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Abstract

In recent years the theory of macroeconomic growth has seen an expanding literature build-
ing upon the idea that technological change is localized (technology-specific) to investigate
various phenomena such as leapfrogging, take-off, and social mobility. In this paper I ex-
plore the relationship between localized technological change and dependence on history
of long-run aggregate output growth. The growth model I set forth show that, subject to
mild assumptions on the stochastic processes representing exogenous environment, path-
dependence of aggregate output growth is a robust property of an economic system with
localized learning-by-doing and diversity of technological opportunity. In general there
are multiple steady states (with fast vs. slow growth properties) whose selection depends
on the sequence of historical events: a priori all steady states are attainable but only one
of them emerges as the results of history; two economies with identical fundamentals can
thus evolve towards different steady states just because of the sequence of historical (pos-
sibly small) events. Superior technologies might not be adopted: This happens because
the opportunity cost of abandoning an adopted technology is higher (and the probability
of switching even to a dynamically superior path is lower) the higher the accumulation of
experience in the adopted technology. However growth turns out to be ergodic if agents
are sufficiently heterogeneous in terms of technological capabilities. The same applies if
technological opportunity is very different across technologies, but this is hardly the case
when there are many ”young” technologies.

JEL classification numbers: O33, O41.
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Localized Technological Change and

Path-Dependent Growth

Andrea P. Bassanini (bassanini@utovrm.it)

1 Introduction

Knowledge accumulation is essentially a non-binary process. Usually there is no deter-
ministic correspondence between inputs of innovative activity and its output. Partial
tacitness of knowledge may induce firm-specificity. Different technologies and different
products may require different set of knowledge to be mastered and skills accumulated by
producing with one technology do not have necessarily a useful employment in a different
production activity; this does not mean that there are no spillovers but, to some extent,
they are somewhat specific. In the literature on technological innovation there is now
a broad consensus that technological change is cumulative and partially localized (firm-,
technology- or product-specific) and that the results of technological effort are uncertain;
moreover different technologies have different degrees of technological dynamism: tech-
nological opportunity typically differ across technologies [e.g. Nelson (1981), Levin et al.
(1985), Dosi (1988), Antonelli (1995) and Stoneman (1995)].
A common thrust of the same literature is that the above attributes of technological

change may induce some degree of path-dependence (or dependence on history) in the
innovation and diffusion patterns at the sector level. The idea is that cumulativity and
specificity bring about irreversibility and self-reinforcing mechanisms that can amplify
and render persistent the effect of some historical contingency 1. This paper is concerned
with the following question: do the above characteristics of technological change have
implications in terms of the degree of path-dependence of macroeconomic growth as well?
As far as I know these concepts relative to technological change have almost never

been simultaneously applied in the theory of aggregate output growth. The idea that
technological progress is cumulative in nature can be traced back at least to the work
of Solow, Kaldor, and Arrow, in the late ‘50s and early ‘60s. Uncertainty is now widely
assumed even in endogenous growth models. Both these applications do not need to be
further reviewed here.
At the technique level, the first discussion of the implications of localized technological

change for the theory of growth is due to Atkinson and Stiglitz (1969). David (1975)
provided a first formalized stochastic model along these lines. More recently this idea
has been exploited by many papers studying different phenomena related to technologi-
cal change such as leapfrogging in international leadership [Brezis et al. (1993), Desmet

1See e.g. Arthur (1988) and Dosi (1997). David (1985), Cowan (1990), Cusumano et al. (1992), Cowan
and Gunby (1996) and Kirsch (1996) provide somewhat controversial empirical evidence [for a different
perspective see Liebowitz and Margolis (1995) and West (1994)] of sector-level path-dependence. Due
to the insurmountable difficulty of observing unexploited opportunities, the evidence is limited to the
anedoctal level of historical case studies. More interesting is the evidence on international specialization
patterns: a great deal of randomness, independent of comparative advantage, is observable in the historical
evolution of specialization patterns [see e.g. Dosi, Pavitt and Soete (1990)].
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(1997)], dynamic complementarities and take-off [Durlauf (1993,1994)], excess human cap-
ital traps [Jovanovic and Nyarko (1996)] and social mobility [Galor and Tsiddon (1997)].
Parente (1994) and Smulders and van de Klundert (1995) consider deterministic models of
growth with firm-specific technological change. Grossman and Helpman (1991) consider
stochastic models where there is cumulative and sector-specific technological change; how-
ever technological opportunity is the same in every sector whose number is of the order of
the continuum, therefore averages prevail and aggregate variables have patterns as if the
model were deterministic.
The model of Jovanovic and Nyarko (1996) is the closest in spirit to this work: They

consider a model with cumulative, uncertain and technology-specific learning-by-doing.
However they exclude any type of technological change that is not dependent on experience
accumulated through production. As I will discuss in the third section of this paper, to
some respect their results correspond to a special case of mine.
I employ here a standard concept of dependence on history or path-dependence 2:

An economic system is path-dependent if historical events affect its long-run equilibrium
patterns; if there are steady states an economy has path-dependent features if occurrence
of different events may select the steady state to which the system eventually converges.
This means that two economies with identical fundamentals may evolve along completely
different patterns that lead to different steady states.
An economic system may be affected by big events (plagues, catastrophes, wars, major

innovations, etc...), with very strong and persistent effects but very low frequence, and
small events (weather conditions, incremental innovations, etc...). Most of the economic
modeling takes into account only the first type of events: In deterministic models with
multiple steady states, history may select the initial condition from which the attainable
steady state is univoquely determined 3. However this approach is not entirely satisfactory
because on the one hand it cannot represent the dynamic process which makes history
relevant (everything historically relevant is over when the analyst’s videocamera is switched
on, and it doesn’t help much to watch the crime scene when all the facts has already
happened), on the other hand it may rule out important phenomena that are related to
timing, potential repetition and correlation of historical events.
The other alternative is of course a stochastic approach which allows the representation

of small and big events together. It is well known that a stochastic growth model with
nonconvex production sets usually generates nonergodic patterns [see Majumdar et al.
(1989)]. However models of this type have often undesirable features from the point
of view of modeling economic growth: shocks are usually represented by means of time-
homogeneous Markov chains on compact state spaces; hence optimal investment programs
are usually time-homogeneous Markov chains on compact state spaces. A nonergodic
aperiodic Markov chain on a compact state space has at least two ergodic sets with empty
intersection. As a consequence there are some sets of initial conditions that univoquely
determine the steady state. This is not that bad in abstract, but in a growth model it may
mean that a country which starts with a too low level of capital will never take-off, in sharp
contrast to the fact that originally every country had low capital stock levels4. The only
two simple ways to get around this problem, without losing the tractability of the Markov
structure, are either to restrict meaningfully the set of initial states to transient sets plus,
in case, acceptable ergodic sets (while increasing the dimension of the state space) or to

2See David (1975), Becker et al. (1990), Krugman (1991) and Durlauf (1994).
3For a survey see Azariadis (1996).
4King and Robson (1993) belongs to this class. Moreover many models can be easily modified to obtain

path-dependent growth [for instance Acemoglu and Zilibotti (1996)] at the cost of incurring in the same
“disease”.
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introduce time -heterogeneity in the transition probabilities. The second route has been
followed by David (1975) and Durlauf (1994). In the models of the next two sections I
will follow both approaches.
Clearly we need a formal definition of path-dependence which rules out stochastic pro-

cesses where the limit distribution depends only on the initial state and do not evolve with
the realization of historical events5. We restrict ourselves to cases where at least one limit
distribution actually exists. Following Arthur et al. (1987a), Durlauf (1994), Liebowitz
and Margolis (1995) and Benaim and Hirsch (1996) we can formalize it as follows. Let
Ωt be the set of states ωt of the environment at date t ≥ 1, with Ωt endowed with the
σ-algebra Et . The stochastic environment is given by the probability space (Ω, F , µ )
where Ω = Π∞1 Ωt is the space of all sequences ω = ωt such that ωt ∈ Ωt, ∀ t ≥ 1, F = ⊗

∞
1 Et

is the smallest σ-algebra on Ω generated by the measurable cylindrical sets and µ is the
measure on Ω . Let partial history define the filtration {Ft = ⊗

t
1Ek}, t ≥ 1 . Finally let

us denote with {Zt(ωt)}, t ≥ 1, a sequence of random variables. We can now state the
following definition:

Definition 1 A random process {Zt(ωt)}, t ≥ 1, defined as above is said to be path-
dependent if there exist k > 0, Ak ∈ Fk and a distribution function F such that both the
following conditions hold:

a) limt→∞ µ(Zt ≤ x |Ak ) = F (x) for every x of continuity of F .

b) ∃h ≥ 0 and Fh ⊂ Fk :for every Ah ∈ Fh such that Ah ⊃ Ak,

then limt→∞ µ(Zt ≤ x |Ah ) 6= F (x) for some x of continuity of F .

The model I set forth in the next three sections is a stylized discrete time stochastic
growth model where technological change is partially endogenous and technology-specific.
The number of technologies is modeled as finite, drawing from a growing literature on
technological revolutions6. They can be interpreted as broadly defined technological
paradigms7 or macroinventions8, whose introduction occurs at a slower pace than con-
vergence. Endogenous technological change is represented as learning-by-doing, which is
modelled as a function of the time spent in using one technology, as implicitly assumed
in the literature on endogenous growth and quality ladders [e.g. Grossman and Helpman
(1991), Aghion and Howitt (1992)] and explicitly assumed in some recent paper [Parente
(1994), Galor and Tsiddon (1997)].
A robust finding of the model is that the required conditions to generate path-dependent

growth are relatively mild. Superior technologies may not be adopted if technological
change is localized. As pointed out by Jovanovic and Nyarko (1996) this happens because
the opportunity costs of switching technology increase with experience in one specific tech-
nology so that, under certain conditions, the probability of switching asymptotically tends
to zero. However this tendency may be balanced by technological change independent of
specific experience; therefore path-dependence may not hold if technological opportunity
is very different across competing technologies. Moreover if agents are sufficiently hetero-
geneous in their technological capabilities, growth turns out to be ergodic (the intuition

5That is we want to rule out processes that do not have any transient state [a simple example of
multiple-equilibria stochastic models with no transient state is provided by Brock and Durlauf (1997)].

6See Brezis et al. (1993), Durlauf (1993), Caselli (1996), Galor and Tsiddon (1997) and Desmet (1997).
7On the concept of technological paradigm see Dosi (1982,1988).
8See Mokyr (1990).
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being that heterogeneous agents explore and develope different technologies, letting many
of them survive).
The remainder of this paper is divided as follows: Next section sets forth a simple model

where learning-by-doing is deterministic and stochastic perturbations are stationary. The
third section introduces cumulative stochastic technological change, both endogenous and
exogenous. Section four deals with heterogeneity of capabilities. Finally the last section
briefly summarizes the results. A technical appendix discusses non-linear Polya processes
and contains formal statement of propositions and proofs.

2 Stationary Exogenous Environment

In this section we consider a dynamic economy where time is discrete and all agents are
both producers and consumers of the same homogeneous good, which can be consumed
or invested. Depreciation is complete, meaning that next period capital is equal to in-
vestment this period. Every period agents can choose among two technologies (0 and 1)
represented by two production functions. Production technologies are subject to idiosyn-
cratic stochastic shocks: formally this means that, given our previously defined probability
space (Ω, F, µ) , for any time t we can identify two random variables ǫ0t and ǫ1t, t ≥ 1, that
affect production functions 0 and 1 respectively. Current period uncertainty is resolved
before choice of technology is made. Technical progress is technology-specific and occurs
by historical experience: every time a technology has been chosen and production has
been accomplished with that technology, the related production function shifts upwards
in an exponential way. Technological opportunity may be different across technologies:
the effect of learning-by-doing on production function shift may differ across technologies.
Production and utility functions are assumed to be Cobb-Douglas9.

The list of model assumptions can be formally summarized as such:

Homogeneity of agents:
H) Every agent has the same initial endowment k1, initial production functions, pref-

erences and is subject to the same stochastic shocks.

Exogenous stochastic environment:
S) There are technology-specific random shocks ǫit, i = 0, 1, serially i.i.d. and with

bounded support I1 and I0. Moreover ǫit ≥ δ > 0 .

Technology:
T) At time t available production functions are described by the following equation:

yit = e
Aiνitǫitk

α
t , 0 < α < 1, (1)

where t ≥ 1, i = 0, 1, νit =
t−1
∑

k=1
θik + γi and θik is the share of agents that chose

technique i at time k, Ai is a technology specific coefficient which represents technologi-
cal opportunity (since it determines the effect of learning-by-doing on production function
shift) and γi are initial integer parameters (which determine the level of the initial produc-
tion functions); y and k are per capita output and capital stock respectively. To simplify
the notation we will write yit = Zitg(kt), whenever possible.

9Cobb-Douglas production functions are convenient to simplify the notation, because of the corre-
spondence between Hicks-neutral, Solow-neutral, and Harrod-neutral technical change. A wider class of
production and utility functions can be easily accomodated, as shown in a related paper [Bassanini (1997)].
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Assumption T implies that there are full dynamic externalities, since every agent can
learn from the experience of all the others. T and H imply that all the agents face the
same technological choice set at any time.

Market structure:
M) There is a continuum (of measure one) of agents. Every single agent has zero

measure.

Commodity space10:
C) The commodity space consists of capital stock processes k = {kt} and consumption

processes c = {ct} that satisfy the following feasibility conditions: if k1 is initial stock, the
real-valued Ft -adapted capital stock process k and consumption process c is a feasible
program if

kt+1 + ct ≤ maxi∈0,1{yit} a.s., t > 0
kt, ct ≥ 0 a.s., t > 0.

(2)

Preferences:
U) Intertemporal preferences are represented by a time additively separable (TAS

hereafter) utility function U : R∞+ → R , and the discount factor is small that is:

U(c) =
∑

t
βtu(ct), 0 ≤ β < e

A1γ
α−1 (3)

where u : R+ → R is constant-relative-risk-aversion (CRRA) utility function:

u(c) =
cγ

γ
, 0 < γ < 1 (4)

Non-triviality condition:
NT) Initial parameters are such that both techniques can be chosen with positive

probability at time t = 111.

Agent’s problem consists in maximizing U subject to the feasibility costraint described
by assumption C. There are two choice variables: technology and investment. However,
in equilibrium, because of assumption M, others’ behavior and νit are taken as given,
therefore in every period, since more commodities are preferred to fewer commodities, the
choice of technology is not affected by choices of investment at any time and is simply
reduced to:

i∗t = arg max
i∈{0,1}

{yit}. (5)

As a consequence νit = nit + γi where nit is the number of times technology i has
been chosen in the past. On the other hand investment does depend on the choice of
technology, but we can obtain an equivalent problem by considering {nit} as a random
process independent of agents’ choices and rewriting the inequalities of assumption C as:

kt+1 + ct ≤ yi∗t = Zi∗tg(kt) a.s., t > 0
kt, ct ≥ 0 a.s., t > 0.

(6)

10Assumptions H, T and M imply that all the agents have the same commodity space and utility function,
therefore we will not introduce an indexation for agents.
11Otherwise, given the cumulative structure of learning implied by assumption T, the model would be
reduced to a standard stochastic growth model with exogeneous technical progress.
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Since Zi∗t is a random variable this problem becomes simply a standard problem of
stochastic growth with non-stationary shocks and TAS preferences [see e.g. Joshi (1995)]12.
Hence we can simply study the choice of technique process and then, once we have obtained
a sufficient characterization of that process (and consequently of the process {Zi∗t}) we
can use it to study the growth model subject to (6) and derive properties of the whole
growth system.
Let us assume without loss of generality that A1 ≥ A0 and that if y1t = y0t then agents

choose technology 113. Hence agents choose i = 1 if and only if

Z1tg(kt) ≥ Z0tg(kt). (7)

More precisely:

eA1(n1t+γ1)ǫ1t ≥ e
A0(n0t+γ0)ǫ0t. (8)

Passing to logarithms (8) becomes

A1(n1t + γ1)− A0(n0t + γ0) ≥ logǫ0t − logǫ1t. (9)

Let us denote with ζt the random variable on the right hand side. Since if ǫ1t is i.i.d.
and ǫ0t is i.i.d., the probability of choosing i=1 at any time t is just a function of A1n1t
and A0n0t and therefore the choice of technology process can be interpreted as a Markov
chain {i∗t ,Wt} on {0, 1} ×R with transition probabilities given by:

µ(i∗t = 1,Wt = x+A1 |Wt−1 = x) = Fζ(x)

µ(i∗t = 0,Wt = x−A0 |Wt−1 = x) = 1− Fζ(x)
(10)

where Fζ is the distribution function of the random variables ζt. Essentially from this
observation all the results of this section follow.
The next proposition establishes that the assumptions of the model are sufficient con-

ditions for the choice of technique process to be path-dependent.

Proposition 2.1 The choice of technology process converges either to the non-random
choice of i=1 or to the non-random choice of i=0 with probability 1. Both limits occur
with positive probability. In other words, according to definition 1.1, the choice of technol-
ogy process is path-dependent.

The logic of the proof is the following: Given that the distributions of the stochastic
shocks have bounded support it is always possible to find a sequence of realizations such
that one technology has been chosen sufficiently more often than the other to make the
productivity gap large enough that there cannot be any random shock sufficiently strong to
revert the choice of technology. Therefore the set of states which allows both technologies
to be chosen with positive probability is transient and, by a standard property of Markov
chains on compact state space, the process will be absorbed in finite time.
This result has important implications in terms of Total Factor Productivity (TFP)

growth. In this model we can simply define TFP as Zt since:

∆yt
yt
=
Zt+1g(kt+1)− Ztg(kt)

Ztg(kt)
=
∆Zt
Zt
+
Zt+1
Zt

∆g(kt)

g(kt)
, (11)

12Given that the auxiliary problem does not involve externalities, the resulting decentralized equilibrium
(with distinct consumers and firms) would give the same solutions of the planner’s problem.
13Any other random choice of technique, when y1t = y0t can be easily accommodated.
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which is equal to ∆Zt/Zt if kt+1 = kt.
We have the following result:

Proposition 2.2 The TFP growth rate process is path-dependent. Moreover there are
two stochastic steady states with different mean and the process converges to one of them
in finite time with probability 1. The difference between the means increases with the dif-
ference between the technological opportunities of the two technologies.

The proof exploits the one-to-one correspondence between the choice of technology
and the distribution of TFP growth rate that, conditional to the choice of technology, is
stationary because of the stationarity of the distributions of the random shocks.
We can now pass onto considering agents’ optimal choice of capital stock and income

growth.
As said before, at any time t agent’s optimal choice of capital stock problem is reduced

to attaining the supremum of expected utility subject to (6), that is:

Vt(kt) = sup
∞
∑

s=1
βs−1E (u(ct+s) |Ft ), t ≥ 0,

s.t.
kt+s+1 + ct+s ≤ yi∗t+s = Zi∗t+sg(kt+s) a.s.,
kt+s, ct+s ≥ 0 a.s.,

(12)

where {Zi∗t} is a non-stationary random process whose properties are now known. As
it is standard in the literature on optimal stochastic growth, the program c∗ = {c∗t} or
k = {k∗t }which attains the supremum is said to to be the optimal program. Given the

assumption that β < e
A1γ

α−1 , the problem can be reformulated in a way that existence and
uniqueness of optimal programs can be proved by standard arguments.
The following proposition derives strong results on convergence to multiple steady

states for the growth rate of output.

Proposition 2.3 Both capital stock and output growth rates are path-dependent, have
two stochastic steady states with different mean and they converge to one of them with
probability 1. The difference between the means increases with the difference between the
technological opportunities of the two technologies.

This result is simply a consequence of the properties of the TFP. In fact, knowing
that in finite time the distribution of TFP growth rate becomes invariant, we can rescale
the dynamic programming problem and then apply any standard ergodic theorem for
stochastic growth models.

This section has shown that, subject to mild assumptions on the stochastic shocks, if
technological opportunity is different across techniques both capital stock and output growth
rates are path-dependent. Growth rates have multiple steady states, characterized by fast
vs. slow growth properties. Which type of equilibrium eventually emerges depends on the
sequence of historical events. Nothing guarantees that the dynamically more efficient path
will be actually attained.

Even though the methodology employed to obtain the result cannot be applied beyond
the particular specific exponential form that we have given to production function shifts
as a consequence of learning-by-doing, the result is however quite robust. For instance,
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suppose to replace (1) with:

yit = (Aiνit)
φǫitk

α
t , 0 < α < 1, φ > 0.

Even if absolutely unusual in the literature a functional form like this can be justified to
obtain a technological opportunity which is decreasing in the time spent in that technology,
thus allowing technologies to become “older” as time goes by14. We could repeat the same
reasoning which lead from eq. (7) to eq. (9), however this time extracting the logarithm
would not help because the logarithm is not a linear operator. The process could not
therefore be so easily represented as a time-homogeneous Markov chain. However by
elevating both sides of eq. (7) to the power of 1/φ and setting Xt = ν1t/(ν1t + ν0t) =
(n1t + γ1)/(t+ γ1 + γ0), we get the following inequality:

A1Xt/A0(1−Xt) ≥ (ǫ0t/ǫ1t)
1/φ.

Denoting the random variable on the right hand side with ζt, we have that if ǫ1t is
i.i.d. and ǫ0t is i.i.d., the probability of choosing i = 1 at any time t is just a function of
Xt and therefore the choice of technology process can be interpreted as a non-linear Polya
process15 with urn function f given by

f(X) = µ(i∗t = 1 |Xt = x) = Fζ(A1x/A0(1− x)).

Proposition 2.1 would be amended in the following way:

Proposition 2.4 The choice of technology process converges either to the non-random
choice of i=1 or to the non-random choice of i=0 with positive probability. From any
initial conditions both these two limits occur with positive probability. In other words,
according to definition 1.1, the choice of technology process is path-dependent and has at
least two steady states. If the set B = {x ∈ R : Fζ(x) = A0x/(A1 + A0x)} contains only
isolated points then the number of stochastic steady states to which the choice of technology
process converges with positive probability is less than card(B).

Interestingly this proposition establishes that it is not sure that the choice of technology
locks in one of the two options, but it may converge to a proper stochastic distribution
with continuous reswitching of technologies according to the shocks. This possibility is
due to the fact that without exponential growth it is possible that no technology forges
ahead before the rate of growth becomes too small.
The other two propositions however would be maintained with appropriate minor

changes.

3 Stochastic Technological Change

In the previous section we have considered an exogenous stochastic environment repre-
sented by shocks affecting production functions. However, while those shocks can be
interpreted as exogenous contingencies affecting production (such as weather conditions),
it would be hard to identify them as exogenous stochastic technological progress, because
it would lack cumulativity. On the other hand the endogenous component of technological
change (production function shifts due to learning-by-doing) is not stochastic. Therefore

14For a different justification of a similar functional form see Jones (1995).
15Non-linear Polya processes are synthetically described in Appendix A.



– 9–

at least one of the attributes of technological change we highlighted in the introduction
is misrepresented in that model. Moreover that model allows only for a given number of
technologies: at any point in time either the introduction of a new technology would be an
event with zero probability or it would contradict the assumption of rational expectations.
In a sense, that model draws the picture of a situation where technological revolutions are
no more possible16.
On the contrary, in the model that we consider here, both learning-by-doing and

exogenous technological change are stochastic and purely cumulative (both of them are
represented as processes with one unit root). Moreover, the upper bound to the support
of the distribution of both learning-by-doing and exogenous technical progress can be
arbitrarily large to allow for the representation of history as the outcome of both rare big
events and small (frequent) events17; thus this unifies both approaches described in the
introduction.
Consider the dynamic stochastic economy of previous section and replace assumption

T, S and NT with the following:

Technology :
T’) At time t available production functions are described by the following equation:

yit = e
νitkαt , 0 < α < 1, (13)

where t ≥ 1, i = 0, 1, νit =
t−1
∑

k=1
(θikψik + ξik) + γi , θik is the share of agents that

chose technology i at time k, ψik ≥ 0 is a stochastic variable representing learning-by-
doing for technology i at time k, ξik ≥ 0 is a stochastic variable representing exogenous
technological change for technology i at time k, γi are initial integer parameters; there is
no need to specify a technological opportunity coefficient since it is already included in the
parameters of the distribution of the stochastic shocks; y and k are per capita output and
capital stock respectively. As before, to simplify the notation we will write yit = Zitg(kt),
whenever convenient.

Stochastic environment:
S’) The stochastic variables ψit and ξit, i = 1, 0, are serially i.i.d. and have the following

properties:

ψit ∈ Z+ , with bounded support,
ξit ∈ Z+ , with bounded support,
µ(ψit = 0) ≤ L < 1/2.
µ(ψit = 1) ≥M > 0

(14)

Assumption S’ is technical in nature and it is not strictly necessary but it greatly
simplifies the analysis18. Notice that the stochastic shocks representing exogenous tech-
nological change may be zero with very high probability and very large with very low
probability representing in that case rare big events.

16Obviously this last logical problem would not arise if we rewrite the model assuming overlapping
generations instead of infinitely lived agents.
17To obtain asymptotically stationary growth rates we make the assumption that shocks are bounded
above (assumption S’ below). Technically we can relax this assumption to shocks with bounded mean and
variance; however in this case the steady states should be defined only as mean-stationary growth rates.
18In this way we can rely on many already established results on non-linear Polya processes with multiple
additions. However, if the domain of the shocks were R+, the analysis could be carried over anyway by
resorting to the more general class of Robbins-Monro algorithms (see next section and appendix A).
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Non-triviality condition:
NT’) Denoting with S(X) the support of a random variable X , for i 6= j, either

maxS(ξit) > minS(ξjt + ψjt) or γi ≥ γj.

Assumption NT’ allows initial situations where a technology is not competitive but
it may become competitive in the future as the result of exogenous technological change.
In general this framework can be used to analyze the dynamics of adoptions of different
competing technologies with different technological opportunity, like the model of the
previous section, or it can be used to analyze the effects of potential introduction of a new
(and possibly more dynamic) technology in an economy with an already established old
one. The second interpretation will be more emphasized, because it leads to interesting
results when passing from a two technology model to a multiple technology model19.
Hereafter we will call technology 1 as “new” and technology 0 as “old”. Without loss

of generality it will be assumed that the means of the random variables of technology
1 are larger than (or at least equal to) the means of the random variables relative to
technology 0. Moreover it could be assumed that γ0 ≥ γ1, to represent a situation where
the alternative technology is not yet competitive but agents have rational expectations on
the probability of the occurrence of the “innovation”20. However even when an alternative
technology has been adopted there is still the possibility that a major “innovation” occurs
in the old technology, reverting the pattern of adoption to the old renewed technology21.
The analysis of the output growth patterns is greatly simplified if in addition to pre-

vious assumptions we replace assumption U with:

Preferences :
U’) Intertemporal preferences are represented by a TAS utility function U : R∞+ → R

with unit intertemporal elasticity of substitution that is:

U(c) =
∑

t
βt log(ct), 0 ≤ β < 1. (15)

As in the model of previous section, agent’s problem consists in maximizing U subject
to the feasibility costraint described by assumption C. There are two choice variables:
technology and investment but, in equilibrium, because of assumption M, others’ behavior
and νit are taken as given, therefore in every period, the choice of technology is not affected
by choices of investment at any time and is simply reduced to (5). As a consequence
θi∗t = 1 . Again we can simply study the choice of technology process and then, once we
have obtained a sufficient characterization of that process (and consequently of the process
{Zi∗t} ) we can use it to study the growth model subject to (6) and derive properties of
the whole growth system.
Let us assume without loss of generality that if y1t = y0t then agents choose technology

1. Hence agents choose i = 1 if and only if:

Z1tg(kt) ≥ Z0tg(kt). (16)

More precisely passing to logarithms:

19However, as shown below, multiple technologies make possible to combine both interpretations at the
same time.
20Alternatively, and perhaps more precisely, we can see this setup as representing a situation where a
basic new (potentially revolutionary) idea is already born, but it is not yet competitively applicable to
production so that it has to be developed in academic or research laboratories.
21This is much less unrealistic than it may seem if we interpret the term technology in a broad way
as technological paradigm. Even when a technological paradigm seems on the way of decline it may be
revitalized by new discoveries [see Dosi (1988)].
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ν1t ≥ ν0t (17)

setting Xt = ν1t/(ν1t + ν0t), (17) becomes:

Xt ≥ 1/2. (18)

Consequently the choice of technology is a previsible (Ft−1-adapted) stochastic process
with:

µ(i∗t = 1, |Xt = x) =











1 if x ≥ 1/2

0 if x < 1/2
. (19)

Therefore the dynamics of the choice of technology depends entirely on the dynamics
of the relative technological progress Xt.
The dynamics of Xt is by definition

Xt+1 = Xt +
ψ∗1t + ξ1t −Xt(ψ

∗
1t+ ξ1t + ψ

∗
0t + ξ0t)

ν1t+1 + ν0t+1
, (20)

where

ψ∗1t =











ψ1t if Xt ≥ 1/2

0 if Xt < 1/2
, (21)

and ψ∗0t is similarly defined.
Therefore the process Xt can be seen as a non-linear Polya process with multiple

additions22 whose right-hand side of the associated Ordinary Differential Equation (ODE)
is:

h(x) =











E(ψ1t) +E(ξ1t)− xE(ψ1t+ ξ1t + ξ0t) if x ≥ 1/2

E(ξ1t)− xE(ξ1t+ ψ0t + ξ0t) otherwise
. (22)

From these observations all the results of this section follow.
Next proposition establishes necessary and sufficient conditions for the choice of tech-

nology to be path-dependent.

Proposition 3.1 If exogenous technological progress has the same expected rate for both
technologies, then the choice of technology process converges to the old (i=0) or the new
(i=1) technology with positive probability. From any initial conditions both limits oc-
cur with positive probability, hence the process is path-dependent. More precisely path-
dependence holds if the difference between the expected rates of exogenous technological
progress of the two technologies is less than the expected rate of potential learning-by-doing
in the old technology. Otherwise the choice of technology converges almost surely to the
new technology.

Roughly speaking technological progress is represented here as a process which has
many similar properties to a random walk with drift: At any time it is always possible to
find a sequence of outcomes with positive probability that can lead one technology (either

22See appendix A.
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old or new), which is lagging behind, to overtake the other. In general this probability will
asymptotically tend to zero because the drift of the leading technology tends to be greater
than that of the laggard. More technically, as discussed in Appendix A, asymptotic values
for Xt have to be searched among the zeroes of the associated ODE. However, in the
path-dependent case, we are not able to rule out an asymptotic pattern where the choice
of technology cycles continually between the old and the new technology, because of the
discontinuity of the ODE.
Essentially path-dependence arises when the new technology is not sufficiently dynam-

ically superior to the old one. Roughly speaking, to avoid path-dependence it is necessary
that the amount of technological progress that can occur without the adoption of the new
technology is on average higher than the technological progress which is obtainable by
producing with the old technology. Clearly this condition may apply when a certain tech-
nological paradigm is nearly exhausted, while it is hardly the case if the old technology is
a sufficiently young one with still strong technological dynamics. Timing of innovations
becomes a relevant factor. However this issue can be better tackled with a higher number
of competing technologies. Proposition 3.4 at the end of the section will do the job.
The results on TFP and output growth are correspondingly the following:

Proposition 3.2 If the difference between the expected rates of exogenous technological
progress of the two technologies is less than the expected rate of potential learning-by-doing
in the old technology the TFP growth rate process is path-dependent and there are two
stochastic steady states with different mean and the process converges to one of them with
positive probability. Otherwise the TFP growth rate is ergodic.

As before, the proof exploits the one-to-one correspondence between the choice of
technology and the distribution of TFP growth rate that, conditional to the choice of
technology, is stationary because of the stationarity of the distributions of the random
shocks.
As for capital stock and output growth the following proposition derives strong results

on convergence to multiple steady states for the growth rate of output.

Proposition 3.3 If the difference between the expected rates of exogenous technological
progress of the two technologies is less than the expected rate of potential learning-by-doing
in the old technology, then both capital stock and output growth rates are path-dependent,
have two stochastic steady states with different mean and converge to one of them with
positive probability; otherwise they are ergodic.

This result is simply a consequence of the properties of the TFP and of the properties
of the logarithmic utility. In fact, we can rescale the dynamic programming problem in a
way that it can be solved as a standard ergodic growth one.

Assume now that there are three technologies, say 0,1,2. 0 is the old technology, with
both lower exogenous technological progress and potential learning-by-doing. 1 and 2 are
new technologies with same expected rate of exogenous technological progress but different
potential learning-by-doing, say 1 has larger expected rate of potential learning-by-doing
than 2. Therefore a dynamic path of higher output growth rate is associated to 1. To avoid
asymptotic survival of the old technology let us also assume that the difference between
the expected rates of exogenous technological progress is larger than the expected rate of
potential learning-by-doing in the old technology. As expectable, these conditions are not
sufficient to guarantee ergodicity; rather the reverse is true:
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Proposition 3.4 If exogenous technological progress has the same expected rate for both
the new technologies and the gap with the expected rate of exogenous technological progress
in the old technology is larger than the expected rate of potential learning-by-doing in the
old technology, then almost surely the old technology do not survive asymptotically but
the choice of technology is path-dependent and converges with positive probability to one of
the new technologies. From any initial condition both limits occur with positive probability.

The proof is technically more complicated than that of proposition 3.1, but its logic is
the same.

In this section we have shown that both capital stock and output growth rate can
be path-dependent only if the new technology is not sufficiently dynamically superior
to the old one. However, still, if there are at least two techniques whose technological
opportunity is not too diverse, growth rates have multiple steady states, characterized by
fast vs. slow growth properties; the type of equilibrium that eventually emerges depends
on the sequence of historical events and the dynamically more efficient path may not be
actually attained.
Timing of innovation is therefore a crucial issue. The technology which is firstly in-

troduced has positive probability of survival regardless to the fact that the other poten-
tial “new” technology may be dynamically better, provided that the latter is not “too”
superior. Better technologies and growth opportunities may be ruled out by historical
contingencies. In a sense this result parallels that one obtained in some diffusion models
with vintage capital and vintage-specific learning-by-doing [e.g. Silverberg et al. (1988)].
Suppose finally to drop assumption NT’, for instance by not allowing for exogenous

technological progress (ξit = 0, for i = 0, 1, 2). In this case initial conditions determine the
outcome, as if the model were deterministic. This is essentially the result of Jovanovic and
Nyarko (1996). In their model the only stochastic technological change is the learning-by-
doing component. Here this result arises as a special case because of the richer assumed
stochastic structure of technological change.

We have established necessary and sufficient conditions for nonergodicity subject to a
very strong assumption of homogeneity of agents. At this point it becomes interesting to
analyze whether relaxing that assumption can restore ergodicity. This task is accomplished
in the next section.

4 Heterogeneity of Technological Capabilities

In a realistic world agents typically differ in their endowment, production capabilities and
preferences. Asymmetry and variety are evident in the distribution of firms’ performance.
Partial tacitness of knowledge and partial unavailability of information at no cost induce
variety and asymmetry in the distribution of the capability to manufacture.
The dynamics of the distribution of capabilities is an economic process that deserves

to be investigated. However different individuals and different organizations are naturally
more geared to different technological paradigms. As a first approximation, in this section
we amend the world described in the previous section by allowing agents to be hetero-
geneous in their ”innate” ability of mastering different technologies23. A distribution of
abilities is introduced. Given that our framework allows only for one single product and

23The type of heterogeneity which is introduced here is therefore similar to that introduced by Arthur
(1989).
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a finite number of technologies, the degree of asymmetry and variety are summarized by
the same single parameter.
The underlying economic intuition of this section is the following: If agents have

different natural inclinations towards different technologies, even in the presence of strong
spillovers, they tend to produce with their ”naturally” preferred technology provided that
the alternative is at the moment not too superior. In such a way they explore a wider set of
technologies, keeping alive a higher number of them. The probability of survival of many
technologies in the short-run is higher the wider the heterogeneity of capabilities. If one
technology is by far potentially superior to the others, from the analysis of previous sections
we should expect this to be sufficient to let it dominate in the long-run. Proposition 4.1
addresses this point.
In a less aggregate world different firms are specialized in producing different goods

and services with different technologies. As an aggregate approximation the type of het-
erogeneity which is represented here tries to capture heterogeneity in production tasks.
Two general purpose competing technology can compete over different related production
uses. The intuition is that the probability of survival of both technologies in the short-run
is higher the more diverse the production tasks where both can be employed. By surviv-
ing in a technological niche, one technology keeps being developed and so there is still a
positive probability that major discoveries occur and eventually that technology diffuses
again through a wider set of uses. For instance Tell (1997) shows that the fact that direct
current electric technology survived in the railway transportation market segment was the
key for the rediscovery of that technology as long distance electricity carrier many years
later.
Let us modify assumption H and T’ in the following way:

Heterogeneity of agents:
H”) Production functions differ across agents; initial endowment k1, preferences and

stochastic shocks are the same for every agent.

Technology:
T”) At time t available production functions for agent j ∈ [0, 1] are described by the

following equations:

yj1t = e
(1−cj )ν1tkαjt, 0 < α < 1,

yj0t = e
cjν0tkαjt, 0 < α < 1,

(23)

where cj is a deterministic agent-specific capability coefficient whose population is
assumed to be uniformly distributed between [1/2 − a, 1/2 + a], a ∈ [0, 1/2). All other
variables are as defined in assumption T’.

Heterogeneity of technological capabilities is represented by cj; a is an index of the
degree of heterogeneity (a = 0 gives previous section’s model - no heterogeneity - as a
particular case).
As in the model of previous section, agent’s problem consists in maximizing U subject

to the feasibility costraint described by assumption C. There are two choice variables:
technology and investment but, in equilibrium, because of assumption M, others’ behavior
and νit are taken as given, therefore in every period, the choice of technology is not affected
by choices of investment at any time and is simply reduced to:

i∗jt = arg max
i∈{0,1}

{yjit}. (24)

Again we can simply study the choice of technology process and then, once we have
obtained a sufficient characterization of that process (and consequently of the process
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{Zji∗t} ) we can use it to study the growth model and derive properties of the whole
growth system. However this time, because of agents’ heterogeneity 0 ≤ θit ≤ 1.
Following the same steps that lead to eq. (17) we have that agent j chooses technology

i at time t if and only if:

(1− cj)ν1t ≥ cjν0t (25)

setting Xt = ν1t/(ν1t + ν0t), (25) becomes:

Xt ≥ cj. (26)

Consequently the choice of technology is a previsible (Ft−1-adapted) stochastic process
with:

µ(i∗jt = 1, |Xt = x) =











1 if x ≥ cj

0 if x < cj

. (27)

Therefore the dynamics of the choice of technology depends entirely on the dynamics
of the relative technological progress Xt.
The dynamics of Xt is by definition:

Xt+1 = Xt +
Fa(Xt)ψ1t + ξ1t −Xt(Fa(Xt)ψ1t + ξ1t + (1− Fa(Xt))ψ0t+ ξ0t)

ν1t+1 + ν0t+1
, (28)

where Fa(.) is the distribution function of U(1/2− a, 1/2+ a).
Therefore the process Xt can be seen as a stochastic approximation algorithm with

stochastic step24 whose right-hand side of the associated ODE is:

h(x) =















































E(ψ1t) + E(ξ1t)− xE(ψ1t+ ξ1t + ξ0t) if x ≥ 1/2 + a

Fa(x)E(ψ1t) +E(ξ1t)+
−xFa(x)[E(ψ1t)− E(ψ0t)]+
−xE(ξ1t + ψ0t + ξ0t)

if 1/2− a < x < 1/2 + a

E(ξ1t)− xE(ξ1t + ψ0t + ξ0t) otherwise

(29)

In the previous section we obtained that the asymptotic properties of the choice of tech-
nology depended on the difference between expected rates of potential technical change.
Here we are interested in two questions: Is there any threshold in the degree of heterogene-
ity such that when trespassed it makes the system ergodic? How this threshold depends
on the difference between expected rates of technological change? Before addressing these
questions, let us introduce an index d(x) of relative difference between expected rates of
technological change when Xt = x:

d(x) =
Fa(x)E(ψ1t) +E(ξ1t)− (1− Fa(x))E(ψ0t)−E(ξ0t)

Fa(x)E(ψ1t) +E(ξ1t) + (1− Fa(x))E(ψ0t) +E(ξ0t)
(30)

Next proposition contains the answer to the questions we have just formulated.

Proposition 4.1 For any technological change distributions there exists a degree of het-
erogeneity that makes the system ergodic. More precisely there exists a threshold for the

24See Duflo (1996).
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index of the degree of heterogeneity such that above that threshold the choice of technol-
ogy is an ergodic process, provided that the degree of heterogeneity is not too large. This
threshold is a linear decreasing function of the index of relative difference between expected
rates of technological change when Xt = 0.

The logic of the proof can be roughly summarized by the following argument: A
positive degree of heterogeneity makes the associated h(.) continuous and almost linear
in the interval [1/2− a, 1/2 + a]. For any given expected values relative to technological
change, it is sufficient to take a large enough to avoid the associated deterministic equation
having zeroes in the interval [0, 1/2− a] but small enough to have a zero in the interval
[1/2 + a, 1].

5 Concluding Remarks

In this paper we have discussed the relationship between localized technological change
and path-dependent features of aggregate output growth. The growth model set forth in
this paper show that, subject to mild assumptions on the stochastic processes representing
the exogenous environment, path-dependence of aggregate output growth is a robust prop-
erty of an economic system with localized learning-by-doing and diversity of technological
opportunity. In general there are multiple steady states whose selection depends on the
sequence of historical events: a priori all steady states are attainable, but only one of them
will eventually emerge as the outcome of history. These results are the consequence of the
fact that opportunity costs of switching technology increase with experience accumulation
in a specific technology.
Path-dependence may be mitigated when the rate of technological change independent

of experience is high: If one technology is by far dynamically superior to the others, growth
turns out to be ergodic. Anyway we have noticed that this is hardly the case when there
are many “young” technologies with different technological opportunity.
More interestingly a sufficient degree of heterogeneity of production capabilities of

agents restores ergodicity, the intuition being that heterogeneity weakens the trade-off
between exploration and exploitation of different technologies which is brought about by
technological spillovers.
Another potential factor which may reduce path-dependence that deserves to be inves-

tigated is the effect of aggregation in multi-sector economies: It is trivial to show that the
limit of an economy with an increasing number identical sectors and neither inter-sector
linkages nor inter-sector spillovers has ergodic patterns even with path-dependent sector
dynamics. On the other hand preliminary results of a related paper [Bassanini (1997)]
show that if spillovers are strong enough path-dependence may hold.
Shocks are assumed to be serially independent. This is quite a strong assumption,

because many exogenous phenomena that can affect productivity in a single period are
typically serially correlated. Furthermore no cost of switching from one technique to the
other is explicitly introduced, because of complete depreciation of capital stock. However
the main theorems of section 2 still hold if we assume positively autocorrelated shocks.
Moreover a more general framework to allow for serially correlated shocks and the presence
of switching costs can be handled by resorting to some more general classes of adaptive
algorithms that can be studied with stochastic approximation techniques25. Intuitively,
however, if depreciation is sufficiently high relatively to the discount factor the results
should hold.

25See Duflo (1996).
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6 Appendix A: Non-Linear Polya Processes

Let Ωt be the set of states ωt of the environment at date t ≥ 1, with Ωt endowed with
the σ-algebra Et . The stochastic environment is given by the probability space (Ω, F ,
µ ) where Ω = Π∞1 Ωt is the space of all sequences ω = ωt such that ωt ∈ Ωt, ∀ t ≥ 1,
F = ⊗∞1 Et is the smallest σ-algebra on Ω generated by the measurable cylindrical sets
and µ is the measure on Ω . Let partial history define the filtration {Ft = ⊗

t
1Ek}, t ≥ 1 .

Finally let us denote with {Zt(ωt)}, t ≥ 1, a sequence of random variables. We can define
a sequence of random variables {ξt(ωt)} such that ∀t ≥ 1, ξt(ωt) = 1 if ωt ∈ A

1
t and 0

otherwise. Let nt be the number of times we obtained {ξt = 1}, 1 ≤ n ≤ t, in a single
realization of the process, γ0, γ1 and γ be fixed initial integer parameters with γ0+γ1 = γ
and Xt = (nt + γ1)/(t+ γ). We can now state the following definition:

Definition A.1 A random process {ξt(ωt)}, t ≥ 1, defined as above is a two-color non-
linear Polya process26 if

µ(ξt = 1 |Ft−1 ) = µ(ξt = 1 |Xt−1 )

and
µ(ξt = 1 |Xt−1 = x) = f(x),

wheref(.) : R[0, 1]→ [0, 1] and R[0, 1] is the set of rational numbers in [0, 1]. The function
f is called urn function27.

Since by definition we have

Xt+1 = Xt + (t+ 1 + γ)
−1[ξt+1 −Xt] (31)

the expectation of Xt+1 conditional upon partial history up to time t can be written
as

E(Xt+1 |Xt ) = Xt + (t+ 1 + γ)
−1[f(Xt)−Xt] (32)

then the fundamental result of the theory of Polya processes is that the system con-
verges almost surely to the set of the appropriately defined28 zeroes of the function:

h(X) = f(X)−X. (33)

We will call (36) the right-hand side of the associated Ordinary Differential Equation
(ODE)29. Formally:

Theorem A.1 [Arthur et al. (1983)] The sequence {Xt} defined as above converges
almost surely to the set

B =

{

x ∈ [0, 1] : 0 ∈

[

lim inf
y→x

h(y), lim sup
y→x

h(y)

]}

.

26Extension to any finite number of colors is straightforward and will be explicitly done only for processes
with general increments.
27Notice that Xt is just the frequence of the event {ξt = 1} corrected by the initial parameters γ0, γ1
and γ. Therefore definition A.1 requires that Xt is a sufficient statistics for {ξt = 1}.
28The qualification “appropriately defined” is necessary because the urn function may not be continuous.
29For a general definition of the associated ODE see Benveniste et al. (1990).
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These results can then be extended to show that convergence occurs with positive
probability only to a subset of the set of zeroes of the urn function.. An isolated point
x ∈ B is called stable if for every small enough ǫ1, ǫ2 > 0

h(y)(y− x) < δ(ǫ1, ǫ2) < 0, (34)

for every y ∈ R(0, 1) such that ǫ1 ≤ |y − x| ≤ ǫ2 ; it is called unstable if for every small
enough ǫ > 0

h(y)(y− x) > 0, (35)

for every y ∈ R(0, 1) such that 0 < |y − x| ≤ ǫ .

Theorem A.2 [Arthur et al. (1983)] Let x ∈ B be a stable point in (0, 1) such that
x ∈ (a, b), a < b; if f(y) > 0 for y ∈ (a, x) and f(y) < 1 for y ∈ (x, b), then
µ(limt→∞Xt = x) > 0 for every X1 ∈ (a, b).

Theorem A.3 [Arthur et al. (1983)] If f(γ1/(γ + t)) < 1 for t > 0 and
∑

t>0 f(γ1/(γ +
t)) < +∞ then µ (limt→∞Xt = 0) > 0; also if f((γ1 + t)/(γ + t)) > 0 for t > 0 and
∑

t>0[1− f((γ1 + t)/(γ + t))] < +∞ then µ (limt→∞Xt = 1) > 0.

Clearly, because of almost sure convergence, if all the assumptions of theorem A.3
hold, both the processes identified by Xt and ξt are path-dependent stochastic processes.
Conditions of non-convergence to unstable points can be also given [see Hill et al. (1980)
and Dosi et al. (1994)].
Let us now consider processes with multiple additions. Let us define two sequences of

random variables ξit(ωt) , i = 0, 1, such that ∀t ≥ 1, ξit(ωt) ∈ Z+ and nit =
t
∑

k=1
ξik(ωt)

; let γ0, γ1 and γ be fixed initial integer parameters with γ0 + γ1 = γ and Xt =
(n1t + γ1)/(n0t+ n1t + γ). We can state the following definition:

Definition A.2 A random process {~ξt(ωt)}, t ≥ 1, defined as above is a two-color non-
linear Polya process with multiple additions if, ∀t ≥ 1, ji ∈ Z+, i = 0, 1,

µ(ξit = ji |Ft−1 ) = µ(ξit = ji |Xt−1 )

and
µ(ξit = ji |Xt−1 = x) = q(x, ji)

where q(., .) : R[0, 1]× Z+ → [0, 1].

The right-hand side of the associated ODE in this case becomes:

h(X) = E(ξ1t |Xt−1 = X) −X [E(ξ0t+ ξ1t |Xt−1 = X)] . (36)

The generalization of theorem A.1 is the following:

Theorem A.4 [Arthur et al. (1987b)] Assume that

q(., 0)≤ L < 1/2
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and
[

E((ξ0t+ ξ1t)
2 |Xt−1 = X)

]

≤ K < +∞;

the sequence {Xt} defined as above converges almost surely to the set

B =

{

x ∈ [0, 1] : 0 ∈

[

lim inf
y→x

h(y), lim sup
y→x

h(y)

]}

.

For compactness we will give the generalization of theorem A.2 after having defined
the multiple-color non-linear Polya process. Let us define N sequences of random variables

{ξit(ωt)} , i = 1, 2, ...,N such that ∀t ≥ 1, ξit(ωt) ∈ N ∪ {0} and nit =
t
∑

k=1
ξik(ωt) ; let γi

be fixed initial integer parameters and Xkt = (nkt + γk)/
∑

i(nit + γi) , k = 1, 2, ...,N− 1.
We can state the following definition:

Definition A.3 A random process {~ξt(ωt)}, t ≥ 1, defined as above is a N-color non-
linear Polya process with multiple additions if, ∀t ≥ 1, ~j ∈ ZN+ ,

µ(~ξt = ~j |Ft−1 ) = µ(~ξt = ~j
∣

∣

∣

~Xt−1 )

and
µ(~ξt = ~j

∣

∣

∣

~Xt−1 = ~x) = q(~x,~j),

where q(., .) : (R[0, 1])N−1×ZN+ → [0, 1].

The right-hand side of the associated ODE (N − 1 equations) is now:

h( ~X) = E(~ξt
∣

∣

∣

~Xt−1 = ~X )− ~X

[

E(
N
∑

i=1

ξit
∣

∣

∣

~Xt−1 = ~X)

]

. (37)

To simplify the notation, given that there is no ambiguity, the superscript arrow for
vectors will be dropped hereafter. The generalization of theorems A.1 and A.4 is the fol-
lowing:

Theorem A.5 [Arthur et al. (1987b)] If all the following conditions hold true:
(i) q(., 0)≤ L < 1/2,
(ii)

[

E ((ξt)
2 |Xt−1 = X)

]

≤ K < +∞,
(iii) There is a function F : RN−1 → R which satifies the Lipschitz condition over an

open set containing

TN−1 =
{

x ∈ [0, 1]N−1 :
∑

i
xi ≤ 1, i = 1, 2, ...,N − 1

}

and such that for any z ∈ TN−1\B
h(TN−1)

inf
g∈Ah(z)

lim
t↓0

∣

∣

∣F (z + tg ‖g‖−1)− F (z)
∣

∣

∣

t
= η(z) > 0,

where Bh(z) and Ah(z) are convex hulls containing Bh(z) and Ah(z) respectively,
Ah(z) = {g : ∃yk, 6= z, yk ∈ Int(TN−1), yk → z, h(y)→ g} , Bh(z) = Ah(z)∪ {h(z)} if z ∈
Int(TN−1) and Bh(z) = Ah(z) otherwise, and ‖.‖ is the euclidean norm in R

N−1,
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(iv) F (Bh(TN−1)) does not contain non-degenerate segments,

then almost surely limt→∞
∥

∥

∥Xt −B
h(TN−1)

∥

∥

∥ = 0 .

We can now give the generalization of theorem A.2. Unfortunately for processes with
general increments no conditions of non-convergence to unstable points exists when the
function q is not continuous with respect to the first variable. Since the existing one is of
no use for us we will not present it here30.

Theorem A.6 [Arthur et al. (1988)] Let x ∈ Bh(TN−1) ∩ TN−1 be an isolated stable
point, that is, for every small enough ǫ1, ǫ2 > 0 there exists symmetric positive definite
matrix Q such that Qh(y)(y − x) < δ(ǫ1, ǫ2) < 0, for every y ∈ Int(TN−1) such that
ǫ1 ≤ ‖y − x‖ ≤ ǫ2 ; if all the following conditions hold true:
(i) q(., j) are continuous in the first argument for every j ∈ ZN+ ,
(ii) q(., 0)≤ L < 1/2,
(iii)

[

E((ξt)
2 |Xt−1 = X)

]

≤ K < +∞,
(iv) ∀j ∈ ZN+ , q(x, j) ∈ (0, 1)⇒ q(z, j) ∈ (0, 1), ∀z ∈ Int(TN−1),
then µ(limt→∞Xt = x) > 0 for every X1.

As a final important remark we can observe that if we generalize Polya processes to
real increments the conclusions of theorem A.4 still hold provided that we suitably modify
the assumption on q(., 0). This happens because the fact that increments are integer never
enters in the proof of that theorem provided by Arthur et al. (1987b). We put this as a
remark:

Remark A.1 If ξt(ωt) ∈ R
N
+ and all the following conditions hold true:

(i) ∃ψ > 0 such that µ(max0≤i≤N−1{ξit} < ψ |Xt−1 = x) ≤ L < 1/2,
(ii)

[

E((ξ0t+ ξ1t)
2 |Xt−1 = X)

]

≤ K < +∞,
then the sequence {Xt} defined as above converges almost surely to the set

B =

{

x ∈ [0, 1] : 0 ∈

[

lim inf
y→x

h(y), lim sup
y→x

h(y)

]}

.

Many diffusion models employ the above machinery to formally represent path-dependent
processes of technique or product diffusion when there are two or more competing tech-
nologies. The standard story of these models is the following: every period a new agent
enters the market and has to choose the technology which is best suited to her needs, given
her information structure and the available technologies. Because of network externalities
(positive or negative) the actual or expected performance of both technologies depends on
existing adoption shares, therefore the stochastic process of adoptions can be represented
as a non-linear Polya process [see e.g. Arthur (1989) and Dosi et al. (1994)]. Many of
these models can be seen as growth models as well, where the engine is the growth of
the population of active agents in the market. However the dependence of the growth
process on this demographic engine makes these models little appealing as growth models.
Even worse, as noticed by David and Foray (1994) in a wider context, these models have
other undesirable characteristics: first, every agent makes her choice only once for all,
without any possibility of revision; second, micro-decisions are influenced by positive or

30See Arthur et al. (1988).
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negative feedbacks from a macro-state of the system (the current frequency distribution
of adoptions), ruling out the possibility of local interactions.
Anyway all these defects (from the point of view of a growth model) concern only

most of existing applications of non-linear Polya processes and do not depend on the very
nature of these processes. Dosi and Kaniovski (1994) and Bassanini and Dosi (1997) apply
multiple-color non-linear Polya processes to study local interactions. Arthur (1993) em-
ployes non-linear Polya processes to develop an economic model representing the learning
process of a single boundedly rational agent facing an uncertain environment.
Summarizing, a non-linear Polya process represents the evolution of a stochastic sys-

tem where the probability of next events depends on the frequency distribution of previous
events. In other words the probability of next events depends symmetrically on all pre-
viously occurred events. This fact makes it a natural candidate to represent economic
growth driven by technological capability accumulation (in the presence of some discrete
choice of technology): the cumulative nature of the latter makes the evolution of the
system depend symmetrically on all previous increments of capabilities. Moreover this
framework may apply to growth models without technological change provided that the
evolution of the system depend on some cumulative process.

7 Appendix B: Propositions and Proofs

Proposition 2.1 ∀ω ∈ Ω a.e. T (ω) < +∞ such that t > T (ω) either i∗t = 0 or i
∗
t = 1 .

Moreover ∃T > 0 such that µ(i∗t = 0, ∀t > T ) > 0 and µ(i∗t = 1, ∀t > T ) > 0 .

Proof By assumption ∃L > 0 such that ǫit < L a.s., thus the process {i∗t ,Wt} is absorbed
in i∗t = 1 if ∃T > 0 such thatWT > logL−logδ. It suffices that ∃T > (logL−logδ−W0)/A1
such that i∗t = 1 ∀t > T with positive probability. By assumption NT 0 < Fζ(W0) < 1

, hence µ(i∗t = 1, ∀t ≤ T ) =
∏

t≤T
Fς(Wt) > (Fς(W0))

T > 0 . In the same way we can

proceed for i∗t = 0 , so the second statement of the proposition is proved. Now notice
that ∀t > 0 if Wt > W0 then Wt+[(logL−logδ−W0)/A1]+1 > logL − logδ with probability

Pt > (Fς(W0))
[(logL−logδ−W0)/A1]+1 > 0 . Similarly we can prove that if Wt < W0 then

∃s > 0 such that Ws+t < log δ − logL with probability Pt > (1− Fς(W0))
s > 0; hence

the set {Wt : log δ − logL < Wt < logL− log δ} is transient and therefore, by a standard
property of Markov chains, the first statement follows.

To facilitate the connection between statements in the main text and statements in
the appendix we have to clarify what we mean with stochastic steady state when the
process is nonergodic. In fact by definition there is only one limit distribution for every
initial state and if the process is nonergodic there are infinite invariant distributions; hence
the concept risks to be meaningless. We consider as stochastic steady state the invariant
distributions defined on the single irreducible subchains on the ergodic sets since there
is only one invariant distribution for every subchain. For example, proposition 2.1 shows
that in finite time the TFP growth rate process enters into an ergodic set: thereafter the
distribution of the TFP growth rate is stationary; in a sense it has reached the steady state.

Proposition 2.2 For almost every ω ∈ Ω, ∃T (ω) < +∞ such that ∃AT (ω) ∈ FT (ω)\FT (ω)−1

, µ(AT (ω)) > 0, t > T (ω), ∀At ∈ Ft , At ⊆ AT (ω), ∀r, s > t µ
(

∆Zs
Zs
≤ x |At

)

=

µ
(

∆Zr
Zr
≤ x |At

)

and this distribution is stationary with E
(

∆Zs
Zs
|At

)

= eAi−1 . Moreover
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µ
(

E
(

∆Zs
Zs
|At

)

= eAi − 1
)

> 0 , i = 0, 1.

Proof From proposition 2.1 we know that i ∗t is absorbed in finite time to either i
∗
t = 0

or i ∗t = 1 . Both limits occur with positive probability. Then notice that, by definition,

µ
(

∆Zs
Zs
≤ x

∣

∣i∗s+1 = i, i
∗
s = i

)

=

= µ
(

eAi(nis+1+γi)ǫis+1
eAi(nis+γi)ǫis

≤ x+ 1
∣

∣i∗s+1 = i, i
∗
s = i

)

=

= µ
(

eAiǫis+1
ǫis

≤ x + 1
)

,

which is stationary because of the i.i.d assumption. Moreover from the i.i.d. assump-

tion we have trivially E
(

∆Zs
Zs

∣

∣i∗s+1 = i, i
∗
s = i

)

=
eAiE(ǫis+1)

E(ǫis)
− 1 = eAi − 1 .

Proposition 2.3 For almost every ω ∈ Ω, there exists a distribution function F such that
∀ǫ > 0 and ∀x of continuity of F , ∃T (ω) < +∞, ∃AT (ω) ∈ FT (ω)\FT (ω)−1 , µ(AT (ω)) > 0,

such that ∀t > T (ω), ∀At ∈ Ft , At ⊆ AT (ω), ∃r > t ∀s > r
∣

∣

∣
µ
(

∆ks
ks
≤ x |At

)

− F (x)
∣

∣

∣
< ǫ

and
∣

∣

∣µ
(

∆ys
ys
≤ x |At

)

− F (x)
∣

∣

∣ < ǫ with
∫

logxdF (x) = Ai
1−α . Moreover

µ

(
∫

logxdF (x) =
Ai
1− α

)

> 0, i = 0, 1.

Proof From proposition 2.1 we know that ∃T (ω) < +∞ such that ∀t > T (ω) either i∗t = 0
or i∗t = 1 and that both limits may occur with positive probability. Let us assume without
loss of generality i∗t = 1 ∀t > T (ω). Then rewrite (12) in the following way:

V (kt) = sup
∞
∑

s=1
βs−1e

A1γ
1−α
(ν1T+t+s−T )E

(

ĉγt+s
γ |Ft

)

,

s.t.

k̂t+s+1 + ĉt+s = e
A1γ
1−α ǫi∗t+se

Ai∗νi∗t+s−A1(ν1T+t+s−T )k̂αt+s a.s.

e
A1γ
1−α
(ν1T+t+s−1−T )kt+s = k̂t+s, ct+se

A1γ
1−α
(ν1T+t+s−T ) = ĉt+s.

(38)

Notice that the constraints of this problem ∀t > T (ω) are simply:

k̂t+1 + ĉt = e
A1α
α−1 ǫ1tk̂

α
t a.s.,

k̂t > 0, ĉt > 0 a.s..
(39)

Therefore (38) is nothing else than a standard optimal stochastic growth problem, and
we can therefore use any standard proof of the ergodic theorem31 for this problem to show
that k̂t converges to a unique stationary distribution independent of k̂T . This fact implies

that also
k̂t+1
k̂t
converges to a stationary distribution and so do both capital stock growth

rate and output growth rate. Moreover we have that:

lim
s→∞

E

(

log
∆kt+s
kt+s

|At

)

= lim
s→∞

E

(

log
k̂t+s+1

k̂t+s
e
A1
1−α − 1 |At

)

=
A1
1− α

, (40)

and
31e.g. Mirman (1973). We can also use the technically simpler one by Brock and Mirman (1972),
provided that we modify the original argument to correct for a non-general statement in the proof of the
main theorem [see Bassanini (1996)].
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lim
s→∞

E

(

log
∆yt+s
yt+s

|At

)

= lim
s→∞

E

(

log
ŷt+s+1
ŷt+s

e
A1
1−α − 1 |At

)

=
A1
1− α

. (41)

Proposition 2.4 ∃T > 0 such that µ(i∗t = 0, ∀t > T ) > 0 and µ(i∗t = 1, ∀t > T ) > 0
. Moreover if the set B = {x ∈ R : Fς(x) = A0x/(A1 + A0x)} is contains isolated
points then there exists a collection of distribution functions {Fj} such that ∀ǫ > 0, ∀Fj,
∃T > 0, ∀t > T , ∃At ∈ Ft\Ft−1 , µ(At) > 0, ∀A

′
t ∈ Ft, A

′
t ⊆ At, ∃r > t ∀s > r

|µ (i∗s ≤ x |At )− Fj(x)| < ǫ ∀x of continuity of Fj .

Proof The first statement can be proved as for proposition 2.1. The second statement
follows from the definition of almost sure convergence and theorems A.1, A.2 and A.3,
taking into account that the urn function is discontinuous only at unstable points because
F (.) is non-decreasing.

Proposition 3.1 If E(ξ1t− ξ0t) < E(ψ0t) then

µ

(

lim
t→∞

i∗t = 0

)

> 0

and

µ

(

lim
t→∞

i∗t = 1

)

> 0.

If E(ξ1t− ξ0t)̇ > E(ψ0t) then

µ

(

lim
t→∞

i∗t = 1

)

= 1.

The proof is based on the following lemmas:

Lemma B.1 Assume that two non-linear Polya processes with multiple additions but
bounded increments generate the sequences Xt and X

′
t with probability of increments q(., .)

and q′(., .) (q(., .), q′(., .) : (R[0, 1])N−1× (N∪ {0})N → [0, 1]); assume that q and q′ agree
almost everywhere in an open neighborhood O of a point x ∈ (R[0, 1])N−1; assume that
for every y ∈ O such that µ(X ′t = y) > 0 then ∃s < +∞ such that µ(Xs = y, nis = n′it,
i = 0, 1, ..., N − 1) > 0; then µ(limt→∞X

′
t = x) > 0 only if µ(limt→∞Xt = x) > 0.

Proof Because of almost sure convergence µ(limt→∞X
′
t = x) > 0 implies that and

∃k1 < +∞ and ∃y ∈ O such that µ(
∞
⋂

k=k1

X ′k ∈ O
∣

∣

∣X ′k1 = y ) > 0 and µ(X
′
k1
= y) > 0.

Since µ(Xs = y, nis = n′ik1 , i = 0, 1, ...,N − 1) > 0, then µ(
∞
⋂

k=s
Xk ∈ O) > 0, that is

µ(limt→∞Xt = x) > 0.

Lemma B.2 If E(ξ1t − ξ0t) < E(ψ0t) then the process Xt converges almost surely to
the set B = {x1, 1/2, x2} where x1 < 1/2 < x2; moreover µ (limt→∞Xt = x1) > 0 and
µ (limt→∞Xt = x2) > 0 . If E(ξ1t − ξ0t) > E(ψ0t) then µ (limt→∞Xt = x2) = 1 where
x2 > 1/2.

Proof If E(ξ1t − ξ0t) < E(ψ0t), h(X) has three appropriately defined zeroes in [0, 1]
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corresponding to the elements of the set B; then the process Xt converges almost surely
to the set B by theorem A.4. Consider a process X ′t whose probability of increments q

′

were equal to q in a neighborhood O of x1 and whose associated deterministic equation is:

h′(X) =











h(x) if x < 1/2

E(ξ1t)− xE(ξ1t+ ψ0t + ξ0t) otherwise
. (42)

By theorem A.6 X ′t converges to x1 with positive probability. Moreover by defini-

tion we can write also ∃k̄1 < +∞ such that ∀k1 > k̄1 ∃y ∈ O such that µ(
∞
⋂

k=k1

X ′k ∈

O
∣

∣

∣X ′k1 = y ) > 0 and µ(X
′
k1
= y) > 0. Assumption S guarantees that if we take k1 large

enough ∃s < +∞ such that µ(Xs = y, nis = n′it, i = 0, 1, ...,N − 1) > 0. Since we can
apply the same argument to a process X ′′t for the convergence to x2, by lemma B.1 the
first statement follows. Since if E(ξ1t − ξ0t) > E(ψ0t) then h(X) has only one zero x2 in
[0, 1] such that x2 > 1/2, then by theorem A.4 the second statement follows.

Proof of Proposition 3.1 Notice that for any x < 1/2 there is an open neighborhhood
such that i∗t = 0 ; for any x > 1/2 there is an open neighborhood such that i

∗
t = 1 . Then

apply lemma B.2.

Proposition 3.2 If E(ξ1t−ξ0t) < E(ψ0t) there exist two distribution functions Fi, i = 1, 0,
with

∫

logxdFi(x) = E(ξit + ψit) such that ∀ǫ > 0, ∀Fi, ∃T > 0, ∀t > T , ∃At ∈ Ft\Ft−1

, µ(At) > 0, ∀A
′
t ∈ Ft , A

′
t ⊆ At, ∃r > t ∀s > r

∣

∣

∣µ
(

∆Zs
Zs
≤ x |At

)

− Fi(x)
∣

∣

∣ < ǫ, ∀x of

continuity of Fi. If E(ξ1t−ξ0t) < E(ψ0t) then ∀ǫ > 0, ∀t > 0, ∃At ∈ Ft\Ft−1 , µ(At) > 0,

∀A′t ∈ Ft , A
′
t ⊆ At, ∃r > t ∀s > r

∣

∣

∣µ
(

∆Zs
Zs
≤ x |At

)

− F1(x)
∣

∣

∣ < ǫ ∀x of continuity of F1.

Proof From Lemma B.2 we know that, if E(ξ1t − ξ0t) < E(ψ0t), ∀xj, j = 1, 2 ∀ǫ > 0,

∀δ > 0, ∃T > 0, ∀t > T µ

(

∞
⋂

s=t
[|Xs − xj| < δ |(|Xt − xj|) < δ]

)

> 1− ǫ and any neighbor-

hood of xj can be reached with positive probability at any time t. For a sufficiently small
δ we know that either i∗t = 0 for any x in the neighborhhood or i

∗
t = 1 for any x in the

neighborhood. Then notice that, by definition,

µ
(

∆Zs
Zs
≤ x

∣

∣i∗s+1 = i, i
∗
s = i

)

=

= µ
(

eνis+1+ξis+1+ψis+1
eνis+1 ≤ x+ 1

∣

∣i∗s+1 = i, i
∗
s = i

)

=

= µ
(

eξis+ψis ≤ x+ 1
)

,

which is stationary because of the i.i.d assumption. Moreover from the i.i.d. assumption

we have trivially E
(

log ∆ZsZs

∣

∣i∗s+1 = i, i
∗
s = i

)

= E(ξis+1 + ψis+1). Taking At = {ω ∈ Ω :

|Xt − xj| < δ} then the first statement follows. Similarly the second statement can be
proved.

Proposition 3.3 If E(ξ1t−ξ0t) < E(ψ0t) there exist two distribution functions Fi, i = 1, 0,
with

∫

logxdFi(x) = E(ξit + ψit)/1− α . such that ∀ǫ > 0, ∀Fi, ∃T > 0, ∀t > T , ∃At ∈

Ft\Ft−1 , µ(At) > 0, ∀A
′
t ∈ Ft , A

′
t ⊆ At, ∃r > t ∀s > r

∣

∣

∣µ
(

∆ks
ks
≤ x |At

)

− Fi(x)
∣

∣

∣ < ǫ

and
∣

∣

∣µ
(

∆ys
ys
≤ x |At

)

− Fi(x)
∣

∣

∣ < ǫ ∀x of continuity of Fi. If E(ξ1t − ξ0t) < E(ψ0t) then

∀ǫ > 0, ∀t > 0, ∃At ∈ Ft\Ft−1 , µ(At) > 0, ∀A
′
t ∈ Ft , A

′
t ⊆ At, ∃r > t ∀s > r

∣

∣

∣µ
(

∆ks
ks
≤ x |At

)

− F1(x)
∣

∣

∣ < ǫ and
∣

∣

∣µ
(

∆ys
ys
≤ x |At

)

− F1(x)
∣

∣

∣ < ǫ ∀x of continuity of F1.
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The proof is based on the following lemma:

Lemma B.3 Subject to assumptions T’, S’ and U’, an optimal program for (12) im-
plies kt+1 = αβZi∗tk

α
t .

Proof Consider the Bellman functional equation for this problem:

v(kt, Zi∗t) =
= supkt+1 {log(Zi∗tk

α
t − kt+1) + βE (v(kt+1, Zi∗t+1) |Ft )} ,

t > 0, s.t.(6).
(43)

It is a textbook exercise to show that an optimal policy for this problem is kt+1 =
αβZi∗tk

α
t . If we show that

limt→∞ β
t+sE (v(kt+s, Zi∗t+s) |Ft ) = 0 (44)

and that for any feasible program c such that (44) does not hold there exist a feasible
program c′ such that (44) holds and

∞
∑

t=1

βt−1E (log(ct)) ≥
∞
∑

t=1

βt−1E (log(ct)) , (45)

then we can invoke a standard theorem of existence of optimal programs in the case
of unbounded returns [see Stokey and Lucas (1989), theorem 9.12] to show that kt+1 =
αβZi∗tk

α
t attains the supremum also in (12). Notice that:

v(kt, Zi∗t) =
1

1−αβ log(1− αβ)+

+ 1
1−αβ

(

α log(kt) +
∞
∑

j=0
βjE (log(Zi∗t+j) |Ft )

)

, t > 0.
(46)

Hence, since by definition:

0 < min
i∈{0,1}

{γi} ≤ log(Zi∗t) ≤ tmax(ξ1t + ψ1t + ξ0t + ψ0t) + Σθi0 (47)

then for any t > 0:

v(kt, Zi∗t) ≥
log(1− αβ)

1− αβ
+

1

1− αβ

(

α log(kt) +
1

1− β
min
i∈{0,1}

{γi}

)

(48)

and

v(kt, Zi∗t) ≤
log(1−αβ)
1−αβ + 1

1−βαα log(kt)+

+ 1
1−βα

∞
∑

j=0
βj((t+ j)E(ξ1t+ ψ1t + ξ0t + ψ0t) + Σγi).

(49)

By iterating the optimal policy as before we have simply:

log(kt) =
t−1
∑

s=1

αs−1 log(αβ) + αt−1 log(k1) +
t−1
∑

s=1

αt−s+1 log(Zi∗s). (50)

Plugging (50) into (48) and (49) and taking into account (47) again, it follows that
∞
∑

s=0
βt+sE (v(kt+s, Zi∗t+s) |Ft ) is bounded above and below and therefore (44) hold.
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Now consider an arbitrary feasible program (c, k) for which (44) does not hold. Since

we know from (47) that
∞
∑

s=0
βt+s

∞
∑

j=0
βjE (log(Zi∗t+s+j ) |Ft ) is bounded above and below,

then the fact that (44) does not hold implies that
∞
∑

s=0
βt+s log(kt+s) is unbounded. However

the fact that log(kt) ≤ αt−1 log(k1) +
t−1
∑

s=1
αt−s−1(s− 1)(max(ξ1t + ψ1t + ξ0t + ψ0t) + Σγi)

implies that
∞
∑

s=0
βt+s log(kt+s) is bounded above, therefore

∞
∑

s=0
βt+s log(kt+s) = −∞ . From

(12) we know that:

∞
∑

t=1

βt−1E (log(ct)) ≤
∞
∑

t=1

βt−1α log(kt) +
∞
∑

t=1

βt−1E (log(Zi∗t)) , (51)

hence (45) follows.

Proof of Proposition 3.3 Similarly to what we did for the proof of proposition 4,

rewrite kt as e
νi∗t−1
α−1 kt = k̂t . Therefore from lemma B.3 we have:

log(k̂t+s) =
s
∑

u=1
αu−1 log(αβ) + αs log(k̂t+s)+

+ 1
1−α

s
∑

u=1
αs−u+1(ξi∗t+u−1 + ψi∗t+u−1).

(52)

Subject to the same conditions that make the choice of technology and the TFP growth
rate converge as in proposition 3.1 and 3.2 we have that also log(k̂t+s) converges; hence,

under the same conditions log(k̂t+s+1)−log(k̂t+s) = log
k̂t+s+1
k̂t+s

converges and, by definition

also log kt+s+1
kt+s

and log yt+s+1
yt+s

. Moreover:

lims→∞E

(

log k̂t+s+1
k̂t+s

|At

)

=

= lims→∞E
(

log(k̂t+s+1) |At
)

− lims→∞E
(

log(k̂t+s) |At
)

= 0.
(53)

Under the same conditions, by definition, for i=0 or i=1

lims→∞ E
(

log ∆kt+skt+s
|At

)

=

= lims→∞ E

(

log e
νi∗t+s
1−α k̂t+s+1

e

νi∗t+s−1
1−α k̂t+s

|At

)

=

= 1
1−αE(ξit + ψit).

(54)

As a consequence:

lim
s→∞

E

(

log
∆yt+s
yt+s

|At

)

=
1

1− α
E(ξit+ ψit). (55)

Proposition 3.4 If E(ξ1t− ξ0t) > E(ψ0t) then

µ

(

lim
t→∞

i∗t = 1

)

> 0

and

µ

(

lim
t→∞

i∗t = 2

)

> 0.
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Moreover µ (S (limt→∞ i
∗
t ) = {1, 2}) = 1 , where S(Z) denotes the support of the random

variable Z.

The proof is based on the following lemma:

Lemma B.4 If E(ξ1t − ξ0t) > E(ψ0t) then the process Xt converges almost surely to
the set B = {~x1, I1,2, ~x2} where ~x1 is such that x12 > 1− 2x11 and x21 < x11, ~x2 is such
that x22 > 1/2 − 1/2x21 and x21 > x11, and I1,2 ⊂ {(x, y) : x = y, x > 1/3, x < 1/2};
moreover µ (limt→∞Xt = x1) > 0 and µ (limt→∞Xt = x2) > 0 .

Proof The proof is analogous to that of lemma B.2, replacing theorem A.4 with the-
orem A.5. However to apply theorem A.5 we need an auxiliary function F which satisfies
conditions (iii) and (iv). Consider functions of this type:

F (x, y) =
∑

i
1Ai(x, y)





x
∫

0

ai(u)du+

y
∫

0

bi(v)dv +Ci



 , (56)

where {Ai} is a partition of T2, 1A(., .) is a simple function which takes value 1 on A
and 0 otherwise, Ci are constants, ai(.), bi(.) are constant functions non-necessarily dif-
ferent from 0. With an appropriate choice of Ai, Ci, ai(.) and bi(.), F satisfies conditions
(iii) and (iv) of theorem A.5.

Proof of Proposition 3.4 Notice that there is an open neighborhhood of x1 such that
i∗t = 1 and there is an open neighborhood of x2 such that i

∗
t = 2 . Then apply lemma B.4.

Proposition 4.1 If −12
E(ξ1t)−E(ψ0t)−E(ξ0t)
E(ξ1t)+E(ψ0t)+E(ξ0t)

< a < 1
2
E(ξ1t)+E(ψ0t)−E(ξ0t)
E(ξ1t)+E(ψ0t)+E(ξ0t)

then

µ

(

lim
t→∞

i∗t = 1

)

= 1.

Proof We need to show that h(.) has no zeroes for x < 1/2 + a, then by remark A.1
the statement of the theorem follows; notice in fact that condition (i) of remark A.1 holds
because

µ (Fa(x)E(ψ1t) < 1/2, (1− Fa(x))E(ψ0t) < 1/2) ≤ L < 1/2.

Recall that h(.) is

h(x) =















































E(ψ1t) + E(ξ1t)− xE(ψ1t+ ξ1t + ξ0t) if x ≥ 1/2 + a

Fa(x)E(ψ1t) +E(ξ1t)+
−xFa(x)[E(ψ1t)−E(ψ0t)]+
−xE(ξ1t + ψ0t + ξ0t)

if 1/2− a < x < 1/2 + a

E(ξ1t)− xE(ξ1t+ ψ0t + ξ0t) otherwise

where Fa(x) =
1
2a

(

x− 12 + a
)

for 1/2−a < x < 1/2+a. Notice that h(.) is continuous.

Consider first x ≤ 1/2− a; in this interval h(.) has no zeroes if E(ξ1t)−
(

1
2 − a

)

E(ψ0t +
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ξ1t + ξ0t) > 0, which leads to a > −
1
2
E(ξ1t)−E(ψ0t)−E(ξ0t)
E(ξ1t)+E(ψ0t)+E(ξ0t)

. Now, consider 1/2 − a < x

and take first E(ψ0t) = E(ψ1t); notice that h(.) is linear for 1/2 − a < x < 1/2 + a; if

E(ψ1t) +E(ξ1t)−
(

1
2 + a

)

E(ψ1t+ ξ1t+ ξ0t) > 0, which leads to a <
1
2
E(ξ1t)+E(ψ0t)−E(ξ0t)
E(ξ1t)+E(ψ0t)+E(ξ0t)

,

then h(1/2 + a) > 0, therefore if

−
1

2

E(ξ1t)−E(ψ0t)−E(ξ0t)

E(ξ1t) +E(ψ0t) +E(ξ0t)
< a <

1

2

E(ξ1t) + E(ψ0t)− E(ξ0t)

E(ξ1t) + E(ψ0t) + E(ξ0t)
(57)

the only possible zero of h(.) is for x < 1/2 + a. Now notice that if E(ψ0t) < E(ψ1t)
then h(.) shifts upwards, therefore if (57) holds the only possible zero of h(.) is again in
(1/2 + a, 1].
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