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Abstract

New types of laws of large numbers are derived by using connections between estima-
tion and stochastic optimization problems. They enable one to “track” time-and-path
dependent functionals by using, in general, nonlinear estimators. Proofs are based on
the new stochastic version of the second Lyapunov’s method. Applications to adaptive
Monte-Carlo optimization, stochastic branch and bounds method and minimization of risk
functions are discussed.
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Monte Carlo Optimization and Path Dependent

Nonstationary Laws of Large Numbers

Yuri M. Ermoliev (ermoliev@iiasa.ac.at)
Vladimir I. Norkin (norkin@umc.kiev.ua)

1 Introduction

A rather general stochastic optimization (STO) problem may be regarded as estimating
the minimal value F ∗ of the integral

F (x) =
∫

f(x, θ)P(x, dθ) (1)

and a corresponding optimal parameters (solution) x∗ from a subset X of Euclidean space
Rn. The Monte Carlo optimization (MCO) problem arises when the probability measureP
and(or) the sample function f are not known explicitly but only in terms of other explicitly
known measures and functions. The estimation of F ∗, x∗ can be viewed then as a Monte
Carlo simulation procedure with adaptive adjustments of parameters x ∈ X . A typical
example of MCO problem arises in catastrophic risk management [4, 5], where the sample
performance function f(x, θ) and the probability distribution of θ are defined implicitly
through complex dynamic interactions between spatial patterns of catastrophes, decisions
and damages. The estimation of F ∗, x∗ is a significant generalization of the standardMonte
Carlo estimation problem which corresponds to the case when x∗ is known. A stochastic
optimization procedure produces estimates xk, k = 1, 2, . . . , of optimal solution x∗ by
using samples θk from distribution P(xk, ·). An important question is whether

F k = k−1
k
∑

s=1

f(xs, θs) −→ F ∗, k −→∞, (2)

with probability 1, i.e. whether F ∗ can be estimated from available path dependent
observations ζs = f(xs, θs), s = 1, 2, . . .. Another important question is whether values
F k and F kx = k−1

∑k
s=1 fx(x

s, θs) can be used as estimates of the current value F (xk)
and its gradient Fx(x

k) (or a subgradient in the case of nonsmooth function F ), i.e. with
probability 1

lim
k→∞
(F k − F (xk)) = 0, lim

k→∞
(F kx − Fx(x

k)) = 0, (3)

assuming that values fx(x
s, θs) are known. The convergence in (2), (3) can be derived

easily (see Theorem 1.2 and Example 3.1) if one knows that xk converges with probability
1 to the set of optimal solutions X∗.
Unfortunately, the convergence xk −→ X∗ itself is often derived only from convergence

(3), i.e. when estimates F k, F kx track path dependent values F (x
k), Fx(x

k),k −→∞ with-
out assumption on the convergence of {xk}. An important example of such a situation
occurs in so-called adaptive Monte Carlo optimization (AMCO) as it was discussed in



– 2–

[4] for catastrophic risk management problems. In this case the direct sampling of ”low
probability – high consequences” events θk from distributions P(xk, ·) may be time con-
suming and the prposed AMCO procedure makes use of the information in the sample as
it is collected to sequentially improve the efficiency of the sampling procedure itself jointly
with the adjustment of xk. For this purpose the probability measure P at each step k
is modified by chosing it from a family of distributions P(xk, y, ·) indexed by a vector y.
A value y = yk specifies the distribution P(xk, yk, ·) from which θk is drown at step k.
At each step k yk is adjusted towards increasing of an efficiency criteria ψ(xk, yk) of the
estimate xk. The feasibility of such approach essentially depends on the ability to estimate
the value ψ(xk, yk) and the gradient ψy(x

k, yk) as in (3) despite changes xk, k = 0, 1, ... in
parameter x.
The assertion (2) sometimes can be derived from the following known results.

Theorem 1.1 (see, for instance, [7]). Let {ζk, k = 1, 2, . . .} be a sequence of random
variables (possibly vector valued) with finite first moments zk = Eζk and

∞
∑

k=1

1

k
E‖ζk − zk‖ < +∞. (4)

Then with probability one

lim
k→∞

1

k

k
∑

s=1

(ζs − zs) = 0.

Let us notice that (4) implies lim infk E‖ζ
k−zk‖ = 0, i.e. the accuracy of observations

ζk must increase with increase of k.

Theorem 1.2 (see Neveu [13] and [9], [18]). Let Fk be a flow of nondecreasing σ-
algebras, random variables ζk are Fk-measurable, nonnegative numbers nk ↑ ∞, k =
1, 2, . . .. Denote zk = E{ζk|Fk−1} conditional mean value of ζk with respect to Fk−1.
Suppose that E‖ζk − zk‖ <∞ and

∞
∑

k=1

1

n2k
E{(ζk − zk)2|Fk−1} <∞ a.s.

Then with probability 1

lim
k

1

nk

k
∑

s=1

(ζs − zs) = 0.

Theorems 1.1 and 1.2 (with nk = k), in particular, state that if zk a.s. converge to a
random limit z∗, then with probability 1

lim
k

1

k

k
∑

s=1

ζs = z∗.

The aim of this paper is to develop a framework enabling one to derive assertions
of type (3) and (2) for more general estimators than arithmetic mean, what is critically
important for the design of Monte Carlo optimization procedures (see Examples 3.3-3.5).
These results have their origin in the theory of stochastic optimization [3], [6] (see p.177).
We use the fact that the estimation of expectation z∗ = Eζ can be viewed as a Monte
Carlo optimization of the integral H(z) =

∫

‖z − ζ‖2P(dζ) with unknown probability
measure P and easily calculated stochastic estimate 2(z − ζ) of the gradient Hz. The
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estimation of a nonstationary expectation zk = Eζk, k = 1, 2, . . . , can similarly be viewed
as the minimization of the nonstationary function Hk(z) =

∫

‖z − ζk‖2P(dζk). If {ζk}
are uniformly bounded then convergence properties (2), (3) can be derived from general
results on nonstationary optimization (see references in [6], p.152). The main idea of this
article resembles this approach, but we derive assertions (2), (3) and more general ones
from a special (nonstationary) form of the law of large number (LLN). To prove this form
of LLN we use a new rather general stochastic version of the second Lyapunov’s method
(Theorem 2.3). Theorem 2.3 is important itself for the convergence analysis of various
adaptive Monte Carlo procedures. In the paper we assume that involved random variables
are integrable in power (1 + ǫ) (0 < ǫ ≤ 1).
We give two versions (Theorems 2.1, 2.2) of a nonstationary law of large numbers

for dependent random variables, in particular, analogs of Theorems 1.1, 1.2, and with
more general (in contrast to arithmetic mean) rules for averaging of random variables.
Theorems 2.1, 2.2 also utilize additional information on zk that zk belongs to a convex set
Z ⊂ Rn. Theorem 2.2 shows how to track moving means zk = E{ζk|Fk−1} by using only
observations ζk in the case when zk does not converge to any limit.
It opens up a way to use different estimates of F ∗, F (xN ), Fx(x

N ), not only arithmetic
means as in (2), (3). In Section 3 we discuss various applications of Theorems 2.1, 2.2 to
Monte Carlo optimization problems, estimation problems, adaptive Monte Carlo method,
stochastic branch and bound procedures, minimization of risk functions. The proofs of all
results are given in the last Section 4.

2 Nonstationary Laws of Large Numbers

Let (Ω,Σ,P) be a probability space with a flow of nondecreasing σ-algebras Fk ⊆ Fk+1 ⊆
Σ, k = 1, 2, . . .. Let random variables ζk(ω) : Ω −→ Rn are measurable with respect to
Fk, k = 1, 2, . . . . Denote (changing with k, i.e. nonstationary) conditional mathematical
expectations

zk(ω) = E{ζk(ω)| Fk−1}. (5)

In particular, one can take F0 = {∅,Ω}, Fk = σ{ζ1, . . . , ζk} and

zk(ω) = E{ζk(ω)| ζ1, . . . , ζk−1}, k > 1. Consider the following estimators (ζ
1
= 0):

ζ
k+1
(ω) = ΠZ

(

ζ
k
(ω)− σk(ζ

k
(ω)− ζk(ω),

)

, k = 1, 2, . . . , (6)

and an auxiliary sequence (z1 = 0):

zk+1(ω) = ΠZ
(

zk(ω)− σk(z
k(ω)− zk(ω)

)

, k = 1, 2, . . . , (7)

where Z is a convex set from Rn, ΠZ is the (orthogonal) projection operator on the set
Z, random variables σk are Fk−1-measurable and satisfy conditions:

0 ≤ σk ≤ 1, lim
k
σk = 0,

+∞
∑

k=1

σk = +∞ a.s.; (8)

∞
∑

k=1

E{σ1+ǫk ‖ζ
k(ω)− zk(ω)‖1+ǫ} ≤ C < +∞ (9)

for some ǫ, 0 < ǫ ≤ 1.
Next theorem presents a strong law of large number for dependent random variables,

centered by conditional means. It is used further in the proof of Theorem 2.2.
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Theorem 2.1 Assume (5)-(9). Then limk(ζ
k
(ω) − zk(ω)) = 0 a.s. In particular, if

ζk : Ω −→ Z and σk = 1/k then

lim
k

1

k

k
∑

s=1

(ζs(ω)− zs(ω)) = 0 a.s. (10)

Corollary 2.1 Suppose additionally that sequence of conditional means {zk(ω)} converges
to a convex deterministic set Z∗ ⊆ Z:

lim
k
dist(zk(ω), Z∗) = 0 a.s.

Then estimators {ζ
k
(ω)} converge to the same set:

lim
k
dist(ζ

k
(ω), Z∗) = 0 a.s.,

where dist(z, Z∗) = infx∈Z∗ ‖z − x‖.

Corollary 2.2 Suppose that sequence {zk(ω)} a.s. converges to some random limit:

lim
k
zk(ω) = z∗(ω) ∈ Z a.s.

Then sequence {ζ
k
(ω)} is a consistent estimate of this limit:

lim
k
ζ
k
(ω) = z∗(ω) a.s..

In particular, if ζk(ω) : Ω −→ Z and σk = 1/k, then

lim
k

1

k

k
∑

s=1

ζs(ω) = z∗(ω) a.s.

Corollary 2.3 Assume additionally to (5)-(8), that random variables ζk(ω) : Ω −→ Z are
independent, σk = 1/k, F0 = {∅,Ω}, Fk = σ{ζ1, . . . , ζk}. Then zk = E{ζk(ω)|Fk−1} =
Eζk(ω), and (10) takes on a standard form

lim
k

1

k

k
∑

s=1

(ζs(ω)− zs) = 0 a.s. (11)

Remark 2.1 Denote

λkn = σk

n
∏

i=k+1

(1− σi), 1 ≥ k < n, λnn = σn. (12)

Obviously,

yn+1 =
n
∑

k=1

λkn(ζ
k − zk), (13)

where {λkn} satisfy conditions

max
1≤k≤n

λkn −→ 0,
n
∑

k=1

λkn −→ 1, as n −→∞. (14)

For a general averaging procedure (13), (14) a weak law of large numbers yn
P
−→ 0 (in

probability) is known (see, for example, [1]). Theorem 2.1 presents a strong law of large
numbers for dependent random variables with specific averaging coefficients (12) such that
averaging (13) can be made iteratively.
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Remark 2.2 The idea of estimators (6) comes from the theory of stochastic quasi-gradient
methods [3]. It was observed [3], pp.130, 161 (see also [6], p.177), that the law of large
numbers can be interpreted as a stochastic gradient procedure for solving some quadratic

STO problem. We can interpret the expression (ζ
k
(ω)− ζk(ω)) in (6) as a gradient (in z)

of the function

f(z, ζk(ω)) =
1

2
‖z − ζk(ω)‖2 −

1

2
E(ζk(ω))2,

at z = ζ
k
(ω). Let us consider

Fk(z) = Ef(z, ζ
k(ω)) =

1

2
‖z −Eζk‖2 −

1

2
(Eζk)2, (15)

which achieves its minimum at z = Eζk. So procedure (6) can be viewed as an attempt to
minimize function Fk(z) (15) by STO procedure (6) with the projection on a convex set
Z.

Next theorem shows how to track mean values zk(ω) = E{ζk(ω)|Fk−1}, if they do
not converge to any limit. Results of this kind are required for constraint Monte Carlo
optimization (see [3, 6, 10] and examples 3.4, 3.5).
Instead of (9) assume that for some ǫ, 0 < ǫ ≤ 1,

E‖ζk − zk‖1+ǫ ≤ C <∞, (16)

and
∞
∑

k=1

σ1+ǫk <∞. (17)

Theorem 2.2 Assume (5) – (8), (16), (17). Then

lim
k
(ζ
k
(ω)− zk(ω)) = 0 a.s. (18)

Suppose additionally that

lim
k

‖zk+1 − zk‖

σk
= 0 a.s., (19)

then
lim
k
(zk − ΠZ(z

k) = 0 a.s., (20)

and hence
lim
k
(ζ
k
(ω)−ΠZ(z

k(ω)) = 0 a.s. (21)

Thus if zk(ω) ∈ Z then estimator ζ
k
a.s. tracks a moving mean zk as k −→∞.

The proof of Theorem 2.2 rests on Theorem 2.1 and the following general statement.
Let vk ≥ 0, σk ≥ 0, γk, wk, k ≥ 1, be random variables. Suppose that each of the

following conditions is fulfilled with probability 1:

vk+1 ≤ vk − σkwk + γk, k ≥ 1; (22)

lim
k
σk = 0,

∞
∑

k=1

σk = +∞; (23)

v1 +
∞
∑

k=1

γk < +∞. (24)

If lim inf
s

vks > 0, then lim infs
wks > 0; (25)

If lim sup
s

vks <∞, then lim sup
s
|wks| <∞. (26)
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Theorem 2.3 If conditions (22)-(26) are fulfilled a.s., then limk vk = 0 with probability
1.

Conditions (22)-(26) can be viewed as a stochastic version of the second Lyapunov’s
method generalizing related results from [2, 3, 8, 11, 12, 16, 18]). The essential new
feature is that the estimates wk of ”derivatives” of the corresponding Lyapunov function
are not necessary nonnegative. It is important for various applications. The proof of
Theorem 2.3 requires essentially new approaches. The requirement (23) is standard for
iterative stochastic procedures; (24) usually follows from convergence of some martingale
or quasimartingale. For example, let γk = ak+bk, where {ak} generates an a.s. convergent
martingale with respect to some flow of nondecreasing σ-algebras Fk; bk ≥ 0, and

Ev1 +
∞
∑

k=1

Ebk < +∞.

Then (24) is fulfilled. Conditions (25), (26) relate values vk and wk and are easily checked
for concrete situations.

3 Applications

Example 3.1 Concurrent estimation in Monte Carlo optimization. Consider the
minimization of function (1), where f(·, θ) is a convex function, X is a convex compact
set in Rn. There is a number of iterative stochastic optimization procedures generating
a sequence xk −→ X∗ a.s., F (xk) −→ F ∗ a.s. on the basis of independent samples {θs}
of θ. But these methods, as a rule, do not comprise construction of estimates for F ∗. A
natural way to produce such estimates is to construct a sequence

yk =
1

k

k
∑

s=1

f(xs, θs), k = 1, 2, . . . ,

concurrently with the minimization sequence xk. Denote ζk = f(xk, θk) and introduce σ-
algebra Fk = σ{x1, θ1, x2, . . . , xk, θk} ⊂ Σ, generated by random variables {x1, θ1, x1, . . . , xk, θk}.
Obviously, ζk is measurable with respect to Fk and E{ζ

k|Fk−1} = F (xk) −→ F ∗ a.s. If
|f(x, θ)| is majorized for any x ∈ X by an integrable function C(θ), EC1+ǫ(ω) < ∞,
0 < ǫ ≤ 1, then yk −→ F ∗ a.s. according to Corollary 2.1.
Another important problem is the estimation of gradients ∇F (xk) −→ 0 on the basis of

observations ∇f(xk, θk) to evaluate closeness of xk to X∗ = {x|∇F (x) = 0}. If ∇f(·, θ) is
a lipschitzian mapping with integrable in (1+ ǫ)-power Lipschitz constant and xk −→ X∗,
then likewise

gk =
1

k

k
∑

s=1

∇f(xs, θs) −→ 0 a.s.

Example 3.2 Adaptive Monte Carlo method ( see [12, 17, 19, 20]). Suppose that
a real random variable ξ(x) depending on a parameter x ∈ X ⊂ Rn has a common mean
Eξ(x) = m∗, which is to be estimated. Let us denote the variance function F (x) =
E(ξ(x)−m∗)2 with gradient ∇F (x) = 2Eξ(x)∇ξ(x) and estimate m∗ adaptively changing
parameter x towards minimal values of F (x):

mk = mk−1 +
1

k
(ξk −mk−1), m0 = 0, k = 1, 2, . . . ,

where {ξk} are independent observations of {ξ(xk)}, {xk} is a sequence minimizing F (x)
over X. Then by Corollary 2.1 estimates {mk} a.s. converge to m∗.
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Example 3.3 Estimation of subsets in a stochastic branch and bound method.
In the stochastic branch and bound method [14] a sequence of sets Xk(ω) ⊂ Xk−1(ω) is
constructed, and one has to estimate the lower bound value L(·) on the limit set X∗ =
limkX

k(ω), using independent observations of random variables ξ(Xk) such that Eξ(Xk) =
L(Xk). For this purpose in [14] the following estimate is used:

Lk(X
k) =

1

k

k
∑

s=1

ξ(Xk) −→ L(X∗).

Example 3.4 Averaging of gradients. Let us come back to optimization of (1). As-
sume for simplicity that random function f(·, θ) is continuously differentiable, |f(x, θ)| ≤
C(θ) and ‖∇f(x, θ)‖ ≤ C(θ) for x ∈ X, EC1+ǫ(θ) <∞, 0 < ǫ ≤ 1. A method of averaged
stochastic gradients (see, for example, [3, 6, 10]) generates a sequence xk ∈ X as follows:
x1 ∈ X, y1 = 0,

xk+1 = ΠX(x
k − ρkzk),

zk+1 = zk − σk(z
k − ξk),

ξk = ∇f(xk, θk), k = 1, 2, . . . ,

where ΠX is a projection operator on the set X, {θ
k} are independent observations of θ,

nonnegative numbers σk satisfy (8) with ǫ = 1, and

ρk ≥ 0,
∞
∑

k=1

ρk = +∞,
∞
∑

k=1

ρ2k <∞, lim
k

ρk
σk
= 0.

Then by Theorem 2.2 estimates zk of gradients ∇F (zk) are asymptotically consistent:

lim
k
(zk −∇F (xk)) = 0 a.s.

without an assumption on convergence of xk. It shows that the method of averaged stochas-
tic gradients for large k practically operates as a deterministic gradient method, what ex-
plains its convergence a.s.

Example 3.5 Minimization of risk functions. In practice a given decision x ∈ Rn

may result in different outcomes g(x, ω) ∈ Rm which are affected by ”uncertainty” ω
(”environment”, ”state of nature”, exogenous factors and etc.). The expected utility is an
evaluation (for some utility function u(·))

U(x) =

∫

u(g(x, ω))P(dω),

which is linear with respect to the probability measure P. This is an essential limitation
for the applicability of U(x) to problems where variances of g(x, ω) and other moments
may significantly affect the results of decisions x. The risk functions which are used in
applications (for example, the classical Markowitz model, some models based on stochastic
dominance, ratios of conditional expectations and others) often have the following form:

R(x) =

∫

r(x, g(x, ω), ω)P(dω),

which is not linear in P. The calculation of function r(·, ·, ·) requires the evaluation of the
expectation, i.e. in general functions r, R are not known explicitly. Assume that r(x, z, ω)
is calculated exactly for a given (x, z, ω) and consider the sequence

u(k + 1) = u(k) + σk(g(x
k, ωk)− u(k)), u(1) = 0, k = 1, 2, . . . ,
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where xk is a current approximate minimizer of R(x), ωk are independent samples of ω
and σk satisfy (8). Assume that x

k is generated by a stochastic optimization procedure
with step sizes ρk, ‖x

k+1 − xk‖ ≤ ρkConst. If limk ρk/σk = 0, then from Theorem 2.2
follows that ‖u(k)−Eg(xk, ω)‖ −→ 0 for k −→∞. Therefore, r(xk, u(k), ωk) can be used
as an estimate of r(xk,Eg(xk, ω), ωk) in the design of stochastic optimization procedures
for the risk functions.

4 Proofs

Proof of Theorem 2.1. Consider (Lyapunov) function v(z) = ‖z‖1+ǫ, z ∈ Rn, 0 < ǫ ≤ 1.
Its gradient ∇v(z) = (1 + ǫ)‖z‖ǫ−1z satisfies Hölder condition:

‖∇v(y)−∇v(z)‖ ≤ (1 + ǫ)‖y − z‖ǫ.

So for any y, z the following inequality holds (see [16]):

v(y) ≤ v(z)− 〈∇v(z), z− y〉+ ‖z − y‖1+ǫ, (27)

where ‖ · ‖, 〈·, ·〉 denotes Euclidian norm and inner product in Rn. Denote

ηk(ω) = ζk(ω)− zk(ω),

yk = ζ
k
(ω)− zk(ω).

Obviously, E{ηk|Fk−1} = 0. By contraction property of the projection operator we have

‖yk+1‖ = ‖ΠZ(ζ
k
− σk(ζ

k
− ζk))−ΠZ(z

k − σk(z
k − zk))‖

≤ ‖(ζ
k
− σk(ζ

k
− ζk))− (zk − σk(z

k − zk))‖

= ‖yk − σk(y
k − ηk)‖. (28)

From (28) and (27) it follows:

v(yk+1) ≤ v(yk)− (1 + ǫ)σk‖y
k‖ǫ−1〈yk, yk − ηk〉

+σ1+ǫk ‖y
k − ηk‖1+ǫ

≤ v(yk)− (1 + ǫ)σkv(y
k) + (1 + ǫ)σk‖y

k‖ǫ−1〈yk, ηk〉

+2ǫσ1+ǫk (‖y
k‖1+ǫ + ‖ηk‖1+ǫ)

= v(yk)− (1 + ǫ)σk(1−
2ǫ

1 + ǫ
σǫk)v(y

k)

+(1 + ǫ)σk‖y
k‖ǫ−1〈yk, ηk〉+ 2ǫσ1+ǫk ‖η

k‖1+ǫ

≤ v(yk)− (1 + ǫ)σk(1− σ
ǫ
k)v(y

k)

+(1 + ǫ)σk‖y
k‖ǫ−1〈yk, ηk〉+ 2ǫσ1+ǫk ‖η

k‖1+ǫ (29)

Denote
vk = v(y

k) ≥ 0,

wk = (1 + ǫ)(1− σ
ǫ
k)v(y

k) ≥ 0,

χk = (1 + ǫ)σk‖y
k‖ǫ−1〈yk, ηk〉,

γk = 2
ǫσ1+ǫk ‖η

k‖1+ǫ ≥ 0.
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Now inequalities (29) can be rewritten in the following form:

vk+1 ≤ vk − σkwk + χk + γk. (30)

Obviously, E{χk|Fk−1} = 0 and from (9) we have

∞
∑

k=1

Eγk = 2
ǫ
∞
∑

k=1

Eσ1+ǫ
k
‖ηk‖1+ǫ <∞. (31)

Taking conditional expectation from both sides of (30) we obtain

E{vk+1|F
′
k} ≤ vk − σkwk + γk ≤ vk + γk. (32)

Convergence of nonnegative random sequences {vk}, satisfying (32) with wk ≥ 0 and (31)
was studied in [2, 18]. From these results it follows that almost sure there exists a limit
(limk vk) and almost sure

∑

∞
k=1 σkwk < ∞. From here, nonnegativity of wk and (8) it

follows that lim infk wk = 0. But since wk = (1+ǫ)(1−σ
ǫ
k)vk, then almost sure limk vk = 0.

Remark 4.1 In the proof of the convergence in Theorem 2.1 we basically followed [18],
but instead of quadratic Lyapunov function v(x) = ‖x‖2 we used v(x) = ‖x‖1+ǫ, 0 < ǫ ≤ 1,
and inequality (27) from [16].

Proof of Theorem 2.2. Statement (21) is a consequence of (18) and (20). Condition
(9) follows from (16), (17), so the statement (18) follows from Theorem 2.1. Let us deduce
(20) from (8) and (19) by using second Lyapunov’s method in the form of Theorem 2.3
with function v(z) = ‖z‖1+ǫ. By property of the projection operator we have

‖zk+1 −ΠZ(z
k+1)‖ ≤ ‖zk − σk(z

k − zk)− zk+1‖

= ‖zk − zk − σk(z
k − zk)− (zk+1 − zk)‖. (33)

For y = zk− zk − σk(z
k− zk)− (zk+1 − zk) and z = zk − zk from (27) and (33) it follows:

‖zk+1 −ΠZ(z
k+1)‖1+ǫ ≤ ‖zk − zk‖1+ǫ

−(1 + ǫ)‖zk − zk‖ǫ−1〈zk − zk, σk(z
k − zk) + (zk+1 − zk)〉

+‖σk(z
k − zk) + zk+1 − zk‖1+ǫ

≤ ‖zk − zk‖1+ǫ − (1 + ǫ)‖zk − zk‖ǫ+1σk

+(1 + ǫ)‖zk − zk‖ǫ‖zk+1 − zk‖

+2ǫ(σ1+ǫk ‖z
k − zk‖1+ǫ + ‖zk+1 − zk‖1+ǫ)

≤ ‖zk − zk‖1+ǫ

−σk(1 + ǫ)‖z
k − zk‖ǫ((1− σǫk)‖z

k − zk‖ − ‖zk+1 − zk‖/σk)

+2ǫ‖zk+1 − zk‖1+ǫ. (34)

Let us introduce notations
vk = ‖z

k − zk‖1+ǫ,

wk = (1 + ǫ)‖zk − zk‖ǫ((1− σǫk)‖z
k − zk‖ − ‖zk+1 − zk‖/σk)

= (1 + ǫ)v
ǫ

1+ǫ

k ((1− σ
ǫ
k)v

1

1+ǫ

k − ‖zk+1 − zk‖/σk), (35)

γk = 2
ǫ‖zk+1 − zk‖1+ǫ.
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Then (34) takes on the form:

vk+1 ≤ vk − σkwk + γk. (36)

By conditions (19) and (17)
∞
∑

k=1

γk <∞ a.s. (37)

From (36) – (37) it follows that sequences vk, wk, γk satisfy conditions (22)–(26). By
Theorem 2.3

lim
k
vk = 0 a.s.2 (38)

Proof of Theorem 2.3. The proof involves general ideas of arguing from the contra-
diction which are typical for the convergence analysis of nonmonotone optimization proce-
dures [3, 15]. Let Ω′ denotes a set of those ω ∈ Ω that all conditions (22)-(26) are fulfilled
simultaneously, P(Ω′) = 1. Fix some ω ∈ Ω′. Let us show that lim infk vk(ω) = 0. Suppose
the opposite, i.e. that lim infk vk > 0. Then from (25) it follows that lim infk wk > 0, i.e.
for all k ≥ k′ and some ǫ > 0 we have wk ≥ ǫ > 0. From (22) for k ≥ k

′ it follows that

vk+1 ≤ vk − σkǫ+ γk.

Summing up these inequalities from k′ to m:

0 ≤ vm+1 ≤ vk′ − ǫ
m
∑

k=k′

σk +
m
∑

k=k′

γk −→ −∞ m −→∞,

we obtain a contradiction for m large enough, hence lim infk vk(ω) = 0.
Now let us show that lim supk vk(ω) = 0. Suppose the opposite, i.e. that lim supk vk(ω) >

0. Choose numbers A and B such that

0 < A < B < lim sup
k

vk(ω).

Obviously, there exist indices ns = ns(ω) and ms = ms(ω), s = 1, 2, . . . , such that

vns ≤ A < vk ≤ B < vms , ns < k < ms. (39)

Since lim sups vns ≤ A <∞, then by (26) lim sups |wns| <∞, i.e. for all sufficiently large
s ≥ S and some D, |wns| < D. From (22), (39), (24) it follows that

0 ≤ vns+1 − vns ≤ −σnswns + γns
≤ σnsD + γns −→ 0. s −→∞.

Hence,
lim
s
vns = lims

vns+1 = A. (40)

Let us sum up both sides of inequalities (22) over k from ns + 1 to ms − 1:

vms ≤ vns+1 −
ms−1
∑

k=ns+1

σkwk +
ms−1
∑

k=ns+1

γk, (41)

and show that

lim inf
s

ms−1
∑

k=ns+1

σkwk ≥ 0.
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Let wks = minns<k<ms wk. Since lim infs vks ≥ A > 0, then by (25) lim infswks > 0, and

lim inf
s

ms−1
∑

k=ns+1

σkwk ≥ lim inf
s



wks

ms−1
∑

k=ns+1

σk



 ≥ 0.

Coming in (41) to the limit in s, we obtain by (39), (40), (24) a contradiction

B ≤ vms ≤ lim sup
s

vns+1 − lim infs

ms−1
∑

k=ns+1

σkwk + lim sup
s

ms−1
∑

k=ns+1

γk ≤ A,

i.e. lim supk vk(ω) = 0. 2.
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