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Canvergence and numerical experiments with a decomposition

algarithm

Intemational Institute for A pplied Systerns A nalysis

Laxenburg, Austria

ABSTRACT

This paper gives a proof of convergence of a decomposition algorithm for
solution of an optimization model consisting of two submodels. The submodels
are represented by separate mathermatical programming problems and are linked
by dependence on common variables.

The method for coordinating the activities of submodels, in order to reach
an overall optimumm, is based on the approximation of the original problem
which can be interpreted as the direct exchange of proposals between submo-
dels. Computational improvements in comparison with the conventional
master-subproblems schemas are shown.

1. Introdudion

In the beginning of the 60's D antzig and W olfe proposed the widely known decomposition
principle (Dantzig61a). The nature of this concept is to replace the large-scale problem by a
sequence of stmaller problems, each representing different sections of the initial one, with some
coordinating master problem balancing the separate solutions of the subproblerns.

However, computational experiments with this prindple provided in some cases disap-
pointment (D antzigBla) In these cases the observed cormputational behavior of the Dantzig-
W olfe decomposition algorithm oonsisted of rather rapid improvement on the initial iterations
of the optimization process, with slow convergence in the final stage. This resulted in many
cycles between subproblems and the master problem, and this was the main source of disap-

pointment for those who unsuccessfully tried to use the D antzig-W olfe decomposition principle.



-2 -

Here we consider decomposition from the point of view of nondifferentiable progran:
ming. It results in a different theoretical analysis of some known ideas in decomposition algo-
rithms as well as opening some new possibiliies for improving their commputational perfor-
mance.

Throughout the paper we stay within the frammework of convex analysis in finite dimen-
sions. Also it is assumed that "sup” and 'inf"” operations tradiionally used in convex analysis
attain finite values unless it is dear from the context that it rmust be otherwise. Hence they are
replaced by "max’ and "min”’ to be in accordance with mathematical prograrmming notational

conventions.
¥ e introduce also some additional notations.
The inner product of two vectors z and y is denoted by zy.
The interior of the set X is denoted by ##{X) and its convex hull by co{.X).

The subgradient set of the convex function f(z) at z is denoted by 8f (z):
af(z) = tg: fly)= f(z) +g(y —=z)}

Directional derivative of the function f(z) in the direction d is denoted by f'(z.d). Of

course, for the convex case

(z.d) = d
d QE%]??I)Q

For some set G expressions like G ( y — z ) denote the inner product g(y—z) where g
is some vector from G and the particular choice of this vecter does not matter.
2. Fammlation of the problem

Consider a two-block mathematical programming problem with linking variables:

min ( ¢4 () + cp(zg) ) (1)
ga(z.z)< 0
ge(z.z) < 0
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where 2, and 25 can be viewed as internal variables of subproblems or submodels

falz) = mincy(z)
galz.z)< O

fo(z) = mincp(zp)
gpl{zg.z) < 0

with the corresponding optimal values f,(z),fp(z) being funcions of linking variable z.

Problem (1) can then be considered as the problem of finding

rrgn (falz) + fo(z)) =2 ()

Under convexity conditions for ¢4,cg with respect to 2.2 and joint convexity of g4.gg with
respect to the pairs (2,z) and (zg,z) respectively, f4(z). fz(z) are convex functions and

using duality, problem (2) can be converted into the dual problem

m;'n(fi(—p) + f3(p)) = = (3)
where f4 is the conjugate of function £, (z)

Jip) = mzaﬂpr — fa(z)}

and fp is the conjugate of function fz(z)

In fact

v'=min{ fy(z) + fp(z) | =
4

min  sup § fa(z4) + folzs) + plzs—2z5) } =
Zp,Zp P

max { min § f4(z,) +pz4 § +min§ fplzg) ~pzg ) | =
p T4 Zg

m;Xi —f4(-p) - f5(p) } = —n;lni J4(-p) + f5(p) 3
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Dual variables p are customarily interpreted as prices for the linking variables z. Compu-
tation of the values f4(—p).fs(p) can be interpreted as a local optimization of subproblerns A

and B for given prices p associated with the linking variables

— fa(—p) =minfca(z) +pz} (4)
galz.z)< 0

— f5(—p) = min { cp(z) + p  } | (5)
gp(zg.z) < 0

Problerns (2), (3) can be solved by a number of methods updating either primal variable
z or prices p, using the values of the functions f4(z).fg(z) or fi(—p).fz(p) and their
subgradients.

The use of (2) or (3) may depend on the structure of the problems, requirements for par-
ticular type of solutions etc.. Formulation (3) has some advantages which are discussed
in(Nurminski79a) One of them is that f4(—p). fz(p) are convex functions with subgradients
~z, , xg equal to the z-components of the solutions of (4)-(5). In other words subgradients of
the functions f,(—p).fs(p) are proposals of the (local) subproblems, in terms of the D antzig-

W olfe decomposition method.

From the point of view of nonlinear programming the Dantzig-W olfe decomposition
method can be interpreted as a cutting plane algorithm (Kelley60a) applied to the optimization

of the nondifferentiable function f(p) = f41(p) + fa(—p).
Conceptually the cutting plane method can be represented in following structural form:
BEGIN CUTTING PLANE ALGORITHM

Let k=0 and at initial point z° the value of the function f is f(z°% and its subgradient is

8f(z%). Define the initial approximation f ~}(z) as

W bile ( NOT SOLUTION )



BEGIN /NNER LOOP
Using f(z*).8f(z*) update the approximation:
rH(z) = max { fFN(z) , f(2F) + 0f(2F)(z =)}
Solve the auxiliary problern
H;i:nf“(Z) = fH( ) (6)
Set k=k+1 and compute f(z*),8f(z*)
END /NNER LOOP
END CUTTING PLANE ALGORITHM

The auxiliary problern (6) can of course be stated in a linear programming form:

min v

v f(@*) +0f(@")(p - p*). k=1,..K
which is an attractive feature of the method

Problem (6) corresponds to the master problem of the Dantzig-W olfe decomposition
method and problems (4)-(5) are the subproblems of that schemas reacting to prices provided
by the master problem (8).

Some authors (Topkis70a) considered variants of the schemas with exclusion of sorme

points from the set P which correspond to nonactive constraints in (6).

The culting plane algorithm generdlly does not have a good reputation for computational
efficiency. For instance the lower bound for the number of iterations in solving problem (3) is
of the order of the number of linking variables which is too high for many applications. Every
iteration involves the solution of subproblems (4)-(5) and the updating of the dual variables p
which are then sent again to subproblems (4)-(5). In some situations only a small number of

such cycdles can be performed.



3. Coanceptual framework of the algorithm

The nature of the decomposition approach is to replace the original problem (1) with
problerns (2) or (3) which are defined in terms of the separate solutions of subproblems, {4)

and (5), for instance. Eventually it may serve as a model of distributed problem solving.

Using results of the section 2 we consider the problem

mzi:nffA (z) + fa(z) (7)

having in mind that f, ., fp may represent optimal values obtained in subproblems A and B

either in dual orin primal form.

The implicit assurnption behind the decornposition approach is that taken separately the

problems
ff;:ian (z) (A)
U;:infB(-"-') (B)

are easy to solve. The same is often true also if any of these problems ( say B ) is replaced by

the problem

rrini hy(z) + fp(z) |

were hy (z) might be some "simple” approximation of function f4(z). In the convex case of

particular interest are piece-wise linear approximation with a "small”’ nurmnber of pieces.
Exploiting this idea we can present in the spirit of structured programming, a conceptual

framework of the algorithm based on the piece-wise linear approximation of one of the func-

tons in (2).

BEGIN DECOMPOSITION ALGORITHM

Let £=0 and at initial point z° the value of the function f, is f4 (z% and its subgradient

is 84 (z%). Define the initial approximation f{(z) as



While ( NOT SOLUTION )
BEGIN /NNER LOOP
Using f4(z¥).0f4 (z*) update the approximation:

7h(z) = max { f7x) | fa(2) + 0fa(* (=) |
Solve the auxiliary problem
min ¢ fi(z) + fp(z) § = Fi( =) + fo( ") (P)

Set k=k+1 and compute f, (z*).8f,(=*)

END /NNER LOOP
END DECOMPOSITION ALGORITHM

To simplify some technical details we assume that f,(z) and fp(z) are convex finite
fundions. We do not need smoothness assumptions and this makes the following theoretical
analysis applicable to the decormposition approach.

To study the convergence of this algorithrn let us introduce a few notions:
Definition. Let f;° be a function with epigraph

i (1) = 0 epi ()
From the definition it immediately follows that f;° is convex and

TE< &< fa
Since we assumed that f,.fz are finite functions aso f4 is a finite convex function

Being finite and convex f;° is continuous.
Convergence of this algorithmmn is based on a few facts:

Lerma 1

Ti(E*) = fa(=¥)
Prodf. From the definition of ff

JHZ*) = max { fFN2*) | fa(2F) § = fa(2¥)



on the other hand

F5(2F) = max { fE7H(ZF) L fa(2F) 3 < max § fo(2F) . fu(2*) } = fal2F)

Lernma 2 If X™ is a set of accurmulation points of the sequence § z* ] generated by algorithm
then for z’e X™
J5(z) = fa(z)
Proof. It follows from continuity of f{° and rmonotonidty of { f¥ } that f§ converges to ff
locally uniformly. Then for z'€X™ and z* - z°
iz = Jim £ (z*) = ’}l;fgff(r") = lim f4 (z*) = fa(z)
Thearem 1. If f,, fp are finite convex functions and the sequence { z* ] is bounded then

() Jlim min{ f5(z) + f(2) } = min fs(2) + fa(=) }
x x

(i) any limit point of §z*} belongs to the solution set of (7).

Proof. Letz'cX® andz* » z° Then

Ja(z?) + f5(z") = f£(2) + falz") = kh}g B/ CADEN FCADREE
Jimmin { fi(z) + fa(z) 3 < lim { fi(z) + fa(z) } =
x

Ji(z) + folz) < falz) + fp(z)
This completes the proof.
Notice that the proof did not make use of the particular type of approximation employed
in the algorithm. The same result is true for any kind of approximation for which Lemmas 1
and 2 are valid.
In tum Lemmas 1 and 2 use only some general properties of the approxirmation in ques-
tion and it is quite conceivable to imagine many different ways to construct approximations

salisfying LLemmmas 1 and 2.



4. Plecxﬂnse linear case

The algorithm presented in the previous section is only a basic schermme which can be
developed in many directions and Theorem 1 justifies only the theoretical validity of this
approach without going into the details of its computational effectiveness. To study its practical
significance one has to look at some specdific cases singled out by additional assumptions about
functions f . f5.

An in@rtant case is the one when the functions f,, fp are piece-wise linear functions. It
corresponds to the linearity of the underlying problems (4),(5) and in that case the assertion of

the Theorem 1 can be strengthened

The peculiar feature of piece-wise linear functions f4, fp is that they can be represented,

in some neighborhood U(z") of an arbitrary point z°, in the following way:

fa@) = f4(z)+ max gz -z (8)
gedf,(z")

f(z) = fp(z) + max g(z —z°) (9)
gedfp(z’)

which can be easily demonstrated.

Let f(z) be a convex piece-wise linear function represented in the following way:

f(z) = max{a'z + & }
i€/l

where / = { 1,2,....M } . Denote for any z
I{z) = {ia'z + b = f(z), i€] |

Then for any fixed point z* due to finiteness of the set / and the upper semicontinuity of /(z)

as a set-valued mapping there is a neighborhood U(z") such that

I{z) c I(z"
for all ze U(z*) and consequently

8f(z) < af(z") (10)
Further on for all z< U(z")
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J(z) +of(z)(z - 2) = flz) = f(z)) + 8f(z)(z - z)

or
af(z)(z —z") = 8f(z)(z - z)
which when cornbined with the inclusion above yields
f(z) = f(z") + 8f(z)(z — 2
It is interesting to notice that also
I(z) = f(z") + 8f(z)(z — z)

forz € U(z"). This type of correspondence but in an asymptotic sense was used by R. Miffin

in the definition of semi-smooth ( semi-convex ) functions{M iffin76a)

Theorem 2. If f,,fp are finite piece-wise linear functions and problem (7) has a unique solu-

tion z* then the algorithm of Section 2 terminates in a finite nurmber of steps.
Proof. First note that for any direction d

S(zhd)= &]|d|]
where § > 0.

Due to Theorem 1 § z* | converges to z°, so without loss of generality one can consider

the case
{2 § c U(z")
where representations (8) and (9) are valid. If so, then for any z*

afk(z*)c afa(z)
and for any z€ U(z")

FE(z) = fa(27) + max glz —z°)
JEGLC Bf4(z")

for some subset G, of 8f,(x"). Notice also that

G = 8fk(z")
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It is easy to show that the sets G, form an increasing sequence
Ges1 = 0f5N(2") =0 10f5(z). &* | =G o] O G
where g* € 8f,(z*). Then

min § f(z) + fg(z) | =min{ f4(z") + max g(z-z") + fp(z") + max glz-z")]=
T z g€l gedfp(z")

f4(z") + fp(z") + min max glz—z") = fa(z") + fp(z") + max gz - z)
x g€G,,+6fB(z') gEGk-FafB(Z.)

Set,
D = G + 8fp(z)

Since the sets G, are monotone the sets [, also form a monotone sequence of convex sets.

Since Z**'e U(z") , then

min max g{z-z') = max g(z**'-z) =0 (10)
z geED; GE Dy

If £*! = z* then algorithm terminates and theorem 2 holds.

If however the sequence § zF } is infinite with z¥ # z' forall & , then (10) implies that

0ch
but

0 €l D)

and £**! — z"# 0 is a support vector of the set D, at § 0} ( See Figure 1).
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Figure 1.
Note that

Silz** - z'||= fu' (2" —2") + fR(zN T -2 <
—fa' (LT — ) - (kg — ) <
—( fa'(&Fz" =2 ¢ fp (e - ) ) =

- max g{z'—F*) <
gedfa () +ofp(z**)

— gkﬂ(x.'—xk“) = ng(.’z:"“—z’)
D eleting intermediate expressions it can be rewrilten as

gEi (22" = 6 )iz - 2]
which is also illustrated on Figure 1.

Let

pktl = ot — 7
|2+ — 2|
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and let e® be an accumulation point of { e¥ J. By construction e**! D, < 0 and it follows
from monotonicity of the sequence { D, § that

e" =< 0
for any k and hence for any k&

max e"g< 0
gED,

W ithout loss of generality we may assumne that e* - ™ and then for g€ D;

0> max e*g = max (e™ —e*)g + efg = — max||g ||||e” — e*||+ max eFg =
g€l gED, geD, g€,

Lle= - et||C + maxeg= —[le= —&*[|C +6= > 0
J 2

g€,
for k large enough. This contradiction proves the theorermn

In the case of linearity of the underlying optimnizaion problems an auxiliary optimization
problemn (P) in the algorithm description can also be stated as a linear programming problem

just slightly more complex than the subproblems themselves.

In dual formmulation, if

fa(-p) = —minfcy(z) +p z }
ga(z.z)< 0

and the solution of this problem for some p is the pair {24,z,) then an approximation of f4

after performing K iterations may be defined as
fa-p)* = max t fi(-p*) + zi(p—7F) |
and subproblem (P) is

n;ljn LIA(-p)* + f3(p) §

which can be further transformed in the following way:

min { f4(-p)¥ + f5(@) } = fv+fa(p) ) =

rin
P vz f4(—p*)rzfpf —2Fp
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min max §v + fa(p) + P A(f4(-p*) + =hp* —~Fp -v) | =

U.p A= 0

o finf v(1 =Y A) + n}i)n § o) —PpX Aexh 3 — YN (f4(—5) —2fp®) =
kz v

max {inf »(1 — Y Ac) + minf fa(p) —pXAezf ) — LAt ) =
Ae= 0 w p

max § —max { pYNezf — fa(p) ) — L Ath ] =
max -1 § ‘fB(Z}\kr;) - 27\1:7/5 j =

- A= &Dinxk:l §fa(Aezh) + Lk 3

where summation is assumed to take place over the range ¥ = 1,..., K of corresponding indices.

In linear programming formulation the latter problem may be stated as the following prob-

lem in variables zg, Ak = 1,... K :

— min { cpzg + PNtk | (11)
Apz+BpY Nz < by (12)
KkE O-2>\k=1 (13)

Problem (11)-(13) can be interpreted as a direct exchange of proposals between subprob-

lems Band A.

On the other hand it can also be interpreted in a more traditional way as forming the mas-
ter problem of the Dantzig-W olfe decormposiion method from subproblem B and convex hull
of some extreme points of the constraint set of problem (4), corresponding to the solutions

z§.k=1,...K generated so far.

Problem (11)-(13) is then a restricted master problern which can be used to generate

through dual multipliers related to (12) new reduced cost coeffidents in (11) and on a new
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cycle - new solution of the A -subproblem to enter the restricted master.

This interpretation says litle however about the computational effectiveness of this idea
and the existing literature provides a differing views on how subproblems and master problem

should be formed to improve computational performance.

One general argument in favor of (P) might be the consideration that the objective func-
tion in (P) is closer to the objective function of the ultimate problem (7) and therefore likely to
provide better convergence. Unfortunately worst-case counterexarnples are not too difficult to

construct even if they look rather artificial.

More detailed anaysis of computational performance of the algorithm of section 2
depends on the properties of the functions £,y (z), fz(z) in the vidnity of the optimal point z°
and will be the subject of future study. Here we dernonstrate the computational performance of

the algorithm on a few test problemns.

5. Exaroples
Applied projects of Intermational Institute for Applied Systems A nalysis present a weath
of problems from which many examples of the forrmulation suitable for testing this approach

can be drawn. Two of them, with a reasonable degree of corrplexity, were selected

The algorithm was implemented using MINOS (Murtug77a) as a mean to solve the auxili-
ary linear problems. Unfortunately, MINOS does not have utilities (subroutines) to modify
intermal representation of the data when parameters of the problem are changed or when addi-
tional rows/columns are added. For this reason the formulation and updating of the auxiliary

subproblerns have been done via modification of the input files in the external format.

It is surely the most inefficient way to implement the algorithm but at this stage the main
concern was about the number of major iterations and not the cornputational effectiveness as a

whole.

One additional advantage was the small amount of programming efforts needed to supply

codes for generating updated input files. Sorne UNIX (Ritchie78a) utilities came in very handy.
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The chosen mode of implementation resulted also in some loss of accuracy which showed

up when comparing the decormposed solution with the solution of integrated model.

5.1. Agricultural model

First tests have been done with the decomposition of a part of Polish agricultural model
developed for the Food and A griculture programn at IIASA by A. Jozwiak, T. W ollodko, L.
VWisniewsk, J. Rajtar, J. Gomulka The detailed structure of the model is described elsewhere
(Jozwiaknga) and here we present only a very brief description of the rmodel from the point of
view of application of the results of the previous sections.

The whole production model of the agricultural sectors is composed of 4 submodels

including the folowing submodels of agriculture:

- State sector

- Private part-time sector

- Private traditional sector

- Private developing sector

Each of the technological matrices describing subrmodels indudes about 250 variables, 170
rows and 2200 non-zero coefficients.

The construction of the medels permits the study of the reactions of the respective sub-
sectors and the private sector as well as the whole agriculture to economic incentives {prices)
and non-economic means of control ( limits of allocation of production inputs, goals irmposed

ete...).

The sectorial models may be linked into the model of private agriculture and eventually
into the model of the whole agricultural sector. This linkage is performmed by replacing 11
groups of local constraints concerming production inputs into global ones and adding 2 addi-

tional constraints related to labor force balance and animals tumover (M akowskinga).

For test purposes two submodels of the private sector were linked using the algorithrn of

section 2 These submodels are private traditional (MIT) and private part time (MID)
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submodels.

Statistics for the MID submpdel:

total nomml free fixed bounded
FOWS 174 46 9 1156 4
colums 249 231 0 1 17
no. of matrix elarents 2331 density 5.380

Statisties for the MIT subipdel :

total nontal free fixed bounded
rows 171 57 7 106 2
colums 240 219 0 1 20
mo. of matrix elarents 2096 density 5.107

These two problems are interlinked by a group of 11 constraints which represent either
distribution of common recourses between submodels or balance of certain flows between these

submodels.

The linking constraints were transformed into linking variables by adding specially intro-
duced linking variables each one correspending to the value of a linking row.

In one experiment the subproblem MIT was used as the pricing part with proposals conr
ming from subproblem M1D. In another experiment subproblern M ID was used as the pricing

device and subproblem M IT was used as a generator of proposals.

The stopping criteria for these two experiments was a generation of the same price or pro-

posal in any of the awdliary subproblerns.

The results of both experiments are shown in Table 1 which also contains the results of
using conventiona Dantzig-W olfe decornposition method ( DWD ). In the table the arrows

show which submodel is sending prices to which

For each of the subproblems the total number of iterations performed in it during the
experiment is shown in the appropriate columns. The number of local iterations per major
iteration was maxirnal during the first cyde ( major iteration ) when initial infeasibilities had to

be resolved and then decreased rapidly.
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For D antzig-W olfe decomposition method the pricing problern corresponds to the conven-
tional master problem, and subproblems are placed under the heading '"Proposing problem’
The number of iteraions shown there corresponds to the total number of iterations performed

in both subproblems.

The value of objective function in pricing problern approximates the oplirmal solution
from above. For Dantzig-W olfe decomposition method the lower estemate of the solution is
also available as a comrespondent value in the proposing subproblem which substitutes here two
local subproblars of the test problem

Table 1

Agricul tural rodel

general informmtion pricing problem proposing problem
test major it. iter objective iter objective
MID -> MIT 7 371 -1.58714+05 553 -
MIT -> MID 39 1424 -1.5882d+05 501 -
l)ﬁ) 49 1B0 -1.57244-05 4548 -1.6238d+05
1

For Dantzig-W olfe decomposition method the solution process was stopped after 49 cycles

between subproblemns and master problem ( mgjor iterations ) and the final results are shown in

Table 1.

The rate of convergence is shown on Figure 2.
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10.0 - Agriculture model

5.0

—5.0-1

--10.4

—1b.

T I T
0] 9.6 19. 29. 38. 43.

Major iterations

Figure 2.

The rate of convergence of decomposition Methods. The relative
accuracy of the solution reached is shown in a natural logarithmic

scale as a fundtion of the number of major iterations. Curve 1

corresponds to D antzig-W olfe decomposition methed, 2 - to the

computations in the case when submodel MIT was used as a pridng

problem, 3 - when subproblem M ID was used as a pricing problern.

These results lend itself to some preliminary conclusions that computational perforrnance
of the algorithm strongly depends on which of the functions in (7) is spproxirnated, or in other
words, which subsystem is used as a pricing subproblem and which is used for proposal genera-
tion.

The algorithm seerns to be rather sensitive to the accuracy of the intermediate results, It
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was not able to reach relative accuracy more then 107, This of course could also be caused by

the rather crude round-ofT of the intermediate results.

It is also dear from the results that the conventional Dantzig-W olfe algorithm is the
slowest for this problem. That could be caused by a particular way of implementation, and

more advanced implementation like (LouteBla) would perform certainly better.

5.2 Energy modd

Another example is a simplified version of the energy model currently under further
development in Energy project at IIASA. It is a new version of M ESSAGE - M odel for Energy
Supply Systerns A ltematives and their General Environmental impect (SchrattenholB1a) M ore
detailed information is contained in (M essnermga)

This model is a dynamic linear programming model which is intended to describe a transi-
tion process from one pattern of energy production to another, depending on the availability of

certain resources and environmental effects.

The model from which the test problem was derived describes a process of energy genera-

tion starting from some raw material and meeting the final demand specified elsewhere.
It can be considered as consisting of 2 submodels.

The first submodel ( CENTR ) describes the production of different kinds of fina energy
from sources such as fossil and nuclear fuels, hydro, solar, geotherrmal energy and some others.

The final energy produced is electricity, district heat, hydrogen, coal, liquid and gaseous fuels,

The second one { END ) relates to further transformations of final energy into useful
energy. The final energy flows then go through different stages of ransportation, distribution

and on-site conversion to meet the demand of end-users.

The linking variables of this model are flows of final energy between subproblems and the
model generator allows for the different variants to be specified These variants differ in the
number of time periods, number of technologies represented, ete. For this test, the number of

links between subsysterns was chosen to be 42 which correspond to 7 time periods. Different
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simplifications have been made in the structure of the subproblems to cut down the size of the

blocks. Full-scale experiment with this model is planned for the near future.

Here are some statistics for subproblerns CENTR and END.

CENTR:
total nonrtal free fixed bounded
rows 246 1B2 22 42 0
colums 202 192 0 4 5]
no. of matrix elarents 963 density 1.938
END:
. total nommal free fixed bounded
rows - 157 102 13 42 0
colums 139 126 ¢ 3 10
no. of matrix elerents 520 density 2.383

A s atest-bed this problem is characterized by larger connectivity than the previous one, if
it is characterized by the ratio between the numbers of internal and linking variables.

Experiments with this model were aso conducted in two ways: first - the subproblern
CENTR was used as the pricing part of the algorithm and subproblem END generated propo-

sals, second - the subproblermn END defined prices and the subproblem CENTR generated pro-

posals.

A summary of the results is shown in the Table 2.

Table 2
Energy model
general information pricing problem proposing problerm
test major it. | iter objective iter objective
CENTER -> END 9 220  9.2562d+ 03 175  8.3817d+ 03
END -> CENTER 50 915 1.5033d+ 04 | 1998 -2.7079d+ 04

which show the dear superiority of one way over the other Calculations were simply stopped

after 50 major iterations in the experiment with END as the pricing part.
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The rate of convergency for these two runs is shown on Figure 3 in the same way as in

Figure 2.

10.0 Energy model

' 5.0-

—5.04

—10.

—-15. H T - 1

T
0 10. 20. 29. . 39. 49.

Major iterations

Figure 3.
The rate of convergence of decomprsition method. The relative accuracy
of the reached solution is shown in a natural logarithmic scale as a
function of the number of major iterations Curve 1 corresponds to the

computalions in the case when submodel END was used as a pricing
problem, 2 - when subproblem CENTR was used as a pricing problem

Comparative calculations with this problem treated as a whole produced the results agree-
ing up to 4 digits accuracy with the decomposed solution. D antzig-W olfe decomposition algo-

rithm stopped after 28 major iterations still far away from solution and is not included into the
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table. Seerning disconvergence of this algorithrm could be caused by round-off errors that occur
when the results of the solution of one awxdliary problem are used to form the input file for

another problermn.

6. Condusions

The view of decomposition principle as an aggregation of large-scale structured problems

into nonlinear nondifferentiable framework allows concise general description of the approach.

Specific decomposition algorithms can be considered as particular ways to construct cormr

putationally tractable approximations of the resulting problerm.

Numerical experiments with a decomposition algorithm based on this idea show that for
the same level of implementation, considered algorithm seerns to be essentially faster than the

conventional D antzig-W olfe decomposition method
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