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Abstract  

Self-interest frequently causes individuals engaged in joint enterprises to choose actions that 
are counterproductive. Free-riders can invade a society of cooperators, causing a tragedy of 
the commons. Such social dilemmas can be overcome by positive or negative incentives. 
Even though an incentive-providing institution may protect a cooperative society from 
invasion by free-riders, it cannot always convert a society of free-riders to cooperation. In the 
latter case, both norms, cooperation and defection, are stable: To avoid a collapse to full 
defection, cooperators must be sufficiently numerous initially. A society of free-riders is then 
caught in a social trap, and the institution is unable to provide an escape, except at a high, 
possibly prohibitive cost. Here, we analyze the interplay of (a) incentives provided by 
institutions and (b) the effects of voluntary participation. We show that this combination 
fundamentally improves the efficiency of incentives. In particular, optional participation 
allows institutions punishing free-riders to overcome the social dilemma at a much lower cost, 
and to promote a globally stable regime of cooperation. This removes the social trap and 
implies that whenever a society of cooperators cannot be invaded by free-riders, it will 
necessarily become established in the long run, through social learning, irrespective of the 
initial number of cooperators. We also demonstrate that punishing provides a ‘lighter touch’ 
than rewarding, guaranteeing full cooperation at considerably lower cost. 
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Introduction 

In many species, cooperation has evolved through natural selection. In human societies, it can 
additionally be promoted through institutions. Institutions may be viewed as ‘tools that offer 
incentives to enable humans to overcome social dilemmas’, to paraphrase Ostrom (1). The 
threat of punishment or the promise of reward can induce self-interested players to prefer 
actions that sustain the public good, and turn away from free-riding (2-13). 

It is easy to understand the outcome of public good games in terms of the size of the incentive. 
If the incentive is too small, it has no effect and selfish players keep defecting by refraining 
from contributing to the public good (Fig. 1a). If, on the other hand, the incentive is 
sufficiently large, it compels all players to cooperate by contributing to the public good 
(Fig. 1d). It is the range of intermediate incentives that is of interest, and here, the effects of 
positive and negative incentives differ. Rewarding causes the stable coexistence of defectors 
and cooperators, with a larger proportion of cooperators when rewards are higher (Fig. 1b). 
Punishing, in contrast, leads to alternative stable states. As a result of the competition between 
cooperators and defectors, one or the other behavior will become established, but there can be 
no long-term coexistence (Fig. 1c). Whatever behavior prevails initially becomes fully 
established. Thus, each of the two behaviors may be viewed as a social norm: as long as the 
others stick to it, it does not pay to deviate. In particular, when cooperators are initially rare, 
the population will remain trapped in the asocial norm, with everyone defecting. Social 
learning cannot lead, in that case, to the more beneficial, pro-social norm of cooperating. 

Here, we show that the option to abstain from the joint enterprise (14-17) offers an escape 
from the social trap. Indeed, when free-riding is the norm, players will turn away from 
unpromising joint ventures. This leads to the decline of exploiters and allows the re-
emergence of cooperators. If the incentives are too low, this is followed by the comeback of 
defectors, in a rock-paper-scissors type of cycle (18, 19) (Fig. 2a). However, even a modest 
degree of punishment breaks the rock-paper-scissors cycle and allows the fixation of the 
cooperative norm (Fig. 2e-g). Thus, optional participation allows a permanent escape from the 
social trap. In contrast, we show that optional participation has little impact on rewarding 
systems (Fig. 2b-d). 

Methods 

Specifically, we apply evolutionary game theory (20) to cultural evolution, based on (a) social 
learning (i.e., the preferential imitation of more successful strategies) and (b) occasional 
exploratory steps (modeled as small and rare random perturbations). Because the diversity of 
public good interactions and sanctioning mechanisms is huge, we first present a fully 
analytical investigation of a prototypical case (Supporting Information, SI). We posit a large, 
well-mixed population of players. From time to time, a random sample of ݊  2 players is 
faced with an opportunity to participate in a public good game, at a cost ݃  0. We denote by 
݉ the number of players willing to participate (0  ݉  ݊) and assume that ݉  2 players 
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are required for the game to take place. If it does, each of the ݉ players decides whether or 
not to contribute a fixed amount ܿ  0, knowing that it will be multiplied by ݎ (with 1 ൏ ݎ ൏
݊) and distributed equally among all ݉െ 1 other members of the group. If all group members 
invest into the common pool, each obtains a payoff ሺݎ െ 1ሻܿ െ ݃, which we assume to be 
positive. The social dilemma arises because players can improve their payoffs by not 

contributing. If all do so, each obtains the negative payoff – ݃. Thus, they would have done 
better to refrain from participation.  

We now introduce the incentive. It is convenient to write the total incentive stipulated by an 
authority (‘the institution’) in the form ݉ܫ, where ܫ is the per capita incentive. If rewards are 
used, the total incentive will be shared among those players who cooperated. Hence each 
cooperator obtains a reward ݉ܫ/݉C, where ݉C denotes the number of cooperators among the 
݉ players. If penalties are used, players who defect have their payoffs analogously reduced by 
ܫ݉ ݉D⁄ , where ݉D denotes the number of defectors among the ݉ players. We will see that in 
the compulsory case, there exist two alternative stable norms for intermediate strength of 
punishment. In particular, a homogeneous population of defectors is unable to escape from the 
social trap (Fig. 1). In the optional case, cultural evolution leads to a stable homogenous 
population of cooperators (Fig. 2e-g), irrespective of the initial number of cooperators. Thus, 
voluntary participation overcomes the social trap plaguing the compulsory case. Remarkably, 
this is achieved at a fraction 1/݊ of the cost necessary in the compulsory case (Section S2 in 
the SI). 

We base our analysis of the underlying evolutionary game on replicator dynamics (e.g., 20) 
for the three strategies C (cooperators), D (defectors), and N (non-participants), with 
frequencies ݕ ,ݔ, and ݖ. The state space ∆ is the triangle of all ሺݔ, ,ݕ ,ݔ ሻ withݖ ,ݕ ݖ  0	and 
ݔ  ݕ  ݖ ൌ 1. If 0 ൏ ݃ ൏ ሺݎ െ 1ሻܿ, these three strategies form a rock-scissors-paper cycle in 
the absence of incentives, as shown in Fig. 2a: D beats C, N beats D, and C beats N. In the 
interior of the state space ,	all trajectories of the replicator dynamics originate from, and 
converge to, the state N of non-participation (ݖ ൌ 1) (21). Hence, cooperation can only 
emerge in brief bursts, sparked by random perturbations. The long-term payoff is that of non-
participants (i.e., 0). 
 
Results 
 
If the game is compulsory, i.e., if all ݊ players are obliged to participate (ݖ ൌ 0), the outcome 
changes with increasing per capita incentive ܫ (Fig. 1). For small ܫ, defection dominates. The 
replicator dynamics have two equilibria: one stable (a homogeneous population of D-players) 
and one unstable (a homogeneous population of C-players). In the case of rewarding, as ܫ 
crosses the threshold ିܫ ൌ ܿ/݊ , the equilibrium D becomes unstable, spawning a stable 
equilibrium R at a mixture of C- and D-players. As ܫ  increases further, the fraction of 
cooperators becomes larger and larger. Finally, when ܫ  reaches the threshold ܫା ൌ ܿ , the 
stable mixture merges with the formerly unstable equilibrium C, which becomes stable. In the 
case of punishing, as ܫ crosses the threshold ିܫ , it is the unstable equilibrium C that becomes 



Page 5 of 13 

stable, spawning an unstable equilibrium R at a mixture of C- and D-players. R thus separates 
the regions of attraction of the equilibria C and D. With increasing ܫ, the region of attraction 
of D becomes smaller and smaller, until ܫ attains the value ܫା. Here, the unstable equilibrium 
R merges with the formerly stable equilibrium D, which becomes unstable. For larger values 
of ܫ, everyone cooperates. As shown in Section S2 in the SI, the values of ܫା	and ିܫ  are the 
same, irrespective of whether we consider rewarding or punishing. 
 
We next investigate the interplay of (a) institutional incentives and (b) optional participation. 
Clearly, if the public good game is too expensive [i.e., if ݃  ሺݎ െ 1ሻܿ   in the case of ,ܫ
rewarding or ݃  ሺݎ െ 1ሻܿ in the case of punishing], players will opt for non-participation. 
We do not further consider this trivial case.  
 
We first examine the case of punishing, for increasing per capita incentives ܫ. For ܫ ൏ ܫି , the 
effect of the incentive is negligible and all trajectories converge to N. As ܫ  crosses the 
threshold ିܫ , the equilibrium R appears on the CD-edge. At first, it is a saddle point. A 
trajectory leading from N to R separates the interior of ∆ into two regions (Fig. 2e). One 
region is filled with trajectories issuing from N and converging to C, and the other is filled 
with trajectories issuing from and returning to N. If we assume that arbitrarily small random 
perturbations can, from time to time, affect the population (corresponding to occasional 
individual explorations of an alternative strategy), we see that the population will eventually 
end up at the stable equilibrium C. If ܫ increases beyond a threshold ିܭ, an equilibrium Q 
enters ∆ at R through a saddle-node bifurcation. With increasing ܫ, the point Q moves along a 
straight line to N, while R keeps moving, along the CD-edge, to D (Fig. 2f). In the SI, we 
show that Q is the unique equilibrium in the interior of the state space ∆ (i.e., with all three 
strategies present) and that it is a saddle point. If ܫ  increases still further and crosses a 
threshold ܭା, the equilibrium Q exits ∆ through N. The point R becomes a source and remains 
so until it merges with D (for ܫ ൌ  ା) (Fig. 2g). Almost all trajectories in ∆ either convergeܫ
directly to C or to N. However, N is not stable. If the population is in the vicinity of N, 
arbitrarily small and rare random perturbations will eventually send it into the region of 
attraction of C. Hence, the population ultimately settles at the stable equilibrium C whenever 
ܫ  ܫି . This means that as soon as a homogeneous population of cooperators is immune 
against invasion by rare defectors, it becomes established in the long run. 

 
In the case of rewarding, for ܫ ൏ ܫି , the incentive has a negligible effect and all trajectories 
converge to N. As ܫ crosses the threshold ିܫ , the equilibrium R appears on the CD-edge. 
Again, it is a saddle, but a trajectory now leads away from R to N (Fig. 2b). It separates a 
region where all trajectories lead from D to N from a region filled with trajectories issuing 
from and returning to N. As ܫ increases and crosses a threshold ିܬ, a saddle-node bifurcation 
occurs at R, spawning an equilibrium Q into ∆ (Fig. 2c) Again, one can show that this interior 
equilibrium is unique, and is a saddle point (see the SI). If ܫ  crosses a threshold ܬା , the 
equilibrium Q exits ∆ through N. All trajectories in the interior of ∆ converge to R (Fig. 2d). 
As ܫ increases beyond ܫା, the stable equilibrium R merges with C and all trajectories converge 
to C, just as in the case of punishment (Fig. 2h). 
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For enhancing a group’s welfare, rewarding obviously works better than punishing (just as in 
the classical behaviourist analysis of reinforcements). However, the price of the rewarding has 
to be substantial. Punishing can achieve all-out cooperation (in the long run) for a much 
smaller price, namely, ିܫ  (which is the smaller the larger the group). From the viewpoint of 
institutionalizing a sanctioning mechanism, punishing thus has an advantage over rewarding: 
it achieves a higher average payoff at lower costs. 

So far, we have treated ݃ (the price an individual is willing to pay to participate in a joint 
enterprise) and ܫ  (the per capita size of the total incentive) as independent parameters.  
However, if individuals can freely decide whether or not to participate in the game, it makes 
sense to assume that they pay for the institution providing the incentives. For instance, ܫ could 
be some fraction of the entrance cost ݃, or (equivalently) the total entrance cost could be 
viewed as the sum ݃  ܫܽ  of a part ݃  kept by the authority and a part ܽܫ  used for the 
incentive, with ܽ  0 (it is natural to assume that this part is proportional to the per capita 
incentive ܫ). A rewarding system, if ܽ ൌ 1, simply redistributes the payoff without increasing 
group welfare, whereas a punishing system decreases it even if no one has to be punished. 
(We have to pay for the costly apparatus of law enforcement even if no one defaults.)  

In the case of rewarding, optional participation increases the group welfare only marginally to 
0 (Fig. 3b), for the small range ିܫ ൏ ܫ ൏  where compulsory participation leads to negative ,ିܬ
average payoffs. In that range, combining rewarding with optional participation even reduces 
the cooperator frequency to 0 (Fig. 3a). For punishing, the situation is very different. The 
group welfare is highest when	ܫ is just barely larger than the minimum ିܫ ൌ ܿ/݊ required to 
obtain full cooperation (Fig. 3d). The learning process, in that case, will take some time, and 
the population can undergo violent oscillations between the N-, C-, and D-states; however, in 
the end, the C-norm will prevail (Fig. 3c). 

In the SI, we test by extensive numerical investigations the robustness of our analytical results 
with respect to alternative model variants: 

i) If we assume that part of the contribution to the public good returns to the 
contributing player, the dynamics becomes more complex but the evolutionary 
outcome remains unchanged (Section S3 and Figs. S1 and S2 in the SI).  

ii) Requiring participants to pay a fee for the sanctioning system also has little effect 
on the predicted outcome, as long as this fee does not become unreasonably large 
(Fig. 3 and Section S5).  

iii) Moreover, when unused fees are returned, small negative per capita incentives 
suffice to maximize social welfare (Section S5).  

We can also model the sanctioning system in different ways. Results remain unchanged as 
long as reward, or punishment, decreases with the number of free-riders: 
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iv) This is the case, for instance, if only one defector is exemplarily punished, because 
the probability for being singled out decreases [in the old Navy, the slowest sailor 
was liable to get ‘prompted’ (i.e., beaten)] (Section S4).  

v) It also holds whenever the institution needs to spend some resource (e.g., time) to 
punish a convicted free-rider. Indeed, this diminishes the resources to hunt for 
other free-riders. Such a ‘handling time’ [to borrow an expression from predator-
prey models (22)] will reduce the average punishment expected per defector, 
which is proportional to ݉ܫ/ሺܽ  ܾ݉Dሻ, with ܽ, ܾ  0 (Section S4).  

vi) Also, the capping of individual penalties leaves our qualitative findings unchanged 
(Section S4).  

For these and related scenarios, optional participation leads to the establishment of full 
cooperation whenever the sanction is strong enough to deter free-riders from invading. 
Surprisingly, in all cases we have considered, the cost of the negative incentive required to 
establish a norm of full cooperation is a small fraction of the cost needed in the case of 
compulsory participation. 

Discussion 

In his famous Leviathan, published in 1651, Hobbes stressed the necessity of an authority to 
curb the selfish motivations of individuals. He attributed its existence to a social contract 
intended to promote the commonwealth. Here, we assume that such a Leviathan-like authority 
exists, and is able to provide sanctions in the form of penalties and rewards. Indeed, most of 
our joint enterprises are protected by an elaborate apparatus of regulations, controls, and 
contract-enforcement devices to provide the necessary coercion. The theory of the social 
contract is a major topic in political philosophy, and a rich field of applications for game 
theory (e.g., 13). 

The large majority of economic experiments and theoretical studies dealing with sanctions use 
peer-punishment, and thus make do without Leviathan, at least at first sight. Players can 
decide, independent of each other, whether to punish co-players or not. This setting is of 
particular interest for investigating how pro-social coercion evolved, out of a world of 
anarchy (e.g., 1). Studies of peer-punishment attempt to address such a scenario (23-32). It 
seems clear, however, that in all economic experiments, Leviathan looms in the background. 
Players can pick their decisions, but usually only in a very narrow, regularized framework of 
alternatives.  In modern human societies, anarchy is rare and players can almost always 
appeal to a higher authority. 

There are many intermediate stages between pure peer-punishment and institutionalized 
punishment. Several authors have considered scenarios in which punishment is meted out 
only if two, or a majority, of players opt for it, or have allowed players to vote between 
treatments with or without peer-punishment (33-35). Thus, sanctions were supported by some 
social consensus, which can be mediated by communication [‘cheap talk’ (36)]. In other 
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studies, players could contribute, before engaging in the public good game, to a punishment 
pool. This is like paying the wages of a police force before knowing whether, or against 
whom, it will be deployed (4, 37). Both theory and experiments have shown that delegating 
punishment is an efficient way to promote cooperation (38-40). Often, however, players of a 
public good game can engage in second-order free-riding by not paying toward the sanctions, 
which, in turn, raises the issue of second-order punishment. In our model, whoever wants to 
join the game has to pay an entrance fee. Second-order free-riding is no option, nor is asocial 
punishment targeted against cooperators (30). Leviathan sees to it. 

The interplay of punishing, on the one hand, and optional participation, on the other hand, has 
already been investigated in several papers (21, 41-43). However, these studies mainly 
examined the problem of second-order free-riding. In contrast to these papers, we consider 
institutional punishment enforced by a higher authority. To our knowledge, this is the first 
time that evolutionary game theory is applied to the implementation of an authority through 
social contract (by allowing individuals to voluntarily participate in a joint interaction). This 
establishes an interesting analogy with the suppression of competition occurring in several 
fields of evolutionary biology (e.g., ‘selfish genes’) (44). 

Voluntary submission under a sanctioning institution occurs in many real-life instances of 
cooperation. Practically all joint commercial and industrial enterprises are protected by 
enforceable contracts. Adherence is voluntary but commits the parties to mutually beneficial 
contributions. Punitive clauses ensure that non-compliance will be sanctioned. This principle 
also works, although at a less regulated level, in small-scale societies (1, 5, 38) and permits 
the sustainable use of common grazing or fishing grounds, or the construction and 
maintenance of irrigation systems. Medieval guilds delegated authority to chosen agents, and 
settlers hired sheriffs to deter villains. In day-to-day life, we may think of janitors, umpires, 
referees, or wardens who uphold rules in housing blocks, team games, private clubs, or public 
parks. All these examples rely on formal or informal agreements that can be freely joined but 
are then backed up by a higher authority. Thus, the situation we have addressed in our model 
is both fundamental and widespread.  
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Figure Legends 

Figure 1 | Effects of institutional rewarding and punishing on the compulsory public 
good game for different per capita incentives ࡵ . For rewarding and punishing, full 
cooperation requires large incentives, even though the transition from full defection to full 
cooperation differs for the two types of incentive (b and c). (a) If ܫ is smaller than ିܫ ൌ ܿ/݊, 
the incentives have no effect on the outcome of the public good game and defection prevails. 
(d) If ܫ is larger than ܫା ൌ ܿ, the incentives reverse the outcome and cooperation prevails. (b 
and c) For intermediate incentive ܫ, rewarding leads to the stable coexistence of cooperation 
and defection, whereas punishing leads to alternative stable states. C and D correspond to the 
two homogenous states in which the population consists exclusively of cooperators and 
defectors, respectively. With increasing incentive ܫ, the equilibrium R moves toward C in the 
case of rewarding and toward D in the case of punishing. 

Figure 2 | Effects of institutional rewarding and punishing on the optional public good 
game for different per capita incentives ࡵ. Combining punishing with optional participation 
enables full cooperation for a small fraction of the cost needed in the compulsory case. The 
triangles represent the state space ∆	ൌ ሼሺݔ, ,ݕ :ሻݖ ,ݔ ,ݕ ݖ  0, ݔ  ݕ  ݖ ൌ 1ሽ, where ݕ ,ݔ, and 
z are the frequencies of cooperators, defectors, and non-participants, respectively. The three 
vertices C, D, and N correspond to the three homogeneous states in which the population 
consists exclusively of cooperators (ݔ ൌ 1), defectors (ݕ ൌ 1), or non-participants (ݖ ൌ 1). 
(a) If ܫ is smaller than ିܫ ൌ ܿ/݊, the incentives have no effect on the outcome of the public 
good game. The interior of ∆ is filled with trajectories issuing from and converging to the 
vertex N of non-participation in the joint enterprise. In that state, arbitrarily small random 
perturbations lead to short bursts of cooperation, immediately subverted by defection and 
followed by a return to non-participation. (h) If ܫ is larger than ܫା ൌ ܿ, the incentives alter the 
outcome and cooperation prevails. All trajectories converge to C, the state of full cooperation. 
For the range of incentives in between a and h, the impacts of rewards and penalties differ. 
Rewarding: (b) For ିܫ ൏ ܫ ൏  the equilibrium R on the CD-edge is a saddle point. All ,ିܬ
trajectories in the interior of ∆ lead to N. (c) For ିܬ ൏ ܫ ൏ ାܬ , an interior saddle point Q 
moves, with increasing ܫ, along the dashed line from the CD-edge to N. Trajectories either 
converge to R, now a sink, or else to N. From there, an arbitrarily small random perturbation 
will send the state into the region of attraction of R. (d) For ܬା ൏ ܫ ൏ 	,ାܫ the interior 
equilibrium Q has exited through N, and all trajectories converge to R, implying stable 
coexistence of defectors and cooperators. Punishing: (e) For ିܫ ൏ ܫ ൏  the equilibrium R ,ିܭ
on the CD-edge is a saddle point. A trajectory from N to R separates a region where all 
trajectories lead to C from a region where all trajectories lead to N. An arbitrarily small 
random perturbation of N can lead to the region of attraction of C, and hence to the fixation of 
full cooperation. (f) For ିܭ ൏ ܫ ൏  ,ܫ ା, an interior saddle point Q moves, with increasingܭ
along the dashed line from the CD-edge to N. R is now a source. (g) For ܭା ൏ ܫ ൏  the	ା,ܫ
interior equilibrium Q has exited through N. In f and g, trajectories converge to C, either 
directly, or after a small random perturbation away from N. In summary, combining 
punishing with optional participation causes full cooperation from any initial condition for per 
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capita incentives exceeding ିܫ , whereas combining rewarding with optional participation 
achieves this only for per capita incentives exceeding ܫା. Parameters: ݊ ൌ ݎ ,5 ൌ 3, ܿ ൌ 1, 
݃ ൌ 0.5, and ܫ ൌ 0 (a); 0.25 (b and e); 0.35 (c); 0.55 (f); 0.7 (d and g); or (punishment) 1.2 
(h). 

Figure 3 | ‘User-pays’ variant. In this variant, players are obliged to pay an entrance fee ݃ 
 The panels show co-operator frequencies (a and c) and long-term average payoffs in the .ܫܽ
population (b and d), for rewarding (a and b) and punishing (c and d) and different per capita 
incentives ܫ, Parameters: ݊ ൌ ݎ ,5 ൌ 3, ܿ ൌ 1, ܽ ൌ 1, and ݃ ൌ 0.5. 
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We begin with the proofs of the results for our prototypical model. We first determine, in Section 
S1, the payoffs for optional public good games with rewarding and punishing and continue, in 
Section S2, with an analytical investigation of the resultant dynamics. We then numerically in-
vestigate variants, considering first, in Section S3, the ‘self-returning’ variant of public good 
games and then, in Section S4, variants of the incentive scheme. Finally, in Section S5, we con-
sider a ‘user-pays’ variant, in which players themselves have to finance the total incentive. 

S1 Payoffs 

We calculate the average payoff തܲ௦ for the population and the expected payoff values Cܲ
௦ and Dܲ

௦ 
for cooperators and defectors, where ݏ ൌ o, r, p is used to specify one of three sanctioning sys-
tems: ‘without incentives’, ‘with rewarding’, and ‘with punishing’. We denote by ݕ ,ݔ, and ݖ the 
respective frequencies of cooperators, C; defectors, D; and non-participants, N. Because non-
participants have a payoff of 0, the average payoff in the population is given by തܲ௦ ൌ ݔ Cܲ

௦  ݕ Dܲ
௦. 

Without incentives, a defector in a group with ݉ െ 1 co-players (݉ ൌ 2,… , ݊) obtains from 
the common good a payoff of ݔܿݎ/ሺ1 െ  ,ሻ on average (21). Henceݖ

Dܲ
o ൌ ቀܿݎ

ݔ
1 െ ݖ

െ ݃ቁ ሺ1 െ  (S1)																																																		ିଵሻ.ݖ

Clearly, ݖିଵ  is the probability of finding no co-player, and thus to be reduced to non-
participation. In addition, cooperators contribute ܿ with a probability 1 െ  ,ିଵ. Henceݖ

Dܲ
o െ Cܲ

o ൌ ܿሺ1 െ  (S2)																																																									ିଵሻ.ݖ

The average payoff in the population is then 

തܲ୭ ൌ ሺ1 െ ݎିଵሻሾሺݖ െ 1ሻܿݔ െ ሺ1 െ  (S3)																																											ሻ݃ሿ.ݖ

We now turn to the two cases with positive or negative incentives. The total incentive is as-
sumed to be proportional to the group size ݉, and hence of the form ݉ܫ. The coefficient, where 
ܫ  0, is the (potential) per capita incentive. When rewards are used as incentives for coopera-
tion, the total incentive is shared equally among cooperators. Hence, each cooperator obtains a 
reward ݉ܫ/݉େ, where ݉େ denotes the number of cooperators in the group of ݉ players. When 
penalties are used as incentives for cooperation, each defector analogously have his or her indi-
vidual payoff reduced by ݉ܫ ݉ୈ⁄ , where ݉ୈ denotes the number of defectors in the group of ݉ 
players (݉ ൌ ݉େ ݉ୈሻ. 
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First, we consider rewarding. Because defectors never receive rewards, we have ୈܲ
୰ ൌ ୈܲ

୭. In a 
group in which the ݉ െ 1 co-players include ݇ cooperators, switching from C to D implies los-
ing a reward ݉ܫ/ሺ݇  1ሻ. Hence, 

	 ୈܲ
୰ െ େܲ

୰ ൌ ሺ ୈܲ
୭ െ େܲ

୭ሻ

െ  ቀ݊ െ 1
݉ െ 1

ቁ ሺ1 െ ିݖሻିଵݖ  ቀ݉ െ 1
݇

ቁ ቀ
ݔ

1 െ ݖ
ቁ

ቀ

ݕ
1 െ ݖ

ቁ
ିଵି ܫ݉

݇  1

ିଵ

ୀ

൩



ୀଶ

	

																	ൌ ሺ ୈܲ
୭ െ େܲ

୭ሻ െ ܫ ቂሺ1 െ ିଵሻݖ 
ݕ
ݔ
ሺ1 െ ሺ1 െ ሻିଵሻቃݔ ,																																																				(S4) 

and thus, 

തܲ୰ ൌ തܲ୭  ሺ1ݔሾܫ െ ିଵሻݖ  ሺ1ݕ െ ሺ1 െ  (S5)																																	ሻିଵሻሿ.ݔ

Next, we consider punishing. It is now the cooperators who are unaffected, implying େܲ
୮ ൌ େܲ

୭. 

In a group in which the ݉െ 1 co-players include ݇ cooperators (and thus, ݉ െ 1 െ ݇ defectors), 
switching from C to D entails a penalty ݉ܫ/ሺ݉ െ ݇ሻ. Hence, 

ୈܲ
୮ െ େܲ

୮ ൌ ሺ ୈܲ
୭ െ େܲ

୭ሻ െ ܫ ሺ1 െ ିଵሻݖ 
ݔ
ݕ
ሺ1 െ ሺ1 െ ሻିଵሻ൨ݕ ,																				(S6) 

and thus, 

തܲ୮ ൌ തܲ୭ െ ሺ1ݕሾܫ െ ିଵሻݖ  ሺ1ݔ െ ሺ1 െ  (S7)																																	ሻିଵሻሿ.ݕ

S2 Analytical Investigation of Game Dynamics 

The replicator equations for the frequencies of three strategies are 

ሶݔ ൌ ሺݔ Cܲ
௦ െ തܲ௦ሻ,	

ሶݕ																																																																									 ൌ ሺݕ Dܲ
௦ െ തܲ௦ሻ,																																																																	(S8) 

ሶݖ ൌ ሺݖ Nܲ
௦ െ തܲ௦ሻ, 

where the dots denote time derivatives. The frequencies ݕ ,ݔ, and ݖ can vary within the state 
space ∆, given by the combination of all ሺݔ, ,ݕ ,ݔ ሻ withݖ ,ݕ ݖ  0 and ݔ  ݕ  ݖ ൌ 1. As a first 
step, it is easy to understand the dynamics on the three edges of ∆. On the CD-edge, on which 
ݖ ൌ 0, the dynamics correspond to compulsory participation; thus, the system of replicator equa-
tions reduces to ݔሶ ൌ െݔሺ1 െ ሻሺݔ Dܲ

௦ െ Cܲ
௦ሻ. With rewarding, the difference in average payoff 

between a defector and a cooperator is 

																																	 Dܲ
r െ Cܲ

r ൌ
1

1 െ ݕ
ሾܿሺ1 െ ሻݕ െ ሺ1ܫ െ ሻሿݕ ൌ ܿ െ ݕܫ

ିଵ

ୀ

,																											(S9)	

whereas, with punishing, the corresponding difference is 

																															 Dܲ
p െ Cܲ

p ൌ
1

1 െ ݔ
ሾܿሺ1 െ ሻݔ െ ሺ1ܫ െ ሻሿݔ ൌ ܿ െ ݔܫ

ିଵ

ୀ

.																								(S10) 
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Because ܫ  0 , the difference Dܲ
r െ Cܲ

r  strictly increases, and Dܲ
p െ Cܲ

p  strictly decreases, with 

ݔ ൌ 1 െ  The condition that there exists an interior equilibrium R on the CD-edge is .ݕ

ܫି ൏ ܫ ൏ ܫି		 with			+ܫ ൌ ܿ/݊			and 		ܫ+ ൌ ܿ	.																																						(S11) 

The dynamics on the two other edges are unidirectional: On the NC-edge, the dynamics always 
lead from N to C, and on the DN-edge, they always lead from D to N. 

Having understood the dynamics on the three edges, we now consider the interior of ∆. We 
start by proving that if an interior equilibrium Q exists for the system of replicator equations (Eq. 
S8), it is unique. For this purpose, we introduce the coordinate system ሺ݂, ݖሻ in ∆\ሼݖ ൌ 1ሽ, with 
݂ ൌ ݔሺ/ݔ  ሻ. Using Nܲݕ

௦ ൌ 0, we can write the system of replicator equations (Eq. S8) as 

݂ሶ ൌ െ݂ሺ1 െ ݂ሻሺ Dܲ
௦ െ Cܲ

௦ሻ, 
ሶݖ ൌ െݖ തܲ௦.																																																																																	(S12) 

At an interior equilibrium Q ൌ ሺ መ݂,  ሻ, the three strategies must have equal payoffs, which meansݖ̂

that they must all equal 0 in our model. The conditions େܲ
୮ ൌ 0 and ୈܲ

୰ ൌ 0 imply that መ݂ is inde-

pendent of ̂ݖ, and is given by 

																									 መ݂ ൌ
ܿ  ݃
ܿݎ

ൌ መ݂
p			for punishing and		 መ݂ ൌ

݃
ܿݎ

ൌ መ݂
r			for rewarding.																			(S13) 

Thus, an interior equilibrium Q, if it exists, must be located on the line given by 

																																																																								
ݔ
ݕ
ൌ

መ݂

1 െ መ݂ 	.																																																																	(S14) 

We next show that ̂ݖ  is uniquely determined. We first consider punishing. The equation 

ୈܲ
p െ େܲ

p ൌ 0 has, at most, one solution with respect to ݖ. Indeed, using Eq. S6, this equation can 

be rewritten as 

ܿሺ1 െ ିଵሻݖ െ ܫ ሺ1 െ ିଵሻݖ 
ݔ
ݕ
ሺ1 െ ሺ1 െ ሻିଵሻ൨ݕ ൌ 0 

													⇔ ሺܿ െ ሻሺ1ܫ െ ିଵሻݖ െ ܫ 
݂

1 െ ݂
ሺ1 െ ሺ݂  ሺ1 െ ݂ሻݖሻିଵሻ൨ ൌ 0	 

																																			⇔	
ሺܿ െ ሻሺ1ܫ െ ݂ሻ

݂ܫ
ൌ
1 െ ሾ݂  ሺ1 െ ݂ሻݖሿିଵ

1 െ ିଵݖ
.																																														(S15) 

We denote the right-hand side of the last line by ܩሺ݂, ,ሺ݂ܩ ሻ and note thatݖ 0ሻ ൌ 1 െ ݂ିଵ and 
,ሺ݂ܩ 1ሻ ൌ lim

௭→ଵ
,ሺ݂ܩ ሻݖ 	ൌ 1 െ ݂. It is sufficient to show that ܩሺ݂,  ሻ is strictly monotonic withݖ

respect to ݖ ∈ ሺ0,1ሻ. A straightforward computation yields 

߲
ݖ߲
,ሺ݂ܩ ሻݖ ൌ

ሺ݊ െ 1ሻ
ሺ1 െ ିଵሻଶݖ

ሾݖିଶ െ ሺ݂  ሺ1 െ ݂ሻݖሻିଶሺሺ1 െ ݂ሻ  																																		ିଶሻሿݖ݂
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																	ൌ
ሺ݊ െ 1ሻݖିଶ

ሺ1 െ ିଵሻଶݖ
1 െ ቆ

݂  ሺ1 െ ݂ሻݖ
ݖ

ቇ
ିଶ

൫ሺ1 െ ݂ሻ  																																					ିଶ൯൩ݖ݂

																		ൌ
ሺ݊ െ 1ሻݖିଶ

ሺ1 െ ିଵሻଶݖ
1 െ ቈቆ

݂  ሺ1 െ ݂ሻݖ
ݖ

ቇ ൫ሺ1 െ ݂ሻ  ൯ݖ݂
ିଶ ሺ1 െ ݂ሻ  ିଶݖ݂

൫ሺ1 െ ݂ሻ  ൯ݖ݂
ିଶ൩.			 

(S16) 

We note that 

ቆ
݂  ሺ1 െ ݂ሻݖ

ݖ
ቇ ൫ሺ1 െ ݂ሻ  ൯ݖ݂ ൌ 1  ݂ሺ1 െ ݂ሻ ൬ݖ െ 2 

1
ݖ
൰ ൌ 1  ݂ሺ1 െ ݂ሻ

ሺ1 െ ሻଶݖ

ݖ
 1, 

(S17) 

and 
ሺ1 െ ݂ሻ  ିଶݖ݂

ሺሺ1 െ ݂ሻ  ሻିଶݖ݂
 1.																																																						(S18) 

This inequality obviously holds for ݊ ൌ 2, and, by induction, for every larger ݊: If it holds for 
݊,	it must hold for ݊  1, because 

ሺ1 െ ݂ሻ  ାଵݖ݂

ሺሺ1 െ ݂ሻ  ሻାଵݖ݂
െ

ሺ1 െ ݂ሻ  ݖ݂

ሺሺ1 െ ݂ሻ  ሻݖ݂
ൌ

1
ሺሺ1 െ ݂ሻ  ሻାଵݖ݂

																																																													 

																																																																			ൈ ሾሺ1 െ ݂ሻ  ାଵݖ݂ െ ሺሺ1 െ ݂ሻ  ሻሺሺ1ݖ݂ െ ݂ሻ   ሻሿݖ݂

																																																												ൌ
1

൫ሺ1 െ ݂ሻ  ൯ݖ݂
ାଵ ݂ሺ1 െ ݂ሻሺ1 െ ሻሺ1ݖ െ  ሻݖ

																																																																										  0.																																																																																				(S19) 

Consequently, 

1 െ ቈቆ
݂  ሺ1 െ ݂ሻݖ

ݖ
ቇ ൫ሺ1 െ ݂ሻ  ൯ݖ݂

ିଶ ሺ1 െ ݂ሻ  ିଶݖ݂

൫ሺ1 െ ݂ሻ  ൯ݖ݂
ିଶ ൏ 0.															(S20) 

Thus, ߲ݖ߲/ܩሺ݂, ሻݖ ൏ 0 for every ݖ ∈ ሺ0,1ሻ, which implies strict monotonicity of ܩ in z. 
We now consider rewarding. In this case, using Eq. S4, we can rewrite ୈܲ

r െ େܲ
r ൌ 0 as 

																																						ܿሺ1 െ ିଵሻݖ െ ܫ ቂሺ1 െ ିଵሻݖ 
ݕ
ݔ
ሺ1 െ ሺ1 െ ሻିଵሻቃݔ ൌ 0 

																																						⇔ ሺܿ െ ሻሺ1ܫ െ ିଵሻݖ െ ܫ ቈ
݂̅

1 െ ݂̅
ቀ1 െ ൫݂̅  ൫1 െ ݂൯̅ݖ൯

ିଵ
ቁ ൌ 0 

																																						⇔	
ሺܿ െ ሻሺ1ܫ െ ݂ሻ̅

݂̅ܫ
ൌ
1 െ ൣ݂̅  ൫1 െ ݂൯̅ݖ൧

ିଵ

1 െ ିଵݖ
,																																											(S21) 

where ݂̅ ൌ ݔሺ/ݕ  ሻݕ ൌ 1 െ ݂. Using the same argument as above, we see that ୈܲ
r െ େܲ

r ൌ 0 has, 
at most, one solution with respect to ݖ. This concludes our proof of the uniqueness of Q. 



Page 5 of 11 

We next prove that the interior equilibrium Q is a saddle point. For this purpose, we investi-
gate the local dynamics around Q. We first consider punishing. Dividing the right-hand side of 
Eq. S12 by ݂ሺ1 െ -ିଵሻ, which is positive in the interior of ∆, corresponds to a change of velociݖ
ty and does not affect the shape of trajectories in ∆. This yields 

																																							݂ሶ ൌ ݂ ൬ܿ െ ܫ െ
ܿ െ ܫ
݂

 ,ሺ݂ܩܫ ሻ൰ݖ , 

ሶݖ																																							 ൌ ሺ1ݖ െ ሻݖ ൭െሺݎ െ 1ሻܿ െ ܫ 
݃  ܫ
݂

 ,ሺ݂ܩܫ ሻ൱ݖ .																														(S22) 

Because the large parentheses above vanish at Q, the Jacobian at Q is given by 

୕ܬ																									 ൌ

ۉ

ۈ
ۇ

݂ ൬
ܿ െ ܫ
݂ଶ

 ܫ
,ሺ݂ܩ߲ ሻݖ
߲݂

൰ ܫ݂
,ሺ݂ܩ߲ ሻݖ
ݖ߲

ሺ1ݖ െ ሻݖ ൬െ
݃  ܫ
݂ଶ

 ܫ
,ሺ݂ܩ߲ ሻݖ
߲݂

൰ ሺ1ݖ െ ܫሻݖ
,ሺ݂ܩ߲ ሻݖ
ݖ߲ ی

ۋ
ۊ
ተ
ተ

୕

.																		(S23) 

Using ߲ݖ߲/ܩሺ݂, ሻݖ ൏ 	0, this yields 

																																															det ୕ܬ ൌ ሺܿ  ݃ሻܫ
ሺ1ݖ െ ሻݖ

݂
,ሺ݂ܩ߲ ሻݖ
ݖ߲

൏ 0.																																											(S24) 

Hence, ୕ܬ  has eigenvalues that are real and of opposite sign. Therefore, the unique interior equi-

librium Q is a saddle point, and is thus unstable. 
We now consider rewarding. An appropriate change of velocity results from dividing the 

right-hand side of Eq. S12 by ሺ1 െ ݂ሻሺ1 െ  ିଵሻ, which yieldsݖ

																											݂ሶ ൌ ሺ1 െ ݂ሻ ൬ܿ െ ܫ െ
ܿ െ ܫ
1 െ ݂

 ሺ1ܩܫ െ ݂, ሻ൰ݖ , 

ሶݖ																											 ൌ ሺ1ݖ െ ሻݖ ൭ሺݎ െ 1ሻܿ  ܫ െ
ሺݎ െ 1ሻܿ െ ݃  ܫ

1 െ ݂
െ ሺ1ܩܫ െ ݂, ሻ൱ݖ .																(S25) 

Because the large parentheses above vanish at Q, the Jacobian at Q is given by 

ܬ୕ ൌ

ۉ

ۈ
ۇ

ሺ1 െ ݂ሻ ൬െ
ܿ െ ܫ

ሺ1 െ ݂ሻଶ
 ܫ

ሺ1ܩ߲ െ ݂, ሻݖ
߲݂

൰ ሺ1 െ ݂ሻܫ
ሺ1ܩ߲ െ ݂, ሻݖ

ݖ߲

െݖሺ1 െ ሻݖ ቆ
ሺݎ െ 1ሻܿ െ ݃  ܫ

ሺ1 െ ݂ሻଶ
 ܫ

ሺ1ܩ߲ െ ݂, ሻݖ
߲݂

ቇ െݖሺ1 െ ܫሻݖ
ሺ1ܩ߲ െ ݂, ሻݖ

ݖ߲ ی

ۋ
ۊ
ተ
ተ

୕

.		(S26) 

From our assumption that ሺݎ െ 1ሻܿ  ݃, it follows that 

																																																	det ୕ܬ ൌ ሺܿݎ െ ݃ሻܫ
ሺ1ݖ െ ሻݖ
1 െ ݂

ሺ1ܩ߲ െ ݂, ሻݖ
ݖ߲

൏ 0.																															(S27) 

Therefore, the unique interior equilibrium Q is again a saddle point. 
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We turn now to the investigation of the boundary equilibrium R and the interior equilibrium Q. 
We first consider punishing. On the CD-edge (ݖ ൌ 0), we obtain from Eq. S7 

																																														 തܲ୮ ൌ ݔ൫ܿݎ െ መ݂
p൯  ܿሺ1 െ ሻݔ െ ሺ1ܫ െ  (S28)																																										ሻ.ݔ

As the per capita incentive ܫ increases, the equilibrium R enters the edge at C (ݔ ൌ 1) and then 
moves to D (ݔ ൌ 0). It is a repellor on the CD-edge. From Eq. S10, we see that R ൌ ሺୖݔ, ,ୖݕ 0ሻ, 
with ୖݕ ൌ 1 െ given by the (unique) solution of ܿሺ1 ୖݔ െ ሻୖݔ െ ሺ1ܫ െ ୖݔ

ሻ ൌ 0. Hence, the av-
erage payoff at R is 

																																																																							 തܲ୮ ൌ ୖݔ൫ܿݎ െ መ݂
p൯.																																																													(S29) 

Because ݖሶ ൌ െݖ തܲ୮ , R is stable against invasion by non-participants (and R is thus a saddle 

point), if መ݂ ൏ ୖݔ ൏ 1. If, conversely, 0 ൏ ୖݔ ൏ መ݂, R can be invaded (and R is thus a source). 
We now consider rewarding. On the CD-edge, Eq. S5 yields 

																																																 തܲ୰ ൌ ݔ൫ܿݎ െ መ݂
r൯ െ ܿሺ1 െ ሻݕ  ሺ1ܫ െ  (S30)																																									ሻ.ݕ

As ܫ increases, the equilibrium R enters the CD-edge through D (ݔ ൌ 0) and then moves to C 
ݔ) ൌ 1). It is an attractor on the CD-edge. Using Eq. S9, we see that ܿሺ1 െ ሻୖݕ െ ሺ1ܫ െ ୖݕ

ሻ ൌ 0 
holds at R. A similar argument as before then implies that the average payoff at R is 

																																																																							 തܲ୰ ൌ ୖݔ൫ܿݎ െ መ݂
r൯.																																																															(S31) 

R can be invaded by non-participants (and R is thus a saddle point), if 0 ൏ ୖݔ ൏ መ݂. If, conversely, 
መ݂ ൏ ୖݔ ൏ 1, the equilibrium R is protected against invasion (and R is thus a sink). 

The interior equilibrium Q ൌ ሺݔො, ,ොݕ  crosses ܫ ሻ splits off from R when the per capita incentiveݖ̂

the threshold value corresponding to ୖݔ ൌ መ݂. Indeed, the right-hand side of Eqs. S15 and S21 is 
decreasing with respect to ݖ. Moreover, the left-hand side of these equations is decreasing with 
respect to ܫ (for ܫ ൏ ܿ). This implies that ̂ݖ, the unique solution of Eqs. S15 and S21, increases 
with ܫ. 

For punishing, Eq. S15 implies that ܩ൫ መ݂, 0൯ ൌ 1 െ መ݂
p
ିଵ

. Thus, 

ܫ ൌ
ܿ

1  መ݂
p ⋯ መ݂

p
ିଵ ൌ:ିܭ,																																																 (S32) 

which is larger than ିܫ ൌ ܿ/݊. Similarly, ܩ൫ መ݂, 1൯ ൌ 1 െ መ݂
p, and thus 

ܫ ൌ
ܿ

1  መ݂
p
ൌ:ܭା,																																																														(S33) 

which is smaller than ܫା ൌ ܿ. Analogously, for rewarding, Eq. S21 implies that ܩ൫1 െ መ݂, 0൯ ൌ

1 െ ሺ1 െ መ݂
rሻିଵ, and thus 

ܫ ൌ
ܿ

1  ൫1 െ መ݂
r൯  ⋯ ൫1 െ መ݂

r൯
ିଵ ൌ:  (S34)																																					,ିܬ
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which is larger than ିܫ ൌ ܿ/݊. For ̂ݖ ൌ 1, we obtain ܩ൫1 െ መ݂, 1൯ ൌ 1 െ ሺ1 െ መ݂
rሻ ൌ መ݂

r, and thus 

ܫ ൌ
ܿ

1  ሺ1 െ መ݂
rሻ
ൌ

ܿ

2 െ መ݂
r
ൌ:  (S35)																																															ା,ܬ

which is smaller than ܫା ൌ ܿ. 
We now summarize the results obtained so far, in terms of the thresholds given by Eqs. S11 

and S32-S35. As ܫ increases, first, the boundary equilibrium R enters the CD-edge at one end, 
for ൌ ܫ and then moves toward the other end. Next, for ,ିܫ ൌ ିܭ   the equilibrium Q enters ,ିܫ

the state space ∆ through R, at ( መ݂, 1 െ መ݂, 0ሻ. It then moves towards N along the line given by 

ሺ1 െ መ݂ሻݔ ൌ መ݂ݕ. Eventually, for ܫ ൌ ାܭ ൏  the equilibrium Q collides with N. For still larger	ା,ܫ
values of ܫ, ∆ contains no interior equilibrium. Finally, R attains the other end of the CD-edge for 
ܫ ൌ  .ାܫ

We note that the dynamics around the non-hyperbolic equilibrium N can be fully analyzed by 
the blowing-up technique, using ݔ ൌ ݂ሺ1 െ ݕ ሻ andݖ ൌ ሺ1 െ ݂ሻሺ1 െ  ሻ. This will be the subjectݖ
of a separate analysis. 

S3 Self-Returning Variant of Public Good Games 

We next turn to a variant of public good games, called self-returning, in which the contribution 
of a player is multiplied by a factor ݎ  1 and then divided among all players (including the con-
tributor, who therefore receives a fraction ݎ/݉ in return). The social dilemma vanishes, in this 
case, if ݎ  ݉. For the case without incentives, we can use known results (18, 19). A defector in 
a group with ݉െ 1  co-players (݉ ൌ 2,⋯ , ݊ ) obtains from the common good a payoff of 
ሺ1/ݔܿݎ െ ሻሺ1ݖ െ ݉ିଵሻ on average. Hence, 

ୈܲ
୭ ൌ െሺ1 െ ିଵሻ݃ݖ  ܿݎ

ݔ
1 െ ݖ

൬1 െ
1 െ ݖ

݊ሺ1 െ ሻݖ
൰ .																																	(S36) 

Switching from C to D yields a difference in payoff of	ܿሺ1 െ ݎ ݉ሻ⁄  in a group with ݉െ 1 co-
players. This leads to 

							 ୈܲ
୭ െ େܲ

୭ ൌ ܿ  ሺݎ െ 1ሻܿݖିଵ െ
ܿݎ
݊
1 െ ݖ

1 െ 		ݖ
.																																							(S37) 

The average payoff in the population is then 

തܲo ൌ ሺ1 െ ݎିଵሻሾሺݖ െ 1ሻܿݔ െ ሺ1 െ  (S38)																																								ሻ݃ሿ,ݖ

matching Eq. S3 for our main model (the ‘others-only’ variant). Also, the payoffs originating 
from the incentive mechanism are the same in both model variants. 

Without incentives, the three strategies form a rock-scissors-paper cycle, as shown in Fig. S1a. 
For 2 ൏ ݎ ൏ ݊, the three strategies undergo periodic oscillations around an equilibrium, a center 
we denote by P. If 1 ൏ ݎ  2 , just as in the others-only variant, all orbits issue from, and then 
again converge to, the state ݖ ൌ 1 of non-participation. In that case, cooperation can only emerge 
in brief bursts. In each case, the time average of all payoffs is 0. 
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It is our analytic result that with increasing ܫ, an equilibrium R appears on the CD-edge, issu-
ing from one end and moving to the other, just as in the ‘others-only’ case. The only difference is 
that the threshold values are now given by ିܫ ൌ ܿሺ1 െ 	ାܫ ሻ/݊ and݊/ݎ ൌ ܿሺ1 െ  ሻ, instead of݊/ݎ
by ିܫ ൌ ܿ/݊ and ܫା ൌ ܿ. 

According to numerical simulations, rewarding stabilizes the center P (Fig. S1b) as long as 
2 ൏ ݎ ൏ ݊. For small ܫ, P is a global attractor. The fraction of cooperators at Q is higher with 
than without rewarding, but the average payoff at Q remains equal to 0 in both cases. As ܫ in-
creases and exceeds ିܫ , the equilibrium R appears on the CD-edge. It is stable within that edge. 
However, as long as ܫ is not too large, R can be invaded by non-participants, such that P remains 
the global attractor (Fig. S1c). When ܫ reaches a critical value, P collides with R. For larger ܫ, R 
becomes the global attractor (Fig. S1d). As ܫ increases beyond ܫା, the stable equilibrium R merg-
es with C and all trajectories converge to C, just as in the case of punishment (Fig. S1h). 

In contrast, punishing destabilizes the center P (Fig. S1e). For small ܫ, all trajectories in the 
interior of the state space converge to the cycle on the boundary, staying in the vicinity of N for 
most of the time. As ܫ increases and exceeds ିܫ, the equilibrium R appears on the CD-edge. It is 
a source, and C becomes a global attractor (Fig. S1f). This still holds after P has collided with R 
(Fig. S1g). For ܫ  ܫି , the time average of the frequency of cooperation, as well as the time av-
erage of the mean payoff in the population, remain 0. However, for ܫ  ܫି , these two averages 
increase to 1 and ሺݎ െ 1ሻܿ െ ݃, respectively. 

For 1 ൏ ݎ  2, there is no equilibrium in the interior of the state space, as long as ܫ is small. 
If ܫ increases beyond a certain threshold, the equilibrium P enters the state space through N. It is 
an attractor in the case of rewarding and a repellor in the case of punishing. The further devel-
opment, for increasing ܫ, closely resembles that in the analysis above for 2 ൏ ݎ ൏ ݊. 

So far, we have described Fig. S1. For a narrow range of parameter values, numerical investi-
gations show that an additional twist can occur as a subplot of the self-returning variant (both 
with rewarding and with punishing) through the appearance of a second equilibrium Q in the 
interior of the state space, in addition to P (Fig. S2). As ܫ increases, Q enters the state space 
through R (which thus turns into a sink with rewarding and into a source with punishing). As ܫ 
increases further, P and Q approach each other and, when they collide, disappear in a saddle-
node bifurcation. With punishing, the vertex C representing full cooperation remains a global 
attractor; thus, the long-term outcome is not affected. With rewarding, R resumes its role as a 
global attractor after the two interior equilibria have annihilated each other. 

S4 Variants in the Incentive Scheme 

We can investigate some variants in the incentive scheme. The underlying public good game, 
again, is the others-only variant, as in the main text. 

First, we relax our assumption that the per capita penalty decreases proportionally with the 
number of defectors. For example, in many real-life situations, the size of the penalty is constant, 
and thus does not depend on how many players misbehave. Another special case is that of ‘ex-
emplary punishment’: One defector has to pay the maximal penalty ݉ܫ, whereas the other ݉D െ
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1 defectors have to pay no penalty. In this case, the expected penalty is still ݉ܫ/݉D, just as ana-
lyzed in the main text and Sections S1 and S2. More generally, however, it makes sense to as-
sume that if the sanctioning institution spends some resources on executing the punishment of a 
defector (e.g., by consuming time to process a ticket), it has less resources available for penaliz-
ing other defectors. In general, law-enforcers, on meeting defrauders, need some time to deal 
with them before resuming their chase for other abusers. This means that the chance for getting 
caught, and hence the expected penalty, is reduced if there are many defectors. 

Borrowing the notion of ‘handling time’ used to study predatory behavior (22), we are led to 
model the size of the expected penalty as proportional to ݉ܫ/ሺܽ  ܾ݉D), with two positive con-
stants ܽ and ܾ. Depending on the ratio ܽ/ܾ, we can obtain a continuum of cases that include as 
limits a constant expected penalty (ܾ ൌ 0) and an expected penalty that is inversely proportional 
to the number of free-riders ݉D (ܽ ൌ 0). For simplicity, we assume that ܾ ൌ ݄ and ܽ ൌ 1 െ ݄ 
with 0  ݄  1. If the handling time ݄ decreases, the model smoothly transforms, from the in-
versely proportional case (݄ ൌ 1) considered so far to the case of a constant punishment (݄ ൌ 0). 
Investigating this generalization numerically, we find that the general outcome of our model re-
mains unchanged, whereas the size of the interval ሺିܫ,  ାሻ in which compulsory participationܫ
causes alternative stable states decreases with ݄. It is only in the limiting case ݄ ൌ 0 that this 
interval vanishes. Indeed, for ݄ ൌ 0, cooperation gets established if and only if ܫ  ܿ/݊, no mat-
ter whether participation is optional or compulsory. 

These conclusions also apply to rewarding. This means that our main result, that full coopera-
tion is achieved at a much lower cost through negative incentives, is robust. 

As a further robustness check, we can assume that there is a ceiling, ݑ  0, for the magnitude 
of the penalty or reward imposed on any one individual player. This results in a piecewise func-
tion for the per capita incentive. Once more, numerical investigations confirm that our results are 
qualitatively unaffected by this variation. 

S5 User-Pays Variant 

As a further variant, we can assume that in addition to the participation fee ݃, participants are 
obliged to pay a fee ܽܫ with ܽ  0 for the institution providing the incentives. We call this the 
user-pays variant: Players are obliged to come up with the total incentive. The expected payoff 
for a participant is thus reduced by ܽܫሺ1 െ ିଵሻ, with 1ݖ െ  ିଵ being the probability that theݖ
public good game takes place. This leads to the following changes: With rewarding, the expected 
payoffs equal Dܲ

r ൌ Dܲ
o െ ሺ1ܫܽ െ  ିଵሻ, andݖ

തܲ୰ ൌ തܲ୭  ሺ1ݔሾܫ െ ିଵሻݖ  ሺ1ݕ െ ሺ1 െ ሻିଵሻሿݔ െ ሺ1ܫܽ െ ሻሺ1ݖ െ  (S39)																ିଵሻ,ݖ

whereas with punishing, they equal େܲ
୮ ൌ େܲ

୭ െ ሺ1ܫܽ െ  ିଵሻ, andݖ

തܲ୮ ൌ തܲ୭ െ ሺ1ݕሾܫ െ ିଵሻݖ  ሺ1ݔ െ ሺ1 െ ሻିଵሻሿݕ െ ሺ1ܫܽ െ ሻሺ1ݖ െ  (S40)																ିଵሻ.ݖ

The payoff difference between cooperators and defectors, Dܲ
௦ െ Cܲ

௦, obviously remains unaffected, 
as does the evolutionary dynamics on the CD-edge. Numerical results show the following. 
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With rewarding, optional participation increases the group welfare only marginally to 0, for 
such a small range of ܫ that ିܫ ൏ ܫ ൏ ܬି  (Fig. 3b), in which compulsory participation causes the 
negative average payoffs. In the range, combining rewarding with optional participation even 
reduces the cooperator frequency to 0 (Fig. 3a). With punishing, the situation is very different. 
The group welfare is highest when ܫ just barely exceeds the minimum ିܫ ൌ ܿ/݊ required to ob-
tain full cooperation (Fig. 3d). In this case, the learning process identifying the most efficient per 
capita incentive ܫ will take some time; however, in the end, the cooperative norm will prevail 
(Fig. 3c). 

As a further robustness check, we can examine a refund scheme for this user-pays sanctioning 
system. We consider an institution that punishes defectors; however, when there are none, that 
institution returns the fee ܽܫ to all participants. In this case, there are no ‘lost deposits’. Clearly, 
this refinement renders the punitive protection of cooperators from free-riders less expensive. In 
particular, the value of the threshold ିܫ becomes smaller; thus, full cooperation is ensured with 
smaller per capita incentives ܫ. Moreover, this refinement also avoids the reduction otherwise 
occurring in social welfare when the per capita incentive ܫ is unnecessarily large, being not accu-
rately matched to the optimal value ିܫ (Fig. 3d). In other words, this refinement guarantees max-
imal social welfare for any ܫ   .also in the user-pays variant ିܫ
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Figure legends 

Figure S1 | Effects of institutional rewarding and punishing on the ‘self-returning’ optional 
public good game for different per capita incentives ࡵ, when  ൏ ࢘ ൏ -Without incen (a) .
tives, the interior equilibrium P is a center surrounded by closed trajectories. (b-d) With reward-
ing, the interior equilibrium P is stable. In b and c, it is a global attractor. In c, the CD-edge con-
tains a saddle point R which can be invaded by non-participants. In d, P has reached the bounda-
ry and merged with R, turning it into a global attractor. (e-g) With punishing, P is unstable. In f 
and g, C is a global attractor. In e, trajectories stay in the vicinity of N for most of the time. In f, 
the CD-edge contains a saddle point R. In g, P has reached the boundary and merged with R, 
turning it into a source. (h) For very large incentives, full cooperation prevails. For very small or 
no incentives (a, b, and e), the average payoff equals 0 independent of the incentive used. Pa-
rameters: ݊ ൌ ݎ ,5 ൌ 3, ܿ ൌ 1, ݃ ൌ 0.5, and ܫ ൌ 0 (a); 0.07 (b and e); 0.1 (c and f); 0.3 (d and 
g); or (punishing) 0.5 (h). 

Figure S2 | Multiple interior equilibria. For a narrow range of parameter values, optional ‘self-
returning’ public good games with incentives can exhibit two interior equilibria. (a) With re-
warding, these equilibria are an attractor P and a saddle point Q. The boundary equilibrium R is a 
sink. The dynamics have alternative outcomes: Trajectories converge either to P or to R, depend-
ing on initial conditions. (b) With punishing, the two interior equilibria are a source P and a sad-
dle point Q. C is an attractor, and the boundary equilibrium R is a source. Parameters: ݊ ൌ 5, 
ܿ ൌ ݎ ,1 ൌ ܫ ,1.5 ൌ 0.2, and ݃ ൌ 0.2 (a) or 0.3 (b). 
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