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FOREWORD 

This paper deals with new variable metric algorithms for nonsmooth optimization 
problems. The author develops so-called adaptive algorithms. The essence of such algo- 
rithms is as follows: there are two simultaneously working gradient algorithms, the first is 
in the main space and the second with respect to  the matrix for modification of the space. 
The author proves convergence of such algorithms for different cases. 
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ADAPTIVE VARIABLE METRIC ALGORITHMS 
FOR NONSMOOTH OPTIMIZATION PROBLEMS 

Stanislav Uryas'ev 

1. INTRODUCTION 

Variable metric algorithms are widely used for smooth optimization problems (see 

for example the review article [I]).  As a rule this algorithm can not be generalized for 

nonsmooth optimization problems. The difficulties are connected with the fact that even if 

the first and second derivatives exist at some point they do not give the full local descrip- 

tion of the function. Because the function is nonsmooth, a point of nonsmoothness can be 

arbitarily close to the point where derivatives exist. For this reason the quasi-Newton 

methods can not be automatically generalized for nonsmooth problems. 

These difficulties lead to the appearance of new ideas for the construction of variable 

metric algorithm. In the works of N. Shor (see for example [2]) and his pupils, so-called 

space-dilatation algorithms were developed. Such an approach gives the opportunity to 

construct practical and effective algorithms, but the most effective algorithm (r- 

algorithms) from this family is not sufficiently understood from the theoretical point of 

view. 

This author proposed an alternative "adaptive" approach, that can be applied to op- 

timization and game theoretic problems. This approach stems from the article [3], where a 

step size control was proposed for the stochastic quasi-gradient algorithm [4]. The first 

variable metric algorithm based on such approach was proposed in the paper [ 5 ] .  In the 

paper [6], a short review of new variable metric algorithms is given for different optimiza- 

tion problems: smooth, nonsmooth, stochastic optimization problem. 

2. ESSENCE OF THE APPROACH 

Let us consider a convex optimization problem 

f(z) --, min , 
z € R n  



where the function f(z) is convex on the Euclidean space Rn. We use the following re- 

current algorithm for the solution of this problem: 

here s is the iteration number, pa > 0 is step size (scalar value); Ha is a n x n matrix; ga 

is a subgradient from the subdifferential af(z) of the function f(z) at  the point za, i.e. 

ga E af(za).  We recall that the subdifferential of the function f(z) at  the point y E Rn is 

given by the formula (see, for example [7]) 

af(y) = {g E Rn:f(z)  - f(y) 1 <g, z - y> for V ~ E  Rn)  

At the sth iteration the natural criterion defining the best choice of matrix Ha is via the 

function 

The best matrix is a solution of the problem 

pa(H)  + min . 
H E  RnXn 

It is easy to see that problem (3) is a reformulation of the source problem ( I ) ,  since if H* 

is a solution of (3) then the point za - paH*ga is a solution of (1). More than that, the 

problem (3) is more complex than (1) because the dimension of the problem (3) is in n 

times higher the dimension of (1). However, at  the sth iteration of algorithm (2) we do 

not need the optimal matrix, it is enough to correct (update) the matrix Ha. If we already 

have some matrix H6, then the direction of adaptation can be defined by differentiating, 

in the general sense, the function p,(H) at  the point Ht.  If the function F(z) is a convex 

function then the function p,(H) is also convex. We can use the following formula [8] for 

the differentiation of the complex function 9,: 

here and below the superscript T means transposition. If g6 E af(za - paH6ga), then 

- pag6g" E Ep(H6). With respect to the matrix H, in the direction g6gaTT, one can do a 

step of the generalized gradient method: 

It is possible either to take HJ = Hi or to continue the iterations of the generalized gra- 

dient algorithm with respect to H 



T 
where gf E 8 f(z8 - p8Hfg8) and - p8gfg8 E dp8(Hf). For some i(s) 2 1 assume 

H"= HH,]. At the next iteration ~ t +  ' = Ha. The number i(s) can be taken indepen- 

dently of s ,  for example, i(8) = 1 for all 8. Generally speaking, the algorithm (2) is not 

monotone with respect to the objective function f(z). However, one can chose i(s) such 

that 

and on each iteration the objective function decreases. 

Note that matrix updating requires additional calculations of objective function 

subgradients. This can be avoided by taking go+' = g:, i(s)  = 1 and using the matrix Hi 

at (s + l)th iteration. Therefore we propose the following formula for matrix updating 

In formula (5)) additional subgradient calculations are not required. 

3. CONVERGENCE FOR SMOOTH FUNCTIONS 

At first let us investigate the convergence of algorithm (2) and (5) for the case with 

a differentiable function f(z). Denote g8 = Vf(z8). For algorithm (2)) as direction of mo- 

tion we choose the normalized subgradient 

The algorithm can now be written in the following way 

where I is a unit matrix. (Thus, for the parameter A, in the formula (5) we choose the 

value p8/llg81J.) Denote by 

8 

B8 = C prgl+ '(IT, D ( K )  = max (12 - yll , 
l = O  v1zEK 



f =  min f ( z ) , f , =  min f ( z l )  , 
Z E R "  o < l < a  

i.e. D ( K )  is the diameter of a set K and f, is a record of the lowest value of the function f 

during the previous s iterations. We also denote by T r ( Q )  the trace of matrix Q .  

Let us now formulate the theorem about the convergence of algorithm (6). 

THEOREM 1 Let f :  Rn + R be a convex smooth Lipschitz function 

f(4 - f ( ~ )  I LllIX - yll for 2 1  Y E Rn (7) 

with Lipschitz gradient 

IlVf(4 - V f ( ~ ) l l  5 L2Ilz - Y I I  for x ,  y E R" , (8) 

and let there exist a compact set K such that 

IlVf(x)ll  > s k > o  for x $  K . (9) 

If the step sizes p,, s = 0 ,  1, ..., i n  the algorithm (6) are nonnegative, i.e. and for all s 

larger than some B one has 

then: 

- 1 
+ ~ ( z o )  - f - z - l r r ( e ~ e s T )  D ( K )  c pl for s > s ; I I I I O  I 

2 )  for pl = ( s  + 1) -  '/', 1 = 0, .  . ., s and a > S 

where c = const; 

00 

3) for C p,2 = oo 



if p, = 8- then 

lim (fS - ft)(ln(a))-1/2s1/2 < const - 
5 + 00 

PROOF First we evaluate the Euclidean norm of the matrix HS. 

LEMMA 1 The following inequality holds 

PROOF Relation (6) implies 

Since the function f(z) satisfies the condition (7) then llgSll < L1, s = 0, 1,-  - - .  

Denote by Az3 + = z3 + - z3. 

Taking into account the convexity of the function f(z) we can evaluate the trace of 

H3 HsT 

Since J I H ~ + ~ ~ ~ ~  I Tr(H 8 + 1 ~ 3 + 1 T ) ,  then 



The Lemma is proved. 

The inequality ( 1 2 )  implies 

a 
T r ( H a + ~ H 8 + l T  ) = T p l g l l l T  + p1 ( lg1+  l T  + 41 = 

Ill = 

Consequently 

Since the gradient of the function f ( z )  satisfies Lipschitz condition, then applying Lemma 

1  we see that 

Using ( 1 3 )  and ( 1 4 ) ,  it is easy to establish 

Consequently 



Combining inequality (10) with the last inequality we get 

min llglll < bk for 8 > S . 
' < I < #  

Thus for a number l ( s )  such that  gl(')  = min l lgl l l ,  the inclusion zl(') E K holds because 
15 15 a 

of the definition of bk. Let z* be a minimum point i.e. f(z*) = ft. Using th  convexity of 

the function f(z)  we see that  

Ta - f* 5 f ( z ' (4)  - f(z*) < < g l ( 4 ,  zl(a) - z*> < - 

5 l l g l ( a ) l l  ~ l z l ( ~ )  - z*ll 5 I I ~ ' ( ~ ) I ~ D ( K )  < D(K)  min l g l l l  
l i lsa 

Applying this last relation and (16) we get the statement 1 of the Theorem. 

Statement 2 of the Theorem can be obtained by substituting in the statement 1 the 

values pl = ( s  + 1 ) -  ' I 2 ,  1 = 0 , .  . ., S .  

Let us now prove the statement 3 of the Theorem. It is enough to show that  

because IlgSIID(K) > f ( zS)  - f* for s  -> 3. If that  inequality (17) does not hold, then 

there exists a number 3 such that  for s  > 3 

Substituting the last inequality into the left side of the inequality ( 1 5 )  we get a contradic- 

tion for s  -+ w, because the left side of inequality tends t o  infinity faster than the right 

one. 

If the number of iterations of the algorithm was chosen before the start  of the algo- 

rithm then statement 2 of the theorem implies that  the convergence rate of algorithm (6)  

is not worse than the generalized gradient algorithm with matrix H a  = I, s  = 0 ,  1,. . - .  

For Ha = I, 8 = 0 ,  1,- . the following estimate (see, for example [9]) is known 

where 



Note that  in the estimate in statement 2 of the theorem there exists an additional term 

~ t ( ~ ~ e ~ . ' . )  that  increases the convergence rate. This term does not let the algorithm 

"stick" when the objective function is ill-conditioned. 

4. CONVERGENCE FOR NONSMOOTH FUNCTIONS 

Let us consider algorithm ( 2 ) .  We suppose that a t  the sth iteration of main algo- 

rithm for the updating of the matrix H t ,  the formula ( 4 )  is used i ( s )  times. At the itera- 

tion s  + 1 we take Hi+' = Hf(,). 

At the zero iteration H: = I ,  where I is a unit matrix. Fix some 6 > 0 .  We choose 

i ( s )  to be the minimal member such that  

It is convenient to  normalize the test vector g f ,  therefore denote by 

I 0 ,  if gf = 0 ,  
( f  = 

g f l Ig f I I - l ,  otherwise . 

For each s  = 0 ,  1 ,  . . let the sequence {A,,), i  = 0 ,  1 ,  . . - of positive values be given. 

We write the algorithm in more detail. 

ALGORITHM I 

STEP I Initialization 

STEP I1 

1 Hi = ~fil', i = 0 ;  

2  z f = z 8 -  psHidsd; 

3 compute gf E a f ( z / ) ,  if gf = 0 then STOP, otherwise ( f  = g f l l g f l l - l .  

T 
4 Hid+ 1 = Hf + Xdi(fg8 . 

5 if f(zf)  5 f ( z d )  - 6,  then i ( s )  = i and go to  step 111; 



6 i = i + 1 ,  return to  point 2. 

STEP I11 z8 + ' = zf,  g8 + = gf. 

STEP IV s = s + 1 and return to  step 11. 

We now formulate a theorem about the convergence of algorithm 1.  

THEOREM 2 Let :  f :  R n  + R be a convez function; the set of m in imum points X* of 

the funct ion f ( z )  be non-empty and bounded; {p,) be a sequence of positive numbers; and 

{ A s i ) ,  i = 0 ,  1 ,  . . be a given sequence of positive numbers satisfying 

00 00 

C X , i = w C ~ ~ i < w , X , i + O  for i + w  . 
i = 0 i =  0 

Then there ezists number B such that f(z5) 5 6 + f' and d(zT, X * )  + 0,  f(zi3) + f' 

for i + w,  where f' equals m in imum value o f f  on  Rn. 

PROOF Let us prove a t  first tha t  if f ( z S )  - f' - 6 = 6 > 0 then there exists number 

i ( s )  such that  

Let z* E X*. Using the formulae of the point 2 and 4 of Step I1 we get 

We prove by contradiction that  there exists a number i ( s )  satisfying the inequality (21). 

Let for all i > 0 

Since <(f, z* - zf> 5 0 then i t  follows from (22) and (20) that  



The function f : R n + R  is convex, consequently on the compact set 

{z  E R n :  ((z* - zll 5 C) it satisfies Lipschitz condition with a constant L. Therefore 

11gfll 5 L for i 1 0  . 

Using the convexity of the function f(z) we obtain. 

2 ~ a l J g ~ I l ~ < € f ,  z* - zf> L 2 ~ ~ l l g ~ l l ~ I l 9 f l l - ~ ( f ( z * )  - f ( ~ / ) )  L 

I - 2pallga112~-16 = - a < 0 . 

Substituting this inequality into the relation (22) we see 

Applying (20) and the Teplitz lemma we have 

- 1  , 
for i + m .  

Using (20) we obtain 

and this contradicts (23) 

It follows from (21) that  f (za+ l)  5 f(za) - 6 if f(zJ) - f - 6 > 0. Consequently 

there exists a number Fsuch that  f(zT) 5 6 + f .  Since 6 was arbitrary, then (21) implies 

that  there exists subsequence ik for which 

f(z$ - f for k - m . (24) 

Let us prove that  the convergence of this subsequence leads to  the convergence of se- 

quence. Take some p > 0, then if 

f (z9  - f 1 then 2Pr11g5112 c (r, Z* - z:> 5 -  q c 0 . 

It follows from (20) that  there exists such number 1 that  for all i > inequality 

A: 5 qph 2 1 1 g T l J - 4  holds. Using the inequality (22) we have 



for i such that i > 1 and f(zij) - f 2 B. Denote by 

U(p) = {z:  d(z, X*) < p),  Qp = (2: f(z) < f + 

(see (18)). Let p(B) be a minimal number such that Qp c U(p(P)). Since the function 

f :  Rn + R is convex and the set X* is compact then P(B) + 0 for B + 0. Applying (25) 

we see that if zf f U(p(B)) then 

llz* - zf+1ll < 112* - zAl 

for i > 1. Using points 2 and 4 of Step I1 of the algorithm, we obtain 

The relation (24) implies that beginning with some I? for k > I? the inclusion 2; E Up(p) 

holds. Taking into account the two previous inequalities we get 

for i > max (1, iL}, ik < i < ik+ l. It follows from the assumption (20) of the theorem that 

max A, + 0 for k + oo , 
i t + l > l > i k  

therefore for sufficiently large numbers k, the inequality 

holds. Substituting this estimate into (26) we have 

for sufficiently large i. Since B can be arbitrarily small and p(B) + 0 for P + 0, then 

d(zT, X*) + 0 for i + oo. The function f : Rn -+ R is convex, consequently it is continu- 

ous on Rn. For this reason the convergence d(z:, X*) + 0 implies f(zi3) + f .  The 

theorem is proved. 



Algorithm 1 has a substantial deficiency connected with the fact that the step size p ,  

does not change in the internal iterations i  = 1, ..., i ( s ) .  Let us consider an algorithm 

with a steepest descent control of p ,  at each iteration i  = 1, .  . ., i ( s ) .  Such a modification 

considerably improves the algorithm. 

Let Y > 0 be a given number and {Xj)r be a sequence of positive numbers. 

ALGORITHM 2 

STEP I Initialization 

STEP I1 

1 Hi = ~f,,', i  = 0 ;  

2 p, ,  = argmin f(zS - pH;SgS); 
P>O 

3 j = j + l , j ( s , i ) = j ;  

4 = ; S =  z S  - p .H? ' st t9 ; 

5 compute g;S E a f(zf) such that <g;S, H/g8> 5 0 ;  

6 H f +  = H/ + .(? 8T. 
J l g  , 

7 if llzf - zSll 2 Y then i ( s )  = i  and go to Step 111; 

8 i = i  + 1 ,  return to  the point 2. 

STEP111 z b + l = z f , g S + l = g f .  

STEP IV s  = s  + 1 ,  return to Step 11. 

Let us introduce some additional designations: let 

and let L be a Lipschitz constant of function f on the set T ( z O ) .  Recall that the ;unction f 

is called strictly convex on a set T ( z O )  if 

for all a l ,  a2, z ,  y such that 

We next formulate a theorem about the convergence of algorithm 2. 



THEOREM 3 Let a funct ion f :  R n  - R be strictly convez (possibly nonsmooth) on a 

set T ( z O ) ,  let a number v > 0 be given, and let the sequence { A , } ,  j = 0 ,  1, . . of positive 

numbers satisfy the conditions 

00 00 

CAj=m, C A f > m ; A j - 1 0  for j - m  
i = 0 i = 0 

Then there ezists a number S such that 

f ( z 7  - f' < 2 v L  . 

PROOF Let us prove first that the norm of the matrix H/ is uniformly bounded for all 

o > O , i > O .  

LEMMA 2 The inequalities 

obtain. 

PROOF The inequality 1 1  H!II < T ~ ( H ~ H / ~ )  follows from the definition of norm and 

trace of matrix. Point 6 of Step I1 of the algorithm implies 

Using this equality and taking into account that due to the construction of algorithm 

<€f ,  H/g8> < 0 ,  1 1 ( f 1 1  < 1,  we have 



The lemma is proved. 

LEMMA 3 There ezists a number B such that 112:- z"ll < v for all i 2 0. 

PROOF The statement of this lemma follows from the following lemma [10]. 

LEMMA 4 Suppose the function f ( z )  is strictly convez on R n ,  the set T ( z O )  is bounded, 

and there is a sequence { z8)y=o such that { ~ ~ ) , o d , ~  c T ( z O )  and 

Then lim llz8+' - zsll = 0. 
8 4 0 0  

Note that  the boundedness of the set T ( z O )  follows from the strict convexity of the 

function f ( z )  on Rn.  If the statement of the lemma 3 does not hold then points 2 and 4 of 

Step I1 imply that  the sequence { z s )  satisfies condition (28) and that  beginning with some 

s* the inequality 

holds. This contradicts point 7 of Step 11, since 

due t o  the construction of the algorithm. This contradiction proves Lemma 3. 

T o  finish the proof we need one more lemma. Recall that  the set 

is called the c-subdifferential of the convex function f ( z )  a t  the point z E R n  [7]. A vector 

g E a, f ( z )  is an c-subgradient of the function f a t  a point z. 

LEMMA 5 Suppose g E a f ( z ) ,  z E T ( z O ) ,  y E ~ ( 2 ~ ) .  If ( ( z  - Y J I  5 v then g E aZvL f ( ~ ) .  

PROOF Using the definition of the subdifferential we have 

Since the function f ( z )  satisfies the Lipschitz condition with a constant L then 



Consequently 

l(91) 112 - yll + I f (4  - f ( y ) l  5 2Lllz - Y I I  < 2Lv 

It follows from (30) and last inequality that 

f(z) 2 <g, z - Y> + f (y)  - 2Lv - 

Let us prove that the number B from Lemma 3 satisfies the statement of the 

theorem. Suppose it does not hold, i.e. 

Since IlzT - zdll < v, then according to Lemma 5 

It follows from (31) that 0 4 azUL f(zT) (see, for example, Lemma 8.1 [lo]). The set 

azUL f ( z 7  is convex, closed, bounded (101. Denote by q some vector satisfying 

By definition of the matrix norm 

- 
IJHLll l  = max max <u, H/+lv> 2 

llull 5 1 l lv l l  51 

By construction of the algorithm 

Inequality (32) implies 

Since gf E azvL f(zd), i 2 0; gd E a 2 , ~  f(zr) and the set azUL f(zd) is convex then there ex- 

ists a positive number a such that 



< q ,  clT> > a ,  < q ,  > a . 

Applying ( 3 3 )  we see 

i  
By the conditions of the theorem X i ( , ,  1) -+ CCI for i -+ o o ,  consequently 

l = O  

I I H : + ~ I I - + + O O  for i + o o  . 

This last statement contradicts Lemma 2  and the proof of the theorem is complete. 

5. ALGORITHM WITH SIMMETRIC MATRICES 

The algorithms discussed above have the following deficiency: one must store an 

n  x n  matrix where n  is the dimension of the source problem. We next propose an algo- 

rithm with simmetrix matrices, to store such matrices requires only ( n 2  + n ) / 2  numbers. 

The function p 8 ( H )  = f ( z 8  - p 8 ~ g 8 )  characterizes the choice of a matrix H .  Denote by 

G the set of symetric n  x n  matrices. The set G is a linear space. For th adaptation of 

the matrix we can consider the following problem 

p 8 ( H )  -+ min . 
HE G  

Analogously to (4) one can use the gradient algorithm with projection onto the set G 

8 8 
H f + ,  = n G ( H f  + Xigig  ), X f  > 0 , 

where gf E d f ( z8  - p 8 H f g 8 )  and nG is the projection operation onto the set G. 

LEMMA 6 If Hf E G ,  t h e n  

PROOF It is evident that the matrix Hf + 2 - ' ~ f ( g f ~ ~ ~  + g e g f T )  is simmetric if 

Hf E G .  To prove the Lemma it is enough to show that the matrix 

8 8 sT [Hf  + 2 -  ' X / ( g / g e T  + g a g /  - [Hf + A, gig ] = 



is ortogonal to  any symmetric matrix H .  But: 

T 
< H ,  - = < H ,  g a d T >  - < H ,  g /g8  > = 

Thus to update the matrix H t  one can use the algorithm 

H!+1 = H /  + ~ ! ( g ! g ' ~  + . ( 3 4 )  

It is convenient to  normalize the vector g / ,  therefore we rewrite the formula ( 3 4 )  as 

The symmetric formula for matrix modification can be combined with algorithms 1 and 2. 

Theorem 2  can be proved for this algorithm without any differences. For this reason we 

shall not dwell on convergence proofs for algorithms with the matrix modification formu- 

la ( 3 5 ) .  

6. ALGORITHM WITH POSITIVE MATRICES 

Note that in the algorithms described above, the matrix H S  can be, generally speak- 

ing, non positive. If a function f ( z )  is convex and gS € d f ( z s )  then the minimum point of 

the problem ( 1 )  belong to the subspace A ,  = { z  E R f l :  < z  - z8 )  gS>  _< 0). It is possible 

that the point z 8 +  ' = zS  - p8HgS does not belong to the subspace A ,  if H S  is not posi- 

tive. To guarantee positiveness of the matrix H 8  let us consider the case when matrix H S  

can be represented as follows 

where B 8  is a n x n matrix. In this case the iteration of the algorithm is given by the for- 

mula 

where g8 E a f ( z 8 ) .  The function p 8 ( B )  = f ( z 8  - p 8 ~ ~ T g 8 )  defines the choice of a matrix 

B .  If the function f ( z )  is convex then it can be proved that the function p 8 ( B )  is weakly 

convex. Next we will study the family of weakly convex functions which were investigat- 

ed in the paper [ l l ] ,  (however other analogous families of functions can be used; see, for 

example, paper [ 1 2 ] ) .  



Let X be a convex subset of Rn (possibly X = Rn).  A continuous function f on X is 

called weakly convex on the set X if for all z E X the set a f (z )  consisting of the vectors g 

such that 

is not empty, where ( ( 2 ,  Y )  is uniformly small with respect to llz - yll on each compact 

subset K c X ,  i.e. for each c > 0 there exists 6 > 0 such that 

Ils(z, y)ll/llz - yll < c 

for z ,  y E K ,  llz - yII < 6. 

LEMMA 7 Let the function f :  Rn + R be convez on Rn, and the set B E Rn " be con- 

vez. Then the function p ( B )  = f(z - p ~ ~ T c )  is weakly convez on B and 

PROOF Let K b e a c o m p a c t s u b s e t o f B ~ R ~ ~ ~ a n d  B E K , A B E B ,  B + A B E  K, 

and 9 E a f ( z  - pBBTc). Denote by 

The function f :  Rn + R is Lipschitz with some constant LB on XB,  because the function f 

is convex on Rn and the set XB is compact. Using the Lipschitz and convexity properties 

of f (z)  we have 

Since the value ( I A B A B ~ ~ I I  is uniformly small with respect to IIABII, the lemma is 

proved. 

Lemma 7 gives a formula for the subdifferential of the function p8(B) .  For the a d a p  

tation of matrix B8,  the following gradient method can be used 



where E f  denotes the normalized vector gf E d f ( x f )  (see ( 1 9 ) ) .  Analogously to algorithm 

2 ,  we write an algorithm with the matrix modification formula (36 ) .  

ALGORITHM 3 

STEP I Initialization 

STEP I1 

2 i = o ;  

8 ST  3 psi = argmin f ( z8  - pBi Bi g 8 ) ;  
P>O 

4 j = j + l ,  j ( s , i ) = j ;  

8 8T 5 xf = x8 - pSiBi Bi g 8 ;  

6 compute g f  E d f ( x f )  such that < g f ,  ~ f ~ f ~ ~ ~ >  < 0 ;  

7 B f + 1 = B f + ~ j ( ~ f g 8 T + g 8 ~ f T ) ~ ~ ;  

8 if llxf - xS(I 2 u ,  then i ( s )  = i and go to step 111. 

9 i = i + 1 and return to the point 3 of Step 11. 

STEP I11 x8+' = xa I ,  g S + l  = g f .  

STEP IV s = s + 1 and return to Step 11. 

We formulate a theorem about convergece of algorithm 3 for smooth objective func- 

tions. 

THEOREM 4 Let the function f :  Rn - R be strictly convex and smooth, L1 be a 

Lipschitz constant of the function f on the set T ( x O ) ,  and L2 be a Lipschitz constant for 

gradient V f ( x )  on the set 

def 
T,(xO) = { x :  min llx - 911 5 u }  . 

UE T(zO) 

Let there be given a value u > 0 and a sequence of positive numbers { X j } r  satisfying 

00 00 

C X j  = m, C A?<m, Aj>O for j 2 0 . 
j = O  j = O  



Then for algorithm 3 there ezists number B such that 

llgT1l 5 2vL2 . 

PROOF To begin with we evaluate the norm of the matrix 1 1  BSII. 

LEMMA 8 The inequality 

holds for all integer s > 0, i 2 0.  

PROOF It follows from point 7 of Step I1 that 

T 8 S T  8 s T  8 8T  8 S T  

B f+ lB f+l  = B i B i  +Xj(s,i)[(Eig + g  Ei )B,Bi + 

S S T  8 a T  + BiB, ( € f g S T +  9 Ei 11 + 

8 S T  S S T  + Xf(,,i)(Cig + g Ei ) ~ f ~ , d ~ ( € f g ~ ~  + g S E f T )  . (38) 

We denote by k ( s )  the maximal number of iterations such that k ( s )  < s and B#') = I. 

Using (38) and taking into account that due to the construction of the algorithm 

< ( f ,  B fB fTg8> = 0 and l l < f l l  < 1 we obtain 



The inequality 

00 

J-J (1  + 4LfA:) < const 
t=O 

00 

follows from the convergence of the series EX! in the conditions of the theorem. 
0  

LEMMA 9 There ezists a number B such that llzf - 2'11 < v for all i 2 0. 

PROOF We prove the lemma by contradiction. Suppose the statement of lemma does 

not hold. By the construction of the algorithm the sequence {zS)  satisfies the assumptions 

of Lemma 4. Consequently 

I ~ Z * + ~  - zS1l + o for s + 00 . 

Applying point 8 of Step I1 of the algorithm we see that  

l l ~ ~ + ~  - zS1l 2 u , 

and obtain a contradiction. 

Now let us prove, by contradiction, the statement of the theorem. We wish to  show 

that  for the number F from Lemma 9 the statement of the theorem holds. Suppose that  it 

is not the case, i.e. 

Since 112: - 2'11 < v, then l l g f  - gal) 5 L2v because the gradient of the function f (z)  

satisfies a Lipschitz condition. Write the following inequalities 

We evaluate from below the value IIB:+~B:+ 1 1 .  Using relations <(:, BfBTgr> = 0 and 



(38) and (40) we get 

s 2  B? -r -r I I S  I I  I I  + 1~:: 111 2 <gsy B:+ 1 ~ 1 +  lgs> = 11~1+ 1g7l2 = 

= <gZ B:B~~T> + . - . <gy(E:gfl + gsc;T)~:~T + 
~ ( 8 9 0  

+ ~ ~ ~ ~ r ( c : ~ r ~  + g r ~ r ) l g r >  + 

- - T  b f l  r f l  + A:(~, ,)<gs, (Cfg8 + g Ci ) Bi Bi (<:gsT + gs$)gs> 2 

- 5 2  - --T - 2 IlBf g 1 1  + 2Xj(s,i)<g" (I> <gs, BfBf g8> = 

J T -T 6 >  2 2 - 1  g 5 2 >  
2 (1 + 2Xj(Si)<9 , Ci>)llBf 9 - (1 + 4Aj(r, i)L2~ L1 )IIBi 9 1 1  - 

- 6 2  
1 

2 2 -1  
2 1 1 %  I I  II (1 + 4Aj(r, l)L2~ L1 1 - 

l = O  

Since 

then 

i 
2 2 -1  n (1 + 4Aj(s,1)L2v L~ ) - + m for i - m . 

l = O  

Consequently 1 1  B[+ BZ 1 1  - + m, and this contradicts Lemma 8. 
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