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ABSTRACT 

T h i s  a r t i c l e  d e a l s  w i t h  some methods f o r  l i n e a r  programming 

which g e n e r a t e  a m o n o t o n i c a l l y  improving sequence  o f  f e a s i b l e  

s o l u t i o n s .  Examples o f  such  methods are t h e  s implex  method and 

t h e  reduced g r a d i e n t  method. A l a r g e r  class o f  such  methods as 

w e l l  as t h e i r  convergence  h a s  been d i s c u s s e d  i n  a r e c e n t  a r t i c l e  

by K a l l i o  and P o r t e u s .  

W e  have implemented a v e r s i o n  o f  such  methods i n  t h e  SESAME 

sys tem developed by Orchard-Hays. T h i s  v e r s i o n  resembles t h e  

reduced g r a d i e n t  method e x c e p t  t h a t  o n l y  a s u b s e t  of nonbas ic  

v a r i a b l e s  t o  b e  changed i s  c o n s i d e r e d  a t  e a c h  i t e r a t i o n .  We 

s h a l l  t r y  o u t  s e v e r a l  m o d i f i c a t i o n s  o f  t h i s  b a s i c  v e r s i o n .  These 

m o d i f i c a t i o n s  a r e  concerned  w i t h  t h e  c h o i c e  o f  a n  i n i t i a l  bas is  

and an  i n i t i a l  s o l u t i o n ,  w i t h  s t r a t e g i e s  f o r  f i n d i n g  a f e a s i b l e  

s o l u t i o n ,  as  w e l l  as w i t h  s t r a t e g i e s  f o r  d e t e r m i n i n g  t h e  d i r e c t i o n  

o f  change f o r  a f e a s i b l e  s o l u t i o n  a t  e a c h  i t e r a t i o n .  

W e  have exper imented  w i t h  modera te  s i z e d  n o n s t r u c t u r e d  as 

w e l l  as dynamic problems.  Compared w i t h  t h e  s implex  method, t h e  

o v e r a l l  per formance  o f  such  methods i s  a b o u t  e q u a l  i n  t h e  case 

of  l i n e a r  programs w i t h  no p a r t i c u l a r  s t r u c t u r e .  For  dynamic 

LP w e  have  o b t a i n e d  some encourag ing  r e s u l t s .  Although w e  have 

been able t o  exper iment  w i t h  o n l y  a f e w  problems,  s o  f a r  it seems 

t h a t  u s i n g  s p e c i a l l y  d e f i n e d  s t a r t i n g  b a s i s  and i n i t i a l  nonbas ic  



solution allow a reduction by a factor of eight in the computing 

time of the reduced gradient method. This starting basis is 

chosen so that its columns are likely to appear also in an optimal 

basis. For the initial solution, available information, such 

as current level of activities in real life, may be employed. 

Of course, our starting basis for dynamic LP may be used also in 

the simplex method, and, indeed this results in a considerable 

improvement of efficiency. 

- iv- 



EXPERIMENTS WITH THE REDUCED GRADIENT 
METHOD FOR LINEAR PROGRAMMING 

M. K a l l i o  and W .  Orchard-Hays 

1 .  I n t r o d u c t i o n  

Cons ider  t h e  l i n e a r  program (LP):  

f i n d  x  E R" t o  

(LP1) maximize c x  

(LP2 ) s u b j e c t  t o  Ax = b 

(-3 ) O < x < u  - - , 

where c ,  u  E R", b  E R ~ ,  and A E R mxn i s  of  f u l l  row r ank .  For 

s o l v i n g  (LP) we s h a l l  c o n s i d e r  methods, which can  be c h a r a c e r i z e d  

a s  f o l l ows :  Like  t h e  s implex  method [ I ] ,  t h e s e  methods move from 

one f e a s i b l e  s o l u t i o n  t o  a n o t h e r  a t  each i t e r a t i o n ,  t h e r e b y  i m -  

p rov ing  t h e  o b j e c t i v e  f u n c t i o n .  Each f e a s i b l e  s o l u t i o n  i s  a l s o  

a s s o c i a t e d  w i t h  a  b a s i s .  However, t h i s  f e a s i b l e  s o l u t i o n  need 

n o t  be  an extreme p o i n t  and t h e  b a s i c  s o l u t i o n  co r r e spond ing  t o  

t h e  a s s o c i a t e d  b a s i s  need n o t  be  f e a s i b l e .  N e v e r t h e l e s s ,  a s  

shown i n  [ 2 ] ,  an  o p t i m a l  s o l u t i o n ,  i f  one e x i s t s ,  c an  be  found 

i n  a  f i n i t e  number of i t e r a t i o n  (under nondegeneracy) .  

-1- 



In the following, we shall first review this class of methods 

as presented in [2]. Thereafter, we discuss an implementation 

of such methods in the SESAME system, an interactive mathematical 

programming system developed by Orchard-Hays [4] and written in 

assembler language for IBM 370 under VM/CMS. In the last two 

sections we shall report experiments which we carried out both 

for nonstructured and for dynamic linear programs (LP). 

2. The Class of Methods 

We shall now review the methods in consideration as pre- 

sented in [2]. We call x a system solution if it satisfies (LP2), 

a homogeneous solution if it satisfies Ax = 0, and a feasible 

solution if. it satisfies (LP2) and (LP3). If x is feasible and 

z is a homogeneous solution, then x + 8z is feasible as long as 

it is nonnegative, for all 8 E R. As 8 increases, the objective 

function increases if and only if cz > 0. The simplex method 

chooses as z one of the homogeneous solutions corresponding to 

increasing the value of a nonbasic variable such that cz, the reduced 

cost, is positive. The methods considered here may choose as z 

a linear combination of such vectors, rather than just one. In 

particular, the direction may be chosen according to the reduced 

gradient method (e.g. [7] ) . As in the simplex method, a new 

feasible solution is found by increasing 8 (and the objective 

function)as much as possible without losing feasibility. 

The Admissible Directions 

Before stating the method, we shall discuss how an admissible 

direction is constructed. Let B denote the set of basic indices 

(indices for basic variables), and let a and y be sets of variables 



at their lower and upper bounds at x, respectively; i.e. 

a = a(x) = IiIx = O }  and 
i 

In the simplex method, all nonbasic variables would be in a U y, 

but this is not necessarily the case here. For convenience, 

assume that the variables have been ordered so that f3 = {1,2, ..., m). 
. . 

Let B be the corresponding basis matrix, and let a' denote the j 
th 

column of A. For each nonbasic variable j E (the complement of 

8 )  define a column vector z j  E R" componentwise as follows: 

-1 j 
Clearly, zJ is a homogeneous solution, since AZ~=B (-B a ) +aj=~. 

As mentioned before, zj serves as the direction of change in the 

simplex method, when changing the value of a nonbasic variable j. 

For the methods considered here, linear combinations of such vec- 

j tors serve as such directions z.; i.e., if Z = z ( z  ) is the nx (n-m) 

matrix having vectors zJ as its columns and w is an (n-m)-vector 

of weights, then 

We shall index the components of w by nonbasic variables rather 

than the first n - m integers. Thus, reference to w always 
j 

carries the convention that j E 8. Taking (2) into account, the 

components w indicate the direction of change in the space of 
j 



nonbasic variables while z is the direction in the space R" of 

all variables. 

In general, certain conditions are to be met by an admissible 

direction in order for the method to converge: (i)For the direc- 

tion to be feasible, we require (for a nonbasic variable j 

currently at its bound) that w > 0 for j E a and w < 0 for 
j - j - 

j Y. (ii)In order to improve the objective function, we must 

have cZw > 0. (iii)Finally, in order to prevent zig-zagging, we 

require that czJw > 0 if w # 0. If no w E R n-m 
j j 

satisfies 

conditions (i) - (iii), then the current solution is optimal for 
(LP) . (For a proof, see reference [21 .) 

In the simplex method, an admissible direction w is a unit 

vector for which cZw is positive or negative depending on whether 

the particular nonbasic variable is currently on its lower or 

upper bound. For the reduced gradient method, w is given by 

r o i f j E a  , and c z J < O  , or 

1:zj otherwise . 

That is, nonbasic variables are adjusted in proportion to their 

reduced costs unless they are currently at a bound and a feasible 

movement off from the bound will not increase the objective 

function. 

Initially, any basis can be chosen independently of the ini- 

tial solution. At an iteration, if a nonbasic variable moves to 

its bound, then we simply leave the basis unchanged. Otherwise, 

at least one basic variable reaches its l'ower or upper bound. 



We may arbitrarily1 select one of these to be the leaving variable 

R .  For the entering variable, there may be many candidates: any 

variable e is a candidate if it is currently off from its bounds 

(i.e. 0 < x < ue) and B' = B U {el - (2) is a legitimate set of e 

basic variables. It has been shown in [2], that if (LP) is 

nondegenerate, then such a variable e always exists. Implemen- 

tation of the basis change rule will be dicussed in Section 3 

in detail. 

The Method 

The steps of the methods in consideration can be stated as 

follows : 

1' Initialization: Specify an initial basis (set of basic 

variables B), an initial feasible solution x and the cor- 

responding sets a = a(x) and y = y (x). 

2' Specify direction: Determine a vector w of weights 

satisfying conditions (i) - (iii) above. If none exists, 

then stop (the current solution x is optimal). 

3' Determine step size: Let be the largest 0 for which 

x + 8Zw is feasible. If 8 = m , then stop ((LP) is un- 

bounded) . 
4' Update: Replace x by x + ~ Z W .  Thereafter, 

4.1" if any of the nonbasic variables moved to its upper 

or lower bound, update a and y, and return to 2' 

(without a basis change); 

4.2' otherwise, update cc and y , and pick any R E Bn(ccUy) 

'~ctually, standard pivot selection rules are used. 



(a basic variable on its bound) as leaving vari- 

able. Pick e E (a nonbasic variable off 

from its bounds) such that f3 '  = f3 U {e) - { a )  is a 

legitimate set of basic variables. Replace B by 8' 

and return to 2'. 

3. ~mplementation f '  The Basic Version 

The SESAME system was modified for adopting the features of 

the method described above. We shall describe an implementation 

which later will be referred to as the basic version. In subse- 

quent sections we report computational experience with the basic 

version as well as with several of its modifications. 

Shortly stated, the basic version is just the reduced gradient 

method modified so that only a certain subset of nonbasic vari- 

ables is considered for changing at each iteration. We shall 

first give a brief overview of the SESAME system. Thereafter, 

following the steps listed for the method in Section 2, we shall 

discuss details of our implementation. Such a discussion ought 

to be useful when we consider alternative implementations for 

these particular steps in subsequent sections. 

The SESAME System 

The SESAME mathematical programmfng system is a large MPS 

with simplex algorithms and supporting procedures in traditional 

style. Its grandparentage is partly IBM's MPS/360 (the second- 

generation antecedent of MPSX/370) and its parentage partly 

Management Science System's (now Ketron) MPS-I11 [ 5 ] .  In other 

words, with respect to algorithms, it is on the main branch of 

development of large commercial MPS's. SESAME includes an 



elaborate data management extension, called DATAMAT, which has 

very similar external (but not internal) specifications to 

MPS-111's DATAFORM. Both these extensions are the outgrowth of 

several lines of development going back as far as 1959 [ 3 1  . 
In most other attributes, however, SESAME is unique. This 

is particularly true in two respects. First, it was developed 

at the National Bureau of ~conomic Research's Computing Research 

Center (now part of MIT), not as a commercial product but to be 

available as both a production and research tool to universities, 

research centers and other nonprofit organizations. Of perhaps 

more importance here, it was designed from the beginning for use 

only on an interactive host, namely an IBM/370 operating under 

VM/CMS. While this restricts its portability, specialization to 

one type of computer enhances efficiency as with all other large 

MPS1s. Availability has been made broad through its access on 

standard networks. Both SESAME and, particularly, DATAMAT have 

been enhanced and extended at IIASA, utilizing the IBM 370/168 

at the CNUCE center in Pisa, Italy, via remote terminals and 

high-speed file transmission facilities. Indeed, the entire 

development of SESAME since 1972 has been done remotely. At no 

time did the development team have "hands-on" access to the 

computer on which the work was being done. 

SESAME is controlled by the user through and only through 

a remote terminal. There is no such thing as "submitting a job." 

In fact, however, the user creates standard sequences of instruc- 

tions--at various levels--in the form of files which are then 

invoked by a command at the terminal. The creation, modification 

and invocation of these "run" and "program" files are all done 



interackively as well as ad hoc use of various system facilities. 

The whole arrangement is very versatile and system modifications 

and extensions are carried out in the same style (but restricted 

to knowledgable professionals). A number of difficult models 

have been handled at IIASA which would have been virtually 

impossible with batch methods. 

The main simplex algorithm in SESAME combines the primal, 

dual, generalized upper bounding (GUB) and separable programming 

all in one procedure. It also includes bounds and ranges of 

all types, multiple and partial pricing, and a number of algo- 

rithm control switches. (Multiple pricing and suboptimization 

is permanently limited to seven columns, which becomes important 

below). Both standard MPS input and MPS-I11 extensions as well 

as another better but little-used format are accepted. Most 

models, however, are created with DATAMAT which enfiles them 

directly without an intermediate card-image form. Standard 

output of the various usual kinds is provided and, additionally, 

LP results may be enfiled directly for subsequent use with 

DATAMAT functioning as a report generator or master algorithm 

control. The system includes a number of other features which 

are of no particular pertinence here. 

Initialization of the Method 

We shall now turn our discussion to the implementation of 

our basic version of the reduced gradient method in the SESAME 

system. For the basic version, either an all logical starting 

basis (i.e. a basis consisting of slacks and artificials only) 

can be constructed or an advanced basis is loaded. The latter 



alternative is available if a basis from previous runs has been 

saved or if such a basis has been generated by other means. 

However, no crash algorithm has been employed. 

The initial solution of the basic version is the basic 

solution corresponding to the initial basis. If this solution 

is not feasible, we start Phase I in the usual way for minimizing 

the sum of infeasibilities. Thus in this case, the objective 

function coefficient is set to -1 for all variables above their 

upper bound (including artificial variable at a positive value), 

1 for all negative variables and to 0 in other cases. 

Specifying Direction 

At each iteration we consider at most k = 7 nonbasic variables 

to be changed simultaneously. In the following, this set is 

called the k-set. The maximum number of elements in the k-set 

was due to an implementation similar to one employed for a 

multiple pricing procedure in the SESAME system. In such a 

case, the alpha columns (the columns aJ premultiplied by the 

basis inverse) for nonbasic variables j to be moved are stored 

explicitly, and core limitation soon becomes prohibitive for 

larger k. 

While choosing the k-set we cycle the nonbasic variables 

similarly to what is normally done in an implementation for the 

simplex method. We need to find, if possible, a set of t 

(standard value of t =  12) nonbasic variables, called the t-set, 

for which formula (4) of the reduced gradient method yields a 

nonzero weight w J. Among the t-set we choose, when possible, 

k variables with the largest weights in absolute value. The 

optimum for (LP) has been obtained if the t-set is empty. 



After choosing in this way the k-set from the set of all 

nonbasic variables, we set the weights according to (4) and move 

in this direction. If a nonbasic variable (one or more) becomes 

binding, we redefine its weight according to (4). Otherwise, a 

basic variable R having moved to its bound is replaced by a 

variable e of the k-set. Thereby the size of the k-set is reduced 

by one element. We repeat such iterations until either the 

k-set becomes empty or the weights for all variables in the 

k-set are equal to zero. Thereafter, a new k-set (of at most 

7 variables) is chosen among the nonbasic variables as described 

above. 

Determining the step size 

As indicated above, the alpha-columns for all nonbasic 

variables in the k-set are stored explicitly. When a new k-set 

is chosen, an FTRAN pass is needed to compute these alpha-columns. 

Otherwise, the existing alpha-columns are just updated in the 

usual way utilizing the alpha-column of the entering variable. 

Given the alpha-columns, a composite column is computed as a 

weighted sum of these vectors, the weights being those given 

by the direction w. 

For Phase 11, the minimum ratio test is carried out using 

the composite vector as usual to determine the step size. For 

Phase I, however, there are several alternatives. The rule 

adopted in our basic version is to move as far as (i) a cur- 

rently feasible variable reaches its bound, or (ii) an infeasible 

variable, moving towards feasibility, reaches its farthest 

finite bound, whichever occurs first. 



Updating the basis inverse 

The basis inverse is stored in a product form and, given a 

leaving and an entering variable, updated exactly as in the sim- 

plex algorithm of the SESAME system. In our case, however, there 

is some freedom in choosing the entering variable. As shown by 

the following result,we may exclude from consideration all non- 

basic variables which are not in the k-set. 

Lemma. Let R E (3 be a basic variable becoming binding at the cur- 

rent iteration. Then there exists in the current k-set a variable 

e such that B '  = f3 u {e) - CR) is a legitimate set of basic vari- 

ables, and such that the updated price vector corresponding to 

6' is. (dual) feasible for column R. 

Proof: Let d be the reduced cost and a; the element of the alpha- 
j 

column j in pivot row 2, for each j in the k-set. If basic vari- 

able R is forced to its lower bound, then there must be a variable 

, j in the k-set for which either d > 0 and a ;  > 0 or d < 0 and 
j j 

aJ < 0 .  Ori the other hand, if R is forced to its upper bound, R 

there exists variable j, for which either d > 0 and a; < 0 or 
j 

d < 0 and a; > 0 .  In each case one can readily check that the 
j 

result follows . 1 1  
Among all candidates e implied by this Lemma, we choose as 

the entering variable the one off bound with the largest pivot 

element. If this element is within the range of a pivot toler- 

ance (standard threshhold is the variable with the largest 

pivot element among all columns suggested by our Lemma is 

chosen. If both fail, this can only be due to digital difficul- 

ties, and no provision has been implemented to avoid this, 

except the possibility to change the tolerance. 



4. Computational Experience: Nonstructured LP 

4 .1  Test Problems 

The following test problems were considered: a tiny oil 

refinery model (A), agricultural planning models (.B) , (C) and 
(Dl, an energy supply model (E), and dynamic, forest sector 

models (F) and (G). Statistics concerning these test problems 

is given in Table 1 below. 
- --. - - 

Table 1.  Summary of test problems. 

Problem Rows Columns Density ( S b )  

4.2  Results with the basic version 

Table 2 below shows computational results of our basic ver- 

sion compared with the simplex method (as implemented in the 

SESAME system) . 



Table  2.  Exper ience  w i th  t h e  b a s i c  v e r s i o n  of  t h e  
reduced g r a d i e n t  method compared w i t h  t h e  
s implex method of  SESAME. 

Reduced g r a d i e n t  method 

Problem A B C D E F 

I n i t i a l i z a t i o n :  

I n f e a s i b i l i t i e s  4  58  0  3 2  1 3  8  1  

Bas ic  v a r i a b l e s  
e q u a l  t o  z e r o  1 3  266  48 9 3  2 1  3 6 2  

F e a s i b l e  s o l u t i o n :  

A t  i t e r a t i o n  26  - 1700+  288  ' 47  9 7 6  

Optimal s o l u t i o n :  

A t  i t e r a t i o n  28  4 0 0 *  444  1 0 6  1 4 6 2  

Basic  v a r i a b l e s  
e q u a l  t o  z e r o  0  3  1 6  1 0  2 0  

Nonbasic v a r i -  
a b l e s  n o t  on 1  1 5  
bound 

Simplex method 

Problem A B C D E F 

F e a s i b l e  s o l u t i o n :  

A t  i t e r a t i o n  2 3  - 1 1 7 5  1 7 1  40  8 1 8  

Optimal s o l u t i o n :  

A t  i t e r a t i o n  2 5  3 6 0 *  1 6 8 8  2 9 3  1 0 5  1 0 8 5  

- -- 

* t h e  problem was found t o  be  i n f e a s i b l e .  
+run was i n t e r r u p t e d  w i thou t  f i n d i n g  a  f e a s i b l e  s o l u t i o n .  . 



In each case, we have started with an all logical basis and 

the initial solution is the corresponding basic solution. The 

initial number of infeasibilities is shown, and the number of 

iterations required for reaching a feasible solution as well as 

an optimal solution is given. Furthermore, a measure for primal 

degeneracy is given for the initial and optimal solution in terms 

of the number of basic variables equal to zero. We shall refer 

to this measure in subsequent sections. 

As a measure for computational efficiency, the number of 

iterations, or rather the number of basis changes, may be used. 

For the reduced gradient method we did not count the minor iter- 

ations when a nonbasic variable maves to its lower or upper 

bound (the case without a basis change). On the other hand, an 

iteration is counted for the simplex method, when a nonbasic 

variable is moved from one bound to another. An experiment 

was carried out on Eroblem F, which shows that the average CPU 

time per iteration for the reduced gradient method is .8 times 

that for the simplex method. Thus, to make the number of itera- 

tions comparable measures for computational efficiency, the itera- 

tion numbers in Table 2 for the reduced gradient method should 

be multiplied by a factor of .8. 

According to Table 2, the overall performance of the basic 

version of the reduced gradient method is about equal compared 

with the simplex method of the SESAME system. (The difficulty 

in finding a feasible solution to problem C is unexplained. The 

source of the model is obscure and no investigation was possible). 



4 . 3 .  Choosing a  Nonbasic S t a r t i n g  S o l u t i o n  

Because t h e  r i g h t  hand s i d e  v e c t o r  b  normal ly  i s  a  r e l a t i v e l y  

s p a r s e  v e c t o r ,  t h e  i n i t i a l  s o l u t i o n  i s  h i g h l y  d e g e n e r a t e ,  when a n  

a l l  l o g i c a l  s t a r t i n g  b a s i s  i s  chosen.  T h i s  i n  t u r n  r e s u l t s  i n  a  

l a r g e  number of  i t e r a t i o n s  w i t h  a  s t e p  s i z e  e q u a l  t o  z e r o .  The 

r a t i o  of  such  i t e r a t i o n s  f o r  problems B and D, f o r  i n s t a n c e ,  was 

more t h a n  50 p e r c e n t ,  most o f  which occured  d u r i n g  t h e  e a r l y  i t e r -  

a t i o n s  f o r  b o t h  o f  t h e  methods. I n  t h e  f o l l o w i n g  w e  r e p o r t  a  l i t t l e  

s t u d y ,  where w e  c o n s i d e r  an approach f o r  a v o i d i n g  t h i s  phenomenon 

and i n v e s t i g a t e  whether  something c a n  be  g a i n e d  i n  do ing  so .  

B a s i c a l l y ,  o u r  approach i s  t o  s t a r t  t h e  reduced g r a d i e n t  

method w i t h  a  nonbas ic  s o l u t i o n .  W e  t r y  t o  p r o v i d e  some motiva-  

t i o n  f o r  t h i s  approach t h r o u g h  t h e  f o l l o w i n g  example, which h a s  

been i l l u s t r a t e d  i n  F i g u r e  1. 

Feasible 4 
solutions 

F i g u r e  1. A d e g e n e r a t e ,  a l l  l o g i c a l  s t a r t i n g  b a s i s .  



minimize - X1 + S1 = -10 

subject to - 5x1 + x2 + s 2 =  0 

- 4 x  + x 2 + s 3 =  0 
1 

3x1 - X 2 + s 4 =  0 

5x2 - 2x2 + S = 0 
5 

2x - x  + s 6 =  0 1 2 

5x1 - 3x2 + S7 = 0 

3x1 - 2x2 + S* = 0 

X1 - X 2 + s 9 =  0 

2x1 - X2 + To= 0 

x x > 0 , s > 0 for all i. 1' 2 - i - 
-- 

The origin (xl, x2) = (0, 0) in the picture corresponds to the 

basic solution for an all logical stanting basis which is comprised 

by the (columns of the ) slacks si. This solution is highly de- 

generate as nine out of ten of the basic variables are equal to 

zero. There is only one infeasibility (sl = -10). When the stan- 

dard simplex method or our basic ,version is used, either 2,3,4,5,6, 

or 7 iterations are required, depending on the choice of alterna- 

tive pivot paths, to reach the optimal solution (xl, x2) = (10, 10). 

For all the iterations, except the last one, the step size is 

equal to zero and the resulting solution is the same as the start- 

ing solution. 

For the reduced gradient method, we may choose a nonbasic 

starting solution. For instance, we may choose the starting basis 

as above, set the nonbasic variables to any nonnegative value, and 

solve (LP2) for the basic variables to obtain a nonbasic system 

solution to start with. In particular choosing any such point, 

other than the origin, the number of iterations to reach the 



optimum is either 2 or 3, depending on the choice. Thus, it seems 

likely that starting with a nonbasic solution results in a decrease 

in the number of iterations in this example. Notice, that the 

number of infeasibilities at such a starting solution ranges 

between 0 and 7. (For brevity, we shall not discuss the possible 

pivot paths here). 

We shall now add to our basic version the possibility of 

setting nonzero values to the nonbasic variables at the starting 

solution (given that the initial basis has already been chosen). 

Because, in general, no indication may be available as to which 

values should be used, we have implemented the possibility of 

setting the same arbitrarily chosen nonnegative value for all 

nonbasic variables. 

Table 3 below shows the effect of starting with such non- 

basic solutions. As a general observation, we may conclude that 

setting all nonbasic variables initially to a given nonzero value 

indeed yields a slight improvement (but not in that degree which 

might be suggested by our example). The number of iterations 

with a stepsize equal to zero was decreased dramatically, and 

thereby the functional value both in Phase I and in Phase I1 

improved smoothly. 

4.4 Improving the Functional Value in Phase I 

The fact that the feasible solution generated in Phase I 

is often a relatively poor solution, led us to try to take into 

account also the functional when choosing the direction in Phase I. 

We shall report such an experiment as well as another attempt 

aimed at improving Phase I in the following. 
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Our intention now is to specify the vector of weights w for 

the direction z = Zw in such a way that, in Phase I, improvement 

is made for the functional value cx as well as for the sum of 

infeasibilities. 

Let c 'x denote the objective function of an ordinary Phase I. 

We shall now replace this objective by (cl + hc)x, where A is a 

positive parameter. Each time, when optimality has been reached 

with this objective function, and there are still infeasibilities 

left, we switch back to the ordinary Phase I routine and stay there 

as long as the solution remains optimal subject to the modified 

objective. 

The results of our experiments were negative: our general 

observation was that the total number of iterations for reaching 

optimality increased considerably; e.g., by fifty percent for 

Problem F when the standard version was used. Typically, the 

primal objective function improved well along the Phase I iter- 

ations, even reaching the neighborhood of the optimal value, 

but then a switch to the ordinary Phase I resulted in a large 

degradation in the functional value. 

As another attempt to improve Phase I we implemented a pro- 

cedure for choosing the step size at each iteration in such a way 

that the sum of the values for infeasible variables is minimized. 

We denote this sum as a function of step size 8 by c ( 0 ) .  

A typical picture of such a function is shown in Figure 2. 

It is a convex, piece-wise linear function whose derivative is 

discontinuous at points O0, el, 8*, etc. At each of these points 

one or more variables become either feasible or infeasible. The 

minimization of this function, subject to the requirement that 



Fiqure 2. Sum of infeasible variables as a 
function of step size. 

the nonbasic variables are not allowed to become infeasible, can 

be done easily because the information needed to compute the 

slope changes at each of the points Bi, is readily available 

in the composite vector z = Zw. 

Somewhat surprisingly, the approach was also a setback com- 

pared with the basic version. Again, the suboptimization caused 

an increase in the WJmber of iterations for reaching feasibility. 

5. Specialization for Dynamic Linear Programming 

In this section, further elaboration is made on choosing an 

initial nonbasic solution as well as an initial basis in the 

case of dynamic linear programming. 

5.1 The Dynamic Linear Prosrammins Problem 

The dynamic linear programming problem (DLP) is an important 

special case of (LP). At the same time, it is known as a par- 

ticularly difficult class of LP problems. The problem can be 

stated as follows [6] : 



f i n d  a c o n t r o l  u  = { u ( O ) ,  u ( 1 )  , . . . , u(T-1 )  ) ,  and 

a t r a j e c t o r y  x  = { X O  x l ) , . . . ,  x }  t o  

T- 1  
(DLP1) maximize 1 ( a  ( t ) x ( t )  + b ( t ) u ( t )  ) + a ( T ) x ( T )  

t = O  

s u b  j ect  t o  

(DLP2) x ( t + l )  = A ( t ) x ( t )  + B ( t ) u ( t )  + s ( t )  , 

f o r  t = 0 ,  1 ,  ..., T-1 

(DPL3 ) G ( t ) x ( t )  + D ( t ) u ( t )  = f ( t )  

f o r  t = 0 ,  1 ,  ..., T-1 

(DLP4 ) u ( t )  > 0 ,  x ( t )  > 0  - - f o r  a l l  t , 
and w i t h  t h e  i n i t i a l  s t a t e  

(DLP5) x ( 0 )  = X 
0  

Here x ( t )  E R n t  i s  t h e  v e c t o r  o f  s t a te  v a r i a b l e s  a t  t h e  b e g i n n i n g  

of  p e r i o d  t ,  f o r  t = 0 ,  1 , .  . . , T, and  u ( t )  E R r t  is t h e  v e c t o r  o f  

c o n t r o l  a c t i v i t i e s  d u r i n g  p e r i o d  t ,  f o r  t = 0,  1 ,  ..., T-1. F o r  

e a c h  t ,  a ( t )  E R n t ,  b ( t )  E R r t ,  s ( t )  E Rmt and  f ( t )  E R k t a r e  

e x t e r n a l l y  g i v e n  v e c t o r s ,  a n d  A ( t ) ,  B ( t ) ,  G ( t )  and  D ( t )  a re  e x t e r -  

n a l l y  g i v e n  matrices o f  a p p r o p r i a t e  d imens ion .  The i n i t i a l  s t a t e  

o f  t h e  sys t em i s  d e s c r i b e d  by t h e  v e c t o r  xo E RnO. The o b j e c t i v e  

f u n c t i o n  i n  (DLP1) i s  a l i n e a r  f u n c t i o n  o f  s t a t e  v a r i a b l e s  x ( t )  

and  c o n t r o l  v a r i a b l e s  u ( t ) .  C o n s t r a i n t s  (DLP2) may b e  c a l l e d  

t h e  s t a te  e q u a t i o n s ,  as t h e y  d e t e r m i n e  t h e  s t a te  x ( t + l )  a t  t h e  

end o f  a p e r i o d  t ( b e g i n n i n g  o f  t h e  s u b s e q u e n t  p e r i o d  t + l )  g i v e n  

t h e  i n i t i a l  s t a t e  x ( t )  and  t h e  c o n t r o l  a c t i o n  u ( t )  f o r  t h a t  p e r i o d .  

C l e a r l y ,  (DLP) i s  a s p e c i a l  case o f  ( L P ) .  The c o n s t r a i n t  

m a t r i x  A f o r  (DLP) h a s  been  i l l u s t r a t e d  i n  F i g u r e  3 f o r  T  = 3 .  



Figure 3. A dynumic LP with three time periods. 

In the following, we shall experiment with ideas of choosing 

an initial basis and an initial solution, when the reduced grad- 

ient method is applied to (DLP). 

-- .- - - 

5.2. An Advanced Basis for Dvnamic LP 

For dynamic linear' programs, it may seem intuitively 

appealing that most of the state variables appear in the optimal 

basis. In fact, for various versions of DLP Problems F and G, 

over 90% of the state variables appear in the optimal basis. 

Furthermore, we believe that in a typical dynamic LP formulation, 

besides the state equations (DLP2), there are only a relatively 

small number of constraints of equality type; i.e., most of the 

constraints (DLP3) are just inequalities which have been converted 

to equalities through adding the slack.-variables. For Problem F, 

95% of constraints (DLP3) are converted inequalities. For problem 

G this ratio is 80%. 

These remarks led us to construct an advanced triangular basis 

which consistsof (i) columns of all state variables, (ii) columns 

of slacks for inequality type constraints in (DLP3), and (iii) 



a r t i f i c i a l  columns f o r  e q u a l i t y  t y p e  c o n s t r a i n t s  i n  (DLP3)- An 

example  o f  s u c h  a  b a s i s  c o r r e s p o n d i n g  t o  o u r  example  i n  F i g u r e  3 

i s  g i v e n  i n  F i g u r e  4. 

F i g u r e  4 .  An advanced  b a s i s  f o r  dynamic LP. 

When t h e  b a s i c  v e r s i o n  was u s e d  f o r  Problem F  and  t h e  

above  c o n s t r u c t e d  b a s i s  was u s e d  as a s t a r t i n g  b a s i s ,  t h e  number 

of i t e r a t i o n s  was r e d u c e d  f rom 1 4 6 2  c o r r e s p o n d i n g  t o  a n  a l l  l o g i c a l  

s t a r t i n g  b a s i s  t o  583. When t h e  same b a s i s  was u s e d  f o r  t h e  s i m -  

p l e x  method,  o n l y  363 i t e r a t i o n s  were needed .  However, when t h e  

c o n s t r u c t e d  i n i t i a l  b a s i s  w a s  combined w i t h  a n  i n i t i a l  n o n b a s i c  

s o l u t i o n  where  a l l  t h e  n o n b a s i c  v a r i a b l e s  w e r e  se t  t o  o n e ,  t h e  

number o f  i t e r a t i o n s  was r e d u c e d  t o  260. F o r  t h e  n o n b a s i c  v a r i -  

a b l e s  e q u a l  t o  1 0 a n d  100 ,  t h e  r e s p e c t i v e  numbers o f  i t e r a t i o n s  

w e r e  313 and  399. T h i s  may s u p p o r t  o u r  e a r l i e r  c o n j e c t u r e  i n  

S e c t i o n  4 . 3  c o n c e r n i n g  p o s s i b l e  a d v a n t a g e s  i n  s t a r t i n g  w i t h  a non- 

b a s i c  s o l u t i o n .  I n  any  c a s e ,  t h e  r e s u l t  seems p r o m i s i n g  as  t h e  

t o t a l  number o f  i t e r a t i o n s  w a s  r e d u c e d  by a  f a c t o r  o f  f o u r . t o  f i v e .  



5.3. Initial Solutions for Dynamic LP 

We already obtained a relatively encouraging result while 

using initially the constructed basis and setting the nonbasic 

variablek to a constant value. We shall now experiment further 

with some straightforward ideas.for setting initial values to the 

controls. 
Setting Controls to the Same Level at Each Period 

Typically in a DLP the same or almost the same set of control 

variables (as well as state variables) repeat from one period to 

another. Let us concentrate on those controls which are common 

to all periods. Initially, we may set these controls to the 

same level at each period and the rest of the controls-to zero. 

At least the following two approaches may be used to determine 

an initial value for the joint set of controls: (i) We adopt the 

real current levels for those controls (provided that the system 
- 

described by DLP already exists), or (ii) we solve first a one- 

period problem (perhaps with appropriate bounds for the final state 

variables) and adopt the values for the joint set of controls from 

this optimal solution. 

For two dynamic problems F and G, exactly the same set of 

controls appear at each time period. As both of the models de- 

scribe a real forest sector, the current rates for controls were 

easily available. When initially the constructed basis was used 

and all the controls were set to their current values it took 240 

iterations to solve Problem F representing a reduction by a factor 

of about 6 compared with the basic version. We should note that 

the initial solution constructed this way was not feasible: 

there were 34 infeasibilities for Problem F initially. 



The other approach (ii) for constructing initial values for 

controls was applied as well. For the first period model we re- 

quire the final state to be at least as good as the initial state; 

i.e., for each state variable for which a large value is desireable 

(e.g. wood in the forest, production capacity, etc.) the initial 

value sets a lower bound for the final value, and for other state 

variables (e.g. amount of long term external financing) the initial 

value sets an upper bound for the final value. Starting with 

the constructed basis for DLP and the controls set to the optimal 

level of the one period model resulted in 213 iterations for Prob- 

lem F, thus yielding a slight improvement over the previous ap- 

proach. Neither in this case was the initial solution for DLP 

feasible. This approach was also applied to the larger DLP 

model G. The optimal solution was found in 3050 iterations. 

Constructing a Feasible Solution - 

A relative drawback was notable in both of the previous 

attempts in try'ing to construct an initial nonbasic solution. 

As the initial solution was not feasible, it appeared that the 

relatively good initial functional value got substantially worse 

during the Phase I procedure. Thus we concluded that it would be 

desirable to construct an initial solution which is also feasible. 

Indeed, as described below, we were easily able to carry out this 

task for the two test problems F and G. Of course, the generality 

of such an approach may be doubtful. However, it is the authors' 

belief that a similar approach is applicable to most dynamic' 

linear programs. 

We shall now turn to a case of constructing a feasible starting 

solution. For Problem F, we first set the controls of all periods 
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to the optimal level of the one period model. The printout of 

this solution indicated only two types of infeasibilities: one 

state variable, cash, became negative for most time periods, 

andthe only equality type of constraint--other than the state 

equations--was violated for all except the first tjme.period, 

i.e., the corresponding artificial variable appeared at a non- 

zero level. This equality constraint defines the profit (for each 

time period). Taking into account the objective function it 

became clear that a profit as large as possible was desired for 

an optimal solution. This allowed us to replace the equality by 

an inequality, and consequently the artificial variable in the 

constructed basis was replaced by a slack variable. For bringing 

the negative cash to a feasible range we simply adjusted a control 

variable determining the level of external financing. After these 

changes, the cash was brought to a feasible range, all the new 

slacks, corresponding to the rawdefining profit were nonnegative, 

and no new infeasibilities appeared; i.e., the initial solution 

was feasible. 

Starting with this feasible (nonbasic) solution for Problem 

F, and with the advanced basis, it took 161 iterations for finding 

an optimal solution. A similar process was carried out for Prob- 

lem F to construct a feasible initial solution based on the 

current levels of controls. The resulting number of iterations 

for finding an optimal solution was 180. 

Thus, when the advanced starting basis was used together 

with a feasible initial solution, the number of iterations for 

finding an optimal solution by the reduced gradient method is 

reduced approximately by a factor of eight to nine compared with 

starting with an all logical basis and the corresponding basic 

solution. 
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