Inclination Analysis Can Yield Early-Warning Signals of Economic Recessions

Alena Puchkova (Advanced Systems Analysis Program, IIASA; Evolution and Ecology Program, IIASA) Arkady Kryazhimskiy (Advanced Systems Analysis Program, IIASA) **Ulf Dieckmann** (Evolution and Ecology Program, IIASA)

Recognition: Early 2000s recession

• We define a binary encoding rule that transforms short data patterns into "minus" and "plus" signals.

• Thus, at the recognition stage, we have the methodology for finding such a function (encoding rule) that, for fixed parameters of the model, transforms the real data series into a binary sequence, which identifies early-warning signals of the early 2000s recession. We understand an early-warning signal as a large number of subsequent minuses.

Statistical analysis

Training: Early 1990s recession

- To identify the random process we use a long data series for 1954-1988 (preceding the early 1990s recession) and the function found at the previous stage for the given parameters set.
- We compute the frequencies of the "-" and "+" signals following the historical signal sequences of a given length (the latter acting as a parameter).

RANDOM PROCESS

Matrix of transition probabilities

+++	++-	+-+	+	-++	-+-	+		
$p_{_{+++}}^{_{+++}}$	0	0	0	$p_{{}^{+++}}^{{}^{-++}}$	0	0	0	+++
$1 - p_{+++}^{+++}$	0	0	0	$1 - p_{+++}^{-++}$	0	0	0	++-
0	$p_{\scriptscriptstyle 1-1}^{\scriptscriptstyle ++-}$	0	0	0	$p_{\scriptscriptstyle 1}^{\scriptscriptstyle -+-}$	0	0	+ - +
0	$1 - p_{+-+}^{++-}$	0	0	0	$1 - p_{+-+}^{-+-}$	0	0	+
0	0	$p_{_{-++}}^{_{+-+}}$	0	0	0	$p_{_{++}}^{_{-++}}$	0	-++
0	0	$1 - p_{-++}^{+-+}$	0	0	0	$1 - p_{-++}^{+}$	0	-+-
0	0	0	p_{+}^{+}	0	0	0	<i>p</i>	+
0	0	0	$1 - p^{+}_{}$	0	0	0	$1 - p_{+}^{}$	

- We treat the frequencies as transition probabilities.
- We organize the transition probabilities in a matrix, which defines a binary random process operating in the space of the binary windows.

• We train the model with the data preceding another recession, the one in the early 1990s (Jul 1990-Mar 1991). • We use the model to retrospectively assess the probability of a recession to start in each of the months from the period Sep 89-Jul 90, for different parameters of the model. • We search through all possible parameters and find the "best" set which maximizes the probability of a recession to start in July 1990 and minimizes that probability for earlier periods.

Testing: Late 2000s recession

• At this stage the goal is to test the model with parameters found at the training stage.

- We analyze the data from the periods preceding and coinciding with the late 2000s recession (Dec 2007-Jun 2009).
- We use the model to assess the probability of a recession to start in December 2007.

• We show that the probability grows steadily starting from Jan 2007 and reaches 1 in Nov 2007. • Thus, our binary stochastic model, based on analysis of data preceding two previous recessions, demonstrates an ability to register early-warning signals for the late 2000s recession.

month.