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C<amqenoe and numerical experiments with a deampaation 

algaithm 

International Institute for A pplted System A nalysls 

Laxenburg, A usbia 

ABSTRACT 

T h  paper gves a proof of convergence of a decomposition algorithm lor 
solution of an optmuation model comistmg of two submodels. The submodels 
are represented by s e p m k  mathernahcal pmgrarnrmng problems and are M e d  
by dependence on common variables. 

The method for coordmatmg the activities of subrnodels, m order to reach 
an ovemll optimum is based on the appmximabon of the o n , d  pmblem 
which can be interpreted as the k c t  exchange ol proposals between submo- 
dels. Computational improvements in cornpanson with the conventional 
mastersubpmblems schernas are shown 

In the begLnning of the 60's D anhg and W olfe proposed the widely known decomposition 

principle (DanQGla).  The nature of Ws conmpt is to replam the largescale pmblem by a 

sequence of smaller problems, each represenhng different sections of the initial one, with some 

c o o r d ~ ~ t m g  n d r  pmblem balancmg the separate solutions of the subpbLems. 

However, computational experiments with h s  principle pmvided in some cases d s a p  

pointment (D antzg8la) In these cases the observed computational behavior of the Dan-- 

W olfe decomposition algorithm mnsisZed ol rather rapid impmvement on the initial iterations 

of the o r n x a t i o n  process, with slow convergence in the final stage. This resulted in many 

cycles between subproblems and the master problem, and t h ~ s  was ~e main souroe of &sap 

pointment for those who u n s u ~ ~ u l l y  kied to use the D antzlg-W olfe decomposition principle. 



Here we consider decomposition from the point of view of nondfferentiable program 

ming. It results in a dfferent theoretical analfis of some known ideas in decomposition alge 

rithms as well as opening some new possibilities for mpmvmg their computational perfor 

man(Z. 

Throughout the paper we stay withm the framework of convex analysis in finite h e n -  

sions Also it is assumed that "sup" and "mf" opemhons haditionally used in convex analfls 

attain f i t e  values unless it is dear from the context that it must be otherwise. Hence they are 

replaced by "mad' and "min" to be in a m m h c e  with mathematical pmgmmmhg notational 

conventions. 

W e inhduce also some additional notations, 

The inner produd of two vectors z and y is denoted by q. 

The interior of the set X is denoted by 4 X )  and its convex hull by m(X) . 

The sub@&ent set of the convex function f ( z )  at z is denoted b y  a f  ( z ) :  

Directional derivative of the function f  ( z )  in the k c t i o n  d is denoted by f ' ( z , d ) .  Of 

course, for the convex case 

f l ( z , d ) =  max g d  
9caf (4 

For some set G expressions like G ( y - z ) denote the inner product g (y-z)  where g 

is snm vector from G and the paAcular choice of this vector does not matter. 

2. Famulatiand thepcDblan 

Consider a tweblock mathematical pmgrdmming problem with linlang variables: 



where z, and zg can be viewed as internal variables of subproblems or submodels 

With the correspon- optunal values fA (z) , fB(z) being functions of l~nk~ng vMable z . 

Problem ( 1) can then be considered as the problem of fhm 

Under convexity condtions for CA ,CB with respect to z~ ,Q and joint convexity of g~ ,gg with 

respect to the pars ( z, , z) and (a,z) ~ ~ v e l y ,  fA (z) , fB (z) are convex functions and 

using d d t y ,  problem (2) can be converted into the dual pmblem 

where fi is the mnjugate of funchon fA (z) 

and fi is the conjugate of function fB(z) 

In fact 



D ual variables p m custornanly intelpreted as prices for the W n g  variables z. Cornpu- 

tation of the values f i ( -p ) ,  f i b )  can be interpreted as a local ophrmzation of subpmblems A 

and B for gven prices p associated with the hdmg variables 

b b l e m s  (2), (3) can be solved by a number of methods updahng either pnmal variable 

z or prices p, using the values of the functions fA(x),fB(z) or f i ( -p) ,  f i b )  and their 

merits. 

The of (2) or (3) may depend on the strudut-e of the pmblems, requirements for par 

ticular type of solutions etc . . .  Formulabon (3) has some advantages whch are discussed 

in(Nurminsla79a) One of them is that f i ( -p) ,  f i b )  are convex f unchons with subgradents 

-xi , zi equal to the z-components of the solutions of (4) -(5). In other words xbgmhents of 

the functions f i ( -p) ,  f i b )  are pmpsals of the (local) subpblems, in terms of the Dantztg- 

W olf e decomposibon method 

Fmm the point of view of no rhea r  programming the Dantzg-W olfe decomposition 

method can be interpreted as a cuthng plane algorithm (KelleyGOa) applied to the optirnizahon 

of the nondflerentiable function f (p) = f i b )  + f i ( -p ) .  

Conceptually the cuthng plane method can be represented in following stmctural form: 

BEGIN CUTTING PLANE AL GORITHM 

Let k =O and at initxi point x0 the value of the funchon f is f (zo) and its s u b m e n t  is 

a f (zO). D efine the inibal approximation f -'(z) as 

f -'(z) -m 

W bile ( N O T  SOLUTION) 



BEG1 N INNER L 0 OP 

usng f  ( 2 ) , a f  (2) update the approximation: 

fk(4 = n-lax t fk- '(z) I f (2) + a f  ( 2 ) ( z - 2 )  j 

Solve the d a r y  problem 

END INNER LOOP 

END CUTTING PLANE AL GORITHM 

The auxiliary problem (6 )  can of c o m e  be stated in a linear pm- l o r n  

whch is an akhchve feature of the method. 

Problem (6 )  coms~onds to the master pmblem of the Dantzg-W olfe decomposition 

method and problems (4)- (5)  are the subproblems of that schernas re- to prices pmvided 

by the master problem ( 6 ) .  

Some authors (Toplas70a) considered variants of the schemas with exclusion of =me 

points from the set P whch correspond to nonactive constmints in (6 ) .  

The cuthng plane algorithm genemlly does not have a good reputation for computahonal 

efficiency. For instance the lower bound for the number of iterations in so1vu-g pmblem (3) is 

of the order of the nurnber of linking variables which is too hgh  for many apphcations Every 

iteration involves the solution of subpblems (4)-(5) and the q d a b g  of the dual variables p 

which are then sent again to subproblems (4 ) - (5 ) .  In sdme situations only a small number of 

such cydes can be perfomed. 



3 C a m q t d  m a r k  el the algmithm 

The nature of the decomposition approach is to  place the ongLnal problem (1) with 

problems (2) or (3) wh& are defined in t e r n  of the separate solutions of subproblems, (4) 

and ( 5 ) ,  for b c e .  Eventually it may serve as a model of distributed problem s o l w .  

Using results of the section 2 we consider the pmblem 

having in mind that fA , fB may represent optxnal values obtained in subproblems A and B 

either in dual or in pnmal form. 

The implicit assumption behind the demmpsition approach is that taken separately the 

pb lems  

are easy to solve. The same is often true also if any of these problems ( say B ) is replaced by 

the problem 

were hA (z) might be some "slrnple" appmximation of function fA ( 2 ) .  In the convex case of 

@ d a r  interest are piecewise linear appmmmation with a "small" number of pieces. 

Exploihng t t s  idea we c m  present in the spirit of structured programrmng, a conceptual 

framework of the algorithm based on the piecewise h e a r  approximation of one of the func 

tions in (2). 

BEGIN DECOMPOST/ON ALGORITHM 

Let k =O and at initial p i n t  z0 the value of the function fA is fA (zO) and its sl lbgdent  

is a fA (zc). D efine the initial approximation fil(z) as 



W bile ( N O T  SOL UTION ) 

BEGIN INNER LOOP 

UsingfA(2),afA(2) update the approximation: 

fib) = "Xm t fj-l(z) 8 f A ( 2 )  + a f ~  (2)(~-2) 1 
Solve the auxihary problem 

Set k = k + 1  and compute fA (zk),a fA(p) 

E N D  INNER LOOP 

END DECOMPOSITION AL GORITHJd 

To simpmy some technical detinls we assume that fA (z) and fB(z) are convex h t e  

functions. W e do not need smoothness assumptions and h s  makes the f o l l o w  theoretical 

analysis ap@sble to the decomposition approach. 

T o study the convergence of this algorithm let us intmduce a few notions: 

D d k i t i m  Let f; be a function with epgaph 

= ;sicf~ 

Fmm the deh t ion  it immediately follows that f; is convex and 

It' frs fA 

Since we assumed that fA , fs are h t e  functions also fr is a h t e  convex f uncbon 

Being linite and convex fr is conhnuous. 

Convergence of this algorithm is based on a few fa&: 

fAt(Z") = f~ (zk) 

Prd.  From the definition of f$ 



on the other hand 

A k - ' ( z k >  1 f A  (2)  j I ITEX f A  (2)  , f A  (2)  j = f A ( 2 )  fAk(2) = rnax [ f 

L e m m  2 If X" is a set of accumulation points of the sequence [ 2 j generated by algorithm 

then for =*EX" 

fi" ( 2 3  = f~ ( 2 1  

Prmf. It follows lmm mntmuity of fz and monotonicity of [ f j  j that f j  converges to f;  

locally umforrnly. Then lor =*EX" and zk -, z* 

Thearanl. If f A ,  f~ are h t e  convex functions and the sequence [ zk j is bounded then 

(i) k+- h m i n [ f A k ( ~ ) + f ~ ( ~ )  l = e t f ~ ( z ) + f ~ ( z ) I  
z Z 

(ii) any h t  point of [> j belongs to the soluhon set of (7). 

Prmf. Let =*EX" and zk -, z*. Then 

f A ( ~ 3  ~ B ( z . )  = f r ( ~ . )  + f B ( z 3  = k+- lim 1 f j ( 2 " )  f B ( 2 + l )  { = 

fr ( z )  + f ~ ( z )  f A  ( z )  + f ~ ( z )  

T h s  completes the proof. 

Notice that the pmof &d not make use of the prbcular type of approximation employed 

in the algoritha The same result is true for any kind of approximation for whch Lemmas 1 

and 2  IF valid 

In tun Lemmas 1 and 2 use only some genelal properhes of the appmxunation in ques- 

tion and it is quite conceivable to imagine n m y  dfferent ways to construct approximations 

satidying Lemmas 1 and 2. 



4. P i e w i s e  linear case 

The algorithm presented in the ptwious section is only a k c  scheme whch can be 

developed in many directions and Theorem 1 j M e s  only the theoretical validty of this 

approach without going into the de tds  of its computational effectiveness. To study its @cal 

qgxficane one has to look at some speafic -S a e d  out by addtional assumptions about 

functions fa, fB. 

A n unportant case is the one when the functions fA , fB are pece-wise linear functions. It 

cornsponds to the linearity of the underiymg problems (4), (5 )  and in th& mse the assehon of 

the T heomm 1 can be strengthened 

The pecubar feature of piece-wise h e a r  functions fA , fB is that they can be represented, 

in some neighborhood u ( z 3  of an arbitmy p i n t  z*, in the followmg way 

whch can be easily demnstmted 

Let f ( z )  be a convex pieewise h e a r  function represented in the followmg way 

where I = f 1,2 ,..., M 1 .  Denoteforanyz 

Then lor any fixed p i n t  z' due to finiteness of the set 1 and the upper semicontinuity of I(=) 

as a set-valued mapping there is a neighborhood ~ ( z ' )  such that 

I ( z )  c ~ ( z ?  

for all z E u ( z') and consequently 

af (4 c af (23 
Further on for all z E U (2') 



which when combined with the inclusion above yields 

f (4 = f ( ~ 3  + a f  (z'>(z - 23 

It is interestmg to notice that also 

for z E u (z3. This type of correspondence but in an asymptotic sense was used by R . M lffhn 

in the defhtion of semi-smooth ( semi-convex ) functions(M ~fRn76a) 

T m  2 If f A  , fB are h t e  piecewise hea r  functions and problem (7) has a unique solu- 

tion z* then the algorithm of Section 2 terminates in a firYte number of steps. 

Pmd. First note that for any duechon d 

where 6 > 0. 

Due to Theorem 1 2 1 converges to z*, so without loss of generahty one can consider 

the case 

where representabom (8) and (9) are vahd If so, then for any 2 

afAk ( 2 )  a f A  (23 
and for any=€ U(z3 

for some subset CI, of a f A  (23. N otice also that 



It is easy to show that the sets & form an inmaszng sequence 

where$ E a f A ( z k ) .  Then 

Set 

Since the sets & are monotone the sets Dk also form a monotone sequence of convex sets. 

S i n .  Z?'E U ( Z ?  , then 

If 2'' = Z' then algorithm terminates and theorem 2 holds. 

If however the sewence I zk 1 is mfimte with z?- # Z' for all k , then (10) mplies that 

0 E& 

but 

and #+' - z'# 0 is a support vector of the set D, at I 0 1 ( See Fqgure 1 ) . 



F'lglm 1. 

Note that 

6 i I z k + l  - Z* 1 1 %  fA1(z*,2+l - Z? + fBt(z*,ZJC+l - Z? s 

D eletmg intermedate expressions it can be rewritten as 

$+ l(Zk+'-z? 2 6 1 / Z J C f 1  - z * I  1 
which is also flushated on F w  1. 

Let 



and let em be an accumulation p in t  of t ek 1. By construction e k f l  Dk I 0 and it follows 

fmm mnotonidty of the sequence I Dk j that 

e " 4  S 0 

for any k and hence for any k 

W ithout loss of generality we may assume that ek + e" and then for g E Dk 

0 2  max emg = max ( em - e k ) g  + e k g >  - rnaxllg Illle" -ekII+ rnax e k g 2  
gEOk gEDk gEDk 9 €Dk 

fork large enougk Ths  conbdciion proves the theorem 

In the case of Linearity of the underlm opbzat ion problems an d a r y  optmization 

problem (P)  in the algorithm description am also be stated as a h e a r  programrmng problem 

J& shghtly more complex than the subproblems themselves. 

In dual f orrnulabon, if 

and the solution of this problem for some p is the par (zA ,zA) then an approximabon of f i  

after performing K iterations may be defined as 

and subproblem ( P )  is 

which aan be further transformed in the following way 

min t fA.(-pIK + fib) f = rnin t v + f i ( p )  f = 
P v> fAl( + +4# - 2 p  



where summation is assumed to take place over the range k = 1,. . ., K of correspondmg in&ces. 

In hear progmmming lormulabon the latter problem may be stated as the following pmb- 

lern in variables zg, hk,k = 1, . .  . , K : 

Problem ( 11) -( 13) can be interpreted as a h t  exc.hange of proposals between subpmb 

lems B and A .  

On the other hand it can also be interpreted in a mlre tradtti.onal way as for- the mas- 

ter problem of the D an--W olfe decompxition method fmm scbpmblem B and convex hull 

of some extreme p i n t s  of the c o m t  set of problem (it), correspondng to the solutions 

4, k = 1,. . . , K generated so far. 

Problem (11)-(13) is then a mbctF:d master problem whch can be used to generate 

through dual mukiphers related to ( 12) new reduced wst coefEdents in ( 11) and on a new 



cycle - new solution of the A -subproblem to enter the restricted master. 

ThLs interpretation says liffle however about the computahonal effectiveness of this idea 

and the existug literam provides a Menng views on how subpmblems and master problem 

should be f o m d  to improve computabonal performance. 

One general argument in favor of ( P) m@t be the consideration that the objective fune 

tion in (P) is closer to the objective function of the ultimate problem (7) and therefore hkely to 

provide better convergence. Unfortunately worst-case countemxamples are not too d i f f d t  to 

construct even if they look rather d c i a l .  

More detailed analysis of computational performance of the algorithm of sechon 2 

depends on the pmperties of the functions fA (z) , fB (z)  in the vicinity of the optimal point z* 

and will be the subject of future study. Here we dernonshte the computational p e d o m  of 

the algorithm on a few test pblerns. 

5. Examples 

Applied pmjects of International Inshtute for Applied Systems A nalysls present a .wealth 

of pmblem from whch many exarnples of the formulation amitable for teshng th_ls approach 

can be dram Two of them, wi th  a reasonable degree of complexity, were selected 

The algorithm was q l e m e n t d  using M IN OS (Murt~lg77a) as a mean to solve the &- 

ary linear problem. Unf o d ~ ~ t e l y ,  M I N 0  S does not h.ave uhlities (suhutmes) to modify 

internal representation of the data when parameters of the problem are changed or when add- 

tional rows/columns are added For t h s  reason the formulation and - of the d i a r y  

subpmblerns have been done via modification of the input fles in the external f otmat 

It  is surely the most inefficient way to implement the algorithm but al this stage the main 

concern was about the number of major iterations and not the computational effectiveness as a 

whole. 

One addtional dvantage was the small amount of pm,gzmmmg efforts needed tD supply 

codes for genera- updated input files. Some UN IX ( Ritche'78a) utilities came in very handy. 



The chosen mode of Lrnplementation resulted also in some loss of amuracy whtch showed 

up when comparing the decomposed solution with the solution of integmted model. 

First tests have been done with the decomposition of a part 01 Polish agnculb-lral model 

developed for the Food and A griculture program at IIA SA by A .  Jozwiak, T . W ollodko, L . 

W isniewda, J. Rajtar, J. Gomulka. The detaled structure of the model is desaibed elsewhere 

(Jozwiaknga) and here we present only a very btief desaiphon of the model from the point of 

view of application of the results of the previous secbons. 

The whole production m & l  of the agricultural secbrs is composed of 4 submodels 

mdudmg the f ollowmg submodels of agriculture: 

- State sector 

- F'nvate part-tirne sector 

- Pnvate M t i o n a l  sector 

- Private developing s x b r  

Each of the technological rnatnces describing submodels indud.es about 250 variables, 170 

rows and 2200 non-zero coefficients. 

The consbudion of the mdels  permits the study of the reactions of the respecbe smb 

sectors and the private sector as well as the whole agncultm to economic incentives (prices) 

and non-economic means 01 c o n h l  ( hrmts of allocation of production q u t s ,  goals unposed 

etc...). 

The sectorial models may be W e d  into the model of pnvate agricultm and eventually 

into the model of the whole agricultural secbr. T h s  linkage is performed by reptacmg 11 

gmups of local consbints concerning prod~iction mputs into global ones and addug 2 add- 

tional mnstraints related to labor force balane and anuTlals turnover ( M akowshnga) . 

For test purposes two submodels of the pnvate sector were linked using the algorithm of 

e o n  2 These submdels are privak Wt iona l  (MIT) and private patt h e  ( M I D )  



submodels. 

Sta t is t ics  for the MID suhTDdel 

total norm 1 free fixed bounded 
rows 1 74 46 9 115 4 
colums 249 23 1 0 1 17 

DO, of rratrix e l m n t s  233 1 dens i ty 5.380 

Sta t is t ics  for the MIT whmdel: 

total nomal f ree fixed bounded 
m 171 57 7 105 2 
colums 240 219 0 1 20 

m. of na t r ix  elarents 2096 density 5.107 

These two problems are interlmked by a group of 11 comtmnts which represent either 

disbibution of c o m n  recourses between subrnodels or balance of celtain flows between these 

subrnodels. 

The hkq constramts were tr;msformed into hkmg variables by ad- specially intm 

duced hkmg variables each one comspondmg to the value of a hdmg row. 

In one experiment the subproblem MIT was used as the pricing part with proposals corn 

ming fmm subpmMem M ID . In another ex~erirnent smbpmblem M ID was used as the pricmg 

device and subproblem M IT was used as a genemtor of proposals. 

The s2oppmg criteria for these two experiments was a generation of the same price or p m  

posal in any of the aucihary subproblems. 

The results of both experiments shown in Table 1 whch also contam the results of 

using conventional D an&-W olf e decomposition method ( D W D ). In the table the arrows 

show whi& submodel is smdmg prices to whch 

For w h  of the subproblems the total number of itemtions performed in it during the 

experiment is shown in the appropriate columns. The number of local iterations per major 

iteration was nxmmd dwing the first cyde ( major iteration ) when initial infeasibilities had to 

be resolved and then decreased rapidly. 



For D an--W olfe decomposition method the pricmg pmblem corresponds to the conven- 

tional master problem and subproblems are placed under the h e w  "Pmposmg pmblem". 

The number of i m o n s  shown there comspnds to the total number of iterations performed 

in both subproblems. 

The value of objective fundon in pricmg pmblern approximates the o p m  solution 

from above. For D antzlg-W olf e decomposition method the lower estemate of the solution is 

also available as a cotrespondent value in the proposing subproblem which mbsbtutes here two 

local subprob lm of the t e s t  problem 

Table 1 

Agr i cul tural m d e  1 

general i d o n r a t i o n  pr icing problen proposing problan 

t e s t  ~ n a j o r i t  l i t e r  objective l i t e r  objective 
I 

MID -> MIT 1 7 1 371 -1.587ldt05 1 553 
I 

I I I 

For D antzlgw olfe decomposition method the solubon process was stopped after 49 cydes 

MIT -> MID 

between subpmblems and master pmblem ( major iterations ) and the final results are shown in 

Table 1. 

The rate of conveqence is shown on F g u ~  2. 

39 1424 -1.58BdtO5 501 
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Acjricultare model 

Figure 2. 

The rak of convergence of d e c o m p o s i t i o n  me thods  The  r e l a t i v e  
m y  of the solution reached is shown in a natural logarithrmc 
d e  as a funchon of the number of m o r  iterations. Curve 1 
corresponds to D antzig-W oUe decomposition method. 2 - to the 
computations in the case when submodel M IT was used as a pricing 
problem. 3 - when subproblem M ID was used as a pricing pmblem 

These results lend itself to some p r e w  conclusions that computational performance 

of the algorithm strongly depends on wh.& of the functions in (7) is approximated, or in other 

words, whih subsystem is used as a pricing subproblem and whlch is used for proposal genera 

The algorithm seems to be rather sensitive to the accuracy of the intermedate results. I t  



was not able to reach relahve amuracy more then lo4. This of c o r n  could also be caused by 

the lather crude mund-off of the intermedate results. 

It is also dear from the results that the conventional DanQ-W olfe algorithm is the 

slowest for thLs pmblem That could be caused by a parhcular way of ~mplementation, and 

more advaned implementation hke (LouteSla) would pedorm certainly better. 

5.2 BnagvmoM 

A nother example is a amplified version of the enelgy model cxurently under further 

development in Energy project at IIA SA . It is a new version of M E S A  G E  - M ode1 for Energy 

Supply Syst~rns A ltematives and their General Environmental mpxt (S-nhol8la) M ore 

detailed inf ormahon is contained in ( M  eswemga) 

T h  mdel  is a dynamic linear progmnmng model which is intended to desaibe a tmmi- 

tion pmcess f mm one pattern of enew  produdon to another, dependmg on the avdabihty of 

ceztain resources and environmental eff eds. 

T h e  model fmm whlch the test problem was derived desaibes a process of enetgy gene= 

tion starhng from some mw material and m e k g  the final demand specfied elsewhere. 

It can be considered as consistug of 2 submodels. 

The f5r-d submodel ( CENTR ) describes the pmduction of Merent h d s  of final e n e w  

from sources such as fossil and nuclear fuels, hydro, solar, geothermal energy and some others. 

The final energy produced is electricity, dstnct heat, hydrogen, coal, liquid and gaseous fuels. 

T h e  second one ( END ) relates to further transfotmations of final energy into useful 

energy. The final energy flows then go through Merent stages of transportation, dshbution 

and on-site anversion to meet the demand of enbusers. 

T h e  l.mkmg variables of ths mdel are flows of final energy between subproblems and the 

model generator allows for the diffemnt variants to be wvified These variants differ in the 

number of h e  periods, number of tedmologm represented, ek. For ~s test the number of 

links between subsystems was chosen to be 42 whch cornspond to 7 time periods. Different 
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smplificabons have been made in the structure of the subproblems to cut down the size of the 

blocks. Full-scale experiment with thls model is planned for the near future. 

Here are some dahshcs tor subproblems CENTR and END. 
m: 

to ta l  n o m l  free fixed bounded 
rows 246 182 22 42 0 
co 1 ums 202 192 0 4 6 

no, of rratrix e l e n t s  963 density 1.938 

to t a l  n o m l  free fixed bounded 
rm. 157 102 13 42 0 
colums 1 39 126 0 3 10 

no. of rratrix e l e n t s  520 density 2.383 

A s  a test-bed t h ~  problem is characterized by larger connectivity than the previous one, if 

it is cbmcterized by the mtio between the numbers of internal and hkmg variables. 

Experiments with thls model were also conducted in two ways: first - the subproblem 

CENTR was used as the pricing part of the algorithm and aubpmblem END generated p r o p  

sals, second - the subproblem END defmed prices and the subpmblem CENTR generated pro- 

posals. 

A  summa^^ of the results is shown in the Table 2. 

Table 2 

Energy model 

general Lnformation 1 pricing pDblem 

CENTER-> END ~ I 220 9.2562d+ 03 175 8.3817d+ 03 

test 1 rrajor it. 

I 
- - 

1 1 
- 

whch show the dear superiority of one way over the other. Calculations were sirnply stopped 

iter objective 

END -> CENTER 

after 50 rrqor iteraIions in the expetiment with END as the pncing part 

iter objedive 

50 

I 

915 l . W 3 d + W  !;998 -2.70796+04 
i 



The rate of convergency for these two mns is shown on F i p  3 in the same way as in 

FlgW 2. 

Energy rnodcl 

- 1 5 . ~ b  -.-r--.--.-T-T--, 
0 10. 20. 29. 39. 49. 

hlaicjr iterations 

The rate of convergence of decompsition method The relabve accumcy 
of the mached solution is shown in a natural logarithmic scale as a 
funchon of the number of major itemhons Curve 1 corresponds to the 
mmputalions in the case when svbrnodel END was used as a pricing 
problem. 2 - when subproblem CENTR was used as a p r i q  problem 

Comparative calculations with h s  pmblem treated as a whole produced the results agree 

mg up to 4 dgits accuracy with the deaomposed solution D antug-W olfe decomposition algo- 

rithm stopped after 28 major iterations s W  far away fmrn solution and is not included into the 



M e .  Seeming dsconvergence of h s  algorithm could be caused by round-off errors that occur 

when the results of the solution of one auxbry  problem are used to form the q u t  file for 

another problem 

6. C d m i m s  

The view of decomposition principle as an aggregation of largesde stmdxmd pmblems 

into n o h e a r  nonMe~ntiable  fmmework allows concise general desaiption of the appro& 

Specific decomposition algorithms can be considered as @cular ways to construct corn 

putationally tmctable approximations of the ~ s u l t m g  pmblem 

Numerical experiments with a decomposition algorithm based on t h s  idea show that for 

the same level of unplementation, considered algorithm seems to be essentially faster than the 

conventional D an@-W olfe decomposition method. 
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