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Abstract

Energy forecasts play a key role in tbdevelopment of energy and environmental
policy. Evaluations of the accuracy of pasbjections can provide insight into the
uncertainty that may be associated with current forecasts. They can also be used to
identify sources of inaccuracies, and potdiytilead to improvements in projections
over time. Here we assess the accuracyrofections of U.S. energy consumption
produced by the Energy Information whistration over the period 1982-2000. We
find that energy consumption projectiortsave tended to undestimate future
consumption. Projections 10 to 13 years itite future have had an average error of
about 4%, and about half thiar shorter time horizons. These errors mask much larger,
offsetting errors in the projection of gradsmestic product (GDPnd energy intensity.
GDP projections have consistently be@wo thigh, and energy intensity projections
consistently too low, by more than 15% farojections of 10 years or more. Further
work on the source of these sizable inaccasashould be a high priority. Finally, we
find no evidence of improvement in pecfions of consumption, GDP, or energy
intensity since 1982.
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The Accuracy of Past Projections of U.S. Energy Consumption

Brian C. O’Neill and Mausami Desai

Introduction

Projections of future energy consumption p&akey role in many analyses of energy
and environment. They serve as a basispfanning within the energy industry; for
research questions regarding future engnggluction, consumpn, and environmental
impacts such as air pollution or climate change; and for evaluating the need for and
potential effects of energy and environri@npolicies. A noteworthy example of a
current policy application is the evaluatioh proposed climate emge policies. For
example, estimates of the costs of meeting the commitments agreed to in the Kyoto
Protocol range widely (Weynt 2001) and depend strongly on assumptions about what
emissions would be in the absence of poliehjch in turn rely heavily on projected
energy use. Similarly, U.S. climate policy announced in 2002 by the Bush
Administration calls for an 18% reduction in the carbon intensity of economic
production within the U.S. by 2012 (Bush Administration 2002). Evaluating what kind
of action might be necessaty achieve this goal requires a projection of energy
intensity and fuel mix in the absence of such a policy.

Analysis of the performance of past @macjons can be instructive for two main
reasons. First, it can provide useful information for characterizing the uncertainty in
current projections. The typical magnitude esfors in past projections over a given
projection horizon can serve as a guide in quantifying uncertainty over similar time
horizons into the future. Of course there is no guarantee that the performance of current
projections will be similar to the performance of past ones, and other sources of
information should be, and generally areediso quantify uncertainties. Nonetheless,
historical error analysis can be usefas a benchmark. A second motivation for
analyzing past projections is the possibility of improving current projections. By
identifying sources of error, research can be focused on improving the components of
projections that would have the largpayoff in terms of improved outcomes.

There are many examples of useful analyses of forecast errors in the energy field
and in other fields as well, such agriculture (McCalla and Revoredo 2001) and
population. For example, errors in popuati projections have been extensively
analyzed (Keilman 1999), and a recent N&&Port (National Research Council 2000)
encourages the use of such analysis in informing judgments on uncertainty in current
projections. The most recent probabilistiojpctions of global population produced by
IIASA (Lutz et al. 2001) operationalize this recommendation. The authors used the
results of historical error analysis UN population projections to define lower bounds
to uncertainty in projected population sizerde analysis has also identified key sources



of errors in projected population size. Bua{2001) shows that errors in baseline data
— the estimated population size, age structurélifie and mortality in the starting year
of the projection — play a key role. Thugstantial improvements fiorecasts would be
possible by improving the quality and coveragethe data on which projections are
based.

Several studies have analyzed the performance of energy forecasts for the U.S.
or for the world. Smil (2000) catalogugbe many failures of long-term energy
forecasts, which he describes as havingssed every important shift of the past two
generations,” (p. 262) including the fimbd second oil crises, the post-1970 reduction
in electricity demand in industrialized couges, and the cumulative contributions of
energy conservation. Based on this reviewrdgmmmends that efforts to forecast the
energy system be replaced by the development of scenarios designed to explore
alternative futures rather than to predict the most likely one (see, e.g., Silberglitt et al.
2003). Other studies focus on quantitative aredysf errors in particular modeling
efforts. For example, the perfoance of projections of ogrices is a particularly well-
known example of the hazards of forecasting. Following the 1979-1980 oil price
increases, most analysts expected steadily rising oil prices. In fact, nominal prices fell to
less than 50% of their 1981 value by 1986hi&ttenholzer 1998), and projections of oil
prices for the year 1990, made in 1980 uanber of models for the Energy Modeling
Forum, were off by a factor of 2 to 3 (Htington 1994). These projections exhibit what
demographers (Keilman 1999 d others call “assumption aty,” or the tendency for
forecasters to be slow to incorporatewnénformation (e.g., changing oil market
conditions in the case of energy, widesistedeclines in fertility in the case of
population) into their forecasts.

Error analysis for energy forecasting has also yielded insight into sources of
error. Huntington (1994) found that the souroérrors in oil price forecasts over the
1980s varied with the time horizon of the ajon. Inaccuracies owéhe first half of
the decade were driven by model inputsitipalarly inaccurate projections of gross
domestic product (GDP) and ekpansion of non-OPEC oil supply. Inaccuracies in the
late 1980s were due mainly to inadequdéenand responses to price changes in the
models. The analysis also notes that in contrast to the extremely inaccurate price
forecasts, concomitant projeans of consumption were accurate by only about 2%,
demonstrating the price inelasticity of muohthe demand for oil. Linderoth (2002)
examines errors in forecasts of energnsumption made by the International Energy
Agency of OECD countries over the meti1978-1994. He concludes that inaccurate
GDP projections have been sigrant contributors to these errors, and that energy price
changes have also played a significant role.

A handful of studies have focused orojpctions of the U.S. energy system.
Craig et al. (2002) analyze projections mdmgore 1980, concluding that forecasters
underestimated the portance of surprises such as thil embargoes of the 1970s and
the subsequent increase in energy efficiedtpjections of consumption in the year
2000 were uniformly too high. Cohen et 1995) analyze projections by the U.S.
Energy Information Administration (ElAnade between 1978 and 1993, finding, as in
other analyses, that price forecasts haeenbfar less accurate than projections of
production or consumption. laddition, they find that pjections greatly improved
between 1978, a time strongly affected by dilecrises, and the early 1980s, by which
time the effect of these disruptions had begun to dissipate. Most large errors in early



forecasts were due to combinations ofhbbigh price assumptions (based on then
current experience with oil crises) and the assumption that regulations then in place
would remain so, when in fact they weodten drastically modified or repealed.
Shlyakhter et al. (1994) analyzed projections by the U.S. Energy Information
Administration made between 1983 amh€i87 of 1990 U.S. energy production and
consumption by sector in order to derivstdbutions of errors. They then used those
distributions to specify uncertainty intedg for current forecasts. They find that
commonly assumed normal distributions of errors substantially underestimate the
frequency of extreme outcomes in historical experience.

Since 1996, the EIA itself has analyzeeé terformance of its own projections
(e.g., Holte 2001). Their analyses find thaamges in energy poles have had a major
impact on forecast accuracy, that price forecasts have continued to be less accurate than
forecasts of production or consumption (dmale typically been too high), and that
projections related to natural gas have bkss accurate than those related to other
fuels. Their methodology is tcalculate mean absolute percent errors in EIA forecasts
for various quantities, and to average &éhesrors over all projections and all time
horizons.

In this paper we analyze the EIA medium-term projections of U.S. energy
consumption. The EIA has published thesejgutions in its Annual Energy Outlook
(AEQO) each year since 1982. Because they were produced within a single institutional
setting, with a relatively stable methodoldglyscussed in more thl below), the AEOs
provide a meaningful basis for error an&@ys'he 20-year history of projections, and
time horizons for individual projections ranging from 8 to 24 years, provide a sufficient
basis for determining indicators of aveeagerformance as a function of the time
horizon of a projection. The AEOs typicaltypntain a reference projection, as well as
several variants. Our aim is to analyze the accuracy of the reference projections of total
consumption, identify the major sources abe, and look for evidence of improvement
in accuracy over time.

Our analysis differs from previous work several ways. First, we focus on
quantifying errors and their sources. In costirthe aim of Shlyakhter et al. (1994) is to
quantify the degree of overconfidence in uncertainty ranges assigned by forecasters in
past projections. In examining sources wbes, we differentiate between contributions
from errors in baseline data, errors due to cyclical (or inter-annual) variability in
consumption that projection models are m#signed to forecast, and errors in
projecting the trend in energy consumption, important distinctions that have not been
made in previous work. We also decompeseors into contributions from errors in
GDP growth and errors in energy intensiyhile Cohen et al. (1995) also distinguish
between these two components, they useoee limited datasetnal do not correct for
baseline and variability errors. We explicitly control for time horizon in assessing
projections. In contrast, the EIA’s analysisits own projections (Holte 2001) averages
errors for a given projection across time horizons, making it difficult to compare
different projections that may have spanuigterent lengths of time or have different
availability of output data, and obscuripgtterns in accuracy over different horizons.
Finally, the focus of our analysis is prnojections made since 1982, a period which has
been uninterrupted by major crises in thebgll or national energy system. In contrast,
other studies (Craig et .aR002; Cohen et al. 1995) incle analysis of long-term
projections made before or during the isriperiods of the 1970s, and therefore their



primary conclusions are baken the performance of models with respect to these
special conditions.

In the next section we describe th@dels used by EIA and the data (model
inputs and projection results) on which the gsial is based. Following that, we define
the measures of error we employ. Wesrthreport our results and conclude with
discussion and directions for future work.

Models and Data

EIA Forecast Models: IFFS and NEMS

The U.S. Department of Energy has be®nducing energy projections since 1974.
However, available output from projemtis before 1982 is insufficient to add
meaningfully to our analysis. Between 1982 and 1993, EIA projections were produced
using the Intermediate Future Forecasting System (IFFS) model. The IFFS is an
engineering-economic model of all U.S. energy markets. It can be considered a partial-
equilibrium framework that focuses on egyerand excludes other, non-energy goods
and services produced in the U.S. economy. It represents the U.S. energy system using
four end-use demand modul@ssidential, commercial,ansportation, industrial), two
supply modules (oil and gas, coal), and memversion modules (@ttricity, petroleum
refining). Regional disaggregation varies impdule but is typically at the level of 10
federal regions. In addition, a macroecomo module allows for feedback between
domestic macroeconomic indicators su@s GDP, and world energy prices.
Macroeconomic growth paths are determibedinning with an exogenous growth case
taken from simulations by Data Resources, Inc. (DRI), which is now part of Global
Insight, Inc. The module then calculates ajustgéd growth path that takes into account
feedbacks from the energy system by iteratively calculating first demand and prices
based on the macroeconomic indicators, @@ using a reduced-form representation

of DRI models to estimate the influenceesfergy price changes on the macroeconomy.
The world crude oil price is taken tme exogenous, derived from a separate EIA
projection using a global model.

The National Energy Modeling System (NEMS) replaced IFFS beginning with
the 1994 AEO. The basic structure of NEMSsimilar to IFFS (Energy Information
Administration 1994, 2003a). It generally operates at the level of nine regions within the
U.S. (census divisions), and one non-U.S. region. NEMS breaks down the energy
system into the same demaamid conversion sectors asliFS, but adds two additional
supply modules for a total of four (oil and gas, renewables, natural gas transmission and
distribution, coal). The mainlifference from IFFS is #t many of these modules
explicitly represent individual technologiegi{ers, e.g., industdialemand and oil and
gas supply, use more limited representajiorend that provision is made for
technological improvement over time. The expanded capabilibie NEMS were
motivated by the technology policy and regulatory issues that had arisen in the early
1990s, such as improvements to the CleanAst Amendments of 1990, restructuring
of electricity markets, and thmtegration of renewable technologies (Mary Hutzler,
personal communication). Similarly to IFF& macroeconomic module allows for
feedback between domestic macroeconomdticators and energy prices. However,



NEMS also allows for feedback between wilooil prices and energy supply/demand in

the U.S. An international module assumaeference non-U.S. oil supply and demand,
and then calculates a world average oil price based on the assumption that marginal
changes in non-U.S. production come from OPEC. Thus the world price is determined
in each time step by forecasting based onpitiee in the previous time step and the
percent utilization of OPE@roduction capacity. In turn, the new price, through its
affect on demand and oil importffects OPEC production capacity.

The EIA uses NEMS to produce a reface forecast, and additionally four
variants assuming higher or lower economiavgth, or higher or lower world oil prices.
In addition, it produces a large number gfecial variants testing sensitivities to
individual assumptions or policies. Our aysi$ is based on the reference forecast in
each AEO.

Data

The data set for our analysis consists dftgaojections of U.S. energy consumption,
GDP, and energy intensity (El) contained in the 1982-2002 AEE&ergy Information
Administration 1983-2003). The time horizon foojections varies with the projection;

for example, the 1982 AEO makes projections only until 1990, whereas the 1998 AEO
projects to 2020. The basic dataseavailable in EIA’'s 200/Annual Energy Outlook
Forecast Evaluatior{Holte 2001), but this source doest include values for all years

in all projections. We includadditional data obtained ductly from the original AEO
publications (Energy Inforation Administration 1983-2003)Consumption data from
AEOs published before 1990 are adjustedirtdude consumption of energy from
dispersed renewables, to lmnsistent with later projectns (see Appendix for details).

Actual values for total energy consption through 2001 were taken from the
Annual Energy Review 20@Energy Information Administration 2002), and a value for
2002 was taken from the most recent availallenthly Energy ReviewEnergy
Information Administration 2003b). EIA conies estimates of thactual quantities of
aggregate consumption by summing consumption in the residential, commercial,
industrial, transportation, and electric povgectors. Within each sector, EIA collects
consumption data by fuel type frosappliers through required surveys.

The real GDP projections were taken from the original AEOs, which report
projected real GDP (in units of U.S. dollargpeessed in terms ofgaarticular base year)
along with projected implicit pce deflators. In order toompare real GDP projections
across AEOs, all projected real GDP values were converted from various base years to
1996 dollars using actual 1996 chain weightegliait price deflators as reported by the
Bureau of Economic Analysis (2003):

! An AEO does not exist for 1988 because of a change in the naming convEh&d989 AEO follows
the 1987 AEO.

% In some instances, the data within the AEOs is presented at 5-year intervals, rather than annually for a
set time horizon. The EIA models produce annual projection values, though they dveagstpaublished

in the AEOs. AEOs 1996 thru 2003 are available online at EIA's website
http://www.eia.doe.gov/oiaf/archive.htnfPrevious AEO publications (1982-1995) are available in print

or microfiche.
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Estimates of actual real GDP in chainigiged 1996 dollars were obtained from
the AER 2001 (Energy Information Administration 1983-2002 (2001, p. 353)) and are
consistent with those published by the Bureau of Economic Analysis (2003). For AEOs
1982 through 1992, economic growth was mesasum terms of gross national product
(GNP), rather than GDP. For consistency, the actual historical nominal values for GNP
in those years were obtained from the Bure&conomic Analysis (2003). Projected
and actual values of energy intensity are simply the ratio of energy consumption to GNP
or GDP for a given year.

Error Definitions and Decomposition Methodology

We examine four error types using several dfife measures of emdn defining them,
it is useful to first distinguish among various measures of time:

t calendar year being projected
T projectionyear
th base year of the projection

TH=t—t timehorizon

The base yeary,tis the most recent year in which consumption is estimated
from data rather than projected with the modtels often, but not always, the same as
the projection yeary, which indicates the year in wah the projection was made. For
example, for the 1989 AEO, the bagsar was 1988, so in that case 1989 butg =
1988. The time horizon, TH, indicates the lengththe projection. The projection for
1995 from the 1989 AEO has a time horizoh 7 years (1993:988), while the
projection for 2000 has a tinterizon of 12 years.

The first type of error we focus on wssible error (V), which indicates the
difference between the projected energpnsumption and actual (observed)
consumption for a given yeaor

V,(t) = E, (t) - E(t) Q)

where the subscrigtis the projection yeark: is projected energy consumption d&ne
actual energy consumption. i error is most relevarib users of projections who
want to know how accurate they are; it refifethe error the user actually “sees” in the
projection. But to understand the sourcetlod visible error, it is useful to examine
“invisible” errors; i.e., compomgs of the visible error whescombined effect produces
the net visible error (Bulatao 2001). Here @ezompose visible error in consumption in
two different ways. First, we decommost into three components of error in
consumptionbaseline error (B)trend error (T)andvariability (Var), so that

V. (1) =B, +T,(t) -Var(t) ©)
Figure 1 illustrates the relationship among these types of error. The baseline

error captures errors in the initial estimates for energy consumption in the base year and
is calculated as



B, = E, (t,) - E(t,) @)
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Figure 1. Types of error.

Projections that begin with inaccurate estimates of consumption in the base year
are likely to project future consumption inaccurately even if the model is otherwise very
accurate. To account for this, we assume thatbaseline error is constant across all
time horizons for a given projection. For exampf the baseline error is +X Btu (that
is, the projection overestimates consumptiorthie base year), then we assume that
consumption is overprojected by X Btu in all future years. This is a simplification; in
principle, it would be necessary to rertlve projection model with corrected baseline
data but with assumptions and parameter values otherwise identical to the original
projection in order to calculate the effexdtthe baseline error on the projection over
time. Since for practical reasons that is isgble, we adopt the constant baseline error
assumption as a reasonable simplification.

Thetrend error measures the deviation of theojection (corrected for baseline
error) from the historical trend. The rationale for this kind of error is that the models
used to project consumption are designegragect longer-term trends in consumption,
not interannual variability. A large visible errim a given year could be generated from
a short-term fluctuation inomsumption due to fluctuatioris oil prices, weather, or
other factors, which the models do not attemoppredict, and therefore in those cases
the visible error would not be indicative of the model’s performance. To control for this
possibility, we define a trend in historical energy consumptig(t), as a linear fit to



annual consumption data (assuming a nonlinear trend using polynomials had little effect
on results, since the 1982-2000 period saw a roughly linear increase in consumption).
Trend error is calculated as

T.()=E.(t)-B, -E(t) 6)

Finally, variability error (Var) measures the deviation of actual consumption
from the historical trend,

Var(t) = E(t) - E; (1) ©)

Note that the variability error is independent of the projection: it is determined only by
the difference between actual congtion and the historical trend.

The second way in which we decomposeblgsierror is by expressing it as a
sum of errors in the forecasts of GDP and of energy intensity (El, the ratio of energy
consumption to GDP). Since GDP forecaats essentially (dibugh not completely)
exogenous to the EIA consumption forecaistis, worth examining the degree to which
errors in consumption are due to errors ireéasts of GDP, or to errors in forecasting
energy intensity (i.e., energy consumptgimen a particular forecast of GDP). While
the two components are not entirely indegent, since macroeconomic assumptions
affect the forecast of energy intensity, a comparison of their errors can still be
informative. We report the results of this analysis later.

For both decompositions, we use different measures to analyze each type of

error.

. The percentage error (PE) measures tbpational error at a particular point in
time and provides a sense of both dlegree and direction of the error.

. The absolute percentage error (APEuUs®d to assess the magnitude of point
errors independent of their direction.

. The mean percentage error (MPE) can be a useful indicator of bias, or the

tendency to over- or under-predict comgption. Because the MPE averages
over a signed quantity (i.e., PE), it is affected by canceling. Positive errors will
cancel negative ones, yielding a small meeor even if individual point errors
are large. Thus, it is not a good indicator of accuracy, but still yields useful
information on bias. The MPE can be calculated over time within a given
projection, or across projections for a given time horizon.

. The mean absolute percentage error (MAPE) controls for the offsetting of
negative and positive percentage errors and is therefore more informative about
the average magnitude of the errors, independent of sign.

Results

Energy Consumption

Figure 2 shows the full series of AEO projeat of total consumption, compared to the
observed values. Observed values are takée the historical estimates reported in the
AER 2001. Considered as a group, the projections appear to have tended to
underestimate actual consumption.
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Figure 2. Projections and actual values.
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projected energy consumption by time horizon, and sample size.



Figure 3 shows the mean percentage visible error (P time horizon.
Recall that the MPEis an average of the signed values of the percentage errors across
projections, which allows for canceling of positive and negative errors in individual
projections. It therefore reflects whether pajons in general have tended to be high
(positive MPE) or low (negative MPE) at particular time horizons. The figure
confirms that consumption @ections have indeed tendexdbe low over time horizons
of five years or more; at shorter time horizons, the bias in the projections is essentially
zero. Figure 3 also shows the medusolutepercentage visible errors (MAREN total
energy consumption by time horizon. This measure indicates how accurate, on average,
the EIA projections have been, independentvbkther they have been high or low,
controlling for time horizon. The mean absolute visible error is quite low — about 2% —
for time horizons up to nine years, and gsoslightly to 3-4% for 10- to 13-year
projections and to 8-10% at a 14- to 15-year time horizon. However, sample size
(indicated in the figure as labels on topeaich bar) drops sharply with increasing time
horizon; results for 14- and 15-year horizame based on only a single projection and
cannot therefore be considered kat#e measure of forecast accuracy.

It is worth examining the contributions of component errors to both MARE
an indicator of projeadn accuracy) and MRE(as an indicator of projection bias).
Figure 4a shows a decomposition of MAPIBto baseline error, variability, and trend
error. It shows that baseline error makes a relatively small contribution to the inaccuracy
of the consumption projections. Inaccuracy grojections is mainly attributable to
variability and trend error. Over time horizons of about seven years or less, variability
and trend error are each responsible for abalftthe visible erroin projections (i.e.,
each contributes about one pertegie point to the visible emr@f about 2%). At longer
time horizons, trend error grows to two to three times the size of variability. These
results are significant for at least two reasons. First, variability error gives an indication
of the irreducible component of the arrsm consumption projections. Since the
projection model is not designed to fordcaser-annual variability, roughly 1% error
(on average) in projections is likely unavditta even if baseline and trend error were
reduced to zero. Second, the mean absolute error in the trend {(MlREe measure
that is most relevant to evaluating the use of the projection model itself, since it corrects
for baseline error and is also unaffected by variability error. Neither of these error types
reflects inaccuracies generated by the projection model. Thus it is M&BEis most
useful in, for example, diagnosing sources of inaccuracies within the IFFS and NEMS
modeling systems. The figure shows that, on average, MABEaves similarly to the
MAPEy, remaining quite low for time horizongf about seven years or less, and
increasing at longer time horizons.

Figure 4b, which decomposes MRHjives a sense of the source of the bias
toward under-prediction in longéerm projections. It demotiates that this bias is
primarily the result of under-prediota of the trend, since it is only MPEhat shows
increasingly negative values for longer time horizons. MHAE very small, and MRE
is essentially zero, at all time horizons, since baseline and variability errors show no
systematic bias and tend to cancel asrgrojections. Thus, while baseline and,
especially, variability errors are partly responsible for the inaccuracies in the EIA
projections, it is trend error alone — aadit reflection of the performance of the
projection model — that produces the bh@sard under-prediction of consumption.
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In addition to investigating the sourcesenfor averaged across all projections, it
is also worth examining whether later projections are more accurate than earlier ones,
due to improvements idata or methodology, or as a result of the change in models
from IFFS to NEMS in 1993. To address this question, we examine the accuracy of
projections with equal time hiaons made in different pregtion years, using the trend
error as the best measure of model performance. For example, Figures 5a, 5b, and 5c
show mean absolute trend errors (MAIPHE projections with tree-, five-, and seven-
year time horizons, respectively. In general, there is no strong evidence for
improvement in projections over time. Fordé-year projections, trend error remains
below 3% for almost all AEO years witho clear pattern of change over time.
Similarly, for five-year and seven-year ggofions, there is no unambiguous pattern of
changes in trend error over time. In addition, the accuracy of the projections does not
appear substantially different since 19%hen the NEMS model was adopted, as
compared to earlier years when the IFFS model was used.

It is possible that projections could beproving not through improvements in
the accuracy of the projection modeling, but through reduction of baseline errors.
However Figure 6, whiclshows the baseline error for each AEO year, demonstrates
that there is no clear pattern to baseline errors over time. In any case, the baseline errors
have been fairly low (<1%), and as notdabve have been only a minor contributor to
projection inaccuracy.

Thus our analysis of visible errois consumption indicates that the EIA
projections have been accurate to witAbbout 2% over time hommns of less than ten
years, with errors climbing to about 4%tihe horizons of 10-13 years. Errors are due
mainly to inaccurate projections of tieend in consumptionwith an important
contribution from variability error at short time horizons). Consumption projections
have also tended to be too low, on average, and the source of this downward bias is
downward bias in projections of the nce We find no evidence of improvement in
projections over time.

Gross Domestic Product and Energy Intensity

We next examine components of visible error in projected energy consumption in a
different way, by decomposing it into contributions from errors in forecasting real GDP
and energy intensity (El). Energy intensity is defined as the ratio of energy consumption
to economic production, andhus total consumption is just the product of GDP and
energy intensity. Figure 7a shows that errors in forecasting GDP and energy intensity
contribute about equally to,nd are substantially greater than, the errors in energy
consumption forecasts. MARHEor GDP and EI are about 3-7% up to a nine-year time
horizon (compared to 0-2% for errors ineegy consumption), and grow rapidly to 10-
20% beyond a ten-year time horizon (comgolato 3-8% for errors in energy
consumption). This suggestsatisubstantial canceling of errors in GDP and EIl occurs,
so that the smaller errors in consumption are the result of larger, but offsetting, errors in
GDP and El.

% An identical analysis based on nominal GDP — the metric used by EIA in its own evaluatittes (H
2001) — does not alter the conclusions we reach, and produces only slightly different quantitative results
(slightly larger errors).
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Figure 7b confirms this suggestion. It shows that, on average, errors in GDP and
in El have been of opposite sign. GDP baserally been under-predicted in the short
term (time horizon less than seven years), and over-predicted in the longer term; the
opposite is true of energy intensity. Thgeneral pattern can be explained by two
factors, demonstrated in Figures 8 and 9. First, GDP projections are too low, and El
projections are too high, in the short term due to baseline errors. Baseline error in GDP
has been substantial (Figure 8a) and ctersity negative (Figure 8b) over the entire
period, while baseline error in El has been substantial (Figure 9a) and consistently
positive (Figure 9b). Note that the reasonliheeline errors in GDP and EI mirror each
other is that baseline estimates of El are derived quantities calculated as the ratio of the
estimates of GDP and energy consumption. Because the baseline GDP errors are large
and negative, and the baseline consumption errors are small, the baseline El errors are
large and positive.

Second, the reason that projections of GDP are too high, and energy intensity
projections are too low, in the longer term dentraced to trend error, and is therefore
due to the performance of the projection models themselves. Trend error in GDP grows
substantially at longer time horizons (Figure 8a) and is consistently positive (Figure 8b),
while trend error in ElI grows substantially (Figure 9a) and is consistently negative
(Figure 9b).

Both the consistent bias in theg®ojections and their magnitudes have
important implications for evaluating thelA projections. Consider first the over-
optimistic projections of the trend in GDRs discussed earlier, the GDP projections
are based on an exogenous forecast supplied to EIA by an outside consulting firm
(DRI), which is then modified by feedbacks with the energy model. The over-optimism
of the final GDP projections could be due to consistently biased DRI forecasts, or to
overly strong modification by energy sgst feedbacks acting in the direction of
increased economic growth. Since the original exogenous DRI forecasts are not
available, this question cannot be answelefihitively. However, the magnitude of the
GDP errors suggests that the feedbacks, which likely constitute a smaller adjustment to
GDP growth, are unlikely to be the major part of the explanation. It may very well be
that the exogenous GDP forecasts have been the primary source of bias.

Next, consider the consistent under-progat of the trend in energy intensity.
At first glance, the rough symmetry in trend errors between GDP and EI might suggest
that they are related to each other, much as the roughly symmetric baseline errors in
these two quantities are. For baseline error, the El errors are a simple mathematical
consequence of consistently positive errorsestimations of GDP, combined with
relatively accurate, and independent, estimates of total consumption. As a result,
baseline errors in El simply mirror errors in GDP, but with opposite sign. However, the
situation with trend errors is distinctly different. The projected trend in energy
consumption isotindependent of the GDP projection. In fact, GDP is perhaps the most
important driver of consumption. Thus, thertd errors in El reflect a true shortcoming
of the energy projection, and are not a simple mathematical consequence of the trend
errors in GDP.
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There are at least threegsible explanations for theystematic under-projection
of El: the effects of income, prices, or efficiency. It may be that the income elasticity of
demand in the projection model has been tog ko that rising incomes in the model
do not generate a sufficiently strong incre@senergy consumption. It may be that the
price elasticity of demand has been inaccuratethat responses to projected prices
have been in error. Similarly, it could lhkeat the projections of the energy prices
themselves have been too high (as found by Holte 2001), suppressing the increase in
energy consumption in the model belowtuat consumption levels. Finally, it is
possible that projections ofdhdemand for energy services has been accurate, but that
projections of the efficiency with whichhose services are delivered have been
overoptimistic, leading to an under-projectionesfergy consumption. It is beyond the
scope of our analysis to pursue these hypahdere; they remaimportant questions
for future work.

Turning from the bias in the projectiots a consideration of the magnitude of
the errors, note that the trend errors becgui¢e large with increasing time horizon.
For GDP, the error is less than 5% up to a time horizon of about eight years, but grows
to exceed 15% beyond a time horizon of 12 years. Similarly, trend errors for energy
intensity remain below 5% up to a time horizon of five years, but exceed 15% beyond a
time horizon of 10 years. (As shown in Figure 9a, errors in both GDP and EI are even
larger at the 15-year time horizon, but the sample size is too small to meaningfully
characterize typical performance over thésge spans.) If these findings are robust
indicators of projection perforamce, they imply that very substantial inaccuracies are
plausible in current projections over time horizons of a decade or more. As previously
noted, projections of energy intensity itseliyplan important role in policy, heightened
recently by the Bush administration’s climate policy based on goals for improvement in
carbon intensity. Equally important is the fact that these results imply that
improvements in either GDP forecasts, or in energy intensity forecasts, will lead to
potentially largeincreasesin errors in projected ergy consumption. Errors in
consumption forecasts are currently small because they mask large offsetting errors in
GDP and El forecasts. Thus improving oolye component will lead to less accurate
consumption forecasts.

Finally, we also looked for evidence iofiprovement in projections of GDP and
El over time. Analysis of MAPEfor GDP, and separately for El, for time horizons of
three, five, and seven years (not shownpdsnction of the projection year show no
unambiguous trend toward improvement imefzasts over time. Similarly, there is no
indication that GDP or El forecasts made with NEMS are any more accurate than those
made with IFFS (results available from authors).

Conclusions

Our analysis shows that visible errors imjpctions of U.S. energy consumption have,

on average, been too low, but their magnitude has been relatively small (a few percent)
up to about 10 years in the future. On tre hand, this level adiccuracy stands in
marked contrast to the typical level of accuracy in forecasts of energy prices and of
macroeconomic growth, which generally fanech worse. On the other hand, we find
that the small errors in EIA consumption forecasts are due in part to large offsetting
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errors in GDP and energy intensity, which grow to more than 15% at a time horizon of
10-12 years or more.

These errors can inform estimates of the uncertainty in current projections of
future energy use. One might be tempted to assume that current projections of
consumption ten years into the future mayehan uncertainty of a few percent, based
on the average of past performance attimg horizon. While we believe our analysis
provides a benchmark against which to gaugeertainty estimates, it must be kept in
mind that the future may be harder orieado project than the past. Given the
substantial variations in the magnitudedadirection of U.S. energy consumption
forecasting errors since the 1960s (Lertnet al. 2003), a change in forecast
performance is a clear possibility. Two ways in which the past two decades would no
longer serve as a useful guide are (1) if the energy system experiences disruptions, such
as those that occurred during the 1970s, kattdahe not represented in the period of our
analysis; or (2) if the large offsetting errors in GDP and energy intensity forecasts no
longer tend to cancel each other, as thaye over the past 20 years. This caution
echoes Landsberg (1985), who reviewed earergy projection he was involved in
making in 1963 and found that accurate prioges for particular variables were almost
always the result of large offsetting errors in the components. “Divining the future
correctly in the aggregate can be quite an ego trip,” he wrote, “but its usefulness
depends largely on the question one seeks to answer. Nor can you bank on offsetting
errors. Errors can also be compounding.” (p.14)

We find no clear evidence of improvem&im projections over time since 1982,
and no clear difference in projections maui¢h the IFFS model, or its successor, the
NEMS model. This is not inconsistent wittre conclusion of Cohen et al. (1995), who
find evidence for improvement in energyjactions made between the late 1970s and
early 1980s, given the different time periodgshe analyses. Our analysis also suggests
some priorities for improvements. First, focusing both on better projections of energy
intensity and better projeotis of GDP would be helpful. GDP forecasts suffer from
substantial baseline errors, suggesting that improving the quality of the baseline data in
GDP forecasts could contribute to better energy forecasts. It would also be important to
take into account “period effects”; i,eparticular times during which prevailing
economic conditions may make it easier or harder to forecast GDP (McNees 1992). We
also note that variability can be an important source of error for shorter-term
projections. This should be recognizedewaluating projection accuracy in any one
year: some error should be expected simply because the models are not designed to
simulate inter-annual variability. In addition, it may be worth accounting for this fact in
setting initial conditions for projections. Currently, the projection model is calibrated to
the best estimate of the actual consumption level in the base year. However, it may be
advisable to calibrate to the estimated value of the trend in the base year, which will
generally be different than tihevel of actual consumption.

Our analysis also has limitations aoduld be extended iseveral ways. We
examine consumption, output, and intendigures aggregated across the economy,
rather than by sector. Analysis of theoes in the projections of consumption in
individual sectors would give valuable ighkt in error sources, a strategy that was
pursued by Cohen et al. (1995) and Limdler(2002), who found that relatively small
consumption errors in forecasts for OEC@untries were typically the result of large,
offsetting errors for the transportation and industrial sectors. Such sectoral analyses bear
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repeating with the now more extensive sefpadjections available, and (we suggest)
with the methodology used here. In addition, investigating the source of the under-
projections of the trend in energy integsitould be important. Additional analysis of
price forecasts, measures of energy efficiency, and income and price elasticities of
demand would give aditbnal insight into this important question.

References

Bulatao, Rodolfo A. 2001. Visible and Is#ble Sources of Error in World Population
Projections. Paper presented at tAenual Meeting of the Population
Association of America, Washington, D.C., March 29-31, 2001.

Bush Administration. 2002. Global ClineatChange Policy Book. Available at
http://www.whitehouse.gov/news/reles2002/02/climatechange.html

Bureau of Economic Analysis. 2003. Natal Income and Produéccounts Tables.
Updated April 25, 2003. Washington, D.0. S. Department of Commerce.
http://www.bea.gov/bea/dn/nipaweb/TelWlewFixed.asp?SelectedTable=17&Fi
rstYear=2002&LastYear=2003&Freq=C@tited April 25, 2003).

Cohen, Barry, Gerald Peabody, Markdekohr, and Susan Shaw. 1995. A History of
Midterm Energy Projections: A Review of the Annual Energy Outlook
Projections. Unpublished paper. Wemgton, D.C.: Energy Information
Administration, U.S. Department of Energy.

Craig, P.P., A. Gadgil, and J.G. Koomey. 2002. What can history teach us? A
retrospective examination of long-term energy forecasts for the United States.
Annual Review of Energy and the Environn&ht83-118.

Energy Information Administration. 2003&he National Energy Modeling System: An
Overview 2003DOE/EIA-0581(2003). Washingtol.C.: U.S. Department of
Energy.

Energy Information Administration. 2003Monthly Energy Review August 2003.
Updated August 26, 2003. WashingténC.: U.S. Department of Energy.
http://tonto.eia.doe.gov/FTPROOT/multifuel/mer/00350308.pd25 (cited
September 23, 2003).

Energy Information Administration. 200Annual Energy Review 200DOE/EIA-
0384(01), pp. 38, 264-265, 353. WashingorC.: U.S. Department of Energy.

Energy Information Administration. 199&upplement to the Annual Energy Outlook
1994. DOE/EIA-0554(94), p. 1-6, 71. Wasigton, D.C.: U.S. Department of
Energy.

Energy Information Administration. 1983-2008nnual Energy Outlook 198annually
through Annual Energy Outlook 2002DOE/EIA-0383(82-01), Appendix A.
Washington, D.C.: U.S. Department of Energy.

Holte, Susan H. 1997ssues in Midterm Analysis and Forecasti®ginual Energy
Outlook Forecast Evaluation.DOE/EIA-067(97), pp. 83-111. Washington,
D.C.: U.S. Department of Energy.

21



Holte, Susan H. 200Annual Energy Outlook Forecast Evaluatidpdated October 2,
2002. Washington, D.C.: U.S. Department of Energy.
http://www.eia.doe.gov/oiaf/archive/analysispaperO1/forecast_eval.html
http://www.eia.doe.gov/oiaf/archiveralysispaperO1/forecast_tbl2.himl
(cited March 26, 2002; Septéer 4, 2002; November 2002).

Huntington, H.G. 1994. Oil price forecasting in the 1980s: What went wroHge”
Energy Journall5(2): 1-22.

Keilman, Nico. 1999. How accurate are theited Nations world population forecasts?
Pages 15-41 in Wolfgang Lutz, JamesWsupel, and Dennis A. Ahlburg (eds.),
Frontiers of Population ForecastingA supplement toPopulation and
Development Reviewol. 24, 1998.

Laitner, J.A., S.J. DeCanio, J.G. Koeyy and A.H. Sanstad. 2003. Room for
improvement: Increasing the value of energy modeling for policy analysis.
Utilities Policy 11: 87-94.

Landsberg, H.H. 1985. Energy in transition: A view from 1988 Energy Journal
6(2): 1-18.

Linderoth, H. 2002. Forecast errors liBA-countries’ energy consumptiofEnergy
Policy 30: 53-61.

Lutz, W., W. Sanderson, ar®l Scherbov. 2001. The eondl world population growth.
Nature412: 543-545.

McCalla, A.F. and C.L. Revoredo. 2001. Prospects for Global Food Security: A Critical
Appraisal of Past Projéons and Predictions. Food, Agriculture, and the
Environment Discussion Paper 35. Wagiam, D.C.: International Food Policy
Research Institute. 71 pp.

McNees, S.K. 1992. How large are economic forecast erhes? England Economic
ReviewJuly/August, pp. 25-33.

National Research Council. 200@Beyond Six Billion: Forecasting the World's
Population. Panel on Population Projectiontohn Bongaarts and Rodolfo A.
Bulatao (eds.). Committee on Populati@ommission on Behavioral and Social
Sciences and Education. WashomtD.C.: National Academy Press.

Schrattenholzer, L. 1998. A brief history e International Energy Workshop. Pages
177-185 in J. Weyant (ed.Energy and Environmental Policy Modeling.
Boston: Kluwer Academic Publishers.

Shlyakhter, A.l.,, D.M. Kammen, C.L. B, and R. Wilson. 1994. Quantifying the
credibility of energy projections from trends in past d&taergy Policy2: 119-
130.

Silberglitt, R., A. Hove, and P. Shulman. 2003. Analysis of US energy scenarios: Meta-
scenarios, pathways, and policy implicatioiigechnological Forecasting and
Social Changé&0: 297-315.

Smil, Vaclav. 2000. Perils of long-range emeforecasting: Reflections on looking far
aheadTechnological Forecasting and Social Chartfe 251-264.

22



Weyant, J., Ed. 200IThe Costs of the Kyoto Protocol: A Multi-Model Evaluation
Special Issue ofhe Energy Journak48 pp.

Appendix: Adjusting for Dispersed Renewables

In 1990, the EIA began to include “dispersetiewables” in theiprojections (AEOS)

and estimates (AERs) of energy constiomp (Holte 1997). Edier projections and
estimates are therefore not directly comparable. Dispersed renewables was an informal
term used by EIA to categorize renewallesinterconnected to the electric power grid.
Dispersed renewables consumption inchudetal end-use renewable consumption
(excluding transportation) and renewallonsumption by nonutility power producers.

For example, this would include wood usked residential heatop and rooftop solar
panels for water heating (EugeReiser, personal communication).

In order to address this inconsistency for the purposes of their own forecast
evaluations, EIA adjusts earlier raw AEO projections with current estimates of past
consumption of energy from dispersed renewables. Specifically, a correction factor
(CF) was added to the raw AEO projectiqisigene Reiser, personal communication),
where

CF: = Nonutility Power Producegs+ Residential+ Commercial + Industriak

Each term on the right hand side represents total renewables consumption in each
sector.

We applied this correction factor toetttonsumption data taken directly from
AEO reports that we used to supplemehe data summarized in Holte (2001).
Estimates for historical renewable energynsumption by sector were taken from
Tables 10.2a and 10.2b of AER 2000 (Eyelnformation Administration 1983-2003).
We confirmed the consistency of this approach withae taken in Holte (2001) by
successfully reproducing their correcteshsumption projections for pre-1990 AEOs.
The only exception is that for AEO 1989, fmmojected values in calendar years 1996,
1997, 1998, and 1999, the formula for therection factor provided by EIA doewot
reproduce projected consumption valupgesented in Table 2 of Holte (2001).
Differences were relatively small; we used the values from Holte (2001).
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