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The Tower is as wide and spacious as the sky itself...
And within this Tower, spacious and exquisitely ornamented,
there are also hundreds of thousands...of towers, each one
of which is as exquisitely ornamented as the main Tower
itself and as spacious as the sky. And all these towers,
beyond calculation in number, stand not at all in one
another's way; each preserves its individual existence
in perfect harmony with all the rest; there s nothing
here that bars one tower being fused with all the others
individually and collectively; there s a state of perfect
intermingling and yet of perfect orderliness...

all 1s contained in one and each contains all.

D.T. Suzuki (1968)
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PREFACE

A rekindled appreciation of an o0ld cliché has touched off
a flurry of activity in the field of nonlinear dynamics lately.
The truism that nonlinearities often lead to wild and exotic
behavior has been known for a long time, but only recently has
it been studied carefully, and the discoveries are startling
and profound. The simplest equation illuminating these features
is the logistic equation (in discrete form), which has a long
history of application to growth phenomena in biology and popu-
lation dynamics. This equation is also the basis for the logistic
substitution model developed at IIASA by Cesare Marchetti and
Nebojsa Nakicenovic (1979, see also Nakicenovic 1979). This
model is a highly effective tool for modeling the dynamics of
economic market substitution, and has been extensively applied
to primary energy markets (Energy Systems Program Group 1981;
Marchetti et al. 1978).

This Working Paper begins with a brief review of the recent
developments in nonlinear dynamics, followed by a study of the
implications that these phenomena have for the logistic sub-
stitution model. The key finding is that only highly unrealistic
parameter values can induce chaotic behavior in this model.



CHAOS IN NONLINEAR DYNAMICS AND
THE LOGISTIC SUBSTITUTION MODEL

Bill Keepin

INTRODUCTION

Recent developments in the field of nonlinear dynamics
have generated quite a stir among scientists in a variety of
disciplines. The excitement stems from a new appreciation of
an old fact, namely, that nonlinear equations can exhibit wild
and exotic behavior. More specifically, the solution trajec-
tories of many nonlinear deterministic systems proceed from
regular to chaotic behavior as a system parameter is varied.
What's more, this "onset of chaos" evolves at a rate (in param-
eter space) which is unique for large classes of systems. (Hence

the name "universality theory" which is attached to this.)

One particular equation that has been extensively studied
recently is the discrete logistic equation, which has a long
history of application to various growth phenomena in biology,
chemistry, epidemiology, etc. Although the logistic process is
inherently deterministic, it is found to behave in an essentially
stochastic manner for certain parameter values. This feature is
characteristic of a wide variety of discrete and continuous sys-
tems. The intent of the present work is to investigate this

phenomenon and to determine what implications it might have for



the logistic substitution model developed at IIASA by C. Marchetti
and N. Nakicenovic (1979). A basic familiarity with this model is
assumed. (See Chapter 8 of Energy Systems Group, 1981, or the

above reference.)

We begin with a very brief overview of the recent develop-
ments in nonlinear dynamics, focusing attention on the properties
of the discrete logistic difference equation. Following this we
present specific results obtained from implementation of this
equation in the logistic substitution model for two competing

technologies.

A VERY BRIEF INTRODUCTION TO CHAOTIC PHENOMENA
IN NONLINEAR DYNAMICS

The best starting point is a general example. Consider

the first order difference equation

X = F(x ) , (1)

in which repeated iteration of an initial point Xq is considered
to model the evolution over time of a dynamic process.*) For
simplicity we assume that the xn's are real numbers, and that
F: R > R has a continuous derivative (generalization to R" is
straightforward). A specific sequence of iterates Xgr Xqr Xoy-e-

i1s called an orbit (or trajectory) of the system.

The first step in the analysis of (1) is to seek special
points x, called fixed points (or eguilibrium points), which

are time invariant;
x = F(x) . (2)
Thus if an evolving orbit ever attains the value x, it remains

there for all future time. An important consideration in this

context is the stability of the fixed point with respect to small

*) For this discussion, we do not distinguish between the model
and the process.



perturbations. Suppose the n-th term of an orbit is displaced

from the fixed point by an amount Gn,

In order that the orbit approaches the fixed point, we require

| 6 < |6n|. For |6n| sufficiently small, we have (from the

n+1I
Mean Value Theorem),

|F(xn) - F(x)] ¥ |FY(x)] ¢ |x. - x .

Using (1) and (2) this becomes

6,0 = I ] - s |
from which we see that
x is stable if |F'(x)] < 1 ,
(3)
X is unstable if |[F'(x)| > 1
As a specific example, consider the logistic difference
equation, which has the standard form
Xpp1 = bxn(1 - xn) z Fb(xn) . (4)

The set {Fb(x)} is the one parameter family of all parabolas

having roots atbggro and unity. For this work, we consider only
positive values of X s which requires that b > 0 and X, < 1. To
ensure the latter, we restrict b < 4 (since the maximum of Fb(x)
exceeds unity if b > 4). Thus two different intervals are in-
volved here. The first is the state space (or phase space) of
the system; 0 < X < 1. The second is the parameter space of

the system; 0 < b < 4. A plot of Fb(x) i1s given in Figure 1,



Xn+1

Figure 1.

for b ¥ 2.5. Henceforth we drop the subscript b on Fb(x).

Setting Xn41 = X, We find two fixed points at

1

X=0,1-B‘[

which are indicated in Figure 1 by the intersection of the
= x_. To investigate the stability

n+1 n
of the fixed points, we compute

parabola with the line x

F'(O) = b '
F'(1-1) = 2 - b ;
b '

and applying the stability criterion (3) we see that zero is
stable for |b| < 1, and unstable for |b| > 1. Similarly, 1 -

ol

is stable for 1 < b < 3. These results apply globally in this
case. Thus if |b| < 1 the orbits (evolving from almost all
initial points) eventually approach zero; and we call the point

x = 0 a global attractor. The set of all initial points X that

are attracted to x form the so-called basin of attraction.



Similarly, if b € (1,3) the fixed point x = 1 - % is an attractor

(with the basin of attraction 0 < x,. < 1). The latter situation

0
is indicated in Figure 1 for a particular orbit. Starting from

an initial point x we obtain x, = F(xo). Now, before applying

0’ 1
F again, we must transfer X, back to the xn—axis. Horizontal

n+1
operation. Thus the orbit evolves as shown in the figure,

translation to the line x = X, accomplishes precisely this
eventually converging (in an oscillatory manner) to the fixed

point.

Having described the behavior of the logistic difference
equation (4) for 0 < b < 3, we now ask what happens when b > 3.
For b = 3, the fixed point x = 2/3 is again a (global) attractor,
but it is just barely stable, i.e., F'(x) = -1, and the con-
vergence is very slow. As b increases beyond 3, the fixed
point becomes unstable, i.e., F'(Q) < =1, and all orbits tend
to a two-point limit cycle (i.e., attractor of period 2). This
process is referred to as period doubling or pitchfork bifur-
cation (Feigenbaum, 1979). To see how it works, we consider

the mapping obtained by applying F(x) twice:

(2)

F (x) = F(F(x))

The fixed points of this mapping will consist of the fixed
points of the original mapping plus the points of any period 2
cycle. Now let x be the stable fixed point of the original

mapping, and let us investigate the stability of x for the

(2)

new mapping F (x). By the chain rule, we readily find

(2) 2

F 90 (%) = (F'(x))
Thus for b = 3, since F'(x) = -1, we have F(z)'(Q) = 1, which
tells us that at the point x, the function F(2)(x) is tangent

. (2), 2
n+2 - ¥+ As b increases beyond 3, F ' (x)

increases beyond unity, and this necessarily gives birth to
(2)(x). It is these

to the line x

two new fixed points for the function F

two points which constitute the stable attractor of period 2



for the original mapping (May, 1976). This process is illus-
trated in Figure 2. The solid curve is for b < 3, and it is

(2)41(X) < 1 in this case. As b increases through

clear that F
3, the so0lid curve passes smoothly and continuously to the
dashed curve, and by imagining the intermediate stages, it is
easy(g? see that two new fixed points appear just as the slope
of F

Furthermore, it is clear that the slopes at the new fixed points

(x) increases past unity (where x becomes unstable).

decrease from unity as b increases beyond 3, hence these points

are stable.

It is now not difficult to imagine what happens as b is
increased still further. The slopes of the two new fixed points
of F(z)(x), which are always equal, continue to decrease until
they simultaneously reach the value -1. At this point, the
period 2 attractor becomes unstable and bifurcates, giving rise
to an initially stable period 4 attractor. We may denote the
value of b for which this occurs by bu. Increasing the value
of b still further, we reach a value b8 at which the period 4
attractor bifurcates to yield a period 8 attractor, and the
process continues like this, producing an infinite sequence of
period 2k attractors. The basins of attraction for these
attractors are disjoint intervals, often called windows, whose
lengths rapidly approach zero as k + =, Specifically, if we
denote by b2k the value of b at which the first attractor of
27 Pyr Pgr
geometrically to a finite limit b_ (May, 1976; Feigenbaum, 1978).

period 2k is born, then the sequence b converges
In the case of the logistic equation, this limit has the value
b_ = 3.5700. These ideas are summarized in Figure 3 (adapted
from Collet and Eckmann, 1980), where the attractors are dis-
played as a function of parameter value b. Note the rapid

convergence to b_.*)
(o 0]

*) The map used to generate Figure 3 was not the logistic 1in

standard form, but rather the map x',, = 1 - b'(xé):, with

xé = [-1,1] and b' € (0,2). The logistic is easily transformed
to this map for 2 < b < 4, via x! = (.25b - -5) x 0.5, where

[-1,1] - [1-.25b,.25b], and the parameter correspondence ;s

b' = .25b? -~ .5b. The dynamic structure of the two maps 1is
identical, and the reader need only be aware that the parameter
space is represented by [0,2] in the figure, and the state space
by [-1,1].



Figure 2.

Xn




The phenomenon just discussed, which is referred to as the
"onset of chaos", is by no means limited to the logistic equation,
but is in fact generic to the process of functional iteration
as described by (1). As long as F(x) has a hump whose steep-
ness can be tuned by a parameter b, then there probably exists
an infinite sequence of period doubling bifurcations (occurring
at b2, bu, b8"'

b_. At each bifurcation, each point of the existing 2k cycle

[o o]

.), which has a finite point of accumulation

produces a pair of "twins", as in Figure 2, and the union of
all these offspring comprises the 2k+1 cycle (Hofstadter, 1981).
Furthermore, the sequence {b k} converges geometrically at a

rate that is asymptotically unique for a wide class of functions.

Specifically,
lim bzk - bzk-1
. - = § = 4.6692016... (5)
k> Pok+1 = Pk

where § is universal for all functions F(x) having a quadratic
maximum. This result, discovered by Feigenbaum (1978, 1979),
was the spark that prompted much of the recent research in this
field. The surprising fact here is that quantitative infor-
mation can be obtained regarding the behavior of (1) in the
absence of specific knowledge of the form of the function F(x).
A closely related discovery, also due to Feigenbaum, is that
some geometrical feature of the mapping (1) is reproduced at
the n-th bifurcation reduced in scale by a factor of approxi-
mately a', where o is another universal asymptotic constant
having the value a = -2.5029... This property of "scale
invariance" leads to fascinating hierarchies of self-repeating
patterns embedded within one another ad infinitum. Such struc-
ture, reminiscent of the Cantor set, will be discussed toward
the end of this section. For now, we note that the scale-
invariant feature in the logistic process involves the spacing
between two newborn twins, which is approximately o times smaller
than the spacing between their parent and its twin (Hofstadter,

1981) . These sorts of results are sometimes collectively



referred to as metric universality theory, much of which has
been placed on a firm mathematical foundation by Collet and
Eckmann (1980), Guckenheimer (1980), and Lanford (1980). 1In
a mathematical context, the universal constant § emerges as
an eigenvalue of an operator on function space, and o is
associated with a nonlinear fixed point problem (Collet and
Eckmann, 1980).

Continuing our discussion of the logistic equation, we
now ask what happens in the chaotic region, i.e., for b > b_?
A glance at Figure 3 suggests that things get very complicated;
and indeed, a complete answer to this gquestion is not known
(Ott, 1981). However, the underlying behavior may be described
as follows. For b slightly greater than b_, orbits are attracted
to "noisy" cycles of period 2k (with k - = as b decreases to
b_). This means that the orbit is eventually confined to 2k
disjoint intervals in (0,1) which are visited in a specific
sequential order. However, the distribution of visits within
any one of these intervals appears to be completely chaotic.

As b increases a value b, is reached, at which the 2k disjoint

intervals merge in pairs% causing the noisy 2k cycle to become
an even noisier 2k_1 cycle. As kb grows further this process of
"reverse bifurcation" (Lorenz, 1980) continues in such a way
that the sequence Bk follows the same scaling relation as in
(5). Eventually b reaches the value b1 (see Figure 3), beyond
which chaotic motion appears over one continuous interval. This
interval then widens as b continues to grow, and it becomes the
entire phase space, i.e., the unit interval, when b reaches the
value 4.%) Indeed, the discrete logistic equation with b = 4 1is

commonly employed as a random number generator.

This is by no means the whole story, however. The under-
lying structure just described is "interrupted" infinitely often
by tiny clusters of infinitely many windows of parameter values
in which there are stable periodic orbits. A few of the widest

of these clusters appear in the chaotic region of Figure 3 as

*) In Figure 3, this corresponds to b' = 2, and the unit interval
corresponds to [-1,1]. See previous footnote.
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thin vertical gaps (or slits). A given such cluster generally
begins with a stable period N cycle (called the fundamental),
which gives birth, via pitchfork bifurcations, to an infinite
sequence of stable cycles (called the harmonics) of period N2k.
Each of these cycles occupies a narrow window of parameter values
in which it is stable. The windows are adjacent disjoint inter-
vals, and their union forms the cluster. Most clusters are

exceedingly narrow; the widest being for N = 3 (see Figure 3).

The reader may notice that the structural form of a cluster
is identical to that of the original sequence of period doubling
bifurcations discussed earlier, and this is indeed the case.

The region 1 < b < b_ is nothing but a very wide cluster whose
fundamental cycle has period one (N = 1). Thus we see that the
parameter space is populated with an infinite number of funda-
mental periodic orbits; each of which sprouts an infinity of
harmonics via period doubling bifurcations. The asymptotic
scaling constants § and o discussed above have different values
for different clusters, but they are again "universal", i.e.,

for all functions F(x) having a quadratic maximum.

We have seen how new stable orbits are born from a funda-
mental orbit (Figure 2), but it is natural to ask how the funda-
mental orbit appears in the first place. For example, how did
a stable period 3 orbit suddenly emerge from all that chaos,
e.g., at the value b3 in Figure 3? To answer this, we consider
the mapping obtained by applying F(x) three times

(3)

F (x) = F{F[F(x)1} .

A plot of this function is shown in Figure 4 for b < b3 (solid

curve) and b > b3 (dashed curve). As before, we imagine the

intermediate stages as the solid curve passes continuously to

the dashed curve. At the point b = Db the first two valleys

3I
and the last hump of the function all simultaneously touch (and
are tangent to) the fixed line X 43 = Xgr giving birth to an
unstable period 3 cycle. This phenomenon is referred to as

tangent bifurcation. As b increases beyond b the valleys

3’
sink, and the hump rises to create six new intersections with
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Figure 4.
the line X 43 = X,- The slopes at three of these points are
greater than unity, producing an unstable 3 cycle. The slopes

at the remaining 3 points decrease from unity, creating a stable
3 cycle. This cycle persists until the slopes reach the value

-1, beyond which period doubling bifurcation produces stable
cycles of periods 5,12,24,...

One final question we may ask is "how many" parameter
values give rise to chaotic behavior? In other words, if we
take the interval 0 < b < 4, and remove from this all values
of b for which there is a stable periodic cycle, what is left
over? It is believed that this remaining set, which we denote
by C, contains no intervals but has positive Lebesque measure
(Collet and Eckmann, 1980). Furthermore, there is a proper
subset of C, also believed to have positive Lebesque measure,
for which the corresponding trajectories exhibit "sensitive
dependence on initial conditions" (Ruelle, 1979). This means
that two trajectories starting arbitrarily close together will
eventually separate exponentially. (The associated exponent is
called the Lyapunov exponent; see Shaw, 1978; Collet and Eckmann,
1980.) Such behavior is characteristic of so-called strange

attractors, although the logistic equation does not actually
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possess such an attractor. However, there are numerous
"aperiodic" attractors of varying complexity in between

stable periodic orbits and strange attractors. In the case

of the logistic equation it is not known whether the aperiodic
attractors are truly chaotic, or just periodic attractors having
very large periods; but recent research indicates the former
(Ott, 1981).

We now conclude our discussion of the discrete logistic
equation, but having probed this far into nonlinear chaotic
phenomena, it would be a crime not to give the reader a glimpse
of more general results and developments along these lines.

From the standpoint of classical mechanics, a physical system
may be classified as either conservative (e.g., energy is
conserved) or dissipative (e.g., friction or viscosity is
present). In the latter case, volume elements in phase space
shrink to zero as t -+ «, whereas they remain constant for con-
servative systems. The more dissipative the system, the faster
the volume elements shrink, making it generally easier to say
something about the long term behavior of the system. For
extremely dissipative systems, the attractors are often quite
simple, whereas for conservative systems they can be exceedingly
complicated. All sorts of possibilities lie in between (Eckmann,
1981) .

In three-dimensional phase space, it is natural to assume
that attractors for dissipative systems must be surfaces (two-
dimensional), curves (one-dimensional), or points (zero-dimen-
sional), since volume elements eventually shrink to zero.
However, it often happens that an attractor has non-integer
dimension (say, between 2 and 3) so that it occupies no volume
but has a very complicated structure. Such attractors are
termed strange (or fractal), and they arise in a variety of
contexts. The concept of dimension here is the so-called

Hausdorf dimension (Ott, 1981), defined for a set S by
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where NE(S) is the minimum number of e-sided cubes needed to
cover the set S. This definition yields the usual integer
values for "regular" sets and surfaces. For the symmetric
Cantor set in the unit interval, the Hausdorf dimension is
(In 2) / (1In 3) ® ,630. 1In general, the intersection of a
line with a strange attractor yields a Cantor-like set on the

line.

The logistic equation does not possess a strange attractor
because it is too dissipative. However, Mandelbrot (1980)

studied the complex logistic transformation z = Azn(1-zn),

n+1
where z_ and A are complex, and found that the boundaries of
admissible regions in the X and z planes are fractal sets

(having dimension greater than one).

Other phenomena that occur in the presence of strange
attractors include wild separatrices. In certain regions of
phase space, a separatrix can fold back on itself infinitely
often so that two points arbitrarily close together move in
opposite directions (which clearly gives rise to sensitive
dependence on initial conditions). Or two separatrices may
be interlaced 1in such a way as to intersect in an uncountable
number of homoclinic points which are dense in a certain region
(giving the feeling of the delicate structure of the double
helix in a DNA molecule). These phenomena are often accompanied
by the property of scale invariance. Thus a region of very
intricate structure will often contain many embedded subregions,
each of which upon magnification, has the exact same intricate
structure as the original region. This self-generating behavior
continues ad infinitum, producing infinite hierarchies of care-
fully nested patterns, each of which exhibits the essential
structure of the whole. Neatly interwoven into these patterns
of chaotic behavior are complementary hierarchies of regular
regions, in which the trajectories behave in a smooth and
continuous way. The strange attractor is the skeletal remains
of these structures that emerges as some quantity of the motion
is dissipated in time. Thus a strange attractor is rather 1like
a very complicated steady state solution. We remark that the

long term behavior of individual orbits is sometimes determined
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by very unusual criteria, such as, "how irrational" a character-
istic parameter is. One example occurs in the physics of inter-
secting storage rings, where a given trajectory dies out unless

its winding number r is "sufficiently irrational," i.e.,

lr - n/m| > ¢ /]m]z's for all integers n,m,

where ¢ is a positivie constant (Hellemann, 1980).

One might think that strange.or chaotic behavior is patho-
logical, occurring very rarely, but the opposite is actually
true. An important mathematical distinction among systems is
the notion of separability. Separable systems usually exhibit
smooth predictable behavior, whereas non-separable systems
generally include chaotic behavior of some kind. It has been
shown that the latter are dense in the space of all analytic
systems (Hellemann, 1980), so that separable systems are truly
the exception rather than the rule. Furthermore, very simple
systems can possess highly complicated dynamics. To give an
example, one of the most celebrated strange attractors (called
the Lorenz Attractor) arises out of a simple first-order linear
differential system which is perturbed by a smooth well-behaved

nonlinear term:

% X 0

[

y = A y + -XZ ’
[

2 2z Xy

where A 1s a constant real 3 x 3 matrix.

We briefly remark that for continuous first-order differen-
tial systems, at least three dimensions are required in order to
observe chaos. Similar systems in one and two dimensions have
trajectories which never bend back on themselves in such a way
as to produce chaos. However, for discrete systems, only one
dimension is required for chaos (as we saw above with the logistic
equation). 1In this case, the associated map is necessarily non-
invertible, meaning that it is impossible to proceed backwards in

time.
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We close this section with a few comments. One point, in
regard to metric universality theory, is that the value of the
asymptotic constants § and o are dependent on the presence of a
quadratic nonlinearity. Since almost every nonlinear function
is locally quadratic (via the Taylor expansion), it is not very
surprising that § and a are "universal." Furthermore, this theory
is not completely new, as it is closely related to renormalization
group analysis in statistical mechanics (Collet and Eckman, 1980).
Another point to bear in mind is that the intricate structure of
infinite nested patterns is a mathematical phenomenon, and could
never be observed physically. If nothing else, the Heisenberg
uncertainty principle is the essential limiting factor. This is
not to imply that the results described above do not have physical
applications. On the contrary, there are numerous applications,
the most dramatic of which is in fluid mechanics. The progression
from laminar to turbulent flow has been successfully modeled via
period doubling bifurcations leading from stable to chaotic be-
havior. 1Indeed, the Feigenbaum constants § and a have been ob-
served experimentally (Hofstadter, 1981), which greatly corrobo-
rates the theory. Other applications occur in various fields
such as celestial mechanics, high energy physics, scattering

theory, and thermal physics (Eckmann, 1981).

APPLICATION TO THE LOGISTIC SUBSTITUTION MODEL

We now set out to determine what implications, if any, the
complex behavior described in the last section has for the logis-
tic substitution model. For this purpose we consider the simplest
case, namely, two competing technologies, or market shares. Since
the two fractional shares must always sum to unity, there is only

one independent variable in the problem. From the logistic in

standard form (4), we obtain a more general version via the
transformation fn = g X - This yields the following:
f = bf_ - af_? . (6)

n+1 n n
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Now 1f a given technology ever attains either 100% or 0% of the
market 1t retains that share for all future time. Thus we 1mpose
fixed points at 0 and 1, the first of which is present in (6) as
it stands. For the fixed point at unity, we set fn = f =1,

+1 n
which yields b = a + 1. Thus (6) becomes

Hh
I

- 2
e+ (a + 1)fn afn ;

f

n+1 fn + afn(1 - f£) . (7)

n

We have a = b - 1, so the parameter a in this egquation corresponds
to one less than the parameter b in (3), and the parameter space
is now given by a €(-1,3). There is now a direct correspondence
between this discrete model and the continuous logistic model

which has the form

£'(t) = af(e)[1 - £(EB)] (8)

where the parameter a in (7) 1s analogous to the "annual adoption

rate” i+ 1in (8).

For purposes of modeling economic phenomena such as market
substitution, the discrete logistic may be more appropriate than
the continuous version. The latter implies continuous adjustment
of the market shares, as if data concerning the values of the
shares themselves were continuously available. This is contrary
to economic reality, where decisions are made periodically (e.g.
annually) based on data that are also available only periodically.
The discrete model more accurately reflects this situation.
Furthermore, the discrete model has a built-in time lag, meaning
that some account is taken of prior market conditions. The con-
tinuous model, however, ignores past information altogether, which

is difficult to justify in view of economic practice.

Before continuing further we pause briefly to compare the
numerical results obtained from the discrete and continuous logis-
tic models. For this purpose two parameter values are chosen:

x =a = 0.05, 0.30. The first value is typical for the many
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experiments carried out by Marchetti and Nakicenovic (1978), and
the second value is quite large and rarely observed. The results
are presented in Table 1. It is clear from the table that the
agreement between the two processes is excellent for a = 0.05,

and not quite so good for o = 0.30. This is explained from the
observation that the discrete logistic may be viewed as an approx-

imation to the continuous logistic. Starting with (8), we have

£r(ey 2 EE 2 BB BB _gee) (1 - £(0)] (9)

which corresponds to

fn+1 - fn = alt fn(1 - £) . (10)

Comparing this with (7) we see that the parameter a incorporates
both the adoption rate o and the mesh size At. As At >~ 0, a » Q,
so the agreement between discrete and continuous models improves
for decreasing a. In any case, the agreement is guite good for
small a, and we may safely replace the continuous logistic with
the discrete version for the great majority of applications of

the logistic substitution model.

Now we wish to see what happens as the parameter a increases
into the chaotic region. For a < 1, everything behaves as ex-
pected, with the new technology increasing its market share
monotonically to unity as time moves forward. However, for
a > 1, we suddenly encounter a serious problem. Convergence to
the fixed point at unity is now oscillatory, meaning that the
market share sometimes exceeds one. Formally this means that
the model is no longer applicable, but we continue undaunted by
this, and "normalize" the equation so as to prevent the market
shares from ever exceeding unity. This forces the fixed point
(previously at unity) to migrate downward as the parameter a
increases beyond one. The model now has the form (for details

see the Appendix):
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Table 1. Comparison of discrete and continuous
logistic processes.

Typical case Extreme case

a = 0.05 a = 0.05 o = 0.30 a = 0.30

£(0) = 1/3 fo = 1/3 £(0) = 0.10 fo = 0.10

time continuous discrete continuous discrete
0 .33333 .33333 .10000 .10000
1 .34454 .34444 .13042 .12700
2 .35591 .35573 .16837 .16026
3 .36746 .36719 .21463 .20063
4 .37915 .37881 : .26949 .24875
5 .39099 .39058 .33243 .30481
6 .40296 .40248 .40198 .36838
7 .41505 .41450 .47571 .43818
8 .42723 .42664 .55052 .51204
9 .43951 .43887 .62311 .58699
10 .45186 .45118 .69057 .65972
20 .57612 .57552 .97818 .98313
30 .69144 .69163 .99889 .99951
40 . 78699 .78816 .99994 .99999
50 .85898 .86083 1.00000 1.00000

100 .98670 .98762 1.00000 1.00000
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(a + ”fn - afn2 -1 <a <1
feq = : (11)
2
(a + 1)f - (a ; 1) £ 1 <ac<3

For |a] < 1, this model is identical to the original model (7);
and for a > 1 it has the same dynamic structure as the original
model while ensuring that the market shares always remain within

the unit interval.

The discrete logistic process in the form (11) has been
implemented within the market penetration software developed
by Nakicenovic (1979). Presented below are several plots for
two hypothetical competing technologies, which were generated
for selected values of the annual adoption rate parameter a.
In all cases, the new technology begins with a 1% share of the
market, and 200 iterations are performed (as indicated by the
time span of 200 years, 1900 - 2100). To anyone who is familiar
with market penetration curves, these plots will appear com-
pletely ridiculous, but they do demonstrate what the time-
honored logistic process will do when sufficiently provoked by

large parameter values.

Figures 5 through 7 present hypothetical market shares for
a=1.9, 2.0, and 2.1, respectively. In all cases, the declining
technology simply mirrors the dynamics of the growing technology
{since they add up to one); thus we focus attention on the latter
only. For values of a < 2, convergence is oscillatory to a single
fixed point, as shown in Figure 5. At a = 2, we again have con-
vergence to a single fixed point (Figure 6), but the convergence
i1s extremely slow since this is the threshold of bifurcation
{recall that a corresponds to b - 1). For a > 2, the orbit is
attracted to a period 2 cycle, as shown in Figure 7. Increasing
the value of parameter a further, this period 2 cycle widens,
eventually bifurcating into a period 4 cycle, as seen in Figure 8
(for a = 2.5). For clarity, only the curve for the new techno-
logy is shown here. At the threshold of chaos (a_ = 2.57),
Figure 9 displays an interesting pattern. At first glance it

looks like a period 4 cycle. Closer inspection reveals that it
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is more nearly a period 32 cycle, but this too is not correct
if one looks very carefully. Since the value of a_ is not

precisely 2.57, this curve could be either an aperiodic orbit
or a periodic cycle with a very long period; the distinction

cannot be made from the figure.

Moving into the chaotic region, for a = 2.603, we have
what appears to be a noisy period 18 cycle, as shown in Figure 10.
Increasing the value of a to 2.8284, we encounter the stable
period 3 cycle shown in Figure 11. The graph looks like a simple
two point oscillation, but close inspection reveals it to be a
period 3 cycle, as emphasized by the three representative dots
in the figure. Finally, in Figure 12, we see fully chaotic

orbits spread over the entire phase space (a = 3.0).

The basic question which we finally need to address is:
what does all this mean for the logistic substitution model?
Earlier we glossed over an important fact: the discrete logistic
substitution model breaks down for a > 1 because it permits market
shares to exceed unity. As the parameter a increases, we may
take this to mean either the adoption rate is growing, or the
time intervals are growing. Choosing the latter interpretation,
it may be expected that any discrete model for the prediction of
time series data will eventually exceed its limits of applica-
bility as the time mesh becomes increasingly coarse. In the
present case, as At grows, there comes a point when the model
predicts a market share exceeding unity at time t + At, based on
information available at time t. Since this is unacceptable, we
conclude that the model is applicable only if the time mesh is
suitably restricted, which in this case means |a| < 1. As it
happens, this is not a severe limitation since actual values
for the annual adoption rate are typically in the range from
0.01 to 0.30.

A natural gquestion to ask is why the discrete logistic
exhibits chaos whereas the continuous logistic does not. To
answer this, we must consider the mathematical relationship
between discrete and continuous dynamical systems, which may be
illustrated as follows. Consider a continuous curve in three-

dimensional space defining the solution trajectory of a
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Figure 5. Hypothetical market shares using discrete logistic;
a = 1.90.
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a = 2.00.

Hypothetical market shares using discrete logistic;
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Figure 7. Hypothetical market shares using discrete logistic;
a = 2.10.
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differential system. Now take a surface in this space, and
consider the intersections of the continuous trajectory with

this surface (called the "surface of section"). These inter-
sections are points which define the orbit of a discrete dynam-
ical system known as a Poincaré map (Hirsch and Smale, 1974).
Clearly, there are many possible Poincaré maps depending on the
choice of the surface of section. In any case, such a map is a
discrete representation of the original continuous system, and
has similar dynamic structure. In the case at hand, the discrete
logistic process is a Poincaré map not for the continuous logistic
equation, but for the Volterra differential system (for two com-
peting species) with a time delay added (Shibata and Nobuhiko,
1980). It is the time delay that gives rise to bifurcation and
chaos, and this complicated behavior is preserved in the Poincaré
map. Thus, although the discrete logistic equation can be easily
obtained from its continuous counterpart (see Egs. (8) through
(10) above), the two equations represent very different dynamic
processes, because the former incorporates a time lag whereas

the latter does not (see May, 1980). This is a good illustration
of the fact that discretization of continuous systems often leads

to models having drastically different dynamic structures.

In conclusion, the chaotic behavior of the logistic process
occurs for parameter values that are completely unrealistic for
market substitution processes. In addition, the discrete logis-
tic equation ceases to be an appropriate model for market pene-
tration phenomena long before any unusual behavior, such as
bifurcation, is encountered. Although one can certainly imagine
the possibility of some type of chaos in real market systems, 1t
is unreasonable to expect that a highly aggregated and simplified
model such as the logistic equation could be directly applied in
such a case. However, one should be cautious here, because the
structure of logistic chaos is common to many physical systems,
e.g., turbulent flow, and could find new application in a variety

of fields, including economics.
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APPENDIX

We describe here the normalization procedure followed to

obtain the modified logistic model (11).

Since we are forced to sacrifice the fixed point at unity,
we return to the logistic equation in the general form (6);

= _ _ 2
f = F(fn) = b fn a f . (6)

n+1 n

A simple calculation shows that

max - 2
0<£<1 FI£) = 43

Dividing by this quantity, a new function F(f) is obtained which

never exceeds unity:

F(f) = 23 (bf - af?)
(12)
= 4xf(1 - Af) ,
where X Z a/b. A simple stability analysis shows that there is

a fixed point at (4X - 1)/4X?, which is stable for 1/4 < X < 3/4.
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We define a simple linear transformation of parameter XA so that
the parameter space corresponds with that used in the text. The
43 - 1, and the stability interval of the

transformation is a
fixed point becomes 0 < a < 2 as desired. 1In terms of parameter

a, Eg. (12) becomes

F(f) = (a + 1)f -

a + 1}2
e

which is (11) in the text (for a > 1). We remark that as a
function of a, the composite function (11) is continuously
differentiable at a = 1.
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