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Foreword 

The investigation of a problem connected t o  probabilistic risk assessments for industrial plants 
led us t o  the need to  optimize integrals calculated over sets that  depend upon parameters. The 
problem was developed for two applications of tested and inspected components as  an  optimal 
control problem involving nonsmooth state transitions. In solving the optimization problem 
it is necessary t o  calculate the  derivatives of an integral over a domain depending upon the 
parameters t o  be optimized. Up t o  date the  theory of the differentiation these integrals is not 
fully developed. In the  working paper a new general formula for differentiation of such integrals 
is proposed. These results were used for calculation of sensitivities for risk functions. This 
approach can have a wide application for the stochastic programming problems. 

Comments about these mathematical results a,re invited. 

Bjorn Wahlstrom 
Leader 
Social & Environmental Dimensions 
of Technology Project 
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DIFFERENTIATION FORMULA 
FOR INTEGRALS OVER SETS 

GIVEN BY INEQUALITIES 

S. Uryas'ev 

1 Introduction 

The optimization of operational strategies for inspected components[5],[6] can be reduced to 

optimization of the sum of integrals taken over sets that  depend upon the parameters. To date, 

the theory for differentiation of such integrals is not fully developed. Here, we prove a general 

formula for the differentiation of an integral over the volume given by many inequalities. A 

gradient of the integral is represented as a sum of integrals taken over volume and over surface. 

Let the function 

be defined on the Euclidean space Rn,  where f : Rn x Rm -+ R~ and p : Rn x Rm -+ R are some 

functions. The inequality f (z ,  y) 5 0 should be treated as a system of inequalities 

To solve optimization problems containing functions of the form ( I ) ,  a differentiation formula for 

function (1) is needed. Stochastic programming problems lead to  such functions. For example, 

let 

be a probability function, where ('(w) is a random vector in Rm. The random vector ('(w) has a 

probability density p(z,  y) that  depends on a parameter z E R . 
Differentiation formulae for function (1) in the case of only one inequality (k = 1) are 

described in the papers of E. Raik [7] and N. Roenko [8]. More general results (k > 1) were 

obtained in the papers of J. Simon (see, for example [9]). Special cases of probability function (2) 

with normal and gamma distributions have been investigated in the papers of A. Prdkopa [3], 

and A. Prdkopa and T. Szantdi [4]. In the forthcoming book of G.Ch. Pflug [2] the gradient of 

the function (1) is represented in a form of a conditional expectation (k = 1). 



The gradient expressions given in [7], [8] and [9] have the form of surface integrals, and are 

inconvenient from the computational point of view, since the measure of a surface in Rm is equal 

to  zero. 

In the papers [lo], [ll] of S. Uryas'ev, another type of formula was considered, where the 

gradient is an integral over a volume. For some applications this type of formula is more con- 

venient. For example, stochastic quasi-gradient algorithms [I] can be used for the minimization 

of function (1). Here, we propose the formula for the general case of k 2 1 , and the formulae 

in the papers [7] and [lo] are special cases of this general result. Since the gradient of the func- 

tion (1) is represented in [lo] and [ll] as an integral over volume, in the case of k = 1 , i t  is clear 

that  this integral can be reduced t o  an integral over a surface (see [7]). Furthermore, i t  appears 

that  the gradient of the function (1) can also be represented as a sum of integrals taken over 

volume and over surface (in the case of k 2 1). This kind of formula is especially convenient for 

the case when the inequalities f (x,  y) 5 0 include simple constraints y; 1 0 ,  i = 1, .  . . , m (see 

an example a t  the end of the paper). 

2 The General Formula 

Let us introduce the following shorthand notations 

and 

A transposed matrix H is denoted by H~ , and the Jacobian of the function f ( z ,  y) is denoted 

by 



Further, we need a definition of divergence 

for the matrix 

I , and d i v : ~  = )... 
i=l 

We define 

p ( x )  = { y  E Rm : f ( x , y )  S 0 )  def { y  E Rm : f 1 ( x , y )  0 ,  15 1 j k ) ,  

and d p ( z )  to be the surface of the set p ( x ) .  We denote by d ; p ( x )  a part of the surface which 

corresponds to  the function f i ( x ,  y )  

and 

For y  E a p ( x ) ,  we define 

i ( x ,  y )  = min j . 
j€Z(x,u) 

Let us denote by x  x p , ( x ) ,  the Cartesian product of the point x  and the set p , ( x )  . Let 

V ( x o )  be some open neighborhood of the point xo and 

Gv,.(z) = U ( x  x r . ( x ) )  . 
X E V ( X )  

If we split the set Ii' %f { I ,  . . . , k )  into two subsets K l  and K 2 ,  without loss of generality 

we can consider 

K 1  = ( 1 ,  ..., 1) and K2 = { l + l ,  . . . , k ) .  

Now we formulate a theorem about differentiation of integral ( 1 ) .  



Theorem 2.1 Let us assume that the following conditions are satisfied: 

1. the set Gv,,(xo) is bounded for some V ( x o )  and E = (e l , .  . . , ek)  ; E; > 0 ,  i = 1,.  . . , k ; 

2. the function f : Rn x Rm + R~ has continuous partial derivatives Vx f ( x ,  y) ,  Vy  f ( x ,  y) ,  

V x v f ( x , y ) ,  V y v f ( ~ , ~ )  on the set Gv,c(xo) ; 

9. the function p : Rn x Rm + R has continuous partial derivatives V x p ( x ,  y) ,  V y p ( x ,  y )  on 

the set Gv,,(xo) ; 

4. there exists a matria: function HI , /  : Rn x Rm + Rn x Rm satisfying the equation: 

on the set Gv,,(xo) ; 

5. the matrix function Hlql(x ,  y)  has a continuous partial derivative V y H l , l ( x ,  y )  on the set 

Gv,c(xo) ; 

6. there exist continuous matrix functions H; : Rn x Rm + Rn x Rm , i = 1 + 1, .  . . , k 
satisfying the equations: 

on the set Gv,,(xo) ; 

7. i f  the set a ip(xo)  is not empty then the gradient Vy  f i ( ~ 0 ,  y )  is not equal to zero on a;p(xo) 

r.e. 

8. for all y E a p ( x o )  the vectors Vy  fi(xO, y)  , i E I ( x o ,  y)  are linearly independent. 

Then the function F ( x ) ,  given by formula (1) is differentiable at the point xo and the gradient 

is equal to 

Proof. Prior t o  proving the theorem, we prove the following lemma. 



Lemma 2.1 If a function r : R + R~ satisfies the condition 

then for suficiently small 1 \Ax1 1 the inequality 

holds, whew T is a constant. 

Proof. The sets 

belong to the set GV,E(xO) , if IlAx(( is small enough. Since the set Gv,c(xo) is bounded, then 

without loss of generality we can consider that the continuous function p(x, y )  is bounded on 

G V , ~ ( X ~ )  . Consequently, the value 

is bounded for sufficiently small I (Ax((  . 
Let A1, A2 C Rm and denote by A1 A A2 a symmetric difference of the sets Al and A2 

For a set A E Rm denote by q(A) the Lebesgue measure in Rm . Since the value 

is bounded for sufficiently small llAxll , the statement of the lemma follows from the inequality 

Tl  = const . 

Let us prove inequality (7). Denote 

Since 

and 



( ~ ( ~ 0  + Ax) A P ~ ( I I A . I I ) ( X ~  + AX)) C ( C ( ~ ( ~ I A . I I ) I ( X O  + AX) \ ~-l.(lln.ll)l(xo + AX)) .(8) 

We define a layer D ~ ( x )  as follows 

D ~ ( x )  = { y E Rm : -6 5 f;(x, y) 5 6 )  . 

Further, we can write 

Conditions 1, 2 and 7 of the theorem imply that  the thickness of the layer D i r i ( l l A z l l ) l ( ~ o  + Ax) 

is less than 6y-'lr;(\lAx11)1 . Indeed, it follows from conditions 1, 2 and 7 of the theorem that 

I l V f i ( ~ o + A x , ~ ) I l  2 2-'y for y E ~ ~ ; ( X ~ + A X ) ,  

and sufficiently small 11Ax11 . Consequently, with Taylor's theorem 

for y E dp;(xo + Ax) and sufficiently small 11Ax11. It means that  point y + 3y-'lr;(11Ax11)1 is 

out of the layer 

D ~ i ( l l ~ . l l ) l ( x o  + Ax)  for Y E api(xo + Ax) . 

Analogously, the point y - 3y-'lr;(ll~x1 I)\ is out of the layer 

Thus, thickness of the layer ~ ~ ~ ~ ( ~ ~ ~ ~ ~ ~ ) ~ ( x ~  + Ax) is less than 6y-'lri(l 1 Ax1 l)l . Consequently, 

there exist a constant TI such that  

9 ( ~ I ~ ( I I A = I I ) I ( X O  + AX) n ~ f r i ( ~ ~ A r ~ ~ ) ~ ( ~ ~  + A X ) )  T I I ~ ~ ( I I A X I I ) I  . (10) 

Inclusions (8), (9) and inequality (10) imply 



The lemma is proved. 

Let us make an increment Ax in the argument of the function F(xo) 

and make a change of variables 

Taylor's theorem implies that 

where o ( 1 1  Ax11 ) 1 11 Ax11 -+ 0 as 1 1  Ax11 -+ 0 . Since the set Gv,,(xo) is bounded, we can assume 

without loss of generality that functions 

are uniformly continuous on Gv,,(xo) (see conditions 1 , 2  and 5 of Theorem 2.1). Consequently, 

uniformly with respect to  (xo + Ax) x z E Gv,,(xo) . 
Denote by J(xo, z )  the determinant of the Jacobian for the mapping y(z). With Lemma 2.1 

and equations ( l l ) ,  (12) we have 



Let us compute the determinant J (zo ,  z)  

Furthermore, 

where o (  11Az11) / 11Az11 -+ 0 as llAzll -) 0 . Since the set Gv,,(zo) is bounded, we can assume 

without loss of generality that  functions 

are uniformly continuous and bounded on Gv,,(zo) (see conditions 1, 3 and 5 of Theorem 2.1). 

Consequently, for the term o ( 1 1  Azll ) in formula (15) the convergence 

is uniform with respect t o  (zo + A z )  x z E Gv,,(zo) . 
With (13) and (15) we have 

Condition 1 of Theorem 2.1 and uniform convergence (16) imply 



Combining (17) and (18) we have 

where o ( 1 1  Ax11 ) / llAx11 -. 0 as IlAx11 -+ 0 . Equations (3) and (4) imply 

Combining (19) and (20), we obtain 

F(xo + Ax) - o(llAxll) = 

Now we need the following lemma. 

Lemma 2.2 If a function r : R -+ R~ satisfies the condition 

then for suficiently small 1 1  Ax1 1 the inequality 



holds, where T is a constant. 

Proof. This lemma can be proved analogously to  Lemma 2.1. Since the set Gv, , (xo)  is 

bounded, conditions 2 ,  3, 5 of Theorem 2.1 imply 

Analogously t o  inequality (7) we can prove 

The statement of the lemma follows from inequalities ( 2 3 )  and ( 2 4 ) .  

Since the  set G V , ~ ( X ~ )  is bounded, the conditions 2 ,  5 ,  6 of Theorem 2.1 imply 

for ( x o  + A x )  x z E G v , , ( z o )  . 
Thus, with ( 2 5 )  and Lemma 2.2 for integral ( 2 2 )  we have 

where o (  l l A x l l ) /  IlAxII -. 0 as IlAxll -+ 0 . Let us rewrite integral ( 2 1 )  in the following way 



The difference D can be represented as a surface integral. Indeed, if 

z E al+l,kp(xo) = U ( ~ ( " 0 )  I Y E Rm : fi(zo, Y) = 0 I) , 
I s i l k  

and the surface al,kp(zo) is smooth around a point z , then condition 8 of Theorem 2.1 imply 

that  the index set I (zo ,  z)  consists only from one index i(zo, z) . The distance between point z 

and a nearest point on the surface of the set 

is equal t o  

Thus, the difference D of the volume integrals can be represented as an integral over a surface 

where o (  llAzII ) / IIAzII -) 0 as 11Az11 -t 0 . Combining (21), (22), (26), (27) and (%), we 

have 

F(zO + A z )  - F(z0) = ( / [vzp(xo, Z) + divZ (P(XO, ~ ) H I . I ( ~ o ,  2)) ] dz  + 
4 ~ 0 )  

where o (  11Az11) / 11Az11 -t 0 as 11Az11 -t 0 . 
The last statement proves the theorem. 



3 An Example 

The investigation of operational strategies for inspected components (see [6]) led us t o  the 

calculation of the gradient for the following integral function 

m 
where z E R1, y E Rm , p : Rm -+ R1, b(y) = C yiQ , fl > 0. In this case 

i=l 

and 

Here, we consider the case of 1 = 1 (see, condition 4 of Theorem 2.1). Equation (3) is represented 

as follows 

Since 

then 

def 1 
81-1 = h(y) = ( ~ I ( Y I ) ,  - -, hm(ym)) = - am ( ~ i - ~ ,  . . . , 

is a solution t o  equation (30). We can write equations (4) as follows 

The function fi(y) does not depend on z for i = 2,.  . . , m + 1 and V, fi(y) = 0 . Consequently, 

is a solution of the system of equations (32). 

The set d2,m+lp(z) has a simple structure, 



We can consider 

where 

e j  = 0 for j # i(y) ; e j  = -1 for j = i ( y ) ,  

In view of ( 6 ) ,  (31), (33), (34) and (35), we have 

where 

The inequality y-' 2 8 should be treated as the set of inequalities 

Since 



then we finally have 

The formula for the VzF(z) is valid for an arbitrary sufficiently smooth function p(y). 

4 Summary 

We have proved a general formula for the differentiation of an  integral over the volume given 

by many inequalities. This formula can be used in different applied areas. One important area 

is the optimal control of systems with very high failure costs. In this case optimization should 

be made under the condition that  the probability of failure is sufficiently small. A probability 

function can be represented as an integral over a set depending upon parameters. A gradient of 

the integral is expressed as a sum of integrals taken over volume and over surface. These results 

are very useful for the calculation of parameter sensitivities and the optimization of probability 

functions. 



References 

[I] Ermoliev, Yu. (1983): Stochastic Quasi-Gradient Methods and Their Applications to  System 

Optimization. Stochastics, 4. pp. 1-36. 

[2] Pflug G.Ch. (1992): Simulation and Optimization - the Interface, Kluwer Academic Pub- 

lishers (forthcoming). 

[3] PrCkopa, A. (1970): On probabilistic constmined progmmming, in: Proceedings of the Prince- 

ton Symposium on Mathematical Programming (Princeton University Press, Princeton, 

N.J., 1970) 113138. 

[4] PrCkopa, A. and T. Szintai (1978): A new multivariate gamma distribution and its fitting 

to empirical streamflow data, Water Resources Research, 14 (1978) 1924. 

[5] Pulkkinen, A. and S. Urya'sev (1990): Optimal Operational Stmtegies for an Inspected Com- 

ponent - Statement of the Problem. Working Paper, International Institute for Applied 

Systems Analysis, Laxenburg, Austria, WP-90-62, 22 p. 

[6] Pulkkinen, A. and S. Urya'sev (1991): Optimal Operational Strategies for an Inspected Com- 

ponent - Solution Techniques. Collaborative Paper, International Institute for Applied Sys- 

tems Analysis, Laxenburg, Austria, CP-91-13, 16 p. 

[7] Raik, E. (1975): The Differentiability in the Parameter of the Probability Function and Op- 

timization of the Probability Function via the Stochastic Pseudogmdient Method, Izvestiya 

Akad. Nayk Est. SSR, Phis. Math., 24, 1 pp. 3-6 (in Russian). 

[8] Roenko, N. (1983): Stochastic Progmmming Problems with Integral Functionals over Mul- 

tivalued Mappings. Synopsis of Ph.D. Thesis, USSR, Kiev, (in Russian). 

[9] Simon, J. (1989): Second Variation in Domain Optimization Problems, In "International 

Series of Numerical Mathematicsn, 91, Eds. F.Kappe1, K.Kunish and W.Schappacher, 

Birkhauser Verlag, pp. 361-378 

[lo] Uryas'ev, S. (1988): Differentiability of an Integral over a Set Defined by Inclusion. Kiber- 

netika (Kiev) 5, (1988), 83-86 (in Russian). Cybernetics, v.24, 5, (1988), 638-642 (in En- 

glish). 

[ll] Uryas'ev, S. (1989): A Differentiation Formula for Integrals over Sets Given by Inclusion. 

Numerical Functional Analysis and Optimization. 10(7 & 8), 827-841. 


