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PREFACE

During the past three years, the IIASA Water Project (pre-
sently the Water Group of the Resources and Environment Area)
has concentrated on the methodology for planning, design and op-
eration of water resource systems. The importance of streamflow
generation methods for the design and operation of water resource
systems has been recognized and a study comparing multi-site
streamflow generation methods was conducted by J. Kindler and
W. Zuberek (On Some Multi-Site Multi-Season Streamflow Generation
Models, RM~-76-76).

The present Research Memorandum discusses multivariate time
series methodology and shows how multi-site streamflow generation
models can be brought into this general framework. The present
paper is an extension of RM-76-69 (ARIMA Models and Their Use 1in
Modelling Hydrologic Sequences) which considers a general class
of univariate time series methods for stream flow generation at
a single site.
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ABSTRACT

In this paper we discuss stochastic models for vector pro-
cesses, in particular the class of multivariate autoregressive
moving average models. Special cases of this class have been
discussed in the literature on multi-site streamflow generation
and it is shown how these can be brought into a general frame-
work.

An iterative model building procedure, consisting of model
specification--estimation--diagnostic checking is stressed. Re-
sults on model specification are given and it is shown how par-
tial autocovariance matrices can be used to check whether multi-
variate autoregressive models provide adequate representation
for (standardized) streamflow sequences. Furthermore, estima-
tion of parameters in multivariate autoregressive moving average
models is discussed and it is pointed out that moment estimators
can be inefficient when moving average parameters are present.
An approximate maximum likelihood estimation procedure is sug-
gested.

In the concluding section, we summarize important practical
implications for hydrologists.






The Analysis of Multivariate Time Series

With a View to Applications in Hydroloay

1. Introduction

In a previous paper [12] we discussed stochastic models for
univariate time series data. Applications of stochastic model-
ling in water resource systems will, however, frequently demand the
modelling of hydrologic sequences at a number of sites within a
river basin. If the individual series are spatially uncorrelated,
univariate models can be used at each of the sites within the
system and no representation of spatial correlation is necessary.
However, significant cross correlations will usually exist between
historic observations measured at neighboring sites at the same
(lag zero cross correlations) and lagged (lag k cross correlations)
time points. Models have to be found which preserve cross cor-
relations between sites in addition to the appropriate properties

at individual sites.

2. Stationary stochastic vector processes

Let zi(t), i=1,2,...,8; £t =0,%1,22,... be s real valued

sequences of random variables where

E[zi(t)] = Wy 1 <1i<s (2.1)

is a finite constant independent of t, and where the covariance
function defined by

E[(z, (t) - ui)(zj(t+k)-uj)] = Yij(k) 1<1i,j <s (2.2)

is finite and does not depend on t for all k = 0,%1,%2,... .

Then we say that each of the series zi(t) is covariance stationary

and that the series are mutually stationary correlated.

In vector notation z(t)' = (21(t),...,z (t)) we call z(t)

S



satisfying (2.1) and (2.2) a s-variate covariance stationary

(weakly stationary) time series.

The métrix r(k) = {Yij(k)} defined by
Fk) = E[(z(t) —w)(z(t+k) -w) '] = T(-k)"' , (2.3)
where p' = (u1,...,us), will denote the autocovariance matrix at
lag k.
The autocorrelation matrix at lag k, P(k) = {pij(k)}, can be

obtained from the autocovariance matrix by

Y. . (k)
L] ] (2.4)

1
(Yii/(o)ij (0))*

The autocovariance generating function, T'(B), is defined as

' (2.5)

and the non-normalized spectral density matrix F(w) of the sta-
tionary process z(t) is given by the discrete Fourier transform

of its autocovariance function,

F(w) = {fij(w)}
where
1 —iwk
fij(w) = 5= kg;w Yij(k)e . (2.6)

For discrete time series with sampling rate of unity w lies in
the frecuency range -m to +m. (The range of w for continuous
time series goes from - to +«. Sampling the process at dis-
crete points, however, "folds" the spectrum into the range

(-m/At, T/At] where At is the sampling interval.)
The spectral density matrix has the following properties:
(i) F(w) is Hermitian; i.e., F(w) = F(w)T where T

denotes the operation of matrix transposition

and complex conjugation.



(ii) F(w) is non negative definite,

(iii) For the continuous process we have that F(w) >0 as
. + oo
w~+to . Furthermore f fij(w)dw, is finite (1<i,j<s).

—
We assume in the follwoing that T'(B) is rational, that is we sup-
pose that each element of the (sxs) matrix I'(B) is a rational
function of B (or in terms of the spectral density matrix we as-
sume that each fij(w) is a rational function of e_iw). Further-
more we assume that det(I'(B)) # O almost everywhere i.e.: with
probability 1 (or equivalently in terms of the spectral density
matrix det(F(w)) # O almost everywhere). This assumption elimin-
ates from consideration those joint processes in which certain
constraints hold among the series; for example, the situation in

which two series are generated from one shock series).

Given the autocovariance generating function (2.5) (or equi-
valently the spectral density matrix (2.6)) the statistical
characteristics of the stochastic process are completely specified
up to second order moments (in the case of Normally distributed z(t)
all moments are specified). Yet, for practical applications in—~
volving prediction and control a difference equation representa-
tion of the time series proves to be more convenient. It is
easily shown that given the autocovariance generating function
(2.5) there is a multiplicity of difference equation representa-
tions to choose from.

The existence of a canonical factorization of the autocovariance
generating function (spectral density matrix) of a weakly stationary
time series was shown, for example, in Rozanov [18], Hannan [7].

The resulting difference eguation form (moving average represen-
tation) which is said to be a canonical model for the s-variate
covariance stationary time series (from now on it will be assumed
‘that the mean has been subtracted from the time series) is given by

z(t) = ¥(B)a(t) (2.7)

-}
where: 1) V¥(B) = 7} ¥ (k)B* is a matrix of elements which
k=0




are rational functions in the backshift operator B

(8Ma(t) = a(t-m))

ii) det (¥(B)) does not vanish inside the 'unit circle
and the elements of ¥(B) are holomorphic in and on
the unit circle.

The holomorphic (or analytic) condition means that
the denominators of all elements of Y (B) have

zeros lying outside the unit circle.

iii) a(t) is an s-variate uncross correlated white noise

sequence

Ela(t)a(t+k)'] = 65T

where ég is the Kronecker delta function

. {1 for k = O

0 for k # O
and I is the [sxs] identity matrix.

If in addition one assumes that det ¥ (B) has no zeros on the

unit circle one can expand (v()]” " as

(w1~ = 1(B) = n(0) - § mxek ,

where II1(0) is nonsingular and (k) goes to a zero matrix O as
k +o. Thus (2.7) can be written as

1

2(8) = (@17 la(e) + [ M1 MKz (t-k) .  (2.8)

The present observation vector is a weighted average of past
observations and the random perturbation a(t). Since the weighting
function Il (k) tends to the null matrix as k +« the observations

z(t) depend less and less on the remote past.

Specification that the representation be canonical does not

guarantee uniqueness of the model. This can easily be seen since

z(t) = ¥*(B)a(t) , (2.9)



where ¥*(B) = Y(B)P and P is any orthonormal matrix PP' = I will

result in the same covariance generating function.
To show this, we first point out the following

Lemma: Suppose that the covariance stationary process z(t)
has the representation g(t) = W(B)p(t) where ?(t) is multivariate
white noise with E[b(t)b(t+k)'] = GgG. Then the covariance gen-
erating function is given by

'(B) = Y(F)GY(B)" where F = B_1 . (2.10)

Proof: I'(k)

E[(Y(B)b(t)) (¥(B)b(t+k))']

E ( ) W(R)b(t—QJ)< ) W(m)b(t+k—n0)'
2=0 - m=0 N

Y )L Y(L)E[b(t-2)b (t+k-m)"]Y¥ (m)"
£ m

Y Y (R)GY (a+k) T . (2.11)
2

since the only non zero terms in E[b(t-2)b(t+k-m)"']
occur when m = £+ k. Furthermore, (2.11) is the

coefficient of Bk in Y(F)GY(B)' and thus it follows
that

+o0 K
I'(B) =] I'(k)B" = Y(F)GY (B)"

k=—e g.e.d.

Using this result it follows that the autocovariance generating
function of (2.9) with Efa(t)a(t+k)'] = 651 is given by

I'¥(B) = ¥Y*¥(F)Y*(B)' = Y(F)PP'VY(B)' = Y(F)Y(B)'

and coincides with the autocovariance generating function of
(2.7).




However, suppcse that after obtaining a canonical represen-
tation (2.7) we define Y*(B) = ‘}‘(B)[‘{J(O)]“1 and G = Y(O)Y (0)?
where Y (0) is nonsingular because of the canonicalness of the

factorization and since g(t) is of full rank. Then we can write
F'(B) = ¥Y(F)¥(B)' = ¥*¥(F)GY*(B)' (2.12)

and the above factorization gives the model in the following form

z(t) = ¥*(B)b(t) , (2.13)
where ¥*(0) = I and b(t) is a s-variate white noise sequence with
E[b(t)b(t)'] = G = ¥(0)Y¥(0)'. Uniqueness of the factorization in

(2.12) ensures the uniqueness of the model. Model (2.13) is a

canonical model with contemporaneously correlated white noise.

Although the conditions on ¥*(B) in (2.13) provide a unique
specification for z(t) with covariance generating function T (B)

and noise covariance G, other specifications are possible.

By specifying ¥ (0) to be a lower (upper) triangular matrix

a unique representation in terms of

z(t) = ¥(B)a(t)

~

where

Efa(t)a(t+k)'] = GgI

can be achieved (Quenouilli [16]).

If one is interested in a unique representation in terms of
contemporaneously uncorrelated white noise a(t) with E[a(t)a(t+k)']

= GgD where D is a diagonal matrix, it can be achieved by

z(t) = ¥(B)

~

(t)

L

where ¥ (0) is a lower (upper) diagonal matrix with 1's in the

diagonal (Haugh [9]).



3. Canonical autoregressive moving average representations

The elements of ¥*¥(B) in (2.12) are rational functions in B;

in the following we thus consider the factorization
y#(B) = o ' (B)O(B)
where ¢ (B) and 0(B) are of the form

o (B)

N
-

1

ot~
(Sd
.

w

U

e (B)

il
H
]
i ~1.Q
(o)
(ov}
[}

It is assumed that the roots of det ¢(B) = O all lie outside the

unit circle (stationarity condition) and that the roots of

det 0(B) = 0 all lie on or outside the unit circle. Furthermore
it is assumed that det ®(B) = O has no common roots with
det O(B) = 0. These conditions are necessary for an identified

model in the economic sense, but are not sufficient to guarantee
an identified model. Conditions to guarantee an identified model

are given in Hannan [8].

If one additionally restricts det ©(B) to have no zeros on
the unit circle then we have the conditions for invertibility as

discussed in Box and Jenkins [3].

The model of E(t) can be written in terms of the difference

equation
?(B)z(t) = 6(B)b(t) (3.1)
2(t) = oyz(e=1)= ... =0 2(t-p) = b(t) - ;b (t=1)~ ... -0 b(t-q)
(3.2)
with
E[b(t)b(t+k) '] = GgG ) (3.3) |

Model (3.1) is commonly known as the multivariate autoregres-

sive moving average model (ARMA(p,q)). Representation (3.1) is




in terms of contemporaneously correlated white noise p(t). Sim-
ilarly, specifying the moving average parameter at BO to be a
lower (upper) triangular matrix will result in a unigue ARMA model

with uncorrelated white noise E[b(t)b(t+k)'] = égl.

A main motivation for the use of mixed autoregressive moving
average models is to satisfy the principle of parsimony. Since
stochastic models contain parameters whose values must be esti-
mated from a record of observations, it is important, that one
employs models with the smallest possible number of parameters
for adequate representation. A combination of autoregressive and
moving average terms represents a flexible class of models capable

of approximating many stochastic models observed in practice.

Several special cases of multivariate ARMA models have been
considered in the literature on modelling of streamflow data re-

corded at different sites.

i) Matalas [13] uses the multivariate first order autore-
gressive model (multivariate Markovian model) to model

and generate streamflow data at s different sites.

ii) O'Connel [14] considers the multivariate first order
autoregressive model with correlated residuals (ARMA
(1,1)) as well as the first order moving average model
(MA(1)). Iterative procedures are given for the deri-
vation of the parameter estimates from empirical auto-

covariance matrices.

Some special cases of multivariate ARMA models

a) Multivariate autoregressive model of order p

(1 - ®1B-...-¢po)§(t) = b(t) (3.4)
with
E[b(t)b(t+k) '] = agc

or equivalently in terms of contemporaneously uncorrelated white
noise

(1-0B-...-¢BP)z(t) = Ca(t) (3.5)
with



Ela(t)a(t+k) '] = 851

and C is a lower (upper) triangular matrix; since CC' = G, the

matrix C can be derived by lower (upper) triangularization of

the matrix G.

From (3.4) it follows that

(k) - F(k-1)®a —e .- F(k—p)@é =0 k > 1 (3.6)
and

G = (o) - ¢1F(1) —.e @pF(p) . (3.7)
Considering the first p equations and using the relation T (k) =
I'(-k)' one can derive @1,...,¢p and G in terms of the first p lag

autocovariance matrices by solving

r(o) T¢(1)" ... F(p—1)'— i @%T (1)
I'(1) T (o) c.. I'(p=2)" @é I'(2)
= (3.8)
'(p-1)T(p-2) ... T(O) 3! I'(p)
and
G = T(0) - ¢1F(1)—...—¢pF(p) . (3.9)

For the first order autoregressive model this simplifies to

ryel =r(1) = o, =T r©]"

and

r¢(1) =rT@©) - T(@) '[F(O)]—1F(1). (3.10)

b) Multivariate moving average model of order g

z(t) = (I - ©

_ ..o g9
z 1B-. .. =0 B b (t) (3.11)

where b(t) is white noise E[b(t)b(t+k)'] = 6.G
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It is easily shown that

T(k) = :gz 62G9i+k 0 <k <gq {(3.12)
where

@O F I
and

rk) =0 J > q

Difficulties to determine the moving average parameters and the
covariance matrix of the shocks b(t) from this set of equations,
however, occur, since there are 24 schemes compatible with the

set of covariance matrices (3.12).

From a prediction point of view, however, the choice doesn't
matter and according to the invertibility condition we choose the
one set of solution such that there are no roots of det(6(B)) = O

inside the unit circle.
c) Multivariate autoregressive moving average model

- - - p = _ _ - q
(1 @13 e ¢pB )E(t) = (I @1B .o @qB )?(t) (3.13)

Elb(t)b(t+k) '] = 656

~ ~

From (3.13) it follows that from lag g+1 the autocovariance

matrices follow the matrix difference equation

rk)y - T(k—1)®% —ee.= F(k-p)@é =0 for k > g+1 .

These schemes behave similarly to ordinary autoregressive schemes
in the relationships between their covariance matrices T (k),
except for the first few which depend on the extent of the moving

average.

The following example of the multivariate ARMA(1,1) process

will demonstrate this in more detail.

(1-9,B)z(t) = (1-0,B)b(t) . (3.14)
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Then it can be shown that

r(o) = ®1T(1) + G - @1G®% + ®1G®a
T (1) = F(O)@% - G@i (3.15)
(k) = F(k—1)®i k > 2

and iterative procedures can be found to solve these equations

for o, @1 and G (O'Connel [141).

d) Extension to nonstationary models

Many time series encountered exhibit nonstationary behavior
and in particular do not vary about a fixed mean (trend, period-
icity). Nevertheless they exhibit homogeneity in the sense that
apart from local level (trend, periodicity) one part of the

series behaves very much like the other.

It is shown in great detail in [3] how simplifying operators
(such as the ordinary differences (1—B)d, seasonal differences
(1—Bs)d, or in general operators with roots on the unit circle)
can be used to transform nonstationary series into stationary

ones.

4. Models for individual series from multivariate AR(MA) processes

In the literature on stochastic modelling of univariate
streamflow sequences the first order autoregressive model (applied
to the standardized monthly logarithm of the observations) is fre-

quently used to generate synthetic streamflow records. These
models are subsequently extended to the case of observations at

several sites within a watershed basin. A frequently considered
extension of the univariate AR(1) model for observations at one
site is the multivariate AR(1) model for observations recorded at

several sites (Matalas [13]).

In this part of the paper we discuss the question whether
individual series (subsets) from a multivariate AR(MA) process
follow the same AR(MA) type process. It is shown below that in-

dividual series from a multivariate AR process follow a univariate
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autoregressive model, but of higher order and with correlated
residuals (ARMA model). Individual series from a multivariate
MA process, however, are shown to follow again a moving average

process of the same {or lower) order.

Let us first consider the case when the s-dimensional series

z(t) follows the multivariate AR(p) model.

@(B)z(t) = (I-&B-...-¢ BY)z(t) = b(t)
(v,(B) v, (B)7] [z, ()] [ b, (t)]
72 = P2 () (4.1)
vy ve ||z | [ b
We partition the [sxs] operator ¢ (B). v1(B) is a scalar operator;
(B) and v (B) are vectors of order [sx1]; V(B) is of order

M) 3
[s=1 xs=-1]. Then it follows that

(v, (B) - v, (B)'V(B) v (B)lz, (£) = b, (t) - v,(B)'V(B)  'b*(t)

(4.2)

where

¥ (£) ' = (b, (t),...,b_(t))

Multiplying each side with the determinant |V (B)| reduces the

operators in (4.2) to polynomials in B.

(V) v, ® - v, () 'V @)vy®)1z, (t) = [VB) [b, (t) - v, ®) "V B)b*(t)
(4.3)
where VA(B) is the adjoint of matrix V(B). From (4.3) one can
see that the univariate series from a multivariate AR(p) process
follows a complicated model. Since for a general AR(p) process
Yz(B) and y3(B) will have no common factors with V(B), any in-
dividual series (in our case we took the first one) of a s dimen-
sional AR(p) process will follow an autoregressive model of order

sp with correlated residuals.
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To illustrate this result in more detail we consider a bi-

variate AR(1) model, i.e.:

(I- B)z(t) = b(t)

1_¢11B _¢12B an (t) b1 (t)
= (4.4)
~0,4B  1-0,,B ||z, (£) b, (t)
Then
¢12¢21B2 ¢1zB
(1=6¢44B) ~+——|2z,(t) = b,(t) + ———= b, (t)
[ 11 T-9,,8 ] 1 1 T-9,,8 2
(4.5)
or
2 _ -
(4.6)

It is seen that in general the univariate series z1(t) follows a
second order autoregressive process with correlated residuals |
(ARMA model). \

In the special case ¢12 = 0 (situation when no feedback
from z, to z, present), the operator (1-¢22B) in (4.6) cancels
on each side and the univariate series z1(t) follows a first order

autoregressive model.

For the multivariate moving average process of order g it
was shown in (3.12) that the covariance matrix function has a cut
off after lag g. The individual series (let's say z1(t)) has
thus at most the first g autocovariances different from zero and
application of Theorem 10 on page 63 in Hannan [7] implies
that z1ﬁj has again a moving average representation of order at
most (. (Note that the requirement of nonnegative spectral den-
sity for the individual series 21(t) is satisfied since the
spectral density matrix for the multivariate process is nonnega-
tive definite).
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5. Specification of multivariate time series models

The objective of this section is to discuss the methodology
of model building for multivariate time series. It was suggested
by Box and Jenkins [3] that quantitative model building should

incorporate the following steps:

(1) entertaining a class of models broad enough to

cover a variety of situations;

(2) selection of specific member(s) of the enter-
tained class for further analysis (specification

or identification) ;

(3) estimation of unknown parameters of the chosen

model (s) (estimation);

(4) Checking the validity of the entertained model(s)
and possible respecification and reestimation

(diagnostic checking).

In the pure time series approach each of the above steps depends
on the data. For example, the choice o0of the selected model in
step (2) depends on the information coming from the data or ap-

propriate functions of the data.

System analysts might want to argue that there is usually
a considerable theory about the data generation mechanism and
that the assumption of a-priori ignorance is rarely true. How-
ever, one frequently encounters model building problems about
which theory has little or nothing to say (for example the speci-
fication of error terms). In such instances when ignorance about
the underlying theoretical mechanism is admitted, time series

methods play an important role.

It has been pointed out [3] that autocorrelation and par-
tial autocorrelation function provide useful tools to tentatively
specify (identify) univariate ARIMA models (i.e. decdiding the

order of moving average, autoregressive and simplifying operators.
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Autocovartance function

If we consider multivariate sequences (for example previous-
ly standardized and transformed streamflow sequences of various
Sltes 1in a watershed basin) we observe matrices of autocovariances

as defined in (2.3). Estimates of lag k autocovariance and auto-

correlation matrices T (k) and P(k) are given by

n-k

I (z,(t) -z.)(z.(t+k) —Ej)

t=1 1 1 J

(5.1)

where Ei and Ej are the sample means of the observed
sequences. Division by n (compared to n-k) will lead
to a biased estimator of Yij(k) which only becomes
unbiased as n tends to infinity. As with the estima-
tion of autocovariances it can be argued that the
divisor n is preferable to n-k since the estimator has

smaller mean square error.

Furthermore

R(k) = {r..(k)} r..(k) = iJ . (5.2)
1) 1] {c..(0)c..(0)}?

Partial autocovariance function

The usefulness of the partial autocorrelation function in
deciding the order of stochastic processes has already been pointed
out, for example, by Box and Jenkins [3]. The partial autocorre-
lation function is a device which exploits the fact that whereas
the AR(p) process has an autocorrelation function which is infi-
nite in extent, the partial autocorrelations will be zero after
lag p.

For multivariate stochastic processes the concept of partial
autocovariance matrices can be used in the specification stage of
model building. Useful statistics and their distribution were

first described by Quenouille [16] and later extended by Hannan [7].
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A stochastic process with autocovariance generating func-
tion T'(B) can be defined in two different ways depending on the
deriction of time it is aimed at. For example, the multivariate

AR (p) process with autocovariance function T'(B) has equivalently

(i) a forward representation

z(t) - <I>1z(t—1) —ee.= <I>pg(t-p) = b (t) (5.3)
with
rk)' - ®1F(k—1)'*...—¢pF(k—p)' =0 k > 1
and
Eb(t)b(t)' = G = T(0) = &, (1) -...- ¢ T(p)
(ii) a backward representation
z(t) - @#z(t+1) - .- @;g(t+p) = b* (t) (5.4)
with
r(k) - @?F(k—1) .~ @;F(k—p) =0 k > 1
and
Eb* (t)b*(t)' = G* = T'(0) - F(1)¢ﬁ'—...— F(p)@E'
In the univariate case the parameters ¢ and ¢* coincide.
It is easily shown that for the AR(p) process
Eb(t+k)b*(t)' =0 for k > p
Eg(t+k)b*(t)' is the partial covariance matrix of lag k. It is

the covariance matrix of %(t+k) and g(t) after removing the ef-
fect of the intermediate z(t+k—1),...,§(t+1h more mathematically
speaking, it is the covarzance matrix of the projection errors
of g(t+k) and E(t) after projecting it on the linear subspace
generated by {z(t+k—1),...,%(t+1)}.

In large ;amples the projections are derived by substituting
the empirical autocovariance matrices C(j) into the first p eaua-

tions of the forward and backward representations and solving
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[c) ¢ cie-n[ 8] [cm]
c(1) c(0) c(p-2)'|| o4 C(2)
. =| . (5.5)
| c(p-1)C(p-2)... C(0) Sé C (p)
and
‘c©  c) ... ce-n|[ex]  Jew
c(1)' €(0) ... C(p-2)||ey" c(2)"
= | . (5.6)
C(p-1)'C(p=2)'...c(0) J[o4'] [C(p)']
B(t) = z(t) - &,z (t-1) —...= 8 z(t-p) (5.7)
b* (t) = z(t) - 9%z (t+1) -...= ¥z (t+p) (5.8)
G =C(0) - ¢,C(1) =...- %pc(p) (5.9)
G* = C(0) - c<1)a¢- —..u-C(p)$;' . (5.10)

Ignoring end effects (assuming large n) it can be shown that

1
n J b(t+pt1)b*(t)' =

t
=1 -3 - =% -5 % :
= HE[g(t+p+1) 912(ttp) —..m ez (tH) 1Mz () - Pfz(t+1) -...— 0¥z (t+p)]
= c(p+1)' - [8 _1[ce-1)" c(t cofe]']
feeen Jree=nr ... 1
C(p-2)" ..... c(0) c(1)
N R
cO)  ..... -2)c(p-D|]| @
| c(0) C(p )C(p1)_Lp_
P .
= C(p+1)' - } ¢.C(pt1-i)' by using the result in (5.6).
i=1

(5.11)



~18-

Hannan [7; page 398] proves the result that if the z(t) are

generated by an AR(p) process the 52 elements of

N—

/R V(p+1) = /A & E(C(pr1) - b clpr1-1) 1 & (5.12)

[ acrlie]

i=1

have an asymptotic joint Normal distribution with meanvector 0O

. . . 2. . . .
and covariance matrix I, where I is the [s2 x s”] identity matrix.

It thus follows that
ntr [V(p+1)V(p+1)'] (5.13)

is asymptotically X2 with 52 degrees of freedom.

Computationally the derivation of (5.13) is simplified by

the following result:

Theorem:
' — A*l 3
tr[Vip+1)V(p+1)'] tr[®p+1,p+1©p+1,p+1] (5.14)
where ®p+1,p+1 and ®;+1,p+1 are the estimates of the last param-
eter in a (p+1) order forward (backward) autoregressive process.
A* . .
®p+1,p+1 is the solution of
[ co) cm) C(p) NS 1 [ecay:
o p+1,1
' - A*l 1
Cc(1) cC(0) ... C(p-1) ®p+1,2 C(2)
. = . (5.15)
c(p)' C(p-1)'...C(O Bt ) C(p+1)"
| cp)y' Cp-1) (© |81 e | CP
and ®p+1,p+1 is the solution of
' v v e r
[c) c(1)' ... c(p) F%H1J c(1)
- ' [}
Cc(1) C(0) ee. C(p-1) ®p+1,2 Cc(2)
: . = . (5.16)
C C(p-1) ... C(O : é( +1)
i (p) (p=-1) (0) .H_(DPH,pH_ i p d

The proof of this equivalence is given in the Appendix.
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Estimated autocovariance and partial autocovariance matrices
can thus provide more insight into the type of model worth con-
sidering. Especially the result in (5.13) and (5.14) should be
important for applications in hydrology. The multivariate AR(1)
model is frequently considered for standardized streamflow se-
quences at several sites. The test in (5.13) could indicate
whether the AR(1) process is in reality sufficient or whether

more complicated models of higher order should be considered.

Specifying the model for multivariate time series is an ex-
tremely difficult task and no simple solutions exist. Various
approaches have been put forward how to specify multivariate ARMA
models. Parzen [15] points out that for premathematical statis-
tical investigations of the specification of models to be fitted
it may be essential to first model each component separately (pre-
whiten the individual series). A similar strategy is adopted by
Haugh [9] suggesting a two-stage identification procedure. The
basic idea involved is to identify the relationship between the
series by first characterizing separately each of their univariate
models and secondly modelling the relationship between the two
residual series driving each univariate model. The task at the
second stage is made more tractable by the fact that one is cross-
correlating two white noise series and hence the sample cross cor-
relation function is easier to interpret. A similar approach is

adopted by Granger and Newbold [6] and Jenkins [17].

A somewhat different approach is stressed by Zellner and
Palm [21] and Wallis [19]. They use the fact that ARMA models

in (3.1) can be written as
|2(B) [z(t) = *(B)O(B)b(t) (5.17)

where @A(B) is the adjoint of ¢(B). This representation implies

that the autoregressive operator is the same for every series.

An extensive treatment in the literature is given in the
case when there is no feedback present (series z1(t) is influenced

by zzlt), but in turn doesn't influence the latter). Box and
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Jenkins [3] give identification procedure for this special case.
They first prewhiten the input series zz(t) and apply the same
prewhitening transformation to the output z,(t). This approach
is different (compared to the procedures in the feedback situ-
ation) since the same prewhitening transformation is applied to

both series.

6. Estimation of parameters in multivariate time series models

After identifying (specifying) the underlying ARMA model
(determining the order of autoregressive, moving average and
simplifying operators), one has to estimate the parameters. From
now on we will assume that the distribution of the shocks b(t)
has a multivariate Normal distribution. This, however, doés not
appear to be a restrictive assumption since transformations can
be used to achieve Normality. For example, the log transforma-
tion will make the skewed distribution of standardized run off
sequences approximately Normal. One can even go one step further
and estimate the transformation from the data. The class of power
transformations as considered by Box and Cox [2] represents a
particularly useful parameterization and we showed in a nrevious
paper [12] how this methodology can be used for hydrologic se-

quences.

Hannan [7] gives an extensive treatment of inference in the
frequency domain. He gives methods for estimating pure autore-
gressive and pure moving averadge models in the multidimensional
case. In theory this method can be extended to cover mixed auto-
regressive moving average models; .computational complications,

however, become extensive.

In this paper we consider estimation in the time domain only.
Before we discuss maximum likelihood procedures for estimating
the parameters in model (3.1), we elaborate shortly on an estima-

tion procedure suggested in the hydrologic literature.

O'Connel [14] derives estimates for special cases of multi-
variate ARMA models by solving low lag autocovariance equations
such as (3.15) in terms of the parameters of the process. For

models with moving average parameters the so derived estimates
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are asymptotically unbiased; however they are inefficient and
more efficient estimators, such as maximum likelihood estimators,

can be found.

To illustrate the above assertion we consider the special

case of a first order moving average process in s = 1 dimensions.
MA (1) z(t) = (1-06B)b(t) (6.1)

where b(t) is a Normally distributed white noise sequence with
2 2

E[b(t)] = 0 and E[b(t)"] =0
It is easily shown that the autocorrelation function is

given by

-0

5 =0 for k > 1 (6.2)
1T+ 6

and

Pq = Pk

The solution of the above equation satisfying the invertibility
condition (zeros of 1 - 6B lie outside the unit circle) is given
by

_2p1
f = —m . (6.3)

R

Using the estimated lag one autocorrelation ry in this equation,
the estimate of 6 in terms of the estimated autocorrelation is

given by

;. —2r1
0 = . (6.4)

1+ V1—Ur1

It is shown in Hannan ([7], page 373) that 6 is asymptotically

unbiased, and that the asymptotic variance of 6 is given by

@
~
@

=

|

2.2

2 4 6 8
02(~, - n-1[1+ 6" +40 +6 + 60 ] . (6.5)
(1-67)

On the other hand, Box and Jenkins [3] derive the maximum likeli-
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~

hood estimator 6 and show that the asymptotic variance is given
by

02(@;9) - n V(1-0% . (6.6)

The asymptotic efficiency of 9 relative to 8 is given by the
ratio of the two asymptotic variances and is given by
~ A (1_62)3
Efa(e,e;e) = 8 (6.7)

1+ 92+-ue“+-e6+-e

Unless | 6| is quite small the efficiency of 6 is unacceptab-
ly low. The table below gives the asymptotic efficiency for

several selected values of 6.

(0] Asymptotic efficiency
of 6 relative to ©

.75 .03

.50 .28

.25 .76

.10 .96

But low efficiency of these estimates directly derived as func-
tions of the autocovariances (autocorrelations) are not the only
disadvantage of this estimation procedure. For multivariate
autoregressive schemes with correlated residuals (ARMA) the so-
lutions of autoregressive and moving average parameters in terms
of the covariance matrices become very complicated, as it can,

for example, be seen from equations (3.15).

A convenient procedure to derive maximum likelihood estimates
for the case of Normal errors thus has to be found. Wilson [20]
presents a practical iterative method for estimating parameters
in mixed autoregressive moving average models. This method is a
generalization of the iterative estimation procedure suggested by

Box and Jenkins [3] for the univariate case.

The multivariate ARMA model satisfying stationarity and
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invertibility conditions (roots of det®(B) = O and det©(B) = O
outside the unit circle) is given by

(1-9B-...-2 B")z () = (I-0;B-...- 0B b(t) . (6.8)

1 P 1

The unknown parameters ¢.,¢,,...,% ,0.,...,0 , which are for
1772 p’' 1 q

convenience arranged in a columnvector B, and the elements of

the covariance matrix of the white noise sequence b(t), G, are

to be estimated from the available data z(1),z(2),...,2(n).

Assuming joint Normality for b(t), and neglecting the effect

of starting values, the likelihood of the parameters B and G is

given by
_n
2 1 R V=1
L(B,G|z(1),...,2(n))«<|G| exp {~ 5 } b(t)'G b(t)} ,
~ < b boq - ~
(6.9)
where b(t) is a function of the parameter vector §
b(t) = z(t) - 0,2(t-1) -...- @pg(t—p)+—®1§(t—1) o004 @q?(t-q)
(6.10)
The log likelihood function is given by
n
n 1 Al
L(B,G|z(_1),...,z(r1))<>c-§[1og|G|+H } b(t)'G b(t)] . (6.11)
b < z toq ~

The objective function to be minimized with respect to the ele-

ments in B and G is thus given by

n
F(B,G) = log |G| + 1 ) k~>(t)‘G_1b(t) . (6.12)

~ nt=1 ~
This objective function is motivated by the Normality assumption.
It may, however, also be used to derive (generalized) least squares

estimates, when the assumption of Normality is not valid.

Conditional estimation of G:

The derivative of F(8,G) with respect to elements of G_1 =

{g*)} is proportional to
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n
1
955 * g t£1 bi(t)bj(t) (6.13)
since
~2g9. . it
- -1
., dloglel _ _dalogle'| _ _ _1_ 4l ] 1)
dg™’ ag™J 7' agtd “q.. P =
ij

according to Theorem 7 in Appendix 1 of Anderson [1]

-

n
n A
a } 9(t>'G_1p(t) . » 2 t£1 b, (t)by (£) it]
li) t=1 T = z tr dG. . b(t)b(t)' =
1] ij < ~ 1
dg t=1 dg n o
I by (t)bs(t) i=]

Cot=1

Thus for given values of g the estimate of the elements of G =

{gij} is given by

(o]
{l
S|=
e~

. . . 6.14)
is L bl(t)bj(t) (

Conditional estimation of B:

In order to derive the conditional estimate of B given the

value of G one has to minimize the second factor in (6.12) or

equivalently
n 1 n n S 2
I b(ty'6¢ 'b(t) =) h(t)'h(t) = } 1} hy () (6.15)
t=1" ~ t=1 "~ t=1 j=1
where b(t) = b{(t)'P
and PP' = G or P'G P =1

It is easily seen from Corollary 4 in Appendix 1 of Anderson [1],

for example, that

-l
P = HD °?
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where H is the matrix of normalized characteristic vectors of G—1

and D is the diagonal matrix with the corresponding characteristic
roots in the diagonal.

Nonlinear regression (optimization) routines can be used to
derive the estimates in B such that (6.15) becomes minimal. An
introductory exposition of nonlinear regression methods is given

in Draper and Smith [5].
Simultaneous estimation of B and G

The strategy to estimate the parameters B and G is to apply

~

the conditional estimation schemes alternately

G = G(B)
n ~n n=0,1,2,... (6.16)
§n+1 = g(Gn)

Since each of the steps is a conditional minimization, the above

A A~

parameter estimates must converge to the overall minimum B,G.
Wilson also investigates the distribution of the parameter
estimates. The estimates B and G derived by minimizing (6.12)

are consistent and asymptotically uncorrelated. The asymptotic

distribution of E is Normal.

The following comments about this estimation procedure come

to mind:

(1) The maximum likelihood procedure, as described above, is
conditional on starting values g(O),g(1),...,g(—p+1) and
P(O),§(1),...,p(—q+1). In practice the starting values

for the shocks are set equal to their expectation, which

is zero, and z(0),...,z(-p+1) are the first p observation
vectors of the series. '

The assumption of fixed starting values is in most
cases reasonable, since for invertible models the contri-
bution of the starting values will be of negligible impor-

tance (see equations (2.8)). Some care, however, has to
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be given to the case when the moving average parameters
approach the non invertibility region (roots of det O(B) =0
approach the unit circle). '

Hillmer [10] illustrates that for multivariate time
series one can sometimes expect roots of det O0(B) =0 on or
near the unit circle. This can occur in seasonal data
where the seasonality is nearly deterministic or in situ-
ations when there are only a few nonstationary components
which affect all of the series. He illustrates that in
such cases the traditional methods of estimation which
assume that the starting value contribution to the likeli-
hood is negligible do not perform adequately. In these
situations Hillmer suggests estimates based on the exact

likelihood (unconditional on starting values).

(2) Implementation of this estimation procedure requires a
nonlinear regression routine and matrix routines to find
eigenvalues and eigenvectors of symmetric positive def-

inite matrices.

(3) In the context of iterative non linear regression routines
it is easy to incorporate restrictions on the parameter
vector B (such as setting certain elements equal to zero

a priori).

7. Diagnostic checking

After specification of the model and estimation of its param-
eters, diagnostic checks have to be applied to see whether there
is serious inadequacy of the model. Diagnostic checks must be
such that they place the model in jeopardy, thus being sensitive
to discrepancies which are likely to occur. Examples of such
model inadequacies are misspecifications resulting in not pre-
serving the autocorrelation structure, missing transformations
of the data, time varying parameters, etc.

(1) One useful method to check a model is to overfit (i.e.
estimate the parameters of a slightly extended model than the
one supposed to be true.) This procedure assumes that we know
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about the direction in which the model is likely to be violated
(for example not enough autoregressive or moving average terms
in the model).

(2) Another useful type of diagnostic checks looks at the
residuals (observed minus estimated values). If both, the model
were correctly specified and its parameters exactly known, the
shocks b(t) would be independently distributed with mean zero
and covariance matrix G. It is known then that the estimated
autocorrelations rii(1),...,rii(K) of bi(t) are asymptotically
independent and Normally distributed with mean zero and variance
n—1 (where n is the number of observations) (see [3], page 290).
Furthermore (see [2]) the same result holds for the estimated
crosscorrelations rij(1),...,rij(K) between the independent series
bi(t)>and bj(t).

These facts could be used to assess the statistical signif-
icance of departures of the autocorrelations and crosscorrela-
tions from zero and thus detect lack of fit. This can be achieved

by plotting and comparing the correlations r.j(1),...,rij(K) with

| 1

confidence bands at * 2n °.

Another useful statistics, a portmanteau lack of fit test
([31,[11]1), uses the property that the sum of K squared standard
Normal deviates follows a XZ distribution with K degrees of

freedom. Thus under the null hypothesis (no lack of fit)

ri. (k) 1is Xi (for 1 < i, j < s) (7.1)

The above procedure is, however, not immediately applicable,
since the parameters of the model, and thus b(t), are not known.
In practice we only observe parameter estimates and residuals
b(t). It thus has to be investigated how this affects the above

procedure.

Box and Pierce [#4] discuss the univariate case and show that
the large sample variances for the autocorrelations of the (uni-

variate) residuals b(t) can be less than n_1, especially at low |
L |

lags. They thus conclude that in such cases the use of n ? as
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standard error for the estimated autocorrelations of the residu-
als would underestimate the statistical significance of apparent
L
2

departures from zero and that n ° should be considered as an up-

per bound, especially at low lags.

General results on the effect of parameter estimation errors
on the distribution of autocorrelations and crosscorrelations of
the residuals are still lacking. Nevertheless, Haugh's [9] re-
sults on the crosscorrelations of two independent, individually
prewhitened series indicate that the use of estimated parameters
does not seem to significantly impair these diagnostic checking

procedures.

8. Conclusion and Recommendations

After discussing multivariate tirie series methodology in a
statistical context we want to summarize the important practical
implications for the hydrologist who wants to use these methods

on some actual data sets.

(1) It is pointed out that the multivariate Markovian
streamflow generation model as discussed by Matalas
[13] and the streamflow generation model provosed by
O'Connell [14] are speciai cases of the class of mul-
tivariate autoregressive moving average models. It
is suggested that members of this general class of

models are considered candidates for multi-site

streamflow generation models.

(2) Our objective is to derive models possessing maximum
simplicity and the minimum number of varameters con-

sonant with representational adequacy.

(3) The process of model building is concerned with re-
lating the class of multivariate autoregressive mov-
ing average models to actual observed streamflow data
and involves much more than data fitting. Instead of

restricting ourselves a-priori to special cases of

this class of models (such as AR(1) in Matalas'
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approach), we let the data speak for themselves and
develop identification procedures which are designed
to suggest what particular kind of model might be
worth considering. It is shown how autocovariances
and partial autocovariances can help us in this de-

cision.

The specification process leads to a tentative formu-
lation of the model; we then need to obtain efficient
estimates of the parameters. Estimates of the param-
eters should have the property of consistency (i.e.:
for large sample size they should converge to the true
values); furthermore, the asymtotic variance (i.e. the
variation of the estimate from the true value) should
be small as small as possible. It can be shown

that maximum likelihood estimates possess these pro-
perties. 1In particular it can be shown that if moving
average terms are present, the maximum likelihood es-
timates have smaller asymptotic variance than estimates
derived by solving low order autocovariance matrix
identities as proposed in the hydrologic literature
[147].

It has to be emphasized that estimation (model fitting)
is not the last step in any model building procedure.
Diagnostic checks have to be applied to detect possible

model inadequacy.

The difference of observed and fitted observations
(residuals) gives insight whether and how the model

ought to be changed.
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APPENDIX

Proof of the Identity in Theorem of Section §

A

p A K p A
r (Vb)) V (pH1) ') = tr[G 1<C(p+1)'— } 6iC(p+1—i)>G* 1(c(p+1)'- ) @,ic(p+1—i)')1
1=1 i=1

In order to show the result we prove that

A%

P
A1 ' _ P iy —
G (C(p+1) z¢ic(p+1 i)y = ¢p+1,p+1

i=1

(A1)

From (5.14) and result 2.7 on page 29 of Rao [17] it follows that

(’f)*' — —1(0_[--( 1 1£| (p)_1 }_1 1 ' 4;J (p)-1 '
o+1,p+1 = ¢ )= =) ... C C(p)|[- {Cp+1) - |Cp) ... C(1)|C, c(1)
C(1) C(p)'
(A2)
where
.c(0)Cc(1) ... C(p-1)
C=|(<p) _ Cc(1)'C(0) ... C(p-2) (A3)
C(p-1)'C(p-2)"' ... C(O)
Furthermore
Cip) = rcPlp (Al)
where
0 oI
F = O I0
[ps xps] I ... 0

and
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[c(o)c(1) . Clp-1)]
C(p) _|c(1)c(o) ... C(p-2)"
C(p=1)C(p=2) ... C(O) |
It follows that
-1 -1
ciP)  _ pcP) g
and
S
C(0) - [C(p)'...C(1)'] C, C(p)|=cC(O) - [c(N)'.

c(1)

=C() - [C(M)'...C(p)"]|d;

I
(4

6!
- Le]
using the relations in (5.5) and (5.10).

Furthermore,

-1

Clp+) ' - [Cp)" ...c(1)']c,£p) c) T =cEt)' - [c()' ...

Cip)!'

p ~
=cet' - T dcEH-i)
i=1

using the relation in (5.5).
Substituting (A6) and (A7) into (A2)
In the same way one can show that

p ~ A*—1
LI -1} _ 2
<C(p+1) i; ¢, C(p+1 1)> G = ¢p+1'

thus showing the theorem (5.14).

(A5)

~1

ce1c® e

shows relation (A1).

p+1 (n8)

g.e.d.
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