’ g International Institute for
- Applied Systems Analysis

[1ASA wwwiiasa.ac.at

Evolution of Cannibalistic Traits:
Scenarios Derived from Adaptive
Dynamics

Dercole, F. and Rinaldi, S.

IIASA Interim Report
July 2002




Dercole, F. and Rinaldi, S. (2002) Evolution of Cannibalistic Traits: Scenarios Derived from Adaptive Dynamics. IIASA
Interim Report. IIASA, Laxenburg, Austria, IR-02-054 Copyright © 2002 by the author(s). http://pure.iiasa.ac.at/6731/

Interim Reports on work of the International Institute for Applied Systems Analysis receive only limited review. Views or
opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other
organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on

servers or to redistribute to lists, permission must be sought by contacting repository @iiasa.ac.at


mailto:repository@iiasa.ac.at

International Institute for Tel: +43 2236 807 342

g Applied Systems Analysis Fax: +43 2236 71313
" Schlossplatz 1 E-mail: publications @iiasa.ac.at
[1TASA A-2361 Laxenburg, Austria Web: www.iiasa.ac.at
Interim Report IR-02-054

Evolution of Cannibalistic Traits: Scenarios Derived from
Adaptive Dynamics

Fabio Dercole (dercole@elet.polimi.it)
Sergio Rinaldi (rinaldi@elet.polimi.it)

Approved by

Ulf Dieckmann (dieckman@iiasa.ac.at)
Project Leader, Adaptive Dynamics Network

July 2002

Interim Reports on work of the International Institute for Applied Systems Analysis receive only limited
review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National
Member Organizations, or other organizations supporting the work.



|[IASA STUDIESIN ADAPTIVE DYNAMICS NO. 66

The Adaptive Dynamics Network at IIASA fosters the develop-
ment of new mathematical and conceptual techniques for under-
standing the evolution of complex adaptive systems.

Focusing on these long-term implications of adaptive processes
in systems of limited growth, the Adaptive Dynamics Network
brings together scientists and institutions from around the world
with IIASA acting as the central node.

ADN Scientific progress within the network is collected in the IIASA
Studies in Adaptive Dynamics series.

No. 1 Metz JAJ, Geritz SAH, Meszéna G, Jacobs FJA, v&io. 11 Geritz SAH, Metz JAJ, Kisdi E, Meszéna Ghe Dy-
Heerwaarden JSAdaptive Dynamics: A Geometrical Studynamics of Adaptation and Evolutionary BranchingllASA

of the Consequences of Nearly Faithful ReproductidASA  Working Paper WP-96-077 (1996). Physical Review Letters
Working Paper WP-95-099 (1995). van Strien SJ, Verduy8:2024-2027 (1997).

Lunel SM (eds): Stochastic and Spatial Structures of Dynami- ) o 3
cal Systems, Proceedings of the Royal Dutch Academy of SbR- 12 Geritz SAH, Kisdi E, Meszéna G, Metz JAEvo-

ence (KNAW Verhandelingen), North Holland, Amsterdarﬁ“tionafy Singular Strategies and the Adaptive_ Growth and
pp. 18(3-231 (1996). gen) Branching of the Evolutionary Tree.llASA Working Paper

WP-96-114 (1996). Evolutionary Ecology 12:35-57 (1998).
No. 2 Dieckmann U, Law R:The Dynamical Theory of Co- . tala V- luti £ Mi
evolution: A Derivation from Stochastic Ecological Processe'é'.o' 13 Heino M, Metz JAJ, Kaitala V:Evolution of Mixed

IIASA Working Paper WP-96-001 (1996). Journal of Mathdviaturation Strategies in Semelparous Life-Histories: The
matical Biology 34:579-612 (1996). ' Crucial Role of Dimensionality of Feedback Environment.

IIASA Working Paper WP-96-126 (1996). Philosophi-
No. 3 Dieckmann U, Marrow P, Law R:Evolutionary Cy- cal Transactions of the Royal Society of London Series B
cling of Predator-Prey Interactions: Population Dynamics an®52:1647-1655 (1997).

the Red QueenllASA Preprint (1995). Journal of Theoreti- ) . )
cal Biology 176:91-102 (1995). No. 14 Dieckmann U: Can Adaptive Dynamics Invade?

IIASA Working Paper WP-96-152 (1996). Trends in Ecol-
No. 4 Marrow P, Dieckmann U, Law REvolutionary Dy- ogy and Evolution 12:128-131 (1997).
namics of Predator-Prey Systems: An Ecological Perspective.

IIASA Working Paper WP-96-002 (1996). Journal of Mathd0- 15 MeszénaG, Czibula |, Geritz SAidaptive Dynam-
matical Biology 34:556-578 (1996). ics in a 2-Patch Environment: A Simple Model for Allopatric

and Parapatric SpeciationlIASA Interim Report IR-97-001
No. 5 Law R, Marrow P, Dieckmann UOn Evolution under (1997). Journal of Biological Systems 5:265-284 (1997).
Asymmetric CompetitionllASA Working Paper WP-96-003

(1996). Evolutionary Ecology 11:485-501 (1997). No. 16 Heino M, Metz JAJ, Kaitala V: The Enigma of

Frequency-Dependent SelectiorllASA Interim Report IR-
No. 6 Metz JAJ, Mylius SD, Diekmann OWhen Does Evo- 97-061 (1997). Trends in Ecology and Evolution 13:367-370
lution Optimize? On the Relation Between Types of Dens(ty998).

Dependence and Evolutionarily Stable Life History Parame- . ) . )
ters. IIASA Working Paper WP-96-004 (1996). No. 17 Hel_no M: Management of Evolving Fls?h Stocks.
IIASA Interim Report IR-97-062 (1997). Canadian Journal

No. 7 Ferriere R, Gatto M: Lyapunov Exponents and theof Fisheries and Aquatic Sciences 55:1971-1982 (1998).

Mathematics of Invasion in Oscillatory or Chaotic Popula- ) ) ) . i i
tions. Theoretical Population Biology 48:126-171 (1995). No. _18 Hel_no M_. Evolution of Mixed Repr_oductlve Strategies
in Simple Life-History ModelsIIASA Interim Report IR-97-

No. 8 Ferriére R, Fox GA:Chaos and Evolution. IASA 063 (1997).

Preprint (1996). Trends in Ecology and Evolution 10:480- i . )
485 (1995). No. 19 Geritz SAH, van der Meijden E, Metz JABvolution-

ary Dynamics of Seed Size and Seedling Competitive Ability.
No. 9 Ferriere R, Michod REThe Evolution of Cooperation [IASA Interim Report IR-97-071 (1997). Theoretical Popu-
in Spatially Heterogeneous PopulationHASA Working Pa- lation Biology 55:324-343 (1999).

er WP-96-029 (1996). The American Naturalist 147:692- .
917 (1996). ( ) No. 20 Galis F, Metz JAJWhy Are There So Many Cichlid

Species? On the Interplay of Speciation and Adaptive Radi-
No. 10 van Dooren TIM, Metz JAJDelayed Maturation in ation. IIASA Interim Report IR-97-072 (1997). Trends in
Temporally Structured Populations with Non-Equilibrium DyEcology and Evolution 13:1-2 (1998).
namics. IASA Working Paper WP-96-070 (1996). Journal
of Evolutionary Biology 11:41-62 (1998).



No. 21 Boerlijst MC, Nowak MA, Sigmund K:Equal Pay No. 37 Gyllenberg M, Metz JAJ:On Fitness in Structured
for all Prisoners/ The Logic of Contrition. IIASA Interim Metapopulations. IASA Interim Report IR-99-037 (1999).
Report IR-97-073 (1997). American Mathematical Societjournal of Mathematical Biology 43:545-560 (2001).

Monthly 104:303-307 (1997). Journal of Theoretical B'OIOQNO. 38 Meszéna G, Metz JABpecies Diversity and Popula-

185:281-293 (1997). tion Regulation: The Importance of Environmental Feedback
No. 22 Law R, Dieckmann USymbiosis Without MutualismDimensionality. IIASA Interim Report IR-99-045 (1999).
and the Merger of Lineages in EvolutionlASA Interim Re- 5 39 Kisdi E, Geritz SAH: Evolutionary Branching and

port IR-97-074 (1997). Proceedings of the Royal Society { mpatric Speciation in Diploid PopulationsIASA Interim
London Series B 265:1245-1253 (1998). Report IR-99-048 (1999).

No. 23 Klinkhamer PGL, de Jong TJ, Metz JASex and Size No. 40 VYlikarjula J, Heino M, Dieckmann UEcology and
in Cosexual Plants.IIASA Interim Report IR-97-078 (1997). Adaptation of Stunted Growth in FisHIASA Interim Report
Trends in Ecology and Evolution 12:260-265 (1997). IR-99-050 (1999). Evolutionary Ecology 13:433-453 (1999).

No. 24 Fontana W, Schuster FShaping Space: The PossiNo. 41 Nowak MA, Sigmund K:Games on Grids. IIASA

ble and the Attainable in RNA Genotype-Phenotype Mappirigterim Report IR-99-038 (1999). Dieckmann U, Law R,
IIASA Interim Report IR-98-004 (1998). Journal of TheoretMetz JAJ (eds): The Geometry of Ecological Interactions:
ical Biology 194:491-515 (1998). Simplifying Spatial Complexity, Cambridge University Press,

i Cambridge, UK, pp. 135-150 (2000).
No. 25 Kisdi E, Geritz SAH: Adaptive Dynamics in Allele g PP ( )

Space: Evolution of Genetic Polymorphism by Small Mut&lo. 42 Ferriere R, Michod RE:Wave Patterns in Spatial

tions in a Heterogeneous EnvironmetASA Interim Report Games and the Evolution of CooperationlIASA Interim

IR-98-038 (1998). Evolution 53:993-1008 (1999). Report IR-99-041 (1999). Dieckmann U, Law R, Metz JAJ
(eds): The Geometry of Ecological Interactions: Simplifying

No. 26 Fontana W, Schuster Rontinuity in Evolution: On gpatial Complexity, Cambridge University Press, Cambridge,
the Nature of Transitions. IASA Interim Report IR-98-039 i pp. 318-332 (2000).

(1998). Science 280:1451-1455 (1998). o )
No. 43 Kisdi E, Jacobs FJA, Geritz SAHRed Queen Evo-

No. 27 Nowak MA, Sigmund K:Evolution of Indirect Reci- |ution by Cycles of Evolutionary Branching and Extinction.

procity by Image Scoring/ The Dynamics of Indirect RecitASA Interim Report IR-00-030 (2000).

procity. 1IASA Interim Report IR-98-040 (1998). Nature i e .

393:573-577(1998). Journal of Theoretical Biology 194:561\0: 44 MeszénaG, KisdiE, DieckmannU, Geritz SAH, Metz

574 (1998) AJ: Evolutionary Optimisation Models and Matrix Games in
' the Unified Perspective of Adaptive Dynami¢#ASA Interim

No. 28 Kisdi E: Evolutionary Branching Under AsymmetricReport IR-00-039 (2000).

Colm]E)_ertrl]tlon. II_ASIAB_InIterlmllg;alpliréI?é928-10;959(1998). Jouro. 45 Parvinen K, Dieckmann U, Gyllenberg M, Metz JAJ:

nal of Theoretical Biology i ( )- Evolution of Dispersal in Metapopulations with Local Density

No. 29 Berger U:Best Response Adaptation for Role GameBependence and Demographic StochasticitASA Interim
IIASA Interim Report IR-98-086 (1998). Report IR-00-035 (2000).

No. 30 van Dooren TJM: The Evolutionary Ecology of NO-46 Doebeli M, Dieckmann U: Evolutionary Branch-
Dominance-Recessivity. IIASA Interim Report IR-98-096 N9 and Sympatric Speciation Caused by Different Types of

(1998). Journal of Theoretical Biology 198:519-532 (1999)f-c0logical Interactions. IIASA Interim Report IR-00-040
(2000). The American Naturalist 156:S77-S101 (2000).

No. 31 Dieckmann U, O’'Hara B, Weisser WWhe Evolution-
ary Ecology of Dispersal. IIASA Interim Report IR-98-108
(1998). Trends in Ecology and Evolution 14:88-90 (1999).

No. 47 Heino M, Hanski I: Evolution of Migration Rate in

a Spatially Realistic Metapopulation ModelllASA Interim
Report IR-00-044 (2000). The American Naturalist 157:495-
No. 32 Sigmund K:Complex Adaptive Systems and the Ev&11 (2001).

lution of Reciprocation. IIASA Interim Report IR-98-100 \ 4g Gyllenberg M, Parvinen K, Dieckmann Bvolution-
(1998). Ecosystems 1:444-448 (1998). ary Suicide and Evolution of Dispersalin Structured Metapop-
No. 33 Posch M, Pichler A, Sigmund KThe Efficiency of ulations. ||A$A In_terlm Repor‘t IR-00-056 (2000). Journal
Adapting Aspiration Levels. IIASA Interim Report IR-98- Of Mathematical Biology 45:79-105 (2002).

103 (1998). Proceedings of the Royal Society London Serigg. 49 van Dooren TIMThe Evolutionary Dynamics of Di-

B 266:1427-1435(1999). rect Phenotypic Overdominance: Emergence Possible, Loss

No. 34 Mathias A, Kisdi E:Evolutionary Branching and Co- Probable. IIASA Interim Report IR-00-048 (2000). Evolu-

existence of Germination StrategiedIASA Interim Report tion 54: 1899-1914 (2000).
IR-99-014 (1999). No. 50 Nowak MA, Page KM, Sigmund KFairness Versus

No. 35 Dieckmann U, Doebeli MOn the Origin of Species (I?(z)a_aés?o(nzlonogw)fe Légzgn:;erB(girgsgﬁ??;rg;%r(l)r(r)n).Report IR
by Sympatric Speciation.lIASA Interim Report IR-99-013
(1999). Nature 400:354-357 (1999). No. 51 de Feo O, Ferriere RBifurcation Analysis of Pop-

] ~ulation Invasion: On-Off Intermittency and Basin Riddling.
No. 36 Metz JAJ, Gyllenberg MHow Should We Define Fit- | ASA Interim Report IR-00-074 (2000). International Jour-
ness in Structured Metapopulation Models? Including an Apry) of Bifurcation and Chaos 10:443-452 (2000).
plication to the Calculation of Evolutionarily Stable Dispersal ) ) )
Strategies. IIASA Interim Report IR-99-019 (1999). Pro-No.52 Heino M, Laaka-Lindberg SClonal Dynamics and

ceedings of the Royal Society of London Series B 268:49Bvolution of Dormancy in the Leafy Hepatic Lophozia Sil-
508 (2001). vicola. 1IASA Interim Report IR-01-018 (2001).  Oikos

94:525-532 (2001).



No. 53 Sigmund K, Hauert C, Nowak MAReward and Pun- Dieckmann U, Metz JAJ, Sabelis MW, Sigmund K (eds):
ishment in Minigames. 1IASA Interim Report IR-01-031 Adaptive Dynamics of Infectious Diseases: In Pursuit of Viru-
(2001). Proceedings of the National Academy of Scienclence Management, Cambridge University Press, Cambridge,
of the USA 98:10757-10762 (2001). UK, pp. 124-137 (2002).

No. 54 Hauert C, De Monte S, Sigmund K, Hofbauei@s- No. 61 Sabelis MW, Metz JAJ:Perspectives for Virulence

cillations in Optional Public Good Games.lIASA Interim Management: Relating Theory to ExperimeHASA Interim

Report IR-01-036 (2001). Report IR-02-009 (2002). Dieckmann U, Metz JAJ, Sabelis

. . . i MW, Sigmund K (eds): Adaptive Dynamics of Infectious Dis-

{\ilvoé EI’D?/nZi:Eg?nRS’pln_:tig;lalgloangI;tri]gr?f\l/loondgllts!nlisssAalr:wc: ;‘Sﬁp'eases: In Pursuit of Virulence Management, Cambridge Uni-
. versity Press, Cambridge, UK, pp. 379-398 (2002).

Report IR-01-043 (2001). Clobert J, Dhondt A, Danchin E. > 9 bp (2002)

Nichols J (eds): Dispersal, Oxford University Press, pp. 57-R&. 62 Cheptou P, Dieckmann UThe Evolution of Self-
(2001). Fertilization in Density-Regulated Populations lIASA In-

. terim Report IR-02-024 (2002). Proceedings of the Royal
No. 56 de Mazancourt C, Loreau M, Dieckmann Qan the Society of London Series B 269:1177-1186 (2002).

Evolution of Plant Defense Lead to Plant-Herbivore Mutual-
ism. IIASA Interim Report IR-01-053 (2001). The AmericarNo. 63 Biirger R:Additive Genetic Variation Under Intraspe-
Naturalist 158: 109-123 (2001). cific Competition and Stabilizing Selection: A Two-Locus

. . ... Study. IIASA Interim Report IR-02-013 (2002). Journal
No. 57 Claessen D, Dieckmann WDntogenetic Niche Sh'ﬁssofTheoretical Population Biology 61:197-213 (2002).

and Evolutionary Branching in Size-Structured Populations.
IIASA Interim Report IR-01-056 (2001). Evolutionary Ecol-No. 64 Hauert C, De Monte S, Hofbauer J, Sigmund\il-

ogy Research 4:189-217 (2002). unteering as Red Queen Mechanism for Co-operation in Pub-
lic Goods Games. IIASA Interim Report IR-02-041 (2002).

No. 58 Brandt H: Correlation Analysis of Fitness Land-Science 206:1129-1132 (2002).

scapes.lIASA Interim Report IR-01-058 (2001).
[\Io. 65 Dercole F, Ferriére R, Rinaldi Ecological Bistabil-
ity and Evolutionary Reversals under Asymmetrical Competi-

Dieckmann U, Metz JAJ, Sabelis MW, Sigmund K (eds !gf‘ios”lAlSOAg(')mzeég Report IR-02-053 (2002).  Evolution
Adaptive Dynamics of Infectious Diseases: In Pursuit of Viru-"" ) ( ):

lence Management, Cambridge University Press, Cambridge. 66 Dercole F, Rinaldi S: Evolution of Cannibalistic
UK, pp. 39-59 (2002). Traits: Scenarios Derived from Adaptive DynamicHASA
Interim Report IR-02-054 (2002).

No. 59 Dieckmann U:Adaptive Dynamics of Pathogen-Hos
Interacations.  IIASA Interim Report IR-02-007 (2002).

No. 60 Nowak MA, Sigmund K: Super- and Coinfection:
The Two ExtremesllIASA Interim Report IR-02-008 (2002).

Issues of the IIASA Studies in Adaptive Dynamics series can b&irdd at www.iiasa.ac.at/Research/ADN/Series.html or by
writing to adn@iiasa.ac.at.



Contents

Introduction
Theresident-mutant model
M onomor phic dynamics
Dimor phic dynamics
Discussion and conclusions

Appendix: Analysisof the monomor phic canonical equation

10

13



Abstract

The evolution of cannibalistic traits in consumer populations is studied in this paper with the ap-
proach of Adaptive Dynamics theory. The model is kept at its minimum complexity by eliminating
some environmental characteristics, like heterogeneity and seasonalities, and by hiding the size-
structure of the population. Evolutionary dynamics are identified through numerical bifurcation
analysis, applied both to the ecological (resident-mutant) model and to the canonical equation of
Adaptive Dynamics. The result is a rich catalogue of evolutionary scenarios involving evolution-
ary stable strategies and branching points both in the monomorphic and dimorphic dynamics. The
possibility of evolutionary extinction of highly cannibalistic populations is also ascertained. This
allows one to explain why cannibalism can be a transient stage of evolution.
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Evolution of Cannibalistic Traits: Scenarios Derived from
Adaptive Dynamics

Fabio Dercole
Sergio Rinaldi

1 Introduction

Cannibalism, defined as intraspecific predation, is a behavioral trait found in a wide variety of
animals, ranging from protozoa and rotifers to birds and mammals (Fox, 1975). Thewpost

tant studies based on field and laboratory data have been surveyed by Polis (1981, 1988) who has
shown that pronounced cannibalism is a frequent feature of population dynamics in species that
grow through a wide sizeange. Often cannibalism develops at ecological time scale as a reaction

of adult individuals to food scarcity (Fox, 1975). However, besides the evidence for dietary induc-
tion several types of data indicate that, for many species, there is a strong gengpicnent to
cannibalism (see Polis (1981) and references therein).

The aim of this note is to show how a few characteristics of the evolution of phenotypic can-
nibalistic traits in consumer populations can be derived from general and formal principles. The
approach we follow is that oAdaptive Dynamics TheoifHofbauer and Sigmund, 1990; Metz
et al, 1992; Geritzet al, 1997). It is based on a transparent conceptual framework (small and
rare random mutations followed by natural selection) and allows one to describe the dynamics of
the traits in a purely deterministic way, through an ODE cafladonical equatiorfDieckmann
and Law, 1996; Champagnettal., 2001). The method is also capable of explaining the transition
from monomorphisno dimorphism(Geritzet al,, 1997).

However, the derivation of the canonical equation poses some problems if the resident and
mutant populations are described with high dimensional models. On the other hand, cannibalis-
tic consumer populations naturally call for relatively complex age/size-structured models (Polis,
1988). Thus, in order to easily derive the canonical equation we have used a strongly simplified
population model. Our choice has been to hide the size-structure of the population as well as all
environmental heterogeneity and seasonalities, which are known to enhance cannibalism in many
species (Fox, 1975). Thus, both the resident and the mutant populations are described with a first
order ODE with constant parameters. Although the model on which the entire study is based is
only a caricature of the real world, it contains the basic ingredients for a sound discussion of adap-
tation. In fact, the cannibalistic predation rate and the searching effjoiditise common resource
depend upon a phenotypic trait from now on catadnibalism Moreover, the functional form of
the model and the ranges of its admissible parameter values have beenycaetédied in order
to fit a paradigmatic case, namely that of the Eurasian p&etcéfluviatilis), recently described
in great detail (Claessegt al., 2000). Thus, at least from this point of view, the model is quite
realistic.

The paper is organized as follows. In the next section we describe the resident-mutant model
and the dependence of the demographic parameters upon the adaptive trait. In the third section we
derive the monomorphic canonical equation and study the evolutionary dynamics of the trait. In
particular, we show that agvolutionary stable strateg§eSS) (Maynard Smith and Price, 1973;
Maynard Smith, 1982) characterized by a low value of cannibalism is always guaranteed if the



environment is not too rich, and that dimorphism is a possible evolutionary option in populations
with wide size range. Then, in the following section we explore dimorphic dynamics by studying

a second order canonical equation derived, once more, from the resident-mutant model. The
most interesting result is that dimorphic evolution can have a hadhnifcSS characterized by

the coexistence of two populations, one with low and one with high cannibalism. Assuming
that body size of adult individuals and cannibalism are positively correlated, this dimorphic ESS
explains the coexistence divarfsandgiants Our findings are therefore consistent with one of

the conclusions of Polis (1988) who assessed “the possible evolutionary options of large entities
living among hordes of smaller entities”.

2 Theresident-mutant model

Assume that a cannibalistic consumer population is characterized by a phenotypic trait indicated
by z. Since we do not want to refer to a particular population or species, we can not specify what
is. However, in order to facilitate the interpretation of our results, we take the liberty of aggum
that the size of adult individuals is positively correlated with the cannibalistic trait. Thoan
be simply identified with a suitable measure of body size, so that the coexistence of two sub-
populations, one with low and one with high cannibalism, should be revealed by the presence of
dwarfs and giants in the same environment.

The derivation of the canonical equation of Adaptive Dynamics requires two thingthe
knowledge of the interactions occurring at ecological time scale between all sub-populgtipns;
the dependence of the demographic parameters of the sub-populations upon the traits. All this
can be specified through a resident-mutant model composg¥ ef 1) populations. The firsiv
populations, with biomass densitieg and traitsz;, are the resident populations, while the last
population, with biomass densityy 1 and traitz 1, is the mutant population. The interactions
between all sub-populations are described by the following ODE’s

N+1
€ Qi Tha

jZO R pEs aj; Rk
D . - _ Jr % _ ;. -
n; =n; N1 Z N1 Z Cij Mj t=1,...,N+ (1)

Jj=1 Jj=1
1+ Z hij Qi Mg 1+ Z hjk ajk Nk
j§=0 k=0

where the index refers to the common resource and the indéxes, N + 1 to the consumer sub-
populations. Notice that the density of the common resource, from now on calawironmental
richnessis assumed to be constant, i. e. seasonalities are ruled out. The three terms at the right-
hand-side of eq. (1) are natality due to food intake, mortality due to cannibalism and mortality
due to competition. The first term is written in the form of a type Il functional response and
takes into account #t each individual has two alternative food sources: the common resource and
the individuals of the same species. In the case of the Eurasian perch, which has mdtivated t
present study, the common resource is zooplankton on which all perch feed, at |dasfiiatt
stages of their life (Holcik, 1977). Thus, rich environment are those in which young perch have
more accessotfood. The jarametere;; is a conversion factor transforming food intake of type

J into new biomass of typé The parametek;; is the handling time of thé-th sub-population
associated with the food source of typ@ndc;; is a coefficient specifying the extra-mortality

due to competition. Although all demographic parameters depend upon various traits, in order to
obtain a tractable problem we limit the analysis to the case in which only two parameters depend
upon the trait we have called cannibalism. Our choice has been to assume that the pargmeters
andc;; are constant (recall that; is biomass density), while the attack ratgsand the handling
timesh;; depend upon the traits. But other choices would also be justifiable.



Figure 1:The cannibalistic attack rate; as a function of the traitg; andz; (see eq. (3)). The thick line
indicates the restriction af;; on the rayz; = px;. Parameter valuesd;; = 1,8 =2,v=4,0 = 2,
z=0.3,7Z=0.9p=04.

The attack rate,;, specifies the consumption of the common resource and is assumed to be a
bell-shaped function of the trait;, because a consumer performs better when its body size is well
tuned with the size of the local resource. The trait value at which the attack rate is maximum is
supposed to be the same for all sub-populations and is indicate® by the analysis we use the

following bell-shaped function
2 Ay

a0 = 7 Na 7 o\
(3)" + ()

whereA; is the maximum attack rate amd> 1 specifies the sharpness of the bell.

As for the cannibalistic attack ratg;, we assume it is shaped as in Figure 1. Along each ray
xzj/x; = const the attack rate is bell-shaped and vanishescfaending to zero and to infinity.
Similarly, a;; is a bell-shaped function of the ratig/x;, since the predation rate is higher when
the body size of the victim is in a suitable ratio with that of the predator, i. e. whea pz;,
p < 1. The function we use in our analysis is

(2)

2 z] x?
|yl ) ) ¥
whereA;; is the maximum attack rate afgi> 1,y > 1,6 > 1 andz, = are suitable parameters
specifying the bell-shaped functions. The parameter a sort of threshold indicating the body
size at which cannibalism becomes physiologically significant, while the second thresh e

body size at which predation starts to be limited by habitat morphology (see Figure 1). In@rder t
allow the survival of populations with negligible cannibalism < z) we assume in the following

z0 < z. Small values of3 imply high values of the cannibalistic attack ratg (see eg. (3) with

x; = x;), I. . great possibilities for individuals of trait to predate individuals of the same trait.

In the real world such a population would be characterized by a substantial change in size from
juvenile to adult, so that adult individuals can easily predate young ones (Polis, 1981, 1988). For
this reason the parametér/3) is a sort of surrogate for the size range of the individuals in the
population and will, indeed, be callsize rangen the following.



Finally, the handling timeg;;, which can be estimated from feeding experiments performed
under excessive food conditions (Bystr'and Garcia-Berthi, 1999), are assumed to depend
mainly upon the trait;; through the function (see Claessatral., 2000)

hij = W1 .CCi_w2 (4)

For this reason, in the Appendix the functiong are substituted by;.

3 Monomorphic dynamics

We now use model (1-4) wittv = 1 to study the monomorphic evolution of cannibalism. Con-
sistently with the Adaptive Dynamics approach we assume that the resident population with trait
valuez; is at its equilibriunm; (z1) when a mutant appears. The uniqueness of this equilibrium
can be easily ascertained from the formulas presented in the Appendix. Morgeaso assume
that the traitzo of the mutant is only slightly different from; (i. €. zo = z1 + ¢, with smalle)
and that the mutant population density is initially very small. Under these conditions, model
(1-4) written in the form

n1 = ny fi(n, ng, 1, T2)

o (5)

2 = n2 fa(ni,n2, 71, T2)

can be used to establish the fate of the mutant and resident populations. Generically, an invading
mutant replaces the former resident so thathamend, the system is composed of a single popula-
tion with traitz; +e¢. In the opposite case, i. e. when the mutant population does not invade, it goes
extinct so that the trait of the population remains unchanged. This process of mutation and selec-
tion can be further specified by making suitable assumptions on the frequency and distribution of
small mutations (Dieckmann and Law, 1996) and the conclusion is that the rate at which the trait
x1 varies at evolutionary time scale is given by the following ODE (called canonical equation of
Adaptive Dynamics)

W‘ (6)
T2

wherek is proportional to the frequency and variance of small mutationsfaid,, x5) is the
fitness of the mutanit e.

T = kﬁl(xl)

fa(@1,22) = fo(P1(21), 0, 21, 22) (7)

Equation (6) always admits the trivial solutien = 0 becauser; (x1) anddfy/0zs|ry—z,
are zero forzr; = 0 (the proof can be easily derived from egs. (A1,A3) of the Appendix, by taking
into account thati;( vanishes for; tending to zero (see eq. (2))). Moreover, the trivial solution
r1 = 0 is always unstable (i. et; > 0 for smallz; > 0) sincen; (z1) anddf,/0xs|py—s, are
positive for small and positive values of. Sincek > 0 andm;(z;) is positive for any positive
x1, €9s. (6,7) say that; is stationary (monomorphic equilibrium) when the fitness of the mutant
is stationary with respect to,. In generic conditions, the non-trivial monomorphic equilibria are
either one or three, as shown in Figure 2 for three different combinations of environmental richness
(ng) and size rangél /j3) (see the Appendix for a qualitative analysis of egs. (6,7)). In the case
of Figure 2B two stable equilibria; andz/” (filled circles on ther; axis) are separated by an
unstable equilibriunz/ (empty circle). Thus, in this case the cannibalistic trait can evolve either
toward a low value (corresponding to a very dense population of dwarfs) or toward a high value
(corresponding to a scarce population of giants). In the other two cases there is only one stable
equilibrium: a low valuez) with high population density in case A, and a high vaitfé with
low population density in case C. The transition from B to A [C] is characterized by the collision
of 7] with Z{" [#}]. The parameter conditions characterizing such collisions can, in principle,
be detected through extensive simulations of model (6,7). However, they can be detedbed muc
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more accurately through numeftiifurcation analysigKuznetsov, 1998), which is, indeed, the
technique used in this paper.

Once monomorphic dynamics have found a halt at a stable monomorphic equili#iuom (
z!" in our case), one should look at the higher order terms in the Taylor expansion of the fitness
function (7) to establish if the equilibrium is an ESS obranching point(Geritzet al, 1997).
More precisely, at a stable monomorphic equilibrium, the following correspondence holds

8272('7;1a .’122)
0x3

8272('7;1a .’122)
0x3

lgg=a; <0 ESS
(8)

lgg=z, >0 branching point

In the first case all small mutations of the resident population fail to invade, while in the second
case small mutations invade but do not replace the former resident. Thus, branching points are the
origin of dimorphism. For example, in Figure 2 the low equilibfiaare ESSs, while the high
equilibriaz!” are branching points (see Appendix). But@t combinations are possible for other
values of environmental richne&s, ) and size rangél /).

The study of monomorphic dynamics has been completed by performing the bifurcation anal-
ysis of model (6,7) with respect {a,) and(1//3), thus producing the diagram shown in Figure 3.
In such a diagram, the two curves merging at the cusp @oiate the combinations of parameter
values(ng, 1/3) for which the unstable equilibrium] collides withz or z{’. By contrast, the
remaining curve represents the valdes, 1/3) for which 9% f,/0x3|,,—., evaluated at;’ is
zero, i. e. the valuegy, 1/3) separating evolutionary stable strategies from branching strategies
(see eq. (8)). Thus, the spaee), 1/3) is subdivided into four regins, each characterized by one
or two stable monomorphic equilibria and by a different mix of ESSs and branching points. In
particular, Figure 3 shows that in poor environments an ESS always exists and that dimorphism
(due to branching points) is a possible evolutionary option only in populations with wide size
range (actually it is the only option in very rich environments). Through Figure 3 one can also
identify the conditions under which a population will evolve toward high degrees of cannibalism.
Indeed, in the regions with wide size range the presence of a branching point and the fact that
its associated cannibalistic trait is high (see paffitin Figure 2B) guarantees the possibility of
a monomorphic evolution toward high degrees of cannibalism (followed by a subsequent phase
of dimorphism discussed in the next section). However, populations characterized by small size
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Figure 3: Bifurcation diagram of model (6,7) with respectig and1/3. The curves identify four re-
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strategies (ESS) or branching points (BR). Parameter values as ireZgur

ranges can also develop high degrees of daalism, because it can be shown through numerical
analysis that the cannibalistic trait associated to the ESS is high for very rich environments. All
this is in good agreement with Polis (1981, 1988), who has noticed that pronounced cannibalism
is often present in populations growing through a wide size range.

4 Dimorphic dynamics

We now focus on the evolution of the cannibalistic traiteandz- of two coexisting sub-populations

with densitiesi; andns. The aim of the analysis is twofold. First we want to investigate the long

term evolution of the traits and establish, in particular, if dimorphism is the final state of evolution

or can turn into polymorphism or even back to monomorphism (Matsuda and Abrams, 1994a,b;

Dieckmanret al,, 1995). Second, we want to show that a sort of catalogue of all possible outcomes

can be identified by performing, once more, a bifurcation analysis with respect to parameters.
The study of dimorphic dynamics must be limited to tlhexistence regignvhich is the region

of all pairs(z1, z2) for which model (5) has a stable and strictly positive equilibrium. Such aregion

can be computed by performing the bifurcation analysis of model (5) with respect to the:{raits

andz- interpreted as constant parameters. Since dimorphic dynamics, i. e. trajectoriesgadae

(z1,x2), are symmetric with respect to the diagomal= z;, we limit the analysis to the region

x1 < x9 and call populationd and2 dwarf and giant populations, respectively. An example

of this bifurcation analysis is shown in Figure 4, where the upper part reports all bifurcation

curves which identify seven regions (I-VII), while the lower part reports the correspondieg stat

portraits of model (5). Since only in the state portraits IV and VIl there is a stable and strictly

positive equilibrium, the region of coexistence is the union of regions IV and VII. The pBints

U and B on the diagonak, = 1, where various bifurcation curves merge, correspond to the

monomorphic equilibria, i. eE = (7}, 7,), U = (z{,7}), andB = (=}, =}’). Since Figure 4

has been obtained for the same parameter settings used in Figure 2B, the edgiilizfiaand
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Figure 4: Bifurcation diagram of model (5) with respect to cannibalistic traitsand z,. Parameter
values as in Figure 2B. Upper triangle: bifurcation curves and regions I-VII (squares endichiension-
2 bifurcation points). Lower triangle: state portraits of model fg&)each region I-VII (circles indicate
equilibria of model (5)).

7" of model (6,7) are ESS, unstable, and branching, respectively. The nature of a bifurcation
curve separating two nearby regions can be understood by comparing the two corresponding state
portraits. For example, the bifurcation curve separating region IV from region VI is ¢berac
(see state portraits IV and VI) by the collision of a stable node with a saddle on {#ves. Thus,
if a dimorphic trajectory in region IV moves toward and finally hits this bifurcation cuhegiant
population goes extinct. In such a case the bifurcation curve corresponds to what is properly called
evolutionary murderin fact, approaching this curvey vanishes (see forthcoming eqg. (10)), i. e.
it is the evolutionary change in the dwarfs that kills the giants, thus marking the transition from
dimorphism to monomorphism.

We now use model (1-4) withh' = 2 and denote by (21, x2) andng(x1, z2) the densities
of the stable and strictly positive equilibrium of model (5) in the region of coexistence. As for
monomorphic evolution, we assume that the resident populations are at equilibriumwhen a mutant
appears. Moreover, the mutant population is initially very scarce and itsctragtonly slightly
different from that of the resident population (i.® = x; + ¢, with smalle and: = 1 or 2). If
model (1-4) is written in the form

n1 = ny fi(ni, ng, n3, 1, T2, 3)
ng = ng fa(ni, ng, ns, 1, T2, 3) 9)
7:1/3 = n3 f3(n1an2an3axlax2ax3)

the dimorphic canonical equation turns out to be given by

) 8f3(x1a T2, .’133)
_ Oz

9f3(1, 22, 23)
(9.2123

1 = k1w (a1, 22 P—

(10)

&9 = koTia(x1, x2) [F—

wherek; andk, are proportional to the frequency and variance of small mutations in the resident



populations andf5 (1, 2o, x3) is the fitness of the mutant, i. e.

fs(z1, @2, 23) = fs(M1(z1, 22), M2(21, T2), 0, 71, T2, T3) (11)

Moreover, if dimorphic dynamics find a halt at a stable equilibrigim z.), such an equilib-
rium is an ESS if _
(92f3(T1, Z9, .’123)
o’
Conversely, if condition (12) does not hold, then the dimorphic equilibrium is a branching point.
Three examples of dimorphic dynamics are shown in Figure 5 for different values of environ-
mental richnesgng) and size rangél/3). The coexistence region is partitioned in white and
dark subregions. Trajectories starting in the white region tend toward a dimorphic equilibrium
which can be either ESS or branching. By contrast, trajectories starting in the dark region hit the
boundary of the coexistence region where an evolutionary murder occurs.
In Figure 5A, the trajectories starting close to the branching pBinvhere dimorphism
originates, tend toward a dimorphic stable EBS= (71, T2), characterized byi; (71, T2) >
no(T1, T2). This result is in agreement with Polis (1988) observation on the possible coexistence
of an abundant population of small individuals with a scarce population of large and highly canni-
balistic individuals.
Figure 5B corresponds to populations with a wider size rgigg). The cannibalism of the
monomorphic population at the branching point is so high that pBirg now on the boundary
of the dark region, so that dimorphic dynamics end with the evolutionary murder of the giant
population at pointX* = (z7, 23). After that (i. e. after the sudden transition froki* to X **
in Figure 5B) the dwarf population evolves, starting with a tegit= x] in accordance with the
monomorphic canonical equations (6,7). Thus, in the end, the system settles at the monomorphic
ESS7Z| (see pointE of Figure 5B). In other words, starting from any ancestral monomorphic
condition the final outcome of evolution is a low cannibalistic population of dwarfs. However,
if the ancestral conditions are characterized by a sufficiently low cannibalistic trait 4, e<
7'/, see pointU in Figure 5B), the evolution is purely monomorphic, while ancestral conditions
x1 > T4 give rise to three distinct evolutionary phases: first a monomorphic evolution toward
the branching poinB, then a dimorphic evolution implying the temporary presence of a highly
cannibalistic populatio of giants (fromB to X*) and, finally, after the extinction of the giant
population, a monomorphic eligion toward an ESS (fronX ** to E). All this can be summarized
by saying that in evolutionary systems different but very close initial conditions can generate
completely different evolutionary paths, ending however in the same final state (see atgo Ge
et al, 1999). This property (which does not hold in generic dynamical systems) might be crucial
for understanding controversial results based on field or laboratory data concerninglthi®ev
of adaptive traits.
In the case of a richer environment (see Figure 5C) the trajectories starting closerarttie b
ing pointB tend toward a stable dimorphic equilibriubh= (Z;, 72), as in the case of Figure 5A.
However, at pointD condition (12) holds only fof = 1, so that atD the giant population under-
goes a branching. Of course, the procedure we have followed to construct the monomorphic and
dimorphic canonical equations can be extended to the general polymorphic case. In particular, for
the parameter values of Figure 5C, numerical simulations show that the trajectory of the polymor
phic canonical equation withi = 3 starting from(zy, T2, T2 + €), tends toward a polymorphic
stable ESS characterized by a scarce population of giants, a crowded population of dwarfs and a
population of individuals with intermediate body size. Also this result is not in conflict with the
observations described in Polis (1988).
The complete bifurcation analysis of model (10,11) is out from the scope of this paper. How-
ever, by looking at Figure 5 we can make the following considerations. The transition between

logz, <0 i=1,2 (12)
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the state portraits of Figures 5A and B is a global bifurcation (cdiletgroclinic bifurcatiofin
which the unstable manifold of poift coincides with the stable manifold of the sadflewhile
the transition between the state portraits of Figures 5A and C is slightly more complicated. In
fact, two characteristics of the state portrait of Figure 5C are qualitatively elifférom those of
Figure 5A: first pointU does not belong to the coexistence region, and second there is a small
dark region in which the dimorphic dynamics are characterized by the evolutionary murder of
the dwarf population. Starting from Figure 5A and increasiggat a first critical valuey, the
coexistence region looses the contact with péintThis implies that, fom, slightly bigger than
ng, the border of the coexistence region on the left of péiris characterized by the absence of
the dwarf population. This first bifurcation can be identified by a straightforward condition on the
fitness (7). At a second critical valug the equilibriaR, S; and.S, appear contemporarily at a
single point of the border of the coexistence region. For a further increasgetbé three points
split: the repellotR enters into the coexistence region, while the sadf{esnd S, remain on its
border, thus giving rise to the small dark region of Figure 5C. The bifurcatiep at ng, called
pitchfork bifurcation can be easily identified with the conditian (z£, z5) = 0, where(z1t, 2%)
are the coordinates d?. Finally, at a third critical valuey;’ the dimorphic ESS becomes a
branching point. Strictly speaking, this critical value is not a bifurcation of model (10,11). How-
ever, it implies a discontinuity in the evolutionary dynamics, i. e. the birth of polymorphism with
N = 3, so thatit is justified to consider it as a special bifurcation.

All the bifurcations described above and others not involved in the transitions between the
state portraits of Figure 5 can be continued in a two parameter space(&., d/3). However,
this poses nontrivial technical problems. In fact, the continuation of global bifurcations requires
to solve specific boundary-value problems for model (10,11) in whick, z2) andnz(z1, x2)
are not known in closed form. Thus, the bifurcation analysis of model (10,11) must be performed
by consideringlifferential algebraic systenaf the form

df3(n1,m2,0, 1, 22, 73)
(9.’123

0 f3(n1,m2,0, 1, 22, 73)
(9.’123

0 = fi(ni,n2,0,21,22,0)

0 = fa(ni,n2,0,21,22,0)

1 = k1 los=21

.Ci?z = kz no ‘1‘3:1‘2 (13)

for which algorithms for the numerical solution of boundary-value problems are hard to develop
(see, however, Ascher and Spiteri (1994)).

5 Discussion and conclusions

The problem of evolution of cannibalistic traits in consumer populations has been investigated in
this paper. The approach has been purely abstract (Adaptive Dynamics theory) and bagsg on a
simple model. Important environmental features like heterogeneity of the habitat and seasonalities,
have not been taken into account, while a great deal of attention has been given to ‘envirbnmenta
richness’. In order to keep the model at the minimum degree of complexity, we lsavkidden

the size-structure of the population, which hasi, however, indirecthaken intoaccount though

a specific parameter called ‘size range’.

The study has been performed through extensive bifurcation analysis of both the ecological
model and the evolutionary model. The result is a rich catalogue of possible evolutionary scenar-
ios. In poor habitats, population with small size range remain monomorphic and tend to an ESS
characterized by a dense population of dwarfs in which cannibalism is practically absent. The
characteristics of the monomorphic ESS change smoothly with the richness of the environment

10



until for very rich environments the ESS is characterized by a scarce population of gemtdy

a population of large and highly cannibalistic adult individuals. By contrast, monomorphic pop-
ulations with wide size range can converge to a branching point which is the starting point of a
dimorphic phase, which depending upon the cases, can be of various form. First of all, we can
have convergence to a dimorphic ESS, characterized by a dense population of ddartcarce
population of giants. In this case, dimorphism is the final state of evolution. But dimorphism
can be also a transient stage of evolution. This happens when dimorphic dynamics converge to a
branching point, from which a new mutant population invades, thus giving rise to a higher order
polymorphism. Surprisingly, also the opposite transiiffsam dimorphism tomonomorphism)

can occur through the evolutionary murder of the giant population. In other words, for suitable
demographic and environmental conditions we can have a rather interesting evolutionary path: a
monomorphic population first increases its degree of cannibalism thus becoming a population of
giants when approaching a branching point; then, after branching, the giant population becomes
more and more scarce (at evolutionary time scale) until it goes extinct; finally, the remaining
monomorphic population settles at an ESS characterized by a huge number of dwarfs. In con-
clusion, our analysis shows that depending on the ancestral conditions and on the demographic
and environmental parameters, cannibalism in consumer populations can not only monotonically
decrease or increase, but also temporarily peak before being eliminated by thenmethof
mutation and selection.

The complexity of the evolutionary scenarios identified in this study by varying a couple of
environmental and demographic parameters, explain why it is difficultttact a general verbal
theory of the evolution of cannibalism from the many available studies performed on different
species. However, it is worth to notice that some of the conclusions drawn by Polis in hikrema
able papers on cannibalism evolution (Polis, 1981, 1988) are consistent with our findings.
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6 Appendix: Analysisof the monomorphic canonical equation

In this Appendix we analyze the monomorphic canonical equation (6,7) to show that for suitable
values of the parameters three equilibria can exist: a stablez S8 unstable equilibriurm;
and a stable branching poir’.

Definea;;(x;, x;) = ai(x;) o(x;/z;), fori, j > 0 (see eq. (3)), where

ai(z) = Aji—i 1 - 21 )= "B B
i(2i) U+ a) 0+ ) * (p2)” + (p2) ™

Thus, from egs. (1, 5, 7) it follows that
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82aij‘ ani (1) i dai dO" 1 4 dQO" 1
Ox2 T da? dx; dz ==l x; Ydz2 't x?

82aij . d20' 2(310’ 1
(9.7:3 ‘LE]’:Ii = a; d22 ‘Zil + 5‘211 .CC_?

Then, assumg = 0.2, w; = 0.1 andws = 0.25 (as in Figures 2-5). Thus;(1), do/dz|,—1
andd?o/dz?|,—; are positive and small (ordeb—1). Moreover,h; ~ w; for all sufficiently high
values ofr; (see eq. (4)), so that, /dz; andd?h, /d?x; can be neglected when is sufficiently
high.

Let us now study the functiom; (). From eq. (1) withV = 0 it follows thatm; (z) is the
positive root of the second order equation

erpaiono = c11n1(1 + hiaiono) + (1 — e11)annn + Cllﬁ%hlall (A3)

If 1 < z, thena;; < aq9, Sincea; (x1) ando(1) are small. Thus, the second and third terms at
the righthand side of eq. (A3) can be neglected, i. e.
€10a10M0

ﬁl(xl) ~ 011(1 n hlalong) = ﬁl(xl) (A4)

More preciselyj (z1) is greater that; (z1) for any positiver;. Thus,n;(x1) is bell-shaped as
a1o but peaks at a value af; greater than:® and increasing wit (notice that the parameter
Ajp can be scaled tb, since it is always multiplied by).

Then, consider egs. (A1,A2) far; in a neighborhood af’. Taking into account that® < z,
thato(1), do/dz|,—1, d?c/d2?|,—; are small, and using (A4)we can neglect in egs. (A1,A2) all
terms containing,; and their derivates with j > 0, so that

daig
- €20——"n
3f2($1,962)‘ - day (1 ~_hiaiong )
0z T 1 4+ hyagono 1+ hiaiono
d2a10 daqg 2 9
8272(361’362)‘ N €20 d? ng 2620h1 <—dx1 ) 0 ( hya10mo )
(9.28% R I hiaigng (1 + h1a10n0)2 1+ hiaigno

For sufficiently small values ofy, i. e. when(hiaigng)/(1 + hiaiong) < 1, the two above
expressions can be further simplified to

872 (.CC1, .7:2)
(9.282

27 2
PR—— 620(;&—;10”0 %ﬁé’m‘““ a 620(1(1—;%0710 (A5)
Sincedaig/dz1|,,—p0 = 0 andd?ai9/dz?|,, 0 < 0, the approximations (A5) imply that (for
suitable values of the parameters) model (6,7) has a stable ESS$late tox°.

The approximations (A5) do not hold for higher valuesagf since for such values,
daio/dz1|,,—p0 andd?aio/da?|,,—,0 are small. In particular, in eq. (Al)az1/0%2|sy—s, iS
negative forr; sufficiently high, due to presence of the threshio(dee eq. (3)). Thiscan leadto a
negative sum of the first two terms in eq. (A1) which can balance the third term which is positive.

By contrast, for intermediate values:of, and in particular for:; close tox, dasi/02|zy—z,
is positive and can give rise to a positi@¢, /0xs|.,—,. This implies the presence of two other
equilibria of model (6,7), namely an unstable equilibrigthand a stable equilibriura}’. The
sign of 8272/8x§\m2:5/1~ is more difficult to assess. However, for the parameter settings used
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throughout the paper, the first term of eq. (A2) is dominant and can be positive when evaluated at
7", so thatz!” is a branching point for suitable values of the parameters.

Finally, it is worth to remark that qualitative analysis is useful for understanding if a cer-
tain phenomenon can occur. For confirming the results achieved through this qualitative anal-
ysis we have performed extensive numerical analyses, mainly based on continuation techniques
(Kuznetsov and Levitin, 1997; Doedet al., 1997) (see Figures 3,4).
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