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Preface

In this volume, we present a survey of multilevel systems analysis methods and
selected applications of these methods in economics and management. The first
part of the book (Chapters 1-4) offers some theories and methods of multilevel
systems analysis, and later chapters (5-10) deal with concrete applications to
such areas as national and regional planning and industrial management. In
line with the objectives of the International Institute for Applied Systems
Analysis (11asa) Survey Project, this volume develops no new theory, but
outlines concepts and methods that have proven useful in applications. The
sample of application areas presented is rather broad and, we hope, represen-
tative of the existing literature dealing with multilevel systems analysis in
economics and management.

So as not to mislead the reader, we point out here that more engineering-
oriented applications of multilevel systems analysis (e.g., to chemical process
control) are not discussed in this volume. As a consequence of our focus on
applications in economics and management, the methods outlined in the book
fall within the realm of decomposition in mathematical programming. In fact,
much of the book is based on linear programming and immediate extensions
thereof. It follows then that the mathematical prerequisites for an understand-
ing of the book are modest: a knowledge of linear programming and some
familiarity with nonlinear and dynamic programming.

The intended audience for this volume consists of operations researchers and
systems analysts in government and industry. We also hope that it will be useful
to students in fields such as operations research, economics, and management.
On the basis of teaching experiences with a preliminary version of the book at
the Catholic University of Louvain, Bielefeld University, and Odense Uni-
versity, we believe it can be used for a one-semester course in multilevel
systems analysis, if supplemented with exercises and additional readings.
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1 Introduction

1.1 A FIRST LOOK AT MULTILEVEL SYSTEMS ANALYSIS

Multilevel systems analysis is a somewhat obscure designation for a
methodology that has been added to the systems analyst’s bag of tricks over the
last ten or fifteen years. In this volume, we will take a closer look at that
methodology. By way of introduction, this chapter describes informally what
we mean by multilevel systems analysis. It also comments on the fact that many
systems are hierarchical (in particular, organizations) traces the historical
development of multilevel systems analysis, and outlines the contents of the
volume.

We are here concerned with decision problems arising in economics and
management. As examples of the type of decision problems that we have in
mind, and which are discussed in later chapters, one may cite the following:

Decide on a comprehensive development plan for a newly opened economic
region, specifying, for instance, which investment projects are to be under-
taken.

Determine a production schedule for a factory, stating what quantity of each
product is to be produced over, say, the next month.

Compose a route plan for a shipping line, specifying for each ship a cargo and
a destination.

When faced with a decision problem such as these, the analyst usually starts out
by constructing an idealized representation, a model, of the problem situation,
often in the form of an optimization formulation. This model can then be
manipulated in various ways. In the course of such manipulations, a solution to
the decision problem under consideration may be obtained.

1



In the multilevel methods of modeling and solving a decision problem, a
complete problem representation is put together from subproblems, where
each subproblem refers to some part of the whole problem situation. The
subproblems are to some extent independent of one another, but not totally—
there are certain ties between them. That is, the total model complex is
constructed out of a set of building blocks, each subproblem constituting one
such block. The subproblems form an interrelated hierarchy, which means that
they are considered to be on different hierarchical levels.

Hence, the total problem situation is modeled as consisting of a set of smaller
subproblems. If these subproblems were now solved individually and the
resulting subproblem solutions pieced together, one would not necessarily
obtain a satisfactory solution to the overall decision problem. That is, it is not
always realistic to subdivide a problem into smaller subproblems and then hope
that completely independent solution of these subproblems will provide an
acceptable solution to the overall problem. Rather, the subproblems must be
coordinated in some fashion, and one function of higher-level subproblems is to
coordinate the lower-level ones. For instance, in a two-level representation of a
given decision problem, there may be three subproblems on the second
(lowest) level, and one on the first. One function of the first-level subproblem is
then to coordinate the second-level subproblems. We will be more specific later
on about how coordination is achieved; at this point, we note only that
coordination usually involves an iterative information exchange between
levels.

One may now wonder why one would want to use a multilevel method for a
given decision problem. Very briefly, there are at least three reasons. First, the
given problem may be so large and complex that solution by conventional,
single-level methods (such as ordinary linear programming) is not feasible—
the number of variables, for example, may be too great. That is, the capacity of
existing computing machinery could be exceeded. Second, it may be that the
given problem can actually be solved by conventional, single-level methods,
but the total modeling and problem-solving effort (including flow-charting,
programming, card punching, debugging, and computer time) would be smaller
using a multilevel method. Finally, a multilevel methodology allows for flexible
and sophisticated modeling and problem solving. If one wants to solve the
given problem directly, in a single-level fashion, one may be forced to use some
rather crude method (like ordinary linear programming). Multilevel systems
analysis allows one to use different techniques for handling different sub-
problems.

At this point, we shall not comment on the validity of these arguments in
favour of multilevel systems analysis. We shall return to them, however, in the
final chapter, where a more complete evaluation of multilevel systems analysis
will be attempted.
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In summary, multilevel systems analysis refers to a group of methods for
modeling and solving decision problems. Common to these methods is that
they involve a representation of the overall decision problem and a solution
process in terms of subproblems on different levels, where lower-level sub-
problems are coordinated by higher-level ones. Instead of multilevel systems
analysis, one often talks about hierarchical systems analysis, and the two words
will be used interchangeably in this volume.

1.2 THE MULTILEVEL CHARACTER OF SYSTEMS

It is a trivial observation that there are all sorts of hierarchies and multilevel
structures in the world around us. The literature dealing with hierarchical
phenomena is large and is increasing rapidly. We cite only two areas as
examples: within biology, there is widespread interest in multilevel structures,
and one can, for instance, find discussions of hierarchical schemes such as
the following: micromolecule—macromolecule-—polymer—ultrastructural
array—cell—tissue—organ—organism (Grene and Mendelsohn 1976, p. 149;
Milsum 1972, p. 148; Pattee 1973, p. 5). In geography, one object of investiga-
tion is the hierarchy of cities, or central places, within an area (see, e.g.,
Beckman 1975). Additional examples could easily be cited. In fact, Kornai
states: ‘‘Actually existing systems are multilevel” (Kornai 1971, p. 83).

However, in this volume we are not concerned with hierarchies in general.
We are concerned with multilevel systems analysis methods for modeling and
solving problems in economics and management. Qur purpose is hence a
normative one—to discuss how a set of multilevel techniques can be utilized as
decision-making aids in certain decision problem situations, and we are not
much interested in descriptive investigations of hierarchies in nature and
society.

Nonetheless, the hierarchical nature of one kind of system—organizations—
will be considered briefly, since the kinds of decision problems treated in this
volume arise in organizations and have to be solved within an organizational
context. Virtually all formal organizations are hierarchical in nature. In fact,
organization theorists consider hierarchical structure to be one of the most
important characteristics of an organization. Many organization-theoretic
studies have investigated aspects of hierarchy, for example number of hierar-
chical levels from company president to worker on the factory floor, or average
span of control (see, for instance, Blau 1968, Blau et al. 1966, Meyer 1972).

The multilevel structure of organizations is of interest to us because in some
cases, a multilevel model of a given problem situation involves subproblems
that may be thought of as ‘“‘belonging to” different organizational subunits on
different levels in the organization chart. For instance, in Chapter 6 we will
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consider certain decision problems involving the planning of production and
sales in corporations. The two highest hierarchical levels in a corporation are
often the central leadership group (referred to here as headquarters) and
functional departments. The production and sales planning problem can be
represented in a multilevel fashion as a set of subproblems, one each for
headquarters and the functional departments. The subproblem pertaining to a
production department refers to planning production, that pertaining to a sales
department refers to planning sales, and so on. The subproblem pertaining to
headquarters is a higher-level one than the departmental subproblems, and one
function of the headquarters subproblem is to coordinate the departmental
ones. Thus, the hierarchy of subproblems in this case corresponds to the
hierarchy of organizational subunits in the organization facing the decision
problem.

In conclusion, it may be mentioned that modeling in a multilevel fashion is to
a large extent a question of design. That is, a representation of the given
problem situation is being built up in a hierarchical fashion from building
blocks, with the subproblems constituting the blocks. In other design situa-
tions, such as architectural design or organization design, an analogous pro-
cedure is sometimes followed. That is, the total structure in those situations,
too, is assembled in a hierarchical manner from smaller building blocks (see,
e.g., Gerwin 1974),

1.3 THE HISTORICAL DEVELOPMENT OF MULTILEVEL
SYSTEMS ANALYSIS

We do not intend here to trace out in detail the development of multilevel
systems analysis, but three major sources of inspiration should be mentioned:
the economic systems debate of the 1930s, the Dantzig—Wolfe decomposition
principle, and hierarchical systems theory, as developed by Mesarovic and his
associates.

Consider the problem of planning production in a socialized economy. Von
Mises, a leading opponent of socialism at the time, argued that rational
production planning would be impossible if all industries were nationalized,
since there would be no free markets for raw materials, intermediate goods,
and capital goods. There would hence be no prices, which are necessary as
guides in arriving at rational production plans (von Mises 1935). Alternatively,
von Hayek argued that there could theoretically exist such prices in a socialized
economy, but it would be very difficult to find them (von Hayek 1935). Taylor
(1939) and Lange (1939), on the other hand, argued that rational production
planning would, indeed, be possible. Suppose we introduce a Central Planning
Board into the socialized economy. The Central Planning Board would be
responsible for price formation, as follows: Prices for the various commodities
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in the economy are announced by the Central Planning Board. Consumers and
production managers react to these prices by carrying out production activities
and market transactions, taking the announced prices as given. If the price for
some good is incorrectly specified, there will be a surplus or deficit of that good.
The price must then be adjusted by the Central Planning Board (decreased or
increased). That is, through a trial-and-error process one can find prices that
equalize supply and demand of the various commodities, and those prices are
the ones required for rational production planning.

This procedure is seen to be of a two-level type: The total problem of
planning production in the economy is divided into subproblems, one for each
plant manager, and one for the Central Planning Board. The plant manager
subproblems, which are the second-level ones, are to plan production in the
respective plants, taking the announced prices as given. The Central Planning
Board subproblem, which is the first-level one, is to find the equilibrating
commodity prices. In so doing, the Central Planning Board subproblem
coordinates the plant manager subproblems. Much of the discussion by Lange
(1939) and Taylor (1939) is, in fact, a verbal statement of one particular
two-level method.

The economic systems debate of the 1930s reflects the influence of economic
theory on the development of multilevel systems analysis. The Dantzig-Wolfe
decomposition principle reflects the influence of operations research. One of
the major breakthroughs in operations research was the development around
1947 of the simplex method for linear programming. It gradually became clear,
however, that the ordinary simplex method is not ideally suited for very large
linear programming (LP) problems or for problems with special structure. The
first two-level method developed for Lp problems with special structure is
probably that of Ford and Fulkerson (1958), whose paper is an example of
column generation (see Chapter 3 for a further discussion of this technique).
The problem considered by Ford and Fulkerson is one of maximal multicom-
modity network flows. This problem may be formulated as a linear program,
where each column represents one particular path from source to sink for one
commodity. However, there may be many columns, and, rather than specifying
them all in advance, Ford and Fulkerson suggest that they should be generated
as needed, through a shortest-path algorithm. The Ford and Fulkerson paper is
important historically in that it is a direct forerunner of the Dantzig—Wolfe
decomposition principle, a fact also acknowledged by Dantzig himself (Dantzig
1963, p. 449).

The Dantzig-Wolfe decomposition principle (Dantzig and Wolfe 1961) was
developed around 1960, sparking intensive research work on the development
of various types of decomposition schemes for linear and nonlinear program-
ming problems. Many of these schemes are, in fact, multilevel methods. Apart
from whatever usefulness it may have as a purely computational tool (this
matter is reviewed in Chapter 4), the Dantzig—Wolfe decomposition principle
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has profoundly influenced the way economists, management scientists, and
systems analysts think about multilevel methods (see, for instance Alekseev
1975, p. 13; Katsenelinboigen and Faerman 1967, p. 336).

Hierarchical systems theory is an abstract theory of how problems may be
modeled and solved in a multilevel fashion. The most authoritative statement
of this theory is contained in a book by Mesarovic et al. (1970), which
summarizes research carried out by Mesarovic and his associates over several
years. Hierarchical systems theory has received wide attention from, among
others, systems-oriented organization theorists. It probes into the conceptual
foundations of hierarchical problem solving, for instance, consistency and
coordinability in a hierarchy of subproblems.

We have briefly described the historical development of multilevel systems
analysis. We will see later how topics like the Dantzig-Wolfe decomposition
principle and hierarchical systems theory provide theoretical underpinnings for
much of the development in this book.

1.4 OVERVIEW OF THE VOLUME

This volume has eleven chapters. Chapter 2 contains some basic theory and
concepts in multilevel systems analysis, and Chapter 3 presents multilevel
techniques, largely falling within column generation and decomposition in
mathematical programming. The selection of topics in Chapters 2 and 3 is not
comprehensive in the sense that every imaginable multilevel concept or
method is treated. Rather, the intention is to convey some basic ideas and to
enable the reader to follow the rest of the volume. Chapter 4 discusses
experiences in applying the Dantzig-Wolfe decomposition method for linear
programming to different test problems. The Dantzig—-Wolfe method is one of
the methods discussed in Chapter 3. Several authors have carried out numeri-
cal experiments with that method, and those experiments are summarized in a
separate chapter, Chapter 4.

A large part of the book is devoted to applications of multilevel methods to
concrete decision problems (Chapters 5-10). These applications are drawn
from various areas in economics and management, and they represent case
studies in the actual usage of multilevel systems analysis. Chapter 5 considers
national and regional economic planning. It discusses the use of multilevel
methods for S-year planning in Hungary and for national economic planning in
Mexico; a regional planning model taken from a Soviet planning situation is
also presented. Chapter 6 discusses experimental two-level methods for
production and sales planning in two corporations (a Swedish paperboard
manufacturer and a Danish slaughterhouse). In Chapter 7, dealing with
operations management, two alternative multilevel approaches to production
scheduling are presented. Chapter 8 considers two problem situations regard-
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ing deliveries from producing factories to customers, and Chapter 9 takes up
two more planning situations, which could not conveniently be covered in the
other chapters: freight ship route scheduling and electricity generation. Chap-
ter 10 discusses multilevel approaches to water pollution control.

Chapter 11 contains a concluding appraisal of multilevel systems analysis. It
draws upon the case studies in the previous chapters and attempts to answer the
question: How useful is the multilevel methodology in modeling and solving
decision problems?

It is clear that a major portion of this volume is devoted to a number of case
studies of the use of multilevel techniques in representative problem areas. Our
interest is focused more on the multilevel methodology than on the substance
of the problem areas as such. For instance, Chapter 7 is called ‘“‘Operations
Management,” but that should not be interpreted to mean that we will give an
encyclopedic treatment of that topic. Rather, we present only a few multilevel
methods that can be used in operations management. In general, we have
chosen our case studies somewhat opportunistically, picking out studies that
are interesting as illustrations of multilevel ideas. As a consequence of our
focus on the multilevel methodology, we do not discuss data-gathering prob-
lems very much. Some of the case studies presented represent a very substantial
empirical research effort, with a great deal of work going into data collection.
One could argue that the data-collection work is the really interesting part of
those studies—but not from our point of view. Also, as was pointed out in the
first section of this chapter, multilevel system analysis entails representing a
given problem situation as a hierarchy of subproblems. We will not always be
very specific about how the subproblems are to be solved (e.g., which particular
nonlinear or dynamic programming algorithm is to be used). Rather, we will
concentrate on the interrelationships between the subproblems. This also
conforms with our focus on the multilevel methodology.

To qualify for inclusion in this volume, we require of our case studies that
they deal with the real world at least to some extent. That is, we wish to exclude
purely academic exercises. Thus, we have included only cases where multilevel
methods have been tried out with real-world data. That does not necessarily
mean that they have to have been implemented and applied on a regular,
routine basis, but they should at least have been tried out in some experimental
situations.

Considering further our criteria for selecting case studies and models for
inclusion, we do not wish to include a model just because it deals with a
phenomenon that could be considered multilevel in some general sense. To cite
only one example, Davies (1976) describes a model for manpower planning.
This model deals with a multilevel phenomenon, namely, manpower of
different hierarchical grades. However, no multilevel methods are involved in
the solution process. This appears to be multilevelness of a rather trivial kind,
and no such models are discussed in this volume.



Windsor and Chow (1970) formulate a model that is multilevel in a some-
what less trivial sense. A problem in farm irrigation is solved in two steps. In the
first step, an irrigation policy is determined by dynamic programming. In the
second, linear programming is used to determine {(among other things) the crop
mix. One could now describe this arrangement as a multilevel configuration,
where a dynamic programming subproblem is placed above a linear program-
ming subproblem. Windsor and Chow do, in fact, refer to their approach as
two-level. However, we consider it an instance of ordinary sequential decision-
making, and to include their study among our cases would imply that essentially
all sequential decision problems could be regarded as multilevel. For that
reason, we have included mainly case studies where there is at least some
rudimentary iterative interaction between the subproblem levels. For instance,
suppose the multilevel representation of a given problem situation involves two
levels, with three subproblems on the second level and one on the first. The
first-level subproblem then coordinates the second-level ones. For the resul-
ting two-level model to qualify for inclusion in this volume, we require some
iterative interaction between the first-level subproblem and the second-level
ones. There is no such iterative interaction in the Windsor-Chow example. We
have made only one exception to this rule—we have included one model of the
Windsor—Chow type in Chapter 7 on operations management. Our reasons for
doing so are stated in that chapter.

In fairness to the reader, we wish to emphasize at the outset that this volume
does not present a complete picture of multilevel systems analysis. In fact, the
presentation is largely limited to multilevel systems analysis methods founded
on linear programming and immediate extensions of linear programming. In
particular, we do not include control-theoretic model formulations in this
volume. It may be that the most convincing applications of multilevel systems
analysis are, in fact, to control-type problems, including on-line control of
ongoing processes with feedback loops. Nevertheless, such problems are not
considered here. We remain within the realm of one-shot, discrete-time
decision making—deciding, for example, on a production plan (or a shipping
plan, a 5-year plan, or a regional development plan) for the next planning
period. Our reason for not including control-theoretic models is that we want
to minimize the mathematical apparatus required. However, for completeness
we have added one brief section in Chapter 3 on multilevel approaches to
control-type problems.

Our notation in the following chapters is straightforward and conventional.
Equations and other expressions are numbered consecutively in each chapter.
Optimization problems are sometinres written in maximization, other times
in minimization format. We also state restrictions sometimes as equalities,
other times as inequalities, depending on what is most natural in each
situation.
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2 Fundamental Concepts

2.1 THE IDEALIZED MULTILEVEL APPROACH

2.1.1 PARTITIONING THE OVERALL PROBLEM INTO SUBPROBLEMS

Multilevel systems analysis is not one precisely defined technique. Rather, it
may be described as an approach with several variants. In this section, we will
consider one particular variant, which could be labeled idealized. It is idealized
because it employs only two levels in the subproblem hierarchy. It is also
idealized in some other respects, as will become clear later, in section 2.2,
where we discuss more general forms of multilevel systems analysis. The
discussion in this section draws on Jennergren (1976) and Mesarovic et al.
(1970, pp. 85-106).

Our purpose here is to present some of the most basic ideas in multilevel
systems analysis. In particular, we will discuss how a given overall problem may
be partitioned into supremal and infimal subproblems. Some set-theoretic
notation will be used. This may seem abstract at first, but concrete examples are
given in the following section.

Consider some given decision problem, which is denoted by &. Thatis, & is a
generic symbol for some problem. 2 is not identical with the underlying
real-world decision situation; rather, some preliminary modeling has already
been done in order to arrive at &. In almost all the case studies described later
in this volume, & is stated as an optimization problem of the mathematical
programming type.* & is referred to as the overall, or original, problem. For the
present discussion, & may be written as follows:

OQOutof all me M, find one for which m e M.

* This should not be taken to mean that in all the case studies, an optimal solution to & is obtained.
Often it is not, and, indeed, it is never intended or expected that an optimal solution will be
obtained. The optimization formulation is merely a convenient starting point.

10
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M is the feasible set, and M the acceptable set. Anyme (M N M) is a solution
to &. This specification of & is quite general and includes not only optimization
problems. In many cases, & can probably be solved directly (e.g., by ordinary
linear programming), and there is hence no need to use a multilevel
methodology.

However, to continue with the idealized multilevel approach, suppose & is
partitioned into subproblems as follows: Let there be n subproblems on the
lowest level, referred to as infimal subproblems, and denoted 2,(y) . .. D.(y).
Let there be one subproblem 2, on the top level, the supremal subproblem.
Each infimal subproblem &;(y) is specified as

Out of all x;€ X}, find one for which x; € (X] N X7).

Here, X is the feasible set and X} the acceptable set. The notation X} and X7
indicates that the feasible set, and the acceptable set, and hence the infimal
subproblem as a whole, depends on the parameter y. y could, for instance, be a
vector of real numbers. The parameter vy is specified by the supremal sub-
problem and is the means of coordinating the infimal subproblems. The
fundamental assumption underlying the idealized multilevel approach is that a
solution to the original problem £ can be obtained from solutions to the infimal
subproblems 2(y)...2,(y). For simplicity of notation, let D(y) =
(21(7) ... D,(y)) and x = (x; . . . x,). To transform a solution x to P(y) (i.e.,
xe(XT N X)X (XINnXI)x---x(XT X)) into a solution to &, one needs
a mapping ma: X > m, i.e., m = mp(x). In other words, s is a mechanism that
states how a candidate solution to & is to be composed from solutions to the
infimal subproblems 9 (y). However, it is not to be expected that any collection
of infimal subproblems @ (y), arbitrarily specified, will result in a solution to &,
by way of the mapping ms. For that purpose, the infimal subproblems must be
coordinated by the supremal subproblem. The supremal subproblem can
hence be stated as:

Find vy such that
1. (X,-’m)?,-’)#@forj=1...n
2. my(x)eMnAM)foranyxe (X7 nX])x(X3NnXJ)x---x
(XY nX7)

Stated in words, the parameter y must be such that, in the first place, each
infimal subproblem has a solution; and, in the second place, any candidate
solution to the overall problem put together from infimal subproblem solutions
actually does the job—that is, it solves the overall problem.

The collection (Do, D(y)) is the result of the partition of the original problem
9 into a two-level hierarchy of subproblems. That is, (2, @(y)) is a two-level
representation of the original problem &. If there exists at least one vy satisfying
conditions (1) and (2) in the supremal subproblem %, then the two-level
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subproblem hierarchy is coordinable relative to the original problem £. If the
two-level subproblem hierarchy is not coordinable relative to 2, it could be
because the subproblem hierarchy is badly designed; i.e., a different sub-
problem hierarchy could be coordinable relative to 2. However, there are two
other cases where coordinability does not hold. If M = & or M = &, in both
cases implying that (M ~n M) = J, then it is easy to see that no subproblem
hierarchy, however designed, can be coordinable relative to &. This implies
that & is probably badly specified to begin with. (On the concept of coor-
dinability, see also Jennergren 1974.)

Let us take stock of what has been achieved: The overall problem & has been
partitioned into a two-level hierarchy of subproblems, with &, being the
supremal subproblem and @(y)...2,(y) being the infimal ones. Alter-
natively, @y and 92,(y)...%.(y) form a two-level representation of 2,
assembled from (n + 1) building blocks, each subproblem being one of those
blocks. If the two-level representation %y, 2:(y) - - - D,(v) is coordinable
relative to @, then @ and (2., 9(v)) are equivalent. In that case, a solution to @
may be obtained by considering the two-level hierarchy (2, D).

2.1.2 EXAMPLES OF TWO-LEVEL SUBPROBLEM HIERARCHIES

To illustrate the ideas in the preceding section, some examples will be given.
Consider first an Lp problem with special structure:

Maximize cijx1 +CX2 ++CnXn

s.t.: Aix1+Axx; +-- -+t Ax, =a,
Bix; =b,, (2.1)

Byx; =b,,

" Buxasbs,

X1, X2...%X,=0.

A, and B; are constant matrices, c;, b;, and a constant vectors, and x; variable
vectors of suitable dimensions.* Problem (2.1) has a decomposable or block-
angular structure. The constraints A x; + A,x,+- - -+ A,x, = a are referred
to as coupling constraints. Let X denote the set of feasible solutions to (2.1) and
X the set of optimal solutions. Problem (2.1) is the overall problem . It will
now be shown how the overall problem (2.1) may be partitioned into a
two-level subproblem hierarchy.

* In this example we use x rather than m to denote the variables in the overall problem, to conform
with usual LP notation.
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A first two-level representation is obtained by specifying infimal sub-
problems as follows. For each index j=1... n:

Maximize cg;
S.t.: Aixi =aj

(2.2)
Bjx; = b,

xiZO.

The problem formulations (2.2) are the infimal subproblems Z;(y). The
parameter v is in this case (a;, a; . . . a,), and it is seen that (2.2) depends only
on the jth component of (ai, a» ... a.), a;. The vector a; has, of course, the
same decision as a. In (2.2), the feasible set depends on a;, but the objective
function does not. Let X;(a;) denote the set of feasible solutions to (2) and
/\_},(a,) the set of optimal solutions. Obtaining a solution to (2.1) from the
infimal subproblems (2.2) is easy in this case. One merely puts all the x-vectors
together: (xi, x5 ... x,). That is, the mapping may is trivial to specify.
The supremal subproblem & is

Find (a,, a, . .. a,) such that
L (Xj@)nXa)# D (j=1...n)
2. (x1, X2...x2)€(X N X) for any (x;, x2...Xx,) €
[X1(a1) N Xi(@)]x[(Xa(a2) 0 Xa(a2)]x - - - X[ X, (an) N Xn(an)]

It is easy to show that if (2.1) has an optimal solution (i.e., (X N X) # &), the
two-level hierarchy is coordinable with respect to the original problem (2.1).
Without loss of optimality, one may restrict one’s attention to aj, az ... a,
such that 2a; = a in solving the supremal subproblem. What this two-level
hierarchy achieves, then, is to partition the right-hand side of the coupling
constraints of (2.1) among the infimal subproblems.

Consider now another two-level representation of the original problem
(2.1). Let the infimal subproblem for each index j be written

Maximize c;x; — pA;x;
s.t.: B,-x,- = b,', (23)
x; = 0.

In this case, the parameter vy in the specification of the infimal subproblem
P;(y) is p, which may be thought of as a price vector associated with the
coupling constraints of (2.1). Let X;(p) denote the set of feasible solutions to
(2.3), and X;(p) the set of optimal solutions. In this case, Xi(p) does not
actually depend on p; the notation is used for consistency. Recovering a
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candidate solution to (2.1) from solutions to each infimal subproblem is easy in
this case, too; one merely puts all the x;-vectors together, as in the previous
case.

The supremal subproblem % is

Find p such that
L (X(p)nX(pN= D (j=1...n)

2. (x1, %2...x,)€{(X nX for any (x1, x5...x,) €

[X1(p) n X1(p)]X[Xa2(p) n Xa(p)]X - -+ X[ XW(p) N Xa(p)]

One can now show that if (2.1) has a unique, nondegenerate optimal
solution, then there exists no solution to 9, (the situation where none of the
coupling constraints is binding at the optimum is a trivial exception). If at least
one coupling constraint is binding, this two-level hierarchy of subproblems is
hence not coordinable with respect to the overall problem (2.1) (except in
certain degenerate situations ruled out if (2.1) has a unique, nondegenerate
optimal solution). This is a well-known fact that has been discussed by several
authors in the management science literature (see, e.g., Baumol and Fabian
1964). If the optimal solution to (2.1) is unique and nondegenerate, the optimal
dual multiplier vector is also unique. Suppose one sets the parameter p used for
coordinating the infimal subproblems (2.3) equal to the optimal dual multi-
pliers associated with the coupling constraints. Even with that specification of
p, a candidate solution to (2.1) assembled from infimal subproblem solutions
will usually be either infeasible for (2.1) or feasible but nonoptimal. Consider,
for instance, the following simple LP problem:

Maximize x1;1+ X21+2x12+Xx22

s.t.: X11+2x21+2x12+ X2 <40,
X11+3x21 =30,

2x11+ X2 =20,

X12 =10,

x22=10,

X12+x2=<15,

X11, X21, X12, X22 =0.

In this case, (25/3, 10/3, 10, 5) is the unique and nondegenerate optimal
solution. The optimal dual multiplier associated with the coupling constraint
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X11+2x21+2x12+x2,=40 is 1/3. Suppose the following two infimal sub-
problems, of the same type as (2.3), are constructed:
Maximize  x11+ x21 — (1/3)(x11+2x21)

s.t.: x11+3x2 =30,
2x11+ X1 =20,
X115 X21 =0,
Maximize 2x;5+x22—(1/3)(2x12+ x22)
s.t.: X12 =10,
x22=10,
X12+x22=15,
X12,X22=0.

The first of these two infimal subproblems has infinitely many optimal solu-
tions, of which (25/3, 10/3) is merely one. This illustrates the noncoor-
dinability phenomenon. In fact, noncoordinability holds for any choice of p, as
is easily verified for this example. It should be mentioned, though, that for
certain nonlinear problems, coordinability may hold (see section 3.7).

Consider now a third two-level representation of the overall problem (2.1),
which may be thought of as an extension of the immediately preceding one.
Instead of coordinating the infimal subproblems by prices, suppose one uses
price schedules of the type (r + kx ,TA 1) (the superscript T denotes transpose).
That is, the prices associated with the coupling constraints now depend on the
extent to which those constraints are utilized in the individual infimal sub-
problem. Each infimal subproblem then becomes

Maximize cx;—(r+kxANAx;
s.t.: Bix; < b, (2.4)
x;=0.

The parameter y here corresponds to the vector r and the constant k. Let the
set of feasible solutions to (2.4) be denoted Xj(r, k) (which does notdepend on »
and k), and the set of optimal solutions X;(r, k). The supremal subproblem is
now

Find r and k such that

1. Xi(nk)nX(rnk)#D(j=1...n)

2. (x1,%2...%x.)€(X nX)forany (x1, x2. .. Xx,) €[ X1(r, k) N
X\ (r, K)IX[(Xa(r, k) Xo(r, K)]X -+ - %
[Xa(r, k)N X, (r, k)]
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If (X nX)# &, the supremal subproblem has a solution. That is, this third
subproblem hierarchy is coordinable with respect to (2.1) (Jennergren 1973).
Apparently, the infimal subproblems may now be thought of as coordinated by
means of nonconstant prices (price schedules) associated with the coupling
constraints.

A different overall problem will now be taken up. It may be referred to as
“the transfer price problem’ (Hirshleifer 1956). A company has two depart-
ments, or factories, the production program of each of which consists of one
product. Department 1 transfers part of its product to department 2 for further
refinement and marketing there, the remainder being sold to outside buyers.
One unit of the output of department 1 is needed for every unit of output of
department 2. Apart from this interdependence, there is technological and
market independence between the two departments. Let

mi;: the number of units produced by department 1 and sold outside buyers

mj,: the number of units produced by department 1 and transferred to
department 2

m,: the number of units produced by department 2 (all sold to outside
buyers)

R(my,): the total revenue obtained by selling m;; units of the output of
department 1 to outsiders

R,(m,): the total revenue obtained by selling m, units of the output of
department 2 to outsiders

C1(m11, mz1): the total cost associated with producing (m;;+ m;;) units in
department 1

C2(my): the total cost associated with producing m; units in department 2

The overall problem 2 is one of selecting the production levels in both
departments that maximize total company profit. This may be written as:

Maximize R;(mi;)+ Ra(my)— Ci(m1, ma) — Co(m,)
s.t.: ma1 = My, (25)

miy, Moy, M2 =0,

The restriction m,; = m, expresses the fact that one unit of the output of
department 1 is needed as input to produce one unit in department 2. Let M
and M be the feasible and optimal sets. In this situation, it is natural to associate
one infimal subproblem each with department 1 and department 2. The
supremal subproblem is associated with company headquarters. This is an
instance of the situation referred to in section 1.2, where the subproblems in a
multilevel model “belong to’ different subunits of some organization. The
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infimal subproblem of department 1 could be written as
Maximize Ri(x11)+ pxa1— Ci(x11, x21)
s.t.: X11, Xx21=0
and that of department 2 as
Maximize Rj(x2)— px;— Calx2)
s.t. x2=0.

Let X? and X? denote the feasible and optimal sets, respectively (j = 1, 2). Itis
noted that X} does not actually depend on p. Recovering a candidate solution
to the original problem (2.5) from the infimal subproblems is easy:
(myy, ma1, ma) = (x11, X21, X2).

The supremal subproblem is

Find p such that

1. (XPnXD)#=D(j=1,2)

2. For any (xi1, x21, X2) € (X5 n X5)X (X5 n X%),
(my1, ma1, ma) = (x11, X21, xz)E(MﬁM)

The parameter p, which is used to coordinate the infimal subproblems, may be
interpreted as a transfer price. Depending on the properties of the revenue and
cost functions, this two-level model of the transfer pricing situation may or may
not be coordinable relative to the original problem (2.5).

For additional examples of two-level models of optimization problem situa-
tions, see Dirickx et al. (1973).

2.1.3 THE MULTILEVEL SOLUTION PROCESS

We have seen in the preceding two sections how, starting from a given overall
problem &, a two-level subproblem hierarchy, or simply a two-level model, of
that decision problem is constructed. That hierarchy is composed of a set of
infimal subproblems, Z1(y) ... %.(y), and a supremal subproblem, %, which
consists in finding those parameter values for which a candidate solution
recovered from the infimal subproblems is also a solution to the original
problem. However, finding those parameter values is usually not a trivial task.
It usually requires certain computations. From this we infer that the two-level
solution process actually involves two distinct phases, the adjustment phase and
the execution phase. In the adjustment phase, a solution to the supremal
subproblem is sought. In this phase, different two-level solution methods may
be used, such as the Dantzig-Wolfe decomposition method (two-level solution
methods are the topic of Chapter 3). The adjustment phase comes to a close
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when a solution vy’ to the supremal subproblem has been found. At that point,
the execution phase starts. The execution phase consists of solving the infimal
subproblems, using as inputs those parameter values v’ that were found during
the adjustment phase. The overall solution is then recovered from the infimal
subproblem solutions and executed as an actual decision, or plan.

The adjustment phase usually involves an iterative information exchange
between supremal and infimal subproblems. These iterations customarily are
carried out as follows: The infimal subproblems are solved, taking some current
tentative parameter values as inputs. On the basis of the resulting infimal
subproblem solutions, the tentative parameter values are revised (that is, the
supremal subproblem is solved tentatively). This revision marks the beginning
of the next iteration. The infimal subproblems are then solved again, using the
revised parameter values as inputs, and so on. It is clear that this process may,
indeed, be viewed as an iterative information exchange between supremal and
infimal subproblems.

In most cases, the infimal subproblems will be specified in the same way in
the adjustment phase as in the execution phase. However, this is not always so.
Consider again the overall problem (2.1) (the decomposable Lp problem) of the
preceding section. Suppose one wishes to represent that problem in termsof a
two-level subproblem hierarchy with infimal subproblems of the type (2.2).
Then the supremal subproblem is one of finding a partition (a,, a; ... a,) of
the right-hand side a of the coupling constraints, such that the infimal sub-
problems together yield a solution to the overall problem (2.1). In the execu-
tion phase, the infimal subproblems will hence be of the type (2.2). However, if
the Dantzig-Wolfe decomposition method is used to solve the supremal
subproblem in the adjustment phase, the infimal subproblems in that phase will
be of the type (2.3), not the type (2.2) (see the discussion of the Dantzig—Wolfe
method in Chapter 3). In such cases, it would be most correct to talk about two
different subproblem hierarchies being utilized, one during the adjustment
phase, and one during the execution phase.

From the discussion in this section, it may be seen that the idealized two-level
approach involves the following four steps in solving a problem:

1. Formalize, at least in a rough fashion, & (i.e., the overall decision
problem under consideration). Identify natural subcomponents as candidates
for infimal subproblems.

2. Partition @ into a two-level subproblem hierarchy (2o, 2:i(y)...
D.(v)). Or, stated alternatively: construct a two-level model of & using infimal
subproblems and a supremal subproblem as building blocks. The method that
one intends to use to solve the supremal subproblem in the adjustment phase
should be taken into consideration when this is done.

3. Determine whether a solution exists to the supremal subproblem—that
is, whether the given two-level hierarchy of subproblems is coordinable
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relative to 2. If not, and assuming that (M ~ M) # &, the infimal subproblems
must be modified, or redesigned, until coordinability holds.

4. Solve the supremal subproblem %, by some suitable method. This is done
in the adjustment phase and usually involves an iterative information exchange
between supremal and infimal subproblems. When the supremal subproblem
has been solved, the execution phase commences. The infimal subproblems
D1(y) ... D,(y) are solved, taking as inputs the parameter values obtained in
the adjustment phase. The infimal subproblem solutions together now yield a
solution to the overall problem &.

If (M AM) =, then this would usually be discovered during the adjust-
ment phase. If 9 is, for example, an Lp problem where only optimal solutions
are acceptable, then (M AM)=J comes about if there are no feasible
solutions or feasible solution values tending toward (plus or minus) infinity. In
both cases, the original problem % was probably wrongly specified at the
outset.

2.2 ADDITIONAL ASPECTS OF MULTILEVEL SYSTEMS
ANALYSIS

2.2.1 A MORE GENERAL MULTILEVEL APPROACH

In the previous section, a discussion of an ‘‘idealized’” multilevel approach was
given. For purposes of exposition, it was convenient to start out with that
idealized approach. Some variants, or generalizations, will be discussed in this
subsection.

The discussion so far has assumed that the solution to the overall problem 2
is implicit in the solutions to the infimal subproblems. That is, the role of the
supremal subproblem, as described up to now, has been merely to coordinate
the infimal subproblems. In the idealized multilevel approach, the adjustment
phase is devoted to solving the supremal subproblem, but in the execution
phase (i.e., after those parameter values have been found that do the coor-
dination job) it is the infimal subproblem solutions that provide the solution
to the overall problem. This is not always so; in some cases the resulting
over-all problem solution is actually constructed from both infimal and
supremal subproblem solutions, or even from the supremal subproblem
solution alone. We shall see examples of all three situations in the following
chapters.

In all three situations, the dichotomy between adjustment phase and execu-
tion phase remains; it is the mechanism for recovering the final solution to the
original problem in the execution phase that differs. For instance, consider an
overall problem & of the Lp type but with many columns, where one wishes to
use column generation. The supremal subproblem is then of the same type as
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the original problem, but with only a subset of all the possible columns
included. There will be one or several infimal subproblems to generate columns
as needed. In the adjustment phase, information is exchanged between the
supremal subproblem and the infimal ones, meaning in particular that one
column for the supremal subproblem is obtained from each infimal subproblem
in each iteration. However, in the execution phase, the ultimate solution is
obtained from the supremal subproblem alone. In this situation, the role of the
supremal subproblem consists of both coordinating the infimal subproblems (to
obtain suitable new columns in each iteration of the adjustment phase) and
providing the solution to the overall problem.

The coordinability condition defined in section 2.1.1 can be generalized to
state that coordinability holds if the two-level subproblem hierarchy used in the
adjustment phase is designed so that any candidate solution to the supremal
subproblem in the execution phase is also a solution to the overall problem.
Similarly, the coordinability condition can be generalized for the case where
the ultimate solution to the original problem is derived from supremal and
infimal subproblems jointly.

It should also be noted that the ensemble 9y and 2:(y) ... 2D,.(y), i.e., the
multilevel problem representation or model utilized, is not necessarily always
equivalent to the overall problem %. That is, coordinability does not always
hold. By proceeding with a two-level problem representation that is not
coordinable relative to the overall problem one hopes nevertheless to obtain a
“reasonably good” solution to that problem. In section 7.2 we will see an
instance of this. .

A related variant of multilevel systems analysis is the following: Even
if coordinability holds formally, this may in itself be unimportant, since
approximate, or reasonably good, solutions to the overall problem may be
all that is really sought. In several of the case studies reported later in this
volume, the overall problem & is stated as an optimization problem, and
a two-level problem representation is formulated that in itself is coordinable
with respect to 2. However, this coordinability condition is not made use
of, because the two-level solution method is terminated before optimality is
reached.

There is yet another related variant: Sometimes there is no clear statement of
the original problem & at all. That is, one starts out directly with the building
blocks of a multilevel model, i.e., 9y and D,(y)...%.(y), without first
specifying the overall problem &, except possibly in a very loose manner. This
is sometimes referred to as the compositional approach, as opposed to the
decompositional approach, where one starts out with a description of the
overall problem &, and then constructs a multilevel subproblem hierarchy
equivalent to & (see Sweeney et al. 1978). In Chapter 5, we will see an instance
of the compositional approach, in the discussion of multilevel national
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economic planning in Mexico. The overall problem may be stated as one of
finding a good long-range development plan for the entire economy, but a
formulation more specific that that is not given. In such a case, it is, of course,
impossible to tell whether coordinability formally holds or not.

Characteristic for this group of related variants of multilevel systems analysis
is that formal coordinability is unimportant, since a multilevel methodology is
being used only to obtain an approximate solution to the overall probiem.

Finally, only two-level subproblem hierarchies have been discussed so far. In
fact, most applications of multilevel systems analysis to date have been of the
two-level type, and this is reflected in the contents of this volume. However, a
few three-level models are included here (in particular, a model of hierar-
chical production planning in Chapter 7 and freight ship scheduling in Chapter
9). When a three-level subproblem hierarchy is used, the procedure is still
carried out in an adjustment phase and an execution phase. In the execution
phase, the resulting solution to the overall problem is derived from subproblem
solutions on one or more of the three levels in the hierarchy. In the adjustment
phase, information is exchanged between the supremal subproblem and the
intermediate ones, and between the intermediate and infimal ones. However,
this information exchange can be carried out in different ways. For instance,
how many iterations should there be between the intermediate and infimal
levels for each supremal-intermediate iteration?

As for terminology, when there are three levels in the subproblem hierarchy,
we will sometimes refer to the supremal subproblem level as No. 1 and the
infimal subproblem level as No. 3. In general, the highest (supremal sub-
problem) level is denoted No. 1 throughout this volume.

Insection 1.1, we gave a very brief description of what we mean by multilevel
systems analysis. We may now be a bit more specific about it. Multilevel
systems analysis is a common name for a group of approaches or methods for
modeling and solving decision problems. All these methods construct a
representation of the overall decision problem in terms of a hierarchy of
subproblems. Since the subproblems are not totally independent of each other,
they must be coordinated. Lower level subproblems are coordinated through
parameters obtained from higher level ones. Also, since coordination cannot
be achieved as a one-shot affair, there is an iterative procedure whereby the
subproblems are solved several times. During the iterations of this procedure,
referred to as the adjustment phase, trial coordinating parameter values are
supplied to the lower level subproblems from higher level ones, and certain
summary information travels in the other direction. In the execution phase, the
resulting solution to the overall problem is derived from the solutions to
subproblems on one or several levels. It is not excluded that the subproblem
hierarchy, i.e., certain subproblems, may be specified differently in the two
phases.
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2.2.2 INSTITUTIONAL INTERPRETATIONS AND ANALOGIES

It was mentioned in section 1.2 that in some problem situations, a multilevel
subproblem hierarchy corresponds to an organizational hierarchy. That is, the
various subproblems may be thought of as belonging to different organizational
subunits. The transfer pricing problem mentioned in section 2.1.2 is an
example of an organizational analogy of this kind.

Looking into this matter of institutional analogies in more detail, we can
distinguish at least three situations:

1. The subproblems in the multilevel representation do not correspond to
organizational subunits in the real world. Hence, the subproblem hierarchy has
no meaningful institutional interpretation. The maximal multicommodity
network flow problem is one such case. The two-level representation of this
problem involves infimal subproblems for generating columns (paths) for the
supremal subproblem, but there is no meaningful correspondence between the
infimal subproblems and organizational subunits in the real world.

2. The subproblems in the multilevel representation do correspond to
organizational subunits, but this correspondence is not used in the actual
solution process. For instance, in the study of distribution system design in
section 8.2, there are infimal subproblems pertaining to different products.
Also, the supremal subproblem may be thought of as pertaining to a special
project group charged with locating warehouses. However, there is no sugges-
tion that the product managers and the special project group should actually
exchange messages with each other during the adjustment phase. Rather, a
solution to the overall problem is obtained through a two-level method (the
Benders decomposition method), by one set of researchers, in one location, on
one computer. Messages are exchanged, not between different organizational
subunits, but between different parts of one computer program,

3. There is a correspondence between organizational subunits and sub-
problems in the multilevel model, and this correspondence is utilized in the
solution process. That is, messages are exchanged between subproblems in the
adjustment phase, and the subproblems are solved and resolved by separate
organizational subunits in separate locations. In this volume, several studies of
this kind are discussed. In Chapter 6, two-level methods for deciding on
production and sales in corporations are dealt with, and it is explicitly assumed
that these methods involve the participation of different subunits in the
organization (headquarters and departments), corresponding to subproblems
in the two-level hierarchy. Messages are actually to be exchanged between
different departments and headquarters during the adjustment phase.
Similarly, in Chapter 10 a problem situation regarding the establishment of
pollution levels for a set of polluters along a river is discussed. A two-level
subproblem hierarchy is constructed, where the infimal subproblems pertain to
polluters and the supremal subproblem pertains to a central authority in charge
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of water quality control. It is assumed that the overall pollution control
problem is to be solved through methods that involve the iterative physical
transmittal of information between the central authority and the polluters. For
yet another illustration of this sort of institutional two-level process, we may
reconsider Lange’s description of price determination and production planning
in a socialized economy (Lange, 1939) (see section 1.3). Evidently Lange
envisioned an institutional two-level process, carried out by the Central
Planning Board and plant managers.

In the literature, the distinction between categories 2 and 3 above is not
always made clear. This is unfortunate, since a certain confusion may resuit.
Among sociologists and organization theorists there has been a fair amount of
interest in hierarchical structures and phenomena, and it is sometimes sugges-
ted that multilevel systems analysis could be relevant to empirical studies of
decision processes and organizational design (see, for instance, Baumgartner et
al. 1975). It is clear that it is only category 3 above that could be of such
relevance. In category 2, one is really not concerned with organizational
phenomena at all, only with a methodology for modeling and solving decision
problems, and attempts to deduce implications from that methodology for
organizational design, for example, would probably not be justified.

In a category 3 situation—i.e., where the multilevel subproblem hierarchy
corresponds to the hierarchy of organizational subunits and where this cor-
respondence is actually used in the solution process—one could imagine that
some of the subunits have goals of their own, conflicting with the goals of the
total organization. Such subunits might then try to ‘‘cheat” (e.g., submit biased
or false information in the adjustment phase) to obtain a better final result for
themselves, at the expense of the organization as a whole. This means that it
might be fruitful to consider game-theoretic approaches to multilevel decision
making. That has, in fact, been one research direction (see, for instance,
Burkov and Opoitsev 1974). However, we will not consider game-theoretic
approaches in this volume. Similarly, if the subunits have private interests, one
could consider the overall decision situation as one involving multiple-criterion
decision making (for example, one criterion for each subunit). This means that
a multicriterion approach to multilevel systems analysis might also be worth-
while. Again, such approaches are not considered in this volume. Game theory
and multicriterion decision making are interesting topics in their own right, but
to discuss them here would lead us away from the main line of our argument.

2.2.3 RELATED CONCEPTS

In concluding this chapter on basic ideas in multilevel systems analysis,
we will mention three further concepts: decentralization, aggregation, and
decomposition.
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Decentralization is an important topic among organization theorists; it refers
to the level in the organizational hierarchy at which decisions are made (see
Jennergren 1975 for an extensive discussion of decentralization in organiza-
tions). Now suppose a multilevel method is used in a decision situation of
category 3 as described in the preceding subsection. That is, the solution
process is carried out through an iterative interplay between different
organizational subunits. If, in the execution phase, the solution to the overall
problem is derived from the supremal subproblem only, meaning that the
supremal organizational subunit makes the final decision, then that is a case of
centralized decision making. If, on the other hand, the solution to the overall
problem is derived in the execution phase from the infimal subproblems alone,
meaning that each infimal organizational subunit makes part of the decision,
then one has more decentralized decision making. Decentralization is hence
related to who makes the final decision in the execution phase in a situation
where a multilevel method is used as an institutional decision-making process,
involving different subunits in an organization.

Aggregation is related to multilevel systems analysis in two ways. First,
aggregation is sometimes mentioned as an alternative to some multilevel
method (Aoki 1971, p. 191; Mesarovic et al. 1970, p. 62; Rogers 1976). That
is, if a given decision problem is very large, it may be impossible to solve it
directly, in a one-level fashion. In such a situation, a multilevel solution method
may be attempted, but another possible solution strategy would be to aggregate
the variables and restrictions in the overall problem to obtain another problem
of smaller size and then solve that problem directly, by a one-level method.
Second, aggregation often occurs in multilevel systems analysis itself, in that
the variables in the supremal subproblem represent a higher degree of aggre-
gation than the variables in the infimal subproblems. For instance, in the
column generation method of solving the maximal multicommodity network
flow problem, the supremal subproblem operates on paths, whereas the infimal
subproblems operate on arcs (to create paths for the supremal subproblem).
For another example, hierarchical production scheduling (discussed in Chapter
7) is really nothing other than a hierarchical disaggregation scheme, with three
levels involving successively disaggregated decision variables.

The word decomposition has different meanings. In the first place, it may
denote the process of partitioning an overall decision problem 2 into sub-
problems @y and Z1(v) . .. D,(y). Inthe second place, decomposition methods
are a group of mathematical programming techniques. Many of these (but not
all) may be regarded as multilevel methods for modeling and solving decision
problems. That is, they specify how a hierarchy of subproblems (usually with
two levels) is to be constructed and how the adjustment and execution phases
are to be carried out, often in an algorithmic fashion. Examples of decom-
position methods that may be considered two-level procedures for modeling
and solving decision problems are the Dantzig—-Wolfe method, the Benders
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method, and Lagrangean (price-directive) decomposition. These methods are,
indeed, used in some of the case studies in this volume. They are described in
the next chapter.

Decomposition methods can often be implemented as algorithmic multilevel
schemes. In addition to those methods, there are other multilevel methods that
must be labeled as heuristic, meaning that there may be no theoretical
justification for them in terms of convergence properties, that there is no
guarantee of an optimal or even a ‘‘good” solution, or that there are very few
iterations of information exchange and subproblem solution in the adjustment
phase. Examples of such methods are given in later chapters, particularly in
Chapter 5. As an extreme case, one may consider as multilevel but heuristic
methods in which there is no iterative information exchange at all. This would,
in effect, imply that the adjustment phase is eliminated and that one proceeds
immediately to the execution phase. As indicated in section 1.4, we have
included only one study of this type in this volume (in Chapter 7 on operations
management). The remaining studies incorporate an adjustment phase with at
least one iteration of information exchange.
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Multilevel
Solution Methods

3.1 INTRODUCTION AND OVERVIEW

As the title of this chapter indicates, we are now concerned with solution
methods with multilevel features. In view of the topics dealt with in later
chapters, we will be concerned with such methods insofar as they are relevant
for solving mathematical programming problems. This implies that we are
proposing the use of such methods for solving large-scale mathematical
programming problems; however, we do not mean to create the impression
that multilevel methods are the only, or even the most efficient, way of solving
large mathematical programming problems. In fact, there are many algorithms
with no essential multilevel aspects that have computational efficiency. In
particular, such algorithms exist for solving large Lp problems. We refer the
reader to Lasdon (1970, Chapters 5 and 6), and Balinski and Hellerman (1975)
for discussions of partitioning and compact inverse methods for linear pro-
grams. Compact inverse methods are also discussed briefly in the next chapter
(section 4.1).

The methods to be reviewed in this chapter were selected only because they
are used in the case studies reported in later chapters. The next section is
devoted to column generation methods. It includes a discussion of the Ford-
Fulkerson method for finding a maximal flow in a multicommodity network. In
section 3.3 we present the Dantzig-Wolfe decomposition method.* This
method is, in fact, a column generation scheme, and it is one of the most
important multilevel techniques for linear problems.! It may, however, be
generalized to certain nonlinear problems as well, as described in section 3.4.

* We hesitate to say “‘the Dantzig-Wolfe algorithm,” since it is really more of a principle, or
methodology, than an algorithm. Nonetheless, we will sometimes use the expression.
1 The computational efficiency of the Dantzig-Wolfe method is discussed in Chapter 4.
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In section 3.5, the Benders decomposition algorithm is presented. This
algorithm, originally designed for mixed-integer programming problems, is
adapted for linear programs with block-angular structure. The Kornai-Liptak
algorithm—a simplification of the Benders algorithm—is discussed in section
3.6. The chapter continues with a presentation of the Lagrangean decom-
position technique for nonlinear programming problems (section 3.7). Heuris-
tic multilevel methods are briefly mentioned in section 3.8.

Section 3.9 discusses multilevel methods for control-theoretic problems. As
indicated in section 1.4, such problems fall outside the scope of this volume, but
for completeness we include a brief discussion here.

It is evident that the methods to be presented here belong to the area of
decomposition in mathematical programming. For general surveys of this area,
the reader is referred to Bensoussan et al. (1972), Geoffrion (1970a, b),
Hagelschuer (1971), Lasdon (1970), and Verina and Tanaev (1975).

3.2 COLUMN GENERATION

3.2.1 GENERAL DISCUSSION

Column generation is a two-level method for solving Lp problems with many
columns. Suppose one is interested in solving an LP problem written in the
following form

Maximize c¢x

s.t.: Ax=b, 3.1)

where A is an m X n matrix, ¢ is a row vector of dimension n, and x and b are
column vectors of dimension n and m, respectively. In the terminology of
Chapter 2, (3.1) is the overall problem under consideration.

Furthermore, suppose that one has at hand a basic feasible solution to
(3.1). Let 7 be a multiplier vector associated with the current basis. In looking
for a possible better solution, one would inspect the quantity ¢, —wA, (where ¢,
is the rth element of ¢ and A, the rth column of A), for all indices r pertaining to
nonbasic variables. If ¢, — 7A, >0 for some such r, the currént basis is not an
optimal one. The simplex method of linear programming would at this point
introduce into the basis a column pertaining to an index r such that ¢, — 7A, >
0. Usually, an index r is picked for which ¢, — A, is maximal.

However, the linear programming problem (3.1) may have many columns—
that is, the number n could be very large. In that case, it may be inefficient to
store, update, and inspect information pertaining to every single column to
determine which one (if any) should enter the next basis. In fact, even
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attempting to write down or otherwise generate the problem (3.1) in its entirety
could be a nearly impossible task. Instead, the columns should be generated as
they are needed, in the algorithmic process. This is exactly what column
generation methods aim at.

More precisely, suppose the number n in the specification of the problem
(3.1) is very large, so that a column generation method is used. At any given
iteration of the simplex algorithm, then, the complete description of problem
(3.1) is not available. Instead, one has at hand the following problem
specification:

Maximize c¢'x’
s.t.: A'x'=b, (3.2)

x'=0.

Here, A’ is an m X n' matrix composed of a subset of the columns of A. The n’
vectors ¢’ and x’ are chosen correspondingly. Suppose now that a new column
A, is generated through a column generation method. Let ¢, be the associated
element of the c-vector. At the next iteration of the simplex algorithm, one
would have the following problem specification:

. x'
Maximize (c/,c,) [x ]
r

.. (A", A) [’;] <b, 3.3)

[x ] =0.
X,

This extended problem can be easily solved, since by retaining the optimal
solution to (3.2) and by setting x, = 0, a feasible solution to (3.3) is obtained,
and the simplex method can be continued with the column A, entering in the
basis.

In a two-level representation of the original problem (3.1), the supremal
subproblem will be of the type (3.2): that is, it will contain only a subset of the
columns of A. Depending on the problem situation, there may be one or
several infimal subproblems, which generate additional columns for the
supremal subproblem. The adjustment phase of column generation may be
pictured as in Figure 3.1. In the execution phase, an optimal solution is
obtained from the supremal subproblem.

Often, it is more natural to have several infimal subproblems, rather than just
one, as will be seen in the example in the next subsection, on the multicom-
modity network flow problem, where a two-level structure with several sub-
problems arises very naturally. It is also seen in the discussion of a lot size
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Supremal subproblem
Solves the LP problem, using a given set of
columns.

Simplex

multipliers Column(s)

Infimal subproblem (s)

Generates new column(s), using given simplex
multipliers; or determines that there are no more
profitable columns to submit to supremal sub-
problem (in which case the current solution to
supremal subproblem is optimal).

FIGURE 3.1 The adjustment phase of column generation.

production scheduling problem in Chapter 7 and a ship scheduling problem in
Chapter 9. The information going down to the subproblem(s) is the vector of
simplex multipliers, 7, associated with the current solution to the supremal
subproblem. The infimal subproblem takes the simplex multipliers and
searches for an index r such that ¢, — wA, is maximized. The column associated
with that index r is the candidate for transmittal back to the supremal
subproblem. If, for all infimal subproblems, there is no 7 such that ¢, — 7A, >0,
then the current solution to the supremal subproblem is obviously optimal, in
which case the solution procedure stops. We will say that one iteration consists
of the following steps: optimization of the supremal subproblem; transmittal of
a multiplier vector to infimal subproblem(s); solution of all infimal sub-
problems; transmittal of new columns back to the supremal subproblem. That
is, one iteration always starts with optimization of the supremal subproblem.

The methods used to solve the infimal subproblem—i.e., to find that index r
for which ¢, —7A, is maximized—vary from case to case, depending on the
structure of the overall problem. Often dynamic programming of one kind or
another is used—for instance, a shortest-path method in the example given in
the next subsection. Usually, the generated columns have natural inter-
pretations, which arise from the overall problem situation. That is, a column
could represent, for instance, one particular physical production schedule, as
will be the case in the production planning model of Chapter 7.

In order to begin the solution procedure, i.e., the very first optimization of
the supremal subproblem, there must, of course, be some initial columns
available, sufficient in number to generate a starting basic feasible solution,
with an associated multiplier vector. However, the set of initial columns could
be a very small subset of the total set of all possible ones.

Column generation has been discussed here in connection with maximiza-
tion problems. However, it is obviously equally applicable to overall problems
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of the minimizing type. (In that case, the infimal subproblem consists in finding
an index r such that ¢, — wA, is minimal.)

3.2.2 THE MAXIMAL MULTICOMMODITY NETWORK FLOW PROBLEM

In this section we discuss the solution method originally developed by Ford and
Fulkerson (1958) for finding a maximal flow in a multicommodity network. The
reader will find a description of a closely related algorithm in Chapter 8, where
a minimal-cost multicommodity network problem will be discussed; the ship
scheduling problem in Chapter 9 utilizes yet another closely related algorithm.

Consider the network displayed in Figure 3.2. Note that we consider an
undirected network, through which we assume that two commodities are to be
shipped. Each commodity has its own sets of sources and sinks. In the example
we have §;={1,2} and §,={4} as the set of sources for commodity 1 and
commodity 2; similarly, T, = {3} and T, = {1} identify the sinks. The capacities
of the arcs are indicated in Figure 3.2. The objective is to maximize the sum of
the flows from sources to sinks for all commodities. The assumption that the
commodities are equally valued is inessential but is made for simplicity of
exposition.

We may remark at this point that for the case of finding a maximal flow in a
single-commodity network, very simple algorithms have been developed. The
original contribution is by Ford and Fulkerson (1956). Extensive discussions of
this single-level method may be found in Dantzig (1963, Chapters 19 and 20),
as well as in Ford and Fulkerson (1962). The Ford—Fulkerson algorithm for
single-commodity networks is not a variant of the simplex algorithm, but is a
“labeling method,” i.e., a method that iteratively increases the flow by giving
“labels’ to nodes to indicate in which direction the flow through an arc may be
increased and by finding “‘flow-augmenting paths.”

FIGURE 3.2 A multicommodity network.
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The multicommodity case, however, is far more difficult.* Two approaches
have been presented: single-level methods based on the ‘““node-arc” formula-
tion and two-level methods based on the “‘arc—chain” formulation. The node-
arc formulation is based on stating the problem by means of conservation-of-
flow equations for each node and capacity constraints on the flows of the
various commodities passing through the arcs. Maier (1974) gives a compact
inverse method based on a node—-arc formulation.

The arc—chain formulation, leading to an alternative Lp formulation, will be
explained here since it is the basis of the column generation scheme proposed
by Ford and Fulkerson.

A chain is a path (a sequence of arcs) starting from a particular source of a
given commodity to a particular sink of that commodity with no intermediate
node appearing more than once (this is sometimes defined as an elementary
chain). One can write a chain simply as a sequence of nodes with the under-
standing that the consecutive arcs defined by that sequence form a path.
Referring to Figure 3.2, one can identify the following chains for commodity 1:
{1,3}, {2,3}, {1,2,3}, {1,4,3}, {2,4,3}, {2,1,3}, {1,4,2,3}, {1,2,4,3},
{2,4,1,3}, {2,1,4,3}; and for commodity 2: {4,1}, {4,3,1}, {4,2,1},
{4,3,2,1},and 4, 2, 3, 1}.

If we now consider one unit of commodity 1 shipped on the chain {2, 4, 3},
then one unit of the arc capacity of arcs (2, 4) and (3, 4) is utilized and none of
the other arc capacities in the network. Thus we may associate with {2, 4,3} a
column vector, representing the capacity usage, in the following manner:

arc: (1,2)

2,3)

(1,3)

(1,4)

2,4)

3,4

By forming a column vector, one for each chain and each commodity, one
obtains the following matrix:

_——0 0 OO

0 01 0010101 0 0110
0110001000 00 011
100 0010010 010 01
0 001 0O01O0T11 10 000
0 000101110 0 0101
0 001 1 00101 01 0 1 0
commodity 1 commodity 2

* Mathematically, these difficulties have to do with the fact that the problem can no longer, at least
in general, be formulated as an Lp problem with a unimodular constraint matrix.

t The relationship between the two formulations is the following: Solving the node-arc formula-
tion by Dantzig-Wolfe decomposition is equivalent to solving the arc—chain formulation by column
generation (see Jarvis 1969).
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This matrix, the arc—chain incidence matrix, leads immediately to the arc—chain
Lp formulation of the multicommodity flow problem.

Define variables as follows: Let x; be the amount shipped of the jth
commodity on the ith chain. Obviously,j=10or2,andi=1...10forj=1, and
i=1...5for j=2. The total amount of commodity 1 shipped is Z,.“:), x:1, and
of commodity 2 the total amount is Zf=1 x;2. The objective is to maximize
2}21 X+ Z.-5=1 xi2. The resulting LP problem may be written in detached
coeflicient form as follows:

Rela- Con-

X11 X213 X31 Xa1 Xs; Xe1 X711 Xs1 X91 Xjo1 ¥12 X22 ¥32 Xa2 Xs2  tion stants
1 1 1 1 1 1 = 1

1 1 1 = 1
1 1 1 1 1 =< 1
1 1 1 1 1 = 1

1 1 1 1 1 1 = 3
1 1 1 1 1 1 = 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 max!

Additionally, it must hold that each x; = 0. This is the overall problem. It has
the optimal solution x1; = x5; = Xs5; = X132 = x32 = 1, all the other variables zero.

Needless to say, the number of columns to be included in the above Lp
problem can be enormous for networks of realistic size. Hence the arc—chain
formulation is not very appealing when one wants to solve the problem in a
single-level fashion. In that case, the node-arc formulation may be preferable
from a computational point of view. The arc—chain formulation finds its
usefulness in conjunction with column generation.

3.2.3 SOLUTION BY COLUMN GENERATION

In the maximal multicommodity network flow problem, it is most natural to
associate one infimal subproblem with each commodity. The adjustment phase
of the two-level solution method may be pictured as in Figure 3.3.

From the supremal subproblem, one obtains a multiplier vector with one
element pertaining to each arc in the network. This vector is transmitted to
each infimal subproblem. Each infimal subproblem subproblem j=1...n
then searches for a column index r, or chain in the network, such that ¢, — 7A,;
is maximal, where ¢,; = 1 for all j and r, = denotes the multiplier vector, and A,;
is a column in the constraint coefficient matrix with elements being either O or
1, depending on which particular arcs on the network belong to the chain.
Maximizing c,; — wA,; over all indices r is obviously equivalent to minimizing
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Supremal subproblem

Calculates a maximal n-commodity
flow, using given sets of paths for each
commodity (by linear programming).

Simplex Paths Paths Simplex
multipliers for commo- for commo- multipliers
dity 1 dity n

Infimal subproblem No. 1
Calculates shortest path for com-
modity 1, using given arc lengths (=

Infimal subproblem No. n
Calculates shortest path for com-
modity n, using given arc lengths (=

simplex multipliers). simplex multipliers).

FIGURE 3.3 The adjustment phase of column generation, maximal multicommodity
network flow problem.

wA,;. One may now interpret the vector = as a vector of arc lengths, and
minimizing A,; is hence the well-known problem of finding a shortest parth in
the network. In other words, infimal subproblem j is one of finding the shortest
chain from the set of sources to the set of sinks for commodity j. If that chain
(which is still indexed by r) is shorter than 1, implying ¢,; — 7A,; >0, then it is
transmitted to the supremal subproblem; otherwise, it is not. If, on some
iteration, no infimal subproblem transmits a new chain to the supremal
subproblem, the procedure stops, since an optimal solution to the overall
problem is already in hand, given by the last solution to the supremal sub-
problem. However, if one or several of the infimal subproblems do transmit
new chains to the supremal subproblem, then one or several new columns are
added to that subproblem. In that case, the supremal subproblem is reop-
timized, taking into account the new columns.

The infimal subproblems hence consist in finding a shortest path in the
original network, where the arc lengths differ from one iteration to another.
Finding a shortest path in a network is a relatively simple optimization task, for
which several solution methods are available. See, for instance, Elmaghraby
(1970) for a survey of some of these methods.

Consider now the example problem of the previous subsection. Since two
commodities are to be shipped, there will be two infimal subproblems. To start
oftf the algorithm, some initial columns must be available to optimize the
supremal subproblem. Actually, one could begin with the slack columns,
implying zero flows for both commodities as an initial basic feasible solution.
Suppose, however, that the columns corresponding to the variables x;;, x21,
and x;, in the detached coefficient tableau in section 3.2.2 are given. The
solution procedure would then be as follows.



35

Iteration 1. The supremal subproblem is optimized. In detached coefficient
form, it may be written as follows:

Xi1 X21 X12 Relation Constants
= 1
1 = 1
1 < 1
1 = 1
= 3
=< 1
1 1 1 max!

The solution is x{; = x;; = x;; = 1, with the associated multiplier vector 7 =
(0,1,1, 1, 0, 0). These multipliers are now interpreted as arc lengths and
written into the network as shown in Figure 3.4.

Infimal subproblem 1 then consists in finding a shortest path from the set of
sources for commodity 1 (nodes 1 and 2) to the sink, node 3. One such path is
{2, 4, 3} with length 0. It may be represented as a column, for convenience
written as a row vector (0, 0, 0, 0, 1, 1),* which is reported back to the supremal
subproblem. The path pertains to variable xs;, in the detached coefficient
tableau of the overall problem.

Infimal subproblem 2 consists in finding a shortest path from the source for
commodity 2 (node 4) to the sink (node 1) (there is only one shortest path in this
case). That path is found to be {4, 2, 1}, with a total length of 0. It may be
written as a (transposed) column (1, 0, 0, 0, 1, 0). It, too, is reported back to the

FIGURE 3.4 The network for infimal optimization.

* This convention will be used sometimes in this chapter.
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supremal subproblem. It pertains to variable x;, in the overall problem
formulation, above.

Iteration 2. The supremal subproblem now has two new columns. It may be
formulated as follows, in detached coefficient form:

X311 X21 Xs1 X172 X32 Relation Constants
1 <= 1
1 = 1
1 = 1
1 = 1
1 1 = 3
1 = 1
1 1 1 1 1 max!

The solution is now x1; = X3; = xs; = X12 = X3, = 1, and the associated multiplier
vector w=(1,1,1, 1,0, 1). The arc lengths in the network are changed cor-
respondingly. As in iteration 1, infimal subproblem 1 consists in finding the
shortest path from node 1 or 2 to node 3, but where the arc lengths are now
givenby w=(1,1, 1, 1, 0, 1). At this point, there is no path shorter than 1, so
there is no path to report back to the supremal subproblem. Infimal sub-
problem 2 consists in finding the shortest path from node 4 to node 1. Again,
there is no path shorter than 1, so no path is reported to the supremal
subproblem from this infimal subproblem either. This means that an optimal
solution to the overall problem has been attained. It is given by the last solution
to the supremal subproblem, x;; =x; =xs51 =x12=x3,=1, with all other
possible variables equal to zero. This solution can easily be translated into
physical flows. One unit of commodity 1 should be sent along {1, 3}; one unit of
commodity 1 along {2, 3}; one unit of commodity 1 along {2, 4, 3}; one unit of
commodity 2 along {4, 1}; and one unit of commodity 2 along {4, 2, 1}. We
might mention here that the interpretation of an optimal solution obtained
from the arc—chain formulation is easier than for the node-arc formulation,
especially for large networks.

3.3 THE DANTZIG-WOLFE DECOMPOSITION
METHOD FOR LINEAR PROGRAMS

The Dantzig-Wolfe method, first described in the seminal contribution of
Dantzig and Wolfe (1961), is probably the most important multilevel method
for solving large-scale linear programming problems. However, in terms of
computational efficiency it may be challenged by the single-level, compact
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inverse methods that originated with the work of Dantzig and Van Slyke (1967)
(see Chapter 4).

3.3.1 THE REPRESENTATION OF A POLYHEDRAL CONVEX SET*

As is well known, a polyhedral convex set X may be defined as the intersection
of halfspaces, or

X ={x|Bx < b},

where B is a matrix and b a vector of suitable dimensions. To avoid trivialities,

we assume X to be nonempty. Let x' ... x” be the set of extreme points of X
and let #'... %% identify the extreme rays of the polyhedral convex cone

{x |Bx =0} {the R extreme rays are defined by the halflines §i’, § = 0). It can be
demonstrated that

X =

P R
p=

APxP+ Y 8'%', with
1

1 r=

x={x

P
x Ap=1,,\p20,8'20,p=1...P,r=1...R}.

(If R is zero, the corresponding summation vanishes. It is assumed that P # 0.)
This result states that the set X may be regarded as the sum of a bounded
polyhedral convex set and a polyhedral convex cone. If the cone is empty, i.e., if
there is no x satisfying the inequalities Bx =0, then X is bounded.

To illustrate the above characterization, consider the set

X={(x1,x2)|—2x1+x251, x1—x2=1, x; =0, x,=0},

which is graphed in Figure 3.5. This set has three extreme points: (0, 0), (0, 1),
and (1, 0). The associated convex cone has two extreme rays passing through
the points (1, 2) and (1, 1). The resulting bounded polyhedral convex set and
the convex cone are displayed in Figure 3.5.

3.3.2 AN OUTLINE OF THE DANTZIG-WOLFE DECOMPOSITION METHOD
Now consider some arbitrary linear program, written as
Minimize c¢x

s.t.: Ax =b, (3.4)

* The characterization of a polyhedral convex set is central to the Dantzig-Wolfe method. The
reader who finds the present discussion too sketchy or too advanced may benefit from the excellent
discussion in Appendix B of Simonnard (1966).
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(1,0) 4

1
bounded poly-
hedral set

FIGURE 3.5 The representation of a polyhedral convex set.

Problem (3.4) is the overall problem under consideration. Suppose A has m
rows and that this matrix is partitioned as

]

Al

where A, has m; rows and A, has m, rows (m,+m,=m). The vector b is
similarly partitioned. One may then rewrite (3.4) as

Minimize cx

s.t.: Aix=by,
(3.5)
Azx = bz,
x=0.

The set X, ={x|A,x = b,, x =0} is a polyhedral convex set, just like X of the
previous subsection. Let x* . . . x¥ be the set of its extreme points and £” . . . £%
identify the set of extreme rays of the associated convex cone. This means that

any x € X, can be written as

P
x=Y A%x"+
p=1

R
Y 8%, (3.6)
=1

r

with ¥ A" =1, A* =0, 8" = 0. For any such choices of the §- and A-variables, the
resulting x € X,. Using (3.6), if we substitute for x in the objective function cx
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and the constraint A;x =5, of (3.5), we obtain the following equivalent
problem:

P R
Minimize c( Y AT+ Y 6'.\?')
p=1 r=1
P R
s.t. Al( T AP+ Y 6'f')=b1,
P

1 r=1

YAP=1, AP=0, 8 =0.

Making use of the convention that w” =cx”, w' =cx’, L = A,x", and L'=
A X', this problem can be written as

P R
Minimize Y wA®’+ Y w'8’
p=1 r=1

P R
s.t.: Y LPAP+ Y L'8"=b,, 3.7
= r=1

Problems (3.4) and (3.7) are equivalent. They have the same optimal
solution value. Any feasible solution to (3.7) corresponds to a feasible solution
to (3.4), which may be recovered by using (3.6). Conversely, given a feasible
solution % to (3.4), there exists at least one feasible solution A, §" to (3.7) such
that £ =Y A°x° +Y 6'%".

Let us pause to see what has been accomplished. The problem (3.4), which
has m rows, has been replaced by (3.7), which has only m, + 1 rows. However,
the problem (3.7) has as many variables as there are extreme points and
extreme rays in the set X5. This could be a very large numbei indeed—much
larger than the number of variables in (3.4).

The Dantzig-Wolfe decomposition method solves (3.7) rather than (3.4),
but since (3.7) could have a great many variables, it is not desirable to write
down the complete specification of (3.7) in advance. Rather, the columns of
(3.7) should be generated as they are needed. We now turn to the mechanism
for generating these columns.

Suppose that at some stage in the process of solving (3.7), one has generated
a subset of all the columns of that problem. Those problems correspond to
certain extreme points and extreme rays of the set X,. Suppose p columns
corresponding to extreme points and 7 columns corresponding to extreme rays
have been generated, where p + 7 < P+ R. One then has at hand the following
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problem specification:

P r
Minimize Y wA’+ Y w'S

[ P
s.t.: Y LA+ Y L'8"=b,, (3.8)

1 r=1
p
Y A’=1, A°=0, & =0.

Problem (3.8) is now optimized. Now a question arises: Is the optimal solution
to (3.8) also an optimal solution to (3.7)? Let 7r be an m;-vector of optimal dual
multipliers pertaining to the first m; equality restrictions of (3.8), and a an
optimal dual multiplier pertaining to the last equality constraint. The usual
simplex method optimality criterion is applied—that is, one wants to determine
whether there exists some extreme point x” of X, such that w® —#L” —a <0,
or some extreme ray £~ such that w" — 7L" < 0. If the answer to both questions
is no, the optimality test has been passed, and the optimal solution to (3.8) is
indeed optimal for (3.7) as well. This also means that one may recover an
optimal solution to the original problem (3.4) by ‘means of the relatlon (3.6).

However if there does exist x° such that w” —7L” <a or £ such that
w" —mL" <0, then we cannot conclude that the current optimal solution to
(3.8) is also optimal for (3.7), and the solution process must continue. The
simplex method would now look for that variable that has the smallest relative
cost factor, i.e., that index p' or r' for which (WP —aL? —a)or (W —#wL") is
minimal. If the minimum is attained for p’ (corresponding to an extreme point),
then the column (L"), 1) with associated objective function coefficient w®
should be entered into the basis of the linear program (3.8) at the next iteration.
If the minimum is attained for r’ (corresponding to an extreme ray), the column
(]:", 0) with associated objective function coeflicient w" is introduced into the
basis.

In any case, for the optimality test as well as for identifying a new column
to introduce into the basis, one must find that index p’ or r’ for which
(WP —7L” —a) or (W — L") is minimal. But this can obviously be done by
considering the following linear program:

Minimize (c—7A))x
s.t.: Azx = bz, (39)
x=0.

If this problem has a finite optimal solution, then the optimum is taken on at an
extreme point of the set X5, and that extreme point will be found when (3.9) is
solved by the simplex method. If (3.9) has unbounded solutions, then the
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optimum is taken on along an extreme ray of the set X,. That extreme ray, too,
is identified when (3.9) is solved by the ordinary simplex method. (This matter
will be discussed in somewhat greater detail in the next section.)

The Dantzig-Wolfe decomposition method, as applied to problem (3.4),
may be outlined step by step:

Step 1 (start of a new iteration). Solve problem (3.8), using only those
columns which are at hand at this point. Let 7 and a be optimal dual variables.
[If (3.8) has an unbounded optimal solution, then so has the original problem
(3.4). In that case, stop.]

Step 2. Solve problem (3.9). If (3.9) has an unbounded solution along the
extreme ray identified by £, go to step 3. If (3.9) has a finite optimal solution,
the extreme point x”, go to Step 4. [If (3.9) has no feasible solution at all, then
stop—the original problem (3.4) also has no feasible solution.]

Step 3. Add the column (I:", 0) with associated objective function coefficient
w" to problem (3.8). Return to Step 1.

Step 4. Carry out the simplex method optimality test: If w” — 7L” ‘= a, the
current solution to (3.8) is also optimal for (3.7). In that case, stop—an optimal
solution to (3.4) may be recovered through (3.6). If w” — wL” < a, the current
solution to (3.8) is not optimal for (3.7) (except under certain degeneracy
conditions). Then add the column (L"), 1) to problem (3.8). The associated
objective function coefficient is w®. Go back to Step 1.

In conclusion, it may be remarked that problem (3.7) is often referred to as
the extremal problem, or the full master problem, equivalent to the original
problem. Problem (3.8), which includes only a subset of the columns of (3.7), is
often called the restricted master problem. In the terminology of Chapter 2, the
restricted master problem is also the supremal subproblem, and (3.9) is the
infimal subproblem. In the adjustment phase, simplex multipliers are trans-
mitted from the supremal subproblem to the infimal one, and columns for the
supremal subproblem are sent back from the infimal subproblem. The adjust-
ment phase of the Dantzig—-Wolfe method could hence be visualized as shown
in Figure 3.1. In the execution phase, a solution to the overall problem (3.4) is
recovered from the supremal subproblem by means of (3.6). As was pointed
out in the discussion of column generation in section 3.2.1, an iteration starts
with the optimization of the supremal subproblem.

3.3.3 LINEAR PROGRAMMING PROBLEMS WITH UNBOUNDED SOLUTIONS

Step 2 of the Dantzig-Wolfe decomposition method outlined in the preced-
ing subsection requires solution of the linear program (3.9). If this problem has
a finite optimal solution, then the optimum is taken on at an extreme point of
X, and it is well known that the simplex method will identify some extreme



42

point as being the optimal solution. However, if the optimum is unbounded,
then it is taken on along an extreme ray. That extreme ray, too, will be
identified by the simplex method. Consider the following example:

Maximize x;+x,
s.t.: —2x1+x3+x3=1,
X1—Xa+x3=1,
X1, X2, X3, X420.

The first two iterations of the simplex method (using the tableau format of
Dantzig 1963) are given below. The variable x, is pivoted into the basis as
indicated by the circled entry in the first tableau.

X1 X3 X3 X4 -z Constants
x3 -2 @ 1 0 1
X4 1 -1 0 1 0 1
-z -1 -1 0 0 1 0
X2 -2 1 1 0 1
X4 -1 Q 1 1 Q
-z -3 0 1 0 1 1

One now discovers that the problem has an unbounded solution. As one tries to
pivot the x,; column into the basis, one sees that x, and x, increase in value. For
x1=1, one obtains x,=1+2, and x,=2+1. In general, for x; =k >0, one
obtains x,=1+2k and x4=2+k. From this we infer that (x,, x,, x3, x4) =
(k, 2k, 0, k) is a ray, and it is, in fact, an extreme ray.

To demonstrate this last statement, we utilize the following result from Gale
(1960, p. 65): Let x be an n vector. The solution £ to the inequality Bx <0 isan
extreme ray if and only if the set of rows b’ of B for which 4’z =0 has rank
n —1. In the present case, n = 4. The constraint set is given by the restrictions

—2x1+x2+x3 =1,
X1—X2 +x4=1,
X =0,

X2 =0,
X3 =0,

X420.
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The associated cone is defined by

—2X1+X2+X3 =0,

X1— X2 +X4=O,

X1 =0,
(3.10)

X2 =0,

X3 =0,

X420.

Consider now the solution (x;, x2, X3, x4) = (1, 2, 0, 1) to the set of restrictions
(3.10). The rank of the coefficient mafrix associated with those restrictions for
which equality holds (the first two equalities and x3=0)is3=4—-1=n—1, so,
using Gale’s result, it follows that (1, 2, 0, 1) identifies an extreme ray.

By a suitable generalization of this example, it is easy to see that if the
problem under consideration has an unbounded optimal solution, then an
appropriate ray may be picked out of the final simplex tableau.

3.34 A NUMERICAL EXAMPLE

The following example was used by Dantzig (1963, pp. 455-461), in a rather
amusing passage with the title “Decomposition Principle, Animated.” Let the
original problem that one wants to solve be:

Minimize 3X11 + 6X21 + 6X31 + SX41 + SX12 + X2+ 3X32 + 6X42

S.t.:

2x3; +2x22 =9,
Xntxa1+x31+ x4 =9,
X12+ X224+ X323+ x42=38,
o Tr ol (3.11)
X21 +X22 =17,
X31 +Xx32 =
X41 +x4=5

all x;=0.

It is seen that this problem has a constraint set that naturally divides into two
groups of restrictions. The first group corresponds to the restriction A, x = b, of
(3.5) and consists of the single inequality 2x3;+2x2;<9. The remaining
restrictions, corresponding to A,x = b, in (3.5), have a very simple structure
since they define the feasible region of a transportation problem. That is, if it
were not for the single restriction 2x3; + 2x2, <9, the whole problem could be
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solved directly, by the transportation method. Nevertheless, the Dantzig-
Wolfe decomposition method offers one way of utilizing the special structure of
the six transportation restrictions (3.11).

Suppose, then, that one wants to solve this problem by the Dantzig—Wolfe
decomposition method, with the first restriction 2x3; +2x,, <9 incorporated
into the extremal problem. To begin, a few columns of the extremal problem
must be at hand at the outset. In this case, the set of x;; =0 satisfying the six
transportation equalities is obviously bounded, so there will be no columns in
the extremal problem corresponding to extreme rays. One extreme point may
be obtained by simply ignoring the restriction 2x3; +2x,,=<9 and then opti-
mizing the remaining transportation problem. It is found to be x' = (x11, x21,
X31, X41, X125 X22, X132, Xa2) = (2, 0, 2, 5, 0, 7, 1, 0). Another extreme point is
x*=(2,7,0,0,0,0,3, 5). With these two extreme points, we compute cx' =53,
A, x'=18; cx*=87, A;x>=0. We can then write down the first restricted
master problem as follows:

Minimize 53A'+87A°

s.t.: 18! =9,
At+a?=1,
ALaz=zo.

Iteration 1. The first restricted master problem is solved. The optimal
solution is A ' = 1/2, A®=1/2. The optimal dual multiplier 7 associated with
the constraint 181" =9 is ~17/9, the optimal multiplier a associated with the
constraint A '+ A% =1 is 87. To test whether the current solution is also optimal
for the full master problem, and if it is not, to find a new column to add to the
restricted master problem, one solves the transportation problem:

Minimize 3X11+6X21+(6+(34/9))X31+5,X'41+8X12
+(1+(34/9))x22+3x32+6x42
s.t.: (3.11) and x; =0.

The optimal solution here is x*=(2,2,0,5,0,5,3,0), w’—7L*=57+185 =
755 <87 = a, so the column (L 1) =(10, 1) is added to the restricted master
problem. The associated objective function coefficient is w’=cx’=57.

Iteration 2. The restricted master problem is now
Minimize 53A'+87A%+57A°

s.t.: 18A'  +10A°=9,

A+A%+ at=1,

ALA% A =0,
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The optimal solution is A' =0, A>=1/10, A*> =9/10. The optimal dual multi-
plier 7 associated with the constraint 181" + 10A <9 is —3. The optimal dual
multiplier a associated with the constraint A'+A >+A%=1is 87. To test
whether the current solution to the restricted master problem is optimal for the
full master problem, we must again solve a transportation problem:

Minimize 3x,1+6x2,+(6+6)x3,+5x41+8x12
+(1 +6)x22+3x32+6x42
s.t.: (3.11) and x; =0.

This problem has many optimal solutions, but one optimal solution is x3=
(2,2,0,5,0,5,3,0), i.e., the same optimal solution to the transportation
problem as was obtained in the previous iteration. For 7 = -3 and a =87, one
obviously obtains w®—#L>—a =57 +30—87 =0. This means that the opti-
mality test has been passed, so A' =0, A*=1/10, A*=9/10 is an optimal
solution to the full master problem, or the extremal problem. Consequently, an
optimal solution to the original problem may be computed as: (1/ 10)x%+
(9/10)x*=(1/10)(2, 7,0, 0,0, 0,3, 5)+(9/10)(2, 2,0, 5,0, 5,3,0)= (2, 2.5, 0,
4.5,0,4.5,3,0.5).

3.3.5 SOME FURTHER REMARKS ON THE DANTZIG-WOLFE
DECOMPOSITION METHOD

It is evident from the previous discussion that the Dantzig-Wolfe decom-
position method is founded on the following two basic ideas:

® The original problem is replaced by another equivalent one, the extremal,
or full master, problem.
® The extremal problem is solved through a column-generation scheme.

The Dantzig-Wolfe decomposition method is thus a special case of column
generation. In that respect, it may be considered to be inspired by the
Ford-Fulkerson algorithm for multicommodity network flows, which is also an
instance of column generation; this explains the historical importance of the
Ford-Fulkerson paper. In column generation, various methods may be utilized
for the successive selection of additional columns, as already indicated in
section 3.2.1. In the Dantzig—Wolfe decomposition method, the simplex
method itself is used for this purpose.

As already indicated in section 3.3.2, the Dantzig-Wolfe decomposition
method may be regarded as a two-level method, just like any other column
generation method. For instance, in the numerical example in the preceding
subsection, one switches between a restricted master problem of ordinary Lp
type and a transportation problem. An obvious two-level arrangement is to
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take the restricted master problem as the supremal subproblem and the
transportation problem as the infimal subproblem. In the adjustment phase,
the supremal subproblem successively receives extreme points (which may be
interpreted as plan proposals) from the infimal subproblem. It mixes those plan
proposals already at hand in an optimal fashion. As a by-product of this mixing,
dual variables are obtained which are transferred to the infimal subproblem as
guidance for the generation of further plan proposals. In the execution phase,
the final decision on a shipping plan that is optimal for the original problem is
made by means of the supremal subproblem.

In the earlier description of the Dantzig-Wolfe decomposition method, it
was implicitly assumed that there is at hand at the outset a set of columns of the
restricted master problem such that the problem has a feasible solution. The
restricted master problem can then be optimized immediately at the beginning
of the algorithm, and optimal dual multipliers can be derived. These dual
multipliers are used to generate the first new column. If one does not have at
hand at the start a set of columns that allow for a feasible solution to the
restricted master problem, one can initiate the Dantzig-Wolfe decomposition
method with an ordinary Phase I procedure (see Dantzig 1963). That is, as the
starting basis of the restricted master problem one takes a set of artificial
columns. It is then the object of Phase I to drive these columns out of the basis.
Phase I terminates with a feasible solution to the restricted master problem or
with the information that no such solution exists. In the latter case, the original
problem (the one that one is trying to solve by the Dantzig-Wolfe decom-
position method) also has no feasible solution. Once a feasible solution to the
restricted master problem is obtained, all successive later iterations also
involve feasible solutions to the restricted master problem. This means that the
method may be terminated prior to reaching an optimal solution. A nonop-
timal but feasible solution to the original problem (3.4) can then be recon-
structed by means of the relation (3.6).

Convergence to an optimal solution is guaranteed in a finite number of
iterations (assuming away pathological degeneracy cases). Indeed, since the
extremal problem is an ordinary Lp problem, it has only a finite number of
different basic feasible solutions. However, the number of iterations needed to
solve the original problem (3.4) by Dantzig-Wolfe decomposition could well
be much larger than the number required by an application of the ordinary
simplex method to that problem (see Adler and Ulkiicii 1973 on this subject).
For this reason, it may be desirable to terminate before optimality is reached.
An attractive feature of the Dantzig~Wolfe decomposition method in this
connection is that it provides a bound on the optimal solution value.

To explore this bound property, suppose that one is still interested in solving
the problem (3.4) and that the restricted master problem at some iteration ¢ has
optimal solution value z,. Let 7 and « be optimal dual multipliers associated
with the restrictions of the restricted master problem in that iteration. Let A”
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(p=1...P) and 6" (r=1...R) be an optimal solution to the extremal
problem. From the specification of that problem, it follows that

P - R _

Z=Y wfA"+ ¥ W8, (3.12)
p=1 r=1
P _ R _ _

b= Y L°X°+ Y LS, (3.13)
p=1 r=1

and

P -

1=% A° (3.14)

p=1

Hence Z is the optimal solution value for the extremal problem and also for
problem (3.4). Now multiply (3.13) by # and (3.14) by a and subtract from
(3.12), to obtain

Z—(mbita)=
P

Naek®

R —_— -~
ANwP—mLl?—a)+ ¥ 8w —aL").
r=1

1

Noting that z, = #b; + a, it holds that
R —_— -~
Z=zz,+ min (W —gL?—a)+ ¥ 8[ min (W —«L")].
p=1..P r=1 r=1..R

Now consider the infimal subproblem in the present iteration, i.e., problem
(3.9), rewritten here for convenience:

Minimize (c—7wA)x
s.t.: Asx =b,,
x=0.

If this problem has an unbounded solution, no lower bound on Z can be
obtained in the present iteration. However, suppose it has a bounded solution
so that either min,-;_g (W —#L")=0 or R =0, which allows us to write

Z=z,+ min (W —aL?—a)=7Z. (3.15)
p=1.P

Inequality (3.15) gives us a lower bound on Z. The quantities w” —L” — a are
automatically produced in solving (3.9) so there is no extra work involved in
computing z,. Obviously, 2, =Z =<z,

The sequence z, converges monotonically to Z. The sequence Z, also con-
verges to Z, but not monotonically. At the iteration at which an optimal solution
to the extremal problem is obtained, z, = Z.. The quantities z, and Z, may be
used to construct a simple stopping rule: terminate the algorithm if z,— 7, <
€ >0, where ¢ is some tolerance constant that has been set in advance, and 7 is
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the best lower bound obtained so far. Such termination before optimality is
reached may be desirable, as mentioned earlier.

As an example, we compute the lower bound 7, in the example in section
3.3.4. The optimal solution value of the restricted master problem in the first
iteration, z,, is 70, so that (3.15) gives

Z1=70+(57—(-17/9)10—87) =585.

This is not a bad lower bound, since the optimal solution value Z is 60.

33.6 BLOCK-ANGULAR STRUCTURES

Consider now a somewhat different problem formulation, one that has a
block-angular structure:

Maximize Ci1X1+Caxa+ -+ CpXn
s.t.: Axi+Ax+-+Ax,<a,

Bx; =b,
(3.16)

B2x2 SbZr

ann = bru

X1,X2...%X.=0.

This is the overall problem considered in this subsection. Here, x; is an n;
vector, A; is an m X n; matrix, B; is an m; X n; matrix, b; is an m; vector for
j=1...n, and a is an m vector. Apparently, problem (3.16) has a rather
special structure: if it were not for the coupling restrictions A x, + A x,+- - - +
A,x, <a, (3.16) would divide into n independent, smaller LP problems. The
Dantzig-Wolfe decomposition method offers a way of exploiting this block-
angular structure. Indeed, block-angular problem structures are considered
particularly suited to that method.

Consider the set X;={x;|B;x; < b,, x;=0}. As before, any x; € X; may be
expressed as

P(j) - R(j) ,
— or
xp= X Afxj+ ¥ 8%,
p=1 r=1

where x] [p=1... P(j)] are the extreme points of X; and £} [r=1... R(j)]
identify the extreme rays of {x; | B;x; =0, x; =0}. Using a notational convention
similar to that used in section 3.3.2, it is not difficult to see that (3.16) can be
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reformulated as the following equivalent extremal problem:

n ¢ P(j) R() -
Maximize Y (Z WAL + Z Wi 5)

j=1 1

n ¢ P())
s.t.: Z(Z L”)\”+2L5)<a,
j=1 r=

(3.17)

P(i)

Y af=1 forj=1...n
p=1

all A? =0, 8/=0.

Problem (3.17) is very similar to the extremal problem (3.7). The main
difference is that in (3.17), n sets X are expressed in terms of extreme points
and extreme rays; in (3.7), there is only one such set. As a consequence, (3.17)
has n restrictions of the type Z )\" =1. In (3.7), there is only one such
restriction.

Again, the Dantzig-Wolfe decomposition method solves (3.17) through a
column generation scheme. Suppose = is an optimal dual multiplier vector
associated with the first m inequality restrictions of the restricted master
program at some iteration, and let a = (a; . . . @,) be an optimal dual multiplier
vector associated with the equality constraints.

For eachindexj=1... n, the following problem is now solved to identify a
possible new column for the restricted master problem:

Maximize (c;—wA;)x;
s.t.: B,-x,- = bl', (3.18)
x;=0.

This problem is completely analogous to problem (3.9) above. If this problem
has feasible solutions tending to +co along some extreme ray ; i of the set X,
one adds (L} i»0...0) as a new column to the restricted master problem This
column has m + n components. The associated objective function coefficient is
w;. If (3.18) has a finite optimal solution taken on at the extreme point x| of Xj,
then one checks whether w?—7wL}—a;>0. If so, the column
(L?,0...1...0) is added to the restricted master problem. This column
obviously also has m +n components, the first m of which are given by L. The
last n components are all zero except for the jth, which is equal to unity. If
w! —wL} —a; =0, then no column is added to the restricted master problem for
that particular index j. If, moreover, all the problems (3.18) have finite optimal
solutions x! (j=1...n) for which w] —#L!—a; =<0, then the algorithm
stops—the current optimal solution to the restricted master problem is also
optimal for the full master problem.
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It can now obviously happen that several columns (but at most n) are added
to the restricted master problem in any one iteration. It is also obvious that the
method outlined in section 3.3.2 is a special case of the method here—the case
for n =1.

A bound for the optimal solution value for the extremal problem (3.17) [or,
equivalently, the original problem (3.16)] can be obtained here, too. Suppose
that, at some iteration ¢, the current optimal solution value for the restricted
master problem is z. Let 7 and @ = (a1 ... a.), as before, be optimal dual
multipliers associated with the restricted master problem. If, for one or more of
the indices j=1...n, the corresponding problems (3.18) have unbounded
optimal solutions in the current iteration, then no bound on Z, the true optimal
solution value, can be obtained. However, if for all the indices j, the sub-
problems (3.18) have finite optimal solutions x}, an upper bound is given by:

n
I=<z,+ Y (w)—aL]—«)).
i=1

Here we obtain an upper bound, since problem (3.16) involves maximization.
For a numerical example of the application of the Dantzig—~Wolfe decom-
position method to a block-angular problem, consider the following:

Maximize 3x;;+X2;+2x12+X22

s.t.: 2x11+ +x12+2x22$6:
X1+ x»n + x22S3:
x11+2X21 Sl, (319)

X2~ xnp=1,
X11, X21, X125, X22 = 0.

This is obviously a block-angular problem of the same type as (3.16). Here,
n =2, and the correspondence between (3.16) and (3.19) is brought out by the
following identifications:

Cl=(3: l); CZ=(2: 1);

2 0 1 2 6
A"[1 1]’ Az_[o 1]’ “—[3]’

B,=(1,2); by=1;

X ={(x11, X21) | x11+2x21 =1, X1, X21 =0};
By=(1,-1); by=1;

X ={(x12, X22) | x12—x22=1, X142, x22=0}.

To start off the algorithm, one needs some columns pertaining to both sets X
and X; to form a feasible solution for the first restricted master problem. In this
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case, (0, 0) is an obvious extreme point of both X; and X,. The associated
columns for the restricted master problem are (0, 0, 1, 0) and (0, 0, 0, 1). The
associated objective function coeflicients are both zero. One may hence write
the restricted master problem:

Maximize OA]+0A3

s [o]ae[g]n=[S]

oL 0 1 0 2= 3 ’
0=A3=1,
0<Air=1.

Iteration 1. The restricted master problem now has exactly one feasible, and
hence optimal, solution: A} = A3 = 1. All dual multipliers are zero. Two prob-
lems of type (3.18) must now be solved:

Forj=1: For j=2:

Maximize 3x11+x25 Maximize 2xi;+X22

s.t.: x1+2x, =<1, s.t.: X12—X22=1,
X11, X212 0. X12, X22=0.

The first problem, for j = 1, has a finite solution, the extreme point x3=(1,0)
of the set X,. The associated column for the restricted master problem is
(2, 1, 1, 0), and the objective function coefficient is 3. Since ; =0 and # = 0 in
the current iteration, this column is added to the restricted master problem.
The second problem has an unbounded solution, tending to +0c0 in solution
value along the extreme ray kii, k=0 and ;Ei: (1,1) of the set X,. The
associated column is (3, 1, 0, 0), and the objective function coefficient for the
restricted master problem is 3. Thus, two new columns have been identified,
and the restricted master problem gets extended accordingly. Since the sub-
problem above for j =2 has an unbounded optimal solution, no upper bound
on Z, the optimal solution value of the original problem (3.19), is obtained in
this iteration.
Iteration 2. The restricted master problem is now:

Maximize OA}+3A2+0A}+36;

w0

Ar+al=1,
Az=1,
AL A% AL, 85=0.
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The optimal solution is A1=0, Al=1, As=1, 85=4/3. The optimal dual
multipliers are 7 = (73, m2) = (1, 0), @1 =1, a; = 0. The optimal solution value
z, is 7. Again, two subproblems must now be solved to generate additional
columns, or to conclude that the current optimal solution to the restricted
master problem is also optimal for the full master problem:

Forj=1: Forj=2:

Maximize xi1;+x21 Maximize x;2—x22

s.t.: x11+2x1=1, s.t.: X12—xn=1,
X11, X21 =0, X12, X22=0.

The first subproblem has the optimal extreme point xi=(1,0) of the set X;.
Since this extreme point has been used earlier to create a column for the
restricted master problem, it must obviously hold that Cle— wAle —a1=0.
Therefore, no new column is added to the restricted master problem for j = 1.
For j =2, there are many optimal solutions, but one is given by the extreme
point x3=(1,0) of the set X>. Since cx5—7wAx3—a>=2-1-0>0, the
associated column (1, 0, 0, 1) is added to the restricted master problem. The
objective function coefficient is 2. An upper bound on Z may now be computed.
It is given by z,+0+1=8.
Iteration 3. The restricted master problem is:

Maximize OA]+3A2+0A3+2A5+3685

S N S T SN M

Ar+Ai=1,

Az+As=1,

AL AL A2,A3,8,=0.
The optimal solution is A]=A3=0, A=A3=1, 8§,=1. The optimal dual
multipliers are 7 = (7, m2) =(1, 0), @1 = @2 = 1. The optimal solution value is
8. Since the multiplier vector 7 = (1, 0) is the same as in the previous iteration,
it is clear that no new columns to add to the restricted master problem will be
found by solving the subproblems (3.18) for j = 1, 2. Hence the computations
stop at this point—the current optimal restricted master problem solution is

also optimal for the full master problem. An optimal solution to the original
problem (3.19) may be recovered as:

(xll) x21) = 1x%= (1, 0)5
(X12, x22) = 1x3+ 13 = (2, 1).

Therefore the complete optimal solution is (x11, x21, X12, X22) =(1, 0, 2, 1).
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The Dantzig—Wolfe method, applied to a block-angular Lp problem, is again
a clear case of a two-level methodology. The restricted master problem is the
supremal subproblem, and the infimal subproblems in the adjustment phase are
of the same kind as (3.18). In the adjustment phase, simplex multipliers are
transmitted to the infimal subproblems from the supremal one, and the infimal
subproblems transmit back candidate columns for the supremal subproblem.
In the execution phase, a solution to the original problem can be obtained by
means of relations like (3.6) (one such relation for each infimal subproblem).
That is, suppose A? and &} denote a solution to the extremal problem (optimal
or merely satisfactory but nonoptimal). A solution to the original problem
(3.16) can then be obtained as x = (x,, £2 .. . X,), where ; =Zp7tf-’xf +Y, 8%
However, in actual computer codes, this manner of recovering a solution to the
original problem in the execution phase is usually not to be recommended.
Instead, a solution to the original problem is recovered by means of infimal
subproblems in the execution phase of the kind (forj=1...n):

Maximize c;x;
s.t.: Ax; <Y, LPA?+Y, L}5],
Bixi = bis

x;=0.

Let %; be an optimal solution. Then ¥ =(%;, X ... %,). This means that the
overall solution to the original problem is obtained in the execution phase from
the infimal subproblems. However, the infimal subproblems in the execution
phase are different from the infimal subproblems in the adjustment phase. This
possibility was mentioned earlier (section 2.1.3); for further discussion, see
section 4.2,

The original problem (3.16) is often taken to represent a planning problem in
a divisionally organized firm with » divisions (or departments). The vector x;
gives activity levels for the jth division. The divisions are independent, except
that they jointly utilize certain scarce resources, m in number, the availability
of which is given by the vector a. The coupling constraints Z;;]A,-x,-sa
express this joint resource usage. Additionally, each division faces local
constraints, pertaining only to its own activities, given by B;x; < b;, x; = 0. In this
situation, the Dantzig-Wolfe method has a well-known economic inter-
pretation (see, for instance, Almon 1963; Baumol and Fabian 1964;
Bagrinowski 1975, pp. 147-150; Mandel’ 1973). The supremal subproblem
pertains to corporate headquarters. There are n infimal subproblems, one for
each division, of the form (3.18). The supremal subproblem iteratively sends a
price vector 7 associated with the joint resources to the infimal subproblems,
and the infimal subproblems respond with plan proposals. These plan
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proposals are of the form (A;x7) or (A%]) and may be considered as vectors of
the joint resources demanded, given the announced prices 7. It has been
suggested that the Dantzig-Wolfe method could actually be implemented as an
institutionalized planning procedure in corporations. This matter is explored
further in Chapter 6.

34 THE DANTZIG-WOLFE METHOD FOR NONLINEAR
PROGRAMS

Decomposition methods for nonlinear mathematical programming problems
have also been developed. In this section we present a method that is based on
the Dantzig-Wolfe decomposition principle for linear programs. It aims at
solving nonlinear problems that are generalizations of the block-angular
structures discussed in section 3.3.6. For an original statement of the method,
we refer to Dantzig (1963, Chapter 24); Lasdon (1970, pp. 242-254) and
Sekine (1963) are also of interest.

We will consider the following optimization problem, the original problem of
this section:

Maximize Y fi(x;)
i=1

s.t.: A,-xj =a, (3-20)

1

i =

7

x; € X; forj=1...n,

where each x, is an n; vector, a is a column vector of dimension m, and each A;
is an m x n; matrix. Each function f; is continuous and concave, and each set X;
is closed, bounded, and convex. We will also assume that the set of feasible
solutions to (3.20) is nonempty. Since the sets X; are not necessarily poly-
hedral, we cannot make use of the characterization result of section 3.3.1.
Instead, we shall make use of grid linearization, a technique introduced by
Wolfe (1967).

For any one of the convex sets X; (j=1...n), consider a set of grid points
{£i]£; € X;, s =1...S())}. Their convex hull is

. (i)
X,-={x,~lx,~= Y AjE, Aj=0 fors=1...S(]'),ZA}'=1}.
i=1
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Clearly, X’;QX; by convexity. We can now formulate the following linear
program (3.21), which approximates (3.20):

n S(j)

Maximize Y Y fi(£]

j=1 s=1

n S(j)

s.t.: Y X (Af)Aj=a,

ji=1 s=1
s (3.21)
Y oai=1 forj=1...n
s=1

Aj=0.

(§.21) is an approximation of (3.20) in the following sense: A feasible solution
{Aj}to (3.21) determines ¥; =Y Aj%,j=1... n, as a feasible solution to (3.20).
The objective function value of (3.21) glves a lower bound to (3.20), since (by

concavity)
n S(j) n

33 penki= £ (T Ki).
j s=1

Problem (3.21) is the restricted master problem, or supremal subproblem, in
the Dantzig-Wolfe method for nonlinear programs.

Given the convexity assumptions, one can imagine that, for a suitable choice
of grid points, (3.21) would constitute a close approximation to (3.20). A
suitable choice of grid points is achieved in the following algorithm in an
iterative fashion by means of a column generation scheme. This scheme will
generate a close approximation in the sense that one is able to show con-
vergence to an optimal solution to (3.20) in an infinite number of iterations.
This implies that after sufficiently many iterations one can come arbitrarily
close to an optimal solution.

Suppose that, at some iteration, one has available as grid points the sets
{£i|s=1...8(j)}, resulting in a feasible restricted master problem (3.21), and
that one solves (3.21) using those grid points. Let the m vector 4r, associated
with the m inequality constraints of (3.21), and the n vector «, associated with
the n equality constraints of (3.21), be optimal dual multipliers. One then
solves the following programming problem for each index j=1...n

Maximize f;(x;)—7wA;x;
filx))—mA;x; (3.22)
s.t.: x;je X
Problems (3.22), for j=1... n, are infimal subproblems. They may be hard to
solve, but we will not go into that matter here. Let x; denote an optimal
solution to (3.22). If fi(x;)—mA;x; —a; >0, x; is added as a grid point, and
hence the column (Axj,0...1...0) with objective function coefficient
fi(x}) is added to the restricted master problem (3.21). If f;(x}) — wA;x; —a; <0
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for all j, the algorithm stops. An optimal solution to (3.20) can then be obtained
from the solution to (3.21) in the last iteration.

A proof of the optimality condition may be found in Dantzig (1963, pp.
475-476). The above method converges only in infinitely many iterations,
which is not the case with linear programs (Dantzig 1963, pp. 476—478).
However, just as in the linear case, a termination criterion based on the
existence of upper and lower bounds at each iteration may be included. To
obtain an initial solution to the restricted master problem (3.21), artificial
columns may be used. In the adjustment phase, then, (3.21) is the supremal
subproblem, and the infimal subproblems are of the type (3.22). The infimal
subproblems are iteratively supplied with dual multipliers from the supremal
subproblem, and transmit back columns. In the execution phase, a solution to
the original problem can be obtained from the last solution to the supremal
subproblem, denoted {A}}, by the relations £ =Y Aj£; (j=1...n).

The Dantzig-Wolfe decomposition method for linear block-angular prob-
lems is a special case of the above algorithm. In fact, assume each f; to be linear,
each X polyhedral, and take the respective extreme points as grid points. Then
grid linearization corresponds to the Dantzig-Wolfe decomposition method
for linear programs. There is, however, a theoretical difference. In the case of
linear models, it is optional to retain columns that are priced out of the basis of
the restricted master problem at a particular iteration (see section 4.2 for
further discussion). In the nonlinear case, the situation is more complex. In
general, columns have to be retained to ensure convergence. Murphy (1973)
gives two sufficient conditions under which columns may be dropped.

The Dantzig-Wolfe decomposition method for nonlinear programs is uti-
lized in Chapters 9 and 10 (an electricity generation problem and a problem
regarding water pollution control). The first case involves only one infimal
subproblem, and the second case involves several.

3.5 THE BENDERS ALGORITHM AND SOME EXTENSIONS

3.5.1 AN OUTLINE OF THE BENDERS ALGORITHM

Benders’ algorithm (Benders 1962) was originally developed for mixed-integer
linear programming problems. The development of the Benders algorithm is
the subject of this section. We discuss here optimization problems of the
following type:

Minimize cx +f(y)
s.t.: Ax+F(y)=b,
(3.23)
yeYy,

x=0.
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Problem (3.23) is the original, or overall, problem of this section. Here, two
types of variables are considered, n ‘‘linear” variables given by the vector x and
q ‘‘special” variables represented by y. In (3.23), ¢, b, A are, respectively, an n
vector, m vector, and an m Xn matrix; f(y) and F(y) are, respectively, a
real-valued continuous function and an m-dimensional vector-valued
continuous function defined on a compact set Y, a subset of E“. Problem (3.23)
is not necessarily a linear one. The functions f(y) and F(y) could, for instance,
be linear, but the set Y could be a set of integer-valued vectors. In that case,
(3.23) is a mixed-integer program. We have already noted that Benders’
algorithm was originally developed precisely for this type of integer program-
ming problems. On the other hand, with suitable specifications on f(y), F(y),
and Y, (3.23) can be a linear programming problem.

We will now reformulate problem (3.23). Our objective is to derive an
equivalent problem formulation, in somewhat the same fashion as in the
discussion of the Dantzig-Wolfe decomposition method. There, we started
with an LpP problem (3.4) and then derived the equivalent extremal problem
(3.7).

In (3.23), the feasible choices of y are limited by the constraint ye Y.
However, if y is fixed, an ordinary linear program results:

Minimize cx
s.t.: Ax=b—F(y), (3.24)
x=0.
For certain choices of y, (3.24) may not possess feasible solutions. Hence, y
must be chosen subject to the following constraint (in addition to y € Y):
y € % ={y | there exists x =0 such that Ax =b—F(y)}.
From Farkas’s lemma* (see, e.g., Gale 1960, pp. 42-49), it follows that there
either exists an x such that
Ax=b—-F(y), x=0

or there exists a u« such that
uA=<0, wu@b-F(y)>0, u=0,

but not both. Hence, if y is chosen such that u(b — F(y)) < 0 for all u satisfying
uA<0,u=0,then ye . Leta' ... i~ be the finite set of extreme rays of the
cone {u|uA <0, u=0}. It then holds that (b —F(y)) <0 for all u satisfying
uA =0, u=0, if and only if &'(b —F(y))<0 for all extreme rays &' (r=
1...R). The set % may hence be specified as

Y={y|la"(b-F(y))=<0,r=1...R}.

* Farkas’s lemma: Either there does exist a nonnegative solution to the system of linear
inequalities Ax = d, or the system uA <0, ud >0, has a nonnegative solution.
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We may rewrite (3.23) as
Minimize {f(y)+min[cx|Ax=b—F(y), x=0]}
s.t.: yeYn%.

(3.25)

Analyzing (3.25), we can now distinguish two cases.

Case 1: Y n% # . Feasible solutions to (3.25) exist, which also means that
(3.23) has a feasible solution. The optimal solution value of (3.23) could,
however, be unbounded. For ye Y n %, the inner minimization is a linear
programming problem. This problem either has a finite optimal solution, or an
unbounded solution, in which case the optimal solution value is taken as —co.
Its dual is

Maximize u(b—F(y))

s.t.: uA=c,u=0.

The dual then has either a finite optimal solution or no solution at all. In the
latter case, the optimal solution value is taken as —c0. It then holds that

min {cx|Ax =b ~F(y), x =0} =max {u(b - F(y))|uA <c, u =0},

regardless of whether the minimization problem has a finite optimum solution
or an unbounded solution. We may then rewrite (3.25) as

Minimize {f(y)+max[u(b—F(y)|uA<c, u=0]}
s.t.: yeYn®.

(3.26)

If the inner maximization is not feasible, then (3.26), and consequently (3.23)
as well, have solution values tending to —oco. If the inner maximization is
feasible, the maximum value is taken on at an extreme point u” of the
constraint set {u | uA < ¢, u =0}. Let there be P such extreme points. We may
then rewrite (3.26) as

Minimize {f(y)+ max_ [u”(b—F(y)]

3.27)
s.t.: yeYn@.

If there exists no u such that uA <c¢, u =0, then P =0, i.e., the set of extreme
points is empty. In that case, the inner maximum is taken as —o0, so formulation
(3.27) is valid. Formulation (3.27) may be rewritten further as:

Minimize =z

s.t.: z=f(y)+u(b-F(y)) (p=1...P),
uwB-Fy)=0 (r=1...R),
yeY.

(3.28)
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Case 2: Y n% = . In this case, (3.23) has no feasible solution, which implies
that (3.28) also has no feasible solution. Conversely, if (3.28) has no feasible
solution, then there are no feasible choices of y in (3.23), so (3.23) is also
infeasible.

From the previous development, it is clear that the following statements
must hold:

1. Problem (3.23) has a feasible solution if and only if (3.28) has a feasible
solution.

2. Problem (3.23) has an unbounded solution value if and only if (3.28) has
an unbounded solution value.

3. If (z°, y°)is an optimal solution to (3.28) and x° an optimal solution to the
problem

Minimize c¢x
s.t.: Ax=b-F(y°),
x =0,

then (x°, y°) is an optimal solution to (3.23). Conversely, if (x° y°) is an
optimal solution to (3.23), set z°=cx’+f(y°), and (z°, y°) is optimal for
(3.28).

Problem (3.28) is the desired equivalent formulation of (3.23). It plays the
same role in the Benders algorithm as the full master problem in the decom-
position principle of Dantzig and Wolfe. If the complete specification of (3.28)
were available, it could be solved right away. However, it may have a very large
number of restrictions, because the number of extreme points (P) and extreme
rays (R) could be very large. One method of solving (3.28) is to generate the
constraints successively, as they are needed, which is precisely what Benders
algorithm accomplishes. This is, again, similar to the situation in the Dantzig—
Wolfe algorithm, where the extremal problem has many columns, but where
these are generated successively as the algorithm proceeds.

More precisely, suppose one has at hand the following restricted version
of problem (3.28), where only a subset P of the restrictions
z=f(y)+u”(b—F(y)) and a subset R of the restrictions #'(b— F(y)) <0 are
given:

Minimize 2

s.t.: z=f(y)+u®(b—F(y)) (pe?),
@'b-F(y)=0 (reR),
yeY.

(3.29)
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Let (Z, y) be an optimal solution. Then consider the L problem:

Maximize u(b—F(¥))
s.t.: UA=<c, (3.30)

u=0,

which is, of course, the dual of min {cx | Ax = b — F(§), x =0}. If (3.30) has an
unbounded optimal solution value, then some constraint & (b—F(y))=<0
must be violated for the extreme ray " and for y = 7. In that case, that extreme
ray is identified and the corresponding constraint is added to the problem
(3.29). If (3.30) has a finite optimum, given by the extreme point u”, then it
may be that the corresponding constraint z = f(y) + u” (b — F(y)) does not hold
for that index p and for y =y, z =7. In that case, too, the corresponding
constraint is added to (3.29). However, suppose that 7 = f(7)+ u® (b — F(5))
does hold, where 4” is an optimal extreme point solution to (3.30). It must then
hold that 7 — f(§) = u” (b — F(§)). If not, assume 7 —f(§)>u” (b —F(5)). In
view of (3.30), u”(b—F(§))=max,cs {u°(b—F(7))}. Hence, if z—f(§)>
u?(b—F(§)), then zZ—f(§)>max,ce {u°(b—F(7))}. This contradicts the
optimality of (Z, y) for (3.29), so it must be that Z — f(y) = u”(b —F(y)).
Summing up, if (3.30) has a finite optimal solution and if max {u(b—
F(7))|uA =c, u=0}=7 —f(y), then the solution (z, y) is feasible and optimal
in (3.28). Optimality follows since (3.28) and (3.29) have the same objective
function; however, the feasible region of (3.28) is included in that of (3.29).
The steps of the Benders algorithm can now be outlined as follows:

Step 0. Initiate the algorithm with a problem of the type (3.29), where the
sets  and & may contain very few elements (or even none at all).

Step 1. Solve the current version of problem (3.29), with those constraints
that are presently at hand. If (3.29) has no feasible solution, then stop; the
original problem (3.23) also has no feasible solution. If (3.29) has a bounded
optimal solution (Z, y), goon to Step 2. If (3.29) has an unbounded solution, let
{(Z, y) be any feasible solution such that Z = —co, and go on to Step 2.

Step 2. Solve problem (3.30), with y specified in Step 1. If (3.30) is infeasible,
stop; the original problem (3.23) is either infeasible or has unbounded optimal
solutions. (This situation can arise only in the first iteration and is discussed in
the following subsection.) If (3.30) has an infinite optimal solution value, go to
Step 3. If (3.30) has a finite optimal solution, go on to Step 4.

Step 3. In this case, u(b — F(y)) tends to +c0 along some extreme ray . Add
the corresponding constraint &' (b —F(y)) =<0 to problem (3.29) and return to
Step 1.

Step 4. In this case, let 4” be an optimal extreme point solution. If u”(b—
F(y))= 7 —f(y), then stop—the optimal solution (Z, ¥) to (3.29) is also optimal
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for (3.28). If u”(b—F(y))>Z—f(y), the corresponding constraint z =
f(y)+u”(b—F(y)) is added to problem (3.29). Go back to Step 1.

An iteration begins with Step 1 and ends upon return to that step. Finite
convergence is guaranteed, since there are only a finite number of extreme
points (P) and extreme rays (R), and one extreme point or extreme ray is
identified at each iteration.

The Benders algorithm, like the Dantzig—Wolfe decomposition algorithm,
produces a lower bound on the value of the optimal solution to the original
problem (3.23) as it proceeds. Let (z,, y.) be an optimal solution to (3.29) at
some iteration r. Then, obviously, z, is a lower bound on the optimal solution
value for (3.23), since the feasible region of (3.28) is included in that of (3.29).
This lower bound z, converges monotonically on the true optimal solution
value. If problem (3.30) has a finite optimal solution for y = y,, then obviously
f(y)+max {u(b—F(y.))|uA <c, u=0} is an upper bound on the true opti-
mal value. This upper bound, though, does not converge monotonically. Also,
it should be noted that if, in some iteration ¢, the dual of (3.30) is feasible, then
this does not guarantee that it will be feasible in all following iterations.

The Benders algorithm, as outlined here, can clearly be regarded as a
two-level method. Problem (3.29) is the supremal subproblem. There is only
one infimal subproblem, (3.30). The information exchange between supremal
and infimal subproblem in the adjustment phase was described in the preceding
outline of the steps of the algorithm (Steps 1-4). In the execution phase, a
solution to the original problem (3.23) is recovered from both the supremal and
infimal subproblems. The supremal subproblem supplies the y component, the
infimal subproblem the x component of the resulting solution to the original
problem. The x component is, of course, only an optimal dual solution to the
infimal subproblem (3.30). The information exchange between the sub-
problems in the adjustment phase may be visualized as in Figure 3.6.

3.5.2 A NOTE ON STEP 2 OF THE BENDERS ALGORITHM

In Step 2 of the Benders algorithm, it may happen that problem (3.30) has no
feasible solution. The question is then: What conclusion can be drawn about
the original problem (3.23)? The answer is that it could be either infeasible or
have an unbounded optimal solution. Consider the following example:

Minimize —x;—x;
s.t.: —x1+x;—y1=0,
X1—x2—y2=0, (3.31)
X1, x,=0,

(Y, y2e Y={y, y2)|l=y1=2, 1=y,=2}.
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Supremal subproblem

Minimize z

s.t.: z=f(y)+u®[b-F(y)] (pe?),
@'[b-F(y)]=0 (re®R),
yeY.

Let (Z, y) be an optimal solution.

<)
—

uP
or
i

Infimal subproblem
Maximize u[b—F(y)]
s.t.: uA <c, u=0.

Let «” be an optimal extreme point solution or i#" an optimal extreme ray solution.

FIGURE 3.6 The adjustment phase of the Benders algorithm.

Suppose one wants to solve this problem (which is not feasible) with the
Benders algorithm. To begin with, let the sets ? and & in (3.29) be empty. In
Step 1 of the first iteration, one would hence formulate and solve the following
problem, with 2 =R = J:

Minimize z
s.t.: 1=y, =<2,
1 =< Y2 = 2-

Since this problem has optimal solution values tending to —o0, one would in
Step 1 pick any feasible (y,, y.), for instance, y; =2, y,=2. In Step 2, one
would then solve the following maximization problem, corresponding to
(3.30):
Maximize 2u,+2u;
s.t.: —uytu,<-—1,
(3.32)

ul——uzs—l,
Uy, u=0.

Problem (3.32) is not feasible.
Now suppose one changes the set Y in (3.31)to0<y;<2,0=<y,=<2.Then
(3.31) has solutions with objective function value tending to —oo. However, in
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Step 1 of the first iteration, one may still set y; =2, y, =2, and one will then in
Step 2 obtain problem (3.32), an infeasible problem.

Hence, if problem (3.30) in Step 2 has no feasible solution, a further
investigation of the reasons may be necessary. Obviously, this situation must
occur in the first iteration, if it is to occur at all. This follows since the feasible set
of the infimal subproblem is the same in all iterations (i.e., it does not depend
on y).

3.5.3 A NUMERICAL EXAMPLE

Consider the following mixed-integer programming problem taken from
Garfinkel and Nemhauser (1972, p. 141), and written in the format of (3.23):

Minimize 2x1+6x2+2y,;+3y;

s.t.: ~x1+2x2+3y1~ y2=5,
x1—3x242y,+2y, =4, (3.33)

X1, x2=0,

y1,y2=0, 1, or 2.

Problem (3.33) is the overall problem under consideration. If y, and y, are
fixed, an ordinary Lp problem results. The dual of this LP problem has the
constraint set

{(uy, uz)|—ur+u <2, 2uy—3u, <6, u; =0, u, =0}.
This constraint set has three extreme points:
u'=(0,0); u?=1(0,2); u>=(3,0);
and two extreme rays, which may be written as:
at=1,1;  4’=(@3,2).

Hence, (3.33) may be rewritten in the following equivalent form, as the full
master problem of the Benders algorithm, problem (3.28) above:

Minimize =z

—5—3)’1+ )’2-
[4-2y,-2y,]"
[5—3y1+ y2]
_4—2_)’1 —2_)’2_4 ’
—5_3)’1+ )’2-
L4"‘2)’1—2)’2- ’

s.t.: z2=2y;+3y,+(0,0)

Zz 22_)’1+3)’2+(0, 2)

z2=2y;1+3y.+(3,0)
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IA

(1,1>[5’3y‘+ "] <o,

4-2y,-2y,

A

5=3y+ Yz] 0

4—2)’1—2)’2
Y1, )’2=0, 1, or 2.

6.2)

Simplifying, this problem may be rewritten as

Minimize =z

s.t.: z=2y;+3y,,
z2=8-2y1— Y2,
z2=15-Ty;+6y,, (3.34)
9-5Sy;—y2,=0,
23-13y; -y, =0,
¥1,¥2=0,1, 0r 2.

Problem (3.34) is equivalent to (3.33). Problem (3.34) has the optimal solution
y1=2, y»=0, Z =4. To obtain the optimal solution to (3.33), one fixes y,; =2
and y, =0 and solves the resulting Lp problem (or its dual), to obtain the
optimal solution %; =%, =0. (0,0, 2, 0) is hence the optimal solution to the
overall problem (3.33).

Suppose, however, that one desires to solve (3.33) by means of Benders’
algorithm. To start out, suppose no extreme points or extreme rays have been
generated so far. The initial supremal subproblem is hence

Minimize 2
s.t.: y1,¥2=0,1, or 2.

Iteration 1. The initial supremal subproblem has unbounded solutions.
Hence we set (Z, y,, y,) arbitrarily to {—o0, 1, 1). We then construct the infimal
subproblem, corresponding to (3.30) above:

Maximize 3u;
s.t.: —ui+ u<2,
2141—-314256,
Uy, uz=0.

This problem has an unbounded optimal solution value, going to +c0 along the
extreme ray (1, 1) (for example). Hence a corresponding restriction is added to
the supremal subproblem.
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Iteration 2. The supremal subproblem is now

Minimize 2
s.t.: 9—5y1—y2=0,
y1,¥2=0, 1, or 2.

Again, the supremal subproblem has unbounded solutions. Arbitrarily, let
(2, ¥1, y2) = (-0, 2, 0). The infimal subproblem is then

Maximize —u,
s.t.: —ur1+ ury=<2,
2u1—3u,<6,

Uy, U2=0.

The infimal subproblem now has the optimal extreme point solution (0, 0). The
optimality test is not passed, since

o, 0)[_(1)] >—c0—4=7~27.

Hence a constraint corresponding to the extreme point (0, 0) is added to the
supremal subproblem.
Iteration 3. The supremal subproblem is now

Minimize z
s.t.: z2=2y,+3y,,
9-5y1—y2=0,
y1,¥2=0, 1, 0r 2.

The supremal subproblem now has the optimal solution (Z, y1, ¥2) =4, 2, 0).
The infimal subproblem is exactly the same as in the previous iteration, and this
time the optimality test is passed. Hence, the adjustment phase stops, and an
optimal solution to the original problem may be recovered.
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3.54 THE APPLICATION OF THE BENDERS ALGORITHM TO BLOCK-
ANGULAR STRUCTURES

In section 3.3.6 the block-angular problem (3.16) was formulated. It is
rewritten here for convenience:

Maximize cixi+caxa2+: - +CuXn

s.t.: Aixi+Ax+-+A,x,=a,
Bix; = b, (3.16)

Bx, < b,,

- B,x,<b,,

X1, X2...x,=0.

This problem, as it stands, is not immediately recognizable as suitable for an
application of the Benders algorithm. That is, there is no obvious partitioning
of the total set of variables, corresponding to the x and y in (3.23). However,
suppose one rewrites the block-angular problem as follows:

Maximize cixi+caxz+: -+ Cux,
s.t.: Aixg —-a, =0,
Bix, = by,
Aszxy —a =0,
(3.35)
Bx; =b,,
‘ A,x, —a, =0,
B.x, =b,,
aita+---+a,=a,
X1,X2...%,20.

It is easy to see that

1. Problem (3.16) has no solution if and only if (3.35) has no solution.

2. Problem (3.16) has unbounded optimal solutions if and only if (3.35) has
unbounded optimal solutions.

3. If (¥, %, ... %,)is optimal for (3.16) then (x; . . . £, @1 . . . d,) is optimal
for (3.35), where 4; is chosen so that @, =A%, ¥, a;=a If (£1...%,
a ... a,) is optimal for (3.35), then (x; ... %) is optimal for (3.16).

Problem (3.35) is of a kind suitable for the Benders algorithm. It has two
groups of variables: (x; ... x,) and (a; ... a,). The a variables will be taken to
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correspond to y in (3.23). A small difference between (3.35) and (3.23) is that
the set of (a; ... a,) satisfying ) a; = a [corresponding to Y in (3.23)] is not
bounded. This has consequences that are discussed further in section 6.3.3. For
given (a, ... a,), (3.35) decomposes into n separate problems. The jth may be
written as

Maximize c;x;

s.t.: A,‘X,‘ =aj

Bjx;< b,

(3.36)

x,ZO.

Precisely as in the discussion of the Benders algorithm in section 3.5.1, a
vector a; is feasible for (3.36) if and only if

('zll7 ’le)r(al’ bI)ZO

for all extreme rays (i},d;) (r=1...R(j)) of the cone {(u}, ulYulA;+
ufB,- =0, (u}, uf) =0}. The set of; of a; such that (3.36) has a feasible solution
may hence be written:

oAy ={a;| (@], d}) (ap b;)=0, r=1...R(j)}.

Now let (u}, uf)" (p=1...P(j)) be the set of extreme points of
{(u}, u)\ujA;+u’B;=c;, (u}, u?)=0}. Consider any g; € &¢;. By duality rela-
tions in linear programming, it must hold that

max {¢;x;| A;x; <a,, Bjx;<b,, x;=0}

. 1 2\pP
= u. . . .
,min {(uj, u7)"(a), b))

<(uj,u’)(a,b;) forp=1...P(j).

It is seen that (3.35) may be rewritten in the following equivalent manner,
corresponding to problem (3.28) in section 3.5.1:

Maximize zi+2,+::'+2,

s.t.:
zi<(u},ul¥(a,b) p=1...P3), j=1...n, (3.37)
a,‘G-de j=1...n,

aita,+--+a,=a.

From this formulation, it is clear how the Benders algorithm can be implemen-
ted: One starts each iteration with a simplified version of (3.37), where, for
each j, only a subset of the restrictions z;=<(u;, uf)" (a;, b;) and

(i}, ﬂ,?)’(a,-, b;) =0 are known. That simplified version of (3.37) is, of course,
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the supremal subproblem. This results in some solution (Z,%,...2Z,;
dy, dz...d,).* For each j=1...n, one then solves problem (3.36), given
a; = d; [or one solves the dual of (3.36)]. If the dual of (3.36) has solution values
going to —oo along the extreme ray (i;, ﬁf)', the corresponding constraint
(12‘,!, i) (a; b;)=0 is added to the supremal subproblem. If the dual of (3.36)
has a finite optimal solution—the extreme point (u }, u,?)p , with solution value
(u}, u})(a;, b)) < Z;—the corresponding constraint (u;, u;)’(a;, b)=z; is
added to the supremal subproblem. If (3.36) (or its dual) has a finite optimal
solution value (u}, uf)” (a; b;j) = Z,, then no constraint is added to the supremal
subproblem for that index j.1 If each problem (3.36) (or its dual) has a finite
optimal solution value (u}, uf)"(dj, b;) and if (u}, uf)”(d,-, b=z forall j=
1...n, then the process stops. An optimal solution to (3.37) has been
obtained.

This method of solving LP problems with block-angular structures has been
discussed by several authors; see, e.g., Freeland and Baker (1975), Geoffrion
(1970a), or ten Kate (1972). The algorithm is sometimes referred to as the
ten Kate algorithm, but it is really a direct extension of the Benders
algorithm,

The Benders algorithm has a very clear two-level interpretation in the
context of the overall problem (3.35). As was mentioned in section 3.3.6, a
block-angular Lp problem may be interpreted as a planning problem in a
divisionally organized corporation, where the divisions jointly utilize certain
scarce resources. This interdependence is expressed by the vector inequality
A1x1+Azx;+ - - -+ A,x, = a. Under the Benders algorithm, there is a supre-
mal subproblem that involves allocations of the joint resources between
divisions. These allocations are given by the vectors a;...a, There are n
infimal subproblems, each of the type (3.36). The infimal subproblem of
division j consists of finding an optimal production program for that division,
taking into account the given allocation vector a;. Denote the optimal solution
value for (3.36) by v;(a;) (which may be set to — if a;¢ &;). For some g,
suppose (3.36) has a finite optimal solution. Let (i}, ;) be an optimal dual
solution. For some other a, € &,

v;(a;) =min {(u}, uf)(a,-, b)) u}A,- + u?B, =cj, (u}, uf) =0}

~1 -2
_<_u,-a,-+u,-b,-.

* The possibility of unbounded 4, ...a, may be eliminated by imposing on the supremal
subproblem restrictions a; < M, where M is a vector with “large” components. See also section
6.3.3.

+ For completeness: If the dual of (3.36) is infeasible, a special investigation is necessary. This is the
situation discussed in section 3.5.2.
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It also holds that v;(;) = i} a; + i: b;. That is, one has the two relations
0=uv;(a)—a;a;—i;b,
vi(a)) <iaja;+a;b;

Adding these two relations, one obtains v;(a;)=<v;(d;)+i; (a;—a,). The
information sent back from subproblem (3.36) includes ; if d; € 5. From this
discussion, it is seen that ﬁ,l may be interpreted as a piece of information on
how the optimal solution value of (3.36) would change in response to small
changes in g;. Or, even more specifically, E,l may be interpreted as a vector of
maximal prices that the division would be willing to pay for incremental
amounts of the joint resources. Hence, one could say that the supremal
subproblem sends information about quantities to the infimal subproblems
under the Benders algorithm. The infimal subproblems respond with price
information.

The Benders algorithm, as applied to the block-angular Lp problem (3.16), is
an instance of the idealized multilevel approach discussed in section 2.1. A
two-level subproblem hierarchy is constructed. There are n infimal sub-
problems of the type (3.36). The jthinfimal subproblem is parameterized by the
vector a;. The supremal subproblem may be described as one of finding an
optimal allocation, or partitioning, of the right-hand side a of the coupling
constraints among the infimal subproblems. The adjustment phase is as
described above: i.e., an iterative exchange of quantity and price information.
In the execution phase, the resulting solution to the overall problem (3.16) is
recovered from the infimal subproblems (3.36).

3.5.5 ON THE RELATION BETWEEN THE BENDERS AND DANTZIG-WOLFE
ALGORITHMS

From what has been said so far about the Dantzig-Wolfe and Benders
algorithms, one can detect certain relationships between the two. The supremal
subproblem of the Dantzig-Wolfe algorithm is successively extended with
additional columns, whereas the supremal subproblem under the Benders
algorithm is extended with additional rows (restrictions) as the algorithm
proceeds. Also, the information flows under the Dantzig—Wolfe algorithm may
be briefly described as follows: the supremal subproblem sends prices to the
infimal subproblems; these respond with quantities. The Benders algorithm
involves precisely the opposite flows, as was pointed out at the end of section
3.5.4. In a formal sense, the two algorithms may indeed be regarded as dual
ones. This holds only when they are applied to linear problems like (3.35),
however. The reason is that the Dantzig-Wolfe algorithm, as has been dis-
cussed here, has not been defined for mixed integer programming problems,
among others.
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Consider, therefore, problem (3.35) again. The dual of (3.35) may be written
as

Minimize wulb,+usby+- - +ulb,+ma

s.t.: —u} +7=0 (j=1...n), (coupling constraints) (3.38)
M}A,""M?B,'ZC,' (]'=1...n), )

(u}, u})=0 (G=1...n).

Suppose now one applies Dantzig-Wolfe decomposition problem (3.38).
The Dantzig-Wolfe extremal problem is then

n (P ) RG) o
Minimize Y { Y AT (ui Y+ Y 8(i; )'b,}+1ra
j=1lp=1 r=1
P() . R '
s.t.: - Y Al Y- ¥ 8{(@;)+m=0 (j=1...n), (3.39)
=1 r=1

p

P(j)

YT Af=1 (j=1...m),

p=1
AL 8] =0.

If one now takes the dual of (3.39), denoting the dual variables of the first n
vector equalities by a; and of the n convexity rows by z;, then one obtains
problem (3.37), i.e., the equivalent full master problem of the Benders
algorithm. From this, it is not difficult to see that applying the Benders
algorithm to (3.35) is entirely equivalent to dualizing (3.35) and then applying
Dantzig-Wolfe to the dual. The information flows from the supremal sub-
problem to the infimal ones and from the infimal subproblems to the supremal
one will be exactly the same in both cases. The optimality tests in the two cases
also involve the same condition.

3.6 THE KORNAI-LIPTAK DECOMPOSITION ALGORITHM

The decomposition algorithm that we will discuss in this section arose in the
context of economic planning and was presented in Kornai and Liptak (1965).
It turns out that this algorithm is a simplified version of the Benders algorithm
when applied to the block-angular problem (3.16). These simplifications are a
consequence of a few additional assumptions. In the following discussion, we
assume that two conditions are met:

® The sets f; (defined in section 3.5.4) can be completely specified in
advance as &, =(E™)", i.e., the set of nonnegative m vectors.
® The sets {x;| B;x; < b;, x; =0} are bounded.
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With respect to the first condition, it follows easily that if 0€ {x;| Bjx;<b,
x;=0}and A;=0forj=1...n, this condition is met.

We can now specify the Kornai-Liptak algorithm for solving problem (3.35)
satisfying the above conditions.

Iteration 1 (initialization)
Step 1. Select any a;(1), j=1...n, such that a;(1)=0 and ¥ a;(1)=a.
Step 2. Set a;{(1)=a;(1)forj=1...n
Step 3. Solve the subproblem, forj=1...n
Maximize c¢;x;
s.t.: Aix;i<a;(1),
B,-x,» = b,‘,
x;=0.
Let uj(1) and u?(1) be optimal dual multiplier vectors associated with
A;xi<ai{l) and B;x;<b;. A lower bound on the optimal solution value of

(3.35) is given by Z, 1(u (1)a,(1)+u (1)b,).
Step 4. Setu (1)=u; ), uj 21y = u; 2(1), j=1..

Iteration t
Step 1. Solve the Lp problem:

Maximize _Z u} (t—1)aq;

n
s.t.: Y a;j=a,

a; =0, j=1...n

Let a;(t),j=1... n, be an optimal solution. The quantity Z, 1 (u (t=1a;(t)+
u?{t—1)b;) is an upper bound on the optimal solution value of (3.35). Note that
this problem is solved by allocating all of the ith common resource to that
division j that has the highest objective function coefficient for that particular
resource.

Step 2. Set

a(ty =2 % ays)
t s=1

t—-1 1
=—t—a,~(t—1)+7a,~(t), j=1...n.
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Step 3. Solve the subproblems, forj=1...n:
Maximize c¢;x;
s.t.: A,»x,» = a,»(t),
Bjx;=b;,
x;=0.
Let (u} (1), uf(t)) be an optimal dual multiplier vector. Now
Z,';l (u} (Dai(t)+ uf (t)b;) gives a lower bound on the optimal solution value of

(3.35).
Step 4. Set

N
ui(ty=— % u;s)
ts=1
— . 1 .
=%u}(t—1)+7u}(t), j=1...ni=1;2.

Go to iteration ¢+ 1.

This is the adjustment phase of the Kornai-Liptak algorithm. In Step 1 of
each iteration, the supremal subproblem is solved, in Step 3, the infimal
subproblems. Steps 2 and 4 deal with the iterative information exchange
between supremal and infimal subproblems. It can be demonstrated that the
sequence of allocation vectors (a(f) ... a,(t)) will converge toward optimal
allocation vectors as ¢ goes to infinity. Finite convergence does not occur except
in very special cases. Convergence follows from certain game-theoretic results
on the solution of two-person zero-sum games by fictitious play (see Gale 1960,
p. 246, for a discussion of fictitious play). However, since finite convergence
does not occur, the adjustment phase must usually be terminated before
optimal allocation vectors have been identified. In the execution phase, a
feasible solution to (3.16) is obtained from the infimal subproblems.

Apparently, the supremal subproblem in Step 1 of each iteration is a greatly
simplified version of (3.37). In (3.37), there may be a very large number of
restrictions of the type z; s(u}, u,z»)" {a,, b;) for each index j. Storing all those
restrictions may not be feasible because of limited computer memory capacity.
The Kornai-Liptak algorithm was developed precisely to economize on
computer memory capacity.

3.7 LAGRANGEAN DECOMPOSITION IN NONLINEAR
PROGRAMMING

The discussion in the previous sections focused on linear models and their
immediate extensions; here, however, we will present a two-level method,
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often referred to as Lagrangean decomposition, for nonlinear mathematical
programming problems with ‘‘separable’ objective functions and constraint
sets. The basic ideas underlying the approach were already present in early
work of Uzawa (1958). In Lasdon (1968) and Geoffrion (1971), duality theory
is employed to derive the method. The reader may also find an extensive
discussion in Lasdon (1970, Chapter 8).

3.7.1 LAGRANGEAN DECOMPOSITION FOR SEPARABLE MATHEMATICAL
PROGRAMMING PROBLEMS

Consider the following mathematical programming problem, the overall prob-
lem of this section:

Minimize Y fi(x;)
i=1

s.t.: Y gilx)=a, (3.40)
j=1

x,'EX,', j=1...n

The following assumptions are imposed on problem (3.40): The variables x;,
j=1...n, are in Euclidean n; space, E™, and are restricted to convex and
compact subsets X; = E™. The real-valued functions f; and the m-dimensional
vector-valued functions g; are continuous on Xj. Moreover, each f; is strictly
convex on X, and each component of g, is convex. Of course, a € E™. Denoting
x=(x1...x,) and X = X; XX, X" - - X X,,, we also assume the existence of an
x'e X such that ¥ g;(x}) <a. This last assumption is the well-known Slater
constraint qualification and guarantees (together with the other conditions) not
only the existence of a unique optimal solution % = (%1, X2 . . X,) to (3.40),
but also a nonempty set of optimal dual multiplier vectors assoc1ated with the
constraint Y, g;(x;) < a. Let that set of optimal dual multipliers be denoted UU
could have more than one member. For i € U it holds that:

1. (%1, %> ... X,) minimizes Z;‘=1 filxp)+ ﬁ[z,';l gi(x;))—alover X
2. =0

3, Z;; gi(x)=<a

4. ﬁ(z, lgl(xl) ) 0

(1)—(4) are necessary and sufficient optimality conditions for an optimal
solution ¥ to (3.40).
Consider now the following two-level representation of the overall problem
(3.40). There are n infimal subproblems, written (for j=1...n) as:
Minimize f;(x;) + ug;(x;)
(3.41)
s.t.: x; € X
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Let x,;(u) denote the (unique) optimal solution to (3.41). Evidently, (3.41) is
parameterized by the m vector u, which may be interpreted as a price vector.
The supremal subproblem may be stated: Find u«' such that
(x1(u"), x2(u") ... x,(u"))=x. Under the assumptions made, the set of solu-
tions to the supremal subproblem is precisely the set U. This two-level
subproblem hierarchy is hence coordinable relative to the original problem
(3.40).

A “price-adjustment procedure” can now be employed for finding a solution
i to the supremal subproblem. It may be outlined as follows:

Iteration 1 (initialization)
Step 1. Pick any u' =0.
Step 2. For j=1...n,solve (3.41) using u = u'.

Iteration ¢
Step 1. A new trial price vector u" is determined componentwise:

u} = max {0, ui! +a’( Y gilx' ™) —a.-)} ,
j=1
where i indexes the components of g;(x;), a, and u". The adjustment constant o'
is chosen positive.
Step 2. Forj=1...n,solve (3.41) using u = u".

This may indeed be interpreted as a price-adjustment process. In Step 1 of each
iteration (except iteration 1), the price associated with each coupling constraint
is increased or decreased, depending on whether there is an excess demand or
supply relating to the right-hand s1de of the relevant constraint. One may
demonstrate (Uzawa 1958) that u' converges to ic U as t—>oo provided
a' = a > 0 but sufficiently small. Moreover, one can show that as u’ converges
to &, x;(u') converges to x;(@7) = ; (Falk 1967, p. 151).

The multilevel solution method described here is another instance of the
idealized multilevel approach of section 2.1. The information exchange
between supremal and infimal subproblems in the adjustment phase is
described above; in the execution phase, a solution to the overall problem
(3.40) is recovered from the infimal subproblems. The name Lagrangean
decomposition derives from the fact that the function Y|, fi(x;)+
u(Y;., gi(x;)—a) is called the Lagrangean. Also, the dual multipliers u are
sometimes called Lagrange multipliers.

Lagrangean decomposition, as presented here, presupposes that the objec-
tive function of the overall problem is strictly convex. This rules out linear
programming problems. Indeed, the infimal subproblems may have multiple
optimal solutions in the linear case, so the adjustment in Step 1 of each iteration
may not be well defined. Also, this subproblem hierarchy is not coordinable
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relative to an overall problem of the linear type, a fact already mentioned in
section 2.1.2. Nevertheless, this method may be used for linear overall prob-
lems after suitable nonlinear perturbation (Jennergren 1973; Poliak and
Tret’iakov 1972).

3.7.2 DUALITY THEORY AND LAGRANGEAN DECOMPOSITION

Consider u =0. As before, the Lagrangean function is
L w)= % fite)+u( T g)-a)
j= J=

= 3 (fitn)+ug;(x) ~ua

Now, for any given u =0,

rxneig Lx, u)= El glelg Li(x; u)— ua,
and we already recognize the subproblems (3.41). We now define the dual
function as

h(u)= min Lix, u).

Since f; and g; are continuous and X; is compact, the domain of definition of the
dual function is simply E™. The dual program associated with (3.40) is defined
as

Maximize #h(u)
(3.42)
s.t.: u=0.

Under the assumptions made earlier, A(u) is concave and everywhere
differentiable (Lasdon 1970, pp. 419—428). Also, one can demonstrate the
following proposition: If i is an optimal solution to (3.42), then x (&) such that
L(%x, i) =min,cx L(x, &) is an optimal solution to (3.40). Hence, solving
(3.42) gives a solution to (3.40) by means of the infimal subproblems (3.41).

Indeed, the price-adjustment procedure attempts precisely to solve the dual
problem (3.42). Suppose the vector u' is given at some iteration ¢ Solving the
infimal subproblems gives x;(u‘), j=1...n, and one obtains h(u')=
Yio1 Li(x;(u’), u')— u'a. If one now wants to choose a new price vector, u’"’,
which maximizes the initial rate of improvement of the dual function, one must
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evaluate the gradient of 4 at u". One can demonstrate that

VhW)u-w= ¥ gx(u))—a.

it

7

Hence the price-adjustment procedure attempts to solve the dual by means of a
steepest-ascent algorithm.

3.8 HEURISTIC METHODS

All the methods discussed above converge on an optimal solution to the overall
problem with which one began. Quite often, one will find problem structures
that do not satisfy certain assumptions required by these methods. There may,
for instance, be nonconvexities or integer variables in problems otherwise
suited for column-generation techniques. Then heuristic methods may be
applied. Also, there are other problem situations where a theoretically con-
vergent method could in principle be applied, but a heuristic one is nevertheless
used, since that is a practical way of quickly obtaining a good solution to
the overall problem. In this book, we will see instances of problem situations
where heuristic multilevel methods are used. In particular, the three case
studies in Chapter 5 all involve heuristic methods. The details of these methods
are rather problem-oriented and will be discussed in the relevant parts of the
subsequent chapters.

3.9 MULTILEVEL CONTROL THEORY: A BRIEF SURVEY

The methods presented in the preceding sections of this chapter are all
applicable to mathematical programming problems of the general type

Maximize f(x)
(3.43)
s.t.: g(x)=0.

with appropriate conditions imposed on them. As it turns out, many control
problems can be cast in this format, which implies that the techniques described
earlier in this chapter may be regarded as belonging to the realm of multilevel
control theory. However, the modern theory of multilevel control pertains to a
larger class of optimization problems than (3.43). Our object in this section is to
give a brief survey of multilevel control theory and to identify classes of control
problems that can be solved by techniques of the type presented earlier in this
chapter.

The approach and symbolism of this section will be that of “‘systems science”’
rather than ‘‘mathematical programming.” In view of the expository nature of
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the discussion, we will not strive for rigor, in order to avoid various mathema-
tical issues.

3.9.1 STATIC MULTILEVEL CONTROL PROBLEMS

A fairly general class of static multilevel control problems with n subsystems,
relating to, for example, complex chemical processes in the steady state, may be
written (Mahmoud 1977):

n
Minimize Y fi(x, m;)
i=1

s.t.: yi = S;(x;, m;),
X; = Y hjizi,
j=1

gilm;, x;, 5, ) =<0 (j=1...n).

To clarify (3.44), we make reference to Figure 3.7, representing a typical
subsystem j. The pair of vectors (x;, m;) represents the input. x; stands for the
input coming from other subsystems, and m; is the control vector; the output is
given by the pair (y;, z;), y; being the final output and z; the “output coupling”
vector. The functions S; and 7}, then, determine the input-output relation of
subsystem j. The equalities x; =) h;z; represent the coupling constraints,
where the coefficients h; are output—input transformation coefficients. Finally,
the (vector-valued) functions g;(m;, x;, y, z;) determine a feasible region for
each subsystem. It is an obvious observation that if enough conditions are
imposed on the functions f, S;, T}, and g;, (3.44) can be solved by appropriate
multilevel techniques of mathematical programming. However, the presence
of nonlinear equality constraints sets (3.44) apart from more conventional
mathematical programming problems.

In the systems science literature, three main approaches are suggested for
solving problems of type (3.44): the parametric method, the dual coordination
method, and the penalty function method (see Kulikowski et al. 1975). The

i
X; |

Subsystem z;
—

m;

FIGURE 3.7 Representation of a subsystem.
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parametric method corresponds to primal decomposition methods as presen-
ted in Geoflrion (1970a). (The Benders algorithm, when applied to a block-
angular Lp problem, is a primal decomposition method.) The dual coordination
method is precisely the method discussed in section 3.7 (Lagrangean decom-
position). For discussions of the penalty function method in this context, see
Tatjewski (1975) or Findeisen et al. (in press). Schoeffler (1971) gives a more
extensive discussion of static multilevel control theory.

3.9.2 DYNAMIC OPEN-LOOP MULTILEVEL CONTROL

We now focus on dynamic systems. The restriction to open-loop control
structures, in contrast to closed-loop or on-line control, means that a model is
formulated for which a policy is to be determined for the entire planning period
without the use of feedback information since the system is not yet operating.
As Findeisen points out (1976, p. 3), this is the case with planning (or
scheduling), and the goodness of the policy is dependent only on the accuracy
of the model. We first consider discrete-time systems and then turn to
continuous-time ones. The exposition will follow Singh ef al. (1975) and Smith
and Sage (1973). (See also Singh 1977.)

Solution techniques for multilevel discrete-time control problems cor-
respond to well-known optimization methods, including methods discussed
earlier in this chapter. Unlike the static case, however, dual coordination or
Lagrangean methods are really the only significant ones for wide classes of
problems, as pointed out by Singh ef al. (1975). We follow their paper in
discussing only dual coordination methods. One version of the discrete-time
control problem with separable objective function may be formulated as
follows:

n T-1
Minimize _gl < go fie(xi(0), mi(t))+fi’1‘(xi(T))) (3.45)
s.t.:
xi(O) =Xjs
x; (8 + 1) =k (x,(2), m;(1)) (j=1...n;t=0,1...T-1), (3.46)
i B (x;(t), mj(1))=0  (t=0,1...T—-1), (3.47)
gie(x;(t), mi(£))=0 (j=1...n;t=0,1...T-1), (3.48)
gr(x(T)=<0 (j=1...n). (3.49)

The interpretation of (3.45) is straightforward: each function f, (1=
0,1...T—1) measures the cost in subsystem j in period ¢ as a function of the
state vector x;(¢) and the control m;(¢); the cost in the last period depends on the
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terminal value of the state vector. The system dynamics are given in (3.46) by
first-order nonlinear difference equations. The coupling constraints are given
by (3.47), whereas the inequalities (3.48) and (3.49) determine the feasible
regions of the state and control vectors locally. Without further assumptions,
this problem may be very difficult to solve, but if one imposes enough
conditions on it, one recognizes it as a decomposable convex programming
problem with the m;(¢) as decision variables. One may adapt the Lagrangean
decomposition technique (see section 3.7) to the discrete-time problem
described above. If we associate a Lagrange multiplier vector A (¢) with (3.47),
we see immediately that applying Lagrangean decomposition results in the
following subproblems (j=1...n):

Minimize 3. {fus(0), () MO0, (0D} fr 5(T))

s.t.: x;(0) = x;,
x;(t+ 1) =k (x;(6), mi(t))  (t=0,1...T—1), (3.50)
gie(x;(1), mi(1))=<0 (t=0,1...T-1),
gr(x,T)=0.

One may exploit the idea of Lagrangean decomposition further to obtain a
three-level method for solving the discrete-time problem, as is also discussed in
Singh et al. (1975). This is done by associating with the constraints x;(t +1) =
kji(x;(¢), m;(2)) of (3.50) another Lagrange multiplier vector u;(t). Subproblem
(3.50) then decomposes into T smaller subproblems.

This discussion was only intended to give the reader an impression of the
importance of Lagrangean decomposition in discrete-time control problems.
Singh et al. (1975) consider Lagrangean decomposition of discrete-time prob-
lems with time delay—systems where higher-order difference equations are
allowed for. They discuss briefly the application of this method to the control of
urban road traffic signals. Another application of Lagrangean decomposition,
to a dynamic production-planning problem, is discussed in Drew (1975).

By now it should be clear that the difference between the methods presented
in sections 3.2-3.7 and those of multilevel systems control of static or discrete-
time systems is at least partly one of terminology. This is not the case, however,
for continuous-time control problems. We will now indicate how a two-level
representation of a continuous-time overall problem can be constructed.
Consider the following overall problem:

T
Minimize Cl>(x(T))+J. d(x(t),m(r), 1) dt
(1]

s.t.: x=f(x(®),m(), 1), (3.51)
x(0)==x.
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Problem (3.51) is a standard control problem. If the objective functional is

assumed to be separable, i.e.,
¢ = Z ¢i(xi! mi’ t)a
]
® =3 ®;(x(T)),
1
and if the constraints x = f(x(¢), m(#), t) can be decomposed, one can rewrite
(3.51) as follows:

n T

Minimize Y {dD,-(x,-(T))+J‘0 &i(x;(2), m(2), 1) df}

i=1

s.t.: % =filx(0), v;(), mi(t), 1) (j=1...n),
xi(0)=x; (j=1...n), (3.52)
vi(t)=g:1 g (xi, my) (j=1...n).

To assume coupling constraints as in (3.52) means some loss of generality,
but it is quite essential under the present approach. The variables v;(¢) are
referred to as the coordinating variables. Observe that the functions f; in (3.52)
are not merely components of f in problem (3.51); this is the case because of the
appearance of the coordinating variables.

Now suppose one uses multiplier time functions w;(t) (j=1...n) to eli-
minate the coupling constraints from (3.52). One obtains yet another problem
formulation:

n T n
Minimize Z {dD, +J [¢, +/.L,'(U,'— Z g,-,-(x,-, m,))] dt}
j=1 0 i=1
i*y

T n
= ,‘=il {q)) * JO I:¢’ * I-Livi - igl “igii(xi’ m,)] dt}
i*j
s.t.: X =fi(x;, v, my, t) (j=1...n),
x;(0)=1x; (J=1...n).
But this problem formulation decomposes directly into n subproblems, for
j=1...n:

T
Minimize d),' +J [¢, + uu;— Z Mi8ij (x,, m,)] dt
0 i#j

s.t.: X = fi(x;, vj, my 1), (3.53)

x;(0)=x;.
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The problems (3.53) are the infimal subproblems. Under certain conditions
there exist u*=(u¥ ... u¥) such that a collection of optimal solutions to the
infimal subproblems constitutes an optimal solution to the original problem
(3.51) (Smith and Sage 1973). The supremal subproblem may then be stated as
that of finding w *.

The question then becomes: What solution methods can be used to solve
(3.51) in a multilevel fashion? Or, equivalently, what methods can be used to
solve the supremal subproblem and find x*? This matter will not be pursued
here, but the reader is referred to Pearson (1971) and Smith and Sage (1973)
for discussions of multilevel solution methods for continuous-time control
problems. This volume is not intended to survey such methods, since one may
argue that continuous-time models probably find fewer applications in
economic planning than in engineering situations. Different types of appli-
cations are discussed in Mahmoud (1977).

3.9.3 ON-LINE CONTROL MODELS

In section 3.9.2, we were concerned with open-loop control problems. If,
however, one is faced with the task of developing control policies for operating
systems (usually with disturbances), things become more complex. With
respect to multilevel methods for on-line control, existing literature is scarce, as
Mahmoud (1977, p. 134) remarks. However, work in the area is currently
being undertaken by Findeisen and his associates (Findeisen 1978; Findeisen et
al. 1978, in press; Findeisen and Malinowski 1978). Some additional
references on multilevel on-line control models are Chong and Athans (1975),
Singh (1977), and Singh et al. (1976). Multilevel on-line control is apparently a
research area with great potential, but so far there have not been many real-life
applications in economics or management science.
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Numerical Experiences with -
Dantzig-Wolfe Decomposition

4.1 ON THE UTILIZATION OF STRUCTURE IN SOLVING
LINEAR PROGRAMMING PROBLEMS

Linear programming problems often have a special structure. This can be
exploited in devising solution procedures that are particularly suited to those
structures. One very well-known solution method applicable to a special
problem structure is the transportation algorithm.

Multilevel solution methods are also often applied to exploit special struc-
ture. In particular, block-angular Lp problem structures are likely candidates
for an application of multilevel methods. However, other structures may also
be considered for applications of multilevel methods, for instance Lp problem
structures where a subset of the constraints define the feasible region of a
transportation problem (see subsection 3.3.4).

Among multilevel decomposition algorithms,* those that have been most
widely applied are based on the Dantzig—Wolfe (Dw) decomposition principle.
For that reason, this chapter is devoted to a discussion of experiences gathered
in applying such algorithms to various test problems.T Already at this point, it
should be noted that those experiences have not been very positive. Partially as
a consequence of that, so-called factorization methods have been developed as

* We distinguish here between multilevel and single-level decomposition algorithms, since the
term “‘decomposition” is also sometimes used in the literature for procedures that (as we will argue)
are essentially single-level.

T This should not be interpreted to mean that other decomposition algorithms have not been
applied at all. For instance, in Chapters 6 and 8 of this volume two applications of the Benders
decomposition algorithm are described. However, a number of studies of the bw decomposition
method have been undertaken where emphasis was more on the performance of the method than
on the solution to a particular real-world problem. Such studies are reviewed here. Several of the
later chapters of this volume also discuss studies where the bw method was applied, but to
real-world problems interesting in their own right (i.e., not to test problems).

84
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an alternative to bw decomposition (see Miiller-Merbach 1973, Orchard-Hays
1975, and Winkler 1974 for overviews of factorization methods). These
methods may be regarded as extensions of the revised simplex method in that
they attempt to store and manipulate the Lp basis inverse in a compact form.
This is also achieved by exploiting special structure. The best-known factoriza-
tion method is generalized upper bounding (cuB) (Dantzig and Van Slyke
1967), which may be applied to problems with coefficient matrices of the type
shown in Figure 4.1. This shows a very special block-angular matrix, where
each subblock consists of a single row of ones (note that the extremal problem
under pw decomposition has this structure).

GUB has been implemented with great success in a number of instances. One
set of very similar extensions of GUB, ‘‘generalized GuB” (Lasdon 1970, pp.
340-356), ““direct decomposition” (Miiller-Merbach 1973), and the “block-
product algorithm’ (Orchard-Hays 1968, Chapter 12), allows the subblocks to
be ordinary matrices (with more than one row and elements other than unity).
In this case, one obtains a general block-angular structure. This means that
generalized cus and bw decomposition are alternative ways of exploiting the
same block-angular structure.

The factorization methods are not regarded in this volume as multilevel
methods. To do so would imply that the revised simplex method is also a
multilevel method, since factorization methods may be regarded as extensions
of the revised simplex method. For instance, GUB selects columns to enter and
leave the basis in precisely the same sequence as the revised simplex method (or
the ordinary simplex method, for that matter). Indeed, the factorization
methods are referred to as ‘“‘centralized” (implying single-level rather than
multilevel) in Lasdon (1970, p. 304).

The conclusion is that there are several ways to exploit special structure in LP
problems. The Dantzig-Wolfe method is one multilevel way. However, there
are also single-level ways to exploit structure.

Agp A, A, AN

FIGURE 4.1 Lp coefficient matrix with GUB structure.
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4.2 TEST PROBLEM EXPERIENCES

As was mentioned above, pw is the decomposition method that has been
applied most widely to Lp problems. The following selected studies document
numerical experiences with bw decomposition: Beale et al. (1965), Kutcher
(1973), Ohse (1967), Schiefer (1973, 1976), Tcheng (1966) and Williams and
Redwood (1974). In what follows, reference will be made to these studies. It is
therefore of interest to mention a few facts about each of them.*

® Beale et al. (1965) consider a set of block-angular problems relating to oil
field operations. No size data are given about the problems except that there
were typically seven subblocks (infimal subproblems). In the course of this
project, the bw method was programmed and incorporated as an option in an
existing Lp system, Lp/90/94, Results concerning different tactics in imple-
menting DW are given, as well as some comparisons with standard Lp.

® Kutcher (1973) considers two block-angular problems: a small one with
60 rows and 72 activities, and a somewhat larger one with 187 rows and 382
activities. Results on the convergence of the algorithm, as a function of the
number of decomposition iterations, are given, for a few different implemen-
tation tactics.

® Ohse (1967) compares three algorithms, bw, ordinary L (using the revised
simplex method with basis inverse in explicit form), and direct decomposition
(a factorization method). Twelve different block-angular test problems are
considered, typically of size 120 x 150, with five to ten subblocks. Computer
programs were written for all algorithms in ALGoL. Apparently, the problems
considered were so small that they could be solved in core (i.e., without the
transfer of data to and from peripheral memory units), with all three methods.

® Schiefer (1973) and Schiefer (1976) refer to the same investigation. One
example problem with block-angular structure is considered. The size is
907 x 1,265. There are 32 subblocks, each of size 28 x 39. (However, in most of
the runs four infimal subproblems were used; see also below.) This problem
was solved using some different implementation tactics, and a comparison with
ordinary L was made as well. For this investigation, a Dw routine was built
around an already existing Lp code.

® Tcheng (1966) considers a single problem that arose in conjunction with
forest management. The size is around 1,200 x 28,000. The structure of the
problem is peculiar in that almost all the constraints are of the type ¥ x; =1,
where the summations range over disjoint subsets of the variables. That is, the
constraint matrix looks like that in Figure 4.2. Let the lower block in Figure 4.2
be denoted B. In passing, it may be observed that this problem could have been

* Additional test studies of DW decomposition have undoubtedly been performed, but the results
may not have been published. For instance, Malkov (1969) mentions that some experimental Dw
codes have been written in the USSR, but he gives no test results.
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FIGURE 4.2 Tcheng’s problem structure.

solved by GUB, since block B has the structure required for that. However, GUB
was not available (or at least not widely known) at the time. Dantzig—Wolfe
decomposition was applied, with only one infimal subproblem, constructed
from block B. Block A was used for the restricted master problem. A pw
program was written in FORTRAN. The problem was solved on an 1BM 7044
computer with 32K core storage. Double precision was used.

¢ Williams and Redwood (1974) solve two problems arising in the food
industry. The sizes are 358 x804 and 1,805x3,236, and the number of
subblocks 13 and 4, respectively. There were 24 and 132 coupling constraints,
respectively. These problems were solved by bw and ordinary Lp. The 1BM MPsx
system was utilized. For pw, this involved using pL/1 procedures to build a
decomposition routine around the MPsx system.

As mentioned earlier, the experiences with bw have not been altogether
positive. More specifically, bw is often both time-consuming and cumbersome.
The time needed to run a given problem on the computer, assuming that a bw
program is on hand, is often inordinately great. Several authors have reported
that pw converges only slowly towards an optimal solution to the extremal
problem; i.e., the objective function value of the restricted master problem
converges slowly in the adjustment phase. Or, more precisely, there is often
rapid progress in the earlier iterations, but later progress is quite slow. One
probably fairly typical sample problem is depicted in Figure 4.3, which is
adapted from a table in Kutcher (1973, p. 514). This problem (the larger of the
two considered by Kutcher) required 18 iterations to reach an optimum. The
objective function value of the restricted master problem increases rapidly in
iterations 4-8, but after only slowly. The behavior of the upper bound on the
objective function value is also depicted in the graph.

An even more extreme case of slow convergence is given by Tcheng (1966).
Table 4.1 gives the objective function value for different number of iterations.
After 960 iterations, around 800 minutes of computation time had been used
up. The computations were then stopped without an apparent optimal solution.
It may be noted that between 930 and 960 iterations, there was actually
a decrease in objective function value. This is contrary to the theoretical
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FIGURE 4.3 Convergence of Dantzig-Wolfe method in sample problem. (After
iteration 14, the difference between upper bound and objective function is less than
0.5.) Source of data: Kutcher (1973, p. 514).
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TABLE 4.1 Convergence of Dantzig-Wolfe
Method in Tcheng’s Problem

Number of Objective Function Increase per 30
Iterations Value Iterations
30 1,452,346
60 1,489,466 37,120
90 1,498,481 9,015
120 1,502,308 3,827
150 1,503,698 1,390
810 1,507,289
840 1,507,301 12
870 1,507,307 6
900 1,507,321 14
930 1,507,329 8
960 1,506,028 -1,301

SOURCE: adapted from Tcheng (1966, p. 63).

properties of the bw method, and is probably the result of rounding-off errors
(Tcheng 1966, pp. 101-103).

Since convergence is often very slow in later decomposition iterations, it
becomes desirable to stop before reaching optimality. A common procedure is
to stop when the difference between the current restricted master-problem
objective-function value and the best bound obtained so far is smaller than
some specified constant. This procedure was used by Schiefer {1973, 1976),
among others.

Apart from being time-consuming in many cases, DW is also somewhat
cumbersome to implement. One reason for this is that standard pw codes are
usually not available. One exception is the Lp/90/94 system, which did include
pw decomposition facilities as a result of the system development work
undertaken by Beale and his colleagues and reported in Beale et al. (1965).
However, the Lp/90/94 system is fairly old by now, and it appears that it has
been withdrawn from the market. In general, the user of bw decomposition
must build his own system, using some existing LP code as a central component,
as was done by Williams and Redwood (1974) and by Schiefer (1973, 1976).
For instance, in Schiefer (1973, 1976), the system was constructed to operate in
the manner shown in Figure 4.4. For the optimization of the restricted master
problem and the infimal subproblems, an existing LP code could be utilized. The
remainder of the system had to be constructed by the author.

Another reason why DW is cumbersome to implement is that the solution
finally obtained relates to the restricted master problem, not to the original
problem. The solution to the original problem must then be recovered in the
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FIGURE 4.4 Buildup of system for Dantzig-Wolfe decomposition. After Schiefer
(1973, p. 11).

execution phase. Suppose the original problem is the following block-angular
one:

Maximize cix1+:° - +CnXn

s.t.: Axi++Ax,=a,
Bix, = b, 4.1)

. B.x,<b,,

X1+ x,=0.

Suppose for simplicity that each set {x;|B.x; < b;, x; = 0} is bounded and that the
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extreme points are denoted x;. The equivalent extremal problem is then (see
subsection 3.3.6)

Maximize Y ,(cix5)Af +---+2 (c.x7)AL
s.t.: TAAXDAT+- -+ (Apxi)AL =a, (4.2)
YA =1(j=1...n),A7=0.

By pw decomposition, one obtains some solution (optimal or not) to (4.2).
However, that is not what one is usually interested in. Rather, one wants a
solution to (4.1). In textbook treatments of pw decomposition, it is often
suggested that a solution to (4.1) be recovered as

Xj =Y A7),

where the solution to (4.2) is denoted A 7. However, this method can usually not
be used in practice (Beale 1968, p. 168; Beale eral. 1965, p. 14; Orchard-Hays
1968, p. 245; 1973, p. 162), as was pointed out above, in section 3.3.6. Using it
would require that the definitions of all x} be stored, ‘‘an intolerably enormous
data processing task” (Orchard-Hays 1973, p. 162). Instead Beale et al. obtain
the final solution to (4.1) in the execution phase by considering an infimal
subproblem of the following kind for each index j=1...n:

Maximize c¢ux;
s.t.: A,-x,-sz,,(ijf)/\_f’
Bx;=b,
x;=0.

A similar procedure is suggested by Orchard-Hays (1973). But this means that
a separate program block must be added, in the execution phase, for the
recovery of the final solution to the original problem.

Some more specific results from the investigations listed earlier will now be
considered. There are two kinds of results. In the first place, it is of interest to
compare DW with other methods, in particular ordinary Lp. Results of a few such
comparisons will be given. In the second place, the tactics for implementing bw
can be varied from case to case. In so doing, one is, in effect, comparing
different versions of bw. Results relating to different tactics in implementing pw
will also be given.

As for comparisons of bw with ordinary L, Beale et al. (1965, p. 18) report
that some savings in running time were realized by using pbw for problems with
300-500 rows. For instance, one 450-row problem was solved in 40 minutes by
the simplex method but in 37 using pw. A larger problem was solved in 5 hours
using ordinary LP, while solution of a similar problem by bw required only 2
hours. This comparison is unduly flattering to bw, though, since the bw solution
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was obtained after extensive experimentation with implementation tactics,
whereas the LP solution was obtained from scratch (i.e., without the
specification of a reasonable starting basis).

Ohse (1967) found that bw performed about as well as ordinary Lp, In his test
problems, bw was superior to ordinary LP in some cases but inferior in others.
However, bw was inferior to direct decomposition. This comparison is not
entirely fair, as direct decomposition is not usually a natural alternative to pw.
Standard codes for direct decomposition apparently do not exist, and it is a
rather complex method to implement.

Schiefer (1973, 1976) divided the total running time in his Dw experiments
into two parts: “calculation time” and ‘‘storage time” {a specification of cpu
time was not possible; see Schiefer 1976, p. B9). In calculation time, the pw
runs (9 runs) performed about as well as ordinary Lp (two runs, with different
starting solutions). Calculation time was typically around 4-5 minutes.
However, in addition there were heavy storage times for the pw runs, typically
around 20-30 minutes. In other words, the transfer of various problem parts to
and from peripheral memory units turned out to be very time-consuming. For
the ordinary Lp runs, storage time was zero (which presumably means that the
test problem could be solved by ordinary Lp in core).

Williams and Redwood (1974) performed three different runs of their
smaller model with ordinary LpP and three with bw. They conclude that pw just
about breaks even with ordinary Lp for problems that size, if the Lp procedure
can be started off with a reasonable initial solution. One run of their larger
model was performed with both solution methods. In this case, pw took
400 cru seconds, and ordinary Lp, 800. However, this may again be somewhat
too flattering to pw, since the Lp solution was obtained from an all-slack starting
basis, whereas the bw procedure was begun with four different solutions to each
infimal subproblem, to form columns for the restricted master problem.
Additionally, the ultimate solution to the original problem (as opposed to
the extremal problem) was never recovered. For the problem situation at
hand, the extremal problem did yield meaningful information, and a recovery
of the original problem solution was not necessary. That is, the execution phase
was deleted. The pw computations were terminated when the improvement in
restricted master-problem objective-function value in successive iterations was
less than 0.5 percent. This occurred after three iterations in all four cases. This
means that optimal solutions were not obtained using pw. The difference
between the solution values obtained using bw and the true optimal solution
values, obtained through ordinary Lp, were quite small. The authors conclude
that pw is worthwhile for the larger problem.

One may conclude at this point that, with regard to computer time usage,
there is no convincing evidence that bw performs substantially better than
ordinary LP. In addition to computer time usage for running the particular
problems one is interested in, one must also consider the effort required for
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building a bw decomposition system. As mentioned earlier, standard programs
for pw are usually not available, so the user must create his own. The upshot is
that if a standard LP code is available that can handle the problem under
consideration, it 1s not worthwhile to attempt to use bw. This recommendation
has, in fact, been stated by several authors (e.g., Kornai 1973, p. 526).

However, there may nevertheless exist problem situations that exceed the
limits of existing LP codes. Even in 1973 there were a few standard programs
available that were capable of handling problems with more than 10,000 rows.
Nonetheless, one can imagine that even larger problems may need to be solved,
and in that case some method other than ordinary Lp must be used. For
instance, the test problem considered by Schiefer (1973, 1976) could be solved
directly, by the simplex method. However, it was foreseen that considerably
expanded versions of that problem would later be constructed, and standard Lp
programs would then no longer suffice. In this type of situation, bw may well be
areasonable choice, since it is a conceptually simple procedure. Dantzig—Wolfe
systems can be built around existing LP codes, whereas factorization methods,
for instance, are messy and often more difficult to program*. For that reason,
there is some interest in examining results on different implementation tactics
for pw, as a guide for those situations where bw must be used. This brings us to
the second kind of results mentioned earlier.

The size of the problem to be solved influences the time required for its
solution. This is obviously true in general for any solution method, but for pw
decomposition the number of coupling constraints is mentioned as particularly
critical (Beale 1968, p. 171; Dantzig and Van Slyke 1971, p. 95). Hence, itisa
good idea in the modeling stage to try to keep down the number of coupling
constraints.

Assume, however, that a particular L problem has been formulated and is to
be solved by pw decomposition. There are then certain options to consider,
among them the following:

1. How many columns from each infimal subproblem should be used to
construct the initial restricted master problem?

2. How many, and which, proposals from each infimal subproblem should
be added to the restricted master problem at each iteration?

3. Should nonbasic columns be deleted from the restricted master problem?

* It may be mentioned in this connection that a later study by Ohse (1971) contains test problem
runs with DW and three different factorization methods: generalized GuB, Ohse’s own dual
algorithm, and Rosen’s algorithm (this latter algorithm is classified as a factorization method in
Winkler 1974). Twenty-five test problems were solved, with numbers of rows ranging from 110 to
315. The algorithms were programmed by the author. In-core storage of the whole problem was
not used. Rather, peripheral memory units were used as well, and the total computation time
includes access to these peripheral units. In total computation time (summed over all 25 test
_problems), Dw was superior to generalized GUB and to Rosen’s algorithm, but somewhat inferior to
Ohse’s algorithm (Ohse 1971, pp. 58-78). A comparison with ordinary LP was not made.
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4. How many infimal subproblems should one utilize? Should some infimal
subproblem(s) be joined with the restricted master problem?

These points will be considered in turn.

1. Itis obviously a good idea to construct the first restricted master problem
utilizing several, rather than just one (or even zero), columns pertaining to each
infimal subproblem, if several such columns are available or can be generated
easily (Orchard-Hays 1968, p. 245), and this has been done in several studies.
Williams and Redwood (1974) initialized their bw runs with four columns from
each infimal subproblem. Beale et al. (1965, pp. 15-16) wrote a special
generator program to provide good sets of columns from which to construct the
first restricted master problem. Schiefer (1976, pp. B11-B12) and Kutcher
(1973, pp. 517-518) demonstrate that much more rapid progress can be
obtained in the early decomposition iterations if the restricted master problem
is started off with several columns from each infimal subproblem, compared to
the situation where only one (or zero) column from each infimal subproblem is
available at the outset.

Related to the question of the number of initial columns is the “‘goodness”’ of
those columns. A good initial solution to the restricted master problem is one
for which the objective function value is close to the true optimal objective
function value, and for which the values of the dual multipliers pertaining to the
coupling constraints are not too different from the optimal multiplier values.
The importance of a good initial solution to the restricted master problem is
pointed out by Beale ez al. (1965, p. 15). On the other hand, though, Schiefer
(1976, pp- B11-B12) experimented with some different initial restricted
master problem solutions for his test problem, characterized by different
degrees of goodness. He found that the degree of goodness of the initial
solution was not a precise predictor of the rate of convergence, in other words,
it did not seem to matter much.

2. The usual convention under the pw method is that in each iteration, no
more than one column from each infimal subproblem is added to the restricted
master problem. That column is derived from the optimal solution to the
corresponding subproblem in that iteration. However, Beale et al. (1965)
found that it was more efficient to submit several columns from each infimal
subproblem to the restricted master problem in each iteration. All of these
columns except one would then correspond to basic, nonoptimal solutions to
the infimal subproblem traversed on the way to the optimal solution. Addi-
tionally, they found that it was sensible not to obtain optimal solutions to the
infimal subproblems at all. That is, the infimal subproblems were not solved to
optimality in the early iterations of the algorithm. Rather, they were cut off
before that, meaning that for each infimal subproblem, a set of columns
pertaining to basic, nonoptimal infimal subproblem solutions was added to the
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restricted master problem. Without these features, they found that con-
vergence was so slow that bw was ‘“‘more or less useless” (Beale et al. 1965,
p. 15).

3. According to Dantzig’s own description, nonbasic columns in the restric-
ted master problem may be dropped (Dantzig 1963, p. 453; see Orchard-Hays
1968, p. 252). But if this is done, they may have to be generated anew at some
later iteration. On the other hand, if all columns are kept, the restricted master
problem may eventually become quite sizable in terms of number of variables.
Schiefer’s investigation sheds some light on the trade-off involved here. He
reports that restricted master problem columns typically had a useful life of no
more than 15 iterations or so after becoming nonbasic, meaning that if a
column is nonbasic 15 iterations after it was pivoted out of the basis, it can
usually be dropped with no risk of its needing to be re-created at a later
iteration (Schiefer 1973, p. 12; Schiefer 1976, p. B7).

4. Suppose some block-angular LP problem has a constraint matrix as
displayed in Figure 4.5. In this situation, it is intuitively most natural to use the
coupling constraint block [A 1, A2, Az, A,4] for the restricted master problem,
and use four infimal subproblems, one for each subblock B;-B,. However,
other choices are also possible. One could, for instance, form a restricted
master problem out of the blocks [A,, A2, A3, As] and B, and then use three
infimal subproblems, corresponding to the subblocks B,—-B*. Beale states that
such an arrangement (i.e., incorporating one or several subblocks in the
restricted master problem) is often a good idea (Beale et al. 1965, p. 14; Beale
1968, p. 169), as it may provide for more realistic and stable multiplier values
for the common rows. The restricted master problem will require more time in
each iteration, but fewer iterations may be needed in total. Schiefer (1973,
1976) performed two test runs with one and two subblocks, respectively,
incorporated in the restricted master problem. The results were better than in
the situation where no subblocks were put into the restricted master problem
(Schiefer 1976, p. B13). Convergence was much more rapid in early iterations.

* If one forms the restricted master problem out of the blocks [A,, A,, A3, A,] and B, and uses
three infimal subproblems, the resulting extremal problem may be written as follows, using the
notation of section 3.3.6; see also problem (3.17) of that section:

4 P() R()
Maximize cixi+ ¥ ( T wAT+ Y w;a;)
] r=1

j=2\p=1
4 /PG R(
st P ( S L%+ Y L;a;)sa,
i=2\p=1 r=1
lelsblx

P
L AP=1(j=2,3,4),

p=1

x;=0,A7=0,6]=0.
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FIGURE 4.5 Block-angular LP structure.

Heuristically, it is easy to see why incorporating one or several subblocks in
the restricted master problem may have a good effect on convergence. The
restricted master problem may be thought of as iteratively collecting informa-
tion from the infimal subproblems, as computations proceed in the adjustment
phase. If a subblock is put into the restricted master problem, then there is that
much more information on hand at the outset.

Once a division of constraint blocks between restricted master problem and
infimal subproblems has been decided upon, the question still remains of how
many infimal subproblems to utilize. In the sample problem sketched above,
suppose one has decided to form the restricted master problem out of the
blocks [Ai, A,, As, A,]. One may then, for example, form four infimal sub-
problems, one for each subblock B;-Bj,; or two infimal subproblems, one for
B, and B, and one for B; and B; or one infimal subproblem, encompassing all
of the subblocks B;-B,. The number of infimal subproblems obviously affects
the number of convexity rows in the restricted master problem, and also the
number of new columns submitted to the restricted master problem in each
iteration. Madsen (1973) has attempted to derive analytical rules for the
decision on the optimal number of infimal subproblems. Under a fairly wide
range of circumstances, he found that a maximum number (i.e., as large as
possible; four in the above case) is optimal in terms of total computation time.
This conclusion is supported by Schiefer’s investigation; Schiefer (1976) solved
his example problem with a varying number of infimal subproblems (one, four
and eight). With decreasing number of infimal subproblems, there was an
increase in total computation time (Schiefer 1976, p. B10). Kutcher (1973)
solved the smaller one of his two test problems in two versions: with 32 and 8
infimal subproblems. In the former case, an optimum was reached after six
iterations, and in the latter case after eight (Kutcher 1973, p. 507).
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Finally, it should be noted that Beale et al. (1965) found it useful to vary the
implementation tactics over the course of the adjustment phase. That is, during
early iterations, many columns from each infimal subproblem were submitted
to the restricted master problem. During intermediate iterations, that number
was diminished, and then increased again during later iterations. Similarly,
during early iterations the infimal subproblems were cut off before optimality
was reached, but this was not done during later iterations. These choices were
made as the adjustment phase progressed. That is, one was able to follow the
progression of the computations on an on-line printer and make decisions on
tactics as the calculations proceeded. This sort of interaction with the algorithm
is reminiscent of ‘‘man-machine planning”’ (Kornai 1969), which is discussed in
Chapter 5.
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National and Regional
Economic Planning

5.1 INTRODUCTION AND OVERVIEW

In this chapter, we are concerned with multilevel models and methods for
national and regional economic planning. National economic planning refers
here to the planning of production, foreign trade, and investments for an entire
economy. As will be seen, the total planning problem may be represented as a
large mathematical programming model or a system of such models. The
variables refer to production, investments, and so on. The restrictions derive
from physical capacity limits (e.g., manpower limits), and also from the
input—output relations of the economy. The objective function could, for
instance, be a maximization of revenue from foreign trade.

There are at least two reasons why multilevel methods are of importance for
national economic planning. First, the number of variables in a national
economic planning problem is overwhelming. Pugachev (1974, p. 477), for
example, mentions that for the Soviet Union, the nomenclature (list of com-
modities) consists of around 2 x 10° items. Assuming that each commodity can
be manufactured in 50 different regions and transported to 50 different regions
and that it can be produced in each location by 10 different methods, the total
number of variables for a 10-year plan will be 2x10°x50°x10x 10. It is
clearly impossible to solve, or even formulate, problems of this size in a
single-level fashion. Some other approach, such as multilevel methods or
aggregation (or a combination of both), must be utilized.

Second, in the Eastern European planning literature, the idea is often
advanced that the whole national economy is to be regarded as a hierarchical
system, where different hierarchical levels may be represented by the central
planning level, industrial sectors, and individual firms. This idea is frequently
encountered in the Soviet literature (e.g., Baranov et al. 1971; Fedorenko
1974, Katsenelinboigen and Faerman 1967; Kantorovich 1976), and also in
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the writings of Kornai (e.g., Kornai 1975; Kornai and Liptak 1965). Since the
economy is viewed as a multilevel system, national economic planning could
also be carried out as an institutional multilevel process, where the total
planning task is divided between organizations on different levels and where
messages are physically exchanged between them in the adjustment phase (see
section 2.2.2). Some Soviet economists apparently envision the performance of
national economic planning in this manner; this has also been noted by
Western observers of Soviet mathematical economics (Ellman 1973, pp.
128-133; Zauberman 1975, pp. 35-36). The Dantzig-Wolfe decomposition
principle is sometimes taken as a model of how the economy could eventually
function (e.g., by Kantorovich 1976, p. 209).

The two case studies of multilevel national economic planning described in
this chapter, one dealing with Hungary and the other with Mexico, represent
somewhat different approaches, and a comparison between the two is instruc-
tive. It should be mentioned here that multilevel methods were used in these
two cases as purely computational tools. That is, an institutional multilevel
planning process was not attempted.

Additional references on national economic planning by multilevel methods
could easily be cited. For instance, Kronsjo (1963) and Trzeciakowski (1973)
formulate 1P models for foreign trade optimization and then indicate how
Dantzig-Wolfe decomposition can be applied. A rather large experimental
research effort is the work in the Ussr by Pugachev and his associates on
“multistage optimization’’ (Martynov and Pitelin 1969; Pugachev et al. 1972,
1973; Fedorenko 1975, Chapters 1-4). Hence the two case studies described
here do not exhaust the literature on multilevel national economic planning. It
is difficult, however, to find well-documented, actually implemented cases, and
in this respect the Hungarian and Mexican studies are unusual.

This chapter also considers regional economic planning. Obviously, the
difference between regional and national planning is not a sharp one. A Soviet
study in multilevel regional planning is presented in section 5.4. Because of the
size of the Soviet Union, that case study could well have passed for ‘‘national”
in a smaller country.

It may be pointed out here that the case studies of this chapter (the
Hungarian and Mexican case studies in national economic planning and the
Soviet study in regional planning) hold a common methodological interest:
they illustrate heuristic multilevel approaches.
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5.2 MULTILEVEL NATIONAL ECONOMIC PLANNING
IN HUNGARY

5.2.1 THE APPLICATION OF THE KORNAI-LIPTAK METHOD TO A
NATIONAL ECONOMIC PLANNING PROBLEM

Probably the most extensive attempt to apply multilevel methods to actual,
real-world national economic planning problems has been undertaken in
Hungary, by Kornai and his associates. This section draws upon Kornai’s
work (Kornai 1965, 1969a, 1969b, 1975; Kornai and Liptak 1965). Ganczer
(1973) also offers a discussion of the use of multilevel planning methods in
Hungary.

An early step in the use of formalized methods for national economic
planning in Hungary was the construction of sectoral L models (Kornai 1975,
Chapters 5 and 6). A sectoral Lp model could, for instance, schedule production
and investment activities in a certain sector of the economy, such as the cotton
fabrics industry. The objective function could be a minimization of total
societal cost or a maximization of foreign exchange revenue, subject to meeting
production goals stated as plan directives.

Rather naturally, the idea then emerged that one could construct larger
models encompassing several sectors. In such a model, there would be certain
sectoral constraints, restricting activity levels in only one sector, but also other
constraints, restricting activity levels in all sectors taken together. These latter
constraints could, for example, refer to total manpower availabilities in the
entire economy. One would, in effect, obtain a block-angular Lp problem. One
could imagine as associated with such a problem organizational units on two
different hierarchical levels. On the first (higher) level, there would be the
‘“center” (in actual practice the National Planning Bureau). On the second
level, there would be industry sectors, corresponding to ministries or sections
of ministries. Each sector is responsible for the production, investment, and
foreign trade relating to a specific product group. The coupling constraints may
then be thought of as pertaining to the center, and the remaining {subblock)
constraints to different sectors.

In this section, we will indicate in greater detail how such a block-angular Lp
problem can be formulated (Kornai and Liptak 1965). Let i and j index sectors
(i,j=1...n). A T-year horizon is considered. t=1...T indexes years.
The center is constrained by the following two sets of economic policy
figures:

Qi(i=1...n;t=1...T): the final consumption of product group / by
individuals and public bodies foreseen for year ¢
W, (t=1...T): the manpower availability in year ¢
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The center issues three types of directives to the sectors:

re (i=1...n;t=1...T): the amount of product group i that sector i is
required to provide in year ¢ (the means of providing the amount r; include
production and imports, as will be seen later)

zp(i=1...n;j=1...n;j#i;t=1...T): the amount of product group
assigned to sector i in year t; to be used as input in production and other
activities in sector |

wiy(i=1...n;¢t=1...T): the amount of manpower assigned to sector i in
year ¢

The center faces the following rather obvious constraints in making decisions
on ri, Zy, and wy,:

r.-,—_): Zjiw = Qi (i=1 nyt=1...T), (5.1)
i
Y we=W, (r=1...T), (5.2)
i=1
ri=0, z;; =0, w;, =0. (5.3)
Additionally, the following set of constraints is imposed:
r,-,SR,-, (i_—:]....n;t:]....T). (5.4)

Constraint (5.4) merely serves to bound the set of feasible r;, and z;;, choices. It
has no real economic meaning. It will be seen presently that (5.1), (5.2), and
(5.4) constitute the coupling constraints of a block-angular Lp problem.

Turning now to the sectors, sectoral activity levels are denoted by x;,, where,
as before, i indexes sectors and ¢ indexes years. k belongs to certain index sets:
ke R, or ke or ke, R, is the set of production activities in sector i. One
member of that set could, for instance, be production in a particular factory
belonging to the sector. &; is the set of export activities for sector [ (different
export markets). ., is the set of import activities (import markets).

Additionally, each sector i has certain investment activities available. The
levels are expressed by the variables x;, k € #;, where 4; is the set of possible
such activities for sector i. The investment variables are not indexed by ¢, since
the same physical project started in two different years is regarded as two
different investment activities.

Finally, each sector / also has at its disposal an unbounded, very high-cost
artificial import activity, the levels of which are given by x;,, (¢=1...T). The
x.o; should be regarded as artificial variables; they ensure that the sectoral
subproblems are always feasible, irrespective of the choices of 7, z;,, and w,.
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The first set of constraints on each sector i says that the sector must in year ¢
provide at least that amount r; of its product group that is specified by the
center:

}: Xitker — Z Xk + }: Xiiee }: fierik+xiot2rir (t=1...7). (5.5)

keR; ke€, keM; ked;

Expressed verbally, (5.5) says that amounts produced (in the various produc-
tion activities) minus amounts exported plus amounts imported plus amounts
produced through new investments within the planning horizon plus artificial
imports must together at least equal the amount required by the center (in each
year). To explain the meaning of the coeflicients f;, suppose T =4 and let
(ficts fik2s fic3, fixa) =(0,0.35, 0.8, 1) for some sector i and some investment
project k € #;. Then an amount of this investment project designed to permit
eventual annual production of one unit of production group / will yield 0
percent of its final production level during year 1, 35 percent during year 2, 80
percent during year 3, and 100 percent during year 4 (and all years after that),
That is, the project is planned during year 1, is gradually completed during
years 2 and 3, and reaches full operation at the beginning of year 4.
The second set of constraints on sector i is

Y kXt X BikeXik = Zijq

keR; ked;

(5.6)
(J=1...n;j#i;t=1...T).

Ziik: is the amount of product group j required as input to the production in
activity k of one unit of product group / in year ¢, for k € &.. For k € #,, giu. is the
amount of product group j required for investment activity k in year ¢
comprising both the investment itself (e.g., acquisition of machinery) and the
operation of the project for productive purposes. Hence, (5.6) states that total
usage in sector / of outputs from other sectors must not exceed amounts
assigned.
One further set of constraints on sector i is

Y RuXiat L X = wi (t=1...7). (5.7

keR,; ke

The hi, are manpower usage coeflicients. According to (5.7), total manpower
usage in sector i, year ¢, must not exceed the amount allocated. Additionally, it
must of course hold that

X =0 (ke R, &, M), xic =0 (ke &), X = 0. (5.8)

There may also be “local’ restrictions on the x variables, dealing with local
plants, and the like. For simplicity, such local restrictions are disregarded here.
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The objective of sector i is to maximize foreign exchange earnings:

T
Maximize ( Y CikXiket L CikeXike
t=1 \ke®R, ke,

(5.9)

+ ¥ CiuXiet L CikeXik + CioKior |-
keM; ke,

cie<=0for ke R; and k; € ¥ ci, >0 for k € &, ci, <O for k € M. Also, ci»; is
negative with very large absolute value, since the x;,, are artificial variables. It is
assumed that

max Ci, < min (—ci);

ke€, ke M,
otherwise, unbounded amounts of foreign exchange could be earned by simply
importing and re-exporting.

A block-angular Lp problem is now formed as follows: The objective
functions of the sectors (5.9) are summed overalli =1 . .. n to provide the total
objective function. Restrictions (5.1), (5.2), and (5.4) are the coupling restric-
tions. Each sector is restricted by (5.5), (5.6), and (5.7). There may also be
further sectoral constraints, relating to local plants for example, but those
constraints will not be specified here. Also, all variables must be non-negative
[restrictions (5.3) and (5.8)]. This LP problem may, under very pathological
conditions, be infeasible (e.g., if the right-hand sides W, are negative) or have
unbounded optimal solutions, but for the present discussion it will be assumed
that a finite optimal solution exists. Also, it is assumed that any r;, z;;, and w;,
satisfying (5.1), (5.2), (5.3), and (5.4) results in feasible sectoral subproblems.
Note, however, that the optimal solution to the Lp problem formulated could
involve artificial import activities at nonzero levels. In that case, the LP problem
solution is still feasible, but that solution is not usable for the planning problem
at hand, meaning that the economic policy figures Q;, and W, are inconsistent
with the productive possibilities of the economy.

For solving the Lp problem formulated here, a standard LP code could, of
course, be used. When the above planning problem was considered in Hungary
(around 1962), standard LP codes available in that country could handle
problems with at most 100 restrictions (not counting the non-negativity
restrictions) (Kornai 1975, p. 374). Solution by standard linear programming
was hence not possible, since the problem at hand was too large; instead, a
multilevel method had to be used. One obvious candidate was the Dantzig—
Wolfe method, but this too, could not be used because of size limitations. The
restricted master problem under the Dantzig—Wolfe method would have had as
many restrictions as there are constraints of the types (5.1), (5.2), and (5.4),
plus one convexity constraint for each sector. As this number of restrictions was
apparently also too great, the Kornai-Liptak method was developed. As
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pointed out in the earlier discussion of this method (section 3.6), it requires
very modest storage capacity for the supremal subproblem.

The block-angular 1P problem formulated here does not quite satisfy the
assumptions stated at the beginning of section 3.6. Nevertheless, it is not
difficult to modify the Kornai-Liptak method, as presented in that section, to
enable it to handle the block-angular LP problem formulated here. Some
experimental runs of the Kornai-Liptak algorithm, applied to planning prob-
lems of this type, were apparently carried out, but details about those problems
or about the results are not given (Kornai and Liptak 1965, p. 167; Kornai
1975, pp. 373-375).

5.2.2 THE APPLICATION OF MAN-MACHINE PLANNING TO THE 1966-1970
5-YEAR PLAN

In connection with the preparation of the 1966—-1970 Hungarian 5-year plan,
another block-angular Lr model was constructed (Kornai 1969a; 1969b; 1975,
Chapter 28). This model programs production, investment, and foreign trade
activities in the final year of the plan (1970) for 491 products. The activities in
the model are hence similar to those of the model described in subsection 5.2.1.
The 491 products were so-called priority products, actually corresponding to
product aggregates (such as ‘‘canned meat”) rather than fully specified,
concrete commodities. Altogether, there were 2,424 activity variables (not
counting slack and artificial variables) in the model, and fixing the values of
these variables hence determines a particular program for production, invest-
ment, and foreign trade relating to the 491 priority products.

The Lp model encompasses three hierarchical levels in the national economy.
To begin with, there are 45 sectors. Each sector has activity variables relating to
a group of priority products—the paper or the automobile and tractor industry
sectors, for example. These sectors are then grouped into main branches. A
main branch corresponds either to a ministry or a ministry section. The main
branches and sectors constitute the lower levels of the model. Including the
center, there are thus three levels.

The structure of the coefficient matrix is displayed in Figure 5.1. The sectoral
constraints include capacity constraints in existing plants and export and
import constraints on individual products. The main branch constraints
include common export constraints for an entire main branch and balance
equations that account for the transfer of products between the sectors of a
branch (but where the products in question are not transferred to sectors
outside the given main branch). The central constraints include manpower
restrictions, investment quotas, and balance equations relating to products that
are transferred between main branches.

Suppose there are k(1) sectors in main branch 1, k£(2) in main branch 2, and
so on. Then apparently 2.7:1 k(i)=45; there are 45 sectors altogether. The
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parts of the constraint matrix relating to central constraints are denoted
Ao, A11-.. ALk .- A71... A7k Ao does not pertain to any sector but
rather to certain activities that are necessary for the whole economy and may be
regarded as handled by the center. The subblocks relating to main branch
constraints are denoted By ;... By xq). .- B7.1. .. B7x@. The subblocks relat-
ing to sectoral constraints are denoted Ci;...Cixy.--Cr1-.. Cruen-
Denote the variables xg, X11...X1k(1)---X7.1-.. X747 The total problem
may then be written as follows:
7 k(i)

Maximize doX0+ Z Z d,-,,-x,-,,-
i=1j=1

7 k(D)
s.t.: Agxo+ Y Y Auxi;=a, (central constraints)
i=1j=1
k(i) .
B, x;;=b; (i=1...7), (main branch constraints)
i=1

(5.10)
Ci_,-x‘-,,-=c,~_,- (l=17,]=1k(l)),

(sectoral constraints)
Xi,j =0.

Altogether, there are 2,055 constraints (not counting x;; = 0). Of these, 67 are
central constraints and 90 main branch constraints.

It may be mentioned here that several different objective functions were
tried out in the present investigation (e.g., maximization of foreign exchange
earnings, minimization of manpower usage). It should also be noted that this
model does not cover all of the national economy. For instance, certain sectors
of the economy (such as transport) are not included at all.

Problem (5.10) is the economywide, or overall, problem. Because of its
three-level character, it may be decomposed into a model system. Suppose the
central constraint vector a is partitioned into a; (i=0,1...7), ZLO a;=a.
Then one obtains the main branch problem (5.11) for each main branch i:

k(i)
Maximize Y d;x;;
i=1

k()
s.t.: A jx;; =.ai,
=1

1

ki)

Y Bixii=b, (5.11)
i=1

Cijxij=¢ij (G=1...k@),

Xij =0.
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Central
Ao | ALy e Ak e Azi | 7| A%k | constraints
8 B Main branch
1 s Lk(1) constraints,
main branch 1

Cy, Sectora}
constraints

Sectoral

Ciram constraints

Main branch
B, |--. By constraints,
main branch 7

Cra Sectoral
constraints

c Sectoral
7.k constraints

FIGURE 5.1 The coefficient matrix of the Hungarian 5-year plan for 1966-1970.

Suppose, moreover, ‘Ehat a; and b; %fﬁ’ partitioned into a;; and b;; (j=
1...k(i)) such that Z,:; a;;=a; and Zl-:'l b;; = b;. Then one obtains the sector

problem (5.12) for sector j of branch ¢:

Maximize c¢;x;;
s.t.: Aixij=aij Biixi; = bij, (5.12)

Cijxij=cij, x:;=0.

In this fashion, a part, or subproblem, of the overall problem (5.10) can be
taken out and tested separately. Conversely, the overall problem (5.10) may be
viewed as put together from subblocks, corresponding to main branch and
sector problems. Problem (5.10) is hence an example of how multilevel model
structures are built from subproblem building blocks.
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The overall problem (5.10) could obviously be solved by ordinary Lp, in a
single-level fashion. This was not possible in the present case, since there was
no sufficiently large LP code available in Hungary at the time. Hence, a
multilevel method was used. Because the Kornai-Liptak algorithm does not
guarantee monotone improvement with each successive iteration, it was
decided to use the Dantzig-Wolfe method instead (or, more correctly, a
heuristic variant of that algorithm called ‘“‘man-machine planning”). It was
mentioned in the preceding subsection that the restricted master problem of
the Dantzig-Wolfe method could also be of considerable size and hence may be
outside the reach of available Lp codes (indeed, that is why the Kornai-Liptak
algorithm was originally developed). However, this difficulty apparently did
not arise in connection with the investigation reported here.

In applying the Dantzig-Wolfe method to the economywide problem (5.10),
there arises the question of how one should fit the three-level economywide
problem into the two-level format of the Dantzig-Wolfe method. At least two
principal possibilities present themselves:

1. Only the central constraints are taken as coupling constraints. Each
infimal subproblem will then correspond to an entire main branch. That is, the
constraints of each infimal subproblem i will be of the form

k(i)

Bixij=b,Cxij=cj(j=1...k()),x,;=0.
=1

I

There will obviously be seven such infimal subproblems.

2. The central constraints plus all main branch constraints are taken as
coupling constraints. Each infimal subproblem will then correspond to a sector.
The constraints of each infimal subproblem (i, j) will be simply

C,",'X,‘_,' =Cijy Xij = 0.
There will be 45 infimal subproblems of this type.

Mixtures of these two cases are also possible. That is, the infimal
subproblems may correspond to main branches and to sectors at the same
time.

It is not clear from the sources precisely how the three-level economy-wide
problem (5.10) was transformed into a two-level one for the purpose of
applying the Dantzig-Wolfe method. Hence, that question will be left aside
here, and it will simply be assumed that after a suitable definition of coupling
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and local constraints, one obtains the following conventional block-angular Lp
problem:

Maximize coxo+cixi+- 4 CuXn

s.t.: Agxo+Ai1x1+ - +Ax,<a,
lel Sb], (513)

ann sbm

X0s X1y« o5 Xn =0.

Here, the xg, x1...x, are variable vectors, and the constant vectors and
matrices have suitable dimensions. x, denotes activity levels for a set of
variables that cannot conveniently be grouped with any of the infimal sub-
problems. Hence, the corresponding columns—given by Ay—will be added
directly at the start as columns to the extremal problem associated with (5.13).
Suppose for simplicity that each set {x;|Bx; < b;, x; = 0} is bounded. Denote the
vector of objective function coefficients for the extremal problem associated
with the full set of extreme points w; and the matrix of coupling constraint
coeflicients L;. The extremal problem may hence be written:

Maximize coxo+wiAi+- -+ wad,

s.t.: AoX0+L1A1+' . '+L,.A,, =aq,
€1A: =1,
enAn = 1’

X0, A1...A,=0.

A; (f=1...n) are here variable vectors of suitable dimensions (with as many
elements as there are extreme pointsin {x,|B;x; < b;, x; = 0}). ¢; is a vector with 1
in every position.

As explained above (section 3.3), the Dantzig—-Wolfe method starts out with
only a few columns of the extremal problem available for each index (i.e., only
a few columns of the matrix L;). Columns are then generated successively in the
adjustment phase. However, to solve the economywide planning problem at
hand, the Hungarian team used a heuristic variant of the Dantzig-Wolfe
method, as already indicated. This variant differs from the usual Dantzig-
Wolfe procedure in some respects.

At the outset, an initial feasible solution to (5.13) was at hand, namely the
solution xo(1), x1(1), ..., x,(1), taken over from the official national plan,
worked out by traditional methods. A second initial feasible solution to (5.13)



110

could then be obtained by solving the following infimal subproblem, for each
i=1l...n:

Maximize c;x;
s.t.: A,-x,-_<_A,-x,-(1), B,'X,'Sb,‘, x,-ZO.

This results in an optimal solution x,;(2). Kornai reports that invariably c;x;(2) >
¢;x;(1) (Kornai 1969b, p. 213; 1975, p. 609). x;(1) and x;(2) can then be used to
construct two columns for the restricted master problem.

In each further iteration s, infimal subproblems of the following type are
solved forj=1...n:

Maximize g;(s)x;
(5.14)
s.t.: A,xiSa,(s), BijSbj, XjZO.

Here, the vectors g;(s) and a;(s) are determined heuristically on the basis of the
solution to the restricted master problem in previous iterations. The optimal
solution to (5.14) is used to generate a new column for the restricted master
problem. Actually, in one iteration, several different g;(s) and a;(s) may be
specified, meaning that several different columns are generated in one itera-
tion.

To determine the vectors g;(s) and a;(s), intuitive, heuristic methods are
used. For instance, if one particular coupling constraint of the restricted master
problem is very tight (as evidenced by a high dual variable), then the cor-
responding components of the a;(s) vectors (for some or all j) are set ‘‘small.”
In that case, the objective function vector g;(s) may also be specified so as to
minimize the usage of that resource in subproblem j. If, on the other hand,
there is positive slack in some coupling constraint of the restricted master
problem, the corresponding entries of the g,(s) are set “large.” If, in the jth
infimal subproblem, the optimal dual variable associated with some component
of aj(s—1) (i.e., in the previous iteration) is very different from the cor-
responding dual variable in some other infimal subproblem i # j, then a;(s) and
a;(s) may be selected so as to effect a reallocation of that resource between the
two infimal subproblems.

The infimal subproblem objective function coeflicients g;(s) and right-hand-
side vectors a;(s) in each iteration are hence not determined automatically by
the algorithm itself (as with the usual Dantzig-Wolfe method), but by the
researcher, on the basis of his intujtion and taking into account the compu-
tational results obtained so far. This means that the computations must be
interrupted after each iteration, so that the researcher can provide new g;(s)
and a;(s) for the next iteration. Hence, the method involves a certain interplay
of researcher and computer, and for that reason it has been called ‘“man-
machine planning” by Kornai himself (Kornai, 1969b). It is interesting to note
that a similar type of man—-machine planning was used by Beale et al. (1965) in
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their experimental work with Dantzig-Wolfe decomposition (see section 4.2).
The fundamental difference between the ordinary Dantzig—Wolfe method and
the heuristic variant described here is that the columns of the restricted master
problem of the Dantzig—Wolfe method are derived from extreme points (or
extreme rays) of the sets {x;|B;x; < b;, x; = 0}. Not so here—the columns derived
from solutions to the subproblems (5.14) will usually be interior points of
{x;|Bix; < b, x;, = 0}.
The heuristic method has the following attractive features:

1. It maintains feasibility. That is, if on some iteration a feasible solution to
the restricted master problem is obtained, then all later iterations also involve
feasible restricted master problems. This means that feasible overall solutions
to the original economywide problem can also be recovered immediately.

2. The objective function value of the restricted master problem gets better
(or at least, no worse) with each iteration.

It is easily seen that these two properties must hold for the heuristic method,
precisely as they hold for the ordinary Dantzig-Wolfe method. The heuristic
method was used because the research team involved apparently believed that
the ordinary Dantzig-Wolfe method would converge too slowly. The heuristic
variant may not necessarily result in an optimal solution to the overall problem
(5.10), but that is not very important in the present context. What is required is
a ‘‘reasonably good” solution after not too many iterations. Indeed, it is even
meaningless to talk about ‘“‘optimum’ in the present sort of planning situation,
given the uncertainty about some of the data, the arbitrariness of the objective
functions and so on.

The heuristic variant of the Dantzig—Wolfe method apparently worked well
and produced noticeable improvements over the official national plan in three
or four iterations (Kornai 1975, p. 613). The investigation was carried out
during 1966-1968. It was of an experimental character throughout, meaning
that the object was more one of gathering experience in applying formal
planning methods than actually producing a definite national plan (Kornai
1969a, p. 135). Nevertheless, the results were discussed with the National
Planning Bureau and may have had some effect in shaping the decisions taken.

5.2.3 CONCLUDING REMARKS

At least one additional investigation of some interest from a multilevel point of
view has been carried out by Hungarian national economic planners: an Lp
model related to the 1971-1975 5-year plan was constructed (Kornai 1975, pp.
470—483). This model was in some respects similar to the one described in the
preceding subsection. It included production, investment, and foreign trade
activities in the final year of the plan (1975). It also had a three-level structure.
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The 1971-1975 model was larger than the 1966-1970 one (more constraints
and variables), but despite this, it was solved in a single-level fashion, by direct
linear programming. This indicates that more powerful standard Lp codes had
in the meanwhile become available. Nevertheless, the multilevel structure of
the model was to some extent taken advantage of, in that separate submodels
(corresponding to, for example, single main branches) were tested out and run
before the entire model was run.

In concluding this discussion of Hungarian national economic planning, we
may ask to what extent the studies surveyed exhibit features of multilevel
systems analysis.

1. All three models (the model of section 5.2.1, the 1966-1970 national
economic plan model, and the 1971-1975 model mentioned above) had a
multilevel structure (with two or three levels). That is, they had a block-angular
Lp format. This structure was taken advantage of in that submodels could be
tried out separately before the entire model was solved. In this sense, the
models may be considered as constructed from a set of building blocks, which
implies a certain multilevel quality.

2. The methods used for solution were two-level in the first two cases but not
in the last one. This indicates that two-level methods may lose out when more
powerful single-level methods become available.

3. Institutionally, both the models themselves and the two-level methods
used in the first two studies had multilevel interpretations. That is, the
“sectors,” ‘‘main branches,” ‘‘center,” and so on correspond to actual institu-
tions. Also, the Kornai-Liptak decomposition algorithm and the heuristic
variant of the Dantzig-Wolfe decomposition method may be interpreted as
iterative dialogues between, for example, the center (the National Planning
Bureau) and the main branches (the ministries). In fact, such interpretations
appear frequently in Kornai’s work. However, the actual solution processes
were single-level affairs from the institutional point of view. That is, they were
carried out by a single team of researchers (see, for instance, Kornai 1975,
p. 479).

5.3 MULTILEVEL NATIONAL ECONOMIC PLANNING
IN MEXICO

5.3.1 INTRODUCTION

In the Mexican case study (Goreux and Manne 1973), five different models
were constructed. These models concern different levels of detail in the
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national economy, and their interrelationships may be represented as
follows:

DINAMICO
L
[ 1
ENERIETICOS CHAC
INTERCON BAIJIO

DINAMICO is a macroeconomic planning model covering the time interval
1968-1989. Its objective is to maximize consumption subject to gradual
consumption increases over the studied time interval. It divides the economy
into 15 sectors, and the productive possibilities of the economy are expressed
by an input—output matrix for each model year. It also allows for capacity
expansion through investments and for foreign trade. Constraints on labor
availability are also included.

ENERGETICOS covers three sectors of the economy: gas and petroleum,
electricity, and iron and steel. ENERGETICOS schedules production activities,
capacity investments, and foreign trade in these sectors so as to meet exo-
genous output targets at minimum discounted cost. ENERGETICOS allows for the
use of different production technologies, unlike pDINAMICO, which is based on an
input—output framework and does not permit substitution among alternative
production processes. In addition, the product specifications are more detailed
in ENERGETICOS than in DINAMICO.

ENERGETICOS does not determine geographical locations of the investments to
be undertaken. This problem is handled at the next lower aggregation level, in
INTERCON, which is spatially disaggregated. It schedules investments in elec-
tricity generation plants and transmission lines in order to meet fixed demands
at minimum cost.

cHAC is a model of the agricultural sector. It covers the production of
short-cycle agricultural crops, spatially disaggregated into 20 districts. Several
different technologies are included for each crop. Labor constraints are
included, as are constraints on other resources, such as machinery and irriga-
tion water. Investment activities (e.g., new irrigation canals) and foreign trade
activities are also included in the model. The object is to maximize the sum of
consumer and producer surpluses. This implies that crop prices are determined
endogenously, by the incorporation of step functions for prices.

BAIJIO considers only one of the 20 districts of cHAc. It is less aggregated than
CHAC, in that production activities on small and large farms are differentiated.
Crop prices are fixed exogenously, and the objective function then becomes
one of maximizing total producer surpluses.

DINAMICO, CHAC, and BAJIO are LP models. INTERCON is a mixed-integer
programming model. ENERGETICOS was solved by linear and mixed-integer
programming.
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The overall problem of Mexican national economic planning may be stated
verbally: Find a national economic development plan that is good for the whole
country. However, no explicit overall problem was formalized. Rather, the
ensemble DINAMICO-ENERGETICOS-INTERCON-CHAC-BAJIO is taken as a represen-
tation of the overall problem, meaning that the researchers involved in this case
study proceeded directly to the construction of a multilevel model complex,
without first specifying the overall problem (cf. section 2.2.1).

One approach could now be the following: to join all the five models together
into one supermodel, i.e., to attempt to construct an explicit overall problem
out of the five models. This supermodel could then be solved as a one-shot
affair, by ordinary LP or by mixed-integer programming.* Or it could be solved
by decomposition. One could imagine that biINaAMIcO would be used as the
coupling constraints of a block-angular Lp problem, and that the remaining four
models would form local subblocks of that problem. One could then apply
some multilevel decomposition algorithm, which would imply an algorithmic,
iterative information exchange between the elements of the supermodel, i.e.,
between the five models DINAMICO, ENERGETICOS, INTERCON, CHAC, and BAJIO,

However, in the Mexican case studies it was not possible to compose such a
supermodel. The five models are not compatible in aggregation level, basic
model assumptions, and other aspects. For this reason, a different approach
was taken. The five models were constructed and solved essentially indepen-
dently of one another. In particular, there were essentially no iterative
information flows between the five models in the solution process. This method
of subdividing a total planning task into parts and then solving each part
without iterative information exchange and iterative coordination of the parts
is called suboptimization in Goreux and Manne (1973, p. 3). The Mexican case
study may hence be regarded as an exercise in suboptimization.

Actually, there are some information transfers in the Mexican model system,
in that certain input parameters in ENERGETICOS and CHAC may be derived from
the solution to DINAMICO—in particular, the development of GDP (gross domes-
tic product) and shadow prices on capital and foreign exchange. That is, some
downward linkages could be established from pINAMICO to the other two
models. For instance, the development of Gpp was used to aid in the compu-
tation of exogenous energy demands for ENERGETICOS. Downward linkages
from ENERGETICOS tO INTERCON and from CHAC to BAJIO are also possible. For
instance, the exogenous agricultural crop prices used in BAJIO may be derived
from cHAc (which determines priees endogenously).

In any case, with or without these downward linkages, the Mexican case
studies would seem to qualify at best as an extreme, and degenerate, case of
multilevel planning, according to the criterion of “multilevel’” discussed in
section 1.4, since we reserve that term for situations where there are at least

* We disregard here the practical difficulties associated with solving large mixed-integer pro-
gramming problems.
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some rudiments of an iterative information exchange between the subproblems
in the model system. For the Mexican work to pass as ‘“‘true’”’ multilevel
planning, one would at least require some one-shot upward linkages as well.

The Mexican work is nevertheless of interest from the point of view of
multilevel methodology, in that the authors are concerned with the question of
whether suboptimization results in a satisfactory solution to the whole planning
task (Goreux and Manne 1973, p. 4). In other words, is it a satisfactory
methodology to consider each model in isolation, with at most one-shot
downward linkages? In order to answer this question, certain experimental
upward linkages from ENERGETICOS t0 DINAMICO and from CHAC to DINAMICO
were undertaken. That is, there was in effect a rudimentary and heuristic
infoimation exchange. In a later subsection, the upward linkage from ENER-
GETICOS to DINAMICO will be discussed. As a preliminary to that, however,
DINAMICO and ENERGETICOS Will be described at somewhat greater length. The
upward linkage from CHAC to DINAMICO is similar to the ENERGETICOS—-DINAMICO
linkage, but more complex in the details.

5.3.2 DINAMICO

DINAMICO is a highly aggregated macroeconomic planning model. It is of the Lp
type, with 316 constraint rows and 421 activity columns (variables). The
variables relate to

1. Production outputs and capacity increases in 15 sectors of the economy

2. Usage, upgrading, and downgrading of five labor force skill classes

3. Exports, foreign capital inflows, and remittances to foreign countries

4. Macroeconomic quantities (GDP, gross investment, gross savings,
consumption)

The Mexican economy is divided into 15 sectors (agriculture, mining, various
industrial sectors, construction, commerce, transportation, services) that
together account for the entire national product. For each sector, there is only
one technology available, reconstructed from tables of historical interindustry
transactions (i.e., historical input—output tables). That is, substitution between
alternative technologies is not allowed. Production outputs and investments
are measured in billions of 1960 pesos, not in natural units.

The five skill categories of labor range from ‘‘unskilled agricultural workers”
to “engineers and scientists.” The activities mentioned under (2) include
education to upgrade labor from a lower category to a higher one and migration
of agricultural laborers to one of the nonagricultural categories.

DINAMICO is a dynamic model, in that the workings of the economy are
studied at 3-year intervals, from 1968 to 1989 (where 1968 is involved only
in setting initial conditions and 1989 in setting terminal conditions). The
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objective of the model is to maximize aggregate consumption in 1971. This
objective, however, in a certain sense implies consumption maximization over
the entire planning period 1971-1989, since one of the constraints enforces a
‘“gradualist consumption path”: increments in aggregate consumption are
required to grow 7 percent per year.

The individual restrictions of the model are as follows:

Material balances. These state that the net output in sectorj (j=1...15)
must be at least equal to all uses of that output: for consumption, investments in
various sectors, exports, and inputs into production in other sectors. Since
there are 15 sectors, and since the years 1971, 1974, 1977, 1980, 1983 and
1986 (6 years) are considered, there are obviously 90 constraints of this type.
Consumption use of a product group is determined as aggregate consumption
times the average propensity to consume that product group. This means that
final consumption demands for the output of each sector are constrained to
vary in fixed proportions.

Capacity constraints. Total output in sector j, in each of the years considered,
must not exceed a certain base-year output plus capacity increments made
available through investment activities. There are also certain restrictions
on terminal investments (in 1989), designed to avoid so-called horizon
effects.

Labor demands and supplies. There are equations defining the total demand
for labor in each of the years 1971, 1974, 1977, 1980, 1983 and 1986, as a
function of output activities in the 15 sectors. Total usage of labor in each skill
category, in any one of those years, must be less than or equal to exogenously
projected available amounts plus amounts made available through skill
upgrading (educational) activities and skill substitution activities.

Foreign trade. There are constraints that define export earnings and foreign
exchange deficit (or surplus) and also define how this deficit is to be financed.
These constraints are simple definitional equations. There are also certain
(inequality) restrictions on the inflow of private capital from abroad (designed
to avoid excessive foreign ownership of Mexico’s capital stock).

Macroeconomic definitions and constraints. For each of the considered years,
GDP, gross domestic savings, and gross domestic investment are defined through
conventional macroeconomic identities (equations). Additionally, there is a
constraint on the savings increase: The savings increase must be less than or
equal to the marginal propensity to save times the increase in GDp.

Gradualist consumption path. This restriction (equality) has alredy been
mentioned above.

Additionally, upper and lower bounds are imposed on some individual
activities, mainly export activities. These bounds are not included in the
constraint count of 316.
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DINAMICO is solved by ordinary (single-level) Lp. The optimal solution pro-
vides output and investment targets for the 15 different sectors in the different
model years. It also provides projections of GDP and foreign exchange trans-
actions. Furthermore, there are some dual variables which may be of interest.
For instance, one may obtain shadow prices on foreign exchange (Goreux and
Manne 1973, pp. 139-144). Such shadow prices are of interest from a
multilevel point of view, since they can be used as input parameters in
lower-level models, as was mentioned in the previous subsection.

5.3.3 ENERGETICOS

ENERGETICOS is a model of the energy sectors of the Mexican economy. The
energy sectors are here taken as the petroleum and gas industry, the electricity
industry, and the iron and steel industry. The last is included because it is a
significant user of energy, and process choices in that industry may affect the
development of the energy sectors in general. The overall objective of ENER-
GETICOS is to choose investments in alternative processes in the three sectors so
as to meet output requirements at a minimal discounted cost, taking into
account intersectoral flows. This means that many of the variables of the
problem refer to concrete investment projects in the three sectors, and what is
desired is a cost-minimal set of such projects to be undertaken. The precise
location of the selected investments is not determined by ENERGETICOS—that is,
it contains no regional dimension. The initial year covered by the model is
1974. Material balances are included for each year in the period 1974-1980.
Additionally, three 5-year intervals are considered in the electricity sector:
1981-1985, 1986-1990, and 1991-1995.

ENERGETICOS has a block-angular structure. The constraint coefficient matrix
may be displayed as in Figure 5.2. This block-angular structure was not taken
advantage of in the final runs of the model. However, it was utilized in that the

Number
T T of rows:
! I Coupling
: ! constraints 42
:
Petroleum
and gas 67
Electricity 48
Iron and
steel 71

FIGURE 5.2 The coefficient matrix of ENERGETICOS.
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three submodels, corresponding to the three sectoral subblocks, could be
tested out separately.
The coupling constraints are of two kinds:

1. Material balances of industrial fuel, electrical peak power, and electrical
energy.* There is one such balance for each of the three, and for each year
considered (7 years for industrial fuel, and 10 years for electrical peak power
and electrical energy; the difference is accounted for by the three 5-year
intervals that are considered for the electricity sector). There is a triangular
order among the three sectors in that industrial fuel is produced in the
petroleum and gas sector but utilized in the other two. The petroleum and gas
sector is assumed not to use peak power or electrical energy. The electricity
sector uses industria) fuel but produces peak power and electrical energy. The
iron and steel sector uses all three commodities. Hence, there is a one-way flow
of commodities from petroleum and gas to electricity to iron and steel. Each
industrial fuel balance (for a given year) states that the amount produced in old
and new installations in the gas and petroleum sector minus amounts used in
the electricity sector and in new installations in the iron and steel sector must be
at least equal to the exogenous demand. Industrial fuel consists of residual fuel
oil and natural gas. Together they are counted as one product, measured in
caloric equivalents. The peak power and electrical energy balances state that
amounts produced in old and new installations in the electricity industry minus
amounts utilized in new installations in the iron and steel industry must be at
least equal to exogenous demands.

2. Cost definition equations, which convert future costs into present values.
A 10 percent annual discount rate is used. Cost elements associated with the
various activities include depreciation and interest on investment projects
undertaken and variable costs associated with running the plants acquired.
These variable costs are, for instance, costs of industrial fuel produced within
Mexico and imported, labor costs, and costs of the raw materials required by
the iron and steel sector (iron ore, metal scrap, and so on). Some of these items
may be imported, such as metal scrap and some part of the crude oil required by
the petroleum and gas sector. For imports, the exchange rate 12.5 pesos per
U.S. dollar is used (apparently the conventional rate at the time of the
investigation). However, imports are charged with an additional 15 percent of
their costs, representing a certain amount of domestic protection.

The local constraints of the three sectors have the following contents:

1. The petroleum and gas sector: There are rows expressing the input and
output of different petroleum products associated with existing refinery

* An electricity plant produces joint products: power and energy. Power is the output at an instant
of time. Energy is the integral of power output over time. Power is measured in kW, energy in kWh.
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capacity and the different refinery processes under consideration for invest-
ments. Those processes are of three kinds: “‘conventional,” ‘““‘visbreaking,” and
“maximum hydrogene processing.” The only investment activities are refinery
activities. In particular, undertaking investments in opening additional gas or
oil fields is not considered within the model. The inputs in the petroleum and
gas sector are gas and crude oil. The availability of gas and crude oil from
domestic sources is projected exogenously, for the different years considered in
the model. Additional amounts may be imported. There are also output
requirements for various petroleum and gas products; the output requirements
in different years for industrial fuel (gas and residual oil) are given in the
corresponding rows of the coupling constraint block. Those requirements are
dependent on the particular investment projects in the electricity and iron and
steel sectors. For other petroleum products, such as gasoline, kerosene, and
diesel oil, the output requirements restrict only the gas and petroleum sector,
and hence these requirements enter on the right-hand side in the gas and
petroleum subblock.

In summary, then, the main activities in the gas and petroleum sector
subblock are refining in existing and new refineries, and imports of gas and
crude oil. The restrictions express limits on domestic availability of gas and
crude oil, and output requirements on certain refined products, which are
independent of activities in the electricity and iron and steel industries. Output
requirements for industrial fuel are expressed through the coupling constraints.

2. The electricity sector. The investment activities available to the electricity
sector are new fossil fuel and nuclear electricity generation plants. Only
residual oil and natural gas are considered as fossil fuels. The local constraints
of the electricity sector include requirements for expansion of transmission
capacity as additional generators are installed. There are also equations
defining the requirement of industrial fuel in the different model years (these
requirements then enter into the coupling constraints pertaining to industrial
fuel). There are also local constraints dealing with so-called service shifting,
meaning that newer, more economical plants will be operated at full capacity,
whereas older plants will be utilized to absorb the fluctuations in the daily load
curve. The outputs of the electricity sector, peak power and energy, enter into
the coupling constraints of ENERGETICOS.

3. The iron and steel sector. This sector is simplified in that steel ingots (not
rolled products) are regarded as the end product. For each model year, the
demand for steel ingots in the economy is calculated (exogenously). The
existing capacity is deducted, and the difference must be covered by new
investments in the sector. There are restrictions to this effect in the local
constraint block. Additionally, there are equations defining the requirements
for iron ore, scrap and coke. The requirements of the iron and steel sector for
industrial fuel, peak power, and electrical energy enter in the coupling con-
straints. There are six types of investment choices available, each a different
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kind of integrated process for manufacturing steel ingots (e.g., ‘“‘prereduced
pellets + blast furnace +LD converter”’).

ENERGETICOS was solved in a one-level fashion, as an ordinary Lp problem.
However, since the investment projects considered are really indivisible, it
should ideally be solved as a mixed integer problem. After some simplification,
this was also done (utilizing a variant of the Benders algorithm). In the
discussion of linkages between DINAMICO and ENERGETICOS in the next subsec-
tion, we will be concerned only with the Lp solution.

A solution to ENERGETICOS may be summarized in the form of a time-phased
vector of investments in the different types of available projects in the three
sectors and of foreign exchange expenditures associated with that investment
plan. The basic variant solution was obtained by setting the discount rate to 10
percent and applying a 15 percent import protection cost, as indicated above.

5.3.4 LINKAGES BETWEEN DINAMICO AND ENERGETICOS

As mentioned above, the Mexican case study is concerned with subop-
timization. Suboptimization comes about when an overall problem is factored
into subproblems that are then solved independently, without any iterations of
information exchange between the subproblems (Goreux and Manne 1973, p.
3). Itis relevant to ask whether this procedure of suboptimization is acceptable.
Or, in other words, would the subproblem solutions have changed drastically if
there had been some iterative information exchange with accompanying
reoptimizations? If the answer to this second question is no, then subop-
timization is acceptable. The following experiments in linking piNaMIico and
ENERGETICOS are designed to shed light on this question of the acceptability of
suboptimization.

ENERGETICOS was constructed and solved largely independently of pinamico.
In one respect, though, ENERGETICOS takes certain input data from DINAMICO:
The exogenous demands for industrial fuel and other refined petroleum
products, electrical peak power and energy, and steel ingots were checked
against the results of piNaMIco. That is, DINAMICO provides production targets
for the 15 sectors of the Mexican economy at different points in time, and those
targets may be of help in deriving the exogenous delivery requirements
incorporated in ENERGETICOS. ENERGETICOS may hence be characterized as a
quantity-taker with respect to deliveries to other sectors of the economy. It is a
price-taker with respect to resources used as inputs (e.g., foreign exchange,
labor, capital equipment, metal scrap, crude oil, natural gas).

In order to conclude that suboptimization is acceptable in the present case,
i.e., where DINAMICO and ENERGETICOS are formulated and solved essentially
independently of one another, one would like to assure oneself, first, that the
exogenous demands for deliveries from the energy sectors to other sectors of
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the economy do not change as a consequence of the solution produced by
ENERGETICOS; and, second, that the prices on inputs utilized in ENERGETICOS do
not change drastically as a consequence of the solution produced by ENER-
GETICOS.

Consider now the first of these two points. As mentioned earlier, a solution
to ENERGETICOS is a time-phased vector of investments in different projects in
the three sectors and of foreign exchange expenditures. By varying two input
parameters, a series of six different solutions was obtained. Those two
parameters are the discount rate (which was set at 10 percent and 20 percent)
and the foreign exchange scarcity premium (which was set at O percent, 30
percent, and 60 percent). The foreign exchange scarcity premium is not the
same as the 15 percent protection against imports mentioned earlier; the 15
percent protection refers only to import costs, whereas the foreign exchange
scarcity premium is an additional charge, levied on net imports (i.e., the
difference between import costs at conventional prices and export earnings).
The basic ENERGETICOS case, referred to in the end of section 5.3.3, was
obtained by fixing the discount rate at 10 percent and the foreign exchange
scarcity premium at O percent, that is, no exchange scarcity premium on top
of the 15 percent import protection. By considering all the other combinations
of the two parameter values used, one apparently obtains six different
cases.

As ENERGETICOS is run with the six parameter combinations, the choices of
investment projects in the three sectors vary from case to case. Total solution
cost also varies from one case to another. For purposes of comparison, that cost
was measured in the same way in all six cases, by setting the discount rate at 10
percent and the exchange scarcity premium at O percent. That is, the six
solutions were generated by considering different parameter combinations, but
for evaluating those solutions, the same parameter combination (the base-case
combination) was used for all six solutions. It then turned out that the
difference in total cost between the most and least expensive solutions was only
about 4 percent, despite the fact that these two solutions involve different
investment programs. If one now assumes that the long-run price elasticity of
demand in the rest of the economy for products from the three sectors of
ENERGETICOS is at most unity, it follows that process substitution within the
three sectors (i.e., choice among the six different solutions) could not lead to
more than a 4 percent change in exogenous demands for the output products of
the ENERGETICOS sectors. Hence, under a fairly wide range of solutions to
ENERGETICOS, outside demands, using information derived from the piNnamMico
solution, remain fairly constant; that is, the particular solution chosen for
ENERGETICOS does not affect outside demand drastically (Goreux and Manne
1973, pp. 282-285).

Consider now the question of whether the prices on inputs utilized by the
three ENERGETICOS sectors might not change as a consequence of the solution
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produced by ENERGETICOs. This was investigated by the following
methodology: The six different ENERGETICOS solutions were incorporated as
activity columns in DINAMICO. DINAMICO was then rerun, and the degree of
difference between the dual variable values of piNnamico and those of the
DINAMICO variant without the ENERGETICOS columns incorporated was checked.
The dual variables of DINAMICO may be interpreted as a price system of sorts for
some of the resources in the Mexican economy (such as labor of different
classes and foreign exchange). The prices on inputs used in ENERGETICOS were
not taken directly from the pinamico dual solution. This would not have been
entirely possible, anyway, since the two models have rather different coverage
(e.g., DINaMICO does not give shadow prices on metal scrap, which is one of the
input commodities in ENERGETICOS). Nevertheless, if the dual prices of DINAMICO
change drastically as a consequence of the incorporation of ENERGETICOS
solutions, then one may conclude that it is probably not justifiable to solve
DINAMICO and ENERGETICOS independently.

Consider now the question of how to incorporate the six ENERGETICOS
solutions in pINAMICO. Naively, one might suggest that the six ENERGETICOS
solutions could be used directly to form activity columns for DINAMICO in
somewhat the same way as columns are formed for the restricted master
problem under the Dantzig—-Wolfe decomposition method. This, however, is
not possible, since the two models are largely incompatible: their aggregation
levels and coverage differ too much. For instance, DINAMICO uses only one
output for each product sector, measured in pesos, whereas ENERGETICOS has
two kinds of outputs for the electricity sector (peak power and energy,
measured in physical units), and several different kinds of outputs for the
petroleum and gas sector. On the other hand, labor is disaggregated into skill
classes in DINAMICO, with separate constraints for the different classes, whereas
labor enters only indirectly in ENERGETICOS (as parts of the cost coefficients).
Nevertheless, the ENERGETICOS solutions do require the usage of some of the
resources for which there are constraints in DINAMICO: most important among
these are capital and foreign exchange.

DINAMICO is based on 3-year intervals from 1968 onward; ENERGETICOS is
based on 1-year intervals from 1974 to 1980 and 5-year intervals after that.
Now consider the years 1974, 1977, and 1980. These years are covered in both
models. Let F, be the requirement of foreign exchange in year ¢ (t =1: 1974,
t=2:1977; r=3: 1980) associated with ENERGETICOS solution i (i=1...6).
Let K, be the requirement of investment capital of that solution in year &
Suppose that one adds the following terms to the foreign exchange equations of
DINAMICO, for t=1, 2, 3:

6
‘gl (A +Ni)Er~

In the same fashion, suppose one adds the following terms to the investment
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rows of pINaMico for t=1, 2, 3:

6
(i + i) K.
i=1

Moreover, one adds the constraints
6 6
Z A=1, Z mwi=—1,A,=0, u; =0,

This modification of pINAMIcO allows for some substitution (without
modification, there are no substitution possibilities in the model). By setting
A: =1 and u, = —1 for some fixed i, one apparently obtains no substitution at
all. That is, the foreign exchange and capital usage in DINAMICO remains
unchanged. By setting A; = 1 and u; = —1 for i # j, one allows for ENERGETICOS
solution j to be completely replaced by ENERGETICOS solution i. By considering
the whole set of A; and u; satisfying the constraints Zi Ai=1,A420, Z?=1 Hi=
—1, u; =0, one allows for a whole range of modifications of the foreign
exchange and capital usage in DINAMICO, Where those modifications derive from
alternative solutions to ENERGETICOS.

DINAMICO was rerun after being modified in the way described here, and it
was discovered that the dual variables associated with the six restrictions
relating to foreign exchange and investment in 1974, 1977, and 1980 hardly
changed at all. From this, one may infer that the solutions to ENERGETICOS do
not noticeably affect the shadow prices associated with pinamico (Goreux and
Manne 1973, pp. 285-289).

The upshot of this is that the suboptimization methodology utilized in the
Mexican study—i.e., solving DINAMICO and ENERGETICOS independently,
without any information exchange or mutual readjustments—is an acceptable
one.

5.3.5 CONCLUSIONS AND COMPARISON WITH MULTILEVEL NATIONAL
ECONOMIC PLANNING IN HUNGARY

We may now ask: To what extent are aspects of multilevel systems analysis
represented in the Mexican case study? We note first two somewhat superficial
points:

1. ENERGETICOS has a block-angular structure, and the same is true for CHAC.
These structures were utilized in that separate parts of those models could be
tested out independently before the entire model was run. (A similar procedure
was also followed in the Hungarian work; see section 5.2.3.) However, the
block-angular structures were not utilized in the final runs. Instead, ordinary
(single-level) Lp was used.
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2. In connection with the Mexican case study, certain experimental compu-
tations with the Dantzig-Wolfe method were undertaken (Kutcher 1973).
These experiments have already been mentioned in Chapter 4. They have little
to do with national economic planning per se. Also, ENERGETICOS and INTERCON
were solved as mixed-integer programming problems using a variant of the
Benders algorithm (Goreux and Manne 1973, Chapter V.I).

More fundamentally, the Mexican work represents an extreme case of
multilevel planning: suboptimization, i.e., where a given overall problem is
factored into smaller ones that are then solved independently, without mutual
readjustments and coordination based on an iterative information exchange. It
is nevertheless interesting from a multilevel methodological point of view in
that the authors have considered the question: Does suboptimization produce
acceptable results? To investigate this question, some linkage experiments
were performed. The linkages established had to be of a somewhat heuristic
nature. The models involved (e.g., DINAMICO and ENERGETICOS) are so different
in scope, formulation, and other aspects that an automatic linkage, like the
information transfer between the restricted master problem and infimal sub-
problems of the Dantzig-Wolfe method, was not possible. The Mexican work
illustrates how heuristic linkages between fairly incompatible models in a
model system can be established and how these linkages can aid in answering
the question of whether suboptimization is acceptable.

One may also compare the Hungarian and Mexican case studies in national
economic planning. In both instances, there is a *‘natural” three-level hierarchy
involved. In the Hungarian work (the 1966-1970 and 1971-1975 S-year
plans), there are three levels represented: center, main branch, and sector.
Similarly, the Mexican work may be said to comprise models on three levels.
DINAMICO may be taken as a ‘‘center model.”” CHAC and ENERGETICOS are sectoral
models, and INTERCON and BAJIO are models of parts of sectors. It is evident
from the Hungarian and Mexican work that there are two different approaches
to national planning.

The first approach is to build a decomposable Lp supermodel with a three-
level block-angular structure. Under this approach, one may well start by
constructing submodels, or subblocks, pertaining to, for example, individual
sectors, but in the end all the pieces are put together to one large model. The
important thing is that all the pieces are compatible and fit together easily. This
is the approach taken in the Hungarian work. Under this approach, one then
has the choice of solving the resulting supermodel by some multilevel decom-
position algorithm, implying an algorithmic, iterative exchange of information
between the different subproblems, or by ordinary, single-level Lp. Both
choices are exemplified in the Hungarian work. The 1966-1970 5-year plan
model was solved by ‘‘man-machine planning’ (a heuristic variant of Dantzig—
Wolfe decomposition), and the 1971-1975 S-year plan model was solved by
ordinary LP.
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The second approach is to construct a model system where the models on
different levels are independent of, and incompatible with, one another. This is
the Mexican approach. Under this approach, the total model system cannot be
solved as a supermodel by (for instance) ordinary Lp. A formal iterative
procedure of the decomposition type also cannot be applied, because of model
incompatibilities. One is then forced to suboptimize, possibly with some
informal model linkages added.

Suboptimization may very well involve some optimality loss, compared with
the first approach (the Hungarian one). For that reason, the Hungarian
approach may be preferable to the Mexican one. Nevertheless, there are some
reasons that one may prefer (or be forced) to use suboptimization: There may
be such a wide discrepancy in the statistical data base between sectors that it is
impossible to construct a totally compatible model system. Second, the subop-
timization approach corresponds to institutional realities. In the Mexican case
study, the different models in the model system were constructed by different
research teams. In a more routine planning situation, different planning
agencies (e.g., ministries) tend to their separate branch or sector problems.

Third, the suboptimization approach allows for separate (incompatible)
modeling treatment in each model to take into account particular sectoral or
regional conditions. This may not be possible if uniform modeling across the
economy is necessitated by complete model compatibility.

54 A PROBLEM OF REGIONAL PLANNING

5.4.1 THE DEVELOPMENT NETWORK

The focus now shifts from national to regional planning. This section draws on
Alekseev (1975, pp. 63-101), and Alekseev et al. (1974, pp. 81-103).* We will
follow the development in Alekseev (1975) in first presenting two sub-
problems. We then indicate how those subproblems can be put together to an
overall problem, and we then outline and discuss the two-level solution method
proposed by Alekseev.

Consider the problem of developing a geographical region of a country. Such
development may be considered a complex project and can be represented by a
PERT-type network, for example as shown in Figure 5.3. In this case, a forest
areais to be felled, and a railway, a harbor, a power station, and a sawmill are to
be constructed. The network displays the order in which the various project
parts must be completed.

In general, let the regional development network be denoted by G. The
nodes (or events) are indexed by i or j. The arcs are denoted (if). Any (ij)e G
signifies a particular activity that is to be completed as part of the overall

* Alekseev and Kozlov (1977) is a short English-language summary.
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FIGURE 5.3 A development network.

project. Activity (if) takes 7; time periods (integer months) to complete. Let ¢;
denote the time period that activity (ij) is started. However, activity (if) cannot
be started until all activities earlier than (ij) in the network have been
completed, that is, not until event i has been reached. Let that time period be
denoted ¢.

In carrying out the activities, certain resources (e.g., cement, asphalt) are
utilized. Let there be K such resources altogether. Suppose ¢ is any period. Let
O,’-}(t — t; + 1) be the usage of resource k in activity (if) in period ¢ if that activity
is started in period ¢; (1=<t—1t;+ 1< ;). That is, the resource usage depends
only on the number of periods ago that the activity was started. Let u,; be the
price of resource k in period ¢. The total cost of activity {if), as a function of ¢;
(the start period), is hence

ytmi—l K
) Qfi(r =ty + Vg
t=t; k=1
It is desired to schedule all activities so that the total sum of resource costs (over
time) is minimized. This can be written as:

Minimize with respect to ¢; and ¢;:

N (5.15)
Ty K
) Y X Qs(f_fii+1)uzk~
(i)eG  t=¢; k=1
There are the following restrictions to observe:
tj = max (t; + 7;), for all events je G. (5.16)

1
G(j)e G
Equations (5.16) means that an event j is attained only when all activities
leading up to that event have been completed.

t; = 1, for all activities (ij) e G. (5.17)
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This means that activity (if) cannot be started before event i is attained.
t; + 7; =< T, for all activities (i) € G. (5.18)

According to (5.18), the whole network must be completed no later than the
beginning of some predetermined period 7. Additionally, one has the
definition:

=1 (5.19)

Finally, the ¢; and ; must be integers.

Expressions (5.15)—(5.19) define a combinatorial decision problem. The
decision variables are apparently the ¢; and ¢. Note that the 7;; are constants.
This means that each activity takes a specified number of periods, calculated in
advance. The associated resource usage is also calculated in advance. This
implies that there is only one technology for completing each activity. Note also
that each activity is supposed to be carried out in consecutive periods. That is, if
a particular activity (jj) takes two periods (r; =2), then one could not, for
instance, start the activity in period 11, let it rest in periods 12 and 13, and then
complete it in period 14.

Problems (5.15)~(5.19) can be solved by dynamic programming methods in
simple cases; for more complicated problems, an approximate method can be
used (Alekseev 1975, pp. 71-75; Alekseev et al. 1974, pp. 93-95). We will not
be concerned here with the details of that solution method, but assume only
that an optimal solution to (5.15)-(5.19) can be obtained.

54.2 AN LP MODEL FOR RESOURCE PRODUCTION

Now assume that the K different resources needed in the development
network are produced in a set of factories. Let the production activities in these
factories be denoted summarily by the vector x. Let a, be a vector that
transforms the activity vector x into output of resource k in period ¢t (k =
1...K,t=1...T-1). Thatis, aux is the output of resource k in period ¢ of
the total production complex (set of factories). Let the cost vector be ¢. For a
given solution to the network problem (5.15)—(5.19), one may compute total
resource demands Q,, for each period ¢ and resource k. It is now desired to
produce these resources as cheaply as possible. This may be written as:

Minimize c¢x
s.t.: auxz=Qu (t=1...T-1;k=1...K), (5.20)
xe X,
where X is defined by some set of linear inequalities (including x =0) and
expresses constraints on production capacities in individual factories, etc. It is

assumed that (5.20) is feasible for any set of Qy resulting from a solution to
(5.15)-(5.19).
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5.43 THE OVERALL PROBLEM AND A TWO-LEVEL SOLUTION METHOD

Alekseev (1975) does not explicitly formulate an overall problem. However, it
is easy to see that the two subproblems formulated in the preceding two
subsections may be combined into the following overall problem:

Minimize c¢x

s.t.: —aux+Qu=0(t=1...T-1,k=1...K),
xeX,
Qu =(_)zcoﬁ;(t—z,-,+1) (t=1...T-1,k=1...K), (521)
if)e
t; = max (t; + 1), for all events j€ G, (5.22)
(i)eG
t; =1, for all activities (if) € G, (5.23)
t; +7,; =T, for all activities (i) € G, (5.24)
=1 (5.25)

We may rewrite this overall problem as
Minimize cx
s.t.: —Aux+Qu=00=1...T-1,k=1...K),
xelX,

(Q11... Qi Q21 .- . Q2. .. Qr-11- .. Qr-1x)€ Q,

where Q is a set defined by the restrictions (5.21)—(5.25). Q is apparently a
discrete set of points, and we note in passing that (5.26) is of a form suitable for
an application of the Benders decomposition algorithm. However, another
two-level method, a heuristic one, was used to solve the overall problem (5.26)
in Alekseev (1975); this will be discussed below.

Let (5.15)-(5.19) be the supremal subproblem and (5.20) the infimal sub-
problem. That is, there is only one infimal subproblem. For a given solution to
the supremal subproblem, resource demands Q. may be computed by means
of the relation (5.21). Suppose those demands are inserted as the right-hand
side of the infimal subprobiem (5.20). When (5.20) is solved with that right-
hand side, a set of resource prices uy {(dual variables) is obtained. These
resource prices can then be inserted into the objective function of the supremal
subproblem, to generate a new supremal subproblem solution (i.e., a new
development schedule).

In other words, one iteration of the adjustment phase could be carried out as
follows: The supremal subproblem (5.15)—(5.19) is solved, taking as resource

(5.26)



129

costs uy the dual variables associated with the infimal subproblem in the
previous iteration. This results in a set of resource demands, which are
transferred to the infimal subproblem. The infimal subproblem is solved, and
the dual multipliers associated with the constraints a,x = Q are transferred to
the supremal subproblem. The supremal subproblem objective function is then
revised, taking those dual variables as resource costs.

Actually, if one merely inserts the new dual multipliers uy, into the objective
function of the supremal subproblem directly, then the iterative process may
exhibit sharp oscillations. For that reason, the objective function coefficients
for the supremal subproblem have to be modified. Let u;, be the dual
multipliers associated with the infimal subproblem in iteration s. Let ii 7 be the
objective function coefficients utilized in the objective function (5.15) of the
supremal subproblem of the same iteration. Then i}’ is formed as follows:

' = (- )i + o
where a, is chosen such that a, > 0 as s » o0, Z;D:,as - 00. (Oneseries of weights
a, satisfying these conditions is a, = 1/s.)

On each iteration, the value of the solution to the overall problem arrived at
is given by the solution to the infimal subproblem, with the right-hand sides Q.
taken from the supremal subproblem solution in the same iteration. Let that
solution value be denoted z,. z; does not necessarily decrease with each
iteration (Alekseev 1975, pp. 88-90). For a stopping rule, z, and z,_, may be
compared. If |z,—z,_;|<e (some predetermined positive constant), the
process stops.

To start the first iteration, resource prices may be arbitrarily specified.
The adjustment phase goes on for some (limited) number of iterations.
In the execution phase, a solution to the original problem is obtained from the
supremal and infimal subproblem. That is, the supremal subproblem provides
the development schedule, and the infimal subproblem the associated resource
production plans.

An overall problem of the type considered here was formulated for the
development of the Boguchany territorial industrial complex in Siberia. It was
solved by the method outlined here. For that purpose a computer program was
written that can handle networks with up to 500 activities and Lp subproblems
with up to 100 restrictions (Alekseev 1975, p. 90). For the case of the
Boguchany territorial industrial complex, a total of four iterations was
sufficient to attain a satisfactory solution (Alekseev et al. 1974, p. 98).

5.4.4 DISCUSSION OF THE TWO-LEVEL METHOD FOR REGIONAL PLANNING

No justification for the above two-level method is given in Alekseev (1975) or
Alekseev es al. (1974). However, a certain justification does exist. Suppose i
(t=1...T—-1,k=1...K) are objective function coefficients for the



130

supremal subproblem in iteration s of the adjustment phase. Let Qj: be the
resulting resource demands, given by the solution to the supremal subproblem.
Let x° be an optimal solution to the infimal subproblem, and let uy; be dual
multipliers associated with the resource demands Q. If now uy, = iy, forall ¢
and k, then (x°, Q%1 ... Qix, Q31 ... Q5k ... Q%_y1 ... Q%_1.k) is an optimal
solution for the overall problem (5.26). This follows from Everett’s theorem,*
since (x°, ... Qg . ..) minimizes

T-1 K T-1 K
cx+ ¥ Y up(—awx)+ ¥ Y GuQu
t=1 k=1 t=1 k=1
T-1 K T-1 K
=cx+ Z Z Ga(—aux)+ Z Z 1o Qu

t=1 k=1 t=1 k=1
over X X Q, and since —a,x* + Q3 =0, with strict inequality implying that the
corresponding u;y is zero.

Hence, un =i (t=1...T—1,k=1...K) represents a sufficient opti-
mality condition. The adjustment phase of the two-level method may be
interpreted as a search for resource prices satisfying the sufficient optimality
condition. Because of the averaging procedure used in calculating &' (see
section 5.4.3), price oscillations are dampened, but the &3 may converge to a
set of resource prices that do not satisfy the sufficient optimality condition (as
can be shown by counterexamples). Also, the Q; may not converge, but
oscillate, despite the averaging procedure. Furthermore, the solution values z;
need not decrease monotonically, as mentioned earlier.

For the reasons just mentioned, the two-level method for regional planning
must be regarded as heuristic. Together with the two earlier case studies
described in this chapter, the present study exemplifies heuristic multilevel
approaches.
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Planning of Production and
Sales Programs in Corporations

6.1 INTRODUCTION

6.1.1 THE PLANNING PROBLEM

In this chapter we consider multilevel methods for solving a class of problems
relating to production and sales planning in business firms. Abstractly, the
planning problem is formulated as a block-angular Lp problem:

Maximize c¢ix;+¢ax2+- -+ CuXn

s.t.: Axy+Ax+ - +Ax.<a,
lel —<—b1,

Bjx, <b,, (6.1)
‘ Bux, < by,

xl,xz...x,‘ZO.

The usual interpretation of (6.1) in this connection is the following: A firm
consists of a headquarters group on the first level and n departments (or
divisions) on the second.* Each department controls a set of activity variables.
For department j, x; is the vector of activity levels for the activities pertaining to
that department. Those activities may relate to purchases of raw materials,
production, deliveries to other departments, and sales to outside customers.

* “Division” usually denotes a subunit in a divisionally organized corporation, “department” a
subunit in a functionally organized corporation (Jennergren 1975, pp. 11-16). In this chapter, we
use the term department, because the two corporations in the following case studies are function-
ally organized.
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Each department is limited by some local constraints, Bx; < b;. These may, for
instance, express local capacity constraints in the physical plant of department
J, or upper and lower bounds on sales to outside customers of that particular
department.

Additionally, the constraints A;x;+ A.x2+ - - -+ A,.x, =< a limit the choice
of activities by all departments taken together. They can express, for example,
the usage of certain joint resources, such as machine capacity, raw materials,
and manpower. Also, the coupling constraints may express balance conditions
on the transfer of raw materials, semifinished products, and so on from one
department to others. The restrictions A1x;+ Azx;+- + -+ A,x, < a are often
referred to as corporate restrictions, since they affect all departments, or the
whole corporation. In contrast, the restrictions B;x; < b; affect only department
j and may therefore be referred to as departmental.

The planning problem (6.1) is a fairly short-run one. That is, it aims to select
a production and sales program for some coming time period, like 1 to 3
months. Obviously, the detailed scheduling of individual jobs through the
factory is not considered in (6.1). The goal of the firm in this planning situation
is taken as one of maximizing contribution to profit. The vectors ¢; express
contributions to profit associated with the different activities. This goal of
maximizing contribution to profit may be considered appropriate for a short-
run planning situation like the one considered here.

Problem (6.1) is an abstract statement of the overall problem of this chapter.
It is obviously a block-angular Lp problem. Nonlinear formulations of the total
planning problem facing the corporation have also been proposed, though (see,
e.g., Kulikowski 1975). Before discussing multilevel methods for solving the
overall problem (6.1), we may inquire whether (6.1) is a ‘“‘real” problem. Do
planning problems of type (6.1) actually exist in real companies? The answer is
yes. At least in some companies, planning problems like (6.1) do arise in
connection with production and sales planning. Thé two case studies described
in this chapter utilize planning problem data derived from two real companies
and hence pertain to planning situations which do exist. We may thus conclude
that the planning object—production and sales planning problems of type
(6.1)—does in fact exist. Hence it is meaningful to discuss solution strategies for
that planning object.

6.1.2 PLANNING PROCEDURES BASED ON DECOMPOSITION METHODS

Suppose now that some company faces the planning problem (6.1). The
simplest way to solve it, i.e., to arrive at a production and sales plan, may well
be to assemble all information about (6.1) (the complete problem description)
in one place, at headquarters, and then solve (6.1) directly, for instance by
ordinary single-level Lp.
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However, in some cases it may not be feasible to assemble all information
about (6.1) in one place. That is, information is dispersed among different
organizational subunits of the corporation. For instance, it is quite natural to
assume that department j has some knowledge of the constraints Bx; < b,, since
they refer to, for example, the physical plant of that department. Moreover, it
could also be that department j is unable, or even unwilling, to supply
headquarters with a precise description of its departmental constraints Bx; =<
b;. However, each department can usually be expected to be able to answer
questions of the following type: “What would your production and/or sales
plans be under the following conditions . . . ?”” Where those conditions refer,
for instance, to a specific set of transfer prices (Jennergren 1971a, pp. 11-12;
Polterovich 1972, p. 444).

In situations such as this, it seems natural to attempt to construct a planning
procedure founded on some decomposition method, since the overall problem
(6.1) is a block-angular one and hence suited for an application of, e.g., the
Dantzig-Wolfe method, and since the utilization of such a planning procedure
would usually not violate the condition that information about (6.1) is dis-
persed among various subunits of the corporation. In effect, what is being
proposed is to use a two-level planning procedure, founded on some decom-
position method, where messages are actually exchanged between different
subunits in the corporation during the adjustment phase, and where each
subunit iteratively performs certain calculations. That is, we are talking about a
category 3 situation, in the classification of section 2.2.2. When a decom-
position method is used as a purely computational tool, information is
exchanged between different subblocks of a computer program, which are
called upon to solve different subproblems. In a category 3 situation, infor-
mation is exchanged between different organizational subunits, and each
subunit has its own subproblem to solve at different points in the planning
process.

It has been pointed out time and again that planning procedures founded on
decomposition methods could be used in departmentalized (or divisionalized)
corporations. When the Dantzig-Wolfe decomposition method was published,
it was almost immediately pointed out that it has a certain resemblance to
budgeting, or planning, procedures in real business firms (Almon 1963,
Baumol and Fabian 1964). It was then suggested that it could also actually be
implemented as a planning procedure in companies. The same suggestion has
been put forth for several other decomposition algorithms. The literature on
the usage of planning procedures founded on decomposition methods is by now
very large, as evidenced by the fact that quite a few surveys have been
published (among them, Atkins 1974, Bailey 1976, Burton and Obel 1977,
Ennuste 1972, Freeland 1973, Jennergren 1971a, Martines-Soler 1974,
Polterovich 1969, Ruefli 1974).
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It is customary to divide planning procedures for solving problems like (6.1)
founded on decomposition methods into two groups: price-directive and
resource-directive. These labels derive from the nature of the information
exchange between the supremal and infimal subproblems in the adjustment
phase, where the supremal subproblem is considered to ‘‘belong to”
headquarters, and the infimal subproblems to departments. Under a price-
directive approach, the information going from headquarters to departments in
each iteration of the adjustment phase is a tentative price vector, associated
with the corporate constraints. The information going back from departments
to headquarters includes tentative quantities. These quantities result from
activity decisions that would be taken by the departments if they could carry
out transactions in jointly utilized scarce resources and intermediate products
at the prices announced by headquarters. The Dantzig~-Wolfe method is
apparently a price-directive one. So is the Lagrangean method (section 3.7).
That method, however, has only been discussed for certain nonlinear overall
problems and hence cannot immediately be used as the basis for a planning
procedure for the overall problem (6.1), at least not without some adaptation.
Quite a few price-directive two-level planning methods have been proposed in
the literature, for example, Baumol and Fabian (1964), Charnes et al. (1967),
Hass (1968), Jennergren (1972, 1973) Kydland (1975), and Mandel’ (1973).

Under resource-directive approaches, the information going from
headquarters to departments in each iteration of the adjustment phase is a
tentative partition of the right-hand side of the corporate constraints among
departments. Such a partition may be viewed as tentative quantities of various
semifinished products and jointly utilized resources. The messages going back
to headquarters include information about how departmental payofts would
change in response to changes in the tentative quantities. The ten Kate and
Kornai-Liptak methods are resource-directive ones.* A fair number of
resource-directive two-level planning methods have also appeared (for
instance, Burton et al. 1974, Freeland and Baker 1975, Jennergren 1971b, ten
Kate 1972, Kornai and Liptak 1965, Pervozvanskaia and Pervozvanskii 1966,
and Zschau 1967).

The literature on the usage of decomposition methods as the basis for
planning tools in corporations is hence very large. It is, however, almost
entirely of a theoretical nature. It is a most disappointing fact, as also
mentioned by Ruefli (1974, p. 361) that so far no implementations of planning
methods founded on decomposition methods have been attempted in real
corporations (as far as is known). However, a few simulation studies of
the performance of decomposition methods as planning tools have been

* The ten Kate decomposition method is a special case of the Benders algorithm applied to
block-angular LP problems, as pointed out in section 3.5.4. In this chapter, we use the label ten Kate
rather than Benders, to conform with the literature.
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undertaken. Jennergren and Miiller (1973) is one such study, using small,
randomly generated planning problems. This chapter presents two other
simulation studies, one pertaining to a paperboard manufacturer (Ljung and
Selmer 1975), and the other to a slaughterhouse (Christensen and Obel 1976).
As indicated earlier, these two case studies utilize real planning problem data
taken from the two companies and then simulate the production and sales
planning process using the Dantzig-Wolfe and ten Kate decomposition
methods. That is, what would the consequences have been if the decom-
position method had been applied as the basis for a decision-making system
in the given company? What would the information transfers between
headquarters and departments, and vice versa, be like? What subproblems
would the different organizational subunits solve in each iteration, and what
would the resulting solution be like?

In the literature, one can find lists of desirable properties that decomposition
methods should possess, if they are to be used as planning instruments in real
corporations (e.g., Jennergren 1971a, pp. 23-28; Malinvaud 1967). For
instance, they should be well defined in the sense that it is completely clear what
each organizational subunit is supposed to do at each point of the planning
process, what information is to be exchanged, and so on. The most important
property, however, is probably that a ‘‘good”’ solution to the overall planning
problem (6.1) should be obtained with only a very small number of iterations of
information exchange in the adjustment phase. In a real company, not many
iterations of some planning scheme calling for subproblem solving and
information exchange between different organizational subunits will be
undertaken, probably three or four at most. The following case studies address
themselves to the issue of whether a good solution to the planning problem can
be obtained in a small number of iterations of information exchange.*

In a sense, the following two case studies are concerned with the efficiency of
decomposition algorithms. Nevertheless, the emphasis is here very different
from that in Chapter 4 on computational experiences with Dantzig-Wolfe
decomposition for Lp problems, where the main interest is in the total machine
time usage to obtain an optimal (or near-optimal solution). If 100 iterations of
information exchange between the supremal and infimal subproblems are
necessary, that does not matter, since a very large number of iterations may
quite easily be carried out by a computer. Here, we are concerned with the
quality of the solution obtained after only a few iterations. To further avoid
misunderstandings, it is only that ultimate solution that is to be implemented in
actual production and sales activities in the company. The various tentative
plans computed by headquarters and departments in the iterative information

* There is no contradiction between formulating (6.1) as an optimization problem and then
attempting to obtain a ‘‘good’ solution through the use of some decomposition method as a
planning tool. That is, one strives towards optimization but recognizes that in the end one has to
settle for a good solution.
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exchange of the adjustment phase are not to be implemented. They are only
trial plans on the way to the final and definitive one.

It should be mentioned that the emphasis here is different from that in
Chapter 5 on national economic planning, too. The overall planning problem
(6.1) is in its economic meaning very similar to a national economic planning
problem involving a planning agency and economy sectors of the type consi-
dered in Kornai (1975). Both problems involve planning physical production
for some future time period. (In fact, a few of the references cited here refer to
national economic planning rather than to planning in industrial firms.) It is
really only the scale of the problem that differs. Yet, there is again the
difference in the solution methodology, in that it is suggested here that the
planning problem (6.1) is to be solved through an institutional arrangement
that involves assigning different subproblems to different organizational
subunits and then performing an iterative information exchange between these
subunits. This solution methodology was not used by Kornai and his associates.
Rather, the 1966-1970 5-year planning problem was solved by one single
group of investigators, within one organization, using a heuristic variant of
Dantzig-Wolfe decomposition as a numerical tool for problem solving on one
single computer.

6.2 A SIMULATION STUDY OF A PLANNING PROCEDURE
BASED ON THE DANTZIG-WOLFE METHOD IN A
PAPERBOARD FACTORY

This case study is based on the work of Ljung and Selmer (1975). The company
involved is a Swedish manufacturer of a variety of wood products; this study
concerns only part of the company’s activities, the manufacture of paperboard.
Paperboard is produced from raw materials delivered from other units within
the company. However, in what follows we will speak of the paperboard
factory as ‘‘the company,” for simplicity disregarding the fact that this factory is
actually in itself a division of a larger corporation.

6.2.1 THE PLANNING PROBLEM OF THE PAPERBOARD FACTORY

The planning problem to be described concerns the production and sales of
paperboard. The typical situation at the time of the investigation was that
demand exceeded the supply possibilities of the company. This meant that it
was important to coordinate sales and production plans. The planning problem
discussed below refers to a 1-year period. The data for the problem were taken
from a larger corporate planning model covering both paper pulp and paper-
board. Once that part of the model that refers to paper board was taken out, it
had to be transformed in certain ways (e.g., some variables and coefficients had
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to be redefined). In the end, a block-angular Lp problem with coefficient matrix
like that displayed in Figure 6.1 was obtained.

As can be seen, there are four subblocks. Each refers to a sales area, like
“Scandinavia.” The activities refer to volumes of sales to individual customers.
There are about 200 different qualities of paperboard (i.e., 200 different
products) that can be manufactured in the factory. However, each customer
usually buys one particular product mix. This means that each customer can be
represented by a single activity variable. In a few cases, customers require
varying product mixes and so must be represented by more than one activity
variable. The total number of variables is hence somewhat larger than the total
number of customers. Altogether, there are 652 variables. Of these, 137 refer
to sales area 1, 22 to sales area 2, 272 to sales area 3, and 221 to sales area 4.
The departmental constraints are of a rather special nature, as also indicated in
Figure 6.1. They consist exclusively of upper and lower bounds on sales to
individual customers. This may appear strange at first but may actually arise
naturally in a short-run planning situation where one may have contracted
to deliver certain minimum quantities, is forced to allocate one’s deliveries
among customers due to excessive demands, etc.

One may wonder why a planning problem with the particular block-angular
structure depicted in Figure 6.1 was formulated. In particular, why are there
four subblocks (and not, for instance, six)? And why does the second subblock
only encompass 22 sales variables, whereas the third has 272 such variables?
The answer is that this company is grouped into four sales areas, and the
division of customers between sales areas in the formulation above cor-
responds to organizational realities.

There are only six corporate constraints. Four of these refer to annual
capacities in four different machine groups (for board making, rolling, plastic
coating, and sheet cutting). The remaining two restrictions state certain

[ ] Objective function

} Six restrictions

-1

Sales area 1 .. Sales area 4

FIGURE 6.1 Coefficient matrix for the paperboard factory planning problem.



139

requirements on the product mix (certain percentages of the simpler qualities
are necessary for cleaning the board-making machines). It may be remarked
that there are no constraints on raw materials (paper pulp). The company has
its own paper pulp supply, as indicated earlier. This supply is always sufficient
for paperboard manufacturing.

The objective function coeflicients express contribution to profit associated
with each customer. They are computed starting with the sales prices from
which certain items are deducted: the opportunity cost of paper pulp (which can
be sold directly to outsiders), the cost of certain other raw materials (such as
plastic), the cost of electricity and steam, and handling and transportation costs.

Implied in the above overall planning problem formulation is a certain
division of planning labor between headquarters and departments (sales areas).
Headquarters will coordinate the sales plans for the sales areas in such a
manner that the physical production constraints (the six corporate constraints)
are satisfied. This means, in particular, that headquarters is associated to some
extent with the production function. A somewhat different division of labor is
implied by a problem formulation with the coefficient matrix exhibited in
Figure 6.2. In this case, the production function is taken as a separate
department of its own. The departmental constraints of the production
department correspond to the six corporate ones from the earlier formulation.
The decision variables of the production department refer to different product
qualities (not individual customers). The corporate constraints in this second
formulation become balance constraints: the supply from the production
department must at least equal demands in the sales areas. There will hence be
about 200 such balance equations. The role of headquarters is now one of
balancing the delivery plans of the production department with the sales plans
of the sales areas. This is a somewhat more limited task than in the first overall
problem formulation. (Note that we are here comparing two different overall

Corporate constraints
(balance equations)

Production
department

Sales
area

Sales
area

4

FIGURE 6.2 Coefficient matrix for an alternative formulation of the paperboard
factory planning problem,
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problem formulations, not two ways of constructing a two-level subproblem
hierarchy relating to the same overall problem.)

Ljung and Selmer considered the second problem formulation as well, but
they do not use it in their simulation experiments. The reason is that the second
formulation is a more complex one. The application of Dantzig~Wolfe
decomposition to planning problems of the kind considered here involves
(among other things) finding realistic prices for the corporate constraints. In the
first formulation above, only six such prices are involved (one for each of the
four machine groups, plus one for each of the two product mix constraints). In
the second formulation, about 200 transfer prices are involved (for transfers of
the 200 different product qualities from the production department to the sales
areas). This illustrates the difference in complexity between the two formula-
tions.

6.2.2 INFORMATION DISPERSAL AND INFORMATION FLOWS

The economic interpretation of the Dantzig-Wolfe method has been discussed
above (section 3.3.6). That interpretation coincides, in fact, with the way it
would be implemented as a planning method in a corporation. Ateachiteration
of the adjustment phase, headquarters calculates a tentative price vector p',
associated with the coupling constraints of the supremal subproblem (the
restricted master problem) of that iteration ¢. Each department j then solves the
infimal subproblem

Maximize c¢px;—p'Ax;

s.t.: B,'xisb,', x,‘ZO.

This calculation may be interpreted as an attempt to determine departmental
activity levels that maximize departmental profit (the difference between c;x;
and p‘A;x;), under the assumption that jointly utilized resources and
semifinished products can be freely traded at the prices p'. Suppose x; is an
optimal solution. Two pieces of information from department j are then added
to the supremal subproblem in the next iteration: the column (A;x;), which may
be interpreted as a quantity proposal from department j; and (c;x;), the
contribution to profit for the whole corporation resulting from the divisional
activity levels given by x].

The precise form of the messages from headquarters to department j and
from department j back to headquarters depends on the precise way in which
information about the overall planning problem (6.1) is dispersed in the
corporation. In the case of the paperboard company, it is most natural to
assume that each department j knows its departmental constraints Bx; < b;.
Since each department is a sales area, it is also logical to assume that it knows ¢;
(i.e., the contributions to profit associated with the different activities).



141

Headquarters khows the corporate constraints Y Ax; < a (both the right-hand
side and the left-hand-side coefficients). In this situation, the information going
from headquarters to department j in iteration ¢ of the adjustment phase is the
vector (p'A;) (not merely p'). After receiving this message, department ; is
capable of constructing its infimal subproblem, since the other data for that
subproblem (¢;, B;, and b;) are known by department j in advance. The
information going back from department j is (c;x}) and x;. With that informa-
tion, headquarters can construct the new column (A;x;) for the supremal
subproblem.

If a different initial dispersal of information about (6.1) is assumed, some-
what different information flows result. If a planning procedure based on
Dantzig-Wolfe decomposition is to be used, then headquarters must at least
know aq, the right-hand side of the corporate constraints. Department j must at
least know Bx; < b,, its own departmental constraints. The remaining pieces of
information necessary for constructing the infimal and supremal subproblems
can be transferred during the iterative information exchange.

6.2.3 THE SIMULATION EXPERIMENT

The production and sales planning problem of the paperboard manufacturing
company was described in section 6.2.1. The performance of the Dantzig~
Wolfe method as a planning tool, for reaching a decision on that planning
problem, has been simulated. It may first be noted that the departmental
subproblems at each iteration of the adjustment phase are very simple in this
case: the only restrictions are upper and lower bounds (for each variable).
Hence, an optimal solution is obviously to set each variable equal to the lower
or upper bound, depending on whether the corresponding objective function
coefficient is negative or not.

In order to obtain a good solution to the planning problem in a small number
of iterations, it is necessary to obtain a feasible solution to the restricted master
problem as quickly as possible—in the first or second iteration. This means
that the very first set of proposals obtained from departments should preferably
result in a feasible solution to the supremal subproblem. The reason this is
preferable is obvious: as soon as a feasible supremal subproblem has been
obtained, a feasible solution to the original planning problem can be recovered
at any point later in the planning process. Whether the first set of proposals
satisfies the feasibility requirement depends on the initial prices announced by
headquarters that are used to generate those proposals. In other words, the
problem of immediately obtaining a feasible solution to the restricted master
problem can largely be reduced to one of selecting a good set of initial prices
associated with the corporate constraints.

In the present case, there are six prices to be specified initially, one for each
corporate restriction. The first four of these prices refer to scarce resources
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TABLE 6.1 Solution Value of Production and Sales Plan, after
Different Iterations of Information Exchange

Best Upper Bound

Iteration Value (in % of True Optimum) (in % of True Optimum)
1 77.65 105.9
2 86.81 105.9
3 96.93 101.0
4 98.00 101.0

(machine time capacities), and the remaining two to product mix constraints. In
order to attempt to ensure that the machine time capacities were not exceeded,
the initial prices associated with the machine time constraints were set ‘‘high.”
The remaining two were set to zero. It turned out that this set of prices did
result in a feasible restricted master problem in the first iteration.*

The further progress of the planning procedure is shown in Table 6.1. It
should be noted that the solution value for each iteration refers to the value of
the restricted master problem at that iteration. The convergence of the
restricted master problem solution value is seen to be quite rapid. After three
iterations, almost 97 percent of the maximum total has been attained, and the
gap between actual solution value and upper bound is 4 percent. (It may be
remarked that a total of nine iterations was required to attain the true
optimum.) Some additional runs were performed with modified right-hand
sides (i.e., minor modifications in the planning problem data), with similar
results (rapid convergence during the initial iterations).

6.2.4 IMPLEMENTATION OF THE PLAN

After terminating the iterative information exchange (i.e., after terminating
the adjustment phase), a decision must be made about implementation. As was
pointed out earlier, the various tentative plans proposed by departments or the
successive restricted master problem solutions are not implemented one after
the other. It is only at the end of the planning process, in the execution phase,
that one particular decision is implemented. There are several methods for that
implementation. (See the discussions in sections 3.3.6 and 4.2 of forms of the
execution phase under the Dantzig—Wolfe decomposition method.)

In the first place, headquarters can announce the weights given by the last
solution to the restricted master problem and instruct departments to combine
their previous proposals in accordance with those weights and then implement
the resulting weighted activity vector in actual production and sales activities.

* The iteration count is as follows: The initial tentative price vector is announced in iteration 0. The
supremal subproblem is then solved for the first time at the start of iteration 1.
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In that case, the resulting solution value is the same as that of the restricted
master problem in the final iteration.

In the second place, headquarters can allocate the right-hand side of the
corporate constraints to departments and then instruct them to find production
and sales plans on their own, taking into account the allocations made. That is,
suppose L; is a matrix constructed from plan proposals submitted by depart-
ment j during the iterative planning process. Let the vectors Ay, As, .. ., A,
denote an optimal solution to the restricted master problem in the last xteratxon
of the adjustment phase. Then headquarters can instruct each department j to
formulate and solve the following subproblem:

Maximize cx;

s.t.: Ax; =LA, Bx;<b, x; =0.

The resulting solution is implemented in actual production and sales over the
coming planning period. This produces a feasible solution to the overall
planning problem (assuming Ay, Az, . . ., A, is feasible for the restricted master
problem). The resulting total payoff is no lower than the solution value of the
last restricted master problem but may well be higher.

A third implementation method is for headquarters to announce the dual
prices associated with the corporate constraints of the restricted master
problem in the last iteration of the adjustment phase. Let those prices be
given by the price vector p. Each department is then instructed to solve the
subproblem

Maximize c¢px;—pAx;

S.t.: B,»x,- = b,‘, X; = O,

and implement the resulting solution over the coming planning period. This
implementation method often results in infeasible solutions to the original
planning problem.*

All three implementation methods were investigated in the present case.
Table 6.2 states what the resulting solution value would be, if the planning
process had been halted after one to four iterations, for each of the three
implementation methods. It is seen from Table 6.2 that when weights are
announced, the resulting solution value is the same as that of the restricted
master problem in the last iteration. Right-hand-side allocations result in
higher total payoff than weights (production orders). Prices result in infeasible
solutions to the original planning problem.

* This is so, even if j is an optimal price vector associated with the corporate constraints of the
original problem. See section 2.1.2 on coordinable and noncoordinable two-level subproblem
hierarchies relative to an overall problem of block-angular LP type.
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TABLE 6.2 Value of the Solution to the Original Planning Problem,
for Different Implementation Methods in the Execution Phase (values in
percent of true optimum)

Weights Announced Right-Hand-Side
Iteration (Production Orders) Allocations Prices
1 77.65 “ “
2 86.81 “ “
3 96.93 98.46 102.00°
4 98.00 99.63 98.96°

% Not stated in Ljung and Selmer 1975
Infeasible solution

6.2.5 SOME CONCLUSIONS

The results of this simulation study of the Dantzig-Wolfe method as a planning
instrument are quite positive: for a real-world planning problem, it was
possible to reach a good solution in no more than three or four iterations.
Moreover, it was easy to generate an initial feasible solution to the restricted
master problem. As for implementing the production and sales plan, the best
implementation method was right-hand-side allocations.

An obvious question at this point is whether these fairly positive results are
due to specific features of the particular planning problem. Two such features
are the small number of corporate constraints and the structure of the sub-
blocks. Obviously, one would expect a better plan (higher solution value) in,
say, three iterations if the number of corporate constraints is small rather than
large. In that respect, the features of the problem situation may have been
influential. We will return to this question, the role of the number of corporate
constraints, in the next section. The structure of the subblocks may also have
been influential, but here one may argue that that structure is perhaps not so
unusual after all. Ljung and Selmer also looked briefly at planning problems in
two other companies, and in both cases they noted subblocks of the same
type—that is, consisting of upper and lower bounds on individual sales activi-
ties.

It also turns out that in the paperboard company, the rudiments of an
iterative procedure for planning production and sales already exist (although
that procedure does not conform to Dantzig-Wolfe decomposition). That is,
the sales area heads submit tentative delivery plans to the headquarters group.
These are then examined in the light of production possibilities and long-range
marketing considerations, and a counterproposal for deliveries is sent to each
sales area head. These proposals are revised once more by the sales area heads
and then resubmitted to headquarters. Headquarters then decides on a final
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delivery plan for each sales area. The breakdown of this plan to individual
customers is carried out by the sales area head.

The conclusion is that the Dantzig—Wolfe decomposition method could be
used as a planning tool in the paperboard company, since it seems to produce
reasonable solutions and is somewhat reminiscent of iterative procedures
already in use.* In any case, the application of a planning procedure founded
on Dantzig—Wolfe decomposition in that company cannot be discarded out of
hand as a naive theoretical idea.

6.3 A SIMULATION STUDY OF PLANNING PROCEDURES
BASED ON THE DANTZIG-WOLFE AND TEN KATE
METHODS IN A SLAUGHTERHOUSE

6.3.1 THE PLANNING PROBLEM OF THE SLAUGHTERHOUSE

The second case study is taken from the work of Christensen and Obel (1976)
on a planning problem in a Danish slaughterhouse. The slaughterhouse
slaughters pigs and. produces various pork products. It is a cooperative
corporation and has to accept all pigs delivered by member farmers. How best
to utilize these pigs is thus a short-term decision problem—that is, what
particular products to supply (e.g., ham, bacon, sausages) and in what quan-
tities. The following planning problem formulation was obtained from the
slaughterhouse, where it is used on a regular basis for short-run (one week)
production planning. That is, the planning model is run regularly, in a single-
level fashion (as an ordinary Lp problem). Christensen and Obel, however,
utilize that planning problem to simulate the application of two decomposition
methods as a basis for planning procedures: the Dantzig-Wolfe and ten Kate
methods.

The slaughterhouse is divided into functional departments for purchases,
production, and sales. There are actually several production departments, but
they may be considered as one for the purposes of this study. There are also
several sales departments (seven altogether), each covering a particular
product group (like “fresh pork products’ or “‘sausages”).

The planning problem has a block-angular Lp structure, as displayed in
Figure 6.3. The activities associated with the purchase, production, and sales
departments are self-explanatory. The corporate constraints are all of the
balance type, the balances referring to transfers from the purchase department
to the production department, and transfers from the production to the sales
departments. The departmental constraints of the purchase department all

*1In the other two companies studied by Ljung and Selmer, iterative planning procedures
reminiscent of Dantzig-Wolfe decomposition—or other decomposition methods—were
apparently not in use.
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L ~ 1 Objective function

Corporate constraints

Departmental constraints,
purchase department
Departmental constraints,
production department

Departmental constraints,
sales department 1

Departmental constraints,
sales department 7

FIGURE 6.3 Coeflicient matrix for the slaughterhouse planning problem.

consist of lower and upper bounds on individual purchase activities. These
activities refer to the acquisition of live pigs (over and above the amounts that
the slaughterhouse is forced to acquire from member farms) but also to parts of
pigs that can be bought from other slaughterhouses to complement the
acquisitions of live pigs. Certain other items, such as spices, are also bought.
The local constraints of the sales departments also consist of only upper and
lower bounds on individual sales activities. These bounds are mainly upper
ones, expressing estimated sales possibilities. However, there are also some
lower bounds, to account for existing delivezy contracts. The local constraints
of the production department consist of balance expressions for products
produced and utilized exclusively within the production sphere. There are no
constraints on physical production capacity, presumably implying that
sufficient capacity is always available. The only limiting physical resources are
the raw materials, meaning in particular the pigs, which cari be obtained within
certain bounds only (as mentioned earlier). Altogether, there are 606 variables
and 575 constraints, of which 184 are corporate. The objective function is one
of maximizing contribution to profit.

It may be noted here that upper and lower bounds on individual activities
figure importantly among the local constraints, just as in Ljung and Selmer
(1975).

For the purpose of applying some decomposition method as a planning tool,
the above overall problem must be partitioned among the various organiza-
tional subunits. That is, one must decide which organizational subunits are to
participate in the planning process and which part of the total problem each
subunit is supposed to possess information about. One must, in effect, decide
on an organizational structure to be used for the purpose of implementing the
planning method. One such structure has already been indicated above,
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namely to involve all nine departments (purchasing, production, and seven
sales departments). This assumes that each department knows its own
departmental constraints, and probably also its own objective function
coefficients. In that case, headquarters will assume only the task of balancing
deliveries between purchasing and production, and between production and
sales. We will refer to this structure as No. 1.

A second possibility is to combine purchasing and production into one
department but keep the sales departments. This implies that transfers from
purchasing to production can be coordinated internally, within this purchas-
ing/production department. The number of corporate constraints then
diminishes from 184 to 149. We refer to this structure as No. 2.

A third possibility is to combine purchasing and production with the
corporate constraints and to keep only the sales departments. This assumes
that headquarters has complete information about the purchasing situation and
about the production technology. More specifically, suppose the overall prob-
lem of the slaughterhouse can be written as (6.1) above, with n =8. Let
j=1...7 refer to sales activities in the seven sales departments, and j =8 to
purchasing and production activities. Then headquarters must know Ag, Bsg,
and cg. Headquarters now has to plan both purchasing and production and
balance the amounts produced with amounts to be sold by the sales areas. We
refer to this structure as No. 3.

It can be seen that these three structures imply different organizational
arrangements, and a different division of labor between organizational
subunits in the planning process. It will be recalled that two different structures,
also implying different organizational arrangements, were discussed in the case
study of Ljung and Selmer, too. Here, however, the different structures arise as
a consequence of different two-level subproblem hierarchies relating to the same
overall problem. In the earlier case study, they arise as a consequence of different
overall problems—that is, different formalizations of the underlying problem
situation.

6.3.2 SIMULATED RESULTS USING THE DANTZIG-WOLFE METHOD AS A
PLANNING PROCEDURE

The three organizational structures 1-3 discussed in the preceding subsection
were all considered in the Dantzig-Wolfe simulation experiments. It turned
out to be totally impossible to apply the Dantzig—Wolfe method as a planning
procedure under the first two structures. * A variety of heuristic methods were
tried for selecting a set of initial prices. It was hoped that some such set of prices
would generate an initial set of department proposals resulting immediately

* It follows from the discussion in section 6.3.1 that under structure 1, there are 9 infimal
subproblems, and the restricted master problem has 184 corporate constraints. Under structure 2,
there are 8 infimal subproblems, and the restricted master problem has 149 corporate constraints,
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(i.e., in the first iteration of the adjustment phase) in a feasible restricted master
problem. In no case did this succeed. Therefore, a Phase I procedure was tried.
This also had no positive effect. In no case was a feasible solution to the
restricted master problem attained in less than 11 iterations.

A different starting strategy was then tried. The restricted master problem
was supplied at the outset with various feasible starting solutions, composed
from randomly generated departmental proposals. The objective function
values of the initial restricted master problem were in all cases negative. After
20 iterations, that value increased typically by only 0.5 percent.

It is thus clear that it is impossible to use the Dantzig—Wolfe method as the
basis for production and sales planning in this company, if organizational
structures 1 or 2 are utilized for the planning process. These negative results
may be explained as follows: The iterative information exchange between
headquarters and departments in the adjustment phase of the Dantzig—-Wolfe
method supplies the restricted master problem with information about local
conditions in the departments. In this case, the local conditions pertaining to
the production department are somewhat complicated (i.e., many variables
and constraints). It is simply not possible to supply the restricted master
problem with sufficient information about the production department in a
small number of iterations. It may be remarked that structures 1 and 2 gave
results that were nearly equally bad, although the coordination problem facing
headquarters is somewhat smaller in structure 2.

The Dantzig-Wolfe method worked somewhat better in conjunction with
structure 3. Under that structure, purchasing and production activities are
assigned to headquarters. This means that there are seven infimal subproblems
(one for each sales department). The supremal subproblem in iteration ¢ of the
adjustment phase may be written as follows:

7 -1
Maximize Y { Y (c,xj)A;}+c8x8

j=1 ls=0

t—1

7
s.t.: Y { Y (A,-xf),\f}+A8x8sa, Bgxg<bg, x3 =0, 6.2)
i=1 ls=0

YAj=1(=1...7),A;=0(all s and j).

In (6.2),j=1...7 denotes sales departments, and xz is the vector of purchas-
ing and production activities. x; is the proposal obtained from sales department
j in iteration s of the adjustment phase (it is assumed that the x; correspond to
extreme point, not extreme ray, solutions to the infimal subproblems). We note
that under structure 3, the parts of the overall planning problem corresponding
to purchasing and production activities have been put directly into the supre-
mal subproblem. The sales departments only demand products from the
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production department—i.e., they supply no products. This means that a
simple starting strategy is available for generating an initial feasible restricted
master problem: set the initial prices associated with the corporate constraints
“high.” This results in sales proposals from the sales departments where each
individual sales variable is at its lower bound, if the initial prices are high
enough. Unless the overall production and sales planning problem has no
feasible solution at all, this must necessarily bring about a feasible solution to
the restricted master problem in the first iteration.

Some different sets of ‘‘high” starting prices were tried. In all cases, a feasible
solution to the restricted master problem was obtained immediately. However,
the Dantzig-Wolfe method brought only slow improvement in the restricted
master problem solution value. The initial iterations resulted in large negative
solution values. After about six iterations, a small positive value had been
attained, and after eleven iterations, about 90 percent of the true optimal
solution value was attained. This is too slow if the Dantzig-Wolfe method is to
be applied as a planning tool in a real company—as mentioned earlier, one
would like to obtain a good result in no more than four iterations of information
exchange.

6.3.3 SIMULATED RESULTS USING THE TEN KATE METHOD AS A
PLANNING PROCEDURE

The economic interpretation of the ten Kate method (that is, the Benders
method applied to block-angular Lp problems) has been briefly discussed
earlier (section 3.5.4). This interpretation indicates how the method could be
used as the basis for a planning procedure. In iteration ¢ of the adjustment
phase, headquarters assigns a tentative allocation vector a; of jointly utilized
scarce resources and semifinished products to department j. Department j then
solves the infimal subproblem

Maximize c¢px;
, (6.3)
s.t.: A,—x,sa,«, B,‘X,'ﬁb,', XI'ZO.

If (6.3) has an optimal solution, then department j responds with the following
information: the optimal solution value and the multiplier vector associated
with the restrictions Ax;<a;. This multiplier vector contains information
about how the optimal solution value would change, if a; were changed. With
these two pieces of information, headquarters can construct a constraint of the
type z, < (u;, uf)”(a,», b;), to add to the supremal subproblem [see (3.37)]. If
(6.3) is not feasible, then the information sent back to headquarters includes an
extreme ray of the dual problem of (6.3).
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It was shown in section 3.5.5 that the Dantzig-Wolfe and ten Kate methods
may be regarded as dual methods. That is, if one takes the dual of the overall
problem (6.1) and applies Dantzig—-Wolfe decomposition to that dual, that is
equivalent to applying ten Kate decomposition to the primal problem (6.1).
When one is using Dantzig—Wolfe decomposition as a planning procedure, it is
important to provide a good set of initial prices, enabling the construction of a
feasible restricted master problem from the first set of proposals returned from
departments. The duality analogue of this for the ten Kate method is that the
initial tentative allocations sent to departments from headquarters must be
such that the information returned from the infimal subproblems, when
transformed into constraints for the supremal subproblem, produces a supre-
mal subproblem with a bounded solution value.

One necessary condition for this is that the initial tentative allocations sent to
departments from headquarters result in feasible infimal subproblems. If that is
not the case, the supremal subproblem of the ten Kate method at the first
iteration™ will obviously have an unbounded solution value [since, for at least
one index j, there are no restrictions of the type z;, = (u}, uf ) (a;, b;)]. However,
this is that the set of allocation vectors ay, a: . .. a, satisfying 3° a; = a is not
sent to departments from headquarters does yield feasible infimal sub-
problems, there is nevertheless no guarantee that the resulting supremal
subproblem in the first iteration has a bounded solution value. The reason for
this is that the set of allocation vectors a;, @, . . . , a, satisfying Ya; = a is not
bounded. In fact, even if one starts out with optimal allocation vectors, there is
no guarantee that the supremal subproblem in the first iteration has a bounded
solution value.

For the slaughterhouse planning problem, using organizational structures 1
and 2, and a variety of initial allocations, including optimal ones, it was not
possible to obtain a bounded optimal solution to the supremal subproblem in
ten iterations. This is reminiscent of the Dantzig—Wolfe experiments with the
same two structures, where it was not possible to obtain a feasible restricted
master problem in fewer than 11 iterations. Again, the basic difficulty is that the
supremal subproblem of the ten Kate method (as well as that of the Dantzig-
Wolfe method) is attempting to collect information about the infimal sub-
problems. However, the production department subproblem is not trivial, and
hence it is difficult to collect sufficient information in a small number of
iterations.

Organizational structure 3 was also used in conjunction with the ten Kate
method. As before, let theindexj =1 ... 7 refer to sales departmentsand j = 8
to the production and purchasing departments. In the notation of section 3.5.4,

* The iteration count is as follows: The initial set of tentative allocation vectors is announced
in iteration 0. The supremal subproblem is then solved for the first time at the beginning of
iteration 1.
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the equivalent full master problem under the ten Kate method may be written
as follows, if structure 3 is utilized [see (3.37)].

Maximize z;+°--+2z7+csxs
s.t.: a,+ - +a,+as=a,
Agxg—ag=0, Bgxg < bg, x3=0,

z1=(uy, ui)’(an, by) (p=1...P(1)),

z7=(u3, u3)’(as, b7) (p=1...P(7),
(41, 431) (a1, b)=0 (r=1..R(1)),

(47,47) (a7, b)=0 (r=1...R(7)).

It is seen from this formulation that the purchasing and production activities
will be incorporated directly into the supremal subproblem, as called for by
structure 3.

When the ten Kate planning method was applied to the slaughterhouse
problem under structure 3, the result was again negative (no bounded supremal
subproblem in a reasonable number of iterations). Structure 3 obviously
guarantees that the purchasing and production activity levels are feasible from
the point of view of the departmental constraints of those departments (since
those departments are joined with headquarters, i.e., put into the supremal
subproblem). Infeasibilities must therefore occur in the sales departments’
infimal subproblems. A sales department infimal subproblem can be infeasible
only if the product amounts allocated by headquarters are not sufficient to
cover the lower bounds. For that reason, a variant of the ten Kate method was
tried. Before the procedure was begun, the supremal subproblem was supplied
with information about the sum of the lower bounds for each product and for
each sales department. This information was incorporated as an additional set
of restrictions in the supremal subproblem. Thus, one obtains a bounded
supremal subproblem. It now turned out that feasible solutions to the overall
planning problem with a total contribution of the order of 75 percent of the true
optimal solution value could be obtained in four iterations.* This means that
with this modification, a planning method based on the ten Kate method might
be of interest for the slaughterhouse.

* Under structure 3, the resulting solution to the overall problem is recovered as follows, in the
execution phase: Values for xg are given directly by the supremal subproblem. Values for x; —x;
are obtained by means of the infimal subproblems (6.3)for j=1...7, with a;] given by the solution
to the supremal subproblem in the last iteration of the adjustment phase.
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6.3.4 SOME CONCLUSIONS

On the basis of the two cases, we may first conclude that the size of the
underlying planning problem affects the applicability of a planning method
founded on a decomposition algorithm. In particular, one would surmise that
the number of corporate constraints is critical. The first study, by Ljung and
Selmer, had only six corporate constraints. Of these, four were of a resource-
allocation type, and two were product-mix constraints. In this situation, it was
possible to find a good set of initial prices under the method based on
Dantzig-Wolfe decomposition, namely ‘high” ones for the four resource
constraints. Also, presumably because of the small number of corporate
constraints, rapid improvement in the resulting solution value was obtained in
only a few iterations. In the second study (by Christensen and Obel), the given
planning problem involved a substantially larger number of corporate con-
straints, with a correspondingly larger coordination task facing headquarters.
This is particularly true under organizational structures 1 and 2. Under
structure 3, simple starting strategies resulting immediately in a feasible
supremal subproblem under the Dantzig-Wolfe method and a bounded
supremal subproblem under the ten Kate method could be devised. However,
for the Dantzig-Wolfe method, improvement in the supremal subproblem
solution value was so slow that it is doubtful whether that method would be of
much use as a planning tool.

In the second place, it was seen that the ten Kate method produced
substantially better results under structure 3 in the Christensen-Obel study, if
the supremal subproblem was modified to incorporate certain a priori restric-
tions on the allocations. This means that if one has some a priori information
about bounds on feasible allocations, then that information should be
incorporated directly into the supremal subproblem. This has the effect of
preventing extreme reallocations by the supremal subproblem and hence
avoiding infeasible departmental subproblems (since extreme reallocations
often result in at least one infeasible departmental subproblem). Considering
the duality relationship between the ten Kate and Dantzig-Wolfe methods, this
suggests that one may also introduce bounds on the prices in the restricted
master problem under the Dantzig-Wolfe method. Such bounds—on allo-
cations under ten Kate, and on prices under Dantzig-Wolfe—may bring about
better plans within three or four iterations. In any case, they will prevent strong
oscillations of the tentative indices sent to departments or divisions (prices
under Dantzig-Wolfe, and quantities under ten Kate) in the different iterations
of information exchange during the adjustment phase. Both decomposition
methods may otherwise give rise to strong oscillations, which may have a
confusing effect on the organizational subunits participating in the planning
process.

The upshot of this last consideration is that the more a priori information
(e.g., learning effects from earlier periods) about the total planning problem
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headquarters has, the better the planning methods will work. More precisely,
the information at hand a priori can be used to construct suitable bounds on the
allocations under ten Kate and on the prices under Dantzig-Wolfe.

6.4 FINAL REMARKS ON PLANNING PROCEDURES
BASED ON DECOMPOSITION METHODS

The two case studies presented in this chapter may appear somewhat strange.
A practically inclined reader might well argue that planning in real-world
corporations will never be carried out in the fashion simulated in these two case
studies. Yet in the literature the opposite is suggested. As stated in section
6.1.2, there is a very large literature dealing with planning methods founded on
decomposition schemes. If this literature is to be taken seriously, it is necessary
to move in the direction of applying these theoretical planning methods to
concrete planning problems. Perhaps for good reasons, apparently no real-
world company has dared to install such a planning method. However, if one
cannot actually implement such planning methods as a research experiment,
one can at least simulate their behavior in the context of realistic planning
problems. That is what these two studies do, and that is their significance.

We will encounter yet another simulation study of a similar kind later in this
volume, in Chapter 10 on water pollution control. It has been suggested that
planning procedures based on decomposition methods could be used for
decision making as regards pollution control. From a formal point of view, an
overall problem of planning effluent levels for a set of polluters so as to
minimize some total cost function is actually rather similar to the overall
problem (6.1) of this chapter. This means that planning methods of the type
discussed here could in principle be applied in the pollution control planning
situation, too.

Finally, two current research directions related to the discussion in this
chapter will be pointed out. In the first place, the discussion throughout has
assumed that departments are participating honestly and unselfishly in the
planning procedures, meaning in particular that they send unbiased and “‘true”
information to headquarters in each iteration of the adjustment phase.
However, suppose that departments (or divisions) pursue some private objec-
tives of their own, and that they send false, or biased, messages to headquar-
ters. What effect will this have on the outcome of the planning process? This
situation, where false or biased information is sent during the adjustment
phase, has been referred to as divisional (or departmental) cheating. It is
discussed by Jennergren and Miiller (1973), among others.

In the second place, the slaughterhouse case study discussed the use of
planning methods founded on decomposition methods under different
organizational structures. That is, given that one has decided on a general type
of planning procedure (e.g., based on Dantzig-Wolfe decomposition), there
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remain certain further decisions, such as: How many and which departments
(or divisions) are to participate in the planning process? These further decisions
define an organizational structure. Defining an organizational structure for the
purpose of using a formalized planning method of the kind treated in this
chapter certainly is not equivalent to the total task of organizational design.
Nevertheless, attempts have been made to derive principles for good organiza-
tional design in general from studies of the type mentioned here (Baligh and
Burton 1976; Obel 1978).
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7 Operations Management

7.1 INTRODUCTION AND OVERVIEW

The area of operations management is characterized by complex decision-
making processes. Establishing production levels for many different items so as
to meet demand over a given planning horizon while keeping the inventories at
acceptable levels is a decision problem that can be solved only by making
various simplifying assumptions about cost structure, demand patterns, and
other aspects. This inherent complexity offers an interesting challenge for
multilevel techniques.

One of the major concerns in the area of operations management has been to
formulate aggregate production planning models, that is, models for the
simultaneous determination of production, inventories, and work force
(regular and overtime). The most celebrated aggregate planning model is that
of Holt et al. (1960) (based on quadratic costs and thus yielding linear decision
rules as functions of the demand forecasts). Among other aggregate models are
those proposed by Jones (1967) (parametric production planning), and by
Taubert (1968) (search decision rules). An aggregate production planning
model could, in our terminology, correspond to the supremal subproblem. The
infimal subproblems would then correspond to the associated disaggregated
problems. Disaggregation, however, has received little attention, although the
model of Holt ef al. is an exception. The lack of a comprehensive treatment of
the various disaggregation issues reveals the absence of a widespread multi-
level approach in the area of operations management.

To simplify the exposition in this chapter, we will not consider work force
planning, although manpower aspects could have been included without major
difficulties. Instead, we will consider two alternative multilevel approaches to a
standard multiproduct lot-size scheduling problem (i.e., a problem of planning
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production and inventories) which may be written as:

n T
Minimize Y Y (Ci(xi)+ hily)

i=li=1

s.t.: I,-‘,_1+x,-,—I,<,=r,~, (i=1...n,t=1...T),
Io=0 (i=1...n), (7.1)
Y lxp=L. (t=1...T),
i=1
x,',,I,‘,ZO (i=14..n,t=1...T).

Problem (7.1) is the overall problem of this chapter. It has a straightforward
interpretation. Let x; denote the amount produced of product i in period ¢ and
I, the number of units of inventory left of product i at the end of period ¢
(i=1...n,t=1...T).Fora given requirements schedule {r.}, the first set of
constraints are then simply the inventory balance equations for some given
initial inventory levels. The production of one unit of product i requires /; units
of a common resource (say, some raw material), of which L, units are available
in period ¢.* This explains the resource constraints. The nonnegativity restric-
tion on the inventory levels rules out back orders. The first component of the
objective function, the production cost, is of the following form:

Cilxir) ={ 0 ifx, =0 (7.2)

e S + CieXip if Xi > 0 (S,', > 0)

The linear part of the objective function accounts for the inventory costs.

Problem (7.1} is one of the simplest of the many models that have been
proposed in the area of production scheduling. It is, for instance, possible to
include more than one type of resource constraint, to introduce labor costs
(e.g., regular time and overtime) and corresponding manpower decision vari-
ables. These extensions would not alter the following developments in a
significant way.

Throughout we assume the existence of a solution to (7.1). It is noted that we
also assume that [,,=0. This may be interpreted to mean that delivery
requirements have been “netted” by deducting initial inventories.

Problem (7.1) may be a difficult nonlinear programming problem, especially
if n is large. In subsequent sections, we outline two multilevel methods for
solving (7.1). Both methods result merely in “good” (i.e., nonoptimal) solu-
tions. In section 7.2 we will present a column generation approach that was

* It is most natural to imagine that the resource constraints do not refer to labor availabilities. The
reason is that a labor availability constraint would typically involve setup times as well as variable
production times. That is, a labor availability constraint would not be linear, but nonlinear [like the
production cost (7.2}].
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suggested by Dzielinski and Gomory (1965) based on an approximation of the
original problem proposed by Manne (1958). Section 7.3 contains a different
approach known as hierarchical production planning (designed by Hax, Meal
and others at MIT) (Hax and Meal, 1975). We immediately point out that this
latter approach is not multilevel in the sense of this volume, since an iterative
interaction between subproblems on different levels is lacking. Nonetheless, it
is multilevel in a more general sense. We have included hierarchical production
planning here, since it offers an interesting alternative to the column generation
approach. Moreover, there are actually some possibilities of incorporating
interactive features in hierarchical production planning.

7.2 A COLUMN GENERATION APPROACH

7.2.1 AN APPROXIMATE LP PROBLEM

The underlying idea of the column generation approach is first to formulate a
linear program approximating problem (7.1), as initially developed by Manne
(1958) for a planning problem closely related to (7.1). One then applies column
generation to the resulting Lp problem.

Without loss of optimality, we may restrict ourselves to solutions to (7.1)
such that I,r = 0 for all i.* The following observation provides the key to the
approximating linear program: The set of extreme points to a set of constraints

1,=0,
L_1+x,—1I,=r (t=1...T),
Ir =9,
x, I,=0 (t=1...T)

is precisely the set of dominant schedules—i.e., all those solutions such that for
all ¢ I,_1x, = 0. Dominant schedules are often referred to as Wagner-Whitin
schedules after Wagner and Whitin (1958).

Suppose that, for each given product i, the set of dominant schedules is given
by {(x}y...xip, Il ... Ilp); j=1...J(@i)}. If we now introduce the notation

N T . :
di= Y (Culxi)+hil),
=1

and

i _ i
Li= Iixin

* This restriction involves optimality loss only if some production and/or holding costs are strictly
negative.
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and if we restrict the solution set of (7.1) to those feasible solutions that can be
expressed as convex combinations of the dominant schedules of the individual
products, we obtain the following linear program:
n Ji
Minimize Y Y 416!

i=1j=1

n J{i) o
st $ Y LesL (=1...T),
e (7.3)
Ji) .
Y gi=1 (i=1...n),
i=1
all ¢/ = 0.

Every feasible solution to (7.3) defines a feasible solution to (7.1). If an
integer-valued solution is optimal for (7.3), then the corresponding solution to
(7.1) is also optimal.* If n > T, an optimal basic solution to (7.3) contains at
least n — T integer-valued basic variables (this can be seen by a simple counting
argument). If we make the plausible assumption that » is much larger than T,
the optimal solution to (7.3) will be “almost integer’” and hence, heuristically,
the corresponding solution to (7.1) will be ‘““almost optimal” for (7.1).

The number of dominant schedules for each product can be quite large. An
upper bound is given by 27 '. This fact, plus the fact that the number of
products is also often quite large, makes it desirable to use a column generation
technique, rather than to generate all dominant schedules in advance.

7.2.2 GENERATION OF DOMINANT SCHEDULES AND A TWO-LEVEL
ALGORITHM

It will now be demonstrated how dominant schedules, or columns, can be
generated for problem (7.3). Let the simplex multiplier vector pertaining to the
resource restrictions associated with some basisbe w=(m, ... 7. .. 7). Itis
easy to see that 7 =<0. Let a; (i =1... n) be the simplex multiplier associated
with the ith convexity constraint. To identify a possible new dominant schedule
for product i, one solves the following optimization problem.

) T ,
Minimize (a’f— Y W,Lf,—ai) overj=1...J(i),
=1
or, since «; is independent of j,
) T .
Minimize (d%— 5 7r,L’,~,) overj=1...70). (7.4)
=1

* It is not correct, as is sometimes suggested in the literature, that if all 8! are restricted to be
integers in (7.3), an optimal solution to this integer programming problem always defines an
optimal solution to (7.1).
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This problem can be solved efficiently by a forward dynamic programming
algorithm.*
The optimum in (7.4) is found (temporarily dropping the index i) by
considering the problem
T

Minimize Y (vx, +s8(x,)+hl,)
1

t=

s.t.: L i +x,—L=r (t=1...T), (7.5)
Iy=0,Ir =0,
all x, I, =0,

where v,=c¢,—ml, §(x,)=0 if x,=0 and 1 otherwise [problem (7.5) has a
concave objective function; hence it has an optimum at an extreme point, a
dominant schedule]. The reader familiar with elementary inventory theory will
recognize problem (7.5) as the single-product dynamic lot-size problem intro-
duced by Wagner and Whitin (1958). The following dynamic programming
recursion will find a dominant schedule optimizing (7.5) and hence solving
(7.4). It is based on the observation that, since only dominant schedules have to
be considered, a positive production quantity in a particular period ¢ cor-
responds to the cumulative requirements of g successive periods starting from
period ¢t with 1=q=T—r+1. Let f(t) be cost associated with an optimal
dominant schedule for the periods 1 to t. Then, since I4=0,

fDy=s,+ory,
andfor2=<t=<T

sctor+f(t—1) (7.6)
f(t) = minimum -1

min {5+ 0RO+ T R+ 1,0+ =)
where R(x, y)= Z,Lx r. Once f(T) has been computed, an optimal dominant
schedule can be retrieved by an obvious backtracking scheme.

A two-level algorithm can now be described. Suppose that, at some iteration
of the adjustment phase, subsets (i) of dominant schedules have been
generated. The supremal subproblem consists in solving (7.3) with the sum-
mations over all dominant schedules replaced by the index sets #(i). The
supremal subproblem reports the dual multipliers «; and 7 to each infimal
subproblem i. Each infimal subproblem is solved by a dynamic programming
recursion of the type (7.6).If d !~ Y, —a; <0for the identified schedule, it is
reported back to the supremal subproblem, where it is added as a new column.

* The nontechnically oriented reader can skip the explanation of the dynamic programming
algorithm and continue with the description of the two-level method.
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Supremal subproblem
n .
Minimize Y Y d'0}
i=1 jegl)
n

st Y Y LigisL, (t=1...T),
i=1 je (i)

Y 6=1 (i=1...n),

jefl)
all 9! =0.
Dominant Dominant (m, @)
(m ) schedule schedule
Infimal Subproblem No. 1 Infimal Subprobiem No. n
Minimize (d] Y m,L},) over Minimize (d, - ¥, mL},) over
i=1...J(1) j=1...J(n)

FIGURE 7.1 The adjustment phase of the column generation algorithm for lot-size
production scheduling.

Such a column has T +n elements with its first 7 elements given by L/, The
remaining n entries are zero, except for unity in the ith position. The associated
objective function coefficient is given by 4. If, at some iteration, no infimal
subproblem can identify a dominant production schedule such that dl -
Z‘rr,Lf,—ai <0, no new column gets added to the supremal subproblem. This
means that an optimal solution to problem (7.3} has been found, and so the
adjustment phase terminates. In the execution phase a solution to the original
problem (7.1) is recovered from the supremal subproblem. As already pointed
out, that solution to (7.1) need not be an optimal one. This means that the
two-level subproblem hierarchy is not equivalent to the original problem (7.1).
That is, coordinability does not hold (see section 2.2.1). The interaction
between the subproblems in the adjustment phase is displayed in Figure 7.1.

7.2.3 APPLICATIONS

Dzielinski and Gomory (1965) applied column generation to solve some
experimental test problems of lot-size production scheduling. Actually, their
problems were more complex than the one described here: for instance, they
allowed several classes of labor. They reported encouraging computational
results and stated that some of the test problems were so large that they could
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not have been handled by ordinary linear programming, necessitating a
two-level method (Dzielinski and Gomory 1965, p. 888).

Lasdon and Terjung (1971) considered a problem related to (7.1) but again
more complex in nature. They reported successful implementation at various
plants of a major U.S. tire manufacturer. Their algorithm uses column genera-
tion as well as a generalized upper bounding procedure as applied to the
constraints of the form Z,.J:i 0'=1,i=1...n

However, other authors have solved lot-size production scheduling prob-
lems by ordinary linear programming. Gorenstein (1970), for example, consi-
dered a tire production scheduling problem. He notes that while the problem
could have been solved by a two-level method (p. B-75), he actually did use a
single-level method, direct linear programming.

7.3 HIERARCHICAL PRODUCTION PLANNING

7.3.1 INTRODUCTION TO HIERARCHICAL PRODUCTION PLANNING

Formally, hierarchical production planning is a heuristic solution procedure for
solving optimization problems of type (7.1). However, this hierarchical
approach was designed for problems not directly amenable to the mathemati-
cal programming techniques described in section 7.2. Hax and Meal (1975)
report an implementation in which the number of products is of the order of
10,000, making an approach as described in the previous section impractical.

From the outset, we stress that a comprehensive treatment of what is known
as the hierarchical approach to production planning as developed at wmit is
beyond the scope of the present text, but would be appropriate in specialized
texts on operations management. For the sake of completeness, however, we
list some relevant research documents: Armstrong and Hax (1974); Hax and
Meal (1975); Golovin (1975); Gabbay (1975); and Bitran and Hax (1976).

Since hierarchical production planning is more of an approach than a precise
algorithm, a discussion of it can be made more concrete by considering a
specific overall problem formulation. For that reason we have chosen to
illustrate the method for the overall problem (7.1), while noting that more
complex problem formulations present no great difficulties.

7.3.2 A THREE-LEVEL DISAGGREGATION SCHEME

What makes many manufacturing systems with batch-type production complex
is the presence of a large number of products. However, as Hax and Meal point
out, the product structure often allows for a useful hierarchical approach. Hax
and Meal propose a three-level approach to the overall problem, identifying
the following levels: the item level, the item—family level and the product-type
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level. Atthe lowest level, the item level, all the final products are considered. At
the intermediate level, the item—family level, those items are grouped together
that require the same tooling and machine setups. Finally, at the highest level,
the different item families are grouped into product types, so that all the item
families contained in one product type have their production quantities
determined by one aggregate production plan.

In order to relate the Hax-Meal disaggregation scheme to problem (7.1), let
N ={1...n} denote the set of all products. The product types are defined as
those groups of products having identical variable production and holding costs
(ci and h;), the same resource usage coefficients (/;), and the same seasonal
demand patterns (the importance of this will become clear later). If m product
types result, we obtain m subsets of N, written as N 1...N ,1 ...N. and
constituting a partition of N. Products belonging to the same product type, say
N}, that have identical setup costs make up an item family. If product type j has
p; item families, we obtain p; subsets of N, written as N3'.. . N ... N §f,
forming a partition of N;. At the third level, the item level, one trivially
considers the n individual products. The scheme is depicted in Figure 7.2,

Whether such a disaggregation scheme is useful depends on the application
at hand. In the application discussed by Hax and Meal, the 10,000 products
could be split up into five product types and about 200 item families.

7.3.3 THE PRODUCT-TYPE-LEVEL SUBPROBLEM

One can formulate subproblems corresponding to each level identified above.
Here we discuss the approach proposed by Bitran and Hax (1976). A different
solution procedure is outlined by Hax and Meal (1975).

Making reference to the overall problem (7.1) we denote

ci=cwhy=hyand!] =lforieNj,j=1...mt=1...T.

Furthermore, let r} be an aggregate demand forecast for product type j. We
note that the quantities r}, need not be derived from the detailed estimates for
the individual items. Of course, if such estimates are available, then r},=
ZieN‘. Fig-

Product
types

Item

21 | .. 21
Ni Np, families

FIGURE 7.2 The Hax-Meal disaggregation scheme.
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Bitran and Hax (1976) propose the following Lp model as the product-type-
level subprobiem:

m T
Minimize ¥ ¥ (cjx)+hl}:)
ji=11=1

s.t.: Iy +x,—I=r, (G=1...mt=1...T),
Ijo=0 (j=1...m), (7.7)
Y lixi=<L, (t=1...7),
i=1
xin 1 =0 (j=1...mt=1...T).

Problem (7.7) will usually be a much smaller problem than (7.1). At this level
one is interested only in aggregate planning. Operational questions (e.g.,
scheduling) are relegated to the lower levels, explaining why setup costs have
been deleted from the formulation.

The underlying idea of the present approach is that problem (7.7) is solved to
determine an aggregate plan for the full planning horizon, whereas in the lower
level subproblems operational details are considered whose complexity is
reduced by restricting the relevant planning horizon to the present planning
period (that is, ¢ = 1). The actual system will operate over time by employing a
rolling horizon at the first level. A critical and interesting issue is to determine a
satisfactory length of the planning horizon. Indeed, if good solutions can be
guaranteed by solving (7.7) for small 7, considerable gains can be realized, not
only in a computational sense but also in term of forecasting accuracy. Gabbay
(1975) offers a discussion of these issues.

The first-level subproblem (7.7) is a straightforward Lp model that, in itself,
can be a useful tool for strategic planning. It will provide input data to the
second level, the item-family level.

7.3.4 THE ITEM-FAMILY-LEVEL SUBPROBLEMS

Since we assume the existence of m product types, we will have m item-family-
level subproblems, to each of which the product-type-level problem (7.7) will
communicate the optimal production quantity of the first period (the present
planning period), denoted as i}l, j=1...m. At this level, operational issues
become dominant. For each item family & of a given product type j one
assumes given a safety stock _Ii, k=1...p,* to absorb inaccuracies in the
demand forecasts and an overstock limit 7; to account for the maximum
““reasonable”” demand that can occur during the rest of the planning horizon
(standard inventory-theoretic techniques can be used to determine these

* It will be implicitly assumed that we are dealing with a given product type j.



165

quantities). Furthermore, for each family the actual stocklevel, fﬁ, at the
beginning of the period is checked. Of course, unforeseen fluctuations in
demand may make the values fi quite arbitrary (e.g., fﬁ <[i). Finally, a
demand forecast r is assumed to be available. It should be pointed out that it is
not assumed here that /% =0. This means that the demand forecast r; has not
been ‘“‘netted”” by deducting initial inventory.

In the formulation of the item-family-level subproblem for product type j we
will make use of the following classification of families within that product type:

K, ={k|[: <ri+ 13
and
K ={k|[; =ri+ 1},

that is, a classification determining which families trigger (need to be produced)
during the coming planning period. Production for families in K; will occur
only after satisfaction of the requirements for the families in K; within the
overall constraint given by £},. It is clear that a lower and an upper bound on
the production quantity of family k, x7 are given by

xi=max {0, ri + i~}
and

=2 2 72 £2
fr=max {0, ri+1;—1:}*

respectively. Depending on the magnitudes of the quantities x; and & % vis d vis
£};, the item-family-level subproblem specializes into three cases. We will
denote the proposed solution by 5%, k=1... p;- Note again that that solution
refers to the present planning period, i.e., r = 1.

Case 1. ZkeK,fz Sf}l.
Then we set £; = ¥z for k € K; and the remaining capacity, if any, can be filled
by sequentially setting production quantities of families in K equal to their
upper bound in increasing order of their run-out time.

Case 2. Y.k, xi= il
This is the case in which safety stocks will be violated and back orders may
arise. Bitran and Hax suggest the following proportional allocation of capacity:
2
- X -
ir== > %1, k€K,

T Xk

keK;

* In principle [2 >r% + 12 is possible.
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2 ~ =2
Case 3. ZkeKi£k<x}1 <Zkel(,- X k-
This is the nontrivial case, and Bitran and Hax propose to solve the following
optimization problem:

2.2
c . Silk
Minimize Y —
keK; Xk
2 ~1
s.t.: Y xi =X, (7.8)
kekK;

xisxi=<i; (keK),

where sz = s;; for ie N2’ [see (7.2)].

The rationale of (7.8) is the following: all assigned production from the first
level (£],) is allocated among the families that trigger (i.e., k € K;). The
production runs will be highest for families with high setup costs and high
demand forecasts. Since all families are supposed to have the same seasonal
demand patterns, setting high production quantities for families with high
demand forecasts takes into account demands in later planning periods as well.
An algorithm that solves (7.8) is presented below. For the reader not interested
in algorithmic developments, it is sufficient to observe that (7.8) is a convex
programming problem of the knapsack type for which an efficient, finite
algorithm exists. One may hence jump to section 7.3.5 without loss of
continuity.

Consider now the algorithm for solving (7.8). For notational convenience we
set b, =s:r:. The algorithm of Bitran and Hax is based on a relaxation of (7.8),
where the constraints ﬁ =< xi =X iare deleted. Also, the right-hand side will be
parameterized, and subsets of K; will be considered. At some iteration v we
have for some right-hand-side value y° and some subset K* of K the following
optimization problem:

. b
Minimize Y =
keK"' Yk
s.t.: Y oye=y", (7.9)
keK"®
Vi =(0.

An optimal solution to (7.9) is found by a straightforward application of
Lagrangean techniques, and is given by:

Jbx

y', keK".
ZkeK"\/b_k

Vi=
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The algorithm can now be described:
Step 0. Letv=0,y" =%, K’ =K,
Step 1. Solve (7.9), to obtain { y}. If gi <yp =iz for k € K", store the values

{yk}, and go to Step 4. Otherwise, go to Step 2.
Step 2. Determine

K% ={klk K", yi =1},

and
K ={klke K" yi=xi}.
Compute
AT= Y (yi—%0)
keK?Y
and
AT= ¥ (xk—yi)
keKZ
Go to Step 3.

Step 3. If A"=A", reset y; =% for ke K5. If A"<A ", reset y. = x} for
keK’. Let
oo [KIKD ifaTzan,
K°\K® ifA <A™,
and

y'— X yi ifAT=AT,
v+l _ kek?
y'— X yk ifAT<AT,

kekK?®

y

Store the values {y}}, for k € K®, k€ K"*'. Go to Step 1 with v increased to
v+1.

Step 4. Retrieve the sequence {yi}, for v =0,1,2.... This constitutes an
optimal solution,

This algorithm is finite, since at each iteration at least one optimal production
quantity is determined. Optimality is not so easy to demonstrate. Bitran and
Hax prove optimality by a careful analysis of the last iterations of the algorithm
from which it can be established that the algorithm determines a solution
satisfying the Kuhn-Tucker conditions.
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7.3.5 THE ITEM-LEVEL SUBPROBLEMS

For a given item family k& in product type j, one determines at this level
production quantities of the individual items in the set N ' * The optimizations
carried out at the product-type level and the item-family level determine in a
sense the total production cost for the present planning period (variable
production costs at the product-type level and setup costs at the item-family
level). Nevertheless, there is the possibility of reducing costs in future periods
by determining production quantities of the individual items in such a way that
their individual runout times (defined as the production quantity plus the
inventory on hand minus the safety stock, all divided by the demand forecast)
come as close as possible to the runout time of the item family. If this is possible,
these items would trigger more or less together in some later period, and they
could hence be produced once more in one run at the cost of one setup
(remember that all items within the same item family have similar seasonal
demand patterns). Bitran and Hax propose an optimization problem that
reflects this idea of minimizing the deviations in runout times. For each item
family k in product type j they suggest

fvxai-n o, ., 0
Minimizing Y ‘ i+l L
1 1 -
& ; Z r r}
s.t.: Y xi=%i (7.10)

3 3 =3 /. 2j
Eisx" =X, (IENkI N

where all summations run over the index set Ni. £% is the input from the
item-family level. I ,3 ,ﬁ R 5? , and %; are defined as in the discussion of the
second-level optimization problem. r? is the demand forecast for item i for the
present planning period. Again, r; has not been “netted” by deducting initial
inventory. Problem (7.10) is again a convex optimization problem. Bitran and
Hax describe a solution algorithm for (7.10), which is very similar to the one for
solving (7.8). If (7.10) is not feasible, corresponding to case 1 or case 2 of the
previous section, production quantities for individual items must be deter-
mined in some other manner.

7.3.6 A THREE-LEVEL SOLUTION PROCEDURE

The three-level procedure should now be clear. The L problem (7.7) deter-
mines aggregate production levels for each product type over the entire

* Obviously, this is done only for item families to which positive production quantities are assigned
in the item-family-level subproblems.
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Product-Type-Level
Subproblem: (1.7)
determines an aggregate plan

G (G=1...mrt=1..T7).

=1 =1 T .t
X111 X1 Xm1

Item-Family-Level Subproblem
j: Determine which case of
section 7.3.4 applies.
Compute family production
quantities

fitk=1...p).

2 -2 =2
X3 Xk \:

Item-Level Subproblem (jk):
Determine production
quantities for items i e N%'.

FIGURE 7.3 Hierarchical production planning: a three-level procedure.

planning horizon. The input to the m second-level subproblems, each cor-
responding to one product type, is the aggregate production quantity of the first
period. For a given input, each item-family-level subproblem consists of finding
production quantities for each family. Three cases can occur, the usual case
requiring a solution to (7.8). The third-level (item-level) optimization, finally,
determines individual item quantities within each given item family, with the
second-level production quantity given as a parameter [problem (7.10)].
Figure 7.3 illustrates the procedure.

From this description two observations are called for. First, the meaning of
an ultimate solution {£; ; i € N} of the procedure in terms of feasibility for the
original problem (7.1) is not clear. Second, the procedure is not multilevel in
the sense of this volume since no interaction takes place between the various
levels. We comment briefly on these issues.

Since the demand forecasts are derived independently at each level and
discrepancies in the measured inventories at the various levels are allowed for
as well, it should be clear that the ultimate solution {7 ; i € N} need not even be
feasible for the first period of the original problem. One might, nevertheless,
pose an interesting theoretical question. Under what conditions is the third-
level solution feasible for the original problem? The work of Gabbay (1975)
deals with this question. If no discrepancies arise from disaggregating demand
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and inventories from one level to another, and if, furthermore, only an
“effective” requirements schedule is used on each subproblem level—i.e., if
demand data for each item are adjusted for initial inventories—then Gabbay
proves consistency of the hierarchical approach. That is, no back orders will be
introduced by the disaggregation scheme, and a feasible solution obtains.

As for interaction between hierarchical levels, Bitran and Hax do, in fact,
indicate that such a feature can be incorporated. That is, based on the solutions
to the item-level subproblems (7.10), one may imagine some system for
reallocating production quantities from one item family to another within the
same product type. This idea could be incorporated in the solution process, and
a “true” multilevel method would then result. It is questionable whether that
would greatly enhance the practical significance of hierarchical production
planning.

7.3.7 APPLICATIONS AND A COMPARISON WITH COLUMN GENERATION

As mentioned above, Hax and Meal (1975) report an implementation of a
hierarchical production planning system. That system, however, is simpler than
the one discussed here. Bitran and Hax (1976) have conducted some numerical
experiments with the approach outlined above. These experiments lead to the
conclusion that hierarchical production planning is computationally feasible
and also efficient as a planning tool. Usefulness for real-life problems is difficult
to evaluate, however, since no real-life application of the above approach has
been reported.

Since the column generation approach of section 7.2 and the three-level
method described in this section address the same problem types—i.e., prob-
lem (7.1)—a comparison is called for. First, we recall that both methods
produce nonoptimal solutions to the original problem. Methodologically, the
two approaches are completely different, and hierarchical production planning
does not meet the requirement for ““multilevelness’ utilized in this volume. The
key difference between the two methods is clearly the disaggregation scheme
in hierarchical production planning. In the column generation approach, a
detailed knowledge of the problem data for the entire planning horizon is
required at the outset, which, with many thousands of products, may very
well be unrealistic. In hierarchical production planning, it suffices to have
information at the product-type level for the entire planning horizon. Opera-
tional issues are dealt with within a short planning period. As a consequence,
the hierarchical approach is probably more robust with respect to forecasting
errors (aggregate forecasts tend to be more correct). Also, the disaggregation
scheme is attractive in production environments where there are many
different products but where many of these products are very similar. All this
suggests that a column generation approach would be most viable where the
products are technologically distinct (making setup costs different) and where



171

reliable demand forecasts can be obtained. Where demand cannot be so easily
estimated and where large classes of products are nearly identical, hierarchical
production planning seems to be a more useful planning tool.

From a technical point of view, hierarchical production planning is probably
easier to implement, since it uses ordinary linear programming and algorithms
that can be programmed without great difficulties. Also, each subproblem can
be replaced by more heuristic formulations, since it is really the disaggregation
scheme that makes the method interesting. To implement a column generation
algorithm may be more difficult, and there is little flexibility for adapting the
method to the specifics of the problem situation.
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8 Distribution Systems

8.1 INTRODUCTION AND OVERVIEW

In this chapter we report on two instances in which multilevel optimization
techniques have been successfully implemented in distribution systems. By a
distribution system we understand that part of an organization’s logistical
system that has to do with the delivery of produced output to final demand—
the delivery, for example, of the produced commodities to the consumers in an
industrial setting.

The two studies that we will discuss can be distinguished with respect to their
overall goals. The first study, that of Geoffrion and Graves (1974), takes up the
question of the optimal design of a distribution system. The central decision
problem is to determine, at minimal distribution cost, a location pattern of
distribution centers serving as the links between existing plants (each with a
given production capacity for the given commodities) and the demand zones.
Within each such zone, the demands for the various commodities are assumed
to be known. The overall problem can be formulated as a mixed-integer linear
programming problem and is solved by adapting the Benders algorithm,
discussed in section 3.5. The Geoflfrion~Graves model is a rather general
version of what is known in the operations research literature as the plant-
location model. Balinski and Spielberg (1969) offer an early discussion of such
models. A study by Folie and Tiffin (1976) is reviewed in the second part of the
chapter. Unlike Geoffrion and Graves, Folie and Tiffin concentrate on opera-
tional issues—that is, they attempt to determine an optimal production—
distribution program for a given distribution system (somewhat different from
the one in Geoffrion and Graves 1974). The problem is formulated as a
minimal-cost multicommodity network flow problem. It is solved by a variant
of the column generation scheme discussed in section 3.2 (the Ford-Fulkerson
algorithm) in combination with generalized upper bounding.
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8.2 THE OPTIMAL DESIGN OF A DISTRIBUTION SYSTEM

8.2.1 A MIXED-INTEGER PROGRAMMING FORMULATION

In the following discussion, it will be useful to let the index sets I, J, K, and L
correspond to the set of commodities, the set of plants, the set of possible
distribution center sites, and the set of demand zones. Generic elements are
denoted by i, j, k, and /, respectively. Generally speaking, the goal is to choose
from the set K some sites such that production at the plants can be channeled
via those sites to satisfy demand in all demand zones, at the least distribution
cost.

Let x;, denote the amount of commodity / produced in factory ;j that is
shipped to demand zone / by the distribution center k. If S; denotes the
production capacity for product i at plant j, we can formulate the capacity
constraints

Yxju<S; foralliel,jel.
ki

To deal with the connection between distribution centers and demand zones,
Geofirion and Graves introduce the crucial assumption that each demand zone
must be served by a single distribution center. If wy, is a binary variable taking a
value of 1 if site k serves zone / and zero otherwise, this assumption translates
to

ZWH:l forallle L.
k

Assuming that the known demands D; have to be met, we can write

Y xijt = Dawi forall i, k, I.
i

This can be interpreted to mean that whenever wy, =0, all flows x;;; must be
zero. If wy; =1, all demand in zone !/ (for all commodities) has to be met via
distribution center %.

With respect to the operations of distribution center k, a lower and upper
bound on the annual throughput, Ty and T, is presupposed. If v, is a binary
variable taking on a value of 1 if distribution center k is opened and zero
otherwise, it follows that

Tive =3 Dywir < Tivx for all k.
il

The quantity Y ; Dyw,; measures the throughput of distribution center k and is
required to be zero if v, =0 and to be within capacity bounds if v, = 1.
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Geoffrion and Graves also allow the possibility of including additional linear
constraints on the wy, and v, variables. This enhances the scope of the model
without changing the solution methods appreciably (see Geoffrion and Graves
1974, p. 825). Since we are mainly interested in the methodological aspects, we
will not include such additional constraints.

As for the cost structure, linear transportation costs at a unit price of ¢;;; are
assumed. To account for the operation of a distribution center, a fixed-cost
portion f is included if center k is opened, as is a linear part with a unit cost of
8k-

One then obtains the following mixed-integer programming problem, the
overall problem under consideration:

Minimize Y Cipxiju + Z{fkvk + gk(z Dikal) }
k il

ifkl

s.t.: %x,—,-k,+s,-,=s,~,- (iel jel), (8.1a)
L Xijt = Duwiq (ielLkeK,leL), (8.1b)
j
% Wi =1 (leL), (8.1¢)
T = Z,D“w"‘ =< Tk (keK), (8.1d)
allye and wiy=0o0r 1, (8.1¢)

all Xijki = 0, §ij = 0.

Slack variables s; have been introduced in (8.1a). Several features of the
overall problem (8.1) are discussed in Geoffrion and Graves (1974, pp.
823-826). It is sufficient to note here that (8.1) could be a very large problem
and hence not easily solvable by single-level techniques. Geoffrion and Graves
therefore proposed an application of Benders decomposition.

8.2.2 APPLICATION OF THE BENDERS ALGORITHM

In view of the developments in section 3.5, the specialization of the Benders
algorithm to the overall problem (8.1) is reasonably straightforward. The
variables x;;; and s; are the “‘linear” ones in formulation (3.23) of Chapter 3.
The vector of ‘“‘special” variables y in (3.23) corresponds to the vector
(v, w)= (v, wii; k€K, le L). The form of f(y) is obvious from the objective
function in (8.1). The constraints Ax + F(y)=b correspond to (8.1a)-(8.15),
and the set Y corresponds to the set of vectors y = (v, w) satisfying (8.1¢)-
(8.1¢). There is a minor difference in that (8.1a) and (8.1b) are strict equalities,
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as opposed to the inequality Ax + F(y)=b in the general formulation. This,
however, causes no difficulties.

In the earlier discussion in section 3.5, special care was taken to handle
certain infeasibilities. That is, if the special variables are fixed, an ordinary Lp
problem results. This problem, however, could be infeasible because of
unfortunate choices of the special variables. To eliminate such infeasibilities,
restrictions

i'(b~F(y)=0 (r=1...R)

were incorporated in formulation (3.28) of Chapter 3. In this case, itis assumed
that for any choice of the binary variables satisfying (8.1¢)~(8.1e) of problem
(8.1) above, there will always be a feasible and bounded choice of the linear
variables. This means, in particular, that ) ;S;; = ,D; for all i. There will hence
be no constraints of the form &'(b — F(y)) =0 in the supremal subproblem in
the present case.

Now suppose the binary variables v, and wy; are fixed to 5, and wy, satisfying
(8.1¢)-(8.1e). The following Lp problem results:

Minimize Z CijkiXijkl
ijkt
s.t. % Xija + 85 =S (iel,jel),
ki
(8.2)
Z Xijkl = D,-,wk, (l € I, ke K, le L),
7

Xijiel = 0, 5 = 0.

Following the development of section 3.5, we would solve the dual of (8.2) as
an infimal subproblem. However, one may, of course, equally well solve the
primal problem (8.2) and then simply recover the optimal dual solution. We
now note that (8.2) separates completely into independent transportation
problems, one for each commodity i, of the following form:

Minimize Y ciuxiu
jkl

s.t.: ) Kijer + 5 = Sy (jeJ),
ki (8.3)

Y Xijw = Dy (keK,lel),

i

Xijkl = o, 8= 0.

Hence, one has not one, but N, infimal subproblems, where N is the number
of commodities (the cardinality of I). In (8.3), the sources are the factories.
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There is one destination for each combination of k and /. The delivery
requirements of most of the destinations are zero, however. This follows since,
for each [, w,; = 1 only for one k, and w;; = 0 for the rest.

Let the optimal dual multipliers associated with (8.3) be denoted u;; and ;.
To evaluate these multipliers, one may add a slack destination to (8.3) and set
the corresponding multiplier equal to zero, and then successively obtain each
wi; and . Actually, Geoffrion and Graves derive the optimal dual multipliers
in a more efficient fashion; see Geoffrion and Graves (1974, pp. 828-830) for
details.

Figure 8.1 depicts the adjustment phase of the Benders algorithm as applied
to the overall problem (8.1). This figure, together with the discussion in section
3.5.1, should allow the reader to reconstruct the details of the algorithm. The
supremal subproblem involves certain binary variables, which may be consi-
dered to represent investment decisions. The infimal subproblems are trans-
portation problems, each pertaining to one specific commodity.

8.2.3 THE IMPLEMENTATION OF GEOFFRION AND GRAVES

The specific variant of the Benders decomposition actually used by Geoffrion
and Graves differs a little from the algorithm displayed in Figure 8.1. The
supremal subproblem that they solve in each iteration ¢ is the following: Find a
feasible solution to the restrictions:

Z{fkvk + gk(§ DiIWkl) }

k

+Z uf»}Sij+§l mhaDiwu=U—¢ (p e P),
i i
% wi =1 (leL), (8.4)
Trvr _<_ZI Diwyy = Teve (keK),
v, wa=0or 1.

In this formulation (8.4), U is the best upper bound on the optimal solution
value of the overall problem (8.1) obtained so far (see the discussion in section
3.5.1 of upper and lower bounds). € is a positive tolerance level. A feasible
solution to (8.4) (if one exists) can be found by specifying an arbitrary linear
objective function and then optimizing the resulting 0-1 integer programming
problem. Geoffrion and Graves actually used the last constraint added to the
supremal subproblem as the objective function.

If no feasible solution to the supremal subproblem exists, the adjustment
phase terminates, and a solution to the original problem (8.1) may be
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Supremal subproblem
(at iteration ¢)

Minimize z
s.t. z zg {f,‘uk+gk(§ Di,w“)]+
%; nis;+ -‘% miDawi (pe?),
% wi =1 (feL),
T S}i:' Dywi = Tivy, (ke KX),

v, Wiy =0or 1.

Let (Z, 6, w) be an optimal solution.

w w w
Koy Tkt Hij ikt HNjs TNKL
Infimal subproblem 1 Infimal subproblem i Infimal subproblem N
Minimize
z CijhiXijkl
ikt
s.t.:

T Xijkt + 5 = S
kit

(fed),
2 xijut = Diwia
I}
(keK,leL),
Xt =0, s = 0.

Let u;; and oy be
optimal dual multipliers.

FIGURE 8.1 The adjustment phase of the Benders algorithm for distribution system
design.
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TABLE 8.1 Performance of Benders Algorithm for Distribution System
Design Problem

Number of Tolerance Level

Distribution Number of Binary Number (as % of Number of
Centers Variables of Rows Optimal Cost) [terations
16 249 4403 0.06 3

16 254 4488 0.03 4

18 287 4944 0.03 5

19 336 5657 0.06 4

21 349 5783 0.15 4

25 411 6857 0.06 7

25 411 6837 0.15 4

26 427 7054 0.15 5

31 513 8441 0.15 )

SOURCE: Geoftrion and Graves (1974, p. 837).

recovered.* It follows from the construction of this variant that it does not
necessarily yield an optimal solution. It must, however, converge to an &-
optimal (near-optimal) solution in a finite number of iterations.

The above variant has certain computational advantages, among others that
the supremal subproblem (8.4) is a pure 0-1 problem, whereas the supremal
subproblem in Figure 8.1 involves one continuous variable, namely z.

The successive supremal subproblems were solved in the Geoffrion~Graves
study by a combination of the branch and bound technique and Gomory’s
cutting-plane method. The subroutine for the cutting-plane method utilized
generalized upper bounding for the constraints ) w,; =1 as well.

To illustrate the impressive convergence properties of the resulting
algorithm, we give some results in Table 8.1, where it can be seen that
near-optimal solutions to a number of test problems could be obtained in
remarkably few iterations.

The method was applied to a real-life problem arising in the food industry.
The problem had 11,854 rows, 727 binary variables, and 23,513 continuous
variables. The paper of Geoffrion and Graves contains interesting discussions
of the various analyses carried out with the aid of this adaptation of the Benders
algorithm.

* The resulting solution to the overall problem (8.1) may be recovered in the execution phase as
follows: The supremal subproblem solution of the next to last iteration of the adjustment phase
provides the v, and wy; components. Given those wy,, one solves the resulting infimal subproblems
(the transportation problems), to obtain the x;;, components of the overall solution.
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8.3 DETERMINING OPTIMAL PRODUCTION-
DISTRIBUTION PROGRAMS

8.3.1 A NETWORK FLOW FORMULATION

In the study of Folie and Tiffin (1976), the focus is, as already mentioned, on
operational issues. Moreover, they do not attempt to solve large-scale prob-
lems of the type discussed in the previous section. Rather, their goal is to
develop a method that can be implemented on commercial computer systems,
and whose output is easily interpretable. Again, the underlying real-life
problem stems from the food industry. Here we will present the model of Folie
and Tiffin using the notation of section 8.2, so as to facilitate a comparison with
the Geoffrion—-Graves model. The presentation in the original paper is some-
what different. The particular implementation is briefly discussed in section
8.3.3.

The index sets I, J, K, and L correspond to the set of commodities produced
by the firm, the set of plants of the firm, the set of distribution centers operated
by the firm, and the set of demand zones (defined as regional warehouses).
Each plant j has a productive capacity for commodity / given by S;, as well as an
overall production capacity of S;. The production costs are linear with a unit
cost of ¢;.* The model also has linear transportation costs, with ¢, being the
unit cost of shipping commodity i produced in plant j to distribution center k,
and with ¢, the unit cost of shipping commodity / from distribution center k to
demand zone /. The unit cost of delivering commodity i to demand zone [ is
hence dependent on the plant where the commodity was produced as well as on
the particular transportation route, or

Cijt = Ciy + Cije + Cix.e

The objective then becomes to find flows {x;|i € I, j € J, k € K, | € L} within the
given capacity bounds such that the final demand {D;|i € I, [ € L} is met. This
may be written as:

Minimize Z CijkiXijkl
ikl

s.t.: ZZ;x,-,-HSS,',- (ieLjeld), (8.5a)
i% Xt =S (jeld), (8.58)
]Z;,x;ﬂd =D, (iellel), (8.5¢)
all x4 = 0.

* Infeasible combinations can be ruled out by setting costs sufficiently high.
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Problem (8.5) is the overall problem in this discussion. A comparison with
(8.1), the overall problem of Geoffrion and Graves, reveals certain differences.
The design aspects (modeled through binary variables) present in (8.1) are
missing in (8.5). But even if a feasible choice of the binary variables in (8.1)
were given, the two programs do not coincide. Folie and Tiffin do not assume
that each demand zone must be served by a single distribution center, which
explains the difference between (8.15) and (8.5¢). The overall production
capacity constraints (8.5b) are missing in (8.1). Problem (8.5) is a minimal-cost
multicommodity network flow problem. It is closely related to the maximal
multicommodity network flow problem discussed in section 3.2.

The particular application of Folie and Tiffin cannot be said to be a
large-scale one. Nonetheless, one can easily imagine that the overall problem
(8.5) could be so large that straightforward single-level methods become
inapplicable. One must then resort to sophisticated single-level methods of the
kind discussed in Maier (1974) (based on the equivalent node-arc formula-
tion), or two-level methods of the kind described below.

8.3.2 A COLUMN GENERATION METHOD

The principle of column generation was outlined in section 3.2.1. Application
to the overall problem (8.5) is straightforward. Just as in the discussion of the
maximal multicommodity network flow problem in section 3.2.3, there will be
one infimal subproblem for each commodity. If there are N commodities, there
will hence be N infimal subproblems.* The supremal subproblem will be of the
same type as (8.5), but incorporating only a subset of the columns.

Now suppose the supremal subproblem has been solved in some iteration of
the two-level method. The question is then whether it is profitable to add
additional columns to the supremal subproblem. This question is resolved by
considering for each commaodity the following infimal subproblem:

Minimize ¢y —pi —A;— 8.6)
over the sets J, K, and L.

Wi, Aj and 7y are the dual multipliers associated with constraints (8.5a), (8.5b),
and (8.5¢) of the supremal subproblem in the current iteration.

Problem (8.6) turns out to be a very simple shortest—path problem. Consider
a directed network with node set consisting of J, K, and L. The costs of
traversing an arc are given as

C;‘k=cij+cijk_#'ij—/\j forjeJ, keK;
CL1=C,‘H—1T,-) fOl’kEK,lEL.

* One could also have one infimal subproblem for each product-demand zone combination (this
seems to be what Folie and Tiffin used).
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It is obvious that finding the shortest path from the set of sources (the set of
plants) to the set of sinks (the set of demand zones) is equivalent to solving
(8.6). If, for each commodity i, the shortest path has nonnegative length, no
new column is added to the supremal subproblem, meaning that the last
supremal subproblem solution is optimal for the overall problem (8.5). If, for
some commodity i‘, the shortest path has negative length, a corresponding
column is added to the supremal subproblem. That column has three elements
equal to unity, and the rest equal to zero. If the shortest path traverses nodes j’,
k', and ', there will be a 1 in that constraint (8.5a) for whichi=i',j=j";alin
that constraint (8.5b) for which j = j'; and a 1 in that constraint (8.5¢) for which
i=i',1=1I. The objective function coefficient is cius = ci'y+ Crjnr + Ciarr.

8.3.3 THE IMPLEMENTATION OF FOLIE AND TIFFIN

The column generation method described above was programmed and
compared with ordinary LP in solving some small test problems. Generalized
upper bounding was used to deal with the constraints (8.5¢). The single-level Lp
solution method was applied, not to problem (8.5) directly, but to the
equivalent node-arc formulation. The two-level method performed substan-
tially better than the single-level method with regards to computing time and
number of iterations both with and without the generalized upper bounding
feature (Folie and Tiffin 1976, pp. 293-294).

In the practical application problem, there were nine commodities, eight
plants, four distribution centers, and four demand zones. This results in a
reasonably small overall problem (8.5). That overall problem could, in fact,
have been explicitly generated by a matrix generation routine and would have
been within reach of ordinary Lp. However, column generation plus general-
ized upper bounding was used. An icL 1902 A computer was utilized. Folie and
Tiffin report the successful use of the method to resolve various planning
problems in the company.

Finally, it may be mentioned that an entirely different two-level method for
solving minimal-cost multicommodity network flow problems is discussed by
Kennington and Shalaby (1977).
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Freight Ship Route Scheduling
and Electricity Generation

9.1 INTRODUCTION AND OVERVIEW

In this chapter we will discuss two studies that could not be conveniently
grouped in the other chapters. The first study is concerned with the derivation
of optimal ship itineraries for a shipping company. An itinerary is a sequence of
cargoes. The company owns a number of ships, characterized by size, cruising
speed, initial position, and the like. Each ship can handle a given set of cargoes,
each characterized by size, loading dates, origin, and destination. The dis-
cussion is based on the work of Appelgren (1969, 1971). The problem was
originally formulated as a network in its arc—chain form, and column genera-
tion was applied to it. To overcome difficulties associated with the occurrence
of fractional solutions, column generation was combined with a branch and
bound method. This means that the algorithm finally implemented by a
Swedish shipping company is, in fact, a three-level method. The ship route
scheduling problem is discussed in section 9.2.

In section 9.3 we review a study of optimal electricity generation (Chaly et al.
1974). For a given power system, one wants to generate electricity at minimal
fuel cost within given capacity limits, while satisfying demand for electricity
(power losses are explicitly included). The resulting convex programming
problem can be solved by the nonlinear Dantzig-Wolfe decomposition
method.

9.2 FREIGHT SHIP ROUTE SCHEDULING

9.2.1 PROBLEM FORMULATION

Consider a shipping company owning I ships, indexed by i =1... I. Suppose
the company has the opportunity to handle K cargoes, indexedbyk=1... K.
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For some planning period (e.g., the next 60 days), the company must decide on
an itinerary for each ship. An itinerary is characterized by a sequence of
cargoes. Depending on the set of available cargoes, and the initial position of
ship /, its size, speed characteristics, and other factors, there is a particular set of
feasible itineraries for that ship. Suppose there are altogether N (i) feasible
itineraries for ship i, indexed by j (to remain idle is always one feasible
itinerary). Associated with each itinerary j is a payoff, denoted v;. The
objective function proposed in Appelgren (1969) is then to maximize the sum
of the payofs for all ships:
N
Maximize Y Y vixi,
i =1
where x; is a binary variable equal to 1 if ship / takes itinerary j and equal to 0
otherwise. Since one ship can, by definition, take only one itinerary during the
planning period, one obtains the constraints
N

x,~,-=1 (l=1.I)
=1

!

Also, any cargo can be carried at most once. Define a;x = 1 if cargo k is taken
up in itinerary j of ship /; otherwise a;x = 0. It must then hold that

N

AjirXi (k=1...K).
Zi jgl ifk- 1{ Sl )
The equality restrictions refer to those cargoes for which the company has
entered into a contractual obligation. However, there may also be some
optional cargoes that can be picked up if the shipping company so decides,
hence the restrictions in inequality form.
One obtains the following integer programming problem:
I N
Maximize Y Y uvixy
i=1j=1
N
s.t.: x;=1 (i
=1

i

I
—

D, (9.1a)

I NG -
) Z(:‘aiikxii{si} (k=1...K), (9.1b)

i=1j=1
allx;=0or 1.

Problem (9.1) is the overall problem of this section. It could involve 40 ships
and 50 cargoes, and the number of itineraries could hence be very large,
rendering the application of straightforward integer programming techniques
impossible.
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Appelgren (1969) suggested solving (9.1) by a two-level procedure based on
the idea of dropping the integrality conditions and on the application of column
generation to the resulting Lr problem. It was hoped for that the Lp solution to
(9.1) would be “‘almost” integer, i.e., that it would be such that almost all ships
get assigned to precisely one itinerary (and not a mixture of two or more). The
remaining ships could then be rescheduled by manual methods. Subsequently,
Appelgren (1971) described a three-level method that produces integer-
valued solutions. The intermediate and infimal subproblems correspond to the
supremal and infimal subproblems in the two-level method of Appelgren
(1969). The supremal subproblem determines iteratively which fractional
variables are set to which integral values. The method combines a branch-and-
bound method with column generation. This method was implemented in a
Swedish shipping company. Since the generation of ship itineraries is of central
interest, a detailed discussion is given in section 9.2.2. The two-level method is
described separately insection 9.2.3, which makes the subsequent discussion of
the three-level method in section 9.2.4 easier.

We note that, disregarding the integrality constraints, (9.1) is a multicom-
modity network flow problem (each ship is a commodity).

9.2.2 THE GENERATION OF SHIP ITINERARIES

The construction of itineraries will now be considered in detail. A cargo is
obviously characterized by a port of origin and a destination. It is, moreover,
characterized by one or several alternative loading dates. That is, a cargo may
be available on one or several alternative loading dates, for instance Monday
through Friday of a particular week.

For each ship, a network representation of the available itineraries can be
used. To be concrete, suppose there are altogether three cargoes available to
the shipping company, each with two alternative loading dates. Now consider
some particular ship /. Whether a particular itinerary is feasible for that ship
depends on several things, such as initial position and ship size. In the present
case, suppose that the following one-cargo itineraries are all feasible for the
ship under consideration: (1, 1), (1, 2), (2, 1), (2, 2), and (3, 2). In this notation,
the first index represents cargo, and the second, loading date alternative. The
one-cargo itinerary (3, 1) is assumed not feasible, for instance, because the
current position of the ship is so far away from the origin harbor of cargo 3 that
it is impossible to reach that harbor by the date given by loading date
alternative 1. Suppose, furthermore, that the following two-cargo itineraries
are also feasible: (1, 1)-(2,1); (1, 1)~(2,2); (1,2)-~(2,2). No three-cargo
sequence is feasible (for instance, because of the crusing speed of the ship under
consideration). Now order all the cargo-loading date combinations according
to increasing loading dates. Suppose that order is (3,1),(3,2),
(1,1),(1,2),(2,1), (2,2) in the above example case. This means that the
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FIGURE 9.1 Example network of ship itineraries.

second loading date alternative for cargo 3 occurs earlier than the first loading
date alternative for cargo 1. The set of all feasible itineraries for the particular
ship under consideration can then be represented as a network, where the
nodes signify cargo-loading date combinations, as depicted in Figure 9.1. Note
that the nodes are ordered according to increasing time on a time axis. Any
path from “Begin” to “End” represents a feasible itinerary. The arc directly
from “Begin’’ to “End” is the idle alternative. There are altogether nine
different itineraries, including the idle one.

Associated with each arc in the network is a payoff element. The payoff from
the arc between ‘“‘Begin™ and (1, 2), for instance, is the payoff resulting from
letting cargo 1, loaded on the second loading date alternative, be the first cargo
in the itinerary for the ship under consideration. That payoff includes the cargo
revenue minus cruising costs, which also means the cost of cruising empty from
the current position to the origin port of the cargo. The payoff from the arc
between (1, 2) and (2, 2) consists of the revenue from carrying the second cargo
minus cruising costs between the destination harbor of cargo 1 and the origin
harbor of cargo 2 (which could be zero, if these are the same harbor), possible
idle time costs while waiting for the second loading time alternative for cargo 2,
and cruising costs for carrying cargo 2. The payoff from the arc between (2, 2)
and “End” could include the cost of waiting idle in the destination port of cargo
2 for the rest of the planning period. The total payoff of ship i/ from the jth
itinerary, v;, is hence equal to the sum of partial payoffs on the arcs of the
relevant path in the network. So, if the directed arc ((g, m), (k, n)) belongs to a
feasible itinerary for ship i/, where g and k represent subsequent cargoes and m
and n loading dates, the partial payoff can be written as vk If g =m =0,
then k is the first cargo on the itinerary. If kK = n =0, then q is the last cargo on
the itinerary. The idle itinerary is identified when g =m =k =n = 0. Define
corresponding zero—one variables  Xgmkne If  Xigmkn =1, then the
arc((q, m), (k, n))isona given itinerary. If x;qox» = 1, then “Begin”—(k, n)ison
the itinerary, meaning that k is the first cargo. If xigmoo = 1, then (g, m)-*““End”
is on the itinerary, in which case q is the last cargo. If x;g000= 1, then the
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itinerary is the idle one. The two-cargo itinerary (1, 2)—(2, 2) would hence be
defined by x,0012 = Xi1222 = Xi2200 = 1, and all other x;;min = 0. The correspond-
ing total payoff v;; = vig012 + Ui1222 + Viz200- The one-cargo itinerary (1, 2) would
be defined by X012 = Xi1200= 1.

Hence, all feasible ship itineraries for a given vessel can be generated by the
construction of networks like that illustrated in Figure 9.1. The total payoff of
an itinerary can be reconstructed from the partial payoffs associated with the
arcs in the network. Every feasible itinerary can be characterized by a set of
binary variables.

9.2.3 A COLUMN GENERATION SCHEME

We will now consider a column generation scheme for the ship scheduling
problem. Let 7 =(m, 72 ... wx) be the simplex multipliers associated with
the cargo constraints (9.1b). Let §; ({ = 1 ... I') be the multiplier associated with
the ith ship constraint (9.1a). A new itinerary for ship i would be represented in
the supremal subproblem by a column vector with (I + K) elements. Out of the
first I elements, the jth will be 1 (corresponding to the relevant constraint (1a)),
and the remaining elements zero. The last K elements will either be 0 or 1,
depending on which cargoes are picked up in the itinerary. The coefficient in
the objective function will, of course, be v;;. To determine whether there is any
worthwhile itinerary to be added to the ones already at hand for ship i, one
would maximize v; —Zf:1 a;m — 6; over all feasible itineraries. If this quan-
tity is positive, then a new column for the supremal subproblem has been
identified.

The problem of maximizing (v; — Y. ,(Kzl a;me — 8;) over all feasible itineraries
may also be written as

Maximize Y (Vigmkn — 7k ) Xigmkn — i

qmkn
s.t.: Z xiqun - Z xiknqm = 0
kn kn
(all g, m; q #0), (9.2)

Z Xipokn = 1’
kn

all Xigmen =0 or 1.

For k=0, m. is defined to be zero. The constraints in (9.2) describe the
requirement that the solution be a feasible itinerary. Problem (9.2) cor-
responds to finding the longest path through a network. It can be solved
efficiently by a simple backward recursion since the underlying network is
acyclic, as is evident from Figure 9.1. From the structure of the network in
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Supremal subproblem

Calculates an optimal shipping plan,
for the whole company, using only
ship itineraries at hand (by linear
programming)

Simplex . Simplex
multipliers Itinerary Itinerary multipliers
for ship 1 for ship I
Infimal subproblem No. 1 e Infimal subproblem No. I
Computes a new itinerary for ship 1 Computes a new itinerary for ship I
(by dynamic programming) (by dynamic programming)

FIGURE 9.2 The adjustment phase of the two-level method for ship scheduling.

Figure 9.1, it is also clear that the necessary arcs of the network can be
constructed while performing the backward recursion (this construction is
simplified if the nodes of the network are ordered according to increasing
loading date). The resulting two-level method is straightforward, and is
clarified in Figure 9.2.

Appelgren (1969) successfully solved some test problems using column
generation. One typical, realistic problem involved 40 ships, 50 cargoes, and a
60-day planning period. Solution time was about 2.5 minutes on an 1BM 7090
computer. A somewhat simplified version of the same problem was also solved
in a single-level fashion, by ordinary linear programming. This meant that all
feasible itineraries for each ship had to be generated in advance. Actually, this
was not done; only a subset was generated (this is the simplification just
referred to). Solution time was now around 20 minutes using a standard Lp
code. The ship scheduling problem considered here hence lends itself to quite
successful applications of a two-level method. It may be remarked, though, that
these experiments were carried out some 10 years ago, and today the relative
advantage of the two-level method may be smaller, since better standard Lp
codes are now available.

The solution obtained by this two-level method need not be integer-valued.
To obtain some insight into the occurrence of fractional solutions, Appelgren
conducted a series of experiments. He concluded that the frequency of
fractional solutions was about 1-2 percent for randomly generated test prob-
lems (for details, see Appelgren 1969, pp. 63-68). This induced Appelgren to
combine the present approach with integer programming methods, with a
three-level method as the result.
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924 A THREE-LEVEL METHOD

Here we will just outline the method developed in Appelgren (1971); some
details will not be given, since their inclusion would make the discussion
somewhat technical.

Appelgren’s method combines column generation with a branch-and-bound
method originally developed by Land and Doig (1960). The basic principle is as
follows. Suppose one has obtained, by means of any algorithm, a fractional
solution to some 0-1 linear integer programming problem. Then one selects
some column from the constraint matrix corresponding to a fractional variable,
and sets the corresponding variable respectively equal to zero (forcing the
column out of the previously obtained solution) and equal to one (forcing the
column in). The given algorithm is applied to the two resulting (more con-
strained) problems, each constituting the first nodes of separate ‘‘branches” of
the “tree.” This procedure can be continued, assuming an integer solution was
obtained in some branch, until the solution value of the best integral solution is
not exceeded by any fractional bound that is constructed at any stage of the
search procedure.*

The three-level method then proceeds in the following manner: If the
column generation method (accounting for the two lower levels) produces a
fractional solution, the supremal subproblem decides which fractional value to
branch on. The two restricted problems that result are then solved by the lower
levels. The procedure continues until an optimality test at the supremal level is
passed; this occurs as soon as the upper bounds obtained from the fractional
solutions at the deepest nodes of the tree are smaller than or equal to the
solution value of some previously generated integer solution.

Appelgren developed various selection rules to determine the next variable
to branch on. These rules are described in detail in Appelgren (1971, pp.
68-69). A technical problem arises from the fact that the column generation
method may very well generate columns that have been ruled out by the
branching procedure. This difficult problem was solved in an ad hoc fashion
(see the discussion in Appelgren 1971, pp. 70-71).

This three-level method was implemented in a Swedish shipping company.
In fact, it has been used once or twice a week since late 1970. Typical problems
involve 100 ships and 135 cargoes. Appelgren reports that the computer-
produced schedules must generally be somewhat revised manually but that
they are, nevertheless, valuable as tentative plans (Appelgren 1971,
p. 77).

* Once an integer solution is obtained in a branch, no further iterations are necessary in that
branch.
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9.3 PLANNING POWER GENERATION

9.3.1 PROBLEM FORMULATION

Chaly et al. (1974) formulate the problem of planning for power generation in a
system with hydroelectric as well as thermal power stations as a convex
programming problem. It turns out that for power systems containing only
thermal power stations, the application of the Dantzig-Wolfe decomposition
principle is computationally attractive.

Assume a power network with M nodes. At the first N nodes (N < M) there
are load (i.e., demand) points as well as thermal power stations. In the
remaining M — N nodes, there are only load points. For each power station
=1...N, x; represents the power generated at some point in time under
consideration. Let ¢;(x;) be the fuel usage at station / associated with a
production x;. Chaly et al. propose fuel-use minimization over the entire
network as the overall objective:

N
Minimize Z ¢i(Xi)~
i=1

Each ¢; is assumed to be convex.

This minimization takes place subject to certain constraints. Let there be K
power lines in the network. The following restrictions express upper and lower
bounds on the power flow of each line in terms of the power generated at the
individual stations:

N

Za,'kxiSUk (k=1.K),
i=1

N
-Y apxi=-L, (k=1...K).

There are capacity constraints on the stations as well:
XiSX =X (i=1...N).

Additionally, there is a constraint on the power balance in the network. Let
d={(d, ...dy) give the load at the different nodes of the network. There is a
power loss function F(x, d), x = (x1 ... xn), identifying the losses occuring in
the network for given amounts of power generated and demanded at the
different nodes. The function F(., .) is assumed to be convex. Since the demand
schedule has to be met, one obtains

N M
Y xi—F(x,d)= Y d.
i=1 =1



Thus, the following convex programming problem has to be solved:

N
Minimize Y o¢:(x;)
i=1

apx; < Uy (k=1K),

itz

N
-¥Y apxi=-L, (k=1...K),

i=1

XiSX <X (i=1...N),

N M
L x-Frd)= ¥ d
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(9.3)

Problem (9.3) was solved by Chaly et al. using Dantzig—-Wolfe decomposition
for nonlinear programs. It is the original, or overall, problem of this section.

9.3.2 APPLICATION OF THE DANTZIG-WOLFE METHOD

The discussion on this section is based on section 3.4. First define

N
X={xl£,5x,_<_f,(l=1..N),Z F(xd Zd}
i=1

The set of power schedules X is convex since F(., .) is convex. It is easy to see
that problem (9.3) is a special case of problem (3.20). Hence, the Dantzig-
Wolfe method can be applied here, w1th one infimal subproblem. To simplify
the notation, we shall write f(x) = Z, 1 &:i(x:) and ax =(aik ... anx). Suppose
that S schedules (grid points) are available at some iteration ¢ of the adjustment

phase: £' ... £5 The following supremal subproblem results:
M
Minimize Y f(£%)A
s=1
S
s.t.: Y (@A = Uy (k=1...K),

s
— Y (afHA =—L, (k=1...K),

(9.4a)

(9.4b)

(9.4¢)
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LetA=(A"... %) be an optimal solution to (9.4). Let 7 and 73 be simplex
multipliers associated with (9.4a) and (9.4b). a is the simplex multiplier
associated with (9.4¢). The infimal subproblem then becomes:

K
Minimize f(x)— ¥ (i —me)aix
k=1

9.5)
s.t.: xe X

The specific method employed to solve (9.5) will be commented on later.
Assume one can find an optimal solution £°*" to (9.5). If

K
fEEY- T (me—moatsT —a =0, (9.6)
k=1
an optimal solution to the original problem is already available, namely

Xsfs
1

_f:

5

I ™o

If (9.6) does not hold, the column associated with #5*" is added to the supremal

subproblem, and the stage is set for the next iteration of the adjustment phase.

Since this method usually does not converge in a finite number of steps, a
termination criterion must be used. Let Z denote the optimal solution value for
the original problem, and z, the optimal value of the supremal subproblem at
iteration . A lower bound for 7 is given by

K
L=z, +f(@F - Y (mi-mhad’ ! —a
k=1

This lower bound is the same as the one given for the Dantzig—Wolfe method
for Lp problems (see section 3.3.5). If € >0 is some given tolerance level, then
the following rule determines termination: Stop if z,—Z, <g, otherwise,
continue (Z, is the best lower bound obtained so far).

The infima] subproblem (9.5) is a nonlinear programming problem. It is
hence, in its full generality, considerably more difficult to handle than the
supremal subproblem. In the study of Chaly et al., the power loss function took
on a special form, enabling the application of an iterative process to find a
solution to the Kuhn~Tucker conditions.

Chaly et al. state that this two-level method for power generation planning
has been programmed and implemented on a BEsM-4M computer (1974,
p. 167).

In closing this section on the application of a two-level method to electrical
power generation planning, some additional applications of multilevel
methods to the same general problem area may be mentioned. Muckstadt and
Koenig (1977) consider a power generation planning problem somewhat
similar to the one discussed here, although more complex in its details. A
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Lagrangean decomposition method is used. Cazalet (1970) discusses a problem
relating to capacity expansion in a power plant system. A two-level method
similar to Lagrangean decomposition is used. Noonan and Giglio (1977)
discuss a problem relating to investments and power deliveries in a power
system. The investment decisions are represented by 0~1 variables. Assuming
fixed investment choices, an LP problem relating to power deliveries results.
Benders decomposition is used to solve the overall problem.
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1 O Water Pollution Control

10.1 INTRODUCTION AND OVERVIEW

This chapter considers multilevel methods for an important problem in water
systems management: pollution control This is but one of several problems in
water systems management that have been tackled by multilevel methods. In
fact, the literature on multilevel models and methods for water systems
management is quite large, dating back at least to Dorfman (1962). Dorfman
recognized rather soon after the invention of the Dantzig-Wolfe decom-
position principle the potential usefulness of that method for problems regard-
ing water systems. Haimes (1977) offers a survey of multilevel methods and
models for water resources systems, and this chapter was designed so as to
minimize overlap with Haimes’s volume. Problems that are not discussed here,
but are treated by Haimes, include capacity expansion in water resources
systems (see also Nainis and Haimes 1975) and aquifer identification. Another
problem that has been treated by multilevel methods is water utilization in a
complex system consisting of rivers, reservoirs, and canals (Hall and Shephard
1967).

By way of introduction, imagine the following problem concerning a river or
lake. There is a set of polluters (industrial installations, cities, and so on) and
a Central Agency (cA) in charge of pollution control. Each polluter emits a
certain quantity of polluted water per time unit. This efluent can be treated to a
lesser or greater degree locally, by the polluter itself (in a local treatment plant).
Certain minimal requirements have been formulated in advance for various
water quality characteristics (e.g., dissolved oxygen). Suppose one wants to
decide on treatment levels for each local polluter such that total treatment cost
(summed over all treatment plants) is minimized.

This pollution control problem can be formulated as a mathematical pro-
gramming problem. It turns out to be a straightforward resource-allocation
problem: Allocate the natural assimilative capacity of the river or lake in such a

194
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fashion that the required residual treatment is achieved at a minimal cost. The
decision variables are the levels of treatment of the different polluters.

The pollution control problem can be solved in a two-level fashion, through
an iterative information exchange between the ca and the polluters. As a result
of such a two-level process, the ca can decide on a treatment level for each
polluter, or, alternatively, a set of effluent charges that will induce each polluter
to select alevel of treatment that is desirable for the system as a whole. We note
that this pollution control situation is very similar to the problem situation
encountered in the discussion in Chapter 6 of two-level procedures for
planning in divisionally organized corporations. In both cases, we have a
resource-allocation situation, where the overall problem is one of finding
optimal activity levels for the infimal decision units, and where those activity
levels imply a particular allocation of certain jointly utilized resources.

From the point of view of multilevel systems analysis, the pollution control
problem outlined here is particularly interesting in that a two-level institutional
arrangement is suggested in the literature. That is, it is suggested that the
problem could actually be solved through an iterative dialogue between the ca
and the polluters. In other words, the multilevel procedure corresponds to a
particular multilevel institutional arrangement. This, again, is reminiscent of
multilevel procedures for business planning, where a definite multilevel insti-
tutional arrangement is also suggested, as was pointed out in Chapter 6.

It should be clear from the start that this chapter deals with multilevel aspects
of one particular pollution control situation. Hence, an exhaustive treatment of
the pollution issue is not attempted. In particular, the following question is not
considered: How can the minimal requirements for various water quality
characteristics (referred to above) be established?

In section 10.2, we present two multilevel approaches to the water pollution
control problem of the Miami River (in Ohio, U.S.A.). The overall problem is
formulated in section 10.2.1. A study of Hass (1970), who utilized the
Dantzig—-Wolfe method for nonlinear programs, is discussed in section 10.2.2.
An alternative approach developed by Haimes et al. (1972), utilizing Lagran-
gean decomposition, is described in section 10.2.3.

10.2 THE MIAMI RIVER CASE

10.2.1 THE OVERALL PROBLEM

In this section, we discuss a pollution control problem taken from Hass (1970).
A stretch of the Miami River (Ohio, U.S.A.) is considered.* The river is divided

* The Miami River case is also discussed in Haimes’s volume (Haimes 1977, pp. 372-382). The
emphasis in our discussion is a bit different from that of Haimes. See also Kulikowski (1973) and
Mora-Camino (1977, pp. 88-94) for two other formulations of multilevel pollution control
situations.
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into 27 reaches, and there are 15 polluters altogether. The reaches are defined
in such a way that each of them contains one polluter (but not two or more) or
one tributary. Only one water quality characteristic is considered, level of
dissolved oxygen (po). It is required that the po level be greater than or equal to
4 mg/liter in each reach. Let / index reaches (i=1...27) and j polluters
(j=1...15). w, is the BoD (biological oxygen demand) load introduced by the
jth polluter. Note that the w; are constants, i.e., not decision variables in the
problem context considered here. Let g, denote the number of pounds of
oxygen demanded in reach i to offset 1 pound of Bop discharged by polluter j.
Naturally, a;; = 0 if polluter j is located downstream from reach i. Let b; denote
the amount of po available in reach / for the decomposition process (total
available minus the minimal requirement of 4 mg/liter). Denote by x; the
percentage of w; removed through treatment at source j. We can now formulate
a restriction for eachreach i=1...27:

agwi(l1—x1)+apwr(l—x2)+- - +a;swis(l—x15) < b (10.1)

What (10.1) says is that the demand for po in each reach / must not exceed the
supply. The demand depends on the decision variables x, . .. x;s—that is, on
the level of treatment by each polluter. Additionally, the following constraint is
imposed for each x; (j=1...15):

0.45=<x,=<0.99, (10.2)

The lower bound results from the requirement that each polluter undertake at
least primary treatment (filtering, chlorination, and settling). Such treatment
removes about 45 percent of the Bop load. The upper bound is a technical
upper limit on the extent of purification possible.

The objective function is. simply the sum of the treatment costs of the
individual polluters:

15
T é(x), (10.3)
is

where each ¢;(x;) has been estimated as

&i(x;) =160.8+26.7q,+640.7(x; ~ 0.45)* +255.7q;(x; — 0.45)>.
(10.4)

The q; are parameters denoting plant sizes and are given as constants (i.e., are
not decision variables). The cost functions include capital costs (on an annual
basis) and operating costs and are developed on the basis of engineering data.
Equation (10.4) hence expresses costs associated with operating treatment
plant j at intensity x;. The total objective function (10.3) apparently expresses
minimization of the total treatment cost along the river.

Assembling the objective function (10.3) and the restrictions (10.1) and
(10.2), one obtains a nonlinear programming problem, the overall problem of
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this section. The objective function is quadratic and convex. The constraints
are linear. We note further that the total problem (10.1)-(10.3) is decom-
posable: the objective function is separable by index j, and each restriction
(10.2) defines one subblock. The restrictions (10.1) are the coupling ones. If
one assumes that the overall problem (10.1)-(10.3) has a feasible solution, then
an optimal solution exists and is unique.

Data for the parameters a;;, w;, b;, and g; are provided in Hass’s article (Hass,
1970). We will not concern ourselves here with how those data were derived
but remark only that the data-gathering work is not trivial.

10.2.2 A PLANNING PROCEDURE BASED ON DANTZIG-WOLFE
DECOMPOSITION

The problem (10.1)—(10.3) can be solved through, for example, the (nonlinear)
Dantzig-Wolfe decomposition algorithm. This could be done in an institu-
tional manner—that is, through an iterative information exchange between the
cA and the 15 polluters, where each participating unit performs certain
subproblem calculations at each iteration. That was not done in this particular
case. Instead, Hass himself solved the problem by the nonlinear Dantzig~
Wolfe method, in an attempt to simulate what the resulting information flows
and final solution would have been if that method had been used as a planning
tool by the ca and the polluters along the Miami River. That is, the purpose of
Hass’s study was exactly the same as that of the studies by Ljung and Selmer
and by Christensen and Obel that were discussed in Chapter 6. It may be
remarked here that, as far as is known, there are no reported implementations
of planning procedures founded on decomposition algorithms for pollution
control problems, just as there are no reported implementations for business
planning in divisionalized corporations.

The nonlinear Dantzig-Wolfe method operates as follows in this case.
Suppose n; proposals have been obtained so far from polluterj (j=1...15).
Let each such proposal be denoted (¢7, x;). The restricted master problem in
the current iteration is then written as

m,

15
Minimize Y Y ¢jA;

j=1s=1

15 »n;
s.t.: Y Y law(l—x)Mi=b  (i=1...27), (10.5)
ji=1s=1
Y oAs=1 (j=1...15),
s=1
AS=0 (j=1...15,
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Let m(i=1...27) be a dual multiplier associated with restriction (10.5), and
set p; = m. Then p; may be interpreted as a tentative tax rate associated with
polluting the ith reach in the next iteration. The infimal subproblems become
(forj=1...15)

Minimize ¢;(x;)+w;(1—x;,)T;

s.t.: 0.45=x;<0.99,

(10.6)

where T; = ZZ, pai;. T is hence a composite tentative tax rate facing polluter j
in the next iteration. Note that the infimal subproblems (10.6) can be easily
solved, since an optimum is found either at one of the boundary values (0.45 or
0.99) or at the unconstrained optimal value of the objective function. This
unconstrained optimal value may be found by simple differentiation.

The restricted master problem does not converge finitely for a nonlinear
problem. However, once a feasible restricted master problem has been
obtained, the iterative process may be stopped, and a feasible solution to the
original problem (10.1)-(10.3) may be recovered. If the Dantzig—~Wolfe
method is to be used as a planning tool in the current problem situation, then it
is necessary that a “good” solution to the restricted master problem can be
obtained in very few iterations. The reason is obviously that only a few
iterations of information exchange would be undertaken in a real-world
planning situation. This is the same requirement that was imposed in Chapter
6, in the discussion of the utilization of decomposition methods as the basis for
planning procedures in divisionalized corporations.

Hass gives some information about the convergence performance of the
Dantzig-Wolfe method in this case. To generate a feasible restricted master
problem, the first two iterations used heuristic price vectors, the first of which
was simply p; =0 for i = 1...27. This resulted in a feasible restricted master
problem in the third iteration. After four iterations, the value of the
restricted master problem objective function was 8,616 (dollars/day), which
should be compared with the true optimal solution value of the original
problem (10.1)-(10.3) of 8,324. After six iterations, the restricted master
problem objective function value was 8,317. It may hence be concluded that a
good solution may, indeed, be obtained in a small number of iterations. In this
particular case, it is partly due to the fact that the overall problem (10.1)-(10.3)
is a small one and has a very simple structure.

If the information exchange between the ca and the polluters in the
adjustment phase is halted after, for instance, four iterations, the question then
arises of how the resulting decisions are to be implemented. (This question also
arises in the business planning context; see section 6.2.4). That is, how is the
execution phase to be carried out? In this case, the most natural way is perhaps
for the ca to issue treatment levels to the polluters. That is, each polluter is
informed that he must remove no less than a certain percentage of the BoD
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discharged by him. Let those treatment levels be denoted by x;. Each polluter
then solves the following infimal subproblem in the execution phase:

Minimize ¢;(x;)
s.t.: wi(l—x)=w;(1-%),

0.45=<x,<0.99,

and implements the solution in actual treatment. This would correspond to a
simplified version of the implementation form ‘‘right-hand-side allocations”
discussed in section 6.2.4.

An alternative form of implementation would be through ‘“tax rates”
(corresponding to ‘prices” in the business planning context). Suppose
pT...p3, are optimal dual multipliers associated with the constraints (10.1).
p¥...p% cannot be obtained through the scheme discussed here, since the
Dantzig—-Wolfe method does not converge finitely and since it has been stated
that only a small number of iterations can be undertaken in the present
situation. However, for the sake of argument, suppose that pf...p%; are
announced to the polluters. Each polluter can then construct and solve the
following infimal subproblem

Minimize ¢;(x;)+ w;(1—x,) T}

s.t.: 0.45<x;=<0.99,

(10.7)

where TF =Z?Zl pFay. [x1(p¥...p%) ... x1s(p¥ ... p3,)] is then the unique
optimal solution to the original problem (10.1)-(10.3), where x;(p¥ ... p%)
denotes the unique optimal solution to (10.7). The pf define a set of tax rates
with desirable properties: p¥ measures the marginal damage to the total
community (in terms of increased treatment cost) of dumping one additional
unit of BoD into reach i. Each polluter, by solving (10.7), balances his marginal
tax payment with his marginal treatment cost, and arrives at a decision that is
optimal overall. We note in passing that these desirable properties of the tax
rates would not hold for an overall problem of the linear type; this has been
pointed out more than once in earlier chapters (see sections 2.1.2 and 6.2.4).

Suppose now that the iterative information exchange is halted after a limited
number of iterations. In that case, the p¥ will not be on hand, only a different,
nonoptimal set of multipliers p;, associated with the restrictions (10.5) of the
restricted master problem in the last iteration. If the pw method converges
rapidly, then one may hope that the p; are “‘close” to the p¥. In the present
case, pt> =0.4132, p% =0.2118,and p} = O forall otherindices i. p}, =0.432,
P36 =0.236, and p; =0 for all other indices i after six iterations. This means
that the p; are actually quite close to the p¥. Now consider what happens if,
in the execution phase, the tax rates p;, obtained after six iterations,
are announced to the polluters. That is, the polluters are instructed to



200

formulate their infimal subproblems (10.7), setting p;=pi. These sub-
problems are then to be solved, and the solutions to be implemented
in actual treatment Jevels. It turns out that the infimal  sub-
problem solutions, [x.(pi...p57)...x1s(p1...p57)], are very close to
[xi(p¥...p3) ... x1s(pT ... p%)] (see Hass 1970, pp. 363-364). This is, in
fact, what one would expect, since each x;(p; . . . p27) is a continuous function of
the p; in this case [the objective function of (10.6) is strictly convex; see also
section 3.7.1]. This means that the implementation form ‘tax rates” (or
effluent charges) may be a reasonably good one in this case, even if the
adjustment phase is terminated after a relatively small number of iterations of
information exchange.

10.2.3 A LAGRANGEAN SOLUTION METHOD

In a paper by Haimes et al. (1972), the overall pollution control problem
(10.1)—(10.3) was reconsidered, and different two-level method, a Lagrangean
method, was proposed (section 3.7).

Let p; (i=1...27) be the tentative dual multipliers associated with restric-
tions (10.1) in iteration ¢ of the adjustment phase. Given these multipliers, the
following infimal subproblems [of the same form as (10.6) and (10.7)] are
solved:

Minimize ¢,(x;)+w;(1-x;)T;}
s.t.: 0.45=x;=<0.99,

where T: =Y. pla,. Let x;(p . .. ps7) be the optimal solution.

The supremal subproblem then consists of adjusting the p}. This adjustment
was carried out in Haimes et al. (1972) in a manner slightly different from the
procedure outlined in section 3.7.1. Let L(x, p) be the Lagrangean function:

15 27 15
L(x,p)= _Zl &(x;)+ '21 pe{ _Zl azw;(1 _xi)—'bi}-
i= i= i=
As in section 3.7.2, the dual function is defined as

h(p)=min{L(x, p)|0.45=x;=0.99, i=1...15).

The adjustment of the p}, i.e., the calculation of new tentative multipliers pfﬂ;
is performed as follows. First, a direction of change is defined as (for i =
1...27)

15
ai’' = max{O; [ Y a;wi(1-x(p1.. .p'27))—b,]} if pi=0;
f=1

i=

15
di” =[ £ am(i-x(pt .. pb)-b] itpi>0
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Next, a step size a'*' is determined so as to maximize
R((pY...pa)+a™ (d ... d5Y))

subject to the restrictions e ' =0andp{+a'd{" =03 =1...27). Leta""’
be the optimal step size. Then pi' =pj+a‘"'d|"'. The economic meaning of
this adjustment is the same as in section 3.7.1: If the ith constraint (10.1) is
violated, then the supply of natural assimilative capacity in reach / is smaller
than the demand. In that case, the tax rate p; should be increased. In the
converse case, p; is decreased. No tax rate is allowed to become negative,
however.

In selecting the optimal step size @', a Fibonacci search procedure was used
(Haimes etal. 1972, p. 766). This search procedure, as utilized by Haimes et al.,
requires that the polluter cost functions ¢;(x;) be known and at hand.

The purpose of this two-level price adjustment method is obviously to bring
about the convergence of the p; to the overall optimal dual multipliers p}*
(i=1...27). If the pf¥ can be obtained, then that is equivalent to solving the
original problem, since [x:(p¥ ... p%)...x1s(pT ... p37)]is an optimal solu-
tion to the original problem, as was pointed out in the preceeding subsection.

The computations in Haimes et al. (1972) were initiated with p; =0
for i=1...26, and P§7 =35. In the fourth iteration,
[x1(pt...p37) ... xls(p‘lt - p‘2‘7 )] was already quite close to the optimal solu-
tion to the overall problem (Haimes et al. 1972, p. 767). This means that the
iterative process could, in principle, have been halted at that point. This rapid
convergence in the first iterations presumably depends to some extent on the
optimal choice of a'. The following iterations showed very slow convergence.
The process was stopped after 99 iterations, at which point the p; were very
close to the pF.

We note now that the computation of an optimal step size, a ', which is part of
the supremal subproblem in each iteration, requires that the polluter cost
functions ¢;(x;) be known, as already mentioned. If, in a real institutional
setting, the polluters are unwilling, or unable, to specify these functions and
send them to the ca, the above approach cannot be used as an institutional
two-level method. The reason is, of course, that the ca will not have all the
information at hand to solve the supremal subproblem. This is not so for the
Dantzig-Wolfe method, where the ca does not need detailed knowledge of the
functions ¢;(x;) (as is evident from the discussion in the preceding subsection).
If the ca does have detailed knowledge about the functions ¢;(x;), then the
rationale for using a two-level institutional problem-solving method is not so
strong, but in such a case the approach of Haimes et al. can still be used by the
cA as a computational aid (instead of a direct application of single-level
nonlinear programming). The a can, of course, also be picked heuristically, in
which case the ca need not know the ¢;(x;). If so, a price adjustment, or
Lagrangean, scheme can be used as an institutional two-level planning method.
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However, convergence is probably slowed down, and it is not clear that a
satisfactory solution to the original problem can be obtained in a small number
of iterations.

10.3 CONCLUDING REMARKS

The discussion in this chapter has been rather similar to that in Chapter 6. In
fact, the literature on institutional multilevel approaches to pollution control is
quite similar to the literature on such approaches to planning in business
corporations, even though two fairly distinct sets of authors are involved. For
instance, in an article by Ferrar (1973), which contains a theoretical discussion
of a multilevel approach to a pollution control problem of the type discussed in
this section, the following issues are mentioned, all of which we recognize from
the literature on multilevel business planning:

1. The distinction between adjustment phase and execution phase (Ferrar
1973, p. 174). That is, the various trial plans calculated by polluters and the ca
in the adjustment phase are only steps on the way to the final and definitive one,
implemented in the execution phase.

2. Cheating by infimal subunits (Ferrar 1973, p. 177).

3. The fact that polluters may be unwilling or unable to submit to the ca a
complete description of their infimal subproblem specifications. This neces-
sitates an institutional multilevel approach (i.e., makes it impossible for the ca
to solve the overall pollution control problem directly, in a single-level fashion)
(Ferrar 1973, p. 173).

In the overall problem (10.1)-(10.3), the objective function was taken as the
sum of individual polluter treatment costs. This is obviously a rather peculiar
objective function and points to one reason why it may be more difficult to
implement multilevel planning procedures for pollution control than for
business planning: If the polluters are separate organizations institutionally,
then one could imagine that there would be considerable political problems in
defining a suitable objective function. This difficulty does not arise to the same
extent in the business planning situation, since a single organizational unit, a
corporation, is involved. Hence, it is not unreasonable to define the total
objective function as the sum of divisional contributions to profit. This
indicates that the river pollution situation is considerably more complex from
an institutional and political point of view than business planning, making the
application of two-level methods—or any other methods, for that matter—
more difficult. As a matter of fact, multilevel methods like the ones described
here appear to have had little influence in practice. For instance, it appears that
rather crude methods for pollution control and setting of efluent charges are
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used for at least some European river basins (see the survey in Hoet-Mulquin
1974).

Some final remarks, relating to the use of effluent charges, should be made.
In the literature on multilevel methods in water systems (see, e.g., Haimes
1973, p. 359; or Hass 1970, p. 355), it is often suggested that taxes on polluters
may serve at least two different purposes. First, they have desirable incentive
properties. This has already been discussed in the preceding subsections and, in
fact, forms the basis for the two-level methods outlined there. A second
purpose of effluent taxes is to raise revenue. That is, it is suggested that the
taxes actually be paid to the ca, and then used by the ca to install additional
treatment facilities (e.g., a dam for flow augmentation or a central treatment
plant).

Taxes with desirable incentive properties may not always suffice to cover the
costs of the proposed central treatment facility. For the case of the Miami
River, Upton (1971) utilized the same data as Hass and Haimes ez al. but
allowed for the introduction of a flow augmentation reservoir. He then showed
that taxes with optimal incentive properties would, indeed, not pay for the
reservoir.

This issue is somewhat reminiscent of one treated in the accounting lit-
erature: the different purposes of transfer prices. Transfer prices may be used
to motivate divisional managers to make good decisions, and also may be used
to evaluate divisional performance. These are two frequently mentioned,
different purposes of transfer prices. There seems to be some awareness among
accounting theorists that one set of transfer prices cannot be made to serve all
purposes simultaneously. Maybe the pollution control situation is analogous:
Perhaps it is too much to expect one set of effluent charges to have desirable
incentive and financial properties at the same time.
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1 1 Conclusion

11.1 PROBLEM STRUCTURES AND SOLUTION METHODS

In Chapters 5-10, a number of actual cases in which multilevel methods have
been used for solving problems in economics and management were presented.
In section 1.4, we posed certain requirements that a case study should satisfy in
order to qualify for inclusion (e.g., real-world data should be involved). It is not
easy to find good applications of multilevel methods to real-world problems
that satisfy these requirements. Nevertheless, some noteworthy examples of
applications have been left out and should therefore be mentioned briefly here.

One apparently successful implementation of column generation is to cut-
ting-stock problems (Gilmore and Gomory 1961, 1963). This application is
quite well known among management scientists, and for this reason we have
not included it in this volume. In the management of power systems and water
systems there are also applications of multilevel methods, as already indicated
at the end of Chapter 9 and the beginning of Chapter 10. Additionally, there
are applications of multilevel methods in world modeling (Mesarovic and
Pestel 1974a, b; for a critical review of multilevel world modeling see also
Fedanzo 1976).

One further study that deserves mention is that of Manheim (1966), who
developed a hierarchical method for locating highways. The rationale of this
method is similar to that underlying hierarchical production planning (dis-
cussed in Chapter 7)—a disaggregation scheme with each level representing a
certain degree of disaggregation.

In this chapter, we will try to answer the question: How useful are multilevel
methods for solving problems in economics and management? First, however,
we will summarize some of the discussion in preceding chapters by identifying
typical problem structures and multilevel solution methods that have been
encountered.

205
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Three typical problem structures can be mentioned:

1. vp problems with many columns. Or, more exactly, problems that, after
suitable simplifications, result in Lp formulations with many columns. Such
problems were treated in section 7.2 (production planning), section 8.3 (plan-
ning of production and distribution), and section 9.2 (ship scheduling). In this
situation, column generation is an obvious two-level method that can be used.
The infimal subproblems are often of the type: Find the shortest (or longest)
route through a network. The infimal subproblems were of this type in the
production and distribution planning problem in section 8.3 and the ship
scheduling problem in section 9.2.

2. Block-angular Lp problems, and nonlinear generalizations of such prob-
lems. This is the ‘‘classical” problem structure for applying decomposition
methods. It arises very naturally, for instance, in connection with national
economic planning and planning in business corporations, as seen in Chapters 5
and 6. The coupling constraints impose conditions on all subunits (sectors of
the economy, or divisions in a corporation) taken together. In addition, each
sector or division is constrained by some local conditions. Obvious candidate
methods for solving such problems are Dantzig—-Wolfe decomposition and
Lagrangean decomposition.

3. Mixed-integer programs. Often, the integer variables are of 0-1 type and
represent investments or capacity acquisitions. The ‘‘linear” variables then
represent operating decisions. One special subcase of this structure involves
linear variables representing transportation activities. That is, if the investment
variables are fixed, one obtains a set of independent transportation problems.
This structure has been encountered only once in this volume, in section 8.2
(distribution system design). One may, however, find several additional exam-
ples of this investment-transportation structure, for instance in the Soviet
literature (see, e.g., Zavel’skii et al. 1974). For mixed-integer problems (with
and without the transportation feature), Benders decomposition may be used.

The typical multilevel solution methods mentioned here—i.e., column
generation (often with infimal subproblems of the shortest-route type), Dant-
zig-Wolfe decomposition (linear and nonlinear), and Benders decom-
position—were outlined in Chapter 3, and their application was illustrated in
Chapters 5-10. Chapters 5-10 probably do not present an entirely fair picture
of the relative usefulness of the different methods in one respect, though:
Lagrangean decomposition was used in only one example study (section 10.2,
on river pollution). This is not quite representative of the importance of that
method. For certain classes of control-theoretic problems, the Lagrangean
method may be the most promising one, as was mentioned in section 3.9.2.

In addition, multilevel methods that must be regarded as heuristic have been
encountered, in particular in Chapter 5, on national and regional economic
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planning. Hierarchical production planning, discussed in Chapter 7, may also
be considered a heuristic method.

Itshould be stressed that the multilevel methods described in this volume are
conceptually fairly simple ones. That is, they may largely be regarded as
extensions of linear programming (one exception is Lagrangean decom-
position). The level of technical-mathematical sophistication involved is
moderate—certainly lower, for example, than that required by control theory
or stochastic inventory theory. Moreover, the methods used in this volume are
not unrelated. There are, on the contrary, connections between several of
them: Dantzig-Wolfe decomposition is an extension of column generation (in
that column generation is applied to the equivalent extremal problem).
Benders decomposition may, in a certain sense, be regarded as dual to
Dantzig-Wolfe decomposition, as demonstrated in section 3.5.5. Kornai-
Liptak decomposition may be viewed as a simplified version of the Benders
method. Again, though, Lagrangean decomposition stands a little apart from
the other methods. The application studies in Chapters 5-10 represent some
fairly important problem situations in economics and management. Thus, even
though the methods treated in this book are fairly simple ones, and partially
founded on a limited number of common ideas, they enable the analyst toreach
quite far, as evidenced by the range of applications exhibited here.

In two respects, though, the conceptual simplicity of the methods may be a
bit misleading. That is, we have glossed over certain technicalities. In the first
place, as already pointed outin section 1.4, we have often not been very specific
about how to solve the individual subproblems when using the various
methods. For instance, when using the nonlinear Dantzig-Wolfe method, the
infimal subproblems could be difficult nonlinear problems. Second, imple-
menting these multilevel methods on a computer is usually not a trivial task; in
most cases, it requires fairly skilful computer programming, at least if an
efficient implementation is to be achieved. Again, we have not had much to say
about implementation tactics.

Still another difficulty in applying multilevel methods concerns behavioural
aspects of implementation. That is, applying some multilevel method in a
real-world organization poses some difficulties for the systems analyst. At the
very least, it demands certain interpersonal skills, so that he can communicate
effectively with the potential users of the method in the organization. This, too,
is a matter that we have glossed over. This issue—behavioural aspects of
implementation—is by no means unique to multilevel methods; it is important
for operations research and systems analysis methods in general.

It may be noted that all problem formulations in this volume have been
deterministic ones. This should not be taken as evidence that the methods
involved are unable to handle stochastic problems. The multilevel methods
discussed here can, in fact, sometimes be extended to handle stochastic
problem formulations (see, for instance, Jennergren 1973, where the Dantzig-
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Wolfe method is generalized to solve a class of stochastic resource-allocation
problems). It is simply that deterministic modeling, rather than stochastic, is
convenient and useful for the planning problems considered here.

11.2 AN EVALUATION OF THE USEFULNESS OF
MULTILEVEL METHODS

In attempting to evaluate the usefulness of multilevel methods, one can apply
different criteria (or evaluation methods). First, one can compare muiltilevel
and single-level methods, as applied to the same overall problems.
Unfortunately, there are not too many such comparisons published in the
literature. Chapter 4 reviewed some comparisons of Dantzig-Wolfe decom-
position and ordinary Lp applied to various test problems. Based on these
comparisons, Dantzig-Wolfe decomposition appears to be of questionable
usefulness. (This may not be so for nonlinear Dantzig-Wolfe decomposition,
since for nonlinear problems there is usually no powerful and obvious single-
level competitor, like ordinary Lp in the linear case.) Some similar comparisons
between column generation and ordinary LP have also been made, and were
mentioned in sections 8.3.3 and 9.2.3. In the two cases discussed here, column
generation outperformed single-level Lp. This indicates that multilevel
methods are useful at least in certain situations.

A second mode of evaluating multilevel methods is to look at application
examples. In the application cases of this volume, there are usually no
comparisons made between multilevel and single-level methods applied to the
same overall problem, as already indicated. Nevertheless, one can try to
evaluate the cases themselves in an “absolute’ sense: Are they convincing case
studies? Do they represent successful implementations of systems analysis in
general?

A systems analysis study may be considered successful, if the results are
adopted by the decision makers involved. In a recent discussion of the
implementation of operations research methods, Huysmans (1975) identifies
three degrees of adoption that are relevant for the cases presented here. In
accordance with Huysmans’ classification, we have the following three degrees
of success in implementing multilevel methods, based on the management
response to the solution proposals (‘‘management” is to be interpreted in a
broad sense):

1. The proposals result in “management action.” That is, the results are
accepted and implemented.

2. The proposals lead to “management change.”” That is, the solution is not
only implemented, but the inherent logic of the multilevel model system
becomes an integral part of management’s thinking.
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3. The implementation is so successful that it induces further applications of
multilevel methods within the organization.

In other words, our argument is the following: If the application cases
presented earlier are successful by these criteria (especially as evidenced by the
two highest degrees of adoption), then that is to a certain extent due to the
multilevel methods themselves. If there are several instances of successful
implementation of multilevel methods, one may infer that those methods are
useful. We will therefore examine the case studies of this volume in the light of
this classification.

It is easy to identify those studies that do not meet the first degree of
adoption. The planning studies of Chapter 6 are of this kind. They were
intended to shed light on certain issues concerning the use of decomposition
techniques as the basis for organizational planning procedures. The multilevel
approaches to pollution control (Chapter 10) also belong to this group. In these
studies, there is a correspondence between the subproblem hierarchy and the
organizational hierarchy, and this correspondence is utilized in the decision-
making process. The relevance of multilevel methods in this setting will be
commented on later.

However, in several of the studies, implementation of the first degree
(“management action”’) did apparently occur. From our interpretation of the
sources, this occurred in the application of column generation to production
planning (section 7.2), in both cases of distribution system planning (Chapter
8), and in the freight ship scheduling problem of section 9.2. The extent to
which hierarchical production planning (section 7.3) has been implemented,
leading to management action, is not clear, since only trial runs have been
reported. With respect to the cases in national and regional economic planning
in Chapter 5, one must be a bit careful about the meaning of ‘‘management
action.” One can hardly expect policymakers to rely on quantitative models
alone in planning an economy or significant parts thereof. Therefore,
management action should be considered to have occurred in such a situation if
the results were discussed with policymakers and hence may have had an effect
in shaping the actual decisions. The study of multilevel planning of the Mexican
economy (section 5.3) illustrates this kind of implementation. The results of the
‘“man-machine planning” study in Hungary (section 5.2) were also discussed
with policymakers, but the actual impact of these discussions is uncertain.
Whether the study of regional planning in section 5.4 has been implemented
cannot be assessed from the documentation. In light of all this, it would seem
fair to conclude that a good number of the cases discussed here have been
implemented in the sense of leading to management action.

Whether the multilevel methods involved were adopted to such an
extent as to result in ‘“‘management change’ is more difficult to say. To
illustrate this point, consider the study of the determination of optimal
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production-distribution programs (section 8.3). The logic of the two-level
model system is based on the idea of viewing the problem as an integrated one.
The relevant decision variables are the production quantities of individual
commodities, identified by production origin, demand destination, and trans-
port route. The potential of the analyses that can be carried out based on the
model system will be realized only if management is willing to accept this
integrated approach as part of its own thinking. Whether this actually
happened is not reported. The freight ship route scheduling problem is similar
in this respect, although we surmise that the use of a multilevel approach in this
case did lead to management change, since an operating system with the
possibility of manual intervention was set up by the company in question (see
section 9.2.4). Unfortunately, the case studies are not explicit on this issue.

There is also unclear evidence about the third degree of adoption (repeated
applications of multilevel methods within the same organization). However,
after their first investigation (based on the Kornai-Liptak algorithm), Kornai
and his associates continued their work on multilevel methods for national
economic planning (section 5.2). This indicates that at least in this situation,
multilevel methods were judged interesting enough for continued use. Also,
the column generation method for production scheduling (section 7.2) was
implemented in several factories of one company, indicating repeated appli-
cations (Ladson 1974, p. 41).

Allin all, the reader may be disappointed by the relatively sparse evidence of
successful real-life implementations of multilevel systems analysis. Scarcity of
evidence, though, is a recurring phenomenon, as regards the practical use of
quantitative planning methods. If this is kept in mind, multilevel systems
analysis does not score too badly, since there is evidence of several successful
implementations in the sense of ‘“‘management action,” and in a few of the
cases, there is also some indication of successful implementation as measured
by higher degrees of adoption.

A third way of evaluating the usefulness of multilevel systems analysis is to
examine some arguments commonly made in favor of multilevel methods. That
is, certain advantages of multilevel methods have been suggested in the
literature, and one may now inquire if these advantages hold up in the light of
the application cases.

Haimes (1977, pp. 60-63) lists several attributes of multilevel methods,
which he claims reveal advantages over more conventional, single-level ones.
We mention some of the more important attributes identified by Haimes and
comment on their significance in view of the materials covered in this volume.

1. Conceptual simplification of complex systems. When a complex overall
problem is decomposed into a subproblem hierarchy, a conceptual
simplification may be achieved. This is particularly true when one analyzes
highly coupled systems (i.e., systems with significant interactions between
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various subunits). This attribute of multilevel methods is more pronounced for
technically oriented overall problems (see section 3.9.1, on static multilevel
control problems), but it does not seem to be of overriding consequence for
problems in economics and management. The subproblem interactions in our
case studies are, in general, fairly straightforward.

2. Reduction in dimensionality. This is clearly an important attribute of
multilevel methods. Reduction in dimensionality does not always entail
computational superiority, though. This is brought out in the discussion in
Chapter 4 of the relative performance of the Dantzig—Wolfe method and
ordinary Lr. Nevertheless, multilevel methods are sometimes resorted to out of
sheer necessity for dimensionality reduction. Recall, for instance, from the
discussion in section 3.6 that the Kornai-Liptak method was designed precisely
for this reason. Similarly, the Benders algorithm was used to solve the
mixed-integer programming problem formulated in section 8.2 because that
problem could not be handled in a single-level fashion by existing mixed-
integer programming codes. Hence, multilevel methods are often appropriate
for solving large-scale problems, although powerful single-level methods (e.g.,
compact inverse LP methods) sometimes constitute a viable alternative. This
advantage, dimensionality reduction, could become less important as more
powerful single-level methods (e.g., more powerful mixed-integer program-
ming methods) are developed. The Hungarian experience points to this;
multilevel methods were abandoned as more powerful Lp codes became
available (section 5.2.3).

3. More realistic modeling. Sometimes, complex problem situations involve
nonlinear components that would have to be linearized in order to allow the
application of a single-level technique, such as ordinary Lp. This loss in accuracy
can be avoided by the use of multilevel methods. One illustration of this is
provided by the production planning problem described in section 7.2. In that
problem, the nonlinear infimal subproblems could be solved by dynamic
programming, whereas a single-level solution procedure would probably have
been feasible only after some suitable linearization. But linearization means
that the set-up costs would have to be neglected. This advantage of multilevel
methods should be interpreted with care, though. Nonlinear subproblems (like
those that arise in the nonlinear Dantzig-Wolfe method) are often difficult to
solve, and they may have to be solved many times. In certain situations, this
attractive attribute may be of only theoretical value.

4. The possibility of exploiting special problem structures. In this volume,
we have seen several examples of how specific problem structures can be
exploited through the use of multilevel systems analysis. For example, we have
seen how infimal subproblems of the transportation type could be identified
(section 8.2), and shortest-path problems have also been encountered (sections
8.3 and 9.2). These examples illustrate how, through a proper decomposition
into a subproblem hierarchy, structures are revealed that can be exploited by
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special solution techniques. This attribute probably largely accounts for some
of the most successful implementations of multilevel systems analysis.

5. Flexibility. This advantage is rather obvious, and partially follows from
the preceding one, the possibility of exploiting specific problem structures.
Once a subproblem hierarchy has been formulated, each subproblem can be
solved by the most appropriate method, irrespective of the overall problem
formulation: Various techniques of network optimization, dynamic pro-
gramming, and mathematical programming can be combined to handle the
given overall problem.

So far in this section, we have examined the value of multilevel systems
analysis in solving complex decision problems in economics and management.
We have been concerned with multilevel methods mainly as computational
tools. Comparisons of multilevel and single-level methods applied to the same
problems, the success of selected case studies, and certain important attributes
of multilevel methods lead us to conclude that multilevel systems analysis is
indeed a useful methodology in certain problem situations. It is not a uni-
versally useful methodology, but the range of situations in which it can be
applied is indicated by the case studies in Chapters 5-10.

In addition to the value of multilevel methods as computational tools, there
are two further reasons for interest in multilevel systems analysis. First, it may
be valuable for modeling only, as opposed to problem solving. That is, in
certain situations one is interested only in constructing an adequate descrip-
tion, not in solving some overall decision problem. It may then be useful to
construct a multilevel model—a representation in terms of a subproblem
hierarchy, with associated information flows. This manner of modeling forces
one to identify subcomponents and their interrelationships in the real-world
situation, perhaps leading to valuable insights into the system structure. This
possibility is exemplified by some studies (Malone 1972, Richardson and
Pelsoci 1972), although not always entirely convincingly. Baumgartner ef al.
(1976) make an emphatic statement of the virtues of multilevel modeling in the
social sciences.

A second additional reason for interest in multilevel systems analysis derives
from institutional and economic interpretations and analogies. It has been
mentioned several times in this volume that certain multilevel methods, such as
the Dantzig-Wolfe decomposition principle, can be interpreted as a kind of
formalized budgeting procedure. One could hence construct institutional
decision-making procedures founded on these methods, to be implemented
through an actual iterative dialogue between different subunits in the
organization. The discussion in Chapters 6 and 10 was intended to shed light on
the consequences of using such decision-making procedures in two situations:
production and sales planning in business corporations, and river pollution
control. The case studies involved were not real implementations but ‘‘simula-
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tions.” Whether decision-making procedures of this type will ever become
important for real organizations it is too early to say. The results in Chapter 6
were not altogether encouraging. The river pollution case study in Chapter 10
could also be criticized for a certain naiveté in the assumptions about the
underlying political-organizational situation (section 10.3). We are skeptical
about the usefulness of institutional planning procedures founded on multi-
level methods. However, rather than taking a definite stand on this issue, we
wish to point out only that there is a danger in pushing the institutional
interpretations of multilevel systems analysis methods too far. It may lead, for
example, to inferences about organizational design that are simply not war-
ranted.

11.3 A FINAL WORD

There is yet another argument in favor of multilevel systems analysis. The
methods discussed in this volume are conceptually quite simple, as already
mentioned (section 11.1). Related to this simplicity is a certain elegance. There
is no question that, for instance, the column generation method for maximal
multicommodity network flow problems of Ford and Fulkerson (discussed in
section 3.2) appeals strongly to the aesthetic sense of the quantitatively
oriented systems analyst. The same is true for the Dantzig—-Wolfe and Kornai-
Liptak decomposition methods. Actually, there is no doubt that systems
analysts, operations researchers, and mathematical economists have been
fascinated by the elegance of these decomposition methods, a fact also
reflected in the literature. In contrast, factorization methods for linear pro-
gramming, which are sometimes a powerful alternative to multilevel methods,
are messy and rather inelegant.

We suggest that this elegance may be another good reason for becoming
acquainted with multilevel systems analysis.
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