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Foreword 

A method is developed for the detection of parametric change for conditionally-linear 
stochastic systems. Such systems are quite prevalent in biology, economics and engineer- 
ing, and may be synthesized as certain bilinear stochastic systems with output feedback 
(possibly nonlinear) through the controls. In other words, these systems are linear in the 
uunmeasured states" and nonlinear in the Umeasured states". The previously-derived con- 
ditionally linear filter forms a convenient part of the algorithm which estimates the time 
of change and the parameter values. 

The particular motivation here is for the application to immunology and clinical 
practice. In this regard, a simple example is presented. 

A.B. Kurzhanski 
Chairman 

System and Decision Sciences Program 



DETECTION OF CHANGES IN DYNAMICAL SYSTEMS 
WITH APPLICATION TO MATHEMATICAL IMMUNOLOGY 

W. J .  Kolodziej 

Introduction 

The problem of detecting changes in dynamical properties of signals and systems is 

studied here. The need for this study is motivated by the following: 

- modeling of systems and signals where the structural decomposition takes place [I], 

- monitoring a dynamical system for abrupt changes of its parameters (e.g. failure of 

its functions or components) [2], 

- complementing an adaptive identification procedure in case of non-smooth parameter 

changes [3]. 

The particular motivation for this study stems from specific problems encountered in 

modeling immunological systems. Such systems are by nature very complex and the 

corresponding models are a t  best a crude approximation to  the actual biological mechan- 

isms. Very often a poor understanding of these mechanisms does not allow accurate 

modeling. Even if such mechanisms are understood the lack of consistent data does not 

allow reliable model identification and verification. Therefore, immunological models 

must be a t  all times monitored for validity. If such models are the basis for decisions 

dect ing a particular biological system then the discrepancies between the model (which 

is usually describing average properties) and the individual system responses must be 

detected and identified. In such detection one should be able to  distinguish between sta- 

tistical outliers and the errors resulting from model oversimplification. Assuming that the 

models will always be to a certain degree invalid, one of the tasks for the detection algo- 

rithm is t o  monitor the level of "invalidityn and signal only appreciable differences. The 

robustness of detection methods must be also a primary concern because the statistical 

properties of biological experimental data are poorly known. 

A growing attention to  detection problems has been seen for the last two decades. 

The comparison of review papers by [Z], and [4] shows a significant shift towards sophisti- 

cated statistical tools while still preaerving elements of system theory. In particular the 

so-called asymptotic local approach, with the foundations in Le Cam's work [S] on con- 

tiguity of probability measures, provides here the theoretical framework for statistical 

sequential testing. The sequential approach is of main interest if the change detection 



algorithm is to assist the on-line decision process (e.g. control law or model acceptance). 

Among the problems which did not receive adequate attention are: 

- robustness of the detection methods with respect to the violated aasumptions about 

the mathematical/statistical properties of underlying models, 

- implementation aspects of the detection algorithms and their performance with 

respect to standard statistical methods, 

- compromise between generality of the proposed approach (and accordingly the level 

of mathematical abstraction) and the actual level of mathematical knowledge of the 

engineering community. 

As an example of the last concern the theory of mixingales ("asymptoticn mar- 

tingales) is used very often in the study of probabilistic measures convergence. Such 

mathematical concepts are not known by the majority of applied mathematicians and 

engineers. In order for the methods based on such theory to become popular they have to 

significantly outperform standard statistical techniques which are relatively intuitive and 

readily understandable. This is particularly important as there is in general limited feed- 

back between the engineers or scientists who are responsible for algorithm implementation 

and the applied mathematicians who provide mathematical framework for such a lge  

rithms. The ability of "tuningn and improving the proposed techniques must be in the 

hands of people responsible for implementation and "maintenancen of detection a lge  

rithms. 

In this paper an attempt to combine already classical results with some novel ideas 

is made with the issues discussed above taken into account. Use of continuous time is 

exercised, however some of the results presented here for continuous stochastic procesees 

are merely conjectures. The insights gained by using continuum allow the development of 

the discrete time methods which have a solid mathematical base. We do not consider 

discrete time as the only practical approach in actual algorithm implementation. On the 

contrary an efficient use of computers requires an insight into algorithm structure, which 

the discrete time domain seems to  obscure (lengthy and unwieldy formulas etc.). Also not 

without significance is the fact that system modeling starts very often from the physical 

laws which use continuous time. This is particularly well seen in mathematical immunol- 

ogy where continuous time models dominate [6], [7]. The stochastic aspects of such 

models come not only from the noisy measurements but also from the randomness associ- 

ated with immunological processes (e.g. antigen sources and growth, cell stimulation and 

differentiation) [I]. 



A simple example of the detection technique which deals with continuous models 

and discrete measurements is also presented. This example illustrates some of the con- 

cepts presented here and provides the basis for further experimentations. 

1. Continuoue Time Detection 

We begin with the discussion of change detection in the continuous time processes 

and systems. The theoretical difficulties encountered here do not allow a complete design 

of the detection algorithm but only provide insight into their mathematical structure. It 

s eem natural to analyze the behavior of continuous time random dynamical system 

since the immunological processes are well defined from conservation equations and chem- 

ical mass-action principles governed by the sets of differential equations [6], (71. 

Assume that we observe (i-e. measure realizations of) a process yi which satisfies an 

Ito type equation. This models in a formal manner measurements corrupted with an 

additive noise: 

w is a Wiener process, Yi = {y,, 0 _< s 5 t), and the following are satisfied: 

where Gi is Yi = u-alg {Yi) measurable (non-anticipative) functional, and 19 is the 

parameters vector. 

Theorem 1 /8]: I f  G~G; is uniformly nonsingular (i.e. the elements of the inverse matrix 

are uniformly (in t)  bounded), and 

then 



is a (standard) Wiener process with respect to  Yi, i.e. 

Ee{exp (iz*(vi(0) - ~ ~ ( 0 ) ) )  1 Y,) = e x p ( - 0 . 5 ~ ~  *(t - a ) ) ,  

and 

dyi = Ee{zt 1 Yi) dt + Gi dvi(0) . 

In the above and in the sequel * designates matrix transpose. 

In order to use some of the results from the asymptotic estimation theory [5,9,10], 

the following parameter change model is postulated: 

there exists to E (0,oo) such that 

According to Theorem 1 we have 

where l ( t )  is the unit step function, v is a Wiener process adaptable to  Yt and zi is an 

unknown process which represents the error caused by using O0 rather than 0 in the calcu- 

lation of v. 

Let r be a Markov time with respect to  Yi. r is interpreted as the alarm, based on 

monitoring the process v, to  signal a change in system parameters. It is desired to choose 

r as close to  to as possible. The risk (cost) associated with the choice of r should consider: 

P ( r  < to) = probability of false alarm (1.6) 

and 

E{max(O,r - to) )  = average alarm delay . 

The formal design of the stopping rule under such criteria leads to  numerous 

difficulties and in practice requires seldomly-verifiable assumptions about the distribution 

of the change time instant [ll]. In order to  characterize the desired detection scheme we 

use the following modification of the result preeented in (81. 

Let S(r) denote a sequential scheme of testing the following alternative hypotheses: 



where w is a Wiener process independent of zt.  The scheme S is characterized by a Mar- 

kov time s ( ~ )  which corresponds to  the time instant of accepting H 1 .  Let P i  and Ei 

denote the probability distribution and the expected value for the case when the Hi 

hypothesis is satisfied, i = 0,l. For each scheme S denote 

c l ( S )  = P l ( r  = oo)  the error of the first kind , (1.8) 

e z ( S )  = P o ( r  < oo)  the error of the second kind ( false alarm ) 

Consider the class S of detection schemes such that c l ( S )  5 a and 

c z ( S )  5 B ,  f f  + B < 1. 

Theorem 2 [8]: 

Let 

Ei { / I m t 1 2 d t }  < o o ,  i =  0,1 ,  
0 

where 

Then there exists a scheme Sopt(ropt)  defined below and optimal in the sense that for any 

other scheme S ( r )  we have 

The scheme Sopt is given by 

ropt = inf { t  : At 2 Am,) , 

where 

and A,, = In((1 - a)/B). 



Comment s  : 

The basic conclusion from the above theorem is that the log-likelihood ratio testing 

scheme is optimal in the sense of (1.9). This result extends the Neyman-Pierson test pr* 

viding the Ushortest-weightedn detection delay, for fixed probabilities of the first and 

second type errors. 

The here postulated independence of w and z is not generally satisfied for the above 

proposed parameter change model. The sup operation in (1.11) is performed over the 

functional which can not be evaluated directly since m is not available to  the user. To 

gain some insight into the properties of (1.11) assume that mt = m = conet, and that the 

conditional distribution reaches its maximum a t  m. Replacing m by its most likely value 

under hypothesis H1 we have: 

From the above it is seen that even in this oversimplified case the thresholding test 

(1.10) is of a complex nature since only the argument of sup operation is simply related to 

the observations of v. 

The threshold A,, used in the above theorem must be viewed as a purely concep 

tual one. A discussion on selecting an appropriate threshold is given for the discrete-time 

case. Here we note that even in a simple case the threshold selection is a complicated pr* 

cess. As an example consider the scalar version of (1.12). Denote by wt a standard 

Wiener process. Then for fixed p and under the hypothesis Ho we have: 



where 

In the above the fact that if wt is a Wiener process so are its transformations : 

(twllt,t >0, and ( S ' ~ ~ W ~ ~ , , S > O )  are used. The last equality follows from the reference [12]. 

Now, for each t it is possible to estimate the probabilities of crossing a specified threshold 

A,,. We note here that equation (1.13) can be used to  derive tables of thresholds, 

corresponding to different probabilities of the false alarm. 

To justify further the model for parameter changes used in the above derivation con- 

sider a special version of (1.1): 

If the parameter 8 is unknown (e.g. after abrupt change) and we model the uncer- 

tainty about 8 by interpreting it as a random variable with mean 80 and certain distribu- 

tion P(8) we can use a conditionally linear filter [13] to derive the following formula for 

estimation of unknown 8: 

where 

Under somewhat technical assumptions the following convergence rate of d to  8 can 

be proved [a]: 

E8{inf {t:Id, - 8 I 5 c,s_>t)) = coast c-2 . (1.16) 

Equation (1.16) can be interpreted as convergence with the average rate not worse than 

t-lI2. Thus if the detection algorithm is associated with the parameter estimation algw 

rithm a "bootstrapn behavior of both of these algorithms can be observed, (e.g. the 



detection alarm may trigger re-initialization of the parameter estimator gains and the 

convergence of the estimator to  the true parameter value may follow the underlying 

parameter change model with do replaced by @. 

2. Discrete Time Detection 

The results in this section are based on the work published in [3] and [14]. The new 

results presented here for the first time include robustness of sequential testing and appli- 

cation of the fluctuation theory t o  threshold selection. 

Assume first that the observable data satisfy: 

where { z t )  is a Markov chain such that 

d P ( z t l z t - ~ J . . - J z l )  = dP(z t l z t - l ;o )  , (2 .2)  

with P ( . J . )  being the transition probability of a Markov chain { z t ) ,  and 8  a piecewise con- 

stant 'parametern function. 

The Change Detection Problem in its original form is stated as follows: 

there exists an instant to E ( 0 , ~ )  such that 

8  = 8, for t  < to 

8  = 8 ,  for t  2 to 

At any time t  we want to  decide between two hypothesis: 

Ho:t>to (no parameter change occurred before t )  , 

H1:tLto  (a  parameter change occurred prior to  t ) .  

Once H1 is accepted we want t o  estimate the change time to.  

Assume that we are using the following recursive procedure for parameter estima- 

tion: 

Assume also that {q) is asymptotically ergodic and that 

h (4,e)  = lim E~ # ( H  ( 8 , ~ ~ ) )  = 0 e 4 = 8  , 
i d 0 0  ' 



where 8* is the "adjustable" parameter (estimator) and 0 is the "true" parameter (not 

available to the user). 

Comments:  

- the class of algorithms (2.5) includes in particular the least-squares stochastic gra- 

dient algorithm: 

where zt = f(zt-l;O) + cut, and {cut) is a whitenoise sequence, and both ergodicity 

and stability are taken in the same sense. 

- the asymptotic ergodicity holds for example, for stable conditionally linear systems 

of the following form: 

where {cut) is a whitenoise sequence, and both ergodicity and stability are taken in 

the same sense. 

- in (2.6) Ego denotes the expectation with respect to the steady-state distribution of 
8 

{yt). Assumption (2.6) is difficult to verify, however it is a standard assumption in 

recursive estimation schemes. 

In order to apply the asymptotic local approach of LeCam theory [5,9,10,15] to con- 

struct a sequential detection algorithm, we modify the Change Detection Problem as fol- 

lows: 

Given a "nominal model" 0 = Bo, and a data record (yo,. ..,yt), of length t. Using 

the random vector H(eo;yk), 0 5 k 5 t, we want to test sequentially between the follow- 

ing hypothesis: 

Ho :  0 =oo 

H1 : there exists to E (l , t]  such that: 

0 = 0, for k < to 

0 = 0, + ~ k - ' / ~ f o r  to 5 k 5 t , 



where 68 # 0 is an unknown change. 

Theorem 3 [3]: 

Let 

Then pt , converges (weakly) to v, as t-oo, where 

dv, = a 1 (st 2 to)ds + R ~ I ~ ( B ~ ) ~ W ,  , 

w, is a Wiener process, a # 0, and 

Conclusion: 

N(0, R(Bo)) under Ho 

N(a, R(Bo)) under H1 ' 

N(.,.) denotes here normal distribution. 

Theorem 3 has the following practical implications: 

assuming that a change occurred a t  time to and that t is sufficiently large, the random 

vectors H(Bo,yk) are independent and distributed as follows: 

Hence the parameter change detection problem is replaced by the asymptotically 

equivalent problem of detecting changes in the mean of independent Gaussian random 

variables. 

Change Detection Algorithm: 

Let 

vt = H(fi0;yt) 

For the record { Vl, . . . , Vt}, the log-likelihood ratio between: 



Ho: the mean of Vt is equal to 0, 

and 

H1: starting from to 5 t the mean of Vt equals a ,  

is given by 

replacing a by its most likely value under Hl we get 

In order to estimate to we maximize S(t,tO) with respect to to: 

Denote: 

The detection time of a parameter change is now given by the stopping time td: 

td = tO(min{t:At 1 A,,)) , 

where A,, is a given threshold which controls the probabilities of false change detection 

and detection delay. 

Note: 

A t  does not have X2 distribution. The threshold A,, must be calculated using the 

distribution of the maximum of a sum of independent Gaussian variables. 

Let {zi) be i.i.d., and Sn = z1 + z2 +. a +  zn , So = 0. 

The Fluctuation Theory studies random variables of the form f(So,S1,. . .,Sn). Here 

the important case is 

Mn = max{O,S1,. . .,S,) , 

and its modification 

Nn = m a x { 0 , ~ ~ , 2 - ' / ~ ~ ~ ,  . . . ,n-'I2sn). 



It can be shown that for Ipl < 1 and any real u [16,17,18]: 

Equation (2.18) can be used to derive various etatistical parameters of Mn. In particular: 

If Z, - N(0,l) then Sk - N(0,k) and 

and 

Also if P(Sk 2 0) = 0.5 then [16] 

2k 2(n-k) 
P(first maximum occurred for Sk) = 2-2n ( ) ( n- ) . 

Using these relationships we can estimate E{Nn} from the above and accordingly set the 

threshold Am, (see the numerical example). Further research on better Nn distribution 

approximation is necessary. Some of the useful approximations can be derived using the 

Donsker's Theorem [lo]. 

Remarks: 

The assumptions about the properties of the random field H( ) are in general 

difficult to verify, and the corresponding results are valid only asymptotically. This 

exemplifies the importance of using here a robust algorithm. The asymptotic approach 

provides merely the guidelines for the detection algorithm design. 

The results of fluctuation theory aid construction of -called Huber estimators 

[19,20,21], whose goal is to achieve robustness of the otherwise non-robust log-likelihood 

method. In the numerical example presented in this paper the following robust 

modification of each Vk is used: 

vm,, = max{- a(n),min{a(n), Vk}}, n = sample size , 

where a(n) and the thresholds (as a function of k) are obtained, for a fixed probability of 



the false alarm, from (2.18). VmOd is used in the detection formulas (2.1617) instead of 

v. 
It should be emphasized that the application of the robust statistics here is war- 

ranted by the fact that the statistical test is reduced to one of its simplest, standard 

forms. 

Ezample: 

where {wt) is a standard white noise sequence. 

Define yt = [zt , z ~ - ~ ] .  

Then 

when a stochastic gradient method for parameter estimation is used. 

Accordingly 

R(e) = g2(e)~e((df(zo;e)lde) *(df(zo;e)lde) 

If the model is linear-in-parameters i.e. 

f(zt;O) = F(zt)e 

then 

Implementation Note: 

There is a need to  store an increasing sequence of scalar values S(t,to) and to  find its 

maximal element. This should not be a concern for most of the biological "real-timen 

experiments using even slow (PC-type) computers and long data records. If high perfor- 

mance is required it should be noted that the operation of finding a maximum in the 

detection formulae can be implemented in a systolic type architecture. 



3. Numerical Example 

To illustrate some of the implementation aspects of the proposed detection algo- 

rithm a simple 2-nd order dynamical system of so-called Lotka-Volterra type is simulated. 

Such a model does not attempt to describe any of the immunological functions in detail, 

however it has a characteristic qualitative behavior of competing agents. 

dz(t)/dt = #(')z(t) - d2)z(t)y(t)  , (3-1) 

dy(t)/dt = - d3)y(t) - 1) + d4)z(t)y(t)  , 

where di) 1 0 , i = 1,2,3,4, are the parameters. 

In its very crude form z(t)  may represent the concentration of cancer cells or a virus 

and y(t) characterizes the immune system (e.g. T-lymphocyte concentration). It is 

assumed that only y(t) is observed and that the corresponding measurements are made at 

the discrete time instants with a random error: 

yk = y(tk) + Qwk , {wk) = standard white noise . (3-2) 

Formally a continuous-discrete time filter should be used here. Instead much 

simpler, but also less accurate, discrete time filter is applied. The corresponding equa- 

tions are given below (see also Appendix A): 

First the discretization of (3.1) which includes measurement error takes the following 

form: 

where 

F(Yt) = exp(b(flo(') - ~ o ( ~ ) Y t ) )  , 

G(zt ,~ t )  = Q M ~ ( ~ )  F(yt)zt , 

~ ( y ~ )  = (1 - exp(- ~ 6 ~ ) ) ) ~ p )  yt(963))-' , 

h(yt) = (yt-1) exp ( + 1 , 



The next step of approximation consists of replacing zt in G() and R ( )  by its best 

mean-square estimator and applying conditionally linear filter equations, which yields 

We note that the above approximation being of a crude nature is sufficient for the 

purpose of change detection. This again emphasizes the robustness of the algorithms 

used. 

In addition to  the robust modification of the log-likelihood test a heuristic smoothing 

of the alarm function was used. A simple averaging of the alarm function within a fixed 

length window allows an increase in the range of measurement variances without causing 

the false alarms. The averaging window length increases in an obvious fashion the detec- 

tion delay. For the sake of graphical data presentation the measurement points are gen- 

erated prior to  invoking the sequential test algorithm. 

All the calculations were performed using the PC-MATLAB ver.3.13 program on an 

IBM-PC. The listings of written subroutines are presented in Appendix B. The descrip 

tion of commands and standard subroutines can be found in the PC-MATLAB User's 

Manual. 

The Figures 1 to 12 represent graphical output of several numerical experiments. 

The following parameter values were used: 

Parameters before the change: 

e(1) = 1.00, e(2) = 1.00 , e(3) = 1.00, e(4) = 1.00 . 

Parameters after the change: 

= 1.00, o(2) = 0.40 , e(3) = 1.00, e(4) = 0.20 . 



The change time = 2, final time = 3. 

Measurement error variance and sampling period is listed for each run separately. 

The change detection status is given above the continuous time trajectories graphs. 

Figure 1 and 2 show measurement data and system response respectively with no 

change in parameters. 

Figures 3, 4, 5 and 6 show the detection results for the same measurement error vari- 

ance but different sampling periods. 

Figures 7 and 8 show improvement in detection performance due to  the decreased 

measurement error variance. 

Figures 9, 10, 11 and 12 show the effect on detection performance of increasing the 

sampling period. In the case shown on Figures 11 and 12 the detection threshold was 

increased to avoid false alarms. This adjustment was necessary due to the increased sys- 

tematic error of discrete-time model approximation. 
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Concluelone 

The statistical approach to  data processing and sequential testing has a long tradi- 

tion. Probably the most successful example of such an approach is the heuristic work of 

Wald [22]. The main criticism of statistical methods comes from the fact that some of the 

experiments do not provide sufficient data samples to  verify the statistical assumptions 

used in model derivation. One may argue that the immunological data belongs to  the 

latter category. Here the statistical testing is proposed to  implement a parameter change 

algorithm. The main justification in using this approach is the need of having a uniform 

theoretical framework to design, test and compare various detection methods under 

different experimental conditions. Since the basic concepts of statistics are known and 

accepted in practice by most engineers and scientists it seems natural to use this as a base 

while proposing new algorithms and techniques. Knowing that the postulated mathemat- 

ical properties of the modeled signals and systems are not easily verifiable should 

emphasize robustness of derived algorithms. Again the field of robust statistics is gaining 

recognition in the last few years and maturing to the point of being a useful engineering 

tool. 

The detection algorithms studied in this paper are based on sequential hypotheses 

testing in a secalled local asymptotic framework. The ability of reducing a complex in 

nature test to  a simple test for a non-zero mean of a sequence of random variables is an 

attractive practical result. The simple form of such a test allows further experimentation 

with robust modifications as seen in the presented examples. It is apparent that the real 

performance of the derived methods can be verified only in a numerical manner. Here a 

simple numerical example is provided to highlight some of the concepts and to provide a 

basis for further investigation. Despite its simplicity this example may have practical 

applications in clinical oncology. An actual problem of clinical oncology is the prediction 

of individual reaction of a tumor process on the method of treatment. A characteristic 

behavior of the clinical data for the patients with stomach cancer takes the form of a e  

called breaking trajectories. Early detection of this behavior may assist medical treat- 

ment and aid in the prediction of the patients recovery process [7]. 

One of the conclusions resulting from the numerical experiment is that there is an 

obvious trade-off between the number of data points required for detection and the vari- 

ance of measurement error. This could be of potential use to the experimentalists since i t  

may allow trading between sparser sampling versus more accurate laboratory data p r e  

casing. From the nature of biological data sources the sampling rates are relatively slow 

and often are barely capable of keeping up with the system's own dynamics. Therefore the 

assumption that the statistical averaging takes place is critical and must be verified for 



each case individually. From the numerical cases presented it is relatively easy to see 

that the detection works in a non-trivial manner, providing differentiation between data 

records which seem to be graphically identical. Again this is where the theory meets 

practice and where the performance of the algorithm should be evaluated only on its 

application level. The examples presented here use the extended innovations concept. It 

should be emphasized that any random field which signals the difference between real 

parameters and their estimators can be used here. The work on the continuous detection 

method is currently in progress. Some of the continuous time results used in this paper 

are proved in [23]. 

Appendix  A:  

Conditionally linear filter equations are presented in [13], [14]. We give the 

corresponding result from the references. Consider a nonlinear time series {zt), t 2 0, 

generated by the equations: 

where f ,F , G , Q ,h ,H are known functions of an argument (t ,  Yt = {yo,. . . , yt)). 

The initial condition zo is a random variable for which the conditional distribution 

P(zo 5 aJyo) = P(a)  is given (zo 5 a denotes system of inequalities with respect to the 

corresponding components of zo and a). Sequences {wt), and {ut) are white, Gaussian, 

mutually independent and independent of zo and yo. Note that the above model includes 

a class of nonstationary stochastic models which are nonlinear in the measured data and 

accept arbitrary distribution of the initial condition. 

Let p(ztl Yt) denote the conditional density of zt given the observations Yt. Then 

p (zt 1 Yt) is given by 

where g(-;m,P) denotes the Gaussian density with mean m and variance P 

and 



Zt+i = f + Fzt + Kt(yt+i - h - Hzt) , zo = 0 , 

K, = (Q + FP~H*)(I + H P ~ H * ) - ~ ,  

~ t + ~  = (J'P~F*+ GG*+ QQ*) - K,(Q + FP~H*)* ,  p o = o ,  (A.3) 

P t + l =  ( F  - KtH)Pt , Po = I ,  

= st + P;H*(I+ H P ~ H * ) - ~ H ~ ~ ,  so = o , 

Rt+, = Rt + P;H*(I + H P ~ H * ) - ' ( ~ ~ + ~  - h - Hy) , Ro = 0 . 

Note: Equation (A.l) can be evaluated explicitly in several special cases, e.g., when P(a) 

is a mixture of Gaussian distributions. 



The command file and the subroutines used within PC-MATLAB 
environment to implement the detection algorithm are listed 
below. Some of the model parameters can be changed in an interac- 
tive fashion (i.e. differential equation coefficients, change 
time, terminal time, sampling period, measurement error 
variance). The other parameters can be changed by simply editing 
corresponding files. The file 'therdis.mat' contains pre- 
calculated alarm thresholds. This data file was created using the 
command file 'therdata.m'. The role of the flags and auxiliary 
variables is documented in the source files. 

....................................................... 
* Startup Procedure for Detection Algorithm Example * ....................................................... 

% Initialize Memory and Display 
clear; 
clear functions; 
hold off ; 
clc; 

% Parameters Format (Example Values) 
% Actual values are stored in the file: pvalues.mat 

PO = C1.0, 1.0, 1.0, 1.01; % Before Switch 
pl = [1.0, 0.4, 1.0, 0.21; % After Switch 
yo = 11.0, 0.11; % Initial Condition 

% ft = 3; % Final time 
% s t = 2 ;  % Switch time 
% errv = 0.05; % Measurement Error 
% dt=0.10; % Discretization Step 

load pvalues; 
rand('seedl,seed); 

% load stored parameters 
% initialize random generator 

% Parameter Value Input 

flag = 1; 
while flag == 1, 

save pvalues; 
fprintf('\n\n ' 1 ;  
fprintf('SYSTEM EQUATIONS:\n\n'); 
fprintf(' Time'); 
fprintf ( ' x(0) = %4.2f', yO(1)); 
fprintf ( ' y(0) = %4.2f\n\n', yO(2)); 
fprintf(' CO, %gl ' ,  min(st,ft)); 
fprintf(' dx/dt %4.2fx - %4.2fxy ' ,  p0(1), pO(2)); 
fprintf(' dy/dt -%4.2f(y-1) + %4.2fxy\n\n', p0(3), pO(4)); 
if st < ft, 

fprintf(' ( X g ,  %gl ' ,  st,ft); 
fprintf(' dx/dt %4.2fx - %4.2fxy ',pl(l),p1(2)); 
fprintf( . . .  

' dy/dt = -%4.2f(y-1) + %4.2fxy\n\n',p1(3),p1(4)); 
end ; 



fprintf(' Measurement:'); 
fprintf(' Sampling %g', dt); 
fprintf(' Variance = %g', errv); 
fprintf(' Generator %g\n\n',rand('seed')); 
flag = 0; 
q = input('Change System Coefficients [y/n] ? ' ,  'sl); 
if q == 'y', 

flag = 1; 
pO = input('Before Change [p(l) p(2) p(3) p(4)] ? ' ) ;  
pl = input('After Change [p(l) p(2) p(3) p(4)] ? ' ) ;  

end ; 
q = input('Change Time Points [y/n] ? ' ,  's'); 
if q == 'y', 

flag = 1; 
st = input('Change Time ? ' ) ;  
ft = input('Fina1 Time ? ' ) ;  

end ; 
q = input('Change Initial Conditions [y/n] ? ' ,  '5'); 
if q == 'y', 

flag = 1; 
yo = input('Cx(0) y(0)] ? ' ) ;  

end ; 
q = input('Change Measurement Parameters [y/n] ? ' ,  '5'); 
if q == 'y', 

flag = 1; 
errv = input('Variance ? ' ) ;  
dt input('Samp1ing Interval ? ' ) ;  
newseed=input('Random Generator Seed 
if newseed >=  0 

seed = newseed; 
rand('seed',seed); 

end ; 
end ; 

end ; 

P-- = PO; % p is a global variable to pass parameters 
global p ;  % to vo1terra.m subroutine 

flag 1; 
% 
% Program "run levels" controlled by 'flag' variable: 
% 0 = just run 
% 1 = raw data pause 
% 2 raw data & filter pause 
% 3 = add to 2 continuous data 
% 4 empty 
% 5 plot-and print all, pause each time 
% 
fprintf ( ' \n\n Please Wait 

% Schedule Model Simulation 

*** End of startup command file *** 



............................................................ 
* Dynamical System Simulation and Subroutines Scheduling * ............................................................ 

function model (yO,tO,tl,tf,tetaOJtetal,delta,var0,varl,f1ag); 
% 
% model(y0, to, tl, tf, teta0, tetal, delta, var0, varl, flag) 
% 
% yo = initial conditions yO=[yO(l), y0 (2)]=["cancerH, "immune"] 
% to = initial time, tl = change time, tf = terminal time 
% tetaO = initial parameters, tetal = parameters after the switch 
% delta = discretization step 
% varO = initial estimation error 
% varl = measurement error 
% flag = run levels (see start.m) 
% this routine calls function 'volterra' to calculate dy/dt 
% 

hold off; 
% 
X before change 
% 

p-- = teta0; 
[t,y] = ode23('volterra',tO,tl,yO); 
nt = length(t); 

% 
X after change 
% 

if tl < tf, 
p-- = tetal; 
yl = y(nt,l:2); 
[ts,ys] = ode23('volterra',tl,tf,yl); 
ns = length(ts); 
t(nt+l:nt+ns) = ts; 
y(nt+l:nt+ns,l:2) = ys; 
nt = nt + ns; 

end 

if flag > 4 ,  % plots phase plane 
plot(ymin01,ymin02,'i',ymax01,ymax02,'i'); 
hold on; 
plot(y(l:nt,l),y(l:nt,2),'-'); 
hold off ; 
pause; 

end 

if flag > 0, 
plot(tO,yminO,'i',tf,ymaxO,'i'); 
grid 
hold on 

end 



if flag > 2, 
plot(t,y(l:nt,l),'-'); 
title('--- = Cancer Cells - - Immune Response' ) ; 
plot(t,y(l:nt,Z),'--' 1 ; 
pause; 

end 
% 
% Call Conditionally Linear Filter Routine: 
% 

[miu,tmiu]= . . .  
c l f i l t e r ( t O , t l , t f , t e t a O , d e l t a , v ~ , t , y , n t , f l a g ) ;  

if flag > 0 
title(sprintf( . . .  
'Measurement = >  Variance = %g Sampling = %g', . . .  

varl, delta) ) ; 
pause; 

end 
hold off; 

% 
% Call Change Detection Routine 
% 

[ta,tc] = seqtest(tO,tf,tmiu,miu,flag); 

hold off ; 
plot(tO,yminO,'i',tf,ymaxO,'i'); 
grid 
hold on 

if t a > O  & t c > O ,  
title(sprintf('Detection = %.g Alarm = %g', tc, ta)); 
ymeasured = sample(ta,t,y(l:nt,Z)); 
text(ta,ymeasured,setstr(97)); 
ymeasured = sample(tc,t,y(l:nt,Z)); 
text(tc,ymeasured,setstr(100)); 

else 
title('N0 Change is Detected'); 

end 

*** End of 'model' subroutine *** 

............................................ 
* Conditionally Linear Filter Subroutine * ............................................ 

function [miu,tm]= . . .  
clfilter(tO,tl,tf,tetaO,delta,varO,varl,t,y,nt,flag); 

% 
% Filter for Lotka-Volterra Model with corrective noise terms 
% 
% [miu,tm] = . . .  
% clfilter(tO,tl,tf, teta0, delta, varO,varl, t,y, ts,ys, flag) 
% 
% calculated here are (normalized) innovations 



% tO = initial time, tl switch time, tf = terminal time 
% tetaO initial parameters 
% delta = discretization step 
% varO = initial estimation error 
% varl = measurement error 
% [t,y] = data, nt = data length 
% 

rand('norma1'); 

Filter Equations: 

F(y(t)) = exp(delta*(tetaO(l)-teta0(2)*y(t))) 
G(x(t),y(t)) = delta*tetaO(2)*x(t)*varl*F(y(t)) 
H(y(t)) = (1-exp(-delta*tetaO(3)))*tetaO(4)*y(t)/tetaO(3) 
h(y(t)) = (y(t)-l)*exp(-delta*teta0(3)) + 1 
R(x(t),y(t)) = -exp(-delta*teta0(3))*varl - . . .  

(l-exp(-delta*tetaO(3))*tetaO(4)*~(t)*varl/tetaO(3) 
Q = varl 

ypred = h + H*xf(t) 
B = l/sqrt(Q*Q + R*R + H*H*Pf(t)) 
miu(t+l) = B * (y(t+l) - ypred) 
K = (G*R + F*H*Pf(t))*B 
xf(t+l) = F*xf(t) + K*miu(t+l) 
Pf(t+l) = F*F*Pf(t) + G*G - K*K 

if delta > 0 

xf = y(1,l) + varO*rand; 
Pf = varQ*varO; 
yf = y(1,2) + varl*rand; 
Qcap = varl*varl; 
nsample = 0; 

cl = delta * tetaO(1); 
c2 = delta * tetaO(2); 
c3 = exp(-delta * tetaO(3)); 
if tetaO(3) == 0, 

c4 = delta * tetaO(4); 
else 

c4 (I-c3)*teta0(4)/teta0(3); 
end 

for ta = tO+delta: delta: tf, 

ymeasured sample(ta,t,y(l:nt,2)); 
nsample = nsample + 1; 
ysample ymeasured + varl*rand; 

if flag > 0, 
plot(ta,ysample,'o'); 

end 



Fcap = exp(c1 - c2 * yf); 
Gcap = Fcap * c2 * xf * varl; 
Hcap = c4 * yf; 
hlow = (yf - 1) * c3 + 1; 
Rcap = -(c3 + c4 * xf) * varl; 
ypred = hlow + Hcapxxf; 
Bcap = l/sqrt(Qcap + Rcap*Rcap + Hcap*Hcap*Pf); 

miu(nsamp1e) = Bcap * (ysample - ypred); 
tm(nsamp1e) = ta; 

Kcap = (Gcap*Rcap + Fcap*Hcap*Pf)*Bcap; 
xf = Fcap*xf + Kcap*miu(nsample); 
Pf = Fcap*Fcap*Pf + Gcap*Gcap - Kcap*Kcap; 
if flag > 1 

plot(ta,ypred,'+'); 
plot(ta,xf, 'x' 1; 

end 
yf = ysample; 

end 
end 

*** End of Conditionally Linear Filter Routine *** 

................................. 
* Change Detection Subroutine * ................................. 

function [ta,tcl = seqtest (to, tf, t, y, flag); 
% Sequential test for change from zero to a nonzero 
% mean in a Gaussian sequence [t,y] with a known 
% constant variance 
% 
% [ta, tc] = seqtest(t0, tf, t, y, flag) 
% 
% to = initial time, tf = terminal time 
% [t,y] = data to be tested 
% 
% ta = alarm time 
% tc = change detection time 
% 

nt = length(t); 

% load pre-calculated variables 
load therdis; 
if nt > nmax, % not enough thresholds were pre-calculated 

fprintf(setstr(7)); 
fprintf('nmax = %g < nt = %g ?\n',nmax, nt); 
pause ; 

end 

den(1) I; 
for k = 2 : nt, 

den(k) = I / sqrt(k); 
end 



% sigma is a scalar multiplier which monitors false alarm rates 
% higher value of sigma = >  smaller detection sensitivity 

sigma = 1.5; % as high as 4.5 for sparse sampling 
thermax therave + sigrna*therdev; 

satur = thermax(nt); 

plot(tO,O,'i',tf,satur,'i'); 
hold on 

naver = 3; % length of alarm function averaging window 
eaver 1; % auxiliary monitor of change time estimation 

% consistency 
for td = 1 : nt, 

maxtemp = -1; 
delta = 0; 
f o r t c =  t d :  -1 : 1, 

delta = delta + min(satur,max(-satur,y(tc))); 
ratio = abs(delta)*den(td-tc+1); 
if ratio > maxtemp, 

ttemp = tc; 
maxtemp = ratio; 

end 
end 

if maxtemp > thermax(td), 
maxtemp = thermax(td); 
plot(t(td),maxtemp,'*'); 

else 
plot(t(td),maxtemp,'+'); 

end 

maxratio(td) maxtemp; 
te(td) t(ttemp); 

if td >=  naver, 
saver = std(te(td-naver+l:td)); 
raver = mean(maxratio(td-naver+l:td)); 
if ((saver < eaver) & . . .  

(raver >= O.S*mean(thermax(td-naver+l:td)))), 
fprintf(setstr(7)); 
ta = t(td); 
tc = te(td); 
hold off ; 
return; 

end 
end 

end 

hold off 

ta = -1; 
tc = -1; 
return; 

*** End of Sequential Detection Routine *** 



........................... 
* Lotka-Volterra System * ........................... 

function yprime = volterra(t,y); 
% volterra(t,y) returns the derivatives of the Lotka-Volterra 
% system of equations 
% ~ ' ( 1 )  = ~ ( 1 )  * (~(1) - ~(2)*~(2)) 
% ~ ' ( 2 )  = ~ ( 2 )  * (~(4)*~(l) - ~(3)) + ~ ( 3 )  t ~(5)=1 
% needs global parameters: 
% P = C P ( ~ ) , P ( ~ ) , P ( ~ ) , P ( ~ ) ] ~  
% normally set by the calling subroutine mode1.m 

yprime = C (~(1) . *  (p-(l) - ~ ~ ( 2 )  . *  ~(2))); 
(~(2) . *  (P--(4) . *  ~ ( 1 )  - ~ ( 3 ) )  + ~ ( 3 ) )  I ;  

*** End of Volterra Routine *** 

......................................... 
* Pre-Calculation of Alarm Thresholds * ......................................... 

% Creates and stores in c:\matlab\therdis.dat 
% theoretical distribution parameters used by sequential 
% change test routine 
% 
clear 
clc 
nmax = input('Number of Thresholds = ? ' ) ;  
therave(1) = 1; 
for k = 2 : nmax, 

therave(k) = therave(k-1) + 1 / sqrt(k); 
end 

therdev(1) 0; 
therdev(2) 1; 
for k = 2 : nmax-1, 

S = 0; 
fori = 1 : k-1, 

S = S + 1 / sqrt(i*(k+l-i)); 
end 
therdev(k+l) = therdev(k) + 1 / sqrt(k) + S; 

end 

for k = 1 : nmax, 
therdev(k) = sqrt(l+(therdev(k)-therave(k)W/(k*pi)); 
therave(k) = therave(k) / sqrt(pi*k); 

end 

save c:\matlab\therdis therave therdev nmax; 

*** End of threshold pre-calculation routine *** 
................................ 
* End of Subroutine Listings * ................................ 
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