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Abstract 

A general decomposition framework for large convex optimization problems based on aug- 
mented Lagrangians is described. The approach is then applied to multistage stochastic 
programming problems in two different ways: by decomposing the problem into scenar- 
ios and by decomposing it into nodes corresponding to stages. Theoretical convergence 
properties of the two approaches are derived and a computational illustration is presented. 

Keywords: Stochastic Programming, Decomposition, Augmented Lagrangian, Jacobi 
Method, Parallel Computation. 
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Decomposition Methods 

For Multistage Stochastic Programs 

Charles Rosa and Andrzej Ruszczyriski 

1 Introduction 
Multistage stochastic optimization problems are amongst the most difficult problems of 
mathematical programming. Their size grows very quickly with the number of stages and 
with the number of events (scenarios) incorporated into the model. Although problems of 
this type occur frequently in applications (like, e.g., investment planning problems, control 
of water systems or energy systems), it was a generally held opinion that they were too 
difficult to be solved in their full formulation. However, recent advances in the theory 
of stochastic programming and in computing technology make it possible to  develop new 
methods for solving multistage stochastic programs of remarkable sizes. The purpose of 
this paper is to describe such an approach which has already proved successful in some 
applications and appears to have a potential to solve a broad class of problems. 

After a brief description of the class of problems under consideration in section 2, we 
present the general decomposition framework in section 3. The method is applicable to 
general convex problems with many subproblems and many linking constraints. Our ap- 
proach is based on augmented Lagrangians and has its roots in the pioneering work [25]. 
Following [24] we show that properties of the method heavily depend on the sparsity of 
the linking constraints. Next, in section 4, we apply the general framework to multistage 
stochastic programming problems formulated in a scenario form. The subproblems cor- 
respond to  scenarios and nonanticipativity constraints are treated as linking constraints. 
In section 5 we apply the general framework to multistage problems decomposed into 
particular stages of the decision-making process. Then the equations of dynamics, which 
relate to the variables from different stages, are treated as linking constraints in the 
decomposition approach. In both cases we show that the augmented Lagrangian decom- 
position method has favorable properties with a broad range of parameters guaranteeing 
convergence. The rate of convergence estimates are better, though, for the scenario de- 
composition method. This is confirmed by the computational results of section 6, where 
a large stochastic macro-economic model is considered. 



2 Multistage stochastic programming models 

In a multistage optimization problem decisions are to be made in stages t = 1,2, . . . , T 
and the decision vector is a collection of subvectors corresponding to successive stages, 

Decisions in successive time stages have to satisfy two groups of relations. The first group 
describes the set of feasible actions for each t: 

where X( t )  Rmz, t = 1,2, . . . , T. The second group describes the dynamics of the 
system and relates decisions from different time stages. In the simplest linear model they 
may read: 

D(t)x(t - 1) + H(t)x(t) = b(t), t = 1,.  . . , T. (2.2) 

Here D(t) and H(t) ,  t = 1, . . . , T are sequences of mb x m, matrices, b(t), t = 1, . . . , T, 
is a sequence of vectors in Rm* and x(0) is fixed. Obviously, the dimensions need not be 
the same for different t; we just use one m, and one mb for simplicity. 

Finally, there is a cost function c : RmzT + R 

that needs to be minimized. 
In stochastic programming, the data X(t) ,  D(t), H(t )  and b(t) are random objects 

defined on some underlying probability space R. We restrict our considerations to the 
case when R is finite: 

R = {l ,2 ,  ..., S )  

and we denote by p, the probability of an elementary event w E R. We shall call each 
sequence 

sw(t) = (x,(t),  D,(t), H,(t), b,(t)), t = 1, . . . , T, 

corresponding to an elementary event w E R a scenario. 
Realizations of the random data associated with time stage t become known at t, so 

it is reasonable to make the decision x(t) dependent on the information that is already 
available. Consequently, x is a random vector itself, and (2.1) and (2.2) are relations 
between random variables that are assumed to hold with probability 1. 

However, x cannot be an arbitrary random vector; the dependence of x(t) on w may 
result only from the observations carried out up to time t. This is called non-anticipativity: 
for each t decisions x,(t) must be equal for all scenarios w that have common past and 
present. 

Moreover, the cost (2.3) is a random variable itself and we need to replace it by a 
scalar-valued function. It is a common practice to use an expected value of the cost as 
the objective, although other choices are possible, too, as, e.g., mean-variance models. 
Since we are going to work with a general convex c, using its expectation does not seem 
very restrictive, because we still retain the flexibility of nonlinear utility functions. 



Figure 1: Scenario tree. 

The problem can be now stated as follows: 

subject to the constraints 

with x(0) = xo fixed. The non-anticipativity constraint can be formulated as follows: for 
all w,[ E R and any t E (1, ..., T) 

In other words, decisions corresponding to scenarios which are indistinguishable up to 
time t should be equal. 

We shall assume throughout this paper that the sets Xw(t) ,  t = 1, .  . . , T, w E R are 
convex and closed and the functions ct, t = 1, . . . , T, are convex, which makes (2.4)-(2.6) 
a convex optimization problem. 

Since R is finite, with the set of scenarios sw(t) ,  t = 1,. . . , T, w E R, we can associate 
a tree 7 = {N, A), where N is a set of nodes and A is a set of arcs of 7. The set of nodes 
N is divided into subsets (levels) Nt, t = 1, .  . . , T;  the nodes n E Nt at level t correspond 
to  different subscenarios {sn(l), . . . , sn(t)) .  At level 1 there is only one node n = 1 (the 
data for stage 1 are known). At level 2 there are as many nodes as different realizations 
of s(2) can occur; at level 3 the nodes correspond to different pairs {s(2), s(3)) ,  etc. The 
number of nodes at level T is equal to the number of scenarios S. The arcs join nodes 
from neighboring levels in such a way that a node n at level t corresponding to  subscenario 
sn = {sn(l), . . . , sn( t ) )  is connected with all nodes m at level t + 1 whose subscenarios 
sm = {sm(l), . . . , sm(t  + 1)) equal sn up to time t. An example of such a tree for an 
8-scenario problem is shown in Fig. 1. 

Problems with finitely many scenarios are more amenable for computer solutions, but 
many difficulties still remain. 

First of all, one has to note the remarkable size of the problem. If the scenarios 
introduced to the model are to reflect uncertainties that occur at successive time stages, 



then the number S of scenarios grows exponentially with the increase of the time horizon 
T. Even for relatively small T the dimension of (2.4)-(2.7) may be so large that the whole 
problem will become intractable by direct solvers. 

However, (2.4)-(2.7) has a very special structure which creates a number of possibilities 
for developing special solution methods. 

Existing computational methods for multistage stochastic programming problems can 
be divided into two main groups. First, there are versions of general-purpose algorithms 
in which special features of stochastic problems are used to improve data structures and 
solution strategies [lo,  91. Secondly, we have a number of special decomposition methods 
which exploit the structure of the problem to split it into manageable pieces and coordinate 
their solution [27]. One can distinguish two classes: primal decomposition methods that 
work with subproblems which are assigned to time stages [4, 8, 21, 22, 261 and dual 
methods, in which subproblems correspond to scenarios [13, 23, 191. 

In this paper we shall use the general theory of augmented Lagrangian decomposition 
of [24] to  develop and analyze two new decomposition methods for multistage stochas- 
tic programs. The first one is a dual method proposed for linear multistage stochastic 
programs in [13] and further developed in [14]. We shall show how to deal with convex 
objectives and we shall present some results on its convergence and rate of convergence. 
The second approach is a primal method based on the concept of nodal decomposition. 
Again, we shall use the theory developed in [24] to  obtain convergence and rate of conver- 
gence results for t he met hod. Alternative decomposition approaches based on augmented 
Lagrangians are discussed in [3, 7, 19, 231. 

3 General decomposition framework 

The purpose of this section is to briefly describe the general augmented Lagrangian de- 
composition method for partially separable convex problems. The approach will then be 
used in later sections to develop specific methods for multistage stochastic problems. 

Let X1, X2,. . . , XL be non-empty closed convex subsets of Rnl ,  Rn2, .  . . , RnL , respec- 
tively, and let f; : Rn' t R, i = 1,2 , .  . . , L be convex functions. Next, let A; be matrices 
of dimension m x n;, i = 1,2, . . . , L and let b E Rm. We consider the convex programming 
problem: 

L 

The augmented Lagrangian for this problem is defined as: 



with some penalty parameter p > 0. As usual, we define the dual functional 

g(.rr) = inf A(x, .rr) 
x E X  

with X = X I  x X2 x - x XL, and the dual problem: 

max g(.rr). 
n E R m  

There are many theoretical and computational advantages of the augmented Lagrangian 
approach over the ordinary Lagrangian (with p = 0). For the duality to hold, it is sufficient 
that the following condition is satisfied. 
Constraint Qualification Condition. At least one of the following conditions holds: 

(i) at some feasible point xO 

ri {d : 3 a  > 0 such that xO + ad E X )  n {d : Ad = 0) # 0; 

(ii) X is a polyhedral set. 

The fundamental duality result can be formulated as follows. 

Proposition 3.1 Assume that (3.1)-(3.3) has an optimal solution and the Constraint 
Qualification Condition is satisfied. Then (3.5) has an optimal solution and 

(a) for every optimal solution i of (3.1)-(3.3) and every optimal solution + of (3.5) 

(b)  for every optimal solution + of (3.5) a point i is a solution of (3.1)-(3.3) if and 
only if 

A(?, +) = minA(x, +). 
x E X  

(3.6) 

The above proposition is a re-formulation of generally known facts and can be easily 
proved as follows. First, from [16], thm. 2.10 (for example), we deduce the existence of 
Lagrange multipliers +. Then, by [17], thm. 28.3, we obtain assertion (a),  because (3.4) is 
the ordinary Lagrangian for the problem having its objective augmented by the quadratic 
penalty term. The latter observation yields (b) as well. 

An important advantage over the usual Lagrangian duality is that (3.6) is sufficient 
for primal recovery when the dual solution is known. The major computational advantage 
is the possibility of solving the dual problem by the following method of multipliers: 

The following two propositions summarize the fundamental properties of the method of 
multipliers (see [18], thms. 4 and 6). 



Proposition 3.2 Let the Constraint Qualification Condition be satisfied. Then the se- 
quence {.rrk) generated b y  the method of multipliers is convergent to a solution i of (3.5). 

Proposition 3.3 Assume that f;, i = 1,2, .  . . , L are convex polyhedral functions, Xi, i = 
1,2 , .  . . , L are convex polyhedral sets and (3.1)-(3.3) has a solution. Then the method of 
multipliers is convergent in finitely many iterations. 

The simplicity of iteration (3.8) makes the method of multipliers especially attractive 
for problems with many linking constraints (3.2), where column generation techniques 
stemming from [6] fail. However, a serious disadvantage is that (3.4) is not separable, so 
problem (3.7) cannot be split into independent subproblems for xi, i = 1,2, . . . , L. 

To overcome this difficulty we introduce for i = 1,2 , .  . . , L the functions 

where 2 E Rn is an additional parameter, n = c;=, n;. The main idea of our approach is 
to replace problem (3.7) with L problems 

and to iteratively update the parameter Z by making steps towards the solutions of (3.10). 
It is not difficult to  see that (3.10) is equivalent to minimizing (3.4) with respect to x; 
while keeping xj,  j # i ,  frozen at itj. However, we are not going to use (3.10) in a 
sequential fashion, but we shall rather solve it for each i in parallel and then update 2. 
This approach is called a nonlinear Jacobi algorithm. 

We are now ready to describe the method in detail. It should be noted that it is a 
sub-algorithm for carrying out the minimization step (3.7) of the method of multipliers 
in a decomposed fashion. In what follows T E (0 , l )  is a parameter of the method. 

Jacobi Method 

Step 0. Set ZkyO = xk-I and r = 0. 

Step 1. For i = 1,2, . . . , L solve (3.10) getting points xf". 

Step 2. If A;xf" = A;Zfl', i = 1,2, .  . . , L, then stop; otherwise set for i = 1 ,2 , .  . . , L 

increase r by 1 and go to Step 1. 

Let us now pass to  conditions under which the Jacobi method generates sequences 
x k T  00 { and { 2 k ~ T ) ~ o  whose accumulation points are solutions of (3.7). They involve 

the measure of sparsity of the linking constraints (3.2) defined as follows. For every matrix 
A;, let Aji denote its j th  row and let 



i.e., V(i, j) is the set of other blocks linked with block i via row j. We can now define the 
maximum number of neighbors as 

N = max IV(i,j;11. 
2 ,J 

(3.12) 

In other words, N is the maximum number of blocks linked by any single constraint, 
decremented by one. The theorems to follow show that convergence properties of the 
Jacobi method depend heavily on the number of neighbors N. 

Theorem 3.1 Assume that the assumptions of Proposition 3.1 are satisfied and the sets 
Xi, i = 1,2 , .  . . , L are bounded. If in the Jacobi method the under-relaxation coeficient 
satisfies the inequalities 

1 
O < T < - ,  

N 
(3.13) 

where N is given by (3.12)) then: 

(a) for all i = 1 ,2 , .  . . , L limT+m ~ ~ ( x f * "  - 2f9') = 0; 

(b) each accumulation point of the sequence { X ~ ~ ~ ) ~ " = , . S  a solution of (3.7). 

To estimate the speed of convergence, we need the following assumption on the growth 
rate of the augmented Lagrangian function ( ~ ( a )  denotes the set of solutions of (3.7)). 

Quadratic Growth Condition. There exist y > 0 and S > 0 such that for every x E X 
with dist(x, ~ ( a ) )  < S we have A(x, a) - i ( a )  2 y[dist(x, x(s))12. 

It is clear that this condition is satisfied by linear and quadratic problems (3.1)-(3.3) 
We can now formulate our main result on the speed of convergence. 

Theorem 3.2 Let the assumptions of Theorem 3.1 and the Quadratic Growth Condition 
be satisfied. Then, for all r = 0 ,1 ,2 , .  . . the following inequality holds 

with 

and 
a = max IIA;II. 

l<%<_L 

Theorems 3.1 and 3.2 have been proved in [24]. We can also find there further refinements 
of these results for the case when the subproblems (3.10) are not solved till optimality, 
but with dynamically determined stopping criteria. 



Figure 2: Sequences of decisions and nonanticipativity. 

4 Scenario decomposition 

We shall now apply the general framework of the previous section to problem (2.4)-(2.7) 
with the following assignments: 

subproblems correspond to scenarios i = 1,. . . , S with decision vectors 

X, = (xi( l) ,  xi(2), - 7 xi(T)); 

relations (2.5) and (2.6) are used to describe the sets Xi in (3.3): 

X; E X; = {x; : D;(t)x;(t - 1) + Hi(t)xi(t) = b;(t), 

x;(t) E Xi(t),  t = 1,. . . , T);  (4.1) 

non-anticipativity constraints are treated as linking constraints (3.2). 

Let us develop a formulation of non-anticipativity constraints which is convenient for 
our decomposition approach. We define the last common stage of scenarios w and J by 

tmax(J, a) = max{t : ~ ( ( 0 )  = s,(O), 0 = 1, .  . . , t ) .  

We shall now order scenarios in R by assigning to them numbers i = 1, .  . . , S in such a 
way that for every i scenario i + 1 has the largest last common stage with i among all 
scenarios j > i: 

tmax(i,i + 1) = max{tmax(i,j) : j > i) .  

Scenarios in Fig. 2 for the tree of Fig. 1 are ordered in this way. 
It is easy to observe that with such an ordering, the bundles of scenarios which are 

indistinguishable up to some time t form connected subsets of (1,. . . ,S). In Fig. 2, they 
are joined by horizontal dotted lines. 

Next, for every scenario i and every time period t ,  we define the sibling of i at  t as 

\ ,  , ( min{j : tmax(i, j) 2 t )  otherwise. 



Table 1: Siblings of scenarios. 

Time 

stage 

2 

3 

4 

Let us note that a scenario may have different siblings at different time stages. For the 
example of Fig. 1 and Fig. 2, siblings of scenarios are shown in Table 1. 

For every t ,  the mapping v ( i ,  t )  defines a permutation of 0, which maps bundles of 
indistinguishable scenarios onto themselves. It is easy to observe that v ( i , t )  # i ,  if the 
bundle of scenario i at stage t contains more than one member. The inverse permutation 
will be denoted by v - l ( i , t ) .  

Using the mapping v ( i ,  t )  we can describe the non-anticipativity condition by the 
constraints: 

x i ( t )  = ~ , ( ; , ~ ) ( t )  for all (i ,  t )  such that i # v ( i ,  t ) .  (4.2) 

There is still some redundancy in this set (we can remove one equation for each bundle), 

Scenario 

but we shall keep all equations (4.2) for convenience. 
Thus, the whole problem has the following structure: 

subject to (4.1) and (4.2). This corresponds exactly to the general model (3.1)-(3.3). 
The augmented Lagrangian function for (4.1)-(4.3) has the form 

1 2  

Subproblems (3.10) take on the form: 

7 8 3 4 

1 2 3 4 5 6 7 8 1  

5 

2 3 4 1 6 7 8 5  

1 3 2 4 6 7 5 8  

1 2 3 4 5 6 7 8  

6 



In other words, the augmented Lagrangian is minimized with respect to the variables 
associated with scenario i assuming that other variables are temporarily fixed a t  their 
values Z j  for all j # i. This is done in parallel for each scenario. 

Jacobi Method 

- Step 0 .  Set T = rk, zk" - xk-' and r = 1. 

Step 1. For i = 1, .  . . , S solve (4.5) with 2 = Z ~ . '  obtaining new points xfpT.  

Step 2. If xfl'(t) = 2;" (t) for all (i, t )  such that i # v(i, t) ,  then stop; otherwise set 

increase r by 1 and go to Step 1. 

Let us now pass to  convergence conditions and to  the speed of convergence. We imme- 
diately see that each constraint (4.2) links variables from only two scenarios. Therefore, 
the number of neighbors in (3.12) equals N = 1. By Theorem 3.1, apart from the Con- 
straint Qualification Condition, it is sufficient for convergence that the under-relaxation 
coefficient in (4.6) satisfies the inequalities 

This is a very mild requirement. 
Assuming additionally the Quadratic Growth Condition, from Theorem 3.2, we obtain 

the guaranteed ratio of convergence: 

The number 4 in the denominator follows from the observation that the constraint ma- 
trix of (4.2) has submatrices A; which, after removing empty rows and columns, can be 
permuted to  the form 

Thus llAill 5 fi SO a2 5 2 in (3.15). The best estimate of the ratio (4.7) can be obtained 
1 for T = 5: 

1 



For polyhedral cost functions ct and polyhedral sets Xi(t),  t = 1,. . . , T, i = 1 , .  . . , S, we 
can additionally observe that (locally) y = P-lp with some P > 0 independent of p. Then 
the ratio becomes independent of the penalty parameter p: 

The above results constitute a promising theoretical fundament for an efficient practical 
met hod for convex multistage stochastic problems. The computational results of [14] and 
[l] provide practical evidence for that. 

5 Nodal decomposition 

We shall now apply the general framework of section 3 to problem (2.4)-(2.7) with the 
following assumptions: 

explicit non-anticipativity constraints are removed from the problem by decreasing 
the number of decision variables; 

equations of dynamics (2.5) are treated as linking constraints. 

Let us start by removing explicit non-anticipativity constraints. To achieve that we shall 
use the scenario tree 7 = {N, A), as described in section 2 and illustrated in Fig. 1. We 
denote by a(n)  the ancestor of node n, i.e. the node at the previous level with which n is 
connected and by S ( n )  the set of successors of n, S ( n )  = {m : n = a(m)) .  

A node n at level t of the tree corresponds to the bundle R, of scenarios which are 
indistinguishable up to time t . By the non-anticipativity condition (2.7), all decisions 
x,(t), w E R,, must be equal. We denote their value by x,. 

Next, for each node n E N, we define probability pn as follows: for each terminal node 
n E fi we set p, = p,, where w E R is the event that corresponds to leaf n. For other 
nodes we define p, = CrnES(,) pm. 

Finally, with a slight abuse of notation, for a node n corresponding to event w at stage 
t we define: 

Using this notation we can rewrite (2.4)-(2.7) as follows: 



where x , (~ )  = x(0). This corresponds again to the general format (3.1)-(3.3). 
The augmented Lagrangian for (5.1)-(5.3) has the form: 

The introduction of scaling factors pn simplifies subproblems (3.10) 

where pmln = p, /pn is the probability of getting to node m from node n. 

Jacobi Method 

- x  a n d r  = 1. Step 0. Set r = rk, zk" - k-l 

Step 1. For n E h/ solve (5.5) with f = obtaining new points xkfr. 

Step 2. If D,x,(,) + Hnxn = bn for all n E n/ then stop; otherwise set for n E n/ 
zk,r+l - - z k , r  + T(xi 'r  

n n - zi*r), (5.6) 

increase r by 1 and go to Step 1. 

Let us now pass to  convergence conditions and to the speed of convergence. We imme- 
diately see that each constraint (5.2) links variables from only two nodes, so the number 
of neighbors in (3.12) equals N = 1. By Theorem 3.1, similar to scenario decomposition, 
it is sufficient for convergence that the under-relaxation coefficient in (5.6) satisfies the 
inequalities 

O < r < l  

and the Constraint Qualification Condition holds. Assuming additionally the Quadratic 
Growth Condition, from Theorem 3.2 we obtain the guaranteed ratio of convergence: 

with o defined as in (3.16). Let us estimate o. Assume that S (n )  = {ml, m2, . . . , ml). 
The submatrix An of the constraint matrix of (5.2), after removing empty rows, has the 
form 



Thus 

Therefore it is sufficient to use in (5.7) 

The best estimate of the ratio (4.7) can be obtained for T = i: 

Again, for polyhedral cost functions ct and polyhedral sets Xi(t) ,  t = 1, . . . , T, i = 
1 , .  . . , S ,  we can additionally observe that (locally) y = P- 'p  with some P > 0 independent 
of p. Then the ratio becomes independent of the penalty parameter p: 

These estimates differ from (4.8) and (4.9) mainly by the factor cr. We should, in gen- 
eral, expect slower convergence of the nodal decomposition method than the scenario 
decomposition method, unless cr2 given by (5.8) is smaller than 2. 

6 Computational Results 

To test the behavior of both the scenario and nodal versions of the augmented Lagrangian 
decomposition algorithm on an actual numerical example, we consider an eight scenario 
nonlinear (convex) stochastic macroeconomic energy model based on the Global 2100 
model developed by Alan Manne and Richard Richels [ll], [12]. The stochastic model was 
developed at IIASA [20] in collaboration with the Environmentally Compatible Energy 
Strategies group and the models eight scenarios represent alternative futures of energy 
resource commodity prices and properties of the production function that drives nonenergy 
economic output in the model. 

When solved using scenario decomposition the model has eight subproblems and when 
solved via nodal decomposition, seventy one. We solve the problems within GAMS [5], 
[15] using the looping and solve facilities provided therein. As such, we do not report any 
timings, as this method of implementation takes no advantage of the obvious parallelism. 
Instead, we report only the numbers of outer and inner iterations that were required to 
meet certain levels of accuracy. Though this makes the results incomparable to the solu- 
tion times of alternative solution methods, it does provide basic algorithmic information 
about the behavior of both forms of the algorithm when applied to a fairly large model 
of practical relevance. 



Constraints 398 

Nonlinear Constraints 25 

Variables 610 

Nonlinear Variables 85 

Multipliers 408 

Table 2: Scenario Model Characteristics 

0 
- ~ r . g ~ ~ ~ ~ g g ; g $ ~ q ~ ~ ~ g g  

Multiplier Iterations 

Figure 3: Scenario decomposition. Number of Jacobi steps in each outer loop. 

6.1 Scenario Decomposition 

The characteristics of each of the individual scenario models is summarized in table 2. 
We use a stopping criteria for the outer loop of E = and a stopping criteria for each 
variable in the inner loop of one half of the error in the corresponding nonanticipativity 
constraint in the outer loop. We start from a cold start (multipliers and Jacobi updates 
all set to zero) and obtain, in a representative run, 59 outer loops and 705 inner loops, 
each inner loop requiring the solution of the eight separate GAMS scenario models. As 
is clear from figure 3, the inner loops occur with greatest frequency at the beginning of 
the algorithm because of the cold start. The maximum relative error in nonanticipativity 
over the course of the algorithm is displayed in figure 4. The algorithm initially converges 
linearly as the changing multipliers on the relaxed nonanticipativity constraints move the 
solution along linear constraints. The progress is later impeded by the presence of the 
nonlinear constraints and variables whose properties slow the search for the appropriate 
penalties. Finally, figure 5 plots the number of nonanticipativity constraints violated a t  
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Figure 4: Scenario decomposition. Maximum relative error 
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Figure 5 :  Scenario decomposition. Number of violated nonanticipativity constraints. 



Constraints 14 

Nonlinear Constraints 2 

Variables 6 0 

Nonlinear Variables 9 

Multipliers 122 

Table 3: Nodal Model Characteristics 

each multiplier step. Again, very fast progress at the start is followed by a slower linear 
rate of convergence until the stopping criteria is fulfilled. 

6.2 Nodal Decomposition 
We summarize the characteristics of the typical individual nodal model in table 3 (initial 
period and terminal period nodes have slightly different characteristics). In this formula- 
tion, each subproblem represents one of the nodal problems from the stochastic tree. No 
nonanticipativity constraints exist to be relaxed as they are implicit in the structure of 
the tree. Instead, all dynamic linking constraints are relaxed and incorporated into the 
objective function as previously discussed. 

We, again, use a stopping criteria for the outer loop of 6 = The stopping 
criteria for the inner loop is a little more difficult to determine as each variable may be a 
part of multiple relaxed constraints. Also, the relationship between the stopping criteria 
used for a particular constraint and the stopping criteria that should be used for each 
component variable of the constraint may be very complicated. Both of these properties 
of the problem formulation make practical implementation more difficult to  achieve. For 
our tests, we used a stopping criteria for each inner loop variable that required successive 
values of the variable to  differ relatively by no more than the minimum of the relative 
error of all constraints of which that particular variable was a part. This proved to be too 
rigorous of a stopping criteria, though, as the algorithm repeatedly became trapped in 
one of the inner loop cycles. We overcame this problem by making the stopping criteria 
be the maximum of this minimum relative error and an arbitrary small number (0.005 in 
our test). Using this, we achieve very poor convergence when compared to what we saw 
with the simpler scenario disaggregation. Results appear in figures 6, 7, and 8. 

In contrast to  the previous case where the number of Jacobi steps required declined 
rapidly, approaching a low level close to zero, the number of inner loops exhibits erratic 
behavior, jumping from high to  low at irregular intervals. Also, average relative error 
in the slowly declining population of constraints that don't meet the stopping criteria 
actually seems to increase during the course of the algorithm. 

It would appear from this rather simple numerical experiment that the augmented 
Lagrangian decomposition algorithm performs best when nonanticipativity constraints of 
the type used in the scenario decomposition formulation of the problem are the constraints 
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Figure 6: Nodal decoposition. Average relative error. 
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Figure 7: Nodal decomposition. Number of Jacobi steps in each outer loop. 
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Figure 8: Nodal decomposition. Number of violated linking constraints. 

that are relaxed. Theory suggests that this would be the case as one of the principal factors 
that governs the rate of convergence of the general augmented Lagrangian approach is 
the norm of the submatrices that make up the relaxed constraints. The greater this 
norm, the slower the convergence. In the scenario decomposition approach, this norm 
is small as each submatrix of a subproblem consists of an individual nonanticipativity 
constraint which is a simple matrix with of most two nonzero elements per column. In 
contrast, the matrices that describe general dynamic linking constraints may have much 
more complicated structures with correspondingly larger norms. These greater norms 
may slow convergence of the method, as described earlier in the paper. 

In addition to  the nodal decomposition method being less attractive as a solution 
technique by virtue of its poor convergence, it is also less attractive from a modeling 
point of view. This is so because the decomposition of many specialized dynamic linking 
constraints that have problem specific structure is a complicated procedure, much less 
amenable to any automated procedures that might be applied in the scenario case where 
the structure of the nonanticipativity constraint makes decomposition of the problem 
essentially indistinguishable from application to application. 
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