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ABSTRACT  

The necessity to repair genome damage has been considered to be an immediate factor 

responsible for the origin of sex. Indeed, attack by a cellular restriction enzyme of invading 

DNA from several bacteriophages initiates recombinational repair by gene conversion if there 

is homologous DNA. In the present work, we modeled the interaction between a bacteriophage 

and a bacterium carrying a restriction enzyme as antagonistic coevolution. We assume a locus 

on the bacteriophage genome has either a restriction-sensitive or a -resistant allele, and another 

locus determines whether it is recombination/repair-proficient or -defective. A restriction break 

can be repaired by a co-infecting phage genome if one of them is 

recombination/repair-proficient. We define the fitness of phage (resistant/sensitive and 

repair-positive/-negative) genotypes and bacterial (restriction-positive/-negative) genotypes by 

assuming random encounter of the genotypes, with a given probabilities of single and double 

infections, and the costs of resistance, repair and restriction. Our results show the evolution of 

the repair allele depends on 01 / bb , the ratio of the burst size 1b under damage to host cell 

physiology induced by an unrepaired double-strand break to the default burst size 0b . It was 

not until this effect was taken into account that the evolutionary advantage of DNA repair 

became apparent. 
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Sex can be defined as the homology-based transfer of genetic information between 

DNAs (MICHOD and LEVIN 1988; SANTOS et al. 2003; TURNER and CHAO 1998). More 

specifically, it can be defined as homologous recombination involving out-crossing and 

crossing-over. In this sense, sex is widely found from prokaryotes to eukaryotes. Its 

prokaryotic examples include incorporation of incoming DNAs in natural transformation in 

several bacteria and homologous recombination of bacteriophage genomes by bacteriophage 

function. 

The necessity to repair damage on the genome using undamaged genetic material as a 

template has been considered to be an immediate factor responsible for the origin of sex 

(BERNSTEIN et al. 1984; LONG and MICHOD 1995; MICHOD and LONG 1995; MICHOD 1998). 

Recombination genes may have arisen in the first instance because of their role in repair, and 

this may have remained their major function until today. Indeed, many experiments have 

demonstrated that homologous recombination is stimulated by damage to DNA. 

Transformation frequencies in Bacillus subtilis increased with increasing levels of DNA 

damage when the cultures are given homologous DNA (MICHOD and WOJCIECHOWSKI 1994). 

A DNA double-strand break is repaired by copying homologous DNA, with and without 

associated crossing-over, in Escherichia coli by lambdoid bacteriophages (KOBAYASHI and 

TAKAHASHI  1988; TAKAHASHI  and KOBAYASHI 1990). 

However, the repair hypothesis does not readily explain the origin and maintenance of 

sex in eukaryotes, which is defined as meiotic crossing-over built in the haploid-diploid cycle 

(BARTON and CHARLESWORTH 1998; MAYNARD SMITH  1988). Previous studies of the 

evolution of the haploid-diploid cycle showed that the origin and maintenance of this cycle 

could be solely explained by faster removal of recurrent deleterious mutations in haploids and 

greater resistance to genetic damage in diploids (KONDRASHOV and CROW 1991; MAYNARD 

SMITH  and SZATHMARY  1995; CAVALIER -SMITH  2002; SANTOS et al. 2003). The necessity of 

repair was not revealed. Furthermore, it is obvious that double-strand repair does not require 
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meiosiqs and syngamy of sexual reproduction in eukaryotes at all. Indeed, the most popular 

hypotheses for the evolution of sex in eukaryotes ascribe the advantage of sex to accelerated 

adaptation to ever-changing environments, which likely result from antagonistic interactions 

with other organisms, or to efficient elimination of deleterious mutations. A thorough review of 

this subject has been carried out by KONDRASHOV (1993). 

The molecular mechanisms underlying meiotic recombination may provide some clue 

as to this issue. Meiotic recombination in yeast is initiated by the formation of a double-strand 

break in one of the numerous sites along the chromosome (KROGH and SYMINGTON 2004). It is 

repaired by copying a sister chromatid or a homologous chromosome, which may result in gene 

conversion. This break repair (gene conversion) is often accompanied by crossing-over of the 

flanking sequences. This led to the hypothesis that the advantage of meiotic recombination is in 

the elimination of ‘non-self’ sequences from the genome (KOBAYASHI 1998; TAKAHASHI  et al. 

1997). Similarly, the advantage of sex is hypothesized to be defense against selfish genetic 

elements (WELCH and MESELSON 2000). The repair hypothesis is strongly related to these 

hypotheses. 

It can be imagined that the costs of sex in the prokaryotes that lack the haploid-diploid 

cycle are much smaller than those in the eukaryotes, although the machinery for natural 

transformation appears to be somewhat costly. Therefore, the repair hypothesis can more 

adequately explain the evolution of sex in the prokaryotes (often called the origin of sex) than 

in the eukaryotes, although it is not obvious why DNA double-strand break repair has to be 

often accompanied by crossing-over of the flanking sequences (KUSANO et al. 1994) because 

crossing-over has still a potential to break apart favorable combinations of genes (SHIELDS 

1988).  However, there are also observations and arguments that question experimental 

evidence of the repair hypothesis for prokaryotes. One of the observations is that 

transformation with a small part of the H. influenzae chromosome was as effective in 

increasing survival as with the whole chromosomal DNA (MONGOLD 1992).  This result was 

not predicted by the repair hypothesis bcause the DNA fragment supplied would be able to 
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patch less than 1% of the possible sites of damage in H. influenzae genome.  The above 

mentioned experiments with Bacillus subtilis may not have been sufficiently sensitive to detect 

such modest differences in bacterial survival (REDFIELD 2001). 

In the present work, to examine the validity of the repair hypothesis, we focus on sex 

in bacteriophages in the form of DNA double-strand break repair by gene conversion.  A major 

role of the homologous recombination machinery carried by DNA bacteriophages is suggested 

to be repair of DNA double-strand breaks made by restriction-modification systems through 

the double-strand break repair mechanism (TAKAHASHI  et al. 1997; KOBAYASHI 1998). Attack 

by a cellular restriction enzyme on invading DNA of several bacteriophages initiates 

recombinational repair by gene conversion if there is homologous DNA. Because several 

restriction-modification systems behave as selfish mobile elements, such as transposons and 

bacteriophages (NAITO et al. 1995; KOBAYASHI 1998, 2004), there is an aspect of biological 

interaction in this mode of homologous recombination. We model the interaction between a 

bacteriophage and a restriction-modification system in a bacterium as antagonistic coevolution 

and explore conditions for sexual (recombination/repair-proficient) phages to evolve by 

numerical simulations. 

As is already suggested by the repair hypothesis, sex in DNA bacteriophages has a 

cooperative (altruistic) aspect.  A repair enzyme of a sexual (recombination/repair-proficient) 

phage is able to repair not only sexual but also asexual bacteriophage genome if there is a 

homologous template chromosome for repair.  Namely, the DNA repair enzyme can equally act 

in cis and in trans, providing an equal opportunity of repair to asexual 

(recombination/repair-defective) phages.  In this case, it can be imagined that evolution of 

sexual (recombination/repair-proficient) phages is not easy even if the cost of sex is small.  

Competition between sexual (recombination/repair-proficient) and asexual 

(recombination/repair-defective) phages in the phage population will become apparent and the 

former can be viewed as altruistic while the other can be viewed as selfish. 

Our simulation revealed that the sexual (recombination repair) allele is able to evolve 
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only under specific conditions of induced damage to the host cell physiology due to an 

unrepaired double-strand break.  It was not until this effect was taken into account that the 

evolutionary advantage of DNA repair became apparent. 

 

MODELS 

--- Table 1 about here--- 

 

--- Figure 1 about here--- 

We construct a model of the interaction between bacteriophage genomes and a 

restriction-modification system of a bacterium, in which the survival of an individual with a 

certain genotype depends on the genotypic frequencies of the interacting species. This is a 

gene-for-gene system for a bacteriophage genome and a restriction-modification system.   

Our model is illustrated in Figure 1, and all the symbols used are explained in Table 1. 

A bacterial cell either carries a restriction enzyme that can attack a sensitive bacteriophage 

genome (a+) or does not carry it (a–). Each bacteriophage genome has two loci. The first locus 

(A) harbors either a restriction-sensitive site (A–) or a restriction-resistant site (A+). The second 

locus (Rec) of the bacteriophage harbors either a sexual (recombination/repair-proficient) 

allele (Rec+) or an asexual (recombination/repair-defective) allele (Rec–).  

We assume that a bacterial cell may experience no infection at all, may be infected 

with one phage particle, or may be infected with two phage particles, with predetermined 

probabilities ( 210 ,, PPP ). The relative proportion of a particular combination of bacteria 

genotype and infecting bacteriophage genotype(s) is assumed to be given by the product of 

their frequencies (x, 1-x, and  yij's)..  

 Inevitable attack of the restriction enzyme on the restriction site of an invading 
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bacteriophage genome can initiate recombinational repair of the restriction break by gene 

conversion if there is a co-infecting phage genome and if at least one of them is 

recombination/repair-proficient.  The probability of successful repair is denoted by r (r < 1) 

when one of the two co-infecting phages is “Rec+” and the other is “Rec–” (Fig 1A). When the 

co-infecting phages are both Rec+, the probability of repair increases to 2r because the amount 

of Rec enzyme in the host cell is doubled (Fig 1B). If repair succeeds, the “A–” allele of the 

restricted phage genome is changed to “A+” by gene conversion.  Our model assumes that a 

template chromosome for recombinational repair is supplied only by a co-infecting phage. This 

assumption of frequent multiple infection is based on the abundance of bacteriophage particles 

in natural environments (BERGH et al. 1989; WALDOR et al. 2005).  We assume that repair 

cannot occur in single infection because there is no template chromosome for repair in the 

bacterial cell. 

 Undamaged or repaired phage genomes survive and give rise to progeny. We 

designate the number of progeny as burst size, which is defined as the number of virus particles 

released per cell (WEINBAUER 2004). As illustrated in Fig. 1, we assume that the burst size 

decreases when a double-strand break of one of the co-infecting phages remains unrepaired. 

This assumption is based on the experimental evidence that a single unrepaired double-strand 

break on a plasmid molecule or a yeast artificial chromosome induces lethality to a cell 

(BENNETT et al. 1993, 1996). We thus introduce another parameter of burst size under 

induction of damage to the host cell physiology 1b , which is less than or equal to default burst 

size 0b . Two examples of 01 / bb =1.0 and 01 / bb =0.5 are illustrated in Figure 1. The influence 

of this parameter is only apparent when co-infection results in survival of one of the infecting 

phages and death of the other phage with an unrepaired double-strand break. When single 

infection occurs or co-infection leads to the survival of both phages, any damage is not induced 

and, therefore, the distinction between 1b  and 0b  is unnecessary. Note that if 01 / bb =1.0, the 

total burst size is equal to the default burst size 0b  whether the repair succeeds and leading to 
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the survival of both restriction-sensitive and -resistant phages or it fails and leaving only 

resistant phage. In the case of successful repair, the two resulting phage genotypes are assumed 

to give the same number of progeny because there is an upper limit of intracellular resources 

available in a host cell and they equally share the resources. 

There are four genotypes (A+ Rec+, A+ Rec–, A– Rec+, and A– Rec–) in the phage 

population, and two genotypes (restriction-positive (a+) and -negative (a-)) in the bacterial 

population. Phages are sampled randomly from the phage population, with the multiplicity of 

infection (MOI) from 0 to 2, and allowed to infect one of the two genotypes of bacteria. When 

no infection occurs in a bacterial cell (MOI=0), or when the restriction-positive bacteria cell is 

infected by sensitive phage(s), the bacterial cell multiplies. 

After single infection either by a “Rec+” or “Rec–” bacteriophage, the phage will kill a 

restriction-negative bacterial cell and produce progeny. On the other hand, a 

restriction-positive cell will always prevent the growth of a restriction-sensitive phage, but will 

always yield to a restriction-resistant phage. 

Co-infecting phage pairs can be classified into three cases (“Rec+ and Rec+” infection, 

“Rec+ and Rec–” infection, and “Rec– and Rec–” infection), each of which is further divided 

into their allelic states at the restriction locus (A+ or A–). For each combination, the phages 

experience three possible events (restriction, repair, and burst). 

We assume that there is a cost of carriage of a restriction-modification system on a+ 

bacterium, 1c , which is realized as a reduced growth rate. The relative fecundity of a+ 

bacterium to that of a- bacterium depends on the cost of restriction-modification as   S1
= e−c1 . 

Also assumed are the metabolic cost 2c  for restriction-resistance on A+ phage, and that 3c for 

recombination/repair capacity on Rec+ phage, both represented by a reduced burst size (the 

relative fecundity, see Table 1). The relative fecundity of A+ phage is expressed as   S2
= e−c2  
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and that of Rec+ phage as   S3
= e−c3 . If a phage carries both restriction resistant site and Rec 

allele in its genome, the relative fecundity is given by S
2
S

3
. 

We compile a mating table that contains all the infection patterns, their probability of 

occurrence and the number of progeny from each pattern. Part of the mating table is shown in 

Table 2. Note that all the patterns in Table 2 are those for restriction-positive (a+) bacteria. 

Other patterns for restriction-negative (a–) bacteria are not included because they are trivial, in 

the sense that all the infecting phages survive and thus genotype of their progeny always 

remains the same as their parents’. The number of phage progeny from an infected bacterium 

depends on the relative burst size, which is 0b   when both of the co-infecting phages (or the 

singly infecting phage) survive(s) and 1b  when one of the co-infecting phages survives in the 

presence of an unrepaired double-strand break of another phage’s chromosome.  The expected 

number of phage progeny is assumed to be given by the product of the relative burst size, the 

relative fecundity depending on the metabolic costs of restriction-resistance and 

recombination/repair-proficient alleles, and probabilities of each infection and repair.  The 

number of progeny of the host bacterial genotype in the next generation is represented 

similarly.   

From the mating table, we can write down the following equations. The frequency x of 

bacteria which have restriction-modification genes changes between generations as 

 

  

′x = S
1

P
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where  wP
 is the mean fitness of phage, which is given by the sum of right hand sides of the 

above equations.  

 

--- Table 2 about here--- 

 

Strong antagonistically interaction between bacteria and phage genotypes represented 

by frequency-dependent genotypic fitness easily destabilizes an equilibrium of the coupled 

genotypic dynamics (1)-(2), which, unless the costs of restriction-modification in bacteria and 

restriction-resistance in phage are too large, show complex limit cycles of large amplitudes. 

Even when phage population is monomorphic with respect to its recombination/repair locus, 

the coupled dynamics of restriction-negative and -positive bacteria, and restriction-sensitive 

and -resistant phages exhibit limit cycles. With periodic oscillation in genotypic frequencies of 

bacteria and phage population, obtaining the analytical “invasion criteria”, the sign of the long 

term marginal logarithmic growth rate of Rec+ carrying phage introduced into the resident Rec- 

population, becomes difficult.   

We therefore numerically explore conditions that allow the sexual 

(recombination/repair-proficient) allele to evolve.  The procedure is summarized in Figure 2, 
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which is  equivalent to the iteration of the recursion (1)-(2) except for the process of mutation 

described below. After all the combinations are computed based on the mating table, the 

progeny of each phage/bacterial genotype is summed up to yield the fitness (i.e., expected 

number of progeny) for all genotypes in each generation. Selection and mutation then operates, 

resulting in frequency change for each genotype. Mutation is assumed to occur only at the 

restriction locus of the bacteriophages, which enables us to eliminate the persistence of 

repair/recombination allele by mutation-selection balance, because we are interested in the 

adaptive evolution of the repair/recombination allele. This evolutionary process for one 

generation is repeated for thousands of generations.  

 

--- Figure 2 about here--- 

 

The basic parameter values used in our simulation are listed in Table 1.  The 

simulations are extensively carried out by changing the values of 1b , 3c , r ,  P2
(and   P1

).  We 

then summarize how the condition for the evolution of sexual allele depends on these 

parameters. 

 

RESULTS 

Our simulation gave completely different results for the spread of sex allele depending 

on the values of 01 / bb , although it always gave sustained cycles of genotypes for our choices 

of parameters. The dependence of the advantage of sex allele on 01 / bb  is summarized in 

Figure 3. Apparently, evolution of the repair allele becomes possible when 01 / bb  is small and 

its cost is small. 

When 01 / bb  is large, the evolutionary dynamics show victory of Rec– phages over 
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Rec+ phages (Figure 4A). Rec+ phages continue to decrease in frequency and become extinct 

even when the initial frequency is very high (99%). The recombination/repair-proficient allele 

cannot evolve under this condition. Intuitive reason for the failure of sex allele is clear: the 

damaged sensitive genomes of Rec– phage can be repaired by co-infecting Rec+'s enzymes and 

templates. This implies that Rec– phage can enjoy advantage of "free-repairs" equally 

efficiently as altruistic Rec+ phage does, yet without paying any cost.  

Figure 4B shows the relationship between the frequencies of the repair/recombination 

allele in phages, the restriction-resistant allele in phages, and the restriction-positive strain in 

bacteria observed in the simulation. More specifically, the inter-generational increase in the 

frequency of Rec+ phages, a fitness measure of recombination/repair modifier allele, is plotted 

against the frequency of a+ (restriction-positive) bacteria and that of A+ (restriction-resistant) 

phages of each generation. The dynamics shows a cycle in which the frequency of a+ bacteria 

and that of A+ phages periodically fluctuate. Apparently, the number of Rec+ phages 

consistently decreases, showing no correlated change with the abundance of 

restriction-resistant phage or restriction-positive bacterium, indicating that no evolutionary 

advantage of DNA double-strand break repair has been generated under this condition.  This 

makes a sharp contrast with a striking correlated change between Rec+, a+ and A+, which we 

found in the case of b0/b1<1 and will be discussed later.  

Detailed dynamical interaction between bacteria restriction-positive genotypes and 

bacteriophage restriction-resistance genotypes is presented in Figure 4C.  Among Rec– phages, 

the relative frequency of each allele at the restriction-site locus [A– (restriction-sensitive) or A+ 

(restriction-resistant)] shows sustained oscillation. This is also true of Rec+ phages (data not 

shown). In the bacteria, the relative frequency of each allele [a– (restriction-negative) or a+ 

(restriction-positive)] alternates in conjunction with the cycles of phage genotypes.   These 

results represent a continuous coevolutionary force acting both on the phage genome and the 

restriction-modification system in bacteria.  When a prevalent genotype of bacteria is a+ 
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(restriction-positive), A+ (restriction-resistant) phages survive and spread.  Once A+ 

(restriction-resistant) phages become prevalent, however, any restriction enzyme of bacteria is 

no longer effective while its cost still exists.  Then a– (restriction-negative) bacteria increase 

their frequency in the bacterial population.  Once a– (restriction-negative) bacteria become 

prevalent, however, A– (restriction-sensitive) phages in turn have an advantage because 

resistance of phage genome is no longer useful and becomes costly.  The prevalence of A– 

(restriction-sensitive) phages makes a+ (restriction-positive) bacteria advantageous and the 

dynamics returns to the former state. Sustained cycles of phage and bacteria genotypes are thus 

produced. Rec+ modifier allele in phage however consistently decreases as its ability of 

repairing cleaved restriction-sensitive site benefits co-infecting Rec- phages equally as well as 

themselves when 01 / bb  is large (equal to or only slightly less than 1). 

From these results we were unable to find a definitive evolutionary advantage of the 

double-strand break repair. However, the results change dramatically as 1b  decreases relative 

to 0b , as summarized in Figure 5. 

The evolutionary dynamics show victory of Rec+ phages over Rec– phages, as shown 

in Figure 5A. Rec+ phages continue to increase in frequency, even when the initial frequency is 

very low (1%). This indicates that the double-strand break repair has an evolutionary 

advantage, enabling Rec+ phages and the recombination/repair-proficient allele to evolve. 

The evolutionary trajectory reveals Rec+ allele can remarkably increase in frequency 

by its building up of positive linkage disequilibrium to restriction-resistant sites, as shown in 

Figure 5B. The sustained cycles of bacteria and phage genotypes then drive the frequency of 

Rec+ alleles to fixation. The increase of Rec+ allele occurs in the phase of cycle in which both 

a+ (restriction-positive) bacteria and A+ (restriction-resistant) phages are prevalent. This 

indicates that the double-strand break repair between Rec+ phages has a definitive evolutionary 

advantage when a+ bacteria predominate. For sufficiently small 01 / bb , the mutually altruistic 
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repair in Rec+/Rec+ infections produces an advantage for Rec+ by their larger contribution of 

progeny to the next generation than that in Rec-/Rec- infections, which can overcome the 

Rec-'s advantage of "free-repairs" in Rec–/Rec+ heterologous co-infections. This at the same 

time generates a positive correlation between Rec+ allele and restriction-resistant allele. Larger 

contribution of Rec+/Rec+ homologous infection is due to its prevention of induced damage to 

the host cell physiology by the unrepaired double-strand break in the Rec+/Rec+ infections, as 

parameterized in the model as ( 01 / bb  < 1). 

The sustained cycle of each genotype [A– (restriction-sensitive) or A+ 

(restriction-positive)] among Rec+ phages is similar (Fig 5C) to the case when Rec+ decreases 

(Fig 4C). Thus apparently same coevolutionary cycles of bacteria restriction-modification 

genotypes and phage restriction-resistance genotype have quite different effects on the fate of 

sexual allele in phage -- they can drive the costly sexual allele to fixation if 01 / bb  is 

sufficiently smaller than 1, but fail to do so if b
1
/ b

0
 is large.  

The conditions for the evolution of the recombination/repair-proficient allele also 

critically depends on the probability P
2
 of co-infection and the probability r of successful 

repair in the presence of Rec+ phage. The results of extensive simulations shown in Figure 6 

demonstrate that the higher are the values of these two parameters, the more likely is the 

evolution of repair allele. These results indicate that considerable co-infection and repair are 

necessary for evolution of the double-strand break repair, even when 01 / bb  is small. 

 

DISCUSSION 

Our simulation gave completely different results depending on 01 / bb , the ratio of the 

burst size b1 under induced damage to the host cell physiology to the default burst size b0. It 

was only when this effect of the induced damage was taken into account that the evolutionary 
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advantage of the double-strand break repair became apparent. The validity of the repair 

hypothesis for the origin of sex is, therefore, confirmed under a limited condition. 

Under the condition where 01 / bb  is high, the repair allele did not increase at all. 

Namely, double-strand break repair did not show any evolutionary advantage under this 

condition. This seems counterintuitive, because progeny of the Rec+ phage indeed increases by 

repair of its genome in A– Rec+/A+ Rec– infection and the cost of repair is assumed to be not 

very large (Figure 3). In our model, however, the DNA repair enzyme equally acts in cis and in 

trans, providing an equal opportunity of repair to Rec– phages. In A– Rec–/A+ Rec+ infection 

(Figure 1A), once-restricted Rec– phage is repaired by enzyme from Rec+ phage, resulting in a 

decrease in Rec+ progeny. Therefore, the benefit of repair for the Rec+ phages is completely 

counterbalanced by that of the Rec– phages. In addition, even in A– Rec+/A+ Rec+ infection, 

where both infecting phages are Rec+ (Figure 1B), double-strand break repair confers no 

advantage for Rec+ because repairing genome  does not change the total burst size. For example, 

in Figure 1B, 100 progeny of Rec+ result from repair failure, while 50 plus 50 progeny of Rec+ 

result from repair success. This number is the same as that for progeny of Rec– phage in A– 

Rec–/A+ Rec– infection without any repair. This is why double-strand break repair confers no 

selective advantage under the condition 01 bb = . 

In contrast, the repair allele did increase from a very low initial frequency when 01 / bb  

is smaller than 1. As in the case of 01 / bb  close to 1, the benefit of repair of Rec+ in A– Rec+/A+ 

Rec– infection is counterbalanced by that of Rec– phages. However, the fitness difference 

between Rec+ and Rec– phages is generated when A– Rec+/A+ Rec+ and A– Rec–/A+ Rec– 

infections are compared. In A+ Rec+/A– Rec+ infection, where both the infecting phages are 

Rec+, the total progeny of Rec+ increases by repair success. For example, 50 progeny of Rec+ 

result from repair failure, while 50 plus 50 progeny of Rec+ result from repair success (see 

Figure 1B). In contrast, in A– Rec–/A+ Rec– infection where no repair occurs, the progeny of 
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surviving Rec– phage decreases to 1b  (50) because a remaining double-strand break of one of 

the co-infecting phage genomes induces damage to the host cell physiology. This represents the 

definitive advantage of repair for Rec+ phages under this condition. 

 The disadvantage of A– Rec–/A+ Rec– infection means Rec– is recessive deleterious.  

Therefore, Rec– phages decreased slowly as they became rare in the population because the 

probability of Rec–/Rec– co-infection became lower. After the initial 10000 generations, Rec– 

phages decreased its frequency from 99% to about 17%. After the next 10000 generation, 

however, Rec– phages did not become extinct and decreased more and more slowly (less than 

0.1%). 

In our model, there is no fitness difference between Rec+ and Rec– phages when single 

infection or infection to a– bacteria occurs. This is also true of co-infection in which both 

phages are A– or A+. We therefore examined our results in the above explanations by focusing 

on A+/A– co-infection. 

The evolutionary dynamics of Rec+ and Rec– was smooth compared to that of A+ and A–. 

alleles as was in Fig. 4 or Fig. 5. In contrast, if a genetic correlation between modifer (Rec) and 

selected (A) locus is close to 100% and recombination rate between them is close to 0%, 

frequencies of modifier alleles (Rec+ or Rec–) strongly depend on those of selected alleles (A+ 

or A–).  This corresponds to a situation where a modifier (Rec) locus sits very close to a 

selected (A) locus and recombination between them does not occur.  Although the situation is 

possible if there are some restriction sites in a genome, our model assumed one restriction site 

(A) for simplicity.  Therefore, modifier (Rec) locus did not gain an association with a selected 

(A) locus and frequencies of modifier alleles (Rec+ or Rec–) changed more slowly than those of 

selected alleles (A+ or A–).  Selection coefficient of modifier locus is the squared order of that 

of selected locus (ISHII et al. 1989). 

The predominance of Rec– phages under a large 01 / bb  condition is caused by 

complementation. Co-infection of a virus supplying a gene product leads to a defective virus 
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gene that is then represented in the progeny, which instead decreases the progeny of the former 

functional virus (DENNEHY and TURNER 2004; FROISSART et al. 2004; NOVELLA  et al. 2004). 

This is apparently disadvantageous for the functional viruses (Rec+ phages in our model), 

which can be viewed as altruists, while the defective (Rec–) phages can be viewed as free-riders 

or cheaters (MAYNARD SMITH  and SZATHMARY  1995; KELLER 1999; FOSTER et al. 2004). 

Meanwhile, the condition of small 01 / bb  selectively benefits Rec+ progeny on Rec+/Rec+ 

infection, as shown in Figure 5B. The repair process under competition between co-infecting 

phages is considered to act as a mechanism that constrains cheaters (TRAVISANO and VELICER 

2004). Our model represents one of the mechanisms for constraining cheaters in microbes 

(FOSTER et al. 2004). Although cheating, cooperation and sociality in microbes have not been 

the focus of attention until recently, these are now being pointed out as fundamental issues in 

evolutionary theory and in pathogenicity control (SMITH  2001; FROISSART et al. 2004; GRIFFIN 

et al. 2004; TRAVISANO and VELICER 2004). 

We assume that repair-defective (Rec–) phages can produce progeny in the absence of 

a bacterial recombination system (RecBCD). In lambdoid bacteriophages, packaging of the 

phage genome into a viable phage particle needs a concatemer form, in which phage DNA units 

are joined together in a head-to-tail manner (FUJISAWA and MORITA 1997). Formation of the 

concatemer is blocked by the RecBCD DNase of the host Escherichia coli, which degrades 

non-self DNA but repairs self DNA marked by an ID sequence (HANDA  et al. 2000; HANDA  et 

al. 1997). Lambda and other bacteriophages produce an inhibitor of RecBCD DNase (SMITH  

1983). Therefore, our model corresponds to the RecBCD-negative states. 

In reality, even a single infecting phage genome might encounter homologous 

prophage genomes in the host cell that can serve as a template for repair. Prophages are 

abundant in the sequenced bacterial genomes. For example, a natural isolate of Escherichia 

coli carries 18 prophages and phage remnants, among which 13 are related to bacteriophage 

lambda (HAYASHI  et al. 2001). In addition, an infecting bacteriophage may start replication 

before attack by a certain type of restriction enzyme, which seems to produce a template for 
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repair of a sister chromosome (HANDA and KOBAYASHI 2005). These effects might provide an 

additional advantage of double-strand break repair in that a single infecting “A– Rec+” 

bacteriophage is able to revive to some extent after attack by a restriction enzyme, which would 

selectively benefit Rec+ phages while eliminating cheaters. 

The burst size of a once-restricted and repaired bacteriophage could be lower than that 

of an undamaged phage on the assumption that an infecting bacteriophage would start 

replication before attack by certain types of restriction enzyme, as explained above. 

Accordingly, the restriction and repair process would delay replication of the bacteriophage, 

which could in turn increase progeny of the undamaged coexisting phage. Our simulation does 

not explicitly include this effect. However, we already confirmed that the effect could not 

change the result because Rec+ and Rec– phages had equal opportunities to increase their 

progeny by this effect. 

 Our model was constructed in the framework of evolutionary game theory: a powerful 

tool in both social science and evolutionary biology to analyze social problems involving 

interdependence among several agents (MAYNARD SMITH  1982; NOWAK and SIGMUND 2004). 

It is now recognized as being applicable to social interactions such as cheating and cooperation 

in microbes as well (TURNER and CHAO 1999; KERR et al. 2002; NOWAK and SIGMUND 2002; 

WOLF and ARKIN 2003; PFEIFFER and SCHUSTER 2005; TURNER 2005; WOLF et al. 2005). It 

has been claimed that one of the most important challenges lying ahead is to model the 

interaction of strategies encoded in genomic sequences (NOWAK and SIGMUND 2004). Our 

model represents one of the first examples of such attempts (see also MOCHIZUKI et al. 2006). 

Our one-locus model has been simplified from the gene-for-gene model used by 

SASAKI  (2000), which assumed multi-locus and asymmetric gene-for-gene interaction. This 

simplification enabled us to write down all the interactions between bacteriophages and host 

bacteria into a simple mating table, even if we also consider a modifier locus (Rec) and 

co-infection. Multi-locus models yield a much greater number of genotypes and of interactions 

between them, which makes analysis and interpretation difficult. Despite the simplification, 
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our model similarly showed protected genetic polymorphism in the genotype of the host (phage 

genome in our model) and the parasite (restriction-modification system in bacteria in our 

model) and produced a sustained cycle of genotype frequencies. This is a robust tendency in 

many gene-for-gene models, which has been considered to give an advantage to recombination 

and sexual reproduction, although the cycle itself has not been experimentally proven (see, for 

example, Korona et al (1993)).    To the best of our knowledge, this work represents the first 

study examining whether these characteristics of the dynamics enable sex (recombination 

repair) in bacteriophages to evolve. Because our one-locus models cannot distinguish between 

gene conversion not associated with flanking crossing-over and gene conversion associated 

with flanking crossing-over, whether the dynamics yield a short-term advantage for 

crossing-over remains an unexplored question. 

The repair process of our model is assumed to begin only after a double-strand break 

by a restriction enzyme, which is similar to the “damage-induced sex” proposed by Michod and 

colleagues (LONG and MICHOD 1995; MICHOD and LONG 1995; MICHOD 1998). However, they 

assumed different molecular mechanisms, in that gene damage was repaired by cell or 

proto-cell fusion with damaged or undamaged partners. These differences lead to different 

results, especially in a situation in which sexual cells mate with asexual (cheater in our model) 

cells (MICHOD and LONG 1995). 

It is conceivable that the repair mechanism used in our model represents one form of 

bacteriophage adaptation to attack by restriction enzymes (KOBAYASHI 1998), that is, an 

example of anti-restriction strategies (TOCK and DRYDEN 2005). An advantage of the 

mechanism, however, only becomes obvious when a remaining double-strand break of one of 

the co-infecting phage genomes induces damage to the host cell physiology, resulting in a 

decrease in the burst size, although some additional advantages might exist as well. 
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FIGURE LEGENDS 

 
Figure 1.  Model. (A) Co-infection of a restriction-positive bacterial cell with an “A+ 

(restriction-resistant) Rec+ (repair-positive)” phage and an “A– (restriction-sensitive) 

Rec– (repair-negative)” phage.  Co-infection occurs with predetermined probability P
2
 

multiplied by frequencies of bacteria x and that of phage yij (see Table 1 for the symbols).  The 

“A – Rec–” phage genome is cut at the A– site by the restriction enzyme. The Rec+ enzyme can 

repair the double-strand break by copying the A+ allele with a probability of r . The “A–” locus 

is converted to “A+” by gene conversion. If repair is successful, the undamaged “A+ Rec+” 

phage and the repaired “A+ Rec–” phage give the same number of progeny. If repair fails with a 

probability of r−1 , only the “A+ Rec+” phage gives the progeny. The default burst size 

common to a single infection and a multiple infection is 0b . When a double-strand break of one 

of the co-infecting phage genomes remains unrepaired, the burst size would be reduced to 1b by 

induction of damage to the host cell physiology.  The above explanation and those for the other 

infection patterns are summarized in the mating table of Table 2.  (B) Co-infection of a 

restriction-positive bacterial cell with an “A+ Rec+” phage and an “A– Rec+” phage.  

When co-infecting phages are both Rec+, the probability of repair increases to r2  because the 

amount of Rec enzyme in the host cell is doubled. 

 

Figure 2.  Simulation. There are four genotypes (A+/A–, Rec+/–) in the phage population, 

while the bacterial population has two genotypes (restriction-positive and -negative) as listed 

in Tables 2. From the phage population, phages are sampled with MOI from 0 through 2 and 

allowed to infect one of the two types of bacteria. For each combination, the phages experience 

three events (restriction, repair, burst). After all combinations are computed, progeny of each 

phage/bacterial genotype is summed to yield fitness (i.e., expected number of progeny). 

Selection and mutation then operates, resulting in a frequency change for each genotype. This 
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evolutionary process for one generation continues for thousands of generations. 

 

Figure 3.  Conditions for evolution of repair/recombination allele. Phase diagram of the 

metabolic cost of repair/recombination enzyme c3 and the ratio of burst size under induced 

damage to the host cell physiology 1b  to default burst size 0b . Other parameter values are 

listed in Table 1.  A black dot (•) represents victory of Rec+ over Rec– phage. A gray square () 

represents victory of Rec– over Rec+ phage. A white triangle ( ) represents an unsettled case 

after 30 000 generations: neither Rec+ or Rec– became extinct.   

 

Figure 4.  Results for large 01 /bb . Results for 1b = 0b =1.0 and 3c =0.001. Other parameter 

values are listed in Table 1.   (A) Evolutionary dynamics indicating victory of Rec– phages 

over Rec+ phages.  Rec– phages increase in frequency. The initial frequency of Rec– phages is 

1% (0.5% A– Rec– and 0.5% A+ Rec–).  (B) Evolutionary trajectory indicating continuous 

decrease of Rec+ phages.  X-axis indicates the frequency of a+ (restriction-positive) bacteria 

of each generation, and y-axis indicates that of A+ (restriction-positive) phages.  Z-axis 

indicates the inter-generational increase in the frequency of Rec+ phages.  These values are 

plotted until 20000 generation by black dots and the trajectories of about one cycle from 5000, 

7500, and 19000 generation are illustrated by a black, green, and blue line respectively. The 

frequency of Rec+ phages continues to decrease from the initial frequency (99% as in Fig. 4A) 

while the frequency of a+ bacteria and that of A+ phages periodically oscillate. The trajectory is 

counterclockwise. (C) Periodic oscillation of restriction-sensitive and -resistant genotypes 

of Rec– phages in the interaction with bacterial dynamics.  The vertical axis indicates the 

frequency of A– Rec– and that of A+ Rec– phages along with the frequency of a– and that of a+ 

bacteria in the total population. The frequency of each genotype of Rec– phages [A– 

(restriction-sensitive) or A+ (restriction-positive)] oscillates in the interaction with bacterial 
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genotypic dynamics [a– (restriction-negative) or a+ (restriction-positive)], where Rec– phages 

increase in frequency. 

 

Figure 5.  Results for small 01 /bb . Results obtained for 01 /bb =0.5 and 3c =0.001. Other 

parameter values are listed in Table 1. The composition is the same as for Figure 4.  (A) 

Evolutionary dynamics indicating victory of Rec+ phages over Rec– phages.  Rec+ phages 

increase in frequency. The initial frequency of Rec+ is 1% (0.5% A– Rec+ and 0.5% A+ Rec+).  

(B) Evolutionary trajectory in which Rec+ allele can remarkably increase. X-axis 

indicates the frequency of a+ (restriction-positive) bacteria of each generation, and y-axis 

indicates that of A+ (restriction-positive) phages.  Z-axis indicates the inter-generational 

increase in the frequency of Rec+ phages.  The initial frequency of Rec+ phages is 1% and a 

typical trajectory is illustrated from 5546 to 5606 generation by a black line, while other parts 

are the same as Fig. 4B.  Rec+ phages remarkably increase in frequency only when increase of 

a+ (restriction-positive) bacteria and ensuing increase of A+ (restriction-positive) phages occur. 

(C) Periodic oscillation of restriction-sensitive and -resistant genotypes of Rec+ phages in 

the interaction with bacterial dynamics.  Sustained cycles of genotypic dynamics appear as 

shown in Figure 4C, except that the frequency of Rec+ phages gradually increases due to the 

altruistic repair in Rec+/Rec+ infections.  

Figure 6.  Parameter dependence for evolution of recombination allele when 01 /bb  is low. 

Phase diagram with respect to co-infection probability and repair probability when 0P  is fixed, 

01 /bb =0.5 and 3c =0.001: (A) wide view; and (B) close-up. Other parameter values are listed 

in Table 1.  The symbols used are as for Figure 3. 
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