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PREFACE 

The development of optimization techniques for  solving complex decision 
problems under uncertainty is currently a major topic of research in the Sys- 
tem and Decision SciencesArea a t  IIASA, and in the Adaptation and Optimiza- 
tion group in particular.This paper deals with a new approach to optimization 
under uncertainty which tackles the problems caused by incomplete informa- 
tion about the  probabilistic behavior of random variables. In contrast to the 
usual approach, which is to assume that  probability distributions are known, 
the authors consider the more common case which arises when the informa- 
tion available is sufficient only to single out a set  of possible distributions. The 
resulting optimization algorithms can be used in reliability analysis, 
mathematical statistics and many other fields. 

ANDRZEJ WIERZBICKI 
Chairman 
S y s t e m  and  Decision Sciences  



ABSTRACT 

The main parpose of this pepor is to  discus: numericril optirnization pro- 
cedures,  based on duality theory, for problems In which the distribution func- 
tion is only partially known. The dual problem is formulated as a minimax- 
type problem in which the  "inner" problem of maximization is no t  concave. 
Numerical procedures tha t  avoid the  difficulties associated with solving the  
"inner" problem a re  proposed. 



STOCHASTIC O P ~ ~ Z 4 T I O K  FROBLEIFS KITH 
INCOYSLEW. INI;Y)RIFATIOK ON DT:ZI?LRTJTJOl? WNCTJOI<S 

Yu. Ermoliev, A. Gaivoronslci and C. Nedeva 

1. I h ~ O D U C I l O I :  

A conventional stochastic programming problem may be formulated with 

some generality as  minimization of the function 

T ( z )  = Eyv(x.y)  = ~ ~ ( x . ~ ) d ~ ( y )  (1) 

subject to 

where y E Y c Rm is a vector of random parameters, H(y)  is  a given distribu- 

tion function and v ( x  , a) is a random function possessing all the  properties 

necessary for expression (1) t o  be meaningful [I]. 

In practice, we often do not have full irlformation on H(y);  we sometimes 

only have some of its characteristics, in particular bounds for the mean value 

or other moments. Such information can often be written in terms of con- 

straints 



where the q k ( y )  , k = 1.1, are known functions. We could, for example, have 

the following constraints on joint moments: 

where C, ,, are  given constants. 
i ..... ~ m '  71172 ..... ~ m  

Consider the following problem: find a vector x which minimizes 

subject to  cons t ra i~ l t s  ( 2 ) ,  where K is the  se t  of functions H satisfying con- 

s t raints  (3) and (4). 

Special cases of this problem have been studied in [ 2 ] ,  [ 3 ] .  Under certain 

assumptions concerning the  family K and the function v(.), the solution of the  

"inner" problem has  a simple analytical form and hence ( 6 )  is reduced to a 

conventional nonlinear prograniming problem. The main purpose of this 

paper is to  discuss numerical methods for t he  solution of problem ( 6 )  in the  

more general case. Sections 2, 3, and 4 deal with the  reduction of this prob- 

lem t o  minimax-type problems without randomized strategies and  describe 

numerical rnet,hods based on some of the same ideas a s  generalized linear pro- 

gramming. A quite general method for solving the resulting minimax-type 

problems, in which the inner  problem of maximization is not concave, is con- 

sidered in Section 5. 



2. OPTIMIZAFIDi: 7Xd REWECT TO DISYRIBL~OPJ FJGXIOKS 

The possible methods of minimizing T(z) depend on solution procedures 

for the following "inner" maximization problem: find a distribution function H 

that  maximizes 

subject to 

- 
where qV , v = O , l ,  are given functions Rm -+ R ~ .  This is a generalization of 

the known moments problem (see, for instance, [4-61). It can also be 

regarded as a generalization of the nonlinear programming problem 

max fqO(y):qk(y) 5 0 ,  y E Y ,  k = l , l j  

to  a n  optimization problem involving randomized strategies [7-91. 

I t  appears possible to solve problem (7)-(9) by means of a modification of 

the revised simplex method [8,10]. This modification is based on Krein's 

"geometrical approach" to the theory of moments [1,5,6]. Consider t h e  se t  

z = [e:z = (qO(y) , ql(y) ,...,qi(y )) , y E Yj 

and suppose that  Z is compact. This wil.1. be true,  for instance, if Y i s  compact 

- 
and functions qV , v = 0,1, are continuous. Consider also the convex hull of Z: 

where N is an arbitrary finite number. Then general results from convex 

analysis lead to 



Therefore problem (7)-(9) is equivalent t n  rnesimizing z o  subject t o  

According to the Caratheodory theorem, each point on the boundary of co Z 

can be represented as  a convex combination of a t  most 1 + 1 points from 2: 

Thus problem (7)-(9) is equivalent to the  follo~ving generalized linear pro- 

- 
grarnrning problem [ I l l :  find points yj E Y ,  j = 1.t , t  I 1 + 1 and real 

numbers p j  . j = 11, such tha t  

subject to 

Consider arbitrary points cj , j = l l ,L+l  (setting t = 1 + 1 )  , and for the fixed 

-1-2 set  ty ,y , . . . . yLtl j  find a solution p = (jiI,ji2, . . . ,&+,) of problem (11 ) - (13 )  

- 
with respect to p.  Assume t h a t  p exists and that  (G1,G2, . . . , u ~ + ~ )  are  the  

corresponding dual variables, i.e., solve the  problem 

min u1 ( 1 4 )  

subject to 

- 
U k l O , k = l , L  . ( 1 6 )  

Now let  y be an arbitrary point of Y. Consider the  following augmented 



- 5 -  

problem of nlaxirnization with respect tn (pI,p,,...,pL+,,p) : maximize 

subject to 

I t  is clear tha t  if there  exists a point y  ' such that  

then the solut.ion 5 could be improved by dropping one of the columns 

( q O ( i j j ) ,  y l ( i j j ;  , . , , , g L ( f j j ) ,  I ) ,  j = i , l + l  , from the basis and replacing it by 

the column ( q O ( y  * ) ,q  l ( y  * ) , . . . , q l  ( y  * ) , I ) ,  j = 1,1+ 1 , following the revised sim- 

plex method. Point y  could be defined as  

Then a new solution p  of (11)-(13) with fixed y  = y can be determined in t h e  

same way a s  ji, together with the dual variables u*. This method gives u s  a 

conceptual framework for solving not only ( 6 )  but  also some more  general 

classes of problems. 

I f  y ( z )  = ( y l ( z ) ,  y 2 ( z ) , . . . , y 1 + l ( z ) ) ,  p ( z )  = ( p l ( z )  , p 2 ( z ) , . . . 9 p 1 + 1 ( z ) )  is a 

solution of the  inrier optimization problem for fixed z ,  then the  function ( 6 )  

may be nondifferentiable with subgradient 



where v, is a subgradient of function II(. , y ) .  Nondifferentiable opkirnizetion 

techniques could therefore be used to minimize T(x). The main difficulty of 

such an  approach would be to obtain a solution of ( 2 0 )  and exact values of 

y ( z )  , p ( x )  a t  each cu r ren t  point zS for i terations s = 0,1 ,  ... This last difficulty 

can sometimes be avoided by dealing with approximate solutions rather  than 

precise values y ( x )  , p ( x ) ,  and using c-subgradient methods (see [ 1 2 ] , [ 1 3 ] ) .  

Generalized linear programming methods which do not require exact solu- 

tions of subproblem (20) a re  studied in Section 4. 

3. DUALITY RELATIONS 

The duality relations for problem (7)-(9) enable us  to find a more general 

approach to the  solution of problem (6). Consider the  following problem: 

L 
min max - x u k q k ( Y ) ]  . 
U E V +  Y E Y  k = l  

where 

This problem can be regarded a s  dual t o  (7)-(9) or (11 ) - (13 ) ,  but  to explain 

this we mus t  introduce some more definitions. 

In what follows we shall use t h e  same letter,  say H, for both the  distribu- 

tion function and  the  underlying probabilistic measure,  where this  will not  

cause confusion. We shall denote by Y+(H)  the  collection of all subsets of Y 

which have positive measure H, and by dom H t he  support set  of distribution 

H , i.e., 

dorn H = n A 
A E Y + ( H )  

Set  



* *  
U *  = 1 u : u E ! I + ,  +(u*)  = min +(u)j 

U E V +  
1 

Y ( U )  = I y : y E Y ,  $44 = q 0 ( y )  - C u k q k i y ) 1  
k =l 

Then the following generalization of the resu l t s  given in [14] holds. 

Theorem 1. Assume that 

1 .  Y is c o n ~ p a c t  and q v  ( y  ) , v = F1 , are c o n t i . n ~ ~ o u s .  

2. int  co Z # $I 

Then 

I .  Solutions to both problem (7)-(9) and problem (21) exis t ,  and the optimal 

va lues  of the  objective func t ions  of bo thprob lems  are equal,  

2. For a n y  solut ion H* of problem (7)-(9) there ez i s t s  a u E U *  s u c h  that  

In other words, the dualiky gap vanishes in nonlinear programs with random- 

ized strategies. A proof of this theorem can be derived from general duality 

results [12,15] and the theory of moments [S]. The proof given below is close 

to the ideas expressed in [12]  and illustrates certain connections with results 

from conventional nonlinear programming. 

Proof. From ( l o ) ,  problem (7)-(9) is equivalent to 

- 
max [zo:z  = ( z l , z Z  ,..., Z L )  E co Z ,  zk 1 0 ,  k = 1,Lj , ( 2 2 )  

where Z = I z : z  = ( q O ( y ) , q l ( y ) , . . . , q L ( y ) )  , y E Yj. From assumption 1 of 

Theorem 1, co Z is a convex cornpact set and therefore a. solution 

z = ( z o  , z  . . . , z L * )  to problem ( 2 2 )  exists. Let L ( U , Z )  be a Lagrange func- 

tion for ( 2 2 ) :  



From assumption 2, 

z i  = max min L ( u , z )  = min max L ( u . , z )  . 
Z E C O  Z 2 ( € ~ / +  ".'€ v+ ZECO Z 

According to ( l o ) ,  there exists for any z  E co Z a distribution H  such tha t  

We therefore have 

and 

max L ( U , Z )  = rnax ~ L ( u , H )  H 2 o , J ~ H ( ~ )  = 11 , 
ZECO Z Y 

Obviously 

which proves the first par t  of the theorem. 

Under the assumptions of t he  theorem we h o w  tha t  for any solution 

( zi, . . . , z : )  there exists a u E U *  such tha t  

zgC = max L(u.*,z)  , 

z ECO Z 

Thus, -for any optimal distribution H* nre have 

which proves the second par t  of the  theorem. 



Remark 1 .  From the  duali ty theorem aSmre 7.; e ha\-e 

m 
m a x  Jv(x , y ) d ~ ( y )  = nlin ma?: [v ( x ,y) - C ~ L ; C  q k  (Y) ]  
H E K  U E V +  Y E Y  k = I  

for e ach  fixed x E A', where v (x ;) is a contir l uous  function.  Problem (6) can 

then be  reduced  to a minimax-type problern a ~s follows: minimize t h e  function 

with respec t  to  x E X , u 2 0. 

Remark 2. Theorem 1 can be used  to  cha r ac  ter ize  opt,imal distr ibutions for a 

variety of nonl inear  optimization problems with distribution functions. The 

approach is, f irst ,  to  s t a t e  necessary optirnal .ity conditions through lineariza- 

tion and  t hen  t o  apply Theorem 1. This is  illu: i t ra ted in t h e  following example. 

Consider the  optimization prcblem 

where g i ( ~ )  , i = % , a r e  nonl inear  funct;ionals depending on distribution 

functions H with suppor t  s e t  Y. 

Theorem la .  Assume tha t  the f o l l o w i n g  state7 ne7rts are t r u e ,  

1 .  Set Y is a compac t  subset  o f  Euclidean spud< :e Rn. 

2. fir any dis tr ibut ions  H1 = H 2  s u c h  that dom H1 L Y1 , dom Hz C Y2 w e  

have 

&(a, HI, H2) 
where i = l,m , a E [[I, 11 and - , O a s a + O .  

LX 



3. f i n c t i o n s  q i ( y  , H )  are  ~ o n t i n u ~ u ~  in y f o r  e v e r y  H  s u c h  thnt dorn H  r Y ; 

f o r  a n y  H 1  , H z  m c h  t h a t  d o m  H I  Z: Y , d o m  H z  s Y w e  h a v e  

I q ' ( y n ~ l )  - q i ( ~ p ~ z ) l ' I J  h i ( y s H , * H 2 ) d ( H l  s 

Y 

w h e r e  1 A i ( y  , H 1 , H 2 )  I I K < m f o r  s o m e  K w h i c h  d o e s  n o t  d e p e n d  o n  H 1  . H z  . 

4. f i n c t i o n s  g i  ( H )  , i = -, a r e  c o n v e z ,  i , e . ,  

5. m e r e  e z i s t s  a n  H s u c h  t h a t  d o m  H s Y a n d  si(H) < 0 f o r  i = l,m . 

1. A s o l u t i o n  o f  p r o b l e m  (7a)-(9a) e x i s t s ,  

2. For a n y  s u c h  s o l u t i o n  H w e  h a v e  

/ Y q O ( y . ~ * ) ~ *  = min y o ( u , ~ * )  , 
U E V +  

w h e r e  

3. If H* is a s o l u t i o n  o f  (?a)-(%) t h e n  f o r  s o m e  u *  w e  h a v e  

dorn H *  L Y * ( u * , H * ) ,  w h e r e  

Thus, the main assumptions of this theorem are the existence, continuity 

(in some sense) and boundedness of the directional derivatives of functions 

g i ( H > .  



The following theorem is analogous to known results in l inear program- 

ming and provides a useful stopping rule for methods of the type described in 

Section 2 (see also Section 4). 

Theorem 2. ( m t i m a l i t y  cond i t i on )  Let t he  a s s u m p t i o n s  of T h e o r e m  1  hold  and  

Let ji be a  s o l u t i o n  of p r o b l e m  (1 1)-(13) for  fixed 

-1 -2 31 = (Y , y  , . . . , y t )  , ij E R ~ ~ ~ ,  m e n  t h e  pair  i j , p  is a n  o p t i m a l  so lu t ion  of 

p rob lem (11)-(13) i f  a n d  o n l y  i f  for  g i v e n  i j  t he re  e x i s t s  a  s o l u t i o n  

(2L1,2L2, . . . of p r o b l e m  (14)-(16) s u c h  t h a t  

1 - 
q O ( Y )  - C iikqk(y) - u ~ + ~  < O for all y  E Y . 

k  = I  

Proof 

1. Suppose tha t  ij* is a n  optimal solution of problem (11 ) - (13 ) ,  t ha t  

(ul , U ~ , . . . , U ~ + ~ )  is a solution of problem (14 ) - (16 )  for given y, and tha t  

- 
We shall show t h a t  2L1Z2,  . . . , ILL+] i s  a solution of problem (14) - (16) .  Consider 

the two functions: 

1 
$1(u) = mpx [ q O ( i j j )  - C uk q k  (?)I  . 

Is] st k=l 

According t o  Theorem 1 

Since problem (11) - (13)  is dual to  problem (14) - (16)  for given y, then  



Therefore 

+(C) = min +(u)  = min q l ( u )  = q l ( u  *) = uA1 , 
U E  U+ Y E P +  

where 

Since yi E Y , j = a ,  then ( Z L )  ( Z L )  for ZL EU'. In particular, 

@,(.LL) s +('IL). But (23) implies 

- 
and this gives q1(2L) = +(G) = +l(u*).  Hence (2L1,2L2, . , . , u ~ + ~ )  is a solution of 

problem (14)-(16). 

2. Suppose now that  for given 5 there exists a solution (2L1,2L2, . . . ,ClLICl) of 

problem (14)-(16) such tha t  

From the duality between problems (11)-(13) and (14)-(16) we have 

where p = @l,p2, , . . , F t )  is a solution of problem (11)-(13) for given y. On 

the  other hand, the  duality between problems (21) and (11)-(13) leads to the  

inequality 

1 2  for any \y ,y , . . . , yt  j,p satisfying (12)-(13). In other words, 



and this  completes the proof. 

The next theorem provides a means of deriving a solution to  the initial 

problem (7)-(9) from a solution of problem (21), and is complementary to  

Theorem 1. 

Theorem 3. Assume that  the assumpt ions  of Theorem 2 are satisfied and that 

@ ( E )  = m i n I + ( u ) I u  E U+j. Let y  = ( y 1 a 2 , ,  . , , y t  ) ,  where i j  E R ~ ~ ~  and 

yi E Y ( i i ) ,  and le t  ji be a solution of problem (11)-(13) for g i v e n  i j .  Suppose 

also that there is a so lu t ion  p ' to the inequali t ies (1 2)-(13) for yj = i j j  such  

tha t  

t 
z q k ( i j j ) p ; = O . k  E I +  , 

j=1 

where  I + =  t k l E k  > 0 {  , I O = [ k I E k  = O j .  

Then the  pair i j  ,ji .is a n  optimal solution of problem (1 1)-(13). 

Proof, The vectors 

a re  subgradients of the convex function 

at a point 2L. Therefore condition ( 2 5 )  is necessary and sufficient for point zL 

t o  be a n  optimal solution, i.e., so t ha t  

Then, from (24) ,  

rnin l@l(u)lu E U+j = +(C)  = rn in l@(u)  Iu E U+j . (26) 



The minimization of ql (u)  , u E u', is equivalent to problem ( 1 4 ) - ( 1 6 ) .  

- 
Hence ii = (Gl,'lL2, . . . , u l )  together with q+l = q l ( G )  give a solution of prob- 

lem (14) - (16) .  Since problem ( 1 4 ) - ( 1 6 )  is dual to problem (11) - (13) ,  then 

- - 
problem (11) - (13)  has a solution, s a y p  = ( p l . p z ,  . . . ,&), and 

This together with ( 2 6 )  yields 

and this completes the proof. 

4. ALGORITHMS 

Theorems 2  and 3 justify a dual approach to problem ( 7 ) - ( 9 )  which may 

involve simultaneous approximation of both primal and dual variables subject 

to (24) - (25) .  In this section we consider several versions of generalized- 

linear-programming-based method discussed briefly in Section 2. In all cases 

the current  estimate of optimal solution satisfies (24)- (25)  a t  each iteration. 

The convergence of such algorithms has been investigated in a number of 

papers [ 1 6 ] ,  [ l l ]  , under the assumption that the initial column entries for all 

previous iterations of subproblem ( 2 4 )  and the exact solutions a t  each itera- 

tion are stored in the memory. There are various ways of avoiding this expan- 

sion of the memory, mainly through selective deletion of these columns 

[17-191. The aim of this section is to discuss a way of avoiding not only the 

expansion of the memory, but also the need to have a precise solution of ( 2 0 ) .  

The last is important in connection with initial problem (6) ,  as mentioned in 

Section 2 .  



Description of A l g o r i t h m  1 

Fix points y 0 ~ 1 , y 0 ~ 2 , . . . , y 0 , 1 + 1  and solve problem (11)-(13)  with respect to p  

for y j  = y O - j  , j = 1,1+1. Suppose that  a solution p0 = ( p ; , p : ,  . . . , P 1 O + l )  to 

this problem exists. Let u0 = (u: ,u;, . . . ,  uLL) be a solution of the dual prob- 

lem (14)-(16)  with respect to u .  The vector u0 satisfies the following con- 

straints for y  E ~ y 0 ~ 1 , y 0 ~ 2 , . . . , y 0 ~ L + 1 j :  

If u0 satisfies condition (27)  for all y  E Y, then the pair ~ I J ~ ~ ~ , I J O ' ~ , . . . , ~  O , l + l j ,  

is a solution of the original problem (11)-(13) .  If this is not the case, consider 

a new point yo such tha t  

for some EO > 0. 

Denote by p 1  = ( p ~ , P ~ , . . . , P l $ l )  a solution of the augmented problem 

(17)-(19) with respect to  p  for fixed i j j  = yo l j  , y  = y o .  We shall use 

y 1 * 1 , y 1 ~ 2 , . . . , y 1 ~ f + 1  to denote those points Y O ~ l , . . . , Y O 1 l + l , Y O  tha t  correspond to the  

basic variables of solution l .  

Thus, the first step of the  algorithm is terminated and we pass to the  next 

step: determination of u l , y l ,  etc. In general, after the  s-th iteration we have 

points Y s ~ 1 , Y s ~ 2 , . . . , y S ~ L + 1 ,  a solution pS = (p: , p $ , . . , , p f + l )  and the corresponding 

solution us = ( U S  , U $ , . . . , U ~ + ~  ) to the dual problem (14)-(16).  For an E,  > 0, 

find y S  such tha t  



and 

If we do not obtain A(yS ,us)  > 0  for decreasing values of E ,  we arrive a t  an 

optimal solution; otherwise we have to solve the augmented problem (17)-(19) 

f o r y j  = y ~ l j  , = Y s .  

Denote by y ~ + l , l  ,ys+l ,2  ,..., y ~ + l , l + l  those points from 

~ y S 1 1 . y S ' 2 . . . . , y S 1 1 + 1 j  u y o  that  correspond to the basic variables of the solution 

p S + l .  The pair t y s + l l  1 , ys+1~2. . . . , yS+111+1j  , p s + l  is t he  new approximate solution 

to  the original problem, and so if A ( y S , u S )  0,  then  (accor&ng to  Theorem 2) 

the pair i y S ~ 1 , y S ~ 2 , . . . , y s ~ 1 + 1 j  , pS  is the  desired solution. Define 

and 

4 = i e :e  = ( e l , e 2  ,..., e l ) ,  I ( e  1 )  = 1 ,  ek 1 0  for k E I: and 

arbitrary ek for k E I t j  , 

4 is actually a se t  of feasible directions for se t  U+ a t  point us.  Let 

Note t h a t  y, is always less than  zero because 

co i ( q 1 ( y S ~ j )  , q 2 ( y s ~ j ) , . . . , q L ( y s ~ j ) )  , v j : p T  > O j  

is a se t  of subgradients of the  function 



a t  point u s ,  and this function has  a minimum a t  us. 

In order  to  prove tha t  this method is convergent we require, broadly 

speaking, t h a t  y ,  < 0  and  tends to zero only as we approach the  optimal solu- 

tion. 

Consider the functions 

Theorem 4. Let  t h e  c o n d i t i o n s  of  T h e o r e m  1 b e  s a t i s f i e d ,  a n d  t h e  f o l l o w i n g  

a d d i t i o n a l  c o n d i t i o n s  h o l d :  

1. m e r e  e*ts a n o n d e c r e a s i n g  f u n c t i o n  ~ ( t )  , t E [0,=)  , ~ ( 0 )  = 0 ,  ~ ( t )  > 0  f o r  

t > 0 ,  a n d  

Y ,  - 7 ( q ( u S  ) - qs ( u s  1) - 
2. Es > 0' Es -r 0  for  S -r m. 

m e n  any c o n v e r g e n t  s u b s e q u e n c e  of  s e q u e n c e  tys~1,ys12.. . . ,yS~1+1j , p s  c o n -  

v e r g e s  t o  a s o l u t i o n  o f  p r o b l e m  (7)-(9). 

Proof 

1. First le t  u s  prove t h a t  the  sequence iuSj is  bounded. Suppose, arguing by 

contradiction, t h a t  there  exists a subsequence !us'] such tha t  I IuS' I I -, m as  

r -r m. Assumption 2 of Theorem 1 implies tha t  $(us ' )  -r m and therefore t h a t  

$(us ' )  - qS ' (uS ' )  -r , since $s'(uS') s m i n $ ( u ) .  Hence, there exist F and 
UE V+ 

6 > 0 such tha t  for r > F ,  

Now le t  us  fix a n  arbi t rary point .1L E U+ and  estimate q ( E ) .  We obtain 

$(G) 1 q S r ( 4  1 q S r ( u S r )  + sup  ( g  ,ii - u s ' )  , 
g ~ ~ ' '  - 



where GS' is a set of subgradients of function qS' at  point us'. The definition 

of qS implies tha t  

and therefore (28) leads to 

L 
r q s r ( u s ' )  + 1 1 ii - us' 1 1 min max (- ek q k ( y s r ' i ) )  

eEAsr i : p p > ~  k = l  

L 
= q S ' ( u S r )  - 11'11 -us ' /  ( m a x  min C e k q k ( y  ST 8% ) 

8 'Asr i :p? >ok = I  

This last inequality yields q ( E )  = m i f  I 1 us' / I -, m, and therefore sequence 

tuS 1 is bounded. 

2. We shall now estimate the  evolution of the quantity w, = q S ( u S ) ,  where 

us = arg min $P ( u )  . 
U E V +  

Using the same argument a s  in part  1 of the proof we obtain: 

1 
z $ S ( u S )  + I 1 us+' -us I I min max (- C ek q k ( y s g i ) )  

e E 4  ~ : p f > O  k = ]  

1 
= $ ' ( u s )  - I IuS+' -us I I max min C e k q k ( y S ' i )  

eEAs i:pf>O k = ]  

1 
Sequence [us jp=O is bounded and so $ ( u s )  = s u e ( q O ( y )  - C * q i ( y ) )  must also 

Y E  i =I 

be bounded; thus  $ I ~ ( U ~ )  is bounded since q S ( u S )  < $ ( u s ) .  This together with 

the previous inequality immediately gives 



Now consider any convergent subsequence !us'] of sequence !us].  Nre can 

assume from (29) tha t  e i ther  ( I us' -us'+1 1 / 4 0 or +(us') - +S'(uS') + 0 . In 

the lat ter  case we get  +S'(uS') + min+(u)  = +* because +(us') 2 +* and 
UE V+ 

@'(us') s +*. In the  case 1 /us' - us'+' I I 4 0 we get  the  following: 

so tha t  once again +(us') - +S'(uS') 4 0 and we obtain +S'(uS') + min+(u) .  
Y E  V+ 

However, according to Theorem 1 min+(u )  is the  optimal solution of t he  ini- 
UE V+ 

tial problem; m i n q s ( u )  is t h e  optimal solution of problem (11)-(13). There- 
Y E  V+ 

fore the  solution of (11)-(13) tends to  the  solution of t he  initial problem, and 

any convergent subsequence of sequence tys~1,ys~2,  . . . , YslL+l] , ps , where 

s = 0,1, ... converges to the  optimal solution of t he  initial problem. 

This method can be viewed as  the  dual of a cutting-plane method applied 

to  problem (7)-(9) [12,16,20]. I t  drops all points yssi which do not  correspond 

to basic variables. Theorem 4 shows tha t  in  some (rare)  cases this method 

does not  converge; however, this is not  surprising because in certain cases the  

simplex method does not converge either.  I t  may be possible to  modify the  

algorithm in different ways to ensure convergence. 

If we keep all previous points y0~1,y0~2, . , . , yO*L+l,yO.y l,... and solve prob- 

lem (14)-(16) with an increasing number of corresponding columns, then the  

method appears to  be a form of Kelley's method for minimizing function +(u) ,  



which converges under the assumptions of Theorem 1. However, i t  is impossi- 

ble to  allow the se t  of points to  increase ad i n f i n i t u m  in practical computa- 

tions. 

In t h e  following modification of the  algorithm presented above some non- 

basic columns a re  dropped when an additional inequality is satisfied. 

Description of Algorithm 2 

1. We first  choose a sequence of positive real numbers  Ips take ro  = 0 and 

select initial points jy0,1,y012, ..., yo,' + I j  such tha t  problem ( 1  1)-(13) has a solu- 

tion with respect  to  p for y j  = y O j  , j = 1,1+1. Let be a solution of this 

problem and u0 be the  corresponding dual variables. We then have t o  find yo 

such t h a t  

where co is a positive number.  If for any EO and the  corresponding yo we have 

then  t h e  pair ty0~1,y0~2,. . . ,y0~1+1j is an optimal solution of problem (7)-(9). 

Otherwise i t  is  necessary t o  select co , y o  such tha t  A ( y O ,  uO) > 0 and take 

A. = A(yO , uO). 

Suppose tha t  after t h e  s - t h  iteration we have points y S $ j  , j  = K, a solu- 

tion p s  = (pi ,pz, . . . .pt) of problem (11)-(13) for y j  = y S n j  , j = K ,  t = L,, a 

corresponding solution us = ( U S  , U ~ , . . . , U ~ + ~ )  of the  dual problem (14)-(16), a 

positive integer number r, and a positive number A,. 

2. Find an  approximate solution y, such tha t  



and 

If this is not  possible then we have arrived a t  a solution. Otherwise consider 

the following two cases: 

( a )  A ( ~ ~ , U ~ ) ~ ( ~ - I * * ~ ) ~ S  

In this  case take As+1 = A ( y S , u S )  , lS+l = 1 + 1 , rS+] = ~ ~ + 1  and denote by 

ys+1~1,ys+1~2,...,ys+1~1+1 those points from ~ y S 1 1 , y S q 2 , . . . , y S 1 1 + 1 ]  u y S  , t ha t  

correspond to the basic variables of the  solution p S + l .  

In this case take 

y s + l j  = y = o j  , j = 1,1,, y s+1,1.+1 - As+l = A s ,  ls+l = l s + l I ~ s + l  = T s  - - y s  

Find a solution of problem (11) - (13)  for t = , y j  = ys+laj , j = 1,1,+1 and  

the corresponding dual variables us+', and proceed to  the next  iteration. 

Theorem 5. Suppose t h a t  t h e  cond i t i ons  o f  Theorem 1 are  sa t i s f i ed  a n d  t h e  fol-  

l ow ing  addit ional  condi t ions  hold .  

1. 
Then  x p f q  o ( y s ~ i )  = us t e n d s  t o  the  o p t i m a l  v a l u e  o f  p r o b l e m  (7)-(9). 

i =l 



Proof 

1. Suppose tha t  the  inequtlity 3(yS,u." 5 (1  - yTS)A, is sak.isfied. only a finite 

number of tirnes. This implies the existence oi a number s o  such  tha t  for 

s  > s o  the  method turns  into Kelley's cutting-plane algorithm fcr minimiza- 

tion of t he  convex function + ( u ) ,  where the values of + (u )  are calculated with 

an  e r ror  t h a t  tends to zero. From assumption 2 of Theorem 1, $ (u )  has  a 

bounded set  of minimum points and the initial approximating function +S0(2?-) 

has  a minimum. Thus such a method would converge to the minimum of func- 

tion $(u) and A(yS ,ziS) I $(us) - qS (ziS) -, 0,  which contradicts t he  assump- 

tion tha t  for s  s o  the inequality ~ ( y ~ , u ~ )  I (1 - pTs)A, is not satisfied. 

2. There exists a subsequence sk such tha t  

From the  definition of the algorithm we have 

and therefore 

Making the substitution $(us) - qS(uS)  = wS we obtain 

This inequality together with the assumption zSk/pk 4 0 gives wsk 4 0 and 

therefore qSk(uSk) 4 mi,$(,) because qSk(uSk) I $(u)  V u  E u'. But for any 
UEV'  

s we have $S+l(uS+l) 2 qS ( u s ) ,  which together with +bSk(uSk) 4 min $(u ) leads 
u € V t  

4 
to  I C / ~ ( U ~ ) * +  min$(u) .  However, ? ( u s )  = ~ p ~ q o ( y s l i )  and  min+(u )  is an  

u € V t  i =l U E  V t  

optimal value of problem'(?}-(9) due t o  Theorem 1. This completes the  proof. 



Various ways of dropping the  cuts in cutting-plane methods have bee:, 

suggested in [ 1 1 , 2 0 ] .  The following method, which keeps only 1 + I  points a t  

each iteration, was put forward in [ 2 0 ] .  

Instead of problem (14 ) - (16) ,  solve the  following problem a t  each itera- 

tion: 

min ( u ~ + ~  + E I  IuS - u  U .  1 2 )  

0 - j  k - j  
q (y ) - C q  (y )uk = U ~ + ~ < O  , j = l , l + l  

k =I  

u k r o  , 

where us = arg minqs(u).  That this modified version converges can be proved 
UEU+ 

in a similar way to Theorem 5. 

5. SrOCHASTIC PROCEDURE 

By a corollary of Theorem 1, problem (6) is reduced to  a minimax problem 

with a nonconcave inner  problem of maximization and  a convex final problem 

of minimization. A vast amount  of work has been done on minimax problems 

but virtually all of t he  existing numerical 'methods fail if t he  inner  problem is 

nonconcave. To overcome this difficulty we adopt an approach based on sto- 

chastic optimization techniques. 

Consider the  fairly general minimax problem 

where f (z,y) is a continuous function of (z,y) and a convex function of z for 

each y E Y ,  X c  Rn , Y c Rm. Although 



is a convex function, to compute a subgradient 

requires a solution y ( x )  of nonconcave problem (32). In order to  avoid the  dif- 

ficulties involved in computing y ( x )  one could try to approximate Y  by an E- 

se t  Y ,  and consider 

instead of y ( z ) .  But, in general, this would require a se t  Y ,  containing a very 

large number of elements. An alternative is to use the following ideas. Con- 

sider a sequence of se ts  Ys , s = 0, 1, ... and the sequence of functions 

p ( z )  = max f ( z  , y )  
Y EYs 

I t  can be proved (see, for instance, [ Z l ] )  that ,  under certain assumptions con- 

cerning the  behavior of sequence P, the sequence of points generated by the  

rule 

(where the  s tep size p, satisfies assumptions such as  p, 2 0 , 

m 

p, -, 0 ,  p, = m) tends, in some sense, to  follow the time-path of optimal 
s =o 

solutions: for s -, m 

lim [ P ( z S )  - m i n P ( z ) ]  = O  . 

We will show below how Ys (which depends on z S )  can be chosen so tha t  we 



obtain the  convergence 

min P ( x )  -, min F(X) , 

where Y, contains only a finite number N, r 2 of random elements.  

The principal peculiarity of procedure (33) is i ts  nonmonotonicity. Even 

for differentiable functions P ( x ) ,  there is no guarantee tha t  xS+' will belong 

to  the  domain 

> s  + 1 [ x I P ( x )  < P ( z S ) j ,  t - 

of smaller values of functions , P+ 2,... (see Figure 1). 

Figure 1 

Various devices can be used to  prevent t he  sequence fzS j,"=o from leaving 

the  feasible se t  X. 

The procedure adopted h e r e  is the  following (see [ Z Z ] ) .  

We s t a r t  by choosing initial points XO,~ ' ,  a probabilistic measure P on se t  

Y and an integer  No k 1. Suppose t h a t  after t he  s - t h  iteration we have arrived 



a t  points xS,yS.  The next approximations xS+l ,yS+l  are  then constructed in  

the  following way. Choose Ai, 2 1 points 

yS1' , ySf2 ,  , . . 1 Y s,Ns 

according to  measure P,  and determine the set 

Ys = [ysJ,ys~2,  . , . 1 Y "."l'] " y' ,o,  

where y s 1 0  = yS . Take 

yS+' = arg max f (xS,y) 
Y EYs 

and compute 

where ps is the s tep size and  n is the  result of a projection operation on X. 

Before studying the convergence of this algorithm, we should first clarify 

the  notation used: 

P(A) is  a probabilistic measure of s e t  A 2 Y, 

X* = arg min F(z) ,  
2 E X  

y ( ~ )  = inf (E,z), 
2 2 

i.e., T ( ~ , E )  is the  largest number  of steps preceding s tep  k for which the  sum 

of s tep  sizes does not  exceed E. 



1 .  X is o. c o n v e x  c o n z p a c f  s ~ f  i.n Rn a n d  Y iq a. co7npact  se t  in  Km 

2. f (x,y) is G, cn7zti7z?~nur ju7zc t ion  01 ( z , ~ )  a n d  a c o n v e x  f u n c t i o n  of  rr: f o r  

a n y  y c Y ,  

Y E Y  

3. M e a s u r e  P .is s u c h  t h a t  y ( c )  > 0  f o r  c  > 0 .  

m e n  f o r  s -, m 

E m i n  ) ( z S  - 2 1 1  + O  . 
z EX* 

I f ,  in a d d i t i o n ,  t h e r e  e z i s t s  a n  cO > 0  s u c h  that f o r  all E 5 co a n d  e a c h  0  < q < 1 

then, ass  -, m, 

min [ (  JzS -2 1 ( l z  EX*{ -* 0  

with p r o b a b i l i t y  1 

Proof 

1. First of all let us prove that  

F(zS) - f (zS,yS) + 0  

in the  mean. To simplify the notation we shall assume that  Ns = N 2  1. 

According to the algorithm 

f (zS ,yS+l) r f (zS ,ySaV) , v = O,N 

and therefore 

f (zS+l,yS+l) - f (zS+l,yS~v) 1 [f (zS+lnyS+l) - f (zS,yS+1)] 



Since there is a constant K  such that 

I ~ ( z ~ + ~ . Y ) - ~ ( z ~ , Y ) I ~ K ~ ( z ~ + ~ - z ~ I ~ I K ~ ~ ~  , 

then 

f ( z ~ + ~ , y ~ + ~ )  2 f ( zS+ l , ySJ '  ) - 2K2pS . 

We also have 

f ( ~ ~ + l , y ~ + ~ )  2 f ( zS+ l , y s+ l l v )  , v  = TN , 

or, in particular, for v  = 0 

f ( Z S + ~ , ~ S + ~ )  2 f ( ~ ~ + ~ , y ~ + l )  . 

Therefore 

f ( z s+1 ,ys+2)~ f (z s+1 ,yk*v)  -2K2pS , k  = s , s  + 1 , v  =TN , 

and in the same way 

f (zs'2,ysf2) 2 f (zS+2,yk1v)  - 2K2(ps + ps+l )  , k = S,S + 1 , v  = TN 

etc. 

Continuing this chain of inequalities, we arrive at  the following conclu- 

sion: 

Thus, if 

then 

f ( z s , y S )  2 max f ( z s , y )  - 2K2& , 

YI~Y,,r 



It is easy to see from this that  

P [ F ( Z ' )  - f ( z S , y S )  > ( 1  + 2K2)&] < 

P I F ( z S )  - max f ( z ' , ~ )  > E ]  [ I  - y ( E ) ] N ~ ( ~ l ~ )  , 

yEY8.r 

Since p, -, 0,  then T ( S  , E )  -, m as s -, =. Hence 

[l - y(&)]Nr(s1&) -, 0 

as s -, m, and this proves the mean convergence of F ( z S )  - f ( z ' , y S )  to 0. 

2. We shall now show that,  under assumption ( 3 4 ) ,  F ( z S )  - f ( z S , y S )  + 0 with 

probability 1. It is sufficient to verify tha t  

Ptsup [ F ( z k )  - f ( zk  , y k ) ]  > ( 1  + 2K2)&] -, 0 
k t s  

We have 

P [ s u ~  [ F ( z k )  - f ( z ~ , ~ ~ ) ]  > ( 1  + 2K2)&j s 
krs 

P[sup [ F ( z k )  - max f ( z k , y ) ]  > E {  s 
k t s  Y ~ Y k . 7  

m m 

E p [ F ( z k )  - man f ( z k . y )  > ~j s x [ l  -7(c)]Nr(kl&) -, 0 , 
k =s yEYk,r k =s 

since from assumption ( 3 4 )  the series 

as  s -, m. 

3.  Let us now prove that  E w ( z S )  -, 0 as s -, m, where 

We have 



s w ( x S )  - 2 p s [ F ( z S )  - min F ( z ) ]  + 2 p s [ F ( z S )  - f ( z S t y S ) l  + K2p? - 
2 EX 

Taking the  mathematical  expectation of both sides of this  inequality leads to  

Eur (zS+') I Ew ( z S )  - 2p, E[F(X'  ) - min ~ ( z ) ]  + 2pSPs + ~~~f , (35) 
z EX 

where 8, -r 0 as s -r m since i t  has already been proved tha t  

E[F(z') - f ( X ~ , Y ~ ) ]  -r O for s -r m . 

Now let u s  suppose, contrary to our  original assumption, tha t  

& ( z S ) > a > O , s ~ s o  . 

I t  is easy t o  see t h a t  in th i s  case we also have 

E [ F ( z S )  - min F ( z ) ]  > 6 > 0 , 
z EX 

where 6 = 6 ( a )  is  a constant  which depends on a. Then for sufficiently large 

S l s l  

E u r ( z S C 1 ) ~ E I L u ( z S )  - 2pS[6 -213, - K ~ P , ]  I EILu(zs) -6pS ( 3 6 )  

since p, -r 0 ,  p, -r 0 and therefore we can suppose t h a t  

Summing the  inequality ( 3 6 )  from s l  to k ,  k -r m, we obtain from assump- 

tion (4) a contradiction t o  t he  non-negativeness of &(zS) .  Hence, a subse- 

quence lzSk) exists such tha t  

h ( z S ~ )  -r 0 



as k -r M. Therefore for a given a > 0 a number k (a) exists such t h a t  

where sk > sk (,) Let T be such t h a t  sk I T 5 s ~ + ~  and Ew(zT) > a. Take 1 such 

that  

1 = min l i : & ( z j )  > a  for i 5 j  I . T {  . 
sk <iSr 

Since p, -r 0 and 8, -. 0 . we may assume tha t  BPS + KZp, < 6(a) for s > sk(,). 

This and  (36) together imply that  & ( z T )  I & (z l )  . NOW from ( 3 5 )  and the  

definition of 1 we get  

& ( Z ~ ) I . & ( Z ~ - ~ ) + ~ P ~ / ~ ~  . 

Thus & ( z S )  -, 0 , because a  was chosen arbitrarily and pl -, 0. 

4. It can  be proved tha t  w ( z S )  converges to  0 with probability 1 in the same 

way t h a t  we have already proved mean convergence. We have the inequality 

where 7, -r 0 with probability 1 because i t  has already been shown t h a t  under 

assumption (34) 

F ( z S )  - f ( z S , y S )  -r 0 as s -, m 

with probability 1. If we now assume tha t  

w ( z s )  > a .  s > s o  

for some element  of probabilistic space we will also have 

F ( z S )  - min ~ ( z )  > 6 > 0 
2 EX 

etc. 



We shall now give a special case in which condition (34) is satisfied. 

Example. Assume that  p, = a /  s b  , a > 0 , 0 < b I 1 . Then Raab's t e s t  for 

series convergence shows t h a t  condition (34) is satisfied. 
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