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FOREWORD

This paper deals with an application of generalized linear programming tech-
niques for stochastic programming problems, particularly to stochastic program-
ming problems with recourse. The major points which needed a clarification here
were the possibility to use the estimates of the objective function instead of the
exact values and to use the approximate solutions of the dual subproblem instead
of the exact ones.

In this paper conditions are presented which allow to use estimates and ap-
proximate solutions and still maintain convergence. The paper is a part of the ef-
fort on the development of stochastic optimization techniques at the Adaptation
and Optimization Project of the System and Decision Sciences Program.

Alexander B. Kurzhanski

Chairman
System and Decision Sciences Program
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COMBINING GENERALIZED PROGRAMMING
AND SAMPLING TECHNIQUES FOR
STOCHASTIC PROGRAMS WITH RECOURSE

A. Gaivoronski and J.L. Nazareth

1. INTRODUCTION

Generalized Programming Techniques of Wolfe (see Dantzig [1]) enjoyed early
use for solving stochastic programs with simple recourse (Williams [14], Parikh
[8]) and there has recently been renewed interest in their relevance for solving
more general classes of stochastic programs (see Nazareth & Wets [7] — stochastic
programs with recourse and nonstochastic tenders, Ermoliev, Gaivoronski & Nede-
va [4] — stochastic programs with incomplete information). Our interest here is in

stochastic programs with recourse of the form:

minimize £, [<c(w), z >+ @(z,w)]

s.t.
Az = b
lszsu (1.1a)
where
Q(z,w)= min [<g(w), ¥y >|W(w)y =h(w)—T(w)z| (1.1b)
lEy<u

where w is an element of some probability space (W, B, P), A(m, X n,) is a fixed
matrix, T'(s) (m, X n,) are random matrices, c(s) (n4), (9 (n,) and A(s) (m;) are
random vectors and &(m,) a fixed vector. We assume complete recourse ji.e. (1.1b)
always has a solution. £, denotes expectation. Define ¢ = £, [c(w)]. Then we can

express (1.1a, b) as

minimize <c,z> + @(z) = F(zx)



s.t.
Az = b (1.2a)
lszsu

where
Q(z)AE,[Q(z,w)] (1.2b)

The set of constraints in (1.2a) we shall denote by X. Properties of (1.2a, b)
have been extensively studied (see Wets [13]) and, in particular, @(zx) can be

shown to be convex but is, in general, nonsmooth.

The generalized programming approach applied to (1.2a) involves inner or
grid linearization of this convex program and requires coordinated solution of a

masier program and a (Lagrangian) subproblem defined as follows:

Master:

k k
minimize ), <c,z/>X; + ) Q@(z)),
i=1

i=1
s.t.
k
k. ¥ (Azj)Aj =b (1.3a)
J=1
k
vk p A, =1
§=1
Aj =0

where % ,vk are the dual multipliers associated with the optimal solution of (1.3a)

Subproblem: Find zX *1 € R™ ' such that I s zf *1 < w and
<ok, zk*t1> 4+ Q(zk *1) < ok (1.3b)
by partially optimizing the problem

minimize <c*,z> + Q@(z) (1.3¢)
l€szxsu

where m* and v* denote the dual multipliers associated with the optimal solution of

the master program (1.3a) and



ok A (c —ATW") 1.4)

We temporarily ignore all considerations related to initialization of (1.3a), un-
boundedness of the solution in (1.3b), recognition of optimality and so on. (1.3a-c)
show only the essential features of the method, namely, that the master sends
(prices) 7% to the subproblem which, in turn, uses these quantities to identify an
improving (grid) point =% *1,

In many practical applications, the probability distribution of the random
events is discrete with relatively few points in the distribution and randomness is
often restricted to certain components of (1.1a—b), for example, to A (). In such
cases judicious computation enables @(z’) and its subgradients to be found ex-
actly, see Nazareth [6]. These quantities are required both to define the objective
function of the master (1.3a) and during the solution of (1.3¢c) to give an improving
point satisfying (1.3b). More generally however, @(z’) can only be approximated in
(1.2b), for example, by a sampling procedure, and exact computation of its value
or of its subgradients is out of the question because, it would be too expensive. We
then seek to replace Q(z?) in (1.3a) by an estimate, say Q[ . The generalized pro-
gramming approach, extended in this manner, still continues to appear viable and

deserves further investigation, for the following reasons:

a) It is well known (and in the nature of a "folk theorem') that fairly crude ap-
proximations of the underlying distribution in (1.1a—b) (which then permit exact
solution of the resulting approximated recourse program) often produce quite rea-
sonable estimates of the "optimal’ first stage decision. This can be interpreted to
mean that fairly crude estimates Ql in the master program will often be adequate
to guide the algorithm to a ’'reasonable’ neighborhood of the desired solution of

the original recourse problem (1.1a—b).

The (Lagrangian) subproblem (1.3c) does not have to be optimized at each cy-
cle. For example, all that is needed in the case of exact estimates Q(zk +1). to pro-
duce an improving point is that the condition (1.3b) be satisfied. This suggests

Qk +1

therefore that one seek to reexpress this condition in the terms of estimates @ ;'

and combine it with utilizing stochastic estimates of subgradients, stochastic quasi-
gradient procedures (see Ermoliev and Gaivoronski [5]) which are generally effec-
tive, when they are applied to a problem that does not have to be pushed all the

way to optimality.
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Our paper can be viewed as a study of generalized programming in the pres-
ence of noise (whose magnitude decreases as the number of iterations increases)
and with the special characteristics of recourse problems taken into considera-
tion. In section 2 we state a conceptual algorithm and establish convergence under
appropriate assumptions thereby extending the standard proofs (see, for example,
Shapiro [10], for the case when @(z) is known exactly). Some considerations con-
cerning implementation are briefly discussed. Finally extension to other stochastic

programming problems is considered in section 3.

2. A CONCEPTURAL ALGORITHM

We use the term "conceptual” here in the sense of Polak [9], and study the fol-
lowing algorithm for solving (1.1a—b). It will be convenient to assume that all
bounds [ and u are finite sothe l < z < u is a compact set.

The algorithm generates sequence of points z° - -+ zf - - - which depend on

element w of some probability space (W, B, P) where w € Wc ®P, B — o - field, P

k converges to the solution of the problem

— probability measure. The sequence z
(1.1) in a certain probabilistic sense.

Step 1: (Initialize): Choose a set of m, grid points zl,...,zm‘ so that the con-

straints

m;
EI(M!)A, =p (2.1)

m,

YA, =1
J=1

7\150

have a feasible solution. Set &£ — m,.

Step 2. (Form estimates)

Define a subset N of integers, N, c {1,....,&{, this being the set of grid points in-
dices for which estimates will be made. Define an integer s (k), which controls the
precision of estimates. Generally speaking s(&) is the number of observations of
the function @(z, w) used to form the estimate. Obtain the new estimates @ of

Q(z?, j € Ny and for j TN, take @] =@/ _, . It will be assumed that for j € N,



@l -@@!)=—0ass(k)—> =

in some suitable probabilistic sense. Initially for £k =m4, let N, ={1,..., m,].
For subsequent k, the set N, integer s(k) and estimates Q[ can be selected in a

number of different ways, some of which will be specified later.

Step 3: (Solve Master):

k
minimize Y (<c,z?> + @}) Ay (2.2)
i=1
s.t.
nk: ) (az)r;,  =b
i=t

A; 20

Let n* and v* be the associated optimal dual multipliers and AJ’,‘ - optimal pri-
mal variables. Define A¥ = {7: A _,’f > 0{. In some versions of our method it is neces-
sary at this point to redefine the set N, and go to step 2 (examples will be given

later). Otherwise, go to step 4.

Step 4: (Define new grid point z£ *1),
Define
ot 5 (e —alnk)

and consider the (Lagrangian) subproblem

minimize <o%,z> + @(z) (2.3)
lsxsu

k+1

The new point z is taken to be an "approximate' solution to this problem, more

precisely, it is necessary that for almost all w € W there exists a subsequence

k., (w) such that
<ak",:ck"+1>+ Q(zk"“) — min [<ok", z >+ Q(x)] —0
lsx<su
as r —» oo

Note, that it is nof necessary that
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<ok, zE*1 >4 Qz*k*l) = min [<ok, z >+ Q(z)] — 0
[ ¥ X X7

for the whole sequence zk . This makes it possible, for instance, to use random
search techniques for getting z**1 Some particular methods of choosing the point

z* *1 yijth this property will be specified at the end of this section.
Step 5: (Iterate): &k — k + 1. Go to step 2.

This algorithm has two important differences from the usual generalized
linear programming algorithm. Firstly, it does not require exact values of the ob-
jective function (step 2). It is only necessary to have estimates of the objective
values at the grid points whose precision gradually increases. Secondly is is not
necessary to minimize the Lagrangian subproblem at step 4, precisely; it is only

k+1

necessary that the current point z regularly comes to the vicinity of such a

solution.

Both modifications are necessary in order to make use of generalized linear

programming in a stochastic setting.

In order to prove convergence of this algorithm let us consider it's dual re-

formulation. Take

plz, M=<c,z>+Q(z) —<m Az - b> (2.4)

ek G.m) =<c, zI> + @ ~<m, AzT —b> (2.5)

Y(m) = min ¢z, m (2.6)
[lszsu

YE(m = min 5@, m) 2.7)
1sisk ‘

Then algorithm (2.1)—(2.3) can be considered as a maximization method for the
concave function ¥(m) by successive polyhedral approximation of ¥(m) by vE ().
At step 1 the initial polyhedral approximation is constructed, in step 3 the current
polyhedral approximation '¢r"(1r) is maximized, optimal duval multipliers mk being

the solution of the problem

max 10': (m)

In steps 2 and 4 the polyhedral approximation is updated.

Theorem 1. Make the following assumptions:
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m,

1. .,z

1. Initial points z-, are such that

b € int cofdz?, j =1: m,|

where int means interior and co convex hull.

2.
max llo‘f - Q(z*)|. max IQE’ -Q(zf)|]= g —0 a.s.
JEA
3
lim inf [(a‘, zi*tls &+ Q(z‘ "’1)
r—w {<r
- min [<a’, z>+Qx)]i=0 a.s.
lszs<su
Then F(z %) —» mir}YF(z) a.s. where ¥ = Y Aj zJ and all accumulation points of
€

JEA*

k

the sequence z* are solutions of (1.2) a.s.

Proof. Due to the assumption 2 we have

sup IQl -Q!)|<C <> a.s.
'j

This together with boundedness of zk gives:
I<c, zI> + Q| <C; < e

This together with assumption 1 implies the boundedness of the sequence i , which

can be seen as follows: Indeed, ¥* () = max ¥% (7) and therefore
n

vE(nk) 2 y5(0) 2- ¢,
which follows from (2.5). On the other hand

vE(nf) s min  [<c, 27> + Q] — <nk, 4z —b>]
1‘_""{1

< max [<c,:cf>+0~’(k)]+ min [- <nf, 427 - b>]
1</<m, 1€7<m,

sCy— max <rr",Azf—b>
1‘j‘ml

=Cy — ||l —— A.z-f—bl

max
1s7=m, { [Riad|



<Cy —|r*| min max <e,dzf -b>=<C, -|r*|4
lel=1 1s52m,

for some 4§ > 0 due to assumption 1.

Thus,
Cy —|ln*)|6 =—c,

which gives
2C4
lIrels —* .

Therefore the sequence nt is bounded. According to the assumption 3 of the
theorem for almost all w € W exist subsequence k&, (w) such that

<ak"', xk"' +1> + Q(xk" 1\1) — min [<ak"', z> +@x)] —0
[€r<u

Using equality ak' =c -4aT nk' we obtain

ky +1 ks +1 ke +1
T r zr

<c, >+ @z ) —- <1rk", A -b> - 'w(nk") — 0 (2.8)

Due to the boundedness of the sequence 7t we may now assume without loss of

k,

generality that '™ — n" and therefore ] nkr = pfra || — 0. Further more from the

definitions (2.4), (2.6) of the function Y() and boundedness of the admissible set X
follows that the function y¥(m) satisfies Lipshitz condition uniformly on m and there-

fore
|9(r' Ty — P4 s CllnT — 2 = 0
asr ~—~0 where C, <o .

Thus (2.8) implies

kp,+1
z'r

<, >+ Q" Yy — <nfr a2t — s — Ty < 7,

where max {0, 7,] — ODas r — oo,

Consequently
k_+1
<c, zEr s ¢ Qul,, — <1rk"“, Azt _p> - 'w(nk"“)

kp +1

k +1
s 7T, + ka -Q(z ) (.9)



But

k. +

1
<,z ot - <t a5t _ps

r+l

> min [<c,z/>+ QLM - <1'rk"“. Az —b>] = '¢k"“('rrk'“)
15 sk 4y

Inequalities (2.9) and (2.10) give

,wkrﬂ(nkrﬂ) - ,w(.n.krﬂ) <7, + Q:::l - Q(zk' "1)
where together with assumption 2 mean

yor(nr) — p(n*r) < 71

where max{0, T} - 0asr — »a.s..
On the other hand

k

,¢

r(nr) = max yEr(m)

> max min [<c, z/> + Q(zj) - <m, Az? -b>] - &,
ki)
JEA

& max Y(m) — &
ax Y(m) = &,
Inequality (2.11) now gives
1l/(rrk') + 71 > max Y(m) — ¢
T p ky

which implies

Y(n'r) - max Y(m) — 0

and

Y (n'7) < max y(m) + 72

(2.10)

(2.11)

(2.12)

where max {0, -rf] — 0 as r — »a.s.. The last inequality together with (2.12)

gives

'wk"('rrk') - max Y(m) — 0

(2.13)
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Taking now arbitrary k > k, we get:
¥ (k) = ¥ ()

< max min [<c, zI> +Q(z7) - <m, Az! - b>]
" jeA“UA"*

— max min [<c,zf> +Q(z?) - <nm, Azl - b>]
T jeA

+2 max &; S2 max g,
k.sisk k,sisk

which together with (2.12) and (2.13) gives

Y5 (nk) — max ¢(n) a.s.

The problem of maximization of 10“ (m) is dual to (2.2) and therefore

jgk«c, !> + @) Af — ;nier}(F(z) (2.14)

Finally due to convexity of F(z)

F@Ek) s Y FehHaf
jEA"

s Y (<, /> + Q)+ g
jEA"

which together with (2.14) gives

F(z*) — min F(z) a.s.
reX

which completes the proof.
We now study in turn each of the assumptions upon which the preceding
theorem depends. Assumption 1 of the theorem can always be satisfied if matrix 4

is of rank m,.

Let us consider in more detail assumption 2, which deals with precision of
function values estimates at "essential” points. It's fulfillment depends on the rule
used at step 2 to determine the set N, of current new estimates, the integer s(k)
which controls accuracy and the method of obtaining estimates. Consider two such

rules which guarantee that condition 2 is satisfied.



-11 -

1. This is the simplest ad hoc rule. Before starting the algorithm define a se-

qguence Uc:p ip'°=1, kp +1 > ky and take s(mq) = s
Ne=M1 ..., ki, s(k)=s(k —1) +1

if & =Icp
N, =k}, s(k) = s(k —1) otherwise

in other words for &£ = Ic:p estimates at all grid points are updated with increased
accuracy while for & # k.p the estimate is made only at the latest point z* to enter
the set of grid points. The estimates themselves should possess only the property

that
Rz’) —@fl=¢, —0 as.
as s(k) —» o

An example of such estimate is

5o
=23 @@l wl) itk =m, (2.15)
So i=1
0f = |t ~—2—|of _, + @@, ws®) for j <k
s(k) s(k)
1 s k i\ -
@ = éQ(z.w)1flc=lc
£ose) Ty P
where w! are independent observations of random parameters from (1.1)

2. The previous rule does not discriminate between recent points and old ones,
which might become redundant. Furthermore it is better to base decisions on
whether to increase precision on information which becomes available during
iterations. The following adapiive precision rule takes account of these factors.
Let us define for each estimate Qz of the function value @(z”/), the number kg

such that
zf €Ny, =/ €Ny forky <i <k

i.e. ch is step number when the estimate of Ql was last updated. Then the precision

of the estimate Qz characterized by number s (ch):

R — @) = Ns k) 0
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as s(kj) -t @
The steps 2 and 3 of the method with this adaptive precision rule are specified as
follows:
Step 2 (Form estimates). There are two possibilities

(i) Preceding step was step 3. Then
Nt ={5:7 € A, and s(lcj) < s(k)}

s (k) remains the same. For j € N* get estimates Q[ such that
Ql —oz) = Ns@y — 0 as. (2.16)
as s(k) — o

gotostep3
(ii) Preceding step was step 5. Take s(k) = s(k — 1) and get estimate Q,f with the
property (2.16). Put @ = @ _,. 7 <k.1If

of “lzk 4+ Qf = vkt (2.17)
thentake s(k) =s(k) +1
Ny = AF Ty (k)

and update estimates for j € N, such that (2.16) is satisfied. If (2.17) is not satis-
fied don’t do any additional estimation and go to step 3.
Step 3 (Solve Master). Solve (2.2) and take A, = {j: J\f > 0{ where J\f ~ solutions
of (2.2). If s(lcj) = s(k) for all j € A, then take Ak = A, and go to step 4 other-
wise go to step 2.

Thus, in this modification it is always assured that through repetition of steps
2 and 3 that we get such set A% that for all J € Ak precision of estimates Ql
corresponds to number s(k). In this case besides property (2.16) some mild "in-
dependence’ conditions should be satisfied. Let us define by B,o-field generated
by {z!, ..., z*, @l ..., Qf] at the moment when ky=k for all j € A*. 1t is

necessary that exists ¢ > 0 and for any s (k) exists B ) > O such that
P(Qf - @(z*) > Bsy/Be) > @ (2.18)

P(Qf — @(z*) <= By )IBe) > @
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These conditions are satisfied, for instance for the estimates of the type (2.15):

_ SUy) 1 K I ot 2.19
% =<m %t S t=s§,)+1o(z v 19)

This formula is also valid for the first estimate at the point z* if we take in this
case s(k.) =0. It is assumed that values w' of the random parameters are in-
dependent. Estimates (2.19) satisfy property (2.18) except in the trivial case
Q(z’) = @(z7, w), for almost all w.

Theorem 2. Suppose that conditions 1 and 3 of theorem 1 are satisfied and, in
addition, (2.16), (2.18) are fulfilled and n* is bounded a.s. Then (2.17) is satisfied
infinitely often with probability 1 and, consequently, for precision control rule,
based on (2.17) assumption 2 of the theorem 1 is satisfied.

Proof. Suppose that exists set W, ¢ Wsuch that for w € W, condition (2.17) is
satisfied only on finite number of iterations. This means that for any w € W, there
exists k,(w) such that for & > k,(w) we have s(k) = s(w) = const. Therefore any
number I can enter the set N only once for & > k,(w). Therefore for w € W, tran-
sition from the step 3 to step 2 can occur only finite number of times. Thus, for al-
most all w € W, exists k,(w) 2 k,(w) such that for & > k,(w) there are no transi-
tions from step 3 to step 2, i.e., only new estimates Qf will be made for k& > ky(w).

Therefore for k& > k,(w) we have

¥E(m) = ¢F ()
where ¥£ () is defined in (2.7) and

YE () = gk ti(nk t1)
According to the assumption 3 of the theorem for almost all w € W, exists sequence
k, (w) such that

kp +1

ky+1
<c,z T

>+ @t —<nr 4zt —p> —p(rfy =9, =0

Due to boundedness of the sequence m* we can assume without loss of generality
that 7 — n*. Taking into account the fact that ¥(m) and 1//"(11) satisfy the

Lipshitz condition uniformly over m and k& we obtain for w € W, and &, > k,(w):
1
Yr"y s ¢ )

kE_+1
= <c, s +Qk:+1 - <, Azt —p>
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= <c, zk' +1> + Q(zk'+1) - <1rk', Azk' +1 -b5>

k_+1
+Qr 1y —@E T cyln” -
k. +1
=YY 49, + @)y —eE T +cylln” — '
k. +1 ~
SYn™)+y, + QL —eETTh + 5, (2.20)

where ¥, =2C2||1r' - nk"ll —Q0asr — o,

Condition (2.18) gives for k&, > ky(w)

ky +1
z'r

Py iy - @@= ") <-BIB, ,)>a

for some ¢ >0 and § = Bs(wy > 0. Therefore for almost all w € W, exist &, > k()

such that

k, +1 kp+1

Qk:+1 -Q(x )<—E

and 7, + -7, < ?/ 2. This together with (2.20) gives for sufficiently large r:
von") s wn") - Br2
and therefore ‘Wk"('rrk') < 'W('rrk") for sufficiently large » and w € W,. Hence

ky ke +1

k_+1
o + Q11 =Wty + <nr >

k_+1
+ Q11 —QE Y 4, 2ty + <nfr 0>

k_+1 k_+1
roril @@ Y e =t vl 0@ Y 49, (2D

The condition (2.18) implies

k. +1 kyt+1

P vy —QE " )>B/B, 1) >0

with ¢ >0, E >0, k£, > ky(w). Therefore for almost all w € W, exist &, > k,(w) and
|7,| < /2. This gives together with (2.21):

ky, kp.+1 k_+1 k -_
oz T +Qk:+1 =2v T+ 8/2

for almost all w € W, and some &k, > ky(w). We arrived in contradiction with our ini-
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tial assumption. Therefore assumption 2 of the theorem 1 is satisfied. Proof is

completed.

Let us now consider in more detail Assumption 3 of the Theorem 1 and the
specific procedures for selection of the point zk*1 at step 4 of the algorithm.
These procedures should satisfy assumption 3 of the theorem; namely with proba-
bility 1 exists a subsequence &, such that

(p(zk'ﬂ, Trk') — min ¢(z, Trk') —0. (2.22)
[Krxr<u

The best choice is cp(z" *1 7k)y = min o(zx, n£) but this is not feasible because
{lsr<u

of inaccessibility of exact function values ¢(z, 7). We shall consider two pro-

cedures which do not require objective function values.

1 Random search. Take probability measure £ with nonzero density in the set

k

l =z <u and take successive points zl... z* as independent observations of

random variable z with distribution . Then (2.22) is fulfilled due to continuity of
ez, m).
2 Stochastic quasi-gradient method. (Ermoliev [3]) This method will produce se-

quence of points z* such that

o(z®, nt) - min ¢z, n¥) —0 . (2.23)
{€r<u

On each iteration the following calculation, are performed at the step 4 of the

algorithm:
z5 = Py(zf — pg £D) (2.24)
§=0,...,m, —1,z0 =zkzk+l=z'
E@ sz . ...z =c + @ (zf)
L if 2z, ¢ Uy
Py(z); = (uy if z;, > uy

z; otherwise

In particular, it is possible to take
¢ =c —TT(w")as

where d% are optimal dual multipliers of the following problem:
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Qzi u’) = , min [<g(w?®), ¥ > |W(0®)y = h(w°) — T(0®)z; (2.25)
£y<u

and »° are independent observations of random parameters.
If problem (2.25) has bounded solutions for all w, E Ps =, 2 ps2 < o and
£ =0 s=0
m, — o as k — o then (2.23) is satisfied and, consequently, assumption 3 of the

theorem 1 is satisfied too.

3. EXTENSION

Method, described in this section is applicable not only to the stochastic pro-
grams with recourse (1.1) but to more general problems of stochastic programming

as well. Consider the following problem:
mimimize Ef (x, w) (2.26)
subjectto p(z) <0,z €X

p(z) = @1(z), ..., Py, (2))

The method and results remain essentially the same if we denote Ef (z, w) =
@ (z) and substitute everywhere in the above discussion @(z) for <c, z> + @(z)

and p (z) for Az —b. The initial points should satisfy now

m,
J=1

Master problem (2.2) obtains the form

k
minimize Y} Ql )‘j
F=1

s.t.
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k
vk: p Ay =1
J=1
A =0
where QZ are estimates of Ef (z7, w ). Subproblem (2.3) becomes

min Ef(z, w) — <nk, p(x)>
reX

The theorem 1a is proved similarly to the theorem 1:
Theorem 1a. Take the following assumptions

1 Function Ef (z, w), p(xz) are convex, the set X is compact.

2 Exists £ € X such that p(£) < 0 and initial points z1, . . ., z™!are such that

I;rlgzg. m}n <e, p(z-’)> <0

C‘Z
max {|Qf — @(z*)|, maxck @ —Ef(z?, w)l} =&, =0 a.s.
je

lim inf{Ef(zt*!, w) — <nt, p(zt *1)>]

r—owigr

— min [Ef(z, w) — <nt, p)>] =0 a.s.
reX

Then Ef (2%, w) — min{Ef (z, w)lp(z) <0, z €X| where £ = Y )\f:cf and all
jEA"

accumulation points of the sequence £ E are solutions of the problem (2.26).
Although our primary concern here is with a conceptual algorithm, let us con-
clude this section with a brief discussion of some considerations which apply in

order to make the algorithm implementable.

a) Purging Strategy for Grid Points: The above algorithm assumes that all grid
points are retained but, when storage is limited, it will be necessary to periodical-
ly remove grid points. This subject has been extensively studied, see Eaves and
Zangwill [2], Topkis [11] in the context of cutting plane algorithms, and similar

considerations apply here.
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b) Variance of Estimates: When developing estimates Ql using, for example, (2.15)
or (2.19), we can also maintain and update the variance of estimates for each grid
point zJ. These can than be usefully employed in refining the decision rules at

Steps 2 and 3.

¢) Induced Constraints: When the assumption of complete recourse (i.e. that (1.1b)
always has a solution) cannot be verified a priori, then it may happen that for
some combination of grid point z! and random parameters wt (in (2.15) and
(2.19)), the problem (1.1b) is infeasible. Following Van-Slyke and Wets [12], an in-
duced constraint or feasibility cut must then be deduced and introduced into the
problem (1.1a) and correspondingly into the master program (2.2). This extension
requires further study.

There are also a number of special cases of the general problem (1.1a, b)
which permits refinements, with a view to enhancing efficiency, of the algorithm
described above. One cése of practical interest is stochastic programs with
recourse and non-stochastic tenders (see Nazareth and Wets [7], where T'(m, xn,)
is a fired matrix. The master/subproblem pair corresponding to (2.2) and (2.3) can

then be reformulated as follows:

Master:

k
minimize <c, z> + Y, QN

j=1
s.t.
o4z =b
k
Tz - ) ¥ A =0 (2.27)
j=1
k
'Uk: 2 Aj =1
j=1

where

Q(x, w)= min [<g(w), y>W(w)y =h(w) — x| (2.28)
l<y<u

and

Q(x) =E,[@(x, w)] .
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Q[ is an estimate of the value Q(xj) at the grid point x«’, and ¢f, nt and v* are the

dual multipliers associated with the optimal solution of the master (2.27).

Subproblem: Consider the (Lagrangian) subproblem,

minimize <(p", x> + @(x) (2.29)
LexsU

where L and U are any suitable bounds implied by x =Tz and I sz s u. f *1 s
again taken to be an "approximate’ solution to (2.29), in the sense discussed in

Step 4, after expression (2.3).

It frequently happens that m,; << n, i.e. that only a few elements of the prob-

lem are stochastic. In this case, the above reformulation can considerably enhance
efficiency, because the optimization in the subproblem (2.29) and the linear pro-

gram in (2.28) which must be solved to obtain estimates Ql are both in a space of
relatively low dimension.
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