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SUMMARY

The paper describes an algorithm for solving nonlinear programming

problems of fairly general type, in particular nonconvex problems

that can be convexified via augmented Lagrangian functions. The

algorithm consists of two phases. In the first phase, a point in

a rather large neighborhood of an optimal solution is crudely but

effectively estimated by a shifted-increased penalty function algo­

rithm. In the second phase, a saddle point of an augmented

Lagrangian function and thus an optimal solution together with

corresponding Lagrange multipliers are found by a rapidly convergent

method of successive quadratic approximations. The switch between

these two phases is adaptive. According to the existing experience

in nonlinear progralnming algorithms, the proposed algorithm com­

bines the best local effectiveness of a quadratic approximation

method with the global robustness of a penalty method; due to the

convexifying properties of augmented Lagrangian functions, the al­

gorithm can solve nonconvex problems which satisfy second-order

sufficient conditions of optimality at the solution.

For the sake of a clear presentation, a short review of some basic

facts in the theory of Lagrangian functions, quadratic approxima­

tions, penalty functions and augmented Lagrangian functions is

given in the first part of the paper. Then the quadratic approxi­

mations for augmented Lagrangeans are discussed in detail, in

particular, in the case when these functions are not twice differ­

entiable which corresponds to the lack of strict c'~plementarity

at the optimal solution. The double-phase algorithm is presented

and commented upon. The proofs of convergence of the algorithm

are given.

-iii-
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1. INTRODUCTION

In the years 1970-78, a considerable effort was made to compare

various computational approaches to constrained nonlinear pro­

gramming problems and to choose the most effective and reliable

algorithms. It is now clear that a single algorithm of a general

type cannot be effective for all cases of nonlinear programming

problems. However, it is possible to look for the most reliable

and effective algorithms for certain classes of problems. The

following classes of nonlinear programming problems can be dis­

tinguished for this purpose :

A. Problems with a rather low number of variables and con­

straints (up to several hundred), with objective and constraining

functions of general but smooth type, where basic difficulties

are related to a strongly nonlinear and possibly nonconvex char­

acter of the functions. Requirements of a fairly high accuracy

of the approximation of a solution are typical for such problems.

B. Problems with a rather high number of variables and con­

straints (often several thousand), but with special structural

properties of the objective and constraining functions. There are

several types of such problems, for example, convex problems with

linear constraints; discrete-time dynamic optimization problems;

decomposable nonlinear programming problems, etc. Both low and

high accuracy requirements can be met in practical examples of

such problems.

C. Problems with special difficulties inherent to problem

formulation, for example: large problems without distinctive struc­

ture; nondifferentiable programming problems; multiobjective op­

timization problems; stochastic optimization problems, etc. Typi­

cally (but with notable exceptions) only low accuracy requirements

can be satisfied when solving such problems.

Although basic theoretical notions and some fundamental algorithms

are applicable to many of the classes and types of nonlinear pro­

gramming problems mentioned above, truly effective and reliable

algorithms must be chosen separately for each class or type. In

this paper, only the class A shall be considered.
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An extensive study of the effectiveness and reliability of many

algorithms for solving problems in the class A [23] has shown

that the most efficient are methods based on successive quadratic

approximations to the Lagrange function and by using a subroutine

of quadratic programming. Given a fairly good initital guess as

to the solution and provided the problem is locally convex, quad­

ratic approximation methods are much faster than any other methods,

including various multiplier techniques, penalty and proximal

point techniques of many types, gradient projection methods, etc.

This practical observation has been independently confirmed by

private communications from many other sources. Theoretically,

the convergence of a successive quadratic approximation method to

a saddle-point of the Lagrangian function can be estimated as

superlinear or quadratic, depending on the appropriate assumptions

[9,22]. However, the same can be proved under various assumptions

for most of the other methods of nonlinear programming. It was

shown in [26,2~ that many penalty techniques, multiplier techniques,

some gradient projection techniques, etc., are in fact special cases

of a general quasi-Newton algorithm for finding a saddle-point of

an augmented Lagrangian function and, as such, also possess super-
\

linear or quadratic convergence. Therefore, the higher efficiency

of a quadratic approximation method is just an empirical observ­

ation, not a theoretical result.

But a quadratic approximation method is not very robust and re­

liable. It may fail to find a solution if the ini~ial guess to &

complicated problem is poor, or if the Lagrangian function is

locally nonconvex [23]. These disadvantages will be removed in

the algorithm proposed in this paper by using an augmented Lagrang­

ian function instead of the normal one and by adapting another

fairly robust algorithm for finding a solution to an initial ap­

proximation.

Double-phase algorithms, consisting of an initial robust phase and

a final fast convergent phase, have already been proposed - e.g.,

in [15]; but it is not quite evident what type of an algorithm

should be used for the first phase. For nonconvex problems with

the possibility of many local solutions, the use of a stochastic
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algorithm is strongly recommended, e.g. in [4]. However, there

is too little empirical data on the comparison of stochastic and

deterministic algorithms. On the other hand, the results of the

study [23] show that one of the most robust and fairly efficient

requirements for low accuracy is a shifted-increased external

penalty algorithm. Such an algorithm, originally proposed in [17]

for equality constraints and further developed in [24] for in­

equality constraints is actually one of the first and simplest of

a large family of augmented Lagrange multiplier techniques - see

[2,3]. Therefore, the choice of the algorithm for the first phase

is based not only on empirical results, but also on a common theo­

retical denominator: an augmented Lagrangian function.

2 • PRELHiINARIES

2.1. Elements: normal Lagrangian function.

Consider the following problem:

( 1) minimize
xEX

o

nf(x) ; X = {xERo

where f : Rn
-+- R1 and g : Rn

-+ Rm are assumed to be twice continuously

differentiable but not necessarily convex. Additional constraints

of the type x. < x < x and equality constraints can also bemln - max
easily incorporated into the problem (1), but are omitted here for

the sake of clear presentation.

The (normal) Lagrangian function for the problem (1) is:

(2) L(y,x) =f(x) +<y,g(x) > = f (x) + Ly. g. (x)
1 1

iEI

where I = {1 , ... m}, < . , .> denotes the scalar product and y E R~ is a

vector of Lagrangian multipliers. The problem (1) is called normal

(or regular) if a regularity condition is satisfied - for example

in the form of the Slater postulate: let there exist a point x
1

ERn

such that g i (x 1)< 0, i E I. If the problem is normal and the func­

tions f and g are convex, then the necessary and sufficient condition
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for optimality of a solution x is that there exists a vector of

Lagrangian multipliers yER~ such that L(y,x) has at (y,x) its

global saddle-point:

(3) L(y,5{) L (y, x)

Observe that the saddle-point is constrained to positive multi­

pliers y > O. The relation

min max L(y,x) =L(y,x) =f(x)

xERn yER~

can be guaranteed for convex problems only. The difference

min max

ERn ERm
x y +

L(y,x) - min max

yER~ xERn
L(y,X)':' 0

is called the duality gap for the nonconvex problem.

Corresponding to the Slater postulate for convex problems are

other regularity conditions for differentiable problems, e.g. the

Fiacco-McCormick full rank postulate: let the gradient vectors

g. (x) be linearly independent for all i such that g. (x) = O. The
~x ~

necessary conditions for optimality of a solution x in a differ-

entiable problem are that there exists a Lag£ange multiplier vec­

tor y such that:

and

(4 )
-n

Lx (y,5{) = f (x) + yg (x)= f (x)+ I y"g. (x)=oER
x x x iEI.i. lX

(5) g (x) 2- 0 E R
m

; <y, g (x) > = 0 y > 0 E Rl11.

where gradient vectors are represented as row-vectors, g (x) isx
the Jacobian matrix of g at x. The triple condition (5) is called

Kuhn-Tucker condition. This condition can also be derived for

convex problems from the saddle-point condition (3). If the full

rank posultate holds at x, then the Lagrange multiplier vector y
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not only exists, but is also uniquely determined by (4,5) - see,

e.g., [5].

2.2. Second order sufficient and necessary conditions for

Optimality.

The following three sets of indexes play an important role in

the further analysis:

(6 ) SA = SA (y, x) = {i E I g. (j{) = 0, <). > O}
~ ~

'"
WA=WA(<),x) = {i E I g. (x) = 0, <). = O}

~ ~

IN = IN(y,x) = {i E I gi (x) < 0, <). = O}
~

The set IN (at the optimal point) is called the set of inactive
'"

constraints. The set SA, with the number of elements ro, is the
A

set of strongly active constraints, and the set WA, with the number

of elements ro, is the set of weakly active ones. The weakly active

constraints are of a peculiar type: they, are active, but can be re­

moved (for normal problems) without influencing the solution. Worse,

if the weakly active constraints are perturbed, that is, changed to

the form g. (x) < O. where O. is a small number, then they become
~ - ~ ~

either strongly active or inactive depending on the sign of 0 ..
1

The triple condition (5) is also called a complementarity re-
'"

lation. If WA = ¢, that is there are no weakly active constraints,

then it is said that strict complementarity holds.

The conditions (4), (5) are only necessary for optimality. To

become sufficient, they must be supplemented by a second-order con­

dition. Denote by:

f (x) + \'xx L <)igixx(x) = fxx(x) + L",
iESA

the Hessian matrix of the Lagrangian function. Denote by

= (g. (x)) 'E:'A
lX 1::>

the Jacobian matrix for strongly active constraints. Then the second-
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order sufficient condition for optimality of x is the existance of

y satisfying (4), (5), and such that:

(9 ) <x,L (y,~) x> > 0
xx

for all x of 0 such that

g (x) x = 0 E R
m

x

In other words, the Hessian matrix L (y,~) should be positive
xx -

definite in the subspace T = {x ERn : g (~) x= 0 E RID} of directionsx
tangent to strongly active constraints. This is sufficient for the

minimum of L (y,.) in the linear manifold x + T and for the local op­

timality of x - see, e.g. [12]. But L(y,·) need not have a minimum
-in directions orthogonal to T, that is, spanned by the vectors

g. (x) for i E SA. On the other hand, it is possible to construct
lX

a matrix g*(~)g (x), where a star denotes transposition, which isx x
positive definite in directions orthogonal to T and nilpotent for

xE T. Therefore, (see, e. g. [10]) there exists a number <5 > 0 sucho
that, for all <5 > <5 , the sufficient condition (9) can be equivalent­

- 0
ly written in the form:

(10) <x, (Lxx(y,x) + <5g* (x)g (x)) x> > 0 for all xof o.- x x

It is clear that if the positive definiteness of a matrix is

sufficient for optimality, the positive semi-definiteness of this

matrix should be necessary. But if there are some weakly active

constraints, WA of <p, then the Hessian matrix L (y, x) need not be
xx

necessarily positive semi-definite in the entire subspace T; it

must be positive semi- definite only in a smaller subspace T = T (IT
of directions tangent to all active constraints, where

-- - n - ,,- m - n - '"T = {x E R : g (x) x = 0 E R } = x E R ; g. (x) x = 0 for all i E WAx lX

The second-order necessary conditions for optimality are thus
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weaker than the sufficient ones and require, besides (4), (5), that

( 11) < x , L (9 , x) x> > 0xx -

for all x such that

where g (x) is thex
(see, e.g., [12]).

exists a 0 > 0 such

Jacobian matrix for weakly active constraints

An equivalent statement to (11) is that there

that

- nfor all x ER

The conditions (10), (12) have a straightforward interpretation in

terms of the discontinuous second derivatives of an augmented

Lagrangian function - see section 3.

2.3. Quadratic approximation methods.

Let the normal Lagrangian function be strongly convex, that is,

let

< X, L (y, x) x> > 0 for all x :j: 0 and all y and xxx

at least in a neighbourhood of (y~x). Consider the second-order

approximation of the Lagrangian function at a point (y+y,x+x):

(13) L(y+y,x+x) ~ L + L x + L Y + ~< x, LX> + < Y, Lx> =x Y xx yx

= f + f x + ~< x, Lx> + < Y+Y , g+g X >x xx x

where, to simplify the notation, all values of functions L,f,g and

their derivatives are supposed to be evaluated at (y,x). Since this
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is a convex function of x and a linear one of y, it is possible to
A A

determine a saddle-point (y,x) of this function in order to approxi-
A AA _

mate X by x + x and y by Y + y. But a saddle-point is both necessary

and sufficient for the optimality in an equivalent constrained op­

timization problem. By inspection of (13), th~ equivalent problem

is the following quadratic programming problem:

- n= {xER

(14) minimize
xEX

g

x
g

(f+f i+~<x,L x»x xx

g + g x < 0 ERm}
x

here f is a given constant and g a given vector in Rm. The vector

of Lagrangian multipliers associated wi th the problem is actually

y+y, not y alone. Suppose f,g,L and their derivatives are eval­

uated at (yk,xk ), where the upper index k denotes an iteration
~k k ~k

number and suppose the problem (14) is solved t,o obtain x , y +y •

Then the following iteration:

(15)
k+1 k ~k k+1 k ~k

x =x +x ; y =y +y

converges (quadratically, if second-order derivatives f ,g. arexx ~xx

Lipschitz-continuous - see. e.g., [22]) to (y,x). Otherwise, pro-
. k+1 k k~k k+1 k k~k .

port~onally smaller changes x = x + T X , Y = Y + T Y w~ th

suitably chosen T
k provide for the convergence of the method.

The main drawback of the scheme outlined above is the necessity

of programming the second-order derivatives contained in the matrix

Lxx' although computing these derivatives and inverting the matrix

L , inherent in many quadratic programming algorithms, are lesserxx
drawbacks when taking into account the capabilities of modern com-

puters and comparing the necessary programming effort. Therefore,

it is better to approximate the matrix L or its inverse; usually
xx

variable metric methods are adapted for this purpose. Variable

metric Hk ::::: L or vk ::::: L-1 is constructed with the help of dataxx xx
i i k i i+1 iii i+1 i i{dL , dx }. 1 where dx = x -x and dL = L (y , x ) - L (y , x )x ~= x x x

are finite differences of the independent variable and of the

corresponding gradients, which are supposed to fulfill approximately

dLi =L dxi . Clearly, an approximation of L requires at least
x xx . xx k

n linearly independent steps dX~, but variable metrics H or vk are
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updated iteratively after each step. Various algorithms exist

for updating the approximations. Many of them require a special

selection of the steps dx i as minimizing steps in conjugate di-
krectionsi many of them do not guarantee the convergence of H to

L (y,x). Since the special selection of steps dx i cannot bexx
guaranteed in a successive quadratic approximation method and the

convergence of Hk is useful in providing a fast convergence of the

method, it is better to use a variable metric scheme without these

drawbacks - as, for example, a modified rank-one variable metric

[11] .

When using a variable metric Hk instead of L , the approxim­xx
ative quadratic programming problem becomes:

It can be proved [9,22] that the convergence of the resulting se­

quence {yk,xk } (with yk+1,xk +1 defined as in (15)) to (y,x)is lin-

ear when II (H
k - Lk ) ~k II < (dk with sufficiently small E: and d k =xx -

II (Lk , <yk, gk >, gk ) II, where gk = max (0, g. (xk )) , dk being a norm
x + + ~ k k

of the violation of the necessary conditions (4,5) at (y ,x ).

Since it can also be proved that II~kll:::' ex. d k with some ex. > 0, it is

sufficient for the linear convergence of the method that

IIHk
- L~xl\ < (1 with E:l=~ being sufficiently smc..llj but the condition

'. (Hk L k ) ~ k II d k . . f' d . . d ' f . bII - X < E: ~s sat~s ~e Dy a w~ er cJ..ass 0 var~a Ie met-xx -
ric approximations Hk of Lk than only slightly stronger condition

k k xx
II H - L II < (1' The convergence of the method is superlinear when

xx -

II ( k . k -k ,. k dk. k. .
H - L ) X II < ( w~ th E: converg~ng to zero and quadrat~c atxx -

k k-n
each n-th iteration if E: converges to zero as fast as d . Observe

that quadratic convergence, which would be implied if (k would con-

verge to zero as fast as dk , is impossible if H
k

is estimated with

the help of data from earlier iterations, starting at least at

(k-n)th iteration.
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The convergence results have been obtained in [9] under the

assumption of strict complementarity, by a standard reasoning

based on an inverse function theorem. The convexity assumption

that Lk and Hk are positive definite was omitted in [9] by show-xx
ing that the necessary condition of optimality of (y,x) for the

problem (16) have a solution close to zero if Hk is close to Lk ,
k . ~

(y ,xK
) close to (y,~) and the second-order sufficient condition

(9) is satisfied at (y,x). But finding the least-norm solution of

the necessary conditions of optimality for the problem (16) in­

stead of a solution to the problem itself implies some way of con­

vexifying the problem, which was not specified in [9]. The as­

sumption of strict complementarity was relaxed in [22] by omitting

the use of an inverse function theorem; however, the convergence

results in [2] are obtained under local convexity assumptions.

One of the goals of this paper is to show how to obtain similar

convergence results with neither strict complementarity nor con­

vexity assumptions, by using convexification through an augmented

Lagrangian function.

The convergence properties of a successive quadratic approxi­

mation method of the type (16) can be summarized as follows: the

better Hk approximates L , the faster the convergence of thexx
method. Therefore, the initial phase algorithm must be constructed

to provide not only for a starting point (yO,xo ) sufficiently close

to (y,x) such that the successive quadratic approximation method

works, but also for a starting estimate HO of L such that thexx
method works fast.

2.4. Shifted penalty function

If the set of admissible solutions X for the original prob-
o

lem (1) has a possibly empty interior, for example, if some equal-

ity constraints are admitted, then only external penalty functions

can be used [5]. External penalty functions express additional

payments for violating constraints; the objective function f, when

supplemented by such penalty terms, usually has minimal points out­

side of the set Xo ' In order to bring these points close to the

set X , two general methods can be used. One of them is just too
increase penalties via appropriate penalty coefficients. The other

is to start paying penalties before the constraints are actually



- 11 -

violated, that is, to consider a perturbed problem:

(17) minimize f(x)
xEX

w

x = {x ERn
-w

mg(x)<-wER}

where w > °E RID is a perturbation parameter, called penalty shift.

The external semi-quadratic penalty function associated with the

problem (17) is called shifted penalty function.

2
(18) '¥ (w , P, x) == f (x) + ~ p II (g{ x) +w) + II =

= f(x) +l'2P L (max(O,g. (x)+w.))2
iEI 1 1

where (g(x)+w)+ is the positive part of the vector g(x)+w and is

composed of the elements (g. (x) +w. ) + = max (0, g. (x) +w. ) ; P > ° is a
1 1 1 1

penalty coefficient. A positive definite matrix R of penalty co-

efficients could also be used to define a penalty term

~ < (g (x) +w) + ' R (g (x) +w) + > , but the best that can be said about

the matrix R is that it should scale down constraining functions

gi(x) to a common range of values (or derivatives) - see, e.g. [12].

The question of an advantageous scaling of nonlinear programming

problems is more general and has extreme pratical importance but

it will not be analysed in this paper. If the problem is reason­

ably scaled, a single penalty coefficient P is sufficient.

Increased penalty methods are obtained by assuming w =° and
kook

miniraizing '¥(O,p,x) for a sequence {p }o ' P +00 Rather weak

assumptions suffice for convergence of such a method. If a set

X ap = {x ERn: f (x) ~ a , g (x) < p} is bounded (hence compact for con­

tinuous f, g) for some a E R1 , e. g. a = f (x), and for some pERm,

p. > 0, and if the function f is bounded from below, then the func-
1 k

tion '¥(O,p ,x) has minimal points to x in the set X for suffi-

ciently large pk when pk + 00, the corresponding m~~imal points
"k
x p form a bounded sequence with accumulation points at the solu-

tions of the original problem (1) - see [5], [12], [21]. If the

solution x of the problem (1) is unique, the sequence {xk}oo con-
p 0

verges to this solution. If the solution x is only locally isol-

ated - e.g., if the second-order sufficient conditions for op­

timality (9) are satisfied at x - then the increased penalty method
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can be forced to converge to this solution by choosing appropriate

local minima of '¥ (0, pk ,x), see [5].

But the main disadvantage of the increased penalty method is

tnat it becomes ill-conditioned as pk increases. Consider the
'k

Hessian matrix for the function '¥(O,p ,x):

k k
(19) '¥ (O,p ,S{ )

xx
= f (xk ) + (S{k) k ( (S{k)) + k-* ( k) ~ (S{k) =xx 9 xx p P 9 p + P 9 x x p 9 x 0

= L (k ( (S{k)) xk ) + k-* (xk ) - (xk )xx p 9 p + 'p P 9 x p 9 x p

spreads widely, thus making t~e ~roblffin of

ill-conditioned and difficul t for numerical

k k)spectrum of '¥ (O,p ,S{xx p

minimizing '¥(O,pk,x)

computations - see, e.g.

where g (xk ) is the Jacobian matrix composed of g. (xk)such that
k x p k lX P

g. (S{) >0 (if some g. (x) =0, then the second derivative (19) is
1 p 1 P

discontinuous at xk ). For sufficiently large pk, the first term

L (pk(g(S{k))+,xk)PiS close to L (9,x); but the second termxx p p xx
k-*(.-.k)- ("k) . . h k d hp 9 x 9 X lncreases Wlt p an t e

x p x p

[12] •

To overcome this difficulty, penalty shifts W can be used.

Basic properties of the shifted penalty function (18) are summarized

by a generalization of Everett's theorem - see, e.g. [25]; if the

function (18) has an unconstrained minimum point x pw ' then this

point is actually a solution to the following perturbed constrained

problem:

(20) minimize f(x)
xE X

P

X = {x ERn
p

and determines an associated vector of Lagrangian multipliers y .pw

(21) '¥ (w,p,x ) = f,,(x ) + p(g(x )+w)+ g (x ) = ° ~
X pw X pw pw x pw

~ 9pw = p (g (x ) + w) +pw
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If a vector w such that p = 0 is chosen, then

(22)

Therefore, the problem of finding an adequate penalty shift ~ is

equivalent to the fundamental problem of finding Lagrangian multi­

pliers 9 : p~. But away from the optimal solution, penalty shifts

have a slightly different meaning than Lagrangian multipliers: they

represent perturbations of the original problem, not the sensitiv­

ities of the original problem to perturbations. They also have

slightly different properties: they are not necessarily constrain­

ed to be positive, only at the optimal point they turn out to be

positive as a result of the relation (22). These different inter­

pretations and properties make it possible to use special algor­

ithms for finding optimal ~, see, e.g. [1], [2]. One of the oldest

[17], [24] but very robust and effective methods of finding a crude

approximation to (9,i) is the following shifted-increased penalty

function algorithm.

Specify EO > 0, the admissible violation of constraints for

the first (large) iteration and Emine (O;EO), the admissible vio­

lation of constraints at the end. Specify y e (0; 1), the desired

rate of convergence of violations of constraints in subsequent

(large) iterations, and K > 1, the rate of increase of the pen-

alty coefficient p in case the desired rate of convergence is not

attained. Specify pO>O, wO=O. Set k=O and

(23a) minimize ~(wk, k,x) to obtain xke Arg min ~(wk,pk,x)

x e Rn x eRn

k k k k k(23b) compute p = (g(x )+w )+ - w lip II

. II k II k k+ 1 k k k+1 k k+ 1 k(23c) 1f p .2E, set w = (g(x )+w )+ ,p = P ,E =y lip II,

. II k ll min(23d) 1f P .2 E ,stop. Otherwise set k: = k+1, go to (23a).

The first step (23a) calls for an iterative procedure of uncon­

strained minimization. Therefore, the algorithm is double-iterative
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and the iterations kare called large iterations. Usually, the

first step is not accurate, but this does not disturb the con­

vergence - see, e.g. [3]. If the first step approximates a global

minimum of ~(wk,pk, . )., then the algorithm proceeds to approximate

a global solution of the original problem; otherwise local minima

are approximated. The second step (23b) determines the current

violation of constraints. If it decreases fast enough, as in step

(23c), then the penalty shift is changed (by a direct iteration

solving the equation (22)), the penalty coefficient is kept con­

stant and a better accuracy of the next iteration is required. If

the violation of constraints does not decrease as required (step

(23d)), then the penalty coefficient is K-times increased; to keep

constant the approximate value of Lagrangian multipliers, the

penalty shift is K-times decreased. The required accuracy is not

changed, in order to attain it in the next iteration.

It is easily seen that the algorithm (23) converges for the

wide class of problems, for which the classical increased penalty

method works. For a smaller class of problems (such that the

Lagrangian multipliers y depend Lipschitz-continuously on the

perturbation peramaters p) the algorithm (23) converges without

increasing the penalty coefficient p, if it was large enough at

the beginning - see, e.g. [24], [25].

In practical applications, the algorithm (23) is very robust,

it is rather difficult to find practical examples of problems for

which this algorithm does not work, as long as the required accuracy

is not too high. Usually, a few (two to five) large iterations

provide for a reasonable estimate of the optimal x,y = pw. More­

over, if a variable metric method is used for the unconstrained

minimization, an estimation of the Hessian matrix L (yA,X) can be. xx
obtained. In fact, if there are no weakly active constraints at

the optimal solution, then

(23 ) *~ (w,p,x) = L (y,x) + pg (x)g (x)xx xx x x

where gx(x) is composed of gradients gix(x) of strongly active con­

straints, i E SA (y, x). If there are some weakly active constr·aints
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then '¥ (w, p, .) is discontinuous at x. Hence, when using a
xx

variable metrix method, it is better to estimate Lxx(y,x) sepa-
. *rately and augment lt by terms pg. (x)g. (x) for (all) currentlylX lX

active constraints. The only difficulty in such an approach is

that L (9,x) might not be positive definite for nonconvex prob­xx
lems, even though the second-order sufficient condition for opti-

mality (10) implies that'¥ (w,p,x) is positive definite for allxx
(w,x) close to (w,x) - also if it is discontinuous, since due to

weakly active constraints only nonnegative terms can be added to

'¥xx ' compare (12). Therefore, special varaible metric approxi­

mations must be used for estimating Lxx(y,X) in the nonconvex

case.

2.5. Augmented Lagrangian functions

The similarity of the shifted penalty function to the

Lagrangian function suggests the questions: is 'i'(w,p,x) a kind

of Lagrangian function or not? In fact, it has only to be slight­

ly modified to obtain the following augmented Lagrangian function:

(25) A(y,p,x) ='i'(X-,p,x) - plll.1I 2 = f(x) +J:gll(pg(x)+y) 112_!2I1yI12 =
p p 2 +

= f(x) +~g L
iEI

2((max(O,pg. (x)+y.))
1 1

where the variable y can be interpreted as well as a vector of

Lagrange multipliers as, when subdivided by p, a penalty shift

w = l.
P

If only equality constraints were considered, g(x) = 0, then

the operations (.~ and max (0,·) would have to be omitted in the

definition (25) and the augmented Lagrangian function would be more

easily interpreted as the normal Lagrangian function plus a quad­

ratic penalty term

(26) A(y,p,x) = f (x) + I
iEI

y . g. (x) + ~p. I
1 1

iEI

2(g.(x)) =
1

- L(y,x) + ~pllg(x)1I 2, for constraints of the type

g(x) = ° only.
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In this form the augmented Lagrangian function was introduced origi­

nally by Hestenes [10]. However, in the more general case of in­

equality constraints A(y,p,x) * L(y,x) + ~p U(g(x»+U
2

and the

more complicated expression (25) is needed; this has been intro­

duced by many authors - see, e.g., [7], [13], [19] ,[25]. The reason

for the more complicated definition (25) is that only in this form

does the Lagrangian function possess all strong properties of the

normal Lagrangian function - and a few more. First, it is easily

proved [19] that for p > 0 :

(27) min max A(y,p,x) =
x ERn y E Rm

min f (x)
xEX

o

and the original problem is expressed as the primal problem for the

augmented Lagrangian function; observe that the vector y of Lagrangian

multipliers in (27) is not constrained to be positive. Secondly, the

saddle-point relation:

(28) min max A(y,p,x) = f(~) = A(9,p,~) =
x E Rn y E Rm max min A(y,p,x)

y E Rm x ERn

is not only a sufficient condition of optimality of (9,~) for arbit­

rary problems of the type (1) and a necessary condition of optimal­

ity for normal convex problems, but also, as proved by Rockafellar

[19], a necessary condition of optimality for a large class of non­

convex problems -(characterized by the possibility of supporting th2

primal parametric function f(p) = inf f(x) by a quadratic function)
xEX

p
which include also all nonconvex problems with solutions satisfying

the second-order sufficient conditions of optimality (10). Hence

the duality gap is closed for a large class of nonconvex problems

when using the augmented Lagrangian function; moreover, the duality

relation (28) imposes no sign constraints on the dual variables y.

The positive sign of these variables results from the first-order

necessary conditions for the saddle-point: ~
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which are fully equivalent to the first-order necessary conditions

of optimality (4) ,(5). The fact that the complementarity condition

(5) of-Kuhn-Tucker type is actually equivalent to equation (30), al­

though rather elementary, was not perceived in the theory of non­

linear programming [14], [20] ,[24] for a long time.

If the functions f,g, are twice differentiable, then the aug­

mented.Lagrange function is twice differentiable in x and y if,

and only if, there is no component (pg.(x)+y.) equal to zero. If
l. l.

the relation (30) is satisfied, then this is equivalent to the

requirement that there are no weakly active constraints at (9,~),

since then either gi (~) < 0 or 9i > O. More generally, it is con­

venient to define currently strongly active, weakly active and in­

active constraints by:

( 3 1 ) SA (y , x) = {i E I

WA (y , x) = {i E I

IN(y,x) = {i EI : pg. (x) + y. < O}
l. l.

This definition is consistent with (6) although it implies that a

constraint might be made currently inactive by assuming a suffic­

iently ne'gative value of y., even if g. (x) > o. Bu the positive-
l. l.

ness of y. is guaranteed in most computational algorithms and this
l.

definition does not induce any difficulties.

If WA(y,x) = ¢, then the augmented Lagrange function (25) is

twice differentiable and its second-order derivatives have the

form:
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where 9'x (x) is composed of g ix (x) for i E SA (y, x) ,

( 32b) -*!I. (y,p,x) = (g (x) ,0)xy x

where the 0 matrix is related to inactive constraints, i E IN (y ,x) ,

and

(32c) !l.yy(y,p,x) = [0 0lJ
o diag (--)

p

where 0 is related to active constraints, iESA(y,x), and to all

off-diagonal elements.

Observe that the augmented Lagrangian function !I.(y,p,x) is

always concave in y - linear for active constraints and quadratic

with a negative definite Hessian matrix for inactive constraints.

This observation can be proved more generally [19], [20] and does

not depend on the assumption WA(y,x) = ~. Therefore, for the ex­

istence of a saddle-point at a pair (y,~) satisfying (29, (30), it

is sufficient that !I.(y,p,.) has a minimum at x; and if (y,~) is a

saddle-point, then x is an optimal solution of the original problem

( 1 ) •

This provides for a rather straightforward interpretation of

the second-order sufficient (10) and necessary (12) conditions of

optimality in terms -of the augmented Lagrange function. Observe

that these conditions are actually related to various approxima­

tions of the Hessian matrix !I. (y,p,x) at (y,x). Even if there
xx '"

are some weakly active constraints, WA * ~, and Axx cannot be de-

fined at (y,x), there are points x arbitrarily close to ~ such

that WA(9,x) = ~ and !l.xx can be defined at (y,x). If (10) is

satisfied, then !l.xx is positive definite at (9,x) such that all

weakly active constraints become inactive. If a weakly active
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constraint becomes strongly active for some x close to X, then

A is only increased by a positive semidefinite matrix
xx

pg ~ (x) g. (x). Hence, (10) implies that all approximations of
lX lX

A close to (y,x) are positive definite which is sufficient forxx . _
a minimum of A(y,p, ) at x and thus for the optimality of X, if

(29), (30) are satisfied. Conversely, the necessary conditions

(12) are also necessary for a saddle-point of the augmented Lagrange

function: for, if (12) were violated, then a second-order approxi­

mation of A(~,p,x) -A(9,p,x) would be negative at a point

(y,x) such that all weakly active constraints become strongly active

and A(9,p,·) could not have a minimum at Xi see [~9).

If viZ\. = ¢ and

~xx
(33) M = IA

LYx

( 10)

~xyJ
yy

is satisfied, then the matrix

(y,p,x)

is invertible for (y,x) in some neighborhood of (9,x).. Hence it is

possible to solve the necessary conditions (29), (30) by a Newton­

like method or even by a quasi-Newton method, that is, with second­

order derivatives only approximated, not computed. It was shown

in [26), [27] that a sufficiently general quasi-Newton method for

solving (29), (30) includes all fundamental classes of constrained

nonlinear programming algorithms, such as gradient projection metn­

ods, multiplier methods, penalty methods and also quadratic approxi­

mation methods.

3. QUADRATIC APPROXIMATIONS OF AUGMENTED LAGRANGIAN FUNCTIONS

If it were known a priori which constraints are active at the

optimal solution, then the nonlinear programming problem (1) would

be fairly easy - since it would be equivalent to a problem with a

smaller number of equality constraints. However, the lack of such

a priori knowledge constitutes one of the main difficulties of the

problem (1). Therefore, each practical algorithm for solving (1)

has first to include a procedure for determining probably active

constraints and then to account for activity changes. Moreover,
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some practical algorithms are constructed under the assumption

that there are no weakly active constraints at (9,~) and thus

no activity changes occur in a neighborhood of (9,~). Such an

assumption is not entirely unjustified, since problems with weak­

ly active constraints are not very probable in practice. Still,

it is better to have an algorithm which works without this assump~

tionj and, by using quadratic approximations to the augmented

Lagrangean function, such an algorithm can be constructed. But

for the sake of a clear presentation, it is better first to in­

vestigate the implications of the assumption WA(9,x) = ~, then to

relax this assumption and only then to discuss a method for de­

termining probably active constraints.

3.1. Quadratic approximation in the smooth case

Suppose there are no weakly active constraints at the optimal
"-

solution (9,~) of the problem (1), WA =~. Then there exists a

neighborhood U(9,~) such that the augmented Lagrangean function

(25) can be written for all (y,x) E U(9,~) as:

(34) A(y,p,x) = f (x) +

since y i can be assumed identically equal zero for i E IN. Suppose

(y+y,x+x) EU(1,~) and consider the following approximation:

(35) A(y+y,p,x+x) ~ A+A x + A Y+ ~ <x,l\ x> +< Y,A x >x y xx yx

"
where y i are also assumed to be zero for i E IN ; therefore, it

is possible to consider only the active parts g and y of g and y.

Since A = f + <y,g > + ~ p IIg1l 2 , A x = f x +<y,g x> + <pg,g x>,x x x x

A Y = <g, Y> and < y , A x> = < Y,g x> where all functions andy yx x
derivatives are evaluated at (y,x),one has:

+ <y+y,g+g x >
x
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But this, with the exception of a constant term, is the normal

Lagrangian function for the problem:

(37) minimize
xEX

g

(fx x + < pg, g x> + ~ <x, A x> )
x xx

If the second-order sufficient condition for optimality (10) is

satisfied, thenAxx is positive definite and the saddle-point of

(36) is equivalent to the optimal solution of (37).

The necessary (and sufficient, since A is positive definite)
A A A xx

conditions for x,y = y + Y being the optimal solution of (37) are:

(38a)
A

f + (pg+y) gx + x A = 0x xx

(38b)
A

g+g X < 0
x

A A

<'1,g+g x> = 0x

=or solving the nec­

If A is positivexx
equations (39a,b) have

A

Suppose now that ('1,x+x) EU(9,x) where the activity of con-

straints does not change (this assumption will be relaxed below,

hence there is no need here to examine the precise conditions

under which this is valid). Since then y. > 0 for all i ESA(9,x},
A ~

one has g + g x = 0 and (38a,b) (recall that gradients A ,A are
x * * x y

represented as rOW vectors and thus Ax,Ay are column vectors) can

be reformulated to:

* ~ ~

(39a) A + A x + Ayx y = 0x xx

* ~

(39b) A + Ayx x = 0y

Now, (39a,b) is a Newton-like approximation

essary conditions of optimality (29), (30) .

definite and Ayx is of full rank, then the

a unique solution:
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* -1 *)~
(A A- 1 A )-1(A-A(40a) y = A A

yx xx xy y yx xx x

~ A- 1 ((A (A A- 1A )-1 A A- 1 * (A A- 1A )":1 A*)(40b) x = - I)A -A
xx xy yx xx xy yx xx x xy yx xx xy y

Since the resulting y, x are linear in Ay ' Ax' they are clearly bound­

ed by the norm of A ,A : there exists a constant al>O such thaty x _

II (y,x) II < a,1I (A ,Ax) II, where any norm in R
m+n can be used. The

- y --1

:o:~;:n~x~1 ~orrespondS to the norm of the matrix M ,where

Similar estimation can be obtained for the distance of a

pair (y,x) from the optimal pair (y,x) for the original problem.

In fact, the following elementary lemma holds.

Lemma 1. Suppose x is an optimal solution of the problem

( 1) and g is a corresponding vector of Lagrangian mu ltip Hers

satisfying (4)~(5). Suppose the fulZ rank posulate holds at x~

g. (x) be linearly independent for all i such that g. (x) = 0
~x ~

and there are no weakly active constraints~ y. > 0 for these i
A ~

(in different notation~ WA = ¢ ). Suppose the second-order suf-

ficient conditions for optimality (9) are satisfied at (g~x) and

for a sufficiently large p >O~ an augmented Lagrangian function

A(y~p~x) (25) is formulated for the problem. Then there exists

a neighborhood V(g~x) and a constant cS > 0 such that

(41)

Proof: Consider Ax,Ay to be given vectors. Then the equat-

ions:

define (y,x) implicitly as a function of A ,A . In fact, these
y x

equations have the solution (y,x) at (Ay,A x ) = (0,0) since (4),

(5) are equivalent to (29, (30). Moreover, the right-hand sides

have jointly an invertible operator of Frechet derivatives; the
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inversion of this operator corresponds to the solution of (39a,b)

with the sign A ,A changed, where A is positive definite duey . x xx
to (9), (10) and Ayx has full rank due to the full-rank postulate.

Hence, the implicit function theorem can be applied: the pair (y,x)

is a Frechet-differentiable function of (Ay,Ax )' hence also locally

Lipschitz-continuous, which proves (41).

3.2. Quadratic approximations in non-smooth case

If there are some weakly active constraints at the opti~al

"solution, WA * ~, then the second-order derivatives of the aug-

mented Lagrangian function are discontinuous at (y,x) - in any

neighborhood of (y,x) at those points (y,x) which satisfy
"pg. (x) + y. = 0 for i E WA. But, in the neighborhood of (:9, x) ,

1 1

there are disjoint open sets in which the second-order derivatives

A (y,p,x) and A (y,p,x), not counting trivial Ayy(y,p,x), arexx yx
defined and continuous. In fact, let ~ be any (possibly empty)

"subset of WA and define:

(42a)

(42b)

(42c)

r = {(y , x) E R~+n
~ .

ra = {(y,x) E Rm+n

m+nr
H

= {(y,x) E R

pgi(x) +y. > 0 for all i E ~ ,
1

pg. (x) + y. < 0 for all i E WA \ ~ }
1 1

pgi (x) +y. < 0 for all i E WA}
1

pgi(X) + y. > 0 for all i EWA}
1

Thus, r0 corresponds to ~ = ~ and rM to ~ = WA. If the full

rank postulate is fulfilled and g. (x) are linearly independent
" lX

for i EWA, then it is easy to show that each of the sets rO,rM,r~,

for all ~, is nonempty and contains points arbitrarily close

to (y,x). In each of these sets, A(y, p ,x) is twice differentiable,

provided no other constraints change their activity. Therefore,
"define a neighborhood U(y,x) such that IN(y,x) = IN and SA(y,x)

"= SA for all (y,x) EU(y,x) and observe that:
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= f(x) + -2
1

P ~ (pg; (X)+Yi)2 +
i~SA ...

+ ~p LA
L. i EWA

2(max(O,pg. (x)+y.»
~ ~

for all (y,x) EU(y,x), and

~(44a) lI.(y,p,x)= 11. (y,p,x)

2
(y. )

~

for all (y,x)E U(:y,~)ur~,

° 1 ')' 2( 4 4b) 11. (y , p , x) = 11. ( y , p , x) = f (x) + -2 J.-J A ( Pg; (x) +y; ) _
PiE SA ... ...

1 L:
2p i E I

for all (y,x) E U(y,x)U r
O

'

2(y. )
~

(44c) lI.(y,p,x) = II.
M

(y,p,x) = f(x) + i
p

LA ,,(pgi (X)+Yi)2
i E SAUWA

-2
1

L(y;)2
i EI ...

for all (y,x) E U(y,x) Uf
M

Each of the functions II.
n

,II.
0

,II.M is twice differentiable. More­

over, the following inequalities hold for (y, x) E U (y ,x) :

(4 5a)

(45b)

° M11. (y,P,x) 211.(y,P,x) 211. (y,P,x)

° n M11. (y,P,x) 211. (y,p,x) .2. 11. (y,p,x)



- 25 -

If the second-order sufficient condition for optimality (10)

is satisfied, then the function ~O is locally strictly convex in

x at (y,x), has a minimum in x at x for y=y, and a saddle-point

at (y,x). Because of the relations (45a,b,c), the functions

~,~~,~M must also have a minimum in x at x for y=y and thus a

saddle-point at (y,x). This way, a family of differentiable

approximations to ~(y,p,x) has been constructed, with the lower

approximation ~O(y,p,x) and the upper approximation ~M(y,p,x)

The properties of this family imply the following lemma:

Lemma 2. The assumption that WA = ~ can be omitted ~n Lemma 1

and the conclusion of Lemma 1 still holds.

Proof. For all ~ (0 and M are included as special cases of ~

here) repeat the proof of Lemma 1 to obtain

II (y-y,x-x) II < 8~1I (~~(y,p,x) , ~~(y,p,x» II

for all (y,x) EU~(Y,x). Take U(y,x)= ~ U~(y,x) j it is a nonempty

neighborhood, since there is a finite number of sets~. Take

8= max 8~. Now suppose (y,x) E r~ n U(y,x). Then
~

II (y-y, x-x) II < 8 I"'l II (~~ (y, p x), ~~ (y, p x) II <
.. y x

< 8!l(~ (y,p,x),~ (y,p,x»11y x

~ ~since ~y(y,p,x) = ~y(y,p,x) and ~x(y,p,x) = ~x(y,p,x) in this

case. But there are points (y,x) in U(y,x) which do not belong

to any of the sets r~ j in such a case, however, these points must

belong to an intersection of the closures r~ , say (y, x) E f ~ n r~
~ ~-J I 2

At such a point, ~ (y,p,x) = ~ 1 (y,p,x) = ~ ~ (y,p,x) andy y y

~x(y,p,x) = ~~1 (y,p,x) = ~~2(y,p~) since the first derivatives of

~ are continuous and the conclusion (41) of Lemma I holds. It can

easily be checked th!t, since the gradients gix(x) are linearly

independent for i E WA, the sets r~ and the intersections of their

closures cover all neighborhoodU(y,x).
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Observe that the inequalities (45a,b,c) imply an easy estimate

of IIx-S{ II , and that the above lemma gives even more - an estimate

of II (y-9, x-S{) II .

3.3. Estimation of active and strongly active constraints

that are probably act-

ive

When solving a nonlinear programming problem - particularly

if quadratic approximations described in previous paragraphs are

applied - it is useful not only to know which constraints are act­

ive at a given point (y,x) but also to predict which constraints

will be strongly and weakly active at the solution (Y,S{).

Suppose a sequence {yk,xk } is converging to (y,x) and define
. m+n

neighborhoods U k of (9,S{) by U k = {(y,x) ER : II (11. (y,p,x) I
e: e: Y

11. (y, p, x) ) II < e: k }. According to lemmas 1,2, II (yk_9 , xk_S{) II < 0 e: k
x

for (yk,xk ) E Ue: k .

Define the index sets Ak of constraints
k kat (9,S{) as seen from (y ,x ) by:

k k y~ k
(46a) A =' {i E I g i (x ) + f > - ll

g
}

(46b) Sk = {iEI

and the index sets Sk of constraints that are probably strongly
k kactive at (y,x) as seen from (y ,x ) by :

k
Yi
p

k
Yi k k

= g. (x) (x -S{) + 0 (x -x) +
P 1

{ k}co k k k
lly are chosen sequences, Jig > 0, ng -+ 0, n

y
> 0,

Now observe that g. (xk ) +
1

+,~(y,+y~-9.) where 0(0) is a function such that
p 1 1 1

k co
where {1l }

g 0
k

11 -+ 0 •y

= 0

Hence there exists a constant s such that, for sufficiently small
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k
k Yi k k kg.(x) + - < g.(x) +~ lIy -y,x -x) II < -LJ+~oe:

1 p 1

for all i E IN (yk ,xk ) E U k,
€

-w = max (g. (x)).
i EIN 1

If, for example, the maximum norm is used in (47a), then ~ >

max(i'~i) where ~i = IIg ix (x)lIi to estimate ~ more precisely for

a given e: k , the norms II g. (x) II would be needed. But it is more
lXX

practical to assume that ~ cannot be known precise~y a priori.

Neither can Wi however, for practical purposes, it is possible

to assume an arbitrary bound, wand to count all constraints

with g. (x) > - w as not distinguishable from active constraints.
1

it can be obtained that:Similarly to

(47b)

(47a)

k
Yi

+ >
P

since gi (x) = 0 for all i E SA uWA Moreover

(48a)

ky.
1

P
<

°e:k A A k k
for all i E WA U IN and (y , x ) E U kp €

since <]. = 0 for all i E WA U IN and
1

(48b)

ky.
1

P

k kII (y -<],x -SO II
p

> T
P

A k k
for all iESA, (y ,x ) EU

Ek

where T = min <]. i again, T is not known a priori, but some ~
i ESA 1

can be assumed as a practical bound for counting a constraint to

be strongly active.

An exact estimation of the activity of constraints at (<],x),

that is, Ak = SA U WA and Sk = SA could be obtained if e:k , nk , nk
g y
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would satisfy the following inequalities:

(49b)
k

n <y

o'T gk
p

zero
kn =g

then

For arbitrary positive W,'T,~,p,O, these inequalities are satified

for sufficiently large k, if the sequences {n
k } {nk } converge to

k g Y
more slowly than the sequence {£}. For example, if

~ (£k)~ and nk = ~ (£k)~ with some positive ~,~ are chosen,g y y g y
the inequalities (49a,b) are satified if:

(SOa) £k < min ( I;~. (rl;~ + 41; <I w) ~ - cg')2\::. w
2

for small w,

2?" \ ~ 0 ) ~~

(SOb)

< for small 'T

If some small values wand 'T are arbitrarily specified, and

are assumed, then for £k <

'TO
2"
p

2
w

7g

k'2

the sets of strongly

active and active constraints at the solution are estimated at a

point (yk ,xk ) E U, up to the accuracy w in constraining function

values and the accuracy 'T in multiplier values. Since the true

values of wand 'T are finite, £k ~ 0 always results eventually in
k A A k A

A = SA UWA and S = SA

3.4. Properties of approximative quadratic programming
problems for augmented Lagrangians.

Consider the following augmented approximate quadratic pro­

gramming problem:
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x EXk

(fk X + .l
x 2

- 29 -

k- "k k - 1 k - 2<x,H x> +p LJ k (g.g. x+-2 (g· x) ))
i E S 1 1X 1X

g~+g~ X <0, iEAk }
1 1X

Here the sets sk and Ak are not necessarily defined by (46a,b) al-
k .

though such a choice is actually advantageous. The set A is a

set of (indexes of) possibly active constraints and the set Sk is

a set of constraints used for augmenting the Lagrangian function

and convexifying the quadratic programming problem (51). The val­

ues of functions and gradients g~, g.k , f k are evaluated at (yk, xk )1 1X x
and Hk is an approximation to the Hessian matrix

k k k k
Lxx = Lxx ( (pg + Y ) +' x )

Denote the sets of currently strongly and weakly active constraints

'cit(yk,xk ) defined by (31), by SAk = SA(yk,xk ), WAk =WA(yk,xk ) and

assume that Sk C SAk , (WAk U SAk ) C Ak ; this assumption is satis­

fied if Sk and Ak are defined by (46a,b). Let Ak and Sk contain
k d -k . k km an m elements respect1vely and denote by g the m -vector

composed ofg~ and by gk the (mkxn)-matrix composed of row vectors
1. x

k . E k -k h -k f k d b k h (-kg. for 1 A, by g t em-vector 0 g. an y Gte m x n)-
1X k k 1

-matrix of g. for iES . Then the problem (51) can be equivalently1X
written as

(52) minimize (f~ x + < pgk, Gkx > + i- < x , (Hk+PGk*Gk ) x>

x EXk

-k {- ....... n
X = xcR

The set xk is usually nonempty but unbounded and the existence of a
:::.

a solution x to this problem can be guaranteed if the matrix
k Gk*Gk . . t . d f" h . . h .H +p 1S pOS1 1ve e 1n1te; t 1S 1S t e ma1n reason for aug-

menting the approximate quadratic programming problem.

There is still another useful equivalent formulation of the

problem (51) in relation to the augmented Lagrangian (25) and its

quadratic approximations. Suppose that the mk-vector of Lagrangian

mul tipliers for the problem (51) has the form y = yk+y ; since

(WAk USAk ) CAk was assumed, hence y.k = 0, g~ < 0 for i E I \ Ak and
1 1 '
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these constraints can be disregarded. Similarly, assume that

y.k = 0 for i EAk \ SAk ; even if originally there were y.k > 0 for
1 1

a constraint that is not currently strongly active, then it is

possible to change y.k to y.k = 0 without influencing other con-
1 1

straints nor the problem (51), where only the interpretation of

y. is changed. Under these assumptions:
1

k k(53a) Ax(y ,p,x) f k + '"" k k k= LJ k (y. +pg. )g.
x i E SA 1 1 lX

k k(5 3b) A . (y ,p, x ) =
yl

.Define also

kg.
1

o

i ESAk

i E I \ SAk

(5 3c)

k i E SAkg .. ,
Ak lX

=
Yi x

i E I \ SAk0 ,

If WAk
=1= <p, the Ax

k
x is not the second der:i: vative A

xx
(yk , p, xk ), but

only one of its "one-sided" approximations ; similarly Ak .
yx

The problem (51) or (52) can be equivalently rewritten as:

(54) minim!~e
x EX

((Ak +6 k ) x - A k k + .l<x (A k +6 k ) x»x x xy Y 2 ' xx xx

k k k k
where6,6 ,6,6 express various differences between the problemx xx y yx

(51) and a quadratic approximation to the augmented Lagrangian

A(y,p,x)

(55a) 6k = - p L
x i E SAk \ Sk

is due to a possible difference of SAk and Sk,
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(SSb) !:, k
xx

expresses, beside this difference, the errors of approximation of

L k b Hk
xx Y ,

(SSe) !:, ~
yl

o ,
kg.

1

i ESA
k

, i EAk \ SAk

are related to the fact that more constraints are taken into ac­
k kcount than actually strongly active at (y ,x ).

Even when accounting for these differences, the following

lemma can be proved:

Lemma 3. Suppose, as in Lemma 2, that £ is an optimal sol­

tion and y a corresponding vector of Lagrange multipliers for the

probZem (1), satisfying the necessary conditions (4,5). Let the

full-rank postulate hold at X, g. (x) be linearly independent for
1.-X

all i such that g.(x) = 0, let the second-order sufficient condi-
1.-

tions (9) be satisfied at (y,x) and let p > 0 be such that the

conditions (9) have the form (10). Suppose sk,A k are such that

Sk=SA and Ak=SA UWA for (yk,x k ) in a neighborhood of (y,x). Then

there exist a neighborhood U(y,x) and a number a > 0 such that for
an (yk,x k ) EU(f),x) with

k ~ k* kH +p kg. g.
i S 1.-X 1.-X

positive definite and bounded, the problem (51)~(52)#(54) has a

solution i k with the corresponding Lagrange multiplier vector
k ~ky +y satisfying the following inequality:

Proof. It is sufficient to investigate neighborhoods of (y,x)
k" k" "such that S =SA, A =SAUWA, although the conclusions of the lemma

can be clearly extended to large neighborhoods without conceptual
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A A

difficulties. Since g, (x) are linearly independent for i E SA UWAlX
and g, (.) are continuous, hence g.k stay linearly independent

lX k k lX
for i E Ak and (y ,x ) in a neighborhood of (9, x). In this case,

-k .the set X is nonempty. Since

k '" k* kH + P 1...J kg, gl"X
i ES lX

is assumed to be positive definite, the problem
, l' ~k "h 1 0 l' k ~khas a unlque so utlon x Wlt mu tlP lers y +y ,

5{k is unbounded.

(51)~(52)~(54)

even if the set

The necessary and sufficient conditions of optimality of
~k ~k

(y ,X ) are:

k k ~k k
(5 7b) g i + g ix x < 0, i E A

k k ~k k ~ kL: k(g,+g· X ) (yo +Yo ) = 0
iEA 1 1 1 1

The solution of this system of equations
'h' t' 1 f k k kL1PSC ltZ con lnuous y on ,g, ,g, asx 1 lX

independent and

k ~ k* kH +p L..J kg, go
iE'S lX lX

and inequalities depends

long as g.k are linearlylX

If f k = f (~),
x x

satisfies

is positive definite and bounded - see, e.g. [8] ,[ 18],
k ( A) k (A ) k A ~k ~kg, = g. X, go = q. x and Yo = Yo, then y =0, x = 01 1 lX' lX 1 1

(57a,b). Since f~ = f x (x
k

) ,gt = gi (xk ) ,gikx = gi (xk ) and these func­

tions are differentiable, hence there is a neighborhood of (y,x)and

a constant ex 1 > 0 such that
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Since the conclusions of Lemma 2 hold under the assumptions of

Lemma 3, (58) can be combined with (45) to yield (56) with a=a 10.

Observe that no assumptions were made in the lemma and proof

above about the sets of active constraints for the problem (51)~

(52)~(54). Denote these sets by:

and

(59a) Kk =
k k k ~k k ~k

{iEA : g. +g. x =0, y. -+ y. >O}1 1X 1 1

of Lemma 3 that SkCKkCK-kCAk
It can be concluded from the proof

k k k -k k
for (y ,x ) sufficiently close to (9,~). Clearly, K CK CA ; to show

k k k" "kthat S CK assume S =SA and suppose that SA~K , that is , there is
k ~k ~k k. k

an i with 9i >0 such that Yi +Yi = O. Hence, \Yi\ =Yi; 1f any Yi
~k

with Iyt - 9i l < £ is chosen, then IYi I> (1-£) Yi' which con-

tradicts (58) for sufficiently small £.

The assumption that

is positive definite is actually used twice in the proof of Lemma 3.

If this assumption is not satisfied, then, first, it may happen that

a solution to the problem (51) does not exist; the conditions (57a,b)

are only necessary in such a case and a point (~k,ik) satisfying

these conditions might not correspond to a solution of (51). Second­

ly, it may happen that there are many points (~k,~k) satisfying

(57a,b); the one that is closest to (0,0) among them might satisfy

(58), but a solution of (51) might not satisfy (58) and (56). The

convexifying term

is used for these two reasons, since it provides only for the suf­

ficiency of the necessary conditions (57a,b). Observe that the



- 34 -

necessary condition (57a) can be equivalently written as:

k* k~k '" k* k ~ k(60) f + H x = - L.J g. (y, + y, )
x i E Rk lX 1 1

where the last sum expresses the influence of convexifying terms.

If skcRk , then the last sum can be simply omitted in the necessary

condi tion, since g ,k + g.k i k = 0 for i E Rk , but then the necessary
1 lX

condition would not be sufficient. Conversely, if Sk = ~ origin-

ally (which corresponds to the use of a quadratic approximation

to the normal Lagrange function), then sk can be increased up to

sk=Rk without influencing the solution of (57a,b).

It follows that if the quadratic approximation method (15),

(16) based on the normal Lagrange function happens to generate
k k k ~k k ~k

(y ,x ) and (y +y ,x +x ) sufficiently close to (9,~)for a non-

convex problem, then it can converge, since it could be convexi­

fied by increasing Sk from ~ to K
k in (60) and all results of this

paper would be applicable. Under the assumption of strict comple­

mentarity, WA=~: a similar result was obtained in [9J by choosing
~k ~k

for (y ,x ) not really the solutions of the quadratic approximation

(16) of the normal Lagrange function, but the points which satisfy

the necessary conditions of optimality and are closest to (0,0).

The strict complementarity assumption was relaxed in [22], but

only for convex problems with positive definite L (y,x). Therexx
are also practical examples of a successful application of the

method (15), (16) to nonconvex problems, but the success in those

cases is clearly due to luck.

Another possibility implied by relation (60) is to use more

constraints than are actually needed to convexify the problem, to

b th f ' d If f l' L Ak ,e on e sa e Sl e. ,or examp e, 1~ were used 1nstead

of i E::: Sk in the last sum of (60), then after solving the corres­

ponding quadratic programming problem, Rk=Ak should be checked.
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If i<kfAk, then the constraints with iE:: Ak'\i<k would have to be

deleted from the last sum and the quadratic programming repeated,

since the solution could have been falsified by unnecessary convexi­

fying terms. It is probably possible to develop a special quad­

ratic programming code with an automatic deletion of unnecessary

convexifying terms; the only question is how to provide for finite

termination without cycling. This possibility will not be investi­

gated further in this paper.

For further analysis, it is assumed that the set of convexi­

fying constraints ,in (60) is defined by i E sk determined, for ex-
k A k k k'

ample, by (46b) so that S =SACK can be assumed for (y ,x ) suf-

ficiently close to (y,~). In this case, the following lemma holds.

!::ok
Lemma 4. If the problem (51)#{52)#(54) has a solution x

with a corresponding vector of Lagrange multipliers yk+~k and if

sk C i k , where Xk is the set of indexes of active constraints (59b)

then

(61a) IIAk+1 11
x

II k ~k k -k ll= Ay(y +y ,p,X +x
~k ~k

o(y ,x )

where o(z) denotes an arbitrary

(various functions of this type

here).

o(z)
function such that lim ~ = 0

d · . . II zll~bo .are not ~st&ngu&shed y ~ndexes

k+1g.
1

k+1 k "'k k+1 k!::ok k+1
Proof. Denote y =y +y , X = X +x , f

k+1 x
= g. (x ), etc. Observe that:

1

( 62) A (k+ 1 ) * = A* fy k + 1 x k + 1) = f (k+ 1 ) * +x xX ,p, x

+ ~ (, ~+ 1 + ~+ 1) ~k+ 1) * =
i t I ~l pgl + glX

k * k '" k ~ ( k + 1 ) k * k!::o k) + 0 ( i k ) =
= f + f x +. ~I Yi + (g i x + g i xx x

x xx 1 c



36 -

= fk ~ Lk ~k + ~ ~(~+ 1 + C!~+ 1)
x xx i t I ~~ Y1 . P J 1 +

k+1 k+1 k+1 k+1 k+1where (y. + pg. )+ = max (O,y. + pg. )'* 0 for i ESA only1 1 1 1
k k "" k k kand L = f + ~ (y. + pg. ) + g. But it is necessary for opti-

xx xx . EIII 1XX
~k 1 k k ~k -k

mali ty of x that (60) holds ~ since g. +g. x = 0 for i E K and
1 1

k k ~k k* k+1 k* ~k
(gi + gix x ) gix = gi gix + 0 (x ), hence the relation (60) can be

rewri tten as :

(63)

By subtracting (63) from (62) the following relation is obtained:

(64

k k k ~k
(y. + pg. )+)g. x +1 1 1XX

+ ~ k+1 k+1 k*
"'" k+1\-k(Yi + pgi )gix

i ESA K

_ ~ ( k+1 + k+1) k* (~k)
. ~-k\ k+1 Yi pgi gix + 0 x
1 EK SA

Since the operation (0)+ is Lipschitz continuous with coefficient

one, hence there exist constants Ci > 0 such that

I k+1 k+1 k k I ~k k+1 k I(y. + pg. ) - (y. +pg.) I < 'i +p (g. -g.) <
1 1 + 1 1+- 1 1

~k ~k
< c.lI(y,x)1I

1

and there is Co > 0 such that



- 37 -

(64b) II ~ It k+1 + k+1) _( k + k)) k II <
i E I \\Y i pgi + Yi pgi + gixx

"k "k k "k "k "k
< 0 II (y ,X ) II II 9 II II X II = 0 <y ,x )
- 0 xx

Observe, moreover, that if i E SAk + 1\i{k, then y~+1 + pg.k+1 = y.k+~.k+
1. 1. 1. 1.

k k ~k ~k k ~k k k ~k
p (g. +g. X ) + o(x ) > 0, whereas y.+y. = 0, g.+g. x < d; this is

1. 1.X 1. 1. 1. 1.
. k+1 k+1 ~k -k k+1 k ~k

possible only 1.f y. +pg. = o(x ). If i EK \ SA , then y.+y. > 0,
L 1. 1. 1.-

k k ~ k k+ 1 k+ 1 ~k ~k k k ~k ~k
g.+g. x = 0 and y. +pg. =y.+y. + p(g. +g. x) + o(x )< 0; this

1. JX 1. 1. 1. 1. 1. 1.X

is again possible only if y~+1+pg.k+1 = o(ik ). Since o(ik ) is
~k ~k 1. 1. ~k~k

clearly of order o(y ,x ), all sums in (64a) are of order o(y,x )

and

, i E SAk+ 1

, i E SAk + 1

which implies (61a). To prove (61b),

(66) 1\ ~k+1) 1\'" ( k+1 k+~
1. = yi Y ,p,x ) =

-I

=
k+1y.1.

P

observe

(

k+1y.
1.

P

k+1g.
1.

k+1y.
1.

=

and that y~+1 = 0 if i tKk . But if i ESAk + 1nKk , then g~+1 =
1. 1.

g~+1 + g~ i k + 0 (ik ) = 0 (ik ); if i E SAk + 1\ Kk , then y~+1 = 0,
1. 1.X 1.
k k ~ k ~k h k k ~ 0 h' h . . blg. + g, x + 0 (~= ) > 0 w ereas g. + g. x < , W 1.C 1.S pOSS1. e
1. 1.X k+1" 1. 1.X

l 'f O(-xk ) 'f' EKk\S k+1 th k+1 k+~k 0on y 1. 9 i = ; 1. 1. A, en y i = Yi Yi > ,

k+ 1 k k ~k (~k) h k+ 1 k+ 1 0 h' h ' ,g. = g. + g. x + 0 x w ereas y. + pg, < , W 1.C 1.S aga1.n
1. 1. 1.X 1. 1.

'bl I of k+1 (~k) Th 1\k+1 (~k~f 'E k+1'lTTkpOSS1. e on y 1. y. = 0 x • us, . = 0 x j or 1. SA '-'l\,
1. Y1.

and 1\k:- 1 = 0 for i E I\ (SAk + 1U Kk ) , which implies (61 b). It is easy

to Ch~~k that a possible redefinition of y~+1 to y~+1 =0 if
1. 1.

i ~SAk+1 does not change the conclusions of the lemma.
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Once Lemmas 2,3,4 are proved, a theorem on the convergence

of the quadratic approximation methods can be formulated and

proved in a natural way, typical for Newton-like optimization

methods. This, however, is done after presenting the complete

algorithm first.

4. A DOUBLE-PHASE ALGORITHM FOR NONCONVEXNONLINEAR
PROGRAMMING

The algorithm finds a minimum (not necessarily global) of a

function f : Rn ~R1 in a set X = {x E Rn : g. (x) < 0, i E I, g. (x) = 0,
01- 1

i EJ} where (gi (x)) i EI UJ = g(x) ERm . The function f,gi are as-

sumed to be twice differentiable but not necessarily convex; it is

assumed only that the full-rank postulate, that is, linear indepen­

ence of the gradients of active constraints, and the second-order

sufficient conditions of the type (9) are 'satisfied at the optimal

point ~.

The algorithm makes use of three subroutines not described here

in detail; a subroutineof finding an unconstrained minimum (prefer­

ably of variable metric type), a subroutine of approximating a

square matrix H : If ~ Rn which satisfies r k ~ Hs k for k = 1 ,2, ...
. . k

by the use of data {rJ ,sJ}k_n+1 (preferably a modified rank-one

variable metric routine) and a subroutine of solving quadratic pro­

gramming problems.

ients

to be

Beside the numbers n,m, the functions f and g. and their grad­
1

f ,g. for i=1, ...m, the sets I and J, the following data isx lX

specified by the user of the algorithm:

f
Ex - the required final accuracy of the norms of gradients

in x.

Ef - the required final accuracy of constraint violations (or
y

equivalently, the norms of gradients in y)

yE(O;1) - the desired ratio of convergence of the norms of

gradients (suggested value y = 0.1)

K > 1 - the ratio of increasing penalty coefficients (suggested

values K = 5.0 or K = 25.0 in case the user estimates that

the problem might not be regular) .
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p1 >0 - the starting value of penalty coefficient (suggested

values p 1 = 0.2 or p 1 = 4.0 in the case of possible ir­

regular i ty ) .

Xo ERn - The starting point for optimization (xo E X is noto
required although the better the starting guess, the

more effective the algorithm) .

y 1 E IfI with Yi .:.. 0 for i E I - the starting point for Lagrange
1

multipliers (suggested value y = 0, if no better guess

is available).

The user has also the option of specifying starting accuracy

parameters E
1 and E

1 (reasonable bounds on the norms of gradientsx y
in x and constraint violations after first iteration). If he does

not use this option, E 1 = (y) -4 E
f and E 1 = (y)-4 E

f are used which
x y Y Y

implies that the algorithm will usually need five iterations (one

large in the first phase and four in the second) to achieve the

required final accuracy.

The following functions, sets and parmeters are used in the

algorithm. The augmented Lagrangian fun9tion (used also as a pen­

alty function) is defined by :

1 y. 2
(67a) A(y,p,x) = f(x) +-Zp( 1: (g. (x) +~) +

i EJ 1 P

y. 2 y. 2
1: (g.(x) +~) - l: (~) )

+i E I 1 P + i E JUI P

y. y.
where (gi (x) + pl)+ = max (O,gi (x) + 1). The first-order deriva-

tives of this function are:

(67b) Ax(y,p,x) =fx(x) + l: (pg. (x) +y.) gl'X(X)
i E J 1 1

+ l: (pg. (x) + y.)+ g. (x)
i EIII lX

(6"1c) A . (y,p,x) = g. (x),i EJyl 1

y. y.
A . (y, p , x) = (g. (x) +---1:.) -~, i E I
yl 1 P + P

In further description, various values of functions, gradients
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and sets at a point (yk,pk,xk ) are denoted by
k k k k k ke.g., f(x ) == f , Ax(y ,p ,x ) == Ax' etc. The

strongly active constraints is

an,upper index k,

set of currently

( 67d) SAk == {i E I

ky.
: g.k + -2 > O} U J

~ P

The sets of probably active constraints and of probably strongly

active constraints are:

(67e) Ak == {iEI

(67f) Sk == {i E I

k k
k }U Jg. + Yi >-

~
n g

p

ky.
> k} U~ J

P
ny

k k l>- -1 1 ~ k
with the variable bounds n == 1'.; (E ) 2 r ==(Y Ey ) , ny ==

g g y ''''q
1 IJ.: 1 J.:ll

1'.; == - (y E ) 2(this results, if y==O.l, in n == 102E ' n
y pk Y g Y Y

in the first iteration ; many inactive constraints are counted

as probably active at the beginning i in the fourth iteration,

4 -1 1 4 1 -2 1 4 3 1n == 10 Ey n =~ 10 E, whereas E = 10- E y if the scaling
g y p':t Y Y

of the problem is reasonable, then, for the fifth iteration, all
- -1 1

constraints wit~ gi(x) >- W == -1.1·10 Ey are counted as active

and all constraints with ~. > T = 1.1.10- 2 €1 ~re countee as strongly
~ y

acti vel .

The current approximation of the Hessian matrix of second­

order derivatives of normal Lagrangian function L(y,x) = f(x) +
L - - k kk k

i EI UJYigi (x) is estimated at y = (y +p g )+ by H :

+

+
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and the approximation Hk is constructed, without using second­

order derivatives, by computing finite differences of gradients

d l ' {j j}kan so utlons r,s . k +1:J= -n

(67 i)

, k' (' 1)* '*
+ L (y~ + p g~) (g,J+ -g~)

iEI 1 1 + lX lX

The approximation Hk is obtained mainly due to the data

from the first phase of the algorithm, where j denotes small

iterations in unconstrained minimization of A(yk,pk,x j ); thus,

yj = yk and pk are constant in small iterations. Observe that

all data needed to compute sj, r j are available when determining
. 1" .+1 '

AJ + , AJ , but r J differs slightly from AJ - AJ .x x x x

The maximal number of small iterations of unconstrained

minimization in a large iteration is K = (20 + n)n. this is
1 + n '

usually sufficient for a variable metric algorithm to achieve

a good approximation of the minimum.

The augmenting matrix G
k *G

k : R
n

-+ R
n for the matrix Hk is:

(6 7j)

-k
k k Rn ~ Rm , m-k b' th umbwhere g ix are row-vectors and G: ~ elng e n er

of probably strongly active constraints.

The algorithm proceeds as follows:

o 1
Set x = x , y = y , p =

o
parameters. Compute Ax

I f II A~ II ~ E;' II A~ II ~

p1, k = 1, j = 0, Hk = I, specify other
110 0 110= Ax(y ,p ,x ), Ay = Ay(y ,p ,x ).

E~, stop. Otherwise:
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A. First Phase

in x, applying the subroutine of

. K
Generate a sequence {xJ}O

mizing the function A(yk,pk,x)

starting with o
x : = xk- 1 by mini-

unconstrained minimization; compute additionally sj,r j (67h,i) and

kupdate H by the subroutine of variable metric approximation.

k k k kAy (y , p , x ), Ax =
k+1 k k+ 1

E = E , E
Y Y x

II A
k

II < E
f , stop.y y

k+1 k k k
(y. = (y. + p g.)
111

pk+1 = pk, xk+1 : = xk , Hk+1 =

c (E k+1)! k+1 = c (E k+1) ~
~g Y , ny ~y y ,

the matrix Gk+1 (67e,f,j), set k: =k+1 and go to B.

. KKk
Stop function minimization at x J = x when IIA II < E. If suchx - x

. - k ka point cannot be reached for J = K, then set p . - Kp and re-

peat minimization. Otherwise, set xk = xK, compute Ak =y
K II k I k k+1 1 k+1 kAx. If Ay I > E y ' set y = y , p = KP

k k f= E , k: = k+ 1 and repeat A. I f II A II < E ,
X X - x

k k k+1 k k k
I f II Ay II 2- E y ' set y = (y + P g ) +

k+1 k k k
for i E J, Yi = (y i + P g i) + for i E I) ,

HK k+1 k k+1 k k+1
, E = yE , E = YEX' Tl g =Y Y x

determine the sets Ak+1 , Sk+1 and

B. Second Phase

update

k+1ny

d · k+1rea Just y. = 0
1

Hk to Hk + 1 ,with j = k,

= C (E k + 1 ) ~
~g y ,

sj, r j (67h, i)

k k+1
= yE , nx g

go to A.

k ~k
x + x •

k ~k
x +x ). If

k k k
(y + P g ) +'

k - \' k k k - 1 - k k k* k -Minimize (f x + l. P g.g. x + -2 < x, (H + P G G)x > subject
x iEsk 1 lX

to g~ + g~ x = 0 for i E J, gk
1
, + g. x < a for i E sk/ J to obtain

1 lX lX _

~k ",k k ~k
x and y = y + Y with the help of the subroutine of quadratic

k+1 ",k k k ~ k k+1 ",k kprogramming. Compute A = A (y , p , x + x ), A = Ay (y , p ,x x y

II Ak+1 II > E
k or II Ak+1 II > E

k , set yk+1 =
x x y Y

k+1 k k+1 k k+1 k k+1 k
p = p x = x , EX = EX' E y = E y ' k: = k+1,

If II Ak+1 II f II Ak+1
11

< ("f, ,,,,k ",k
11 < E, 11 ~ stop wlth y , x =x x y - Y

If II Ak+ 1 II < E
k , II Ak+1

11 < E
k , set xk+1 = xk+~k,

x x Y - Y
determine the set SAk+1 (67d) with yk+1 = yk

. f 'd SAk+1
1 l~ , compute

k+1 k k+1set E = yE , E
Y Y X
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. h Ak+ 1 Sk+ 1 d h t' Gk +1 (67 f .) tdeterm~ne t e sets , an t e rna r~x e, ,J , se

k : k+1 and repeat B.

Comments. The indices k,j denote large and small itera­

tions, the latter used only in the first phase and related to

unconstrained function minimization. If a large iteration in

the first phase is not successful, that is, does not end with

II Ak II kIff ., k.. d d h< E , the pena ty coe ~c~ent p ~s ~ncrease an t e
y - y

first phase is repeated. If the iteration is successful by

ending with II A
k
x [I 2. E

k
x ' II A

k II < E
k

, the penalty coefficienty - y
is not increased and the algorithm proceeds to the second phase

with higher accuracy requirements. An iteration of the second

phase is not successful if it does not end with II A
k

+ 1 II < E
k

,x - x
II Ak+ 1 II < E

k
(the change of the iteration index is due to they - y

fact that A ,A are computed in the first phase at old yk and
x kY k+1

actually new x which becomes x ,whereas in the second phase

h d · t d t k+ 1 k+1) . th't e gra ~ents are compu e a new y ,x ; ~n ~s case,
k+1 k+1new y ,x are not accepted and the algorithm returns to the

f ' h 'th k+1 (k k k) d k+1 k 'h h'
~rst p ase w~ y = p g + Y + an x = x , w~ t out ~gher

k
accuracy requirements and without increasing p • Successful

iterations of the second phase are equivalent to successful

iterations of the first phase since they also end with II Ak + 1 II
x

< E
k , II A

k +
1 II < E

k
. Therefore, a switch to the first phase even- x y - y

after some successful iterations in the second phase followed by

an unsuccessful one can be considered as an unperturbed continu­

ation of the first phase without increasing penalty coefficients

in the case of success. The first phase is thus responsible for

the general convergence of the algorithm; the second phase is

used in order to speed up the convergence, if possible.

If the functions f, gi are reasonably scaled and satisfy

basic assumptions, then only one large iteration of the first

phase is sufficient to provide for a crude estimation of (y,x)
and an approximation Hk

such that the second phase converges

rapidly and stops after a few iterations. Therefore, the approx-
kimation H cannot be much improved in the second phase and state-

ments related to the nearly quadratic convergence of the algo­

rithm (see next section) are rather of theoretical value; they
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might be practically relevant only if a very high accuracy is

required. More important practically are the robustness of the

first phase and the superlinear convergence of the second phase

which is displayed even when starting from a crude approximation

of (y,x).

5. CONVERGENCE PROPERTIES OF THE ALGORITHM

The problem with inequality constraints only is considered

in the convergence analysis, since equality constraints are in­

cluded in the set of strongly active constraints and an explicit

account of them requires only technical changes of reasoning.

The convergence of the first phase of the algorithm was analyzed

in many papers; an excellent general analysis of the convergence

properties of a class of algorithms including the first phase

algorithm is given in [3], and a general theorem implying the

convergence of the first phase algorithm under weaker assumptions

than postulated here can be found in [21], Theorem 11. Therefore,

the convergence of the first phase algorithm is not discussed

here in detail and the speed of convergence of the second phase

is of primary interest.

The following theorem summarizes the convergence properties

of the algorithm.

Theorem 1. SU9Pose the functions f, g i' i E I, are twice differ-

entiable and let f be bounded from below. Let there exist num-

bers Ct 1 and 01> 0 such that for each 0 E [Oi 0 1 ] the sets Xa 0 =
n 1

{x E R f (x) ~ ct 1 ' II (g (x) ) + II ~ 0 } ar e bounded and nonempty.

Let ~ be the (globally unique) solution of the problem (1) and

y the vector of corresponding Lagrange multipliers; let the full-

Let the second-order sufficiencyg. (x) = oL
1

rank postulate hold at ~, g. (x) be linearly independent for
lX

'" '"
i E SA U WA = {i E I

conditions (9) be satisfied at (y,~). Then:

a) The algorithm converges, lim
k ~ 00

k kII(y -y,x -~) II = 0 .
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b) For any desired convergence rate y E OJ 1) there exists

a number i3 = S (y) > 0 and a number k 1 such that, if k ~ k 1 and

II(L k - Hk)x I! 2. Sdk where dk = IIU.k ,Ak ) II (or, in particular, if
xx y y

II Lx
k
x - H

k
II 2. S 1 ' S1 = ~ , cf. Lemma 3), then only the second phase

of the algorithm is used and the algorithm converges with the

desired convergence rate.
k k ~k

II Lxx - H ) x 11_
c) If lim

k-+oo - d k -
o (or, in particular, if lim

k+oo

II L k - Hkll = 0) then the algorithm converges superlinearly.
xx

d) If the second-order derivatives fxx(o), gixx(o) for

i ESA UWA are Lipschitz-continuous and there exists a number (12) 0

II(
k k) ~kll dk-n+1 dk where dk-n+1=II(Aky-n+1,Axk-n+1)11such that L - H x < a.... It Hxx - .,l.

( . t . 1 II L k _ Hk II < rv 1 d k - n+ 1 . th 1 a 2 ) th thor, ln par lCU ar, xx _ ""2 Wl a 2 =a' en e

algorithm converges quadratically in each n-th iteration, that is,

there exists (13 > 0 such that dk + 1 ..::. (13 (dk - n+ 1) 2 for sufficiently

large k.

e) If, addi tionally, L k = Hk for all k, then the algori thmxx

converges quadratically, that is there exists a 4 > 0 such that

dk+ 1 2. a 4 (dk ) 2 for sufficiently large k.

Before proving the theorem, some comments are relevant. The

assumption of the global uniqueness of x can be relaxed by modify­

ing the first phase of the algorithm in such a way that it con­

verges to a locally unique solution. The assumptions in b), c),
k k ~

d), related to II(L - H )xll are only slightly weaker than the
xx k k

particular assumptions related to II L - H II. But many variablexx
metric approximation methods satisfy only the first version of

these assumptions and not the second. The assumption in d) that

IIL
k Hkll ldk - n+ l . 1 .xx - ..::. (12 ' or ltS re axed form, lS related to the

fact that data from at least n past iterations are necessary in

order to obtain a good approximation of L k by Hkj this assump-
xx

tion is rarely satisfied in practical applications since the

second phase algorithms usually need less than n iterations to
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The assumption in e) that L k =H
k

xx
the algorithm when the

derivatives.

obtain a satisfactory accuracy.

is related to a possible modification of

user decides to program all second-order

Proof. Jnder the assumptions of the theorem; there exists

p> 0 such that A(y,p,x) has a minimum in x for each p~p and

each bounded y [21]. Hence the first phase of the algorithm is

well defined : if pk is too small, it is increased until pk..::. p.
If the algorithm converges, then also the second phase of the

algorithm is well defined, since the approximative quadratic

programming problem has a solution if (yk,x
k

) is sufficiently

close to (9,~), see Section 3.

To prove a), assume that b) does not hold (since b) clear-

ly implies a)). Then the sequence {(yk,xk)}oo consists of two sub-
ki '00 0

sequences. Subsequence {(y , x k )}o is generated by the first
, k' k' k'

phase algorithm : either II Ak II < E , II A II < E with strictly
k' k' x - x k ' Y - Y

decreasing E ,E , in which case p is not increased, orx y
k' , k' k' k' k'II A II < E , II A II> E , in which case EX,E are not decreas-x - x y y Y

k' k' k' k' k'
ed and p is increased until II A II < E , II A < E for somex - x y - Y

k' k'+1 k' k' k'large p ; in both cases, y = (y +p g )+. Subsequence

second phase algorithm, with

k' k"
strictly decreasing EX ' Ey

k" k" 00
{(y ,x )}o is generated by the successful interations of the

k "+ 1 k II, k" + 1 k"
II Ax II < E , 11 A II < E and- x y - y

; the unsuccessful interations of

k" k"the second phase are annulated by resetting to the last (y ,x)

.. k"+1 k" k" k"
def1n1ng y = (y +p g )+ and returning to the first phase.

k' k'Therefore, the convergence of the first sUbsequence {(y x )},
is sufficient for the convergence of the entire sequence, since

the second subsequence converges if the first one does.

The convergence of the first subsequence could be deducted

from [3] where, however, WA = 0 was assumed. Therefore, it is

better to use Theorem 11 from [21] which implies that lim Ilxk'_~11
k-+oo

= 0 under actually weaker assumptions. To show that lim II yk' - y II

= 0 observe that lim IIA
k

' II = 0 , lim II A
k

' II = 0 with some
k' -+00 X k ' -+00 Y

I

I
J
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constant pk' imply lim II yk'_yll = 0 by Lemma 2. Therefore, consider
k'+oo

the case when lim II Ak ' 1\ = 0 and lim pk' = + 00. In this case,
k ' x k'+oo

+00 k" k'
the iteration yk'+1 = (y +pk g ) implies that there exists such, +

k' ~ that y~'+1 > 0 only for i ESAlltJA, since for i EIN, gk'< 0 for all

k ' ... Ak ' = fk' +x in a sufficiently small neighborhood of x. Moreover, x x

k' k' k' k 'k' k'+1 k'
+ ~ (Yl' +p gi )gix= f x + ~ Yi gix

i E SA U WA i E SA U WA

Hence:

( 6 8a) Ak' = Ak' - Ax (y , pk' , j{) =
x x

(fk' - f (j{)) +
x x

k'+1 k'
+~" (Yl' -Yl' ) gl' X

i E SA UWA

Both the left-hand side and the two first terms of right-hand side

must all converge to zero for i E SA UWA.

th ff " k' Ax, e coe lClents y. -y,
1 1

Thus, lim II yk' -y II = 0
k'-+oo

Therefore, the last term of right-hand

k'Since g. are linearly independent for
lX

side also converges to zero.

" k'i E SA U WA and x sufficiently close to

converge to zero as k -+ 00

and the algorithm converges.

To prove b), it is sufficient to examine a close neighborhood

of (y,x) such that the conclusions of Lemmas 3,4 are valid. Lemma

3 implies that there exist an a > 0 such that

(68b)
"k "'k kII(Y ,x ) II ~ a d

and the conclusions of Lemma 4 can be written together as
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, ~k ~k '
Since the functlon o(y ,x ) 1n (G8c) can be assumed to be non-

negative which together with (G 8b) implies that

A A

(G8d) 0 < o(y,x) < a. o(y,x) lim o(y,x) = 0K A ,
d k II(§,~)II dk~oo II(y,x)11

therefore, o(~,~) = o(dk ) where
k

I
, o(d)

of the same property 1m k

d
k d-+00

o(dk ) is another function of the

= 00 Thus, (G8c) implies

(G8e) d k +1

dk
<

k
For any n E (0 ; y), an £k > 0 can be chosen such that 0 (d ) < n

d k

for all dk E[O ; £k] 0 Thus, if £k + £k <£k and if B= Y -n is
x y-

chosen , that is, if :

(G 8f)

then:

d k + 1
(G8e) -- <

dk

Clearly, if dk E [0 ; £k] and Y E (0 ; 1), then, by induction,
k"+1

d k II < Y for all k" .:. k, which proves b) ; the strengthened as-

s~Ption IIL;x - Hkll.2. S1 with S1 = ~ and with (G8b) imply the re­

laxed assumption II(L k - Hk ) ~k II _< B dk
0

xx

(G8e) under the
k dk+l

= 0, lim d = 0 implies lim -- = 0
k-+oo k-+ 0 dk

sufficient to note that

_ Hk ) ~k II

it is
k

II Lxx

To prove c)

assumptions lim
k-+oo

To prove d) it is necessary to have a stronger estimation of

If fxx(o) and g, (0) are Lipschitz-continuous, then it
1XX

can be shown as a corollary to Lemma 4 that there exists a number



- 49 -

~k ~k ~k ~k 2
A > 0 such that 0 (y , x ) .::- A II (y ,x ) II . It follows from Lemma 3

that o(dk ) < A a 2 (dk )2 in (68e). Hence, under the assumptions of

point d) in the theorem :

This inequality suggests actually a higher order of convergence
1

than the number 2D related to quadratic convergence in each n-th

iteration. However, without examining (69a) more closely, observe

that dk < d k - n+ 1 and

(69b) d k+1 < a
3

(dk- n+1 }2 + A a
2

a 3 = a 2

If L k
= Hk and o(dk ) < Aa 2 (dk )2, thenxx

(70) d k+ 1 < a
4

(dk )2 a 4 =Aa
2

which proves the last point of the theorem.

It should be noted that the points b) ,c),d) ,e) of Theorem 1

are typical for quasi-Newton methods of optimization and, once

Lemmas 2,3,4 are proved, the conclusions and proof of Theorem 1

are natural.

6. CONCIH SIONS

The algorithm presented in this paper will be coded and test­

ed in collaboration with the Institute of Automatic Control,

Technical university of Warsaw; the resulting programs and their

description will be included in the library of optimization al­

gorithms at IIASA computer center. Because the algorithm combines

and extends application domain of two known robust and efficient

algorithms of nonlinear programming, it is hoped that the result­

ing programs will be widely applicable and reliable. Applications

to several problems in health care, management and technology
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and other areas in IIASA are also planned.

From the theoretical point of view, the main results of this

paper are the analysis of second-order approximations to the aug­

mented Lagrange function in the case when this function is not

twice differentiable, that is, without the assumption of strict

complementarity, and the explanation why a quadratic approximation

method can work even if the optimization problem is not convex and

the assumption of strict complementarity at the solution is not

satisfied. Crucial role, however, is played by the full rank

postulate which guarantees the uniqueness of Lagrange mUltipliers.

It is an interesting question whether and how this postulate can

be relaxed.
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