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Abstract 

Energy forecasts play a key role in the development of energy and environmental 
policy. Evaluations of the accuracy of past projections can provide insight into the 
uncertainty that may be associated with current forecasts. They can also be used to 
identify sources of inaccuracies, and potentially lead to improvements in projections 
over time. Here we assess the accuracy of projections of U.S. energy consumption 
produced by the Energy Information Administration over the period 1982-2000. We 
find that energy consumption projections have tended to underestimate future 
consumption. Projections 10 to 13 years into the future have had an average error of 
about 4%, and about half that for shorter time horizons. These errors mask much larger, 
offsetting errors in the projection of gross domestic product (GDP) and energy intensity. 
GDP projections have consistently been too high, and energy intensity projections 
consistently too low, by more than 15% for projections of 10 years or more. Further 
work on the source of these sizable inaccuracies should be a high priority. Finally, we 
find no evidence of improvement in projections of consumption, GDP, or energy 
intensity since 1982. 
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The Accuracy of Past Projections of U.S. Energy Consumption 
Brian C. O’Neill and Mausami Desai 

Introduction 
Projections of future energy consumption play a key role in many analyses of energy 
and environment. They serve as a basis for planning within the energy industry; for 
research questions regarding future energy production, consumption, and environmental 
impacts such as air pollution or climate change; and for evaluating the need for and 
potential effects of energy and environmental policies. A noteworthy example of a 
current policy application is the evaluation of proposed climate change policies. For 
example, estimates of the costs of meeting the commitments agreed to in the Kyoto 
Protocol range widely (Weyant 2001) and depend strongly on assumptions about what 
emissions would be in the absence of policy, which in turn rely heavily on projected 
energy use. Similarly, U.S. climate policy announced in 2002 by the Bush 
Administration calls for an 18% reduction in the carbon intensity of economic 
production within the U.S. by 2012 (Bush Administration 2002). Evaluating what kind 
of action might be necessary to achieve this goal requires a projection of energy 
intensity and fuel mix in the absence of such a policy. 

Analysis of the performance of past projections can be instructive for two main 
reasons. First, it can provide useful information for characterizing the uncertainty in 
current projections. The typical magnitude of errors in past projections over a given 
projection horizon can serve as a guide in quantifying uncertainty over similar time 
horizons into the future. Of course there is no guarantee that the performance of current 
projections will be similar to the performance of past ones, and other sources of 
information should be, and generally are, used to quantify uncertainties. Nonetheless, 
historical error analysis can be useful as a benchmark. A second motivation for 
analyzing past projections is the possibility of improving current projections. By 
identifying sources of error, research can be focused on improving the components of 
projections that would have the largest payoff in terms of improved outcomes. 

There are many examples of useful analyses of forecast errors in the energy field 
and in other fields as well, such as agriculture (McCalla and Revoredo 2001) and 
population. For example, errors in population projections have been extensively 
analyzed (Keilman 1999), and a recent NAS report (National Research Council 2000) 
encourages the use of such analysis in informing judgments on uncertainty in current 
projections. The most recent probabilistic projections of global population produced by 
IIASA (Lutz et al. 2001) operationalize this recommendation. The authors used the 
results of historical error analysis in UN population projections to define lower bounds 
to uncertainty in projected population size. Error analysis has also identified key sources 
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of errors in projected population size. Bulatao (2001) shows that errors in baseline data 
– the estimated population size, age structure, fertility, and mortality in the starting year 
of the projection – play a key role. Thus substantial improvements in forecasts would be 
possible by improving the quality and coverage of the data on which projections are 
based. 

Several studies have analyzed the performance of energy forecasts for the U.S. 
or for the world. Smil (2000) catalogues the many failures of long-term energy 
forecasts, which he describes as having “missed every important shift of the past two 
generations,” (p. 262) including the first and second oil crises, the post-1970 reduction 
in electricity demand in industrialized countries, and the cumulative contributions of 
energy conservation. Based on this review, he recommends that efforts to forecast the 
energy system be replaced by the development of scenarios designed to explore 
alternative futures rather than to predict the most likely one (see, e.g., Silberglitt et al. 
2003). Other studies focus on quantitative analyses of errors in particular modeling 
efforts. For example, the performance of projections of oil prices is a particularly well-
known example of the hazards of forecasting. Following the 1979-1980 oil price 
increases, most analysts expected steadily rising oil prices. In fact, nominal prices fell to 
less than 50% of their 1981 value by 1986 (Schrattenholzer 1998), and projections of oil 
prices for the year 1990, made in 1980 by a number of models for the Energy Modeling 
Forum, were off by a factor of 2 to 3 (Huntington 1994). These projections exhibit what 
demographers (Keilman 1999) and others call “assumption drag,” or the tendency for 
forecasters to be slow to incorporate new information (e.g., changing oil market 
conditions in the case of energy, widespread declines in fertility in the case of 
population) into their forecasts. 

Error analysis for energy forecasting has also yielded insight into sources of 
error. Huntington (1994) found that the sources of errors in oil price forecasts over the 
1980s varied with the time horizon of the projection. Inaccuracies over the first half of 
the decade were driven by model inputs, particularly inaccurate projections of gross 
domestic product (GDP) and of expansion of non-OPEC oil supply. Inaccuracies in the 
late 1980s were due mainly to inadequate demand responses to price changes in the 
models. The analysis also notes that in contrast to the extremely inaccurate price 
forecasts, concomitant projections of consumption were inaccurate by only about 2%, 
demonstrating the price inelasticity of much of the demand for oil. Linderoth (2002) 
examines errors in forecasts of energy consumption made by the International Energy 
Agency of OECD countries over the period 1978-1994. He concludes that inaccurate 
GDP projections have been significant contributors to these errors, and that energy price 
changes have also played a significant role.  

A handful of studies have focused on projections of the U.S. energy system. 
Craig et al. (2002) analyze projections made before 1980, concluding that forecasters 
underestimated the importance of surprises such as the oil embargoes of the 1970s and 
the subsequent increase in energy efficiency. Projections of consumption in the year 
2000 were uniformly too high. Cohen et al. (1995) analyze projections by the U.S. 
Energy Information Administration (EIA) made between 1978 and 1993, finding, as in 
other analyses, that price forecasts have been far less accurate than projections of 
production or consumption. In addition, they find that projections greatly improved 
between 1978, a time strongly affected by the oil crises, and the early 1980s, by which 
time the effect of these disruptions had begun to dissipate. Most large errors in early 
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forecasts were due to combinations of both high price assumptions (based on then 
current experience with oil crises) and the assumption that regulations then in place 
would remain so, when in fact they were often drastically modified or repealed. 
Shlyakhter et al. (1994) analyzed projections by the U.S. Energy Information 
Administration made between 1983 and 1987 of 1990 U.S. energy production and 
consumption by sector in order to derive distributions of errors. They then used those 
distributions to specify uncertainty intervals for current forecasts. They find that 
commonly assumed normal distributions of errors substantially underestimate the 
frequency of extreme outcomes in historical experience. 

Since 1996, the EIA itself has analyzed the performance of its own projections 
(e.g., Holte 2001). Their analyses find that changes in energy policies have had a major 
impact on forecast accuracy, that price forecasts have continued to be less accurate than 
forecasts of production or consumption (and have typically been too high), and that 
projections related to natural gas have been less accurate than those related to other 
fuels. Their methodology is to calculate mean absolute percent errors in EIA forecasts 
for various quantities, and to average these errors over all projections and all time 
horizons. 

In this paper we analyze the EIA medium-term projections of U.S. energy 
consumption. The EIA has published these projections in its Annual Energy Outlook 
(AEO) each year since 1982. Because they were produced within a single institutional 
setting, with a relatively stable methodology (discussed in more detail below), the AEOs 
provide a meaningful basis for error analysis. The 20-year history of projections, and 
time horizons for individual projections ranging from 8 to 24 years, provide a sufficient 
basis for determining indicators of average performance as a function of the time 
horizon of a projection. The AEOs typically contain a reference projection, as well as 
several variants. Our aim is to analyze the accuracy of the reference projections of total 
consumption, identify the major sources of error, and look for evidence of improvement 
in accuracy over time. 

Our analysis differs from previous work in several ways. First, we focus on 
quantifying errors and their sources.  In contrast, the aim of Shlyakhter et al. (1994) is to 
quantify the degree of overconfidence in uncertainty ranges assigned by forecasters in 
past projections. In examining sources of errors, we differentiate between contributions 
from errors in baseline data, errors due to cyclical (or inter-annual) variability in 
consumption that projection models are not designed to forecast, and errors in 
projecting the trend in energy consumption, important distinctions that have not been 
made in previous work. We also decompose errors into contributions from errors in 
GDP growth and errors in energy intensity. While Cohen et al. (1995) also distinguish 
between these two components, they use a more limited dataset and do not correct for 
baseline and variability errors. We explicitly control for time horizon in assessing 
projections. In contrast, the EIA’s analysis of its own projections (Holte 2001) averages 
errors for a given projection across time horizons, making it difficult to compare 
different projections that may have spanned different lengths of time or have different 
availability of output data, and obscuring patterns in accuracy over different horizons. 
Finally, the focus of our analysis is on projections made since 1982, a period which has 
been uninterrupted by major crises in the global or national energy system. In contrast, 
other studies (Craig et al. 2002; Cohen et al. 1995) include analysis of long-term 
projections made before or during the crisis periods of the 1970s, and therefore their 
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primary conclusions are based on the performance of models with respect to these 
special conditions. 

In the next section we describe the models used by EIA and the data (model 
inputs and projection results) on which the analysis is based. Following that, we define 
the measures of error we employ. We then report our results and conclude with 
discussion and directions for future work. 

Models and Data 

EIA Forecast Models: IFFS and NEMS 

The U.S. Department of Energy has been producing energy projections since 1974. 
However, available output from projections before 1982 is insufficient to add 
meaningfully to our analysis. Between 1982 and 1993, EIA projections were produced 
using the Intermediate Future Forecasting System (IFFS) model. The IFFS is an 
engineering-economic model of all U.S. energy markets. It can be considered a partial-
equilibrium framework that focuses on energy and excludes other, non-energy goods 
and services produced in the U.S. economy. It represents the U.S. energy system using 
four end-use demand modules (residential, commercial, transportation, industrial), two 
supply modules (oil and gas, coal), and two conversion modules (electricity, petroleum 
refining). Regional disaggregation varies by module but is typically at the level of 10 
federal regions. In addition, a macroeconomic module allows for feedback between 
domestic macroeconomic indicators such as GDP, and world energy prices. 
Macroeconomic growth paths are determined beginning with an exogenous growth case 
taken from simulations by Data Resources, Inc. (DRI), which is now part of Global 
Insight, Inc. The module then calculates an adjusted growth path that takes into account 
feedbacks from the energy system by iteratively calculating first demand and prices 
based on the macroeconomic indicators, and then using a reduced-form representation 
of DRI models to estimate the influence of energy price changes on the macroeconomy. 
The world crude oil price is taken to be exogenous, derived from a separate EIA 
projection using a global model. 

The National Energy Modeling System (NEMS) replaced IFFS beginning with 
the 1994 AEO. The basic structure of NEMS is similar to IFFS (Energy Information 
Administration 1994, 2003a). It generally operates at the level of nine regions within the 
U.S. (census divisions), and one non-U.S. region. NEMS breaks down the energy 
system into the same demand and conversion sectors as in IFFS, but adds two additional 
supply modules for a total of four (oil and gas, renewables, natural gas transmission and 
distribution, coal). The main difference from IFFS is that many of these modules 
explicitly represent individual technologies (others, e.g., industrial demand and oil and 
gas supply, use more limited representations), and that provision is made for 
technological improvement over time. The expanded capabilities of NEMS were 
motivated by the technology policy and regulatory issues that had arisen in the early 
1990s, such as improvements to the Clean Air Act Amendments of 1990, restructuring 
of electricity markets, and the integration of renewable technologies (Mary Hutzler, 
personal communication). Similarly to IFFS, a macroeconomic module allows for 
feedback between domestic macroeconomic indicators and energy prices. However, 
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NEMS also allows for feedback between world oil prices and energy supply/demand in 
the U.S. An international module assumes a reference non-U.S. oil supply and demand, 
and then calculates a world average oil price based on the assumption that marginal 
changes in non-U.S. production come from OPEC. Thus the world price is determined 
in each time step by forecasting based on the price in the previous time step and the 
percent utilization of OPEC production capacity. In turn, the new price, through its 
affect on demand and oil imports, affects OPEC production capacity. 

The EIA uses NEMS to produce a reference forecast, and additionally four 
variants assuming higher or lower economic growth, or higher or lower world oil prices. 
In addition, it produces a large number of special variants testing sensitivities to 
individual assumptions or policies. Our analysis is based on the reference forecast in 
each AEO. 

Data 

The data set for our analysis consists of past projections of U.S. energy consumption, 
GDP, and energy intensity (EI) contained in the 1982-2002 AEOs1 (Energy Information 
Administration 1983-2003). The time horizon for projections varies with the projection; 
for example, the 1982 AEO makes projections only until 1990, whereas the 1998 AEO 
projects to 2020. The basic dataset is available in EIA’s 2001 Annual Energy Outlook 
Forecast Evaluation (Holte 2001), but this source does not include values for all years 
in all projections. We include additional data obtained directly from the original AEO 
publications (Energy Information Administration 1983-2003).2 Consumption data from 
AEOs published before 1990 are adjusted to include consumption of energy from 
dispersed renewables, to be consistent with later projections (see Appendix for details). 

Actual values for total energy consumption through 2001 were taken from the 
Annual Energy Review 2001 (Energy Information Administration 2002), and a value for 
2002 was taken from the most recent available Monthly Energy Review (Energy 
Information Administration 2003b). EIA compiles estimates of the actual quantities of 
aggregate consumption by summing consumption in the residential, commercial, 
industrial, transportation, and electric power sectors. Within each sector, EIA collects 
consumption data by fuel type from suppliers through required surveys. 

The real GDP projections were taken from the original AEOs, which report 
projected real GDP (in units of U.S. dollars expressed in terms of a particular base year) 
along with projected implicit price deflators. In order to compare real GDP projections 
across AEOs, all projected real GDP values were converted from various base years to 
1996 dollars using actual 1996 chain weighted implicit price deflators as reported by the 
Bureau of Economic Analysis (2003):  

                                                 
1 An AEO does not exist for 1988 because of a change in the naming convention. The 1989 AEO follows 
the 1987 AEO. 
2 In some instances, the data within the AEOs is presented at 5-year intervals, rather than annually for a 
set time horizon. The EIA models produce annual projection values, though they are not always published 
in the AEOs. AEOs 1996 thru 2003 are available online at EIA’s website 
http://www.eia.doe.gov/oiaf/archive.html. Previous AEO publications (1982-1995) are available in print 
or microfiche. 
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GDPorGNPGDPorGNP
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Estimates of actual real GDP in chain-weighted 1996 dollars were obtained from 
the AER 2001 (Energy Information Administration 1983-2002 (2001, p. 353)) and are 
consistent with those published by the Bureau of Economic Analysis (2003). For AEOs 
1982 through 1992, economic growth was measured in terms of gross national product 
(GNP), rather than GDP. For consistency, the actual historical nominal values for GNP 
in those years were obtained from the Bureau of Economic Analysis (2003). Projected 
and actual values of energy intensity are simply the ratio of energy consumption to GNP 
or GDP for a given year. 

Error Definitions and Decomposition Methodology 
We examine four error types using several different measures of error. In defining them, 
it is useful to first distinguish among various measures of time: 

t  calendar year being projected 
τ  projection year 
tb  base year of the projection 
TH = t – tb time horizon 

The base year, tb, is the most recent year in which consumption is estimated 
from data rather than projected with the model. It is often, but not always, the same as 
the projection year, τ, which indicates the year in which the projection was made. For 
example, for the 1989 AEO, the base year was 1988, so in that case τ = 1989 but tb = 
1988. The time horizon, TH, indicates the length of the projection. The projection for 
1995 from the 1989 AEO has a time horizon of 7 years (1995-1988), while the 
projection for 2000 has a time horizon of 12 years. 

The first type of error we focus on is visible error (V), which indicates the 
difference between the projected energy consumption and actual (observed) 
consumption for a given year, or 

 ( ) ( )tEtEtV −= )(ˆ
ττ         (2) 

where the subscript τ is the projection year, Ê  is projected energy consumption and E is 
actual energy consumption. Visible error is most relevant to users of projections who 
want to know how accurate they are; it reflects the error the user actually “sees” in the 
projection. But to understand the source of the visible error, it is useful to examine 
“invisible” errors; i.e., components of the visible error whose combined effect produces 
the net visible error (Bulatao 2001). Here we decompose visible error in consumption in 
two different ways. First, we decompose it into three components of error in 
consumption: baseline error (B), trend error (T) and variability (Var), so that 

 )()( )( tVartTBtV −+= τττ        (3) 

Figure 1 illustrates the relationship among these types of error. The baseline 
error captures errors in the initial estimates for energy consumption in the base year and 
is calculated as 
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bb tEtEB −= ττ         (4) 

 

Figure 1. Types of error. 

 

Projections that begin with inaccurate estimates of consumption in the base year 
are likely to project future consumption inaccurately even if the model is otherwise very 
accurate. To account for this, we assume that the baseline error is constant across all 
time horizons for a given projection. For example, if the baseline error is +X Btu (that 
is, the projection overestimates consumption in the base year), then we assume that 
consumption is overprojected by X Btu in all future years. This is a simplification; in 
principle, it would be necessary to rerun the projection model with corrected baseline 
data but with assumptions and parameter values otherwise identical to the original 
projection in order to calculate the effect of the baseline error on the projection over 
time. Since for practical reasons that is impossible, we adopt the constant baseline error 
assumption as a reasonable simplification. 

The trend error measures the deviation of the projection (corrected for baseline 
error) from the historical trend. The rationale for this kind of error is that the models 
used to project consumption are designed to project longer-term trends in consumption, 
not interannual variability. A large visible error in a given year could be generated from 
a short-term fluctuation in consumption due to fluctuations in oil prices, weather, or 
other factors, which the models do not attempt to predict, and therefore in those cases 
the visible error would not be indicative of the model’s performance. To control for this 
possibility, we define a trend in historical energy consumption, ET(t), as a linear fit to 
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annual consumption data (assuming a nonlinear trend using polynomials had little effect 
on results, since the 1982-2000 period saw a roughly linear increase in consumption). 
Trend error is calculated as 

 ( ) ( ) ( )tEBtEtT T−−= τττ
ˆ        (5) 

Finally, variability error (Var) measures the deviation of actual consumption 
from the historical trend, 

 ( ) ( ) ( )tEtEtVar T−=         (6) 

Note that the variability error is independent of the projection: it is determined only by 
the difference between actual consumption and the historical trend. 

The second way in which we decompose visible error is by expressing it as a 
sum of errors in the forecasts of GDP and of energy intensity (EI, the ratio of energy 
consumption to GDP). Since GDP forecasts are essentially (although not completely) 
exogenous to the EIA consumption forecasts, it is worth examining the degree to which 
errors in consumption are due to errors in forecasts of GDP, or to errors in forecasting 
energy intensity (i.e., energy consumption given a particular forecast of GDP). While 
the two components are not entirely independent, since macroeconomic assumptions 
affect the forecast of energy intensity, a comparison of their errors can still be 
informative. We report the results of this analysis later. 

For both decompositions, we use different measures to analyze each type of 
error. 

• The percentage error (PE) measures the proportional error at a particular point in 
time and provides a sense of both the degree and direction of the error. 

• The absolute percentage error (APE) is used to assess the magnitude of point 
errors independent of their direction. 

• The mean percentage error (MPE) can be a useful indicator of bias, or the 
tendency to over- or under-predict consumption. Because the MPE averages 
over a signed quantity (i.e., PE), it is affected by canceling. Positive errors will 
cancel negative ones, yielding a small mean error even if individual point errors 
are large. Thus, it is not a good indicator of accuracy, but still yields useful 
information on bias. The MPE can be calculated over time within a given 
projection, or across projections for a given time horizon. 

• The mean absolute percentage error (MAPE) controls for the offsetting of 
negative and positive percentage errors and is therefore more informative about 
the average magnitude of the errors, independent of sign. 

Results 

Energy Consumption 

Figure 2 shows the full series of AEO projections of total consumption, compared to the 
observed values. Observed values are taken to be the historical estimates reported in the 
AER 2001. Considered as a group, the projections appear to have tended to 
underestimate actual consumption. 
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Figure 2. Projections and actual values. 
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Figure 3 shows the mean percentage visible error (MPEV) by time horizon. 
Recall that the MPEV is an average of the signed values of the percentage errors across 
projections, which allows for canceling of positive and negative errors in individual 
projections. It therefore reflects whether projections in general have tended to be high 
(positive MPEV) or low (negative MPEV) at particular time horizons. The figure 
confirms that consumption projections have indeed tended to be low over time horizons 
of five years or more; at shorter time horizons, the bias in the projections is essentially 
zero. Figure 3 also shows the mean absolute percentage visible errors (MAPEV) in total 
energy consumption by time horizon. This measure indicates how accurate, on average, 
the EIA projections have been, independent of whether they have been high or low, 
controlling for time horizon. The mean absolute visible error is quite low – about 2% – 
for time horizons up to nine years, and grows slightly to 3-4% for 10- to 13-year 
projections and to 8-10% at a 14- to 15-year time horizon. However, sample size 
(indicated in the figure as labels on top of each bar) drops sharply with increasing time 
horizon; results for 14- and 15-year horizons are based on only a single projection and 
cannot therefore be considered a reliable measure of forecast accuracy. 

It is worth examining the contributions of component errors to both MAPEV (as 
an indicator of projection accuracy) and MPEV (as an indicator of projection bias). 
Figure 4a shows a decomposition of MAPEV into baseline error, variability, and trend 
error. It shows that baseline error makes a relatively small contribution to the inaccuracy 
of the consumption projections. Inaccuracy in projections is mainly attributable to 
variability and trend error. Over time horizons of about seven years or less, variability 
and trend error are each responsible for about half the visible error in projections (i.e., 
each contributes about one percentage point to the visible error of about 2%). At longer 
time horizons, trend error grows to two to three times the size of variability. These 
results are significant for at least two reasons. First, variability error gives an indication 
of the irreducible component of the error in consumption projections. Since the 
projection model is not designed to forecast inter-annual variability, roughly 1% error 
(on average) in projections is likely unavoidable, even if baseline and trend error were 
reduced to zero. Second, the mean absolute error in the trend (MAPET) is the measure 
that is most relevant to evaluating the use of the projection model itself, since it corrects 
for baseline error and is also unaffected by variability error. Neither of these error types 
reflects inaccuracies generated by the projection model. Thus it is MAPET that is most 
useful in, for example, diagnosing sources of inaccuracies within the IFFS and NEMS 
modeling systems. The figure shows that, on average, MAPET behaves similarly to the 
MAPEV, remaining quite low for time horizons of about seven years or less, and 
increasing at longer time horizons. 

Figure 4b, which decomposes MPEV, gives a sense of the source of the bias 
toward under-prediction in longer-term projections.  It demonstrates that this bias is 
primarily the result of under-prediction of the trend, since it is only MPET that shows 
increasingly negative values for longer time horizons.  MPEVar is very small, and MPEB 
is essentially zero, at all time horizons, since baseline and variability errors show no 
systematic bias and tend to cancel across projections. Thus, while baseline and, 
especially, variability errors are partly responsible for the inaccuracies in the EIA 
projections, it is trend error alone – a direct reflection of the performance of the 
projection model – that produces the bias toward under-prediction of consumption. 
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Figure 4a. Error decomposition: Absolute percentage error in projected energy 
consumption by time horizon. 
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Figure 4b. Error decomposition: Mean percentage error in projected energy 
consumption by time horizon. 
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Figure 5a. Mean absolute trend error: Three-year projections. 
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Figure 5b. Mean absolute trend error: Five-year projections. 
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Figure 5c. Mean absolute trend error: Seven-year projections. 

 

 

Figure 6. Percentage baseline error in projected energy consumption. 
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In addition to investigating the sources of error averaged across all projections, it 
is also worth examining whether later projections are more accurate than earlier ones, 
due to improvements in data or methodology, or as a result of the change in models 
from IFFS to NEMS in 1993. To address this question, we examine the accuracy of 
projections with equal time horizons made in different projection years, using the trend 
error as the best measure of model performance. For example, Figures 5a, 5b, and 5c 
show mean absolute trend errors (MAPET) in projections with three-, five-, and seven-
year time horizons, respectively. In general, there is no strong evidence for 
improvement in projections over time. For three-year projections, trend error remains 
below 3% for almost all AEO years with no clear pattern of change over time. 
Similarly, for five-year and seven-year projections, there is no unambiguous pattern of 
changes in trend error over time. In addition, the accuracy of the projections does not 
appear substantially different since 1994, when the NEMS model was adopted, as 
compared to earlier years when the IFFS model was used. 

It is possible that projections could be improving not through improvements in 
the accuracy of the projection modeling, but through reduction of baseline errors. 
However Figure 6, which shows the baseline error for each AEO year, demonstrates 
that there is no clear pattern to baseline errors over time. In any case, the baseline errors 
have been fairly low (<1%), and as noted above have been only a minor contributor to 
projection inaccuracy. 

Thus our analysis of visible errors in consumption indicates that the EIA 
projections have been accurate to within about 2% over time horizons of less than ten 
years, with errors climbing to about 4% at time horizons of 10-13 years. Errors are due 
mainly to inaccurate projections of the trend in consumption (with an important 
contribution from variability error at short time horizons). Consumption projections 
have also tended to be too low, on average, and the source of this downward bias is 
downward bias in projections of the trend. We find no evidence of improvement in 
projections over time. 

Gross Domestic Product and Energy Intensity 

We next examine components of visible error in projected energy consumption in a 
different way, by decomposing it into contributions from errors in forecasting real GDP3 
and energy intensity (EI). Energy intensity is defined as the ratio of energy consumption 
to economic production, and thus total consumption is just the product of GDP and 
energy intensity. Figure 7a shows that errors in forecasting GDP and energy intensity 
contribute about equally to, and are substantially greater than, the errors in energy 
consumption forecasts. MAPEV for GDP and EI are about 3-7% up to a nine-year time 
horizon (compared to 0-2% for errors in energy consumption), and grow rapidly to 10-
20% beyond a ten-year time horizon (compared to 3-8% for errors in energy 
consumption). This suggests that substantial canceling of errors in GDP and EI occurs, 
so that the smaller errors in consumption are the result of larger, but offsetting, errors in 
GDP and EI. 

                                                 
3 An identical analysis based on nominal GDP – the metric used by EIA in its own evaluations (Holte 
2001) – does not alter the conclusions we reach, and produces only slightly different quantitative results 
(slightly larger errors). 
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Figure 7a. Mean absolute percentage visible error. 
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Figure 7b. Mean percentage visible error. 
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Figure 7b confirms this suggestion. It shows that, on average, errors in GDP and 
in EI have been of opposite sign. GDP has generally been under-predicted in the short 
term (time horizon less than seven years), and over-predicted in the longer term; the 
opposite is true of energy intensity. This general pattern can be explained by two 
factors, demonstrated in Figures 8 and 9. First, GDP projections are too low, and EI 
projections are too high, in the short term due to baseline errors. Baseline error in GDP 
has been substantial (Figure 8a) and consistently negative (Figure 8b) over the entire 
period, while baseline error in EI has been substantial (Figure 9a) and consistently 
positive (Figure 9b). Note that the reason the baseline errors in GDP and EI mirror each 
other is that baseline estimates of EI are derived quantities calculated as the ratio of the 
estimates of GDP and energy consumption. Because the baseline GDP errors are large 
and negative, and the baseline consumption errors are small, the baseline EI errors are 
large and positive. 

Second, the reason that projections of GDP are too high, and energy intensity 
projections are too low, in the longer term can be traced to trend error, and is therefore 
due to the performance of the projection models themselves. Trend error in GDP grows 
substantially at longer time horizons (Figure 8a) and is consistently positive (Figure 8b), 
while trend error in EI grows substantially (Figure 9a) and is consistently negative 
(Figure 9b). 

Both the consistent bias in these projections and their magnitudes have 
important implications for evaluating the EIA projections. Consider first the over-
optimistic projections of the trend in GDP. As discussed earlier, the GDP projections 
are based on an exogenous forecast supplied to EIA by an outside consulting firm 
(DRI), which is then modified by feedbacks with the energy model. The over-optimism 
of the final GDP projections could be due to consistently biased DRI forecasts, or to 
overly strong modification by energy system feedbacks acting in the direction of 
increased economic growth. Since the original exogenous DRI forecasts are not 
available, this question cannot be answered definitively. However, the magnitude of the 
GDP errors suggests that the feedbacks, which likely constitute a smaller adjustment to 
GDP growth, are unlikely to be the major part of the explanation. It may very well be 
that the exogenous GDP forecasts have been the primary source of bias. 

Next, consider the consistent under-projection of the trend in energy intensity. 
At first glance, the rough symmetry in trend errors between GDP and EI might suggest 
that they are related to each other, much as the roughly symmetric baseline errors in 
these two quantities are. For baseline error, the EI errors are a simple mathematical 
consequence of consistently positive errors in estimations of GDP, combined with 
relatively accurate, and independent, estimates of total consumption. As a result, 
baseline errors in EI simply mirror errors in GDP, but with opposite sign. However, the 
situation with trend errors is distinctly different. The projected trend in energy 
consumption is not independent of the GDP projection. In fact, GDP is perhaps the most 
important driver of consumption. Thus, the trend errors in EI reflect a true shortcoming 
of the energy projection, and are not a simple mathematical consequence of the trend 
errors in GDP. 
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Figure 8a. Percentage baseline error in projected GDP. 

 

Figure 8b. Percentage baseline error in projected energy intensity. 
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Figure 9a. Mean absolute percentage trend error. 

Figure 9b. Mean percentage trend error. 
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There are at least three possible explanations for the systematic under-projection 
of EI: the effects of income, prices, or efficiency. It may be that the income elasticity of 
demand in the projection model has been too low, so that rising incomes in the model 
do not generate a sufficiently strong increase in energy consumption. It may be that the 
price elasticity of demand has been inaccurate, so that responses to projected prices 
have been in error. Similarly, it could be that the projections of the energy prices 
themselves have been too high (as found by Holte 2001), suppressing the increase in 
energy consumption in the model below actual consumption levels. Finally, it is 
possible that projections of the demand for energy services has been accurate, but that 
projections of the efficiency with which those services are delivered have been 
overoptimistic, leading to an under-projection of energy consumption. It is beyond the 
scope of our analysis to pursue these hypotheses here; they remain important questions 
for future work. 

Turning from the bias in the projections to a consideration of the magnitude of 
the errors, note that the trend errors become quite large with increasing time horizon. 
For GDP, the error is less than 5% up to a time horizon of about eight years, but grows 
to exceed 15% beyond a time horizon of 12 years. Similarly, trend errors for energy 
intensity remain below 5% up to a time horizon of five years, but exceed 15% beyond a 
time horizon of 10 years. (As shown in Figure 9a, errors in both GDP and EI are even 
larger at the 15-year time horizon, but the sample size is too small to meaningfully 
characterize typical performance over these time spans.) If these findings are robust 
indicators of projection performance, they imply that very substantial inaccuracies are 
plausible in current projections over time horizons of a decade or more. As previously 
noted, projections of energy intensity itself play an important role in policy, heightened 
recently by the Bush administration’s climate policy based on goals for improvement in 
carbon intensity. Equally important is the fact that these results imply that 
improvements in either GDP forecasts, or in energy intensity forecasts, will lead to 
potentially large increases in errors in projected energy consumption. Errors in 
consumption forecasts are currently small because they mask large offsetting errors in 
GDP and EI forecasts. Thus improving only one component will lead to less accurate 
consumption forecasts. 

Finally, we also looked for evidence of improvement in projections of GDP and 
EI over time. Analysis of MAPET for GDP, and separately for EI, for time horizons of 
three, five, and seven years (not shown) as a function of the projection year show no 
unambiguous trend toward improvement in forecasts over time. Similarly, there is no 
indication that GDP or EI forecasts made with NEMS are any more accurate than those 
made with IFFS (results available from authors). 

Conclusions 
Our analysis shows that visible errors in projections of U.S. energy consumption have, 
on average, been too low, but their magnitude has been relatively small (a few percent) 
up to about 10 years in the future. On the one hand, this level of accuracy stands in 
marked contrast to the typical level of accuracy in forecasts of energy prices and of 
macroeconomic growth, which generally fare much worse. On the other hand, we find 
that the small errors in EIA consumption forecasts are due in part to large offsetting 
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errors in GDP and energy intensity, which grow to more than 15% at a time horizon of 
10-12 years or more. 

These errors can inform estimates of the uncertainty in current projections of 
future energy use. One might be tempted to assume that current projections of 
consumption ten years into the future may have an uncertainty of a few percent, based 
on the average of past performance at this time horizon. While we believe our analysis 
provides a benchmark against which to gauge uncertainty estimates, it must be kept in 
mind that the future may be harder or easier to project than the past. Given the 
substantial variations in the magnitude and direction of U.S. energy consumption 
forecasting errors since the 1960s (Laitner et al. 2003), a change in forecast 
performance is a clear possibility. Two ways in which the past two decades would no 
longer serve as a useful guide are (1) if the energy system experiences disruptions, such 
as those that occurred during the 1970s, but that are not represented in the period of our 
analysis; or (2) if the large offsetting errors in GDP and energy intensity forecasts no 
longer tend to cancel each other, as they have over the past 20 years. This caution 
echoes Landsberg (1985), who reviewed an energy projection he was involved in 
making in 1963 and found that accurate projections for particular variables were almost 
always the result of large offsetting errors in the components. “Divining the future 
correctly in the aggregate can be quite an ego trip,” he wrote, “but its usefulness 
depends largely on the question one seeks to answer. Nor can you bank on offsetting 
errors. Errors can also be compounding.” (p.14) 

We find no clear evidence of improvements in projections over time since 1982, 
and no clear difference in projections made with the IFFS model, or its successor, the 
NEMS model. This is not inconsistent with the conclusion of Cohen et al. (1995), who 
find evidence for improvement in energy projections made between the late 1970s and 
early 1980s, given the different time periods of the analyses. Our analysis also suggests 
some priorities for improvements. First, focusing both on better projections of energy 
intensity and better projections of GDP would be helpful. GDP forecasts suffer from 
substantial baseline errors, suggesting that improving the quality of the baseline data in 
GDP forecasts could contribute to better energy forecasts. It would also be important to 
take into account “period effects”; i.e., particular times during which prevailing 
economic conditions may make it easier or harder to forecast GDP (McNees 1992). We 
also note that variability can be an important source of error for shorter-term 
projections. This should be recognized in evaluating projection accuracy in any one 
year: some error should be expected simply because the models are not designed to 
simulate inter-annual variability. In addition, it may be worth accounting for this fact in 
setting initial conditions for projections. Currently, the projection model is calibrated to 
the best estimate of the actual consumption level in the base year. However, it may be 
advisable to calibrate to the estimated value of the trend in the base year, which will 
generally be different than the level of actual consumption. 

Our analysis also has limitations and could be extended in several ways. We 
examine consumption, output, and intensity figures aggregated across the economy, 
rather than by sector. Analysis of the errors in the projections of consumption in 
individual sectors would give valuable insight in error sources, a strategy that was 
pursued by Cohen et al. (1995) and Linderoth (2002), who found that relatively small 
consumption errors in forecasts for OECD countries were typically the result of large, 
offsetting errors for the transportation and industrial sectors. Such sectoral analyses bear 
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repeating with the now more extensive set of projections available, and (we suggest) 
with the methodology used here. In addition, investigating the source of the under-
projections of the trend in energy intensity would be important. Additional analysis of 
price forecasts, measures of energy efficiency, and income and price elasticities of 
demand would give additional insight into this important question. 
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Appendix: Adjusting for Dispersed Renewables 
In 1990, the EIA began to include “dispersed renewables” in their projections (AEOs) 
and estimates (AERs) of energy consumption (Holte 1997). Earlier projections and 
estimates are therefore not directly comparable. Dispersed renewables was an informal 
term used by EIA to categorize renewables not interconnected to the electric power grid. 
Dispersed renewables consumption includes total end-use renewable consumption 
(excluding transportation) and renewable consumption by nonutility power producers. 
For example, this would include wood used for residential heating and rooftop solar 
panels for water heating (Eugene Reiser, personal communication). 

In order to address this inconsistency for the purposes of their own forecast 
evaluations, EIA adjusts earlier raw AEO projections with current estimates of past 
consumption of energy from dispersed renewables. Specifically, a correction factor 
(CF) was added to the raw AEO projections (Eugene Reiser, personal communication), 
where  

CFt = Nonutility Power Producerst  +  Residentialt + Commercialt + Industrialt  

Each term on the right hand side represents total renewables consumption in each 
sector. 

We applied this correction factor to the consumption data taken directly from 
AEO reports that we used to supplement the data summarized in Holte (2001). 
Estimates for historical renewable energy consumption by sector were taken from 
Tables 10.2a and 10.2b of AER 2000 (Energy Information Administration 1983-2003). 
We confirmed the consistency of this approach with the one taken in Holte (2001) by 
successfully reproducing their corrected consumption projections for pre-1990 AEOs. 
The only exception is that for AEO 1989, for projected values in calendar years 1996, 
1997, 1998, and 1999, the formula for the correction factor provided by EIA does not 
reproduce projected consumption values presented in Table 2 of Holte (2001). 
Differences were relatively small; we used the values from Holte (2001). 


