u,F1,F2) − ρx3) (10)

The length at which the growth rate becomes zero is referred to as xmax. Individuals with
a size beyond xmax have a negative growth rate (but a positive birth rate). Since in the analysis
below we assume population dynamic equilibrium, we ensure that no individual grows
beyond the maximum size. Note that in the special case with p = q1 = q2 = 2 the function g
becomes linear in x, yielding the classic von Bertalanffy growth model (von Bertalanffy,
1957).

Prey dynamics

The population size distribution is denoted by n(x, u). For the analyses of the deterministic
model below, we assume that the (resident) population is monomorphic in u. Therefore,
we do not have to integrate over switch sizes u but only over sizes x to obtain the total
population density,

Ntot(u) = �
xmax

xb

n(x, u) dx (11)

We assume that the two prey populations grow according to semi-chemostat dynamics
and that they do not interact with each other directly. The dynamics of the prey populations
can then be described by:

dF1

dt
= r1(K1 − F1) − �

xmax

xb

A1(x, u) F1

1 + A1(x,u)H1(x)F1 + A2(x,u)H2(x)F2

n(x,u) dx (12)

dF2

dt
= r2(K2 − F2) − �

xmax

xb

A2(x,u)F2

1 + A1(x,u)H1(x)F1 + A2(x,u)H2(x)F2

n(x,u) dx (13)
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where r1, r2, K1 and K2 are the maximum growth rates and maximum densities of the two
prey populations, respectively. The integral term in each equation represents the predation
pressure imposed by the predator population.

The PDE formulation of the model is given in Table 2 and the individual level model is
summarized in Table 3.

Parameterization

Since we intend to study the effect of the size-scaling of the functional response on the
evolution of the ontogenetic niche shift, the parameters a1, a2, h1, h2, p, q1 and q2 are not
fixed. Depending on whether handling time and search rate are determined by processes
related to body length, surface or volume, the allometric exponents p, q1 and q2 are close to
1, 2 or 3, respectively. The remaining, fixed parameters are based on the parameterization of
a more detailed model of perch (Claessen et al., 2000).

ECOLOGICAL DYNAMICS

Before we can study evolution of the ontogenetic niche shift, we have to assess the effect
of the ontogenetic niche shift on the ecological dynamics. Our model (Table 2) is not
analytically solvable. Instead, we study its dynamics through a numerical method for the
integration of physiologically structured population models, called the Escalator Boxcar
Train (de Roos et al., 1992; de Roos, 1997). When restricting attention to a single prey
type (which is equivalent to assuming u � xmax) and to the special case p = q1 = 2, our
model reduces to the Kooijman-Metz model, of which the population dynamics are well
documented in the literature (e.g. de Roos et al., 1992; de Roos, 1997). Numerical studies of
the equilibrium behaviour of this simplified model show that the population dynamics
always converge to a stable equilibrium, which can be attributed to the absence of a juvenile
delay and to the semi-chemostat (rather than, for example, logistic) prey dynamics (cf. de
Roos, 1988; de Roos et al., 1990). Simulations show that, also for the general functional

Table 2. The model: specification of dynamicsa

PDE ∂n

∂t
+

∂gn

∂x
= −µn(x,u)

Boundary condition g(xb,u,F1,F2)n(xb,u) = �xmax

xb
b(x,u,F1,F2)n(x,u)dx

Prey dynamics dF1

dt
= r1(K1 − F1) − �

xmax

xb

A1(x,u)F1

1 + A1(x,u)H1(x)F1 + A2(x,u)H2(x)F2

n(x,u) dx

dF2

dt
= r2(K2 − F2) − �

xmax

xb

A2(x,u)F2

1 + A1(x,u)H1(x)F1 + A2(x,u)H2(x)F2

n(x, u) dx

a The time argument has been left out from all variables and functions.
Note: The functions defining the birth rate (b), growth rate (g), attack rates (A1, A2) and handling times (H1, H2) are
listed in Table 3, parameters in Table 1. PDE = partial differential equation.
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response (with values of p, q1 and q2 between 1 and 3), the equilibrium is stable for all
investigated parameter combinations.

It is possible to choose parameter values (e.g. small Ki or high hi) for which the predator
population cannot persist on either prey 1 or prey 2 alone. In the results presented below,
we use parameter values that allow for persistence on either prey type separately.

Ontogenetic niche shift and prey densities

We now examine the ecological effect of the size at the ontogenetic niche shift on the
equilibrium state of a monomorphic size-structured population and the two prey popula-
tions. Each specific choice of u and the parameters results in a stable size distribution n(x,u)
and equilibrium prey densities F1 and F2. The effect of the switch size u on the prey densities
F1 and F2, on the total predator population density Ntot(u) and on the the maximum length
in the predator population xmax is shown in Fig. 2 for two different parameter combinations.

Three conclusions can readily be drawn from Fig. 2. First, prey density F1 or F2 is low if
most of the predator population consumes prey 1 or prey 2, respectively. Second, the total
number of predators, Ntot(u), reaches a maximum for an intermediate switch size u (i.e.
when predators exploit both prey). Third, the maximum length in the predator population
correlates strongly with the density of the second prey provided that individuals reach the
size at which the ontogenetic niche occurs (i.e. xmax > u).

With very low or very high u, the system reduces to a one-consumer, one-resource system.
If the switch size is very large (u > xmax; for example, u > 2.5 in Fig. 2), individuals never
reach a size large enough to start exploiting the second prey. The second prey population is
hence at the carrying capacity K2, whereas the first prey is heavily exploited. Similarly, for
a very small switch size (u < xb; for example, u = 0 in Fig. 2), even newborns have a low
efficiency on prey type 1. In this case, prey 1 is near its carrying capacity K1 and prey 1 is
depleted. The two extreme strategies u > xmax and u < xb, therefore, characterize specialists

Table 3. The model: individual level functions

Attack rate on prey 1 A1(x,u) = a1x
q1

1

1 + ek(x − u)

Attack rate on prey 2 A2(x,u) = a2x
q2 �1 −

1

1 + ek(x − u)�
Handling time, prey 1 H1(x) = h1x

−p

Handling time, prey 2 H2(x) = h2x
−p

Functional response f (x,u,F1,F2) =
A1(x,u)F1 + A2(x,u)F2

1 + A1(x,u)H1(x)F1 + A2(x,u)H2(x)F2

Maintenance requirements M(x) = ρx3

Growth rate in length g(x,u,F1,F2) =
1

3λx2 (κε f (x,u,F1,F2) − ρx3)

Birth rate b(x,u,F1,F2) =
ε(1 − κ)

σ
f (x,u,F1,F2)
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on prey 1 and prey 2, respectively. Although at first sight a strategy u < xb appears to be
biologically meaningless, it can be interpreted as a population that has lost the ability
to exploit a primary resource which its ancestors used to exploit in early life stages. This
evolutionary scenario turns up in the results (see pp. 208–210).

A striking result evident from Fig. 2 is the discontinuous change in maximum length at
high values of u. For u beyond the discontinuity, growth in the first niche is insufficient to
reach the ontogenetic niche shift, such that the maximum length is determined only by the
prey density in the first niche. As soon as the switch size is reachable in the first niche,
the maximum size is determined by the prey density in the second niche. Just to the left
of the discontinuity, only a few individuals live long enough to enter the second niche,
and the impact of these individuals on the second prey is negligible (F2 ≈ K2). These few
survivors thrive well in the second niche and reach giant sizes (Fig. 2). This sudden change
in asymptotic size corresponds to a fold bifurcation (see also Claessen et al., in press).

An important general conclusion from Fig. 2 is that there is a strong ecological feedback
between the niche switch size u and the environment (F1 and F2 equilibrium densities).
Changing u may drastically change prey densities, which, in turn, may change predator
population density and individual growth rates. Comparison of Fig. 2a with Fig. 2b
suggests that specific choices for the parameters of the size scaling of the functional
response do not affect the general pattern. We have studied many different parameter
combinations of a1, a2, h1, h2, p, q1 and q2 and all give the same overall pattern as illustrated
in Fig. 2.

Fig. 2. The ecological equilibrium of a monomorphic population, as a function of the length at
ontogenetic niche shift (u), characterized by prey densities (upper panels), total predator density
(middle panels) and maximum length in predator population (lower panels). (a) Parameters: q1 = 1.8,
q2 = 2.1, h1 = h2 = 100. (b) Parameters: q1 = 2, q2 = 1, h1 = h2 = 10. Other parameters (in both cases),
p = 2, k = 30 and as in Table 1.
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PAIRWISE INVASIBILITY PLOTS

This section briefly outlines the methodology and terminology that we use in our study of
the evolution of the switch size u. Our evolutionary analysis of the deterministic model
is based on the assumptions that (1) mutations occur rarely, (2) mutation steps are small and
(3) successful invasion implies replacement of the resident type by the mutant type. The
robustness of these assumptions will be evaluated later (see pp. 208–210). Under these
assumptions, evolution boils down to a sequence of trait substitutions. To study this, we
consider a monomorphic resident population with genotype u and determine the invasion
fitness of mutants, whose strategy we denote u�. With our model of the ecological inter-
actions (see previous section on ‘Ecological dynamics’), we can determine the fitness of
a mutant type from the food densities F1 and F2, as is shown on pp. 200–201. Since the
food densities are set by the resident population, the fitness of mutants depends on the
strategy of the resident. If the lifetime reproduction, R0, of a mutant exceeds unity, it has a
probability of invading and replacing the resident (Metz et al., 1992).

For all possible pairs of mutants and residents, the expected success of invasion by the
mutant into the ecological equilibrium of the resident can be summarized in a so-called
pairwise invasibility plot (van Tienderen and de Jong, 1986). For example, Fig. 3a is a
pairwise invasibility plot for residents and mutants in the range of switch sizes from 0 to
2 cm, based on our model (Table 2). It shows that, if we choose a resident with a very small
switch size, say u = 0.1, all mutants with a larger trait value (u� > u) have the possibility
to invade the resident, whereas mutants with a smaller trait value (u� < u) have a negative
invasion fitness and hence cannot establish themselves. Thus, the resident is predicted to be
replaced by a mutant with a larger switch size. Upon establishment, this mutant becomes
the new resident and the pairwise invasibility plot can be used to predict the next trait
substitution. Figure 3a shows that, as long as the resident type is below u*, only mutants
with a larger trait value (u� > u) can invade. Thus, if we start with a resident type below u*,
the adaptive process results in a stepwise increase of the resident trait value towards u*. A
similar reasoning applies to the residents with a trait value above u*. Here, only mutants
with a smaller switch size can invade (Fig. 3a). Therefore, starting from any initial resident
type near u*, the adaptive process results in convergence of the resident to u*. The strategy
u* is hence an evolutionary attractor.

In a pairwise invasibility plot, the borders between areas with positive and negative
invasion fitness correspond to zero fitness contour lines. The diagonal (u� = u) is necessarily
a contour line because mutants with the same strategy as the resident have the same fitness
as the resident. Intersections of other contour lines with the diagonal are referred to as
evolutionarily singular points (e.g. u*). Above, we used the pairwise invasibility plot to
determine the convergence stability of u*, but we can also use it to determine the evolution-
ary stability of singular points. For example, Fig. 3a shows that if the resident has strategy
u*, all mutant strategies u�≠ u have negative invasion fitness. A resident with switch
size u* is therefore immune to invasion by neighbouring mutant types and it is thus an
evolutionarily stable strategy (ESS). A singular point that is both convergence stable
and evolutionarily stable is referred to as a continuously stable strategy (CSS; Eshel, 1983).

In general, the dynamic properties of evolutionarily singular points can be determined
from the slope of the off-diagonal contour line near the singular point (Metz et al., 1996a;
Dieckmann, 1997; Geritz et al., 1998). In our analysis below, we find four different types of
singular points. As we showed above, u* in Fig. 3a corresponds to a CSS. In Fig. 3b, the
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singular point u* is again an evolutionary attractor. However, once a resident population
with strategy u* has established itself, mutants on either side of the resident (i.e. both u� > u
and u� < u) have positive fitness. Since mutants with the same strategy as the resident have
zero invasion fitness, the singular point u* is located at a fitness minimum. It should be
pointed out here that, under frequency-dependent selection, evolutionary stability and
evolutionary convergence (or attainability) are completely independent (Eshel, 1983). In
spite of being a fitness minimum, the strategy u* in Fig. 3b is nevertheless an evolutionary
attractor. As will become clear below (see pp. 208–210), a singular point that is convergence
stable but evolutionarily unstable (e.g. u* in Fig. 3b) is referred to as an evolutionary
branching point (Metz et al., 1996a; Geritz et al., 1997).

In Fig. 3c, the singular point u* is also an evolutionary attractor, but it is evolutionarily
neutral; if the resident is u*, all mutants have zero invasion fitness. We consider it a
degenerate case, because even the slightest perturbation results in the situation of Fig. 3a
or Fig. 3b.

The last type of singular point that we will encounter is illustrated in Fig. 4. In these
pairwise invasibility plots, there are two evolutionarily singular points, of which u* is
an evolutionary branching point. From the sign of the invasion fitness function around the
singular point ur, we can see that if we start with a resident close to the singular point,

Fig. 3. Sketches of typical pairwise invasibility
plots as they are found for our model (Table 2).
Points in shaded areas (indicated ‘ + ’) correspond
to pairs of resident and mutant types for which the
mutant can invade the ecological equilibrium set
by the resident. Points in white areas (indicated
‘ − ’) correspond to pairs for which the mutant
cannot invade the resident equilibrium. The
borders between the white and shaded areas are
the R0 (u�, u) = 1 contour lines. The evolutionary
singular point u* is an evolutionary global
attractor of the monomorphic adaptive dynamics.
(a) u* is a continuously stable strategy (CSS);
(b) u* is an evolutionary branching point (EBP);
(c) u* is neutral.
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mutants with a strategy even closer to ur cannot invade. Rather, successful invaders lie
further away from ur. Trait substitutions are hence expected to result in evolution away
from ur. Singular points such as ur in Fig. 4 are convergence unstable and are referred to as
evolutionary repellers (Metz et al., 1996a).

EVOLUTIONARY DYNAMICS

In this section, we study the evolution of the size at niche shift (u) within the ecological
context established in the section on ‘Ecological dynamics’. First, we use the deterministic
model to find evolutionarily singular points and their dynamic properties, using the
method outlined in the previous section. Second, we interpret them in terms of ecological
mechanisms. Third, we use numerical simulations of a stochastic individual-based version
of the same model to check the robustness of the derived predictions.

Invasion fitness of mutants

We first have to determine the fitness of mutants as a function of their own switch size
u� and of the the resident’s switch size u. With our individual-level model (see section
on ‘Ecological dynamics’), we can relate the lifetime reproduction, R0, of a mutant to its
strategy. We can use R0 as a measure of invasion fitness, because a monomorphic resident
population with strategy u can be invaded by mutants with strategy u� if the expected
lifetime reproduction of the mutant in the environment set by the resident exceeds unity –
that is, if R0(u�, u) > 1 (Mylius and Diekmann, 1995).

The environment that a mutant experiences consists of the two prey densities, which are
in equilibrium with the resident population, so we write F1(u) and F2(u). The mutant’s

Fig. 4. Sketches of two additional pairwise invasibility plots that are found for our model (Table 2).
Points in shaded areas (indicated ‘ + ’) correspond to pairs of resident and mutant types for which the
mutant can invade the ecological equilibrium set by the resident. Points in white areas (indicated ‘ − ’)
correspond to pairs for which the mutant cannot invade the resident equilibrium. The borders
between the white and shaded areas are the R0(u�, u) = 1 contour lines. The singular point u* is an
evolutionary branching point (EBP). The singular point ur is an evolutionary repeller. We find (a) if
prey 1 is very hard to digest (high h1) and (b) if prey 2 is very hard to digest (high h2).
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length–age relation can be obtained by integration of equation (10) after substitution of
F1(u) and F2(u). Knowing the growth trajectory, the birth rate as a function of age can be
calculated from equation (9). We denote this age-specific birth rate by B(a, u�, u), where
a denotes age. The mutant’s lifetime reproduction R0 is then found by integration of this
function, weighted by the probability of surviving to age a, over its entire life history:

R0(u�,u) = �
∞

0
e − µaB(a,u�,u) da (14)

Based on the assumption of size-independent mortality, R0(u�, u) is a monotonically
increasing function of the feeding rate at any size. The reason is straightforward: an
increased feeding rate implies an increased instantaneous birth rate, as well as an increased
growth rate. The size-specific birth rate b (equation 9) is monotonically increasing in x.
These three facts imply that an increase in the intake rate at any size increases the lifetime
reproduction (in a constant environment).

For each value of the resident’s trait u from the range between the two specialist trait
values (u = 0 . . . 4), we numerically determine the function R0(u�, u) for values of u� from the
same range. The results of these calculations are summarized in pairwise invasibility plots
(see pp. 198–200), which show the contour lines R0(u�, u) = 1 and the sign of R0(u�, u) − 1
(Figs 3 and 4).

The results for many different parameter combinations show that there are five qualita-
tively different pairwise invasibility plots, which are represented in Figs 3 and 4. All five
pairwise invasibility plots have one important feature in common: there is an intermediate
switch size that is an evolutionary attractor of the monomorphic adaptive dynamics.
We denote this attractor by u* and refer to it as the generalist strategy. In Fig. 3, u* is a
global attractor, whereas in Fig. 4 there is also an evolutionary repeller. Choosing a resident
switch size beyond the repeller leads to evolution towards a single specialist population,
leaving the other niche (the first niche in Fig. 4a; the second in Fig. 4b) unexploited. We first
discuss the evolutionary attractor u* and return to the evolutionary repellers later in the
section.

Evolutionary convergence to the generalist u*

Here we relate the results presented in Fig. 3 to the underlying ecological mechanisms.
We can explain the different evolutionary outcomes by considering the life history of
individuals in terms of their size-dependent food intake rate (equation 7). To clarify
the ecological mechanism, we compare the size-dependent food intake rate of a resident
individual with the possible intake rates in each niche separately (equation 8; Fig. 5). Thus,
we gain insight into whether the actual intake rate at a certain size is above or below the
possible intake rate at that size.

The length at which the possible intake rates f̂1(x, F1) and f̂2(x, F2) (equation 8) intersect
is denoted xe. This particular body length is of special interest, because one niche is more
‘profitable’ to individuals smaller than xe, whereas the other niche is more profitable to
individuals larger than xe. Here, ‘more profitable’ is defined as ‘providing a higher possible
intake rate’. To an individual of length x = xe, the two niches are hence equally profitable.
Figure 5 illustrates that the evolutionary attractor u* is that particular strategy for which
the switch size u coincides with the intersection of the possible intake rates (i.e. xe = u).

Depending on the size scaling of the two possible intake rates, two generic cases can be
distinguished: (a) the first niche is more profitable than the second one to individuals
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smaller than xe, but less profitable to individuals larger than xe, and (b) vice versa. The two
cases are illustrated in Fig. 5a and b, respectively. In the rest of this section (including the
figures), we refer to these cases as case (a) and case (b). For comparison, Fig. 2 also shows
cases (a) and (b).

Why u* is an evolutionary attractor can be understood by considering a perturbation in
the switch size u; that is, by choosing a resident strategy u slightly smaller or larger than u*.
In this case, the possible intake rates intersect at some body size xe ≠ u. In Fig. 6 (right-hand
panels), the resident has a strategy slightly above the generalist strategy (u > u*). Compared
with Fig. 5, the curves of the two possible intake rates have shifted; f̂1 downward and f̂2

upward. The reason is that the prey densities F1 and F2 depend on the resident strategy u
(Fig. 2). As a consequence, to an individual with length equal to the switch length (x = u),
the second niche seems underexploited. We define the ‘underexploited’ niche as the niche
that gives an individual of length x = u the highest possible intake rate (equation 8). The
other niche is referred to as ‘overexploited’.

Now, consider a mutant with a strategy u� in the environment set by a resident with
u > u*. If the mutant has a smaller switch size than the resident, it switches to the under-
exploited niche before the resident does. Its intake rate, therefore, is higher than the resi-
dent’s intake and, since fitness increases monotonically with the intake rate, the mutant can

Fig. 5. Comparison of the size-dependent, actual intake rate of the resident with the possible intake
rates in each niche separately, given the densities of F2 and F2 as set by the resident. The residents in (a)
and (b) correspond to u* in Fig. 3a and b, respectively. Note that the switch size u and the intersection
of the two possible intake rates coincide. (a) Possible attack rate is proportional to body length in the
first niche (q1 = 1) and proportional to body surface area in the second (q2 = 2); the resident (u* = 0.68)
is a continuously stable strategy (CSS). (b) Possible attack rate is proportional to body surface area in
the first niche (q1 = 2) and proportional to body length in the second (q2 = 1); the resident (u* = 0.683)
is an evolutionary branching point (EBP). Other parameters: k = 30, p = 2, a1 = a2 = 1, h1 = h2 = 10 and
as in Table 1.
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invade. Mutants that switch later than the resident, however, spend more time in the over-
exploited niche, have a lower intake rate and hence cannot invade. This shows how natural
selection drives the system in the direction of the generalist u* when started from a resident
with u > u*.

For the case u < u*, the opposite reasoning applies: a resident that switches between
niches at a relatively small size underexploits the first niche and overexploits the second one.
The curve describing the possible intake rate in the first niche ( f̂1) shifts upward, whereas
the curve for the second niche ( f̂2) shifts downward (Fig. 6, left-hand panels). Only mutants
that switch later (u� > u) profit more from the underexploited niche than the resident, and
hence only these mutants can invade, such that evolution moves the system towards the
generalist u* when started from a resident with u < u*.

In summary, if one niche is underexploited, natural selection favours mutants that exploit
this niche more. In consequence, only mutants that are closer to the generalist strategy
u* than the resident can invade. This suggests that u* is an evolutionary attractor. Con-
vergence to u*, however, also depends on the effect of the environmental feedback on xe.
That is, once an invading strategy has replaced the old resident, it gives rise to a new
ecological equilibrium. Because xe depends on the prey densities F1 and F2, we need to check
the relation between resident switch size u and the resultant xe.

Again, we have to distinguish between cases (a) and (b) because the slopes of the possible
intake rates at their intersection are crucial. Figure 6 shows that in case (a) the second
niche is underexploited if xe < u and overexploited if xe > u. This means that evolutionary

Fig. 6. Perturbations in the switch size u. For cases (a) and (b) depicted in Fig. 5, a resident was
chosen just below the singular point (u < u*) and one resident just above it (u > u*). Assuming the
ecological equilibrium of these residents, the actual and possible intake rates are plotted (legend:
see Fig. 5). xe marks the length at which the possible intake rates intersect. Parameters: (a) q1 = 1,
q2 = 2. (b) q1 = 2, q2 = 1. Other parameters as in Fig. 5.
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convergence to u* is guaranteed if all residents with u > u* have an intersection point xe < u
and all residents with u < u* have an intersection point xe > u. Figure 7a shows that this is
indeed the case. In case (b), the second niche is underexploited if xe > u and overexploited
if xe < u. For convergence to u*, the relation between xe and u should hence be opposite to
case (a); Fig. 7 confirms that this applies. The relations in Fig. 7, and hence convergence
to u*, hold as long as the following condition is fulfilled at u = u*:

∂ f̂1

∂u �
x = u

<
∂ f̂2

∂u �
x = u

Although we cannot prove that this condition is met in general, intensive numerical investi-
gations have found no exception for any parameter combinations. We conjecture that the
inequality above can be taken for granted if the following, more elementary, condition is
fulfilled at u = u*:

∂F1

∂u
<

∂F2

∂u

Evolutionary stability of the generalist u*

The pairwise invasibility plots (Fig. 3) suggest that the evolutionary attractor u* is either a
continuously stable strategy (CSS), an evolutionary branching point (EBP) or neutral.
Which of these cases applies depends on the size scaling of the possible intake rates in the
two niches. We show this by considering the two generic possibilities in Fig. 5, starting with
case (a). For a resident that is smaller than its switch size, the first niche is more profitable
than the second – that is, f̂1(x) > f̂2(x) for x < u (Fig. 5a). Consequently, mutants that switch

Fig. 7. The environmental feedback represented by the body length for which the two niches are
equally profitable (xe) as a function of the resident switch length (u). (a) and (b) as in Fig. 5 and Fig. 6.
The switch size for which xe = u is referred to as the generalist strategy, denoted u*. In (a) u* = 0.68 and
in (b) u* = 0.683.
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earlier than the resident (u� < u) switch to the second niche at a size at which the second
niche is still less profitable to them than the first. They hence have lower fitness than the
resident. For individuals larger than the resident switch size, the second niche is more
profitable than the first – that is, f̂2(x) > f̂1(x) for x > u. This implies that mutants that switch
later than the resident (u� > u) stay in the first niche, although this niche has become less
profitable to them than the second one. These mutants, too, have lower fitness than the
resident. Since mutants on both sides of the resident strategy cannot invade, the generalist
u* is a CSS.

Case (b) is simply the opposite of the previous case. The first niche is less profitable to
individuals smaller than the switch size, whereas the second niche is less profitable to
individuals larger than the switch size. As a consequence, mutants that switch earlier
(u� < u) switch to the second niche while it still is more profitable to them. Mutants that
switch later (u� > u) stay in the first niche when it becomes more profitable to them. The
evolutionary attractor u* thus lies at a fitness minimum and, since it is nevertheless
convergence stable, it is an evolutionary branching point.

Which biological conditions give rise to cases (a) and (b)? In the next two subsections, we
derive conditions for theses cases in terms of our model parameters; this allows for a
qualitative comparison between our results and empirical data on the size scaling of
functional responses. To aid our biological interpretation of the results and because of the
complexity of equation (7), we apply two alternative simplifying assumptions. In a first
scenario, we assume that the handling times for the two prey types are equal (h1 = h2). In a
second scenario, we consider different handling times, but assume the same possible attack
rates in both niches (a1 = a2, q1 = q2).

Scenario 1: different attack rates

Here, we assume that the only difference between the two niches is the size scaling of the
possible attack rates, whereas handling times are assumed to be the same. In this case, we
can find an explicit expression for the length xe at which the two possible intake rates
intersect. The intersection xe is obtained by substituting h1 = h2 = h in the possible intake
rates (equation 8) and by solving for f̂1(x) = f̂2(x):

xe = �a1F1

a2F2
�

1/(q2 − q1)

(15)

To distinguish between cases (a) and (b), we define a function D(x) that is the difference
between the possible intake rates in the two niches:

D(x) = f̂1(x) − f̂2(x) (16)

In case (a), the first niche is more profitable before the switch, while the second one is more
profitable after the switch; this requires that the slope of D(x) evaluated at x = xe is negative.
Case (b) results when the slope of D(x) at size xe is positive.

The function D(x) can be written as

D(x) =
a1F1x

q1 − a2F2x
q2

1 + a1F1x
(q1 − p)h + a2F2x

(q2 − p)h + a1F1a2F2x
(q1 − 2p + q2)h2 (17)
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By definition, D(xe) = 0, so we only have to consider the sign of D(x) around x = xe. Since
the denominator of equation (17) is always positive, we have to determine the sign of the
numerator only. The numerator is positive for a length x between 0 and xe if, and only if,
q1 < q2. Thus we arrive at the conditions:

q1 < q2 CSS

q1 = q2 neutral (18)

q1 > q2 EBP

If the possible attack rate on the first prey type increases faster with body size than the
possible attack rate on the second prey type (Fig. 5b), the evolutionary attractor u* is
predicted to be an evolutionary branching point (Fig. 3b). Otherwise, the generalist is pre-
dicted to be a CSS or to be neutral and the population to remain monomorphic. Note
that Fig. 2, Fig. 5 and Fig. 7 illustrate this first scenario.

Scenario 2: different handling times

Here, we assume that the possible attack rates are the same (i.e. a1 = a2 = a, q1 = q2 = q), but
that the two prey types differ in digestibility (i.e. h1 ≠ h2). The reasoning is analogous to that
applied in the first scenario. The length at which the niches are equally profitable is:

xe = � F1 − F2

aF1F2(h1 − h2)�
1/(q − p)

(19)

The difference between the possible intake rates is:

D(x) =
axq[(h2 − h1)aF1F2x

q − p + F1 − F2]

(1 + axq − ph1F1)(1 + axq − ph2F2)
(20)

Again, the denominator is always positive, so we consider the numerator only. Here it is
crucial to recognize that D(x) is increasing if

(h2 − h1)aF1F2x
q − p (21)

is increasing in x. Since xq − p is increasing in x if p < q and decreasing if p > q, we arrive at
the following conditions for the evolutionary stability of the generalist u*:

p > q and h1 < h2 CSS

p < q and h1 > h2 CSS

p = q or h1 = h2 neutral (22)

p > q and h1 > h2 EBP

p < q and h1 < h2 EBP

Interpretation of these conditions is less obvious than for the first scenario and requires
consideration of the size-dependent functional response (equation 7). If p > q, the
maximum intake rate on a pure diet of prey i, Hi(x) − 1, increases faster with body size than
the search rate. This means that, with increasing body size, the feeding rate becomes less
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limited by digestive constraints and more limited by prey abundance. This can be clarified
by the case of a single prey population, assuming a constant prey density F. Dividing the
functional response f by the maximum intake rate, H(x) − 1, we obtain the level of saturation
as a function of body size:

� 1

ahF
xp − q + 1�

−1 (23)

which is a decreasing function of x if p > q and an increasing one if p < q. If the feeding rate
is well below its maximum, the intake rate correlates strongly with the encounter rate
between predator and prey, and the individual is ‘search limited’. If, on the other hand, the
feeding rate is close to its maximum, the intake rate correlates weakly with prey abundance,
and individuals are ‘handling limited’. For p = q, the level of saturation is independent of
body size (like, for example, in the Kooijman-Metz model with p = q = 2).

Recall that, for a resident of size x = u*, the two prey types are equally profitable (Fig. 5).
If the feeding rate becomes more handling limited with body size (p < q), then for
individuals larger than u*, the prey that is more digestible (smaller hi) is the more profitable
one. If, on the other hand, the feeding rate becomes more search limited with body size, then
for larger individuals, the more abundant prey (higher Fi) is more profitable. Rewriting
equation (19) gives a relation between the prey densities at equilibrium of the resident
population with switch size u*:

F2 =
F1

1 + (h1 − h2)aF1xe
q − p (24)

This implies that the less digestible prey is the more abundant prey:

h1 > h2⇔F1 > F2 at u = u* (25)

We first investigate the case h1 > h2, p < q, and consider a resident population with the
singular strategy u = u* and a mutant that switches at a larger size than the resident (u� > u).
In the size interval between the resident’s switch size u and its own switch size u�, the
resident shifts its focus to prey 2 while the mutant is still focusing on prey 1. The mutant
thus consumes the less digestible prey while it is relatively handling limited (relative to the
size at which the two prey are equally profitable, u*). Its intake rate is therefore smaller than
that of the resident and hence also its lifetime reproduction. A mutant that switches at a
smaller size than the resident (u� < u) consumes the less abundant prey 2 already at a size
where it is relatively search limited. Also, this mutant has a smaller R0 than the resident.
Since mutants with u� > u or u� < u both cannot invade, the singular strategy u* is a CSS if
h1 > h2 and p < q. For h1 < h2 and p > q, an analogous reasoning applies.

We now consider the case h1 > h2 and p > q. A mutant that switches at a larger size
continues consuming the more abundant prey 1 while it is relatively search limited,
yielding a higher feeding rate and hence a higher fitness than the resident. A mutant that
switches at a smaller size starts consuming the more digestible prey 2 while it is relatively
handling limited, also yielding a higher fitness than the resident. Thus, mutations in both
directions yield a higher fitness than the resident, which implies that the singular strategy
is a branching point. Again, a completely analogous reasoning applies for h1 < h2 and
p < q.
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Evolutionary repellers

Under the assumptions that a1 = a2 = a and q1 = q2 = q, we have identified parameter con-
figurations leading to two singular points, where one is the generalist strategy u* and the
other is an evolutionary repeller (Fig. 4a,b). A repeller occurs at a small trait value if p > q
and h1 is sufficiently high (Fig. 4a). In contrast, a repeller occurs at a large trait value if
p < q and h2 is sufficiently high (Fig. 4b). In the latter case, if the population starts out with a
trait value above the repeller, directional selection moves the population away from u* and
towards the strategy that is a specialist on prey 1. It is interesting to note – and, because of
the asymptotic shape of the sigmoidal functions (Fig. 1), also biologically expected – that
the fitness gradient goes asymptotically to zero as the resident switch size becomes larger.
Similarly, starting below the repeller in the case with p > q, the population evolves to a
specialist on prey 2, leaving the first prey unexploited. The existence of the repellers relates
to the fact that, for severely handling-limited individuals, the less digestible prey type can be
less profitable than the more digestible prey type even if the former’s density is at its
carrying capacity and the latter’s density is low.

After branching: dimorphism of switch sizes

What happens after the adaptive dynamics of switch sizes has reached an evolutionary
branching point, such as u* in Fig. 3b? Mutants on either side of u* can invade the resident
population, which may give rise to the establishment of two (slightly more specialized)
branches and exclusion of the generalist u* (Metz et al., 1996a; Geritz et al., 1997). Whether
the branches can co-exist depends on whether they can invade into each other’s mono-
morphic equilibrium population. The set of u� and u strategies that can mutually invade is
referred to as the set of protected dimorphisms. This set is found by flipping the pairwise
invasibility plot (Fig. 3b) around the diagonal u� = u (corresponding to a role reversal of the
two considered strategies) and superimposing it on the original (Geritz et al., 1998): com-
binations of strategies (u, u�) for which the sign of R0(u�, u) − 1 before and after the flip is
positive are protected dimorphisms and can co-exist. The set of protected dimorphisms in
the vicinity of the branching point u* is referred to as the co-existence cone and its shape has
implications for the adaptive dynamics after branching. Specifically, the width of the cone
determines the likelihood that evolutionary branching occurs and that the two branches
persist: branching is more likely if the cone is wide. The reason is that mutation-limited
evolution can be seen as a sequence of trait substitutions, which behaves like a directed
random walk (Metz et al., 1992; Dieckmann and Law, 1996). Due to the stochastic nature
of this process, there is a probability of hitting the boundary of the co-existence cone, which
results in the extinction of one of the two branches. The co-existence cone is wider the
smaller the acute angle between the two contour lines at their intersection point u*. In our
model, this angle depends on the abruptness of the ontogenetic switch. If the shift is more
gradual (corresponding to a lower value of k), the angle is smaller and, consequently, the
co-existence cone is wider. Hence, with a gradual niche shift, evolutionary branching is
more likely to occur than with a more discrete switch.

To determine whether our results are robust against relaxing some of the simplifying
assumptions inherent to the deterministic, monomorphic model considered in this article
up to now, we investigate a stochastic, individual-based model (IBM) that corresponds to
the deterministic model (Tables 2 and 3). In the IBM, the growth dynamic of individuals is
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still deterministic, but birth and death are modelled as discrete events. An offspring receives
the same trait value as its clonal parents unless a mutation occurs, which we assume to
occur with a fixed probability of P = 0.1 per offspring. The offspring’s trait value is then
drawn from a truncated normal distribution around the parental trait value. The standard
deviation of the mutation distribution can be varied (we have considered values between
0.001 and 0.01). An essential feature of the IBM, and a major difference with the
deterministic model studied above, is that it naturally allows for polymorphism to arise.

Convergence to the predicted singular point u* and the subsequent emergence of a switch-
size dimorphism in simulations of the IBM (e.g. Fig. 8) confirm the robustness of the results
derived from the deterministic model. In particular, this shows that the assumption in our
deterministic model that the strategy of offspring is identical to their parents’ strategy is not
critical to the results. The stochastic IBM has been studied for many different parameter
combinations, and branching occurs only in runs with parameter settings for which this
is predicted by the deterministic model (cf. conditions 18 and 22). Secondary branching,
potentially giving rise to greater polymorphism, has not been observed.

The IBM allows us to study the evolution of the ontogenetic niche shift after branching.
We will refer to the two emerging branches as A and B and denote the average switch sizes in
the two branches as uA and uB, respectively, such that uA > uB (Fig. 8). Figure 8 illustrates
that the branches in the dimorphic population evolve towards two specialist strategies.
Switch size uA approaches the maximum size xmax, such that virtually all A-individuals
consume prey 1 exclusively. Switch size uB approaches the length at birth (xb), such that
individuals in branch B consume prey 2 throughout their entire lives. Prey densities remain
approximately constant after branching. With constant prey densities, the possible intake
rates are also constant, and this observation enables us to use Fig. 5b to understand
the mechanism of divergence. Individuals in branch A have a switch size uA > u*. Figure 5b
shows that, for individuals with a length (x) larger than the switch size u*, the possible

Fig. 8. A realization of a stochastic, individual-based implementation of our model. The population
started out as a monomorphic specialist in niche 2 with u = 0.2 and first evolves towards the generalist
strategy u* (u* = 0.683 predicted by the deterministic model; Fig. 5b). This singular point is a
branching point. After branching, the two branches (denoted A and B) in the dimorphic population
evolve towards the two specialist strategies, specializing on prey 1 (branch A) and prey 2 (branch B),
respectively. Parameters as in Fig. 2b (p = 2, q1 = 2, q2 = 1, a1 = a2 = 1, h1 = h2 = 10, k = 30, Table 1).
Mutation probability = 0.1, mutation distribution standard deviation = 0.003. Unit of time axis is
µ

− 1 = 10 time units.
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intake rate is higher in the first niche than in the second. Therefore, mutants with a strategy
u� > uA profit more from the first niche than A-type residents and can hence invade. Mutants
with a strategy u* < u� < uA suffer from their earlier switch to the less profitable niche and
thus do not invade. In branch B, the situation is similar. For small individuals (x < u*), the
second niche is more profitable than the first one. Hence, mutants that switch earlier than
B-type residents can invade the system, whereas mutants with a strategy uB < u� < u* suffer
from a diminished intake rate. In summary, the whole range of mutant trait values in
between the two resident types (u� = uB . . . uA) have a lower fitness than both residents. Only
mutants outside this interval can invade, resulting in the divergence of branches A and B.

The results from the polymorphic, stochastic model were complemented by an analysis of
an extension of our deterministic model that allows for dimorphism in the switch size of the
predator population. This model predicts that, after branching, the two branches continue
to diverge from each other at a decelerating rate (results not shown). The analysis also
confirms that the prey densities remain approximately constant after branching. Further
branching is not predicted by this model; in general, in a two-dimensional environment
(resulting from the density of the predator population being regulated through two prey
types at equilibrium), more than two branches are not expected (Metz et al., 1996b;
Meszéna and Metz, 1999). We can therefore conclude that Fig. 8 illustrates a typical
scenario where a specialist first ‘invades’ the unexploited niche, then evolves towards the
generalist strategy u*, whereupon the population branches into two specialists.

DISCUSSION

Our results show that the presence of an ontogenetic niche shift in an organism’s life history
may give rise to evolutionary branching. The size scaling of foraging capacity in the two
niches determines whether the predicted outcome of evolution is a monomorphic, onto-
genetic generalist or a resource polymorphism with two ‘morphs’ specializing on one of two
niches. A generalist is expected if the possible intake rate increases slower with body size in
the first niche than in the second one (case a in Fig. 3a and Fig. 5a). In contrast, the
evolutionary emergence of two specialists is predicted if the possible intake rate increases
faster with body size in the first niche than in the second one (case b in Fig. 3b and Fig. 5b).

Mechanisms of evolutionary branching

Previous studies of ontogenetic niche shifts have mainly focused on the question when to
make the transition between niches, given certain environmental conditions in terms of
growth rates and mortality risks in two habitats (Werner and Gilliam, 1984; Werner and
Hall, 1988; Persson and Greenberg, 1990; Leonardsson, 1991). With such an approach, one
is unlikely to predict disruptive selection, because the environmental conditions that result
in disruptive selection are rather special. Previous studies did not include the ecological
feedback loop in their analysis. They considered the effect of the environment on individual
life histories but neglected the effect of the size-structured population on the environment.
In this study, we have shown that, through the effect of the ontogenetic niche shift on prey
densities, evolution of the size at ontogenetic niche shift converges towards a generalist
strategy that exploits both niches equally (u*). This result is important, because only
the environmental conditions associated with u* have the potential to result in disruptive
selection and, consequently, in evolutionary branching. Hence, despite the environmental
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conditions for disruptive selection being rather special, it turns out that they are likely to
arise because they correspond to an evolutionary attractor of the adaptive process.

Regarding the ecological mechanisms that drive evolution, our results show a clear
dichotomy between two phases of evolution. As long as a monomorphic predator popula-
tion consumes one prey type disproportionately, one niche is overexploited while the other
remains underexploited. Mutants that utilize the unexploited prey more thoroughly can
invade the system. As the predator’s strategy evolves towards the generalist strategy u*, the
two niches become more and more equally exploited, and the selection gradient becomes
weaker. Hence, during the initial, monomorphic phase, it is the environmental feedback
that drives evolution towards the generalist strategy u*. This process does not depend
qualitatively on the size scaling of the functional response in the two niches.

In the second phase, after the population has reached the generalist strategy u*, the size
scaling of foraging rates determines the evolutionary stability of u* (e.g. equation 18). If u*
is a continuously stable strategy (CSS; Fig. 3a), the resident population remains a mono-
morphic generalist. In contrast, if u* is an evolutionary branching point (EBP; Fig. 3b), the
resident population splits into two branches. In each branch, more specialized mutants can
invade and replace the resident and hence the two branches diverge (Fig. 8). Why more
specialized mutants can invade is explained by essentially the same mechanism as why u* is
an evolutionary branching point (cf. Fig. 5b). Crucial to the mechanism is that, given the
ambient prey densities, the first niche is less profitable than the second one to individuals
with a size smaller than u*, and the second niche is less profitable than the first one to
individuals with a size larger than u*. In other words, individuals with the strategy u* are in
the least profitable niche at all sizes, whereas strategies that are different from u* spent at
least part of their lives in the most profitable niche. It is important to note that the difference
in profitability of the two niches results from the size scaling of the functional response.
Hence, in the second phase, the driving force of evolution relates critically to size structure.
However, the ecological feedback and the resultant frequency-dependent selection remain
important. If, for example, branch A were removed from the lake, branch B would evolve
back to u*.

As summarized above, we have found an ecological mechanism for evolutionary branch-
ing that is inherently size dependent. One way to show that size structure is essential to
evolutionary branching is to show that it cannot occur in an analogous, unstructured
model. If we just consider the fraction of lifetime that individuals spend in each niche and
ignore all other aspects of the population size structure, we can formulate an unstructured
analogue of our model. Analysis of such a model indicates that the environmental feedback
drives evolution to a generalist strategy, analogous to the strategy u* in the size-structured
model (D. Claessen, unpublished results). With a linear functional response, this singular
point is evolutionarily neutral (such as Fig. 3c). The reason is that, in the ecological
equilibrium of this strategy, the two niches are equally profitable. By definition, if the niches
are equally profitable, it does not matter which fraction of time individuals spend in each
niche. With a Holling type II functional response, the evolutionary attractor can be either
neutral or a CSS. Thus, in the simplest unstructured analogue of our model, evolutionary
branching is not possible.

It should be noted, however, that evolutionary branching is possible in unstructured
models of consumer–resource interactions with multiple resources. It can occur if there is
a strong trade-off between foraging rates on different prey types (Egas, 2002). The essence
of a strong trade-off is that, given prey densities, a generalist has a lower total intake rate
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and hence lower fitness than more specialized strategies (Wilson and Yoshimura, 1994).
With a weak trade-off, generalists have a higher intake rate than more specialized strategies
and branching is not expected. In the unstructured analogue of our model, the time budget
argument (i.e. defining the evolutionary trait as merely the fraction of lifetime spent in
either niche) does not lead to a strong trade-off. For example, with a linear functional
response, the trade-off is perfectly neutral because the actual food intake rate is merely a
weighted average of the possible intake rates in the two niches. To obtain a strong trade-off,
additional assumptions have to be made. It has been suggested that trade-offs may result
from physiological or behavioural specialization (Schluter, 1995; Hjelm et al., 2000; Egas,
2002). An example that is particularly relevant to this article is the possibility that learning
or phenotypic plasticity produces a positive correlation between the foraging efficiency in a
niche and the total time spent in that niche (e.g. Schluter, 1995). If such a correlation exists,
generalists are at a disadvantage because they have less time to learn or to adapt to a specific
food type. With this additional mechanism, branching may be expected even without size
structure (D. Claessen, unpublished results).

The comparison with unstructured population models suggests that, on a phenomeno-
logical level, a strong trade-off emerges from our assumptions about the ontogenetic niche
shift: the generalist u* has a lower fitness than more specialized strategies. Our mechanistic
modelling approach allows us to identify aspects of the underlying biology that are respon-
sible for the strong trade-off. Critical to the mechanism of evolutionary branching in our
model is the constraint of the order of niche use; individuals utilize the first niche before the
ontogenetic niche shift and the second one after the niche shift. We assume that the order of
niches is fixed by morphological development and physiological limitations. Evidence for
such constraints includes, for example, that gape limitation prevents newborn perch to
consume macroinvertebrates, whereas very large perch (longer than 20 cm) are not able to
capture zooplankton prey, which has been attributed to insufficient visual acuity (Byström
and Garcia-Berthou, 1999). Without the fixed order of niches, an individual would optimize
its performance by always being in the niche that gives the highest possible intake rate,
switching at the intersection point. As an example, consider a resident as depicted in Fig. 5b
(i.e. an EBP) and a mutant that reverses the order of the ontogenetic niches, but still
switches at length u. In this situation, the mutant can invade because its intake rate is higher
than that of the resident at all sizes. When this mutant reaches fixation, we effectively
obtain the situation as depicted in Fig. 5a. With this new order of ontogenetic niches,
evolutionary branching is not expected. If the order of niches is also an evolutionary trait,
as well as the switch size u, it is likely that the only possible evolutionary outcome is a
monomorphic generalist (cf. the CSS in Fig. 5a). Thus, the constraint of the order of niches
appears to be an essential element of our hypothesis that an ontogenetic niche shift can
result in evolutionary branching.

Assumptions revisited

Several assumptions in our model are not very realistic and relaxing these may have
important consequences for the predictions made. First, we assume that reproduction is
clonal, which for all fish systems is unrealistic. In a randomly mating sexual population, the
continual creation of hybrids may prevent evolutionary branching to occur. Yet, the study
by Dieckmann and Doebeli (1999) shows that evolution itself may solve this problem, since
once the population has evolved to the evolutionary branching point, natural selection
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favours assortative mating (see also Geritz and Kisdi, 2000). Even if assortative mating is
based on a character other than the ecological trait that has converged to the branching
point, after a correlation between the ecological trait and the separate mating trait has
been established, the population branches after all. Thus, we expect our results to be robust
to the introduction of sexual reproduction in systems where assortative mating may arise.
An example of the development of a correlation between ecological type and mating
type (based on coloration) is the Midas cichlid (Cichlasoma citrinellum) (Meyer, 1990).
Interestingly, the resource polymorphism in this species is associated with an ontogenetic
niche shift. Wilson et al. (2000) argue that sexual selection through colour-based assortative
mating is the primary reason for the polymorphism in this species. However, the appearance
of colour-based assortative mating can also be a consequence of disruptive selection caused
by ecological mechanisms such as described in this article. Such ecological differentiation
might in fact be essential to ensure the sustained co-existence of colour morphs.

Second, we have assumed that individuals are born mature, which obviously is not the
case in fish species. The presence of a juvenile period in size-structured populations can
result in population cycles (Gurney and Nisbet, 1985; Persson et al., 1998). The effect of
non-equilibrium dynamics on evolution in our model remains to be investigated. A
preliminary analysis shows that a sufficiently large maturation size threshold (> 10.5 cm)
induces generation cycles. Less expected, however, is the result that for smaller values
of the maturation size threshold, the juvenile delay introduces bistability through a cusp
bifurcation (D. Claessen, unpublished results). Interestingly, the bistability gives rise to
evolutionary cycling, in which the system never reaches the singular point u*. Thus, a
juvenile delay may drastically change the evolutionary outcome. These issues provide
interesting questions for future research. It is encouraging, however, that with a sufficiently
small value of the maturation size threshold (< 2 cm), our results remain unaffected, which
shows that they are robust to incorporating a juvenile delay, at least as long as this does not
give rise to population cycles or bistability.

Third, a basic assumption in our analysis is a niche- and size-independent mortality rate.
Previous work on ontogenetic niche shifts (e.g. Werner and Hall, 1988) has often considered
habitat choice within a trade-off between habitat-specific growth rates and mortality risks.
Moreover, there is good evidence that, in many fish populations, mortality is inherently
size-dependent, even if we disregard the effect of habitat. Important causes of such size
dependence are overwintering mortality and size-dependent vulnerability to predation
(Sogard, 1997). It is easy to incorporate niche- or size-dependent mortality into our model,
but adding such realism comes at the cost of a clear interpretation. Preliminary analysis of
a model that includes niche-dependent mortality shows that the same types of predictions
are possible regarding the evolutionary outcomes (results not shown). However, the con-
ditions and mechanisms underlying these predictions (cf. equations 18 and 22) are much less
transparent. Instead of comparing possible intake rates at the switch size, as we did in
this article, one must then compare the contributions to fitness over entire size intervals.
Thus, for systems in which differences in niche-dependent mortality are large, conditions
(18) and (22) should be regarded as approximations.

For the issue of size-dependent mortality, it is useful to distinguish between two general
scenarios; depending on whether mortality rate (i) decreases or (ii) increases with body
size. We argue that size-dependent mortality is likely to lead to qualitatively different results
in scenario (ii) only. Underlying the results reported here is that fitness increases with the
food intake rate at any given size in our model. The validity of this assumption may
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break down if mortality rate increases with body size, since an increased food intake rate
eventually leads to a higher mortality rate. In scenario (i), this assumption is not violated,
since a higher growth rate improves future survival. Although the risk of predation is not
necessarily a monotonic function of prey body size (Lundvall et al., 1999), a general pattern
in teleost fishes is that mortality decreases with body size (Sogard, 1997). We therefore argue
that incorporating a realistic size-dependent mortality rate will not alter our results
qualitatively.

The scope for empirical testing

With experimental data on size scaling of foraging rates, we can make predictions about
whether or not evolutionary branching should be expected. For several reasons, freshwater
fish populations are interesting test cases for the ideas developed in this article. The life
history of freshwater fish species is often characterized by one or more ontogenetic niche
shifts (Werner and Gilliam, 1984). Resource polymorphisms in several lake fish species have
been suggested to represent early stages of speciation (Meyer, 1990; Smith and Skúlason,
1996). Most resource polymorphisms in lake-dwelling fish species involve a benthic morph
and a pelagic morph (Robinson and Wilson, 1994). In Arctic char (Salvelinus alpinus;
Snorrason et al., 1994; Smith and Skúlason, 1996) and sticklebacks (Gasterosteus aculeatus;
Schluter, 1996; Rundle et al., 2000), empirical evidence suggests that evolutionary branch-
ing, giving rise to a benthic morph and a pelagic morph, has occurred several times
independently.

Unfortunately, the number of species for which sufficient data on size scaling of foraging
rates is available is still limited. Most detailed data exist for Eurasian perch (Byström and
Garcia-Berthou, 1999; Wahlström et al., 2000), roach (Rutilus rutilus; Persson et al., 1998;
Hjelm et al., 2000) and bluegill sunfish (Lepomis macrochirus; Mittelbach, 1981). For perch
and roach, the handling times can be assumed to be independent of prey type (Claessen
et al., 2000), such that scenario 1 (pp. 205–206) applies. Before the ontogenetic niche
shift, perch and roach feed on zooplankton in the pelagic habitat; after the shift, they feed
on macroinvertebrates in the littoral zone. For small individuals of both species, the attack
rate on zooplankton scales approximately with body surface area (i.e. q1 ≈2). For larger
individuals, the attack rate on macroinvertebrates scales roughly with length in perch
(i.e. q2 ≈1; Persson and Greenberg, 1990) and is nearly constant in roach (i.e. q2 ≈0.05;
J. Hjelm, personal communication). Bluegill sunfish switch from the littoral vegetation zone
to the pelagic habitat at a length between 50 and 90 mm (Werner and Hall, 1988). In the
former habitat they feed on macroinvertebrates and in the latter on zooplankton. Using
data on the size scaling of encounter rates with prey from Mittelbach (1981), we arrive at
estimates of q1 ≈0.5 and q2 ≈2 for bluegill.

This short inquiry of available data shows that there is at least the possibility of testing
the results of our evolutionary analysis with empirical data. Although it is tempting to
compare these data with conditions (18), we stress that, in spite of our model’s complexity,
it is still rather strategic. Rather than being designed for a specific ecological system, it is
designed to test the effect of a specific mechanism. To keep it tractable, we have based our
model on several simplifying assumptions, such as the absence of sexual reproduction, the
absence of a juvenile delay and population dynamic equilibrium. We believe that a thorough
empirical test of our model predictions would require either (a) an extension of our model,
tailored specifically for a particular experimental set-up, or (b) data on a larger number

Claessen and Dieckmann214



of species than are presently available, which would permit the emergence of general
patterns.

Concerning point (a), obvious extensions of our model include sexual reproduction, size-
dependent mortality and a juvenile period (see pp. 212–214). For example, this will have to
show whether it matters that individuals mature before or after the ontogenetic niche shift.
With regard to point (b), it should be noted that comparison of our conditions (equations
18 and 22) with empirical data ideally requires estimates of the possible intake rates. The
size scalings of actual attack rates as presented above must be interpreted as fairly crude
approximations, since they are confounded by the effect of the ontogenetic niche shift of the
species. In Eurasian perch, for example, the relation between the attack rate on zooplankton
and perch body size is dome-shaped. In our interpretation (and in our model; see equation
1), the attack rate on zooplankton declines at large body size because of morphological
adaptation to an ontogenetic niche shift to benthivory (Hjelm et al., 2000). One will have to
make assumptions to filter out the effect of the ontogenetic niche shift on the actual attack
rate function to arrive at an estimate of the possible attack rate function. Yet, in the case of
a species pair which has diverged into specialists, the actual intake rate of a specialist in its
preferred niche can be assumed to be a fair approximation of the possible intake rate.
Candidate systems include Arctic char (Jonsson and Jonsson, 2001), sticklebacks (Schluter,
1996) and cichlids (Meyer, 1990; Schliewen et al., 1994). Measurements of the size scaling of
foraging rates in such systems would provide material for a critical test of our hypothesis.
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