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Abstract 17 

The evolution of natural organisms is ultimately driven by the invasion and possible 18 

fixation of mutant alleles. The invasion process is highly stochastic, however, and the 19 

probability of success is generally low, even for advantageous alleles. Additionally, all 20 

organisms live in a stochastic environment, which may have a large influence on what 21 

alleles are favourable, but also contributes to the uncertainty of the invasion process. We 22 

calculate the invasion probability of a beneficial mutant allele in a monomorphic, large 23 

population subject to stochastic environmental fluctuations, taking into account density 24 

and frequency dependent selection, stochastic population dynamics and temporal 25 

autocorrelation of the environment. We treat both discrete and continuous time 26 

population dynamics, and allow for overlapping generations in the continuous time case. 27 

The results can be generalized to diploid, sexually reproducing organisms embedded in 28 

communities of interacting species. We further use these results to derive an extended 29 

canonical equation of adaptive dynamics, predicting the rate of evolutionary change of a 30 

heritable trait on long evolutionary time scales. 31 

Introduction 32 

Although the ecological importance and basic principles of adaptation to a variable 33 

environment have been long known, the corresponding genetic processes are not yet 34 

sufficiently understood. Ultimately, evolution is dependent on the fate of mutant alleles, 35 

and during the first generations after the appearance of a new variety its success is to a 36 
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large extent dependent on chance events and the probability of extinction is high. A large 37 

body of theory (nicely reviewed by Patwa & Wahl (2008)) treats the probability that an 38 

advantageous mutant survives the first crucial generations and becomes sufficiently 39 

abundant so that the risk of stochastic extinction can be ignored. This has in the literature 40 

been called the probability of  ‘survival’, ‘establishment’, ‘fixation’ or ‘invasion’, 41 

depending on the context. We will here use the term ‘invasion’. In many cases invasion 42 

implies fixation, but not necessarily so if fitness is frequency dependent, such that a 43 

polymorphism is possible. 44 

Starting with the simpler case of a constant environment, Haldane (1927) famously stated 45 

that the invasion probability of a mutant allele equals 2s, where s is the relative fitness 46 

advantage of the invading allele (Haldane assumed a constant, large population size, 47 

Poisson distribution of offspring and a small s). Later, Ewens (1969) and Eshel (1981) 48 

(see also Athreya (1992)) generalized Haldane’s result to arbitrary offspring distributions. 49 

They found the invasion probability to be approximately equal to 2s/σ2, where σ2 is the 50 

variance in the number of offspring from a single individual, i.e. a measure of the 51 

strength of genetic drift (or demographic stochasticity). For example the Poisson 52 

distribution has a variance equal to its mean, which by assumption is equal to 1+s here. 53 

Thus, Ewens’ and Eshel’s approximation agrees with Haldane’s result since s is assumed 54 

to be small. 55 

Taking variable survival and/or reproduction rate into account is inherently difficult in 56 

the general case. The case of a variable fitness advantage s but constant population size N 57 
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has been studied several times (e.g. Kimura 1954, Jensen 1973, Karlin & Levikson 1974, 58 

Takahata et al. 1975). Alternatively, a branching process approach can be used, which 59 

usually requires the assumption of an infinite resident population size. Smith & 60 

Wilkinson (1969) showed by this approach that an invading mutant will go extinct with 61 

certainty if E(ln(mt))<0, where mt is the time-dependent average number of offspring per 62 

individual and E(⋅) denotes the long term, stationary, mean (Dempster 1955 fore-63 

shadowed this result, see also Gillespie 1973). It is assumed that each mt is chosen 64 

independently from a fixed distribution – a so-called white noise environment. Later, 65 

Athreya & Karlin (1971) generalized this result to autocorrelated environments, and 66 

Karlin & Lieberman (1974) to diploid populations. Together, these results underline the 67 

importance of mean log growth rate for adaptations to variable environments, a 68 

fundamental result in bet-hedging theory (e.g. Cohen 1966, Seger & Brockman 1987). In 69 

a recent paper, Peischl & Kirkpatrick (2012) used novel analytical techniques to calculate 70 

the probability of invasion, given small fluctuations of s. They show that the invasion 71 

probability is proportional to a weighted time-average of s, with more weight on points in 72 

time with low mutant abundance. 73 

If the invading mutant has a fixed fitness advantage relative to the resident type, then the 74 

mutant growth rate will vary over time just like that of the resident population. This 75 

assumption has been used in a number of studies. Ewens (1967) showed that the 76 

probability of establishment in a cyclic population equals 2s nH
n(0)

 (again assuming a 77 
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Poisson distribution of offspring and a small s), where nH is the harmonic mean 78 

population size and n(0) is the resident population size at the time when the mutant first 79 

appears. This shows that the invasion of a mutant type is less likely if the amplitude of 80 

the population cycle is large (assuming a fixed arithmetic mean), since the harmonic 81 

mean is sensitive to variation, as opposed to the arithmetic mean. It can also be shown 82 

that invasion is more likely in a growing population than in a declining population 83 

(Ewens 1967, Kimura & Ohta 1974, Otto & Whitlock 1997). The results by Ewens 84 

(1967) and Otto & Whitlock (1997) for cyclic populations were later generalised to 85 

arbitrary offspring distributions by Pollak (2000), who among other things confirmed that 86 

the probability of invasion in a cyclic population is proportional to the harmonic mean 87 

population size divided by the population size at mutant introduction. 88 

The more general case of both a variable strength of selection and a variable resident 89 

population size has been treated recently by Waxman (2011), Uecker & Hermisson 90 

(2011). In both studies, quite general, but rather implicit, expressions for the invasion 91 

probability are derived. Uecker & Hermisson further analyze simplifying cases such as a 92 

deterministically growing population or a periodic (sinusoidal) environment. 93 

Lastly, we would like to highlight a rarely cited result by Hill (1972) who, somewhat 94 

offhandedly, derived the expression 95 

P =
1− e−2nesq

1− e−2nes
, (1) 96 
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where P is the probability of mutant invasion, ne = nH is again the harmonic mean 97 

population size, s  is the arithmetic mean selective advantage and q is the initial 98 

proportion of the mutant type. We will return to this result, and its assumptions, in later 99 

sections. 100 

We here generalize several of the aforementioned results to the case of arbitrary ergodic 101 

population dynamics, subject to ergodic environmental fluctuations. We calculate the 102 

invasion probability of a mutant of small phenotypic effect in a large resident population. 103 

Mutant fitness, and in particular its selective advantage s, depends on the resident 104 

population size as well as the environmental fluctuations and may in some circumstances 105 

be negative as long as the long term mean ( s ) is positive. Solutions are given for both 106 

discrete time and continuous time dynamics. The continuous time case allows for 107 

overlapping generations and is a particularly suitable model for unicellular organisms that 108 

reproduce through fission, such as bacteria or protozoa.  109 

Model description, basic assumptions 110 

We consider the invasion of a mutant type in a monomorphic resident population of 111 

asexually reproducing individuals, under the assumptions that i) all individuals are 112 

equivalent, i.e. there is no age-, stage- or spatial structure, ii) the resident population size 113 

is large enough that the growth of an invading mutant is independent of its own density, 114 

at least until the mutant abundance is large enough that the risk of stochastic extinction is 115 

negligible, and iii) the mutation is of small effect, such that the mutant type is 116 
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ecologically close to the resident type, i.e. it has in all possible environmental 117 

circumstances a per capita growth rate close to that of the resident.  118 

Concepts and notation 119 

Since we will move back and forth between the established conceptual frameworks of 120 

stochastic population dynamics, population genetics and long term evolution, a couple of 121 

concepts may have different meanings to readers with different background. 122 

Firstly, the environment of an invading mutant type consists of two basic components – 123 

the external environment and the feedback environment. We think of the external 124 

environment as a stochastic, ergodic process, which affects the survival and reproductive 125 

success of all individuals of the same type in the same way, such as stochastic weather 126 

fluctuations or a variable resource abundance. Ergodic means that irrespective of initial 127 

conditions, the environment will in the long term visit its full stationary distribution. The 128 

external environment is in itself not affected by the state of the focal population, in 129 

contrast to the feedback environment, which by definition depends on the current state of 130 

the focal population and possible interacting populations (Metz et al 1992, Mylius & 131 

Diekmann 1995, Heino et al. 1998). In the simplest of cases the feedback environment is 132 

population size and the external environment is a single parameter, such as temperature. 133 

Our analysis is staged in this simplified scenario but it is straightforward to generalize to 134 

the multidimensional case (see below).  135 
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Secondly, fitness can be understood either as long term fitness, i.e. the long term average 136 

per capita growth rate of any given clone, or as the instantaneous per capita growth rate at 137 

any given moment. We use the qualifications mean fitness and instantaneous fitness to 138 

denote the two concepts, respectively (more precise definitions follow).  139 

Finally, we use E[z(t)], V[z(t)] and C[z(t),w(t)] to denote the mean, variance and 140 

covariance, respectively, of the stochastic process(es) z(t) (and w(t)). If nothing else is 141 

specified, the stationary mean, variance and covariance, respectively, are intended. For 142 

brevity, we will sometimes use  to denote the mean. 143 

Continuous time model 144 

We start with the continuous time case – assuming individuals reproduce and die 145 

according to a time-inhomogeneous birth and death process. More formally, we assume 146 

that a resident type individual has a birth rate, b(n(t), ε(t)), and death rate d(n(t), ε(t)), 147 

where n(t) is the resident population size and ε(t) is an environmental process. It is 148 

assumed that ε(t) is an ergodic, stochastic process continuous in time. The instantaneous 149 

fitness, i.e. the per capita growth rate, f, is given by the difference between birth and 150 

death rate, 151 

))(),(())(),(())(),(( ttndttnbttnf εεε −= . (2) 152 

z
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We denote the total dynamic environment determining the instantaneous fitness E(t). In 153 

the formalism here, E(t) = {n(t), ε(t)} and the growth, birth and death rates can be written 154 

f (E(t)) = b(E(t))− d(E(t))  (3) 155 

We assume that E(t) is ergodic, which should be a realistic assumption for many 156 

scenarios, albeit excluding long-term environmental trends or a steadily growing or 157 

declining population. Note that autocorrelation of the environmental process ε(t) is 158 

allowed, as long as it declines to zero at large time lags. More precisely, the total 159 

environment E(t) should explore its full stationary distribution much faster than the time 160 

scale of a mutant invasion (1/ s , see below). It should also be noted that technically 161 

speaking the population process is not ergodic since n = 0 is an absorbing state. However, 162 

in the large population limit considered here, this is of minor importance. 163 

Given the growth function above, it is straightforward to express the resulting dynamics 164 

of the resident population. Since we assume population size n to be large enough that 165 

demographic stochasticity can be ignored, the resident population dynamics are given by 166 

)())((
d
d tntEf

t
n
=

. (4) 167 
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We assume a single mutant individual appears in the population at t = 0. The mutant 168 

birth, death and per capita growth rates are denoted ))((~ tEb , ))((~ tEd  and ))((~ tEf  169 

respectively. The instantaneous mutant fitness advantage is written 170 

))(())((~))(( tEftEftEs −= . (5) 171 

Note that E(t) is still the environment given by the population dynamics of the resident 172 

population (and the external environment). A mutant type may have a fixed fitness 173 

advantage (s), but can also differ in its density dependence, its sensitivity to fluctuations 174 

of the external environment, or all of the above. s(E(t)) can in the general case change 175 

sign depending on the state of the environment E(t), but we assume its long-term 176 

(stationary) mean, s , is positive. In other words, the mutant type may be at a 177 

disadvantage for shorter periods of time, as long as it is advantageous on average. 178 

Discrete time model 179 

For the discrete time case we assume non-overlapping generations. Each individual 180 

(independently) gives birth to a geometrically distributed number of offspring, with the 181 

mean number of offspring determined by the individual’s instantaneous fitness. The 182 

probability of k offspring is  183 

ppk k)1()Pr( −= , (6) 184 
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where p = 1/(1+λ) and λ is the mean number of offspring. The variance in offspring 185 

number is λ(λ + 1), which can be compared to the commonly used Poisson distribution, 186 

which has a variance equal to its mean, λ. A mechanistic motivation for the geometric 187 

distribution arises if an individual makes repeated reproduction attempts, each with the 188 

same probability of success, but stops at the first failure. From a more pragmatic point of 189 

view, however, there is clearly no natural population where individual reproductive 190 

success exactly follows a geometric or Poisson distribution. The geometric distribution is 191 

used here for mathematical convenience, in lack of a more general theory for all, or at 192 

least a family of distributions. 193 

In discrete time we define the instantaneous fitness function f as the natural logarithm of 194 

the per-capita growth rate (λ), such that the mean number of surviving offspring of an 195 

individual of the resident type is given by e f (n(t ),ε (t )) = e f (E (t )) , where ε(t) here is a discrete 196 

time process, but with otherwise the same properties as in the continuous time case 197 

above. The dynamics of a large population of resident type individuals is thus 198 

n(t +1) = e f (E (t ))n(t) . (7) 199 

Mutant invasion 200 

We here derive the main result – the probability of invasion of a mutant type, starting as a 201 

single individual at time t = 0. Invasion does not necessarily imply fixation. If 202 

coexistence of the mutant and resident types is possible, we assume the equilibrium 203 
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mutant abundance is large, such that the invasion process can safely be analyzed under 204 

the assumption that mutant abundance has no effect on mutant fitness. More precisely, we 205 

assume there is a population size ni of the mutant type at which invasion can be 206 

considered certain but that at the same time ni << n, where n is the equilibrium resident 207 

population size. If the probability that a mutant population starting with a single 208 

individual invades is equal to P, then the probability that a population of ni mutants goes 209 

extinct is approximately given by Pnn ii eP −≈− )1(  as long as P is small. A requirement is 210 

thus that Pnie−  is close to zero, i.e. that niP is large (niP > 5 gives an error less than 1%). 211 

If, as we will show, P is the size of s  we can express the necessary requirement that 212 

1>>sn  for our analysis to hold. 213 

Continuous time 214 

As a starting point, we use a result by Kendall (1948), which states 215 

PE =
1

1+ IE
, (8a) 216 

where PE is the ultimate survival probability of a time-dependent birth-and-death process 217 

and 218 

∫
∞ −∫=
0

))((~
0))((~ dtetEdI
t

dEf

E

ττ

. (8b) 219 
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A heuristic interpretation of equation (8b) is a weighted total death rate, with most weight 220 

on periods, usually at low t-values, with low numbers of mutants (the exponential factor 221 

can be interpreted as 1/(expected mutant population size at time t)). As mentioned in the 222 

introduction, a similar weighting was found by Peischl and Kirkpatrick (2012). 223 

The environment E(t) is in the general case stochastic and unpredictable. The necessary 224 

interpretation of PE (eq. 8a) is thus the conditioned survival probability (Waxman 2011), 225 

conditioned on the future environment E(t), t ≥ 0, which is the reason for the subscript E.  226 

The unconditioned probability of invasion is given by the mean PE, and we here calculate 227 

the mean probability P0, 228 

P0 =E[PE | E(0)] , (9) 229 

averaged across all possible future developments of environmental states, but still 230 

conditioned on initial conditions E(0). In particular, we seek the linear dependence of P0 231 

on the mean fitness advantage s  as s  becomes small, i.e. we seek the limit 232 

lim
s→0

P0
s
= lim

s→0
E PE

s
| E(0)

⎡

⎣⎢
⎤

⎦⎥
= lim

s→0
E 1

s + s IE
| E(0)

⎡

⎣
⎢

⎤

⎦
⎥
. (10) 233 

In Appendix A we show that  234 
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lim
s→0

sIE = n(0)E
d(E(t))

n(t)

⎡

⎣
⎢

⎤

⎦
⎥
 (11) 235 

for almost all possible future environments E(t), t ≥ 0 (the exceptions have probability 236 

zero). n(0) is the resident population size at the time of mutant arrival, but all other 237 

dependencies on initial conditions average out. Inserting equation (11) into equation (10) 238 

gives (see Appendix A for details) 239 

)/()0(
1

)(
))(()0(

1lim 0

0 ndn
tn
tEdn

s
P

s
=

⎥
⎦

⎤
⎢
⎣

⎡
=

→

E , (12)
 240 

and we can finally express the approximate invasion probability as 241 

P0 ≈
s

n(0)(d / n)
= 2

s

b

ne
n(0)

, (13a) 242 

where we define the effective population size ne as  243 

ne =
d

2(d / n)
=

b

2(b / n)
=

(b+ d)
2(b+ d) / n

. (13b) 244 
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The identities db =  and (d / n) = (b / n) = 1
2 (b+ d) / n  follow from the ergodicity 245 

assumption of n(t). More precisely, they follow from the assumptions that ln(n(t)) and 246 

1/n(t) have a long term mean growth rate of zero.  247 

The definition of effective population size (eq. 13b) is somewhat arbitrary. Otto & 248 

Whitlock (1997) suggest defining ne such that P0 = 2sne / n(0)  (the “fixation effective 249 

population size”), which in our case implies setting )/2/(1 nbne = . However, our 250 

proposed definition of effective population size (eq. 13b) has the appealing properties that 251 

i) it is unitless – it does not depend on the chosen time unit, ii) it simplifies to ne = n/2 in 252 

cases when n is constant, iii) it can be interpreted as half the weighted harmonic mean 253 

population size, weighted by the total per capita event rate (b + d), and is thus congruent 254 

with the discrete time case below. A possible disadvantage with our definition is that the 255 

average fitness advantage, s , must be standardized with the mean birth rate, b . On the 256 

other hand, the unitless ratio bs /  (Eq. 13a) can be interpreted as a standardized selection 257 

coefficient, measured on the time scale of the average generation time (in the 258 

deterministic case, with a constant population size, generation time equals 1/d = 1/b). 259 

Irrespective of the preferred definition of effective population size, equation (13a) is 260 

directly comparable to several previous results in discrete time (e.g. Ewens 1967, Otto & 261 

Whitlock 1997, Pollack 2000). 262 

The approximation in equation (13a) is valid for small s, i.e. not only is s  small, but also 263 

its fluctuations. The mutant type can thus not be inherently different from the resident 264 
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type – its instantaneous fitness must for all environmental states be close to that of the 265 

resident. The only realistic interpretation is a mutation of small phenotypic effect. We 266 

further investigate the applicability of this result in the Model Examples section below 267 

and in Appendix C (online supplement). 268 

The discrete time case 269 

Using the assumption of geometrically distributed offspring, the ultimate survival 270 

probability of a mutant strategy appearing at t = 0 can be expressed exactly as (Haccou et 271 

al. 2005, Box 5.5):  272 

PE =
1

1+ IE  (14a) 273 

where  274 

∑
∞

=

−∑= =

0

))((~
0

t

Ef
E

t

eI τ
τ

. (14b) 275 

The striking similarity between equations (14a,b) and the continuous time version 276 

equations (8a,b) makes it possible to carry out almost exactly the same derivation as 277 

above, only exchanging integrals with sums and setting the death rates d and d~  to 1. Due 278 

to the great similarity of the calculations we refrain from presenting the discrete time 279 

derivation here, and instead present the major results: 280 
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P0 ≈ 2s
ne
n(0)

, (15a) 281 

where 282 

ne =
nH
2

, (15b) 283 

and, just like above, P0 is the probability of invasion conditioned on initial conditions 284 

E(0), n(0) is the resident population size at the time of mutant appearance, and nH is the 285 

harmonic mean population size. The requirement that the mutant phenotype is close to 286 

the resident is the same as above. This result agrees well with that of Ewens (1967), 287 

which gives the probability of fixation as 2s nH
n(0)

 in a population with cyclic dynamics. 288 

Our result is generalized to a variable, density dependent fitness advantage and arbitrary 289 

ergodic population dynamics. The difference by a factor two is due to different 290 

assumptions on the distribution of surviving offspring – the geometric distribution (used 291 

here), as opposed to the Poisson distribution (as used by Ewens).  292 

The diffusion approximation 293 

The diffusion approximation is very often utilized in population genetics and it can be 294 

used, with care, for the problem of mutant invasion in stochastic environments. 295 

Classically, the proportion p of the invading type is the dynamic state variable and under 296 
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the assumption that p changes slowly (between generations) it is sufficient to calculate 297 

the mean and variance of the change Δp (Kimura 1962). In a stochastic setting, it is 298 

further necessary to assume that p changes slowly enough that the full stationary 299 

distribution of environmental states is experienced during a time-step Δt. Still, Δt has to 300 

be small enough that Δp is small. In other words, it is required that the invasion process is 301 

much slower than the stochastic environmental dynamics. Nonetheless, Hill (1972) 302 

derived the following expressions under the assumptions of discrete generations and 303 

Poisson distributed offspring: 304 

)/1()1()( 2nppsp A Ο+−=ΔE  (16a) 305 

)/1()(/)1()( 22 nsnppp Ae Ο+Ο+−=ΔV , (16b) 306 

where ne is the harmonic mean population size and sA  is the arithmetic mean selective 307 

advantage ( )()1( 2sses s
A Ο+=−= E  in our notation). Inserting equations (16a,b) into 308 

the standard equations of Kimura (1962) yields 309 

)1/()1( 2)0(/2
0

AeAe snnsn eeP −− −−= , (17) 310 
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expressing the invasion probability of a mutant appearing as a single individual at time 0 311 

(p0 = 1/n(0)). Hill’s result has as a first order approximation (assuming nesA is large and 312 

discarding terms of order 2
As  and higher) 313 

)0(
20 n

n
sP e

A≈ , (18) 314 

which coincides with our result (eq. 15a), apart from the difference in effective 315 

population size.  316 

It is possible to derive equations similar to equations (16a,b) also for our models in 317 

discrete and continuous time (not shown). The resulting expressions, similar to equations 318 

(17) and (18), match our results above using the branching process approach (equations 319 

(13a,b) and (15a,b)). In short, it is possible to acquire much the same results using the 320 

diffusion approximation. This is not too surprising, since the necessary assumptions 321 

(large population size, slow invasion) are much the same. However, the conditions under 322 

which the diffusion approximation is valid, especially the averaging across the stationary 323 

distribution of environmental states in equations (16a,b), is somewhat unclear to us. For 324 

example, Hill’s (1972) derivation misses the fact that in discrete time, fitness should be 325 

averaged on a logarithmic scale. We leave it to future studies to more thoroughly evaluate 326 

the conditions under which the diffusion approximation is appropriate. Here, we conclude 327 

that it is correct at least to the first order of s. 328 
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Model examples and tests of accuracy 329 

Continuous time 330 

As a continuous time example of our main finding – the probability of mutant invasion – 331 

we choose a theta-logistic model with a birth rate, b, subject to environmental variation 332 

and a density dependent death rate, d, according to 333 

)())(( 0 trdtb εε ++=  (19a) 334 

and 335 

θ

⎟
⎠

⎞
⎜
⎝

⎛+=
K
tnrdtnd )())(( 0

 (19b) 336 

such that the instantaneous fitness becomes 337 

)()(1))(())(())(),(( t
K
tnrtndtbttnf εεε

θ

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛−=−= . (19c) 338 

n(t) is the total population size, K is the carrying capacity, corresponding to the 339 

deterministic equilibrium population size, r is the per capita growth rate at low densities 340 

and θ (together with r) controls the shape and strength of density dependence. ε(t) is a 341 
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Gaussian process (more precisely an Ornstein-Uhlenbeck process (Stirzaker 2005)) with 342 

zero mean and an autocovariance function 343 

CTett /2)](),([ τ
εστεε −=−C , (20) 344 

where 2
εσ  is the stationary variance of the environmental fluctuations and the (auto-) 345 

correlation time TC dictates the environmental autocorrelation (the limit 0→CT  346 

corresponds to white noise, with no autocorrelation). 347 

As a first example, we choose a resident population with strong density dependence (θ = 348 

2) and study the invasion of a mutant with weaker density dependence (θ = 1.98), but the 349 

same equilibrium population size. In the deterministic case (σε
2 = 0 ), the invasion fitness 350 

in this model depends only on the equilibrium population size of the resident, K, 351 

compared to that of the invading mutant, and it is a standard result that evolution will 352 

maximize K (Charlesworth 1971). However, in a variable environment selection will 353 

deviate from the deterministic prediction. The environmental fluctuations have no direct 354 

effect on mean fitness but the resulting fluctuations in population size in combination 355 

with a non-linear density dependence creates selection for weaker density dependence in 356 

this case. This is illustrated in Figure 1, where the density dependent fitness of the 357 

resident (f, solid, grey line) and the invading mutant ( f~ , dash-dotted line, mostly 358 

overlapping with f) are depicted together with the stationary distribution of resident 359 



22 

 

population size (shaded histogram in background). The fitness difference ( ffs −=
~ , the 360 

thick dashed line is 100s) is negative for population sizes below K but positive above K. 361 

Mean population size is equal to K, but the strong curvature of s generates a positive 362 

average fitness advantage for the mutant ( 0022.0=s ).  363 

We tested the predicted probability of invasion by, first, generating a set of initial 364 

conditions from the stochastic dynamics of the resident population and, next, starting 105 365 

separate invasion attempts from each initial condition, all initiated from a single mutant 366 

individual (simulation details are given in Appendix B (online supplement)). Figure 2 367 

shows the resulting estimated invasion probabilities plotted against initial population size 368 

n(0) (points with 95% confidence intervals). For the set of parameter values chosen here 369 

(see legend), the results follow our prediction (eq. 13a) very well (dashed line, s  and ne 370 

are calculated from simulations of the population dynamics).  371 

We further investigate the robustness of our prediction in Appendix C (online 372 

supplement). To summarize, we find good agreement between our result and more exact 373 

numerical calculations (using eqs. 8a,b) as long as ns  is large and s  is small. For this 374 

particular model, with these particular parameter values, our approximation has an 375 

average error less than 5% in the region 007.0/50 << sK . At the lower limit, 376 

demographic stochasticity of the resident dynamics is too strong and, more importantly, 377 

the branching process approach is no longer valid since the resident population cannot be 378 

considered infinite from an invasion perspective. Above the higher limit ( 007.0>s ), the 379 

variation in PE between alternative future environments is too large for our result to hold. 380 
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In principle, the relationship P0 ~ 1/n0 fails. It should here be noted that a diffusion 381 

approximation approach (sensu eq. 17) likewise fails at this limit – the difference 382 

between the two predictions is much smaller than the error. We also tested the sensitivity 383 

to strong environmental variation and autocorrelation, and found environmental 384 

autocorrelation to be more critical than variation per se, except close to the boundary 385 

where the risk of extinction of the resident population becomes substantial and the 386 

population undergoes frequent severe bottlenecks. See Appendix C for further details.  387 

A technical note: In the derivation of equations (13a,b) we show that for each possible 388 

future environment, the probability of invasion converges to the limit as the mean fitness 389 

advantage s  goes to zero. Numerical investigations (Appendix C, Figs. C1 and C4) show 390 

that, at least for this model, the mean probability, averaged across all possible future 391 

environments, converges much faster than the invasion probabilities corresponding to 392 

single environmental realizations. This means that the value of s  may not be as restricted 393 

to really small values as one might conclude from our derivation, and leaves room for 394 

future theoretical investigations on this topic.  395 

Discrete time 396 

The discrete time example is based on the classical logistic equation, with a fitness (log 397 

per capita growth rate) of the resident population given by  398 

)())/)(1(1ln())(( tKtnrtnf ε+−+=  (21) 399 
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We introduce minute amounts of environmental variation here (V[ε(t)] = 10-6), merely to 400 

avoid completely deterministic dynamics (and loss of ergodicity for some initial 401 

conditions) as we let population size (K) grow large.  402 

Given stable population dynamics (r < 2) and no environmental fluctuations (V[ε(t)] = 403 

0), selection is neutral on the r parameter. If environmental variation is introduced 404 

through stochastic variation of K this model generates selection for decreasing r-values, 405 

basically because a low-r type has weaker density dependence (Turelli & Petry 1980). 406 

The mechanism is very similar to that described in the previous, continuous time example 407 

(Fig. 1). Here we will instead consider the case of unstable dynamics, choosing a high r-408 

value, which gives strong, overcompensating density dependence and chaotic dynamics 409 

(in the deterministic case) (May 1974). Selection is still for lower values of r. To 410 

illustrate several features of our results, we also introduce a trade-off between density 411 

dependence r and carrying capacity K, such that a high-r type is compensated with a 412 

higher K. More precisely, we study the two alternative types 1 and 2: {r1 = 2.8, K1 = 106} 413 

vs. {r2 = 2.85, K2 = 1.0023·106}. Setting type 1 as the resident, type 2 has a fitness 414 

advantage ( s  = 0.0023) and can invade (Fig. 3a). On the other hand, if type 2 is 415 

dominating, type 1 has an advantage ( s  = 0.0034, Fig. 3b). The frequency dependence 416 

comes from the shift in population dynamics as one type or the other dominates the 417 

population. Type 2 has the higher r-value, which generates more variable population 418 

sizes (compare the distributions of the resident populations in Figs. 3a and 3b). The 419 

strong density fluctuations give type 1 an advantage since it has the lower r-value. 420 
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However, once type 1 becomes more common, the population dynamics stabilize 421 

somewhat, such that the advantage is lost. The two types will thus both increase from low 422 

abundances and can coexist in the population. Figure 3c shows a successful invasion of 423 

type 2 (black dots) when type 1 (grey dots) is resident, and the subsequent coexistence.  424 

Figures 3a and 3b show a good correspondence between the approximation in equations 425 

(15a,b) and simulation results. In Appendix C we investigate the sensitivity of our 426 

approximation to changes in the resident population size and the strength of selection ( s427 

). We find that the average error is within 5% in the region 40 /K < s < 0.02 . The upper 428 

limit here is about seven times higher than in the continuous time case, presumably at 429 

least partly due to the fast mixing of the wildly fluctuating dynamics – even rapidly 430 

invading mutants will during the invasion be exposed to a large, representative, portion of 431 

the stationary distribution of the resident type.  432 

This example illustrates three things. First of all, that our results are valid for all types of 433 

ergodic dynamics of the resident type (chaos in this case). Secondly, that they are 434 

applicable to situations when invasion does not imply fixation. Thirdly, that population 435 

dynamics may induce frequency dependence. In a constant environment with stable 436 

population dynamics, the feedback environment in the present model is one-dimensional 437 

– it is characterized by a single parameter, the equilibrium population size. If population 438 

sizes fluctuate, on the other hand, the environment in which a new mutant finds itself can 439 

no longer be described so easily – the full distribution of population sizes is necessary to 440 

determine its probability of invasion. 441 



26 

 

A few technical notes: This example is not as superficially constructed as it might appear 442 

at first sight. If an r-K trade-off is modelled as r = r0 + x and K = K0(1+cx) (c > 0), one 443 

quite easily finds parameter values for which there exists an evolutionary branching point 444 

of the trait x (not shown). In other words, gradual evolution of x will converge to a 445 

parameter region in which co-existence of closely positioned types is possible (cf. Geritz 446 

et al. 1998). In conclusion, such parameter values are not totally unlikely – they will be 447 

provided by natural selection, given a suitable trade-off. Yet, the model as such is 448 

admittedly superficial and should not be taken too seriously. We choose it here for its 449 

simplicity and the possibility to demonstrate several features of our results with a single 450 

model. Also note that the resident dynamics are strictly speaking not chaotic – the state 451 

space is finite (there can only be a discrete number of individuals) and the dynamics are 452 

stochastic. However, the stochastic dynamics are very similar to the truly chaotic 453 

dynamics of a deterministic, continuous version of the same model.  454 

Generalizations 455 

Multispecies and multitype evolution 456 

The ergodic environment E can easily be generalized to a community context, or the case 457 

of several coexisting types in a population (or both). As long as the mutant represents a 458 

small phenotypic change of one of the interacting species or one of the coexisting types, 459 

the mean fitness advantage s  is well defined and our results are readily applicable. Note 460 
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that in the multitype case resident population size n has to be replaced with the number of 461 

individuals of the type from which the mutant descends. 462 

Diploid, sexual organisms 463 

It is likewise straightforward to consider the case of a diploid, randomly mating 464 

population. A new, invading mutant will initially only occur as a heterozygote and its 465 

growth is then equivalent to the asexual case. In continuous time a ‘birth event’ has to be 466 

interpreted as the event of coupling with a random individual and producing a single 467 

offspring. Each birth event produces a new heterozygote with probability 1/2, which 468 

means the birth rate b which goes into the equations is the rate of birth events each 469 

heterozygote is involved in divided by two. The assumption of random mating is crucial 470 

here since we cannot allow different mating success for males and females.  471 

In the discrete time case the reproductive success of each allele copy needs to follow a 472 

geometric distribution for our analysis to hold. This is for example the case if all 473 

individuals are mated and the number of offspring from each pair of mates has a 474 

geometric distribution (a binomial sampling, due to Mendelian segregation, of a 475 

geometrically distributed number yields a new geometric distribution). 476 

In both the discrete and continuous time case it is the mean heterozygote fitness 477 

advantage that enters the equations as s . Completely recessive alleles, which only have 478 

an advantage as a homozygote, are thus not allowed. Further, it is not straightforward to 479 

generalize to the diploid, multitype case, since the multiple genotypes in which a mutant 480 
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allele may then occur creates an extra source of ‘demographic stochasticity’ not taken 481 

into account here. 482 

Adaptive Dynamics 483 

Given the probability of mutant invasion one can derive expressions for the rate at which 484 

new varieties will invade a population and the consequential rate of trait evolution. If new 485 

types appear as mutants of the resident type with a fixed mutation rate μ per individual, 486 

the rate of mutant appearance at any point in time is equal to the number of births times 487 

μ, which yields the average rate of successful invasions 488 

E[μbn(0)P0 ] ≈ 2μnes  (22a) 489 

and 490 

snPn eμμ 2])0([ 0 ≈E  (22b) 491 

in the continuous (eq. 22a) and discrete (eq. 22b) time case, respectively. Note, however, 492 

that μ has to be low enough such that only one mutant is invading at any one time. An 493 

immediate conclusion from equations (22a,b) is that evolution is generally slower in 494 

populations with highly variable population sizes, given the same arithmetic mean 495 

population size. This finding is certainly not new, but is here extended to more general 496 

conditions. 497 
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It is also possible to derive a generalized canonical equation of adaptive dynamics 498 

(Dieckmann & Law 1996), predicting the rate of evolutionary change over long 499 

evolutionary time. Considering the evolution of a continuous, heritable trait x we assume 500 

the instantaneous fitness of any individual in the population is given by f(xi, E(t)), where 501 

xi is the trait-value of the individual and E(t) is the ergodic environment set by a resident 502 

type with trait value x. We can then write  503 

)()())(,())(,~()( 2xxtgtExftExfts ΔΟ+Δ=−=  504 

where x~  is the trait value of a mutant type,  505 

xxi
i

x
ftg

=
∂
∂

=)(  (23) 506 

is the instantaneous selection gradient and xxx −=Δ ~  is the phenotypic difference in x 507 

between the mutant and the resident type. Accordingly, we get 508 

s = gΔx , (24) 509 

as long as Δx is small, which can be substituted into the expressions for P0 above. 510 

Following much the same procedure as in Dieckmann & Law (1996) gives 511 
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dx

dt
= μσ μ

2neg  (25) 512 

for both the continuous and discrete time case. μ is the mutation rate per individual and 513 

2
μσ  is the variance in mutational effects (on x). μ, 2

μσ  and ne may all depend on the 514 

resident trait value x. The effective population size, ne, is in the continuous time case 515 

given by equation (13b). In discrete time, ne is equal to half the harmonic mean 516 

population size if the assumption of geometrically distributed number of offspring is used 517 

(eq. 15b). A Poisson distributed number of offspring instead yields an effective 518 

population size equal to the harmonic mean population size, using the diffusion 519 

approximation by Hill (eq. 18).  520 

Equation (25) seemingly differs by a factor 1/2 from the original expression derived by 521 

Dieckmann & Law for the continuous time case. However, this difference is due to our 522 

definition of effective population size, which converges to n/2 in the deterministic, 523 

continuous time, case. The expression given here has the advantage that it is the same for 524 

discrete and continuous time and that the effective population size in discrete time agrees 525 

with earlier definitions. 526 

Equation (25) gives the expected long-term evolutionary change of a continuous trait x, 527 

given mutations are of small phenotypic effect and rare, such that consecutive invasions 528 
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are separated in time. It constitutes a generalized canonical equation of adaptive 529 

dynamics, applicable to arbitrary ergodic environments and population dynamics. 530 

Discussion 531 

We have here calculated the invasion probability of an advantageous mutant type under 532 

quite general conditions. We assume a large, unstructured, monomorphic population and 533 

a mutant of small effect, but put no restrictions on the type of population dynamics or the 534 

variability of the stochastic environment, other than the assumption of ergodicity. 535 

Environmental autocorrelation or slow population dynamics are allowed, as long as s  is 536 

small enough that the invasion process is much slower than the population dynamics and 537 

environmental fluctuations. The mutant fitness advantage may depend on population 538 

density as well as environmental conditions. We have outlined how our results can be 539 

generalized to multitype, multispecies scenarios, as well as diploid, sexually reproducing 540 

organisms. We further use the derived invasion probability to calculate the rate of 541 

invasions of new types and to extend the canonical equation of adaptive dynamics, which 542 

shows how our results relate to the rate of adaptation in stochastic environments.  543 

The branching process approach used here requires that the average fitness advantage s  544 

is small and that sn  is large. For theoretical purposes this may not be such a large 545 

problem, but it certainly restricts the number of natural or experimental populations to 546 

which our results can be readily applied. Single invasion experiments in the lab 547 

commonly involve selection coefficients larger than a per cent or two, and experimental 548 
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populations (except bacteria or protozoans) are commonly too small in numbers. In the 549 

lab or in the field, our predictions can nonetheless serve as benchmark values, in the lack 550 

of a more complete theory. We made some attempts to extend the theory using a 551 

diffusion approximation, but found the results largely conflicted with the same problems 552 

as our first derivation, especially when s  is not small. There is still the possibility that 553 

the diffusion approximation does a better job in situations when sn  is small to 554 

intermediate – our numerical investigations were not suitable for that type of evaluation – 555 

but a more thorough investigation of the accuracy of the diffusion approximation for this 556 

problem is out of scope here. Moreover, the basis for the application of the diffusion 557 

approximation in this context is in our minds still somewhat shaky and needs further 558 

analysis.  559 

Uecker & Hermisson (2011) used an analytical approach very similar to ours (In fact, 560 

their equation (16b) is equivalent to our equation (A4)). However, instead of considering 561 

the stochastic case and taking the limit 0→s , Uecker & Hermisson studied a set of 562 

special cases where more complete solutions are attainable – letting the environment or 563 

the resident population change, but in a deterministic fashion. Despite the differences, 564 

many of their conclusions match ours. Among other things, Uecker & Hermisson 565 

demonstrate that in a periodic (sinusoidal) environment, the probability of invasion is 566 

independent of initial conditions if the frequency of environmental change is high enough 567 

(see also Otto & Whitlock 1997). In other words, if the environment changes much faster 568 

than the process of invasion, it is sufficient to take into account the averaged 569 
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environmental conditions in order to calculate the probability of invasion (save for initial 570 

population size). Further, Uecker & Hermisson demonstrated that the strength of 571 

demographic stochasticity has a direct negative effect on the probability of invasion (our 572 

eq. 13a). It is also possible to show that several of the derived expressions by Uecker & 573 

Hermisson agree with ours if the limit 0→s  is taken. In our minds, the two studies 574 

complement each other nicely.  575 

The importance of the geometric mean fitness, as emphasized in classical bet-hedging 576 

theory, is somewhat implicit in our presentation. In the discrete time case we define 577 

instantaneous fitness f as the natural logarithm of per capita growth rate, which directly 578 

makes ‘mean fitness’ correspond to the (logarithm of the) geometric mean growth rate. 579 

The classical trade-off between a high arithmetic mean and a low variance is thus not 580 

immediately apparent here, but is incorporated in our definition of ‘fitness’. Instead, the 581 

formalism here emphasizes nonlinearities of the density dependence, sensitivity to 582 

environmental fluctuations and frequency dependence (see also a conceptual discussion 583 

in Ripa et al. (2010) on the definition of bet-hedging when fitness is frequency 584 

dependent).  585 

In a broader perspective, our results and examples have highlighted several important but 586 

sometimes neglected aspects of trait evolution. Natural populations are subject to 587 

environmental stochasticity, fitness is density and frequency dependent, variable 588 

population sizes induces extra frequency dependence, and the strength or even direction 589 

of selection may differ depending on environmental circumstances. It is our hope that this 590 



34 

 

study may inspire future work towards a more complete theory of trait evolution by 591 

natural selection. 592 
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Appendix A  679 

The limit 0→s  680 

We here show that 681 

lim
s→0

sIE = n(0)E
d(E(t))

n(t)

⎡

⎣
⎢

⎤

⎦
⎥
, (A1a) 682 

where 683 

∫
∞ −∫=
0

))((~
0))((~ dtetEdI
t

dEf

E

ττ

. (A1b) 684 

First of all, equation (4) in the main text yields by integration 685 
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t

0
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ττEf

entn . (A2) 686 

This implies that 687 

∫=∫∫=∫ −−−−
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e
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, (A3) 688 

which substituted into equation (A1b) gives 689 
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∫∫
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, (A4) 690 

where q(t) = d(E(t)) / n(t) . 691 

The inner integral 692 

We need to consider in some detail the behaviour of the inner integral in equation (A4), 693 

∫=
t

EstS
0

d))(()( ττ
, (A5) 694 

which is simply a summation of s(E(t)) over time. We assume E(t) is an ergodic process 695 

and we can use the strong or pointwise ergodic theorem (Krengel 1985) to state that for 696 

every realization E(t) and every δ > 0, there exists with probability one a tδ < ∞ such that 697 

δδ +<<− 1)(1
ts
tS , t > tδ. (A6) 698 

The relative importance of initial conditions disappear over time, but we note the 699 

possibility of realizations E(t) where the above is not fulfilled, although such possible 700 

futures have probability measure zero. 701 
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We also need to know the behavior of tδ as s becomes small, which has to do with how 702 

fast S(t) converges to its expectation. It is necessary that tδ has a finite upper bound in the 703 

limit 0→s . For this we assume, without loss of generality, the mutation corresponds to 704 

a small change Δx in a heritable trait x and that the instantaneous fitness advantage has a 705 

Taylor expansion according to 706 

s(E(t)) = g(E(t))Δx +Ο(Δx2 ) , (A7) 707 

where 
x

tEstEg
∂

∂
=

))(())((  is the instantaneous fitness gradient. The limit 0→s  here 708 

corresponds to 0→Δx . Inserting equation (A7) into equation (A5) gives 709 

S(t) = Δx g(E(τ ))dt
0

t

∫ +Ο(Δx2 ) = ΔxG(t)+Ο(Δx2 )
, (A8) 710 

where  711 

∫=
t
gtG

0
d)()( ττ

. (A9) 712 

Just like S(t), G(t) is a simple summation and for every δ > 0 there exists a finite time uδ 713 

such that  714 
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(1−δ)<
G(t)

gt
< (1+δ)

, t > uδ. (A10) 715 

Note that G(t), and thereby uδ, is independent of Δx. Hence, uδ remains fixed (and finite) 716 

as we take the limit 0→Δx  below. Using equations (A8) and (A10) we get 717 

S(t)

st
=
ΔxG(t)+Ο(Δx2 )
Δxgt +Ο(Δx2 )

=
G(t)

gt
+Ο(Δx)

. (A11) 718 

and 719 

(1−δ)+Ο(Δx)<
S(t)

st
< (1+δ)+Ο(Δx)

, t > uδ. (A12) 720 

Comparing equations (A6) and (A12) we conclude that for any fixed δ we get δδ ut →  as 721 

Δx goes to zero. 722 

Lower and upper bounds on sIE  723 

From equation (A6) it follows that 724 

)1()()1( δδ −−−+− << tstSts eee , t > tδ, (A13) 725 

which can be used to put lower and upper bounds on EIs : 726 
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2121 UUIsLL E +<<+ , (A14a) 727 

where 728 

∫ +−−=
δ δt tstS teetqsnL

0

)1()(
1 )d-)(()0( , (A14b) 729 

∫
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)1()(
1 )d-)(()0( ,  (A14d) 731 

∫
∞ −−=
0

)1(
2 d)()0( tetqsnU ts δ . (A14e) 732 

It is clear that L1 and U1 will go to zero as s → 0 , since we know from above that tδ 733 

remains bounded (it has a finite limit uδ as 0→s ). L2 and U2 are in principle weighted 734 

averages of the ergodic process q(t), with an exponentially decaying weight function. 735 

However, as 0→s  the exponential decay is slower and slower and more and more 736 

values of q(t) contribute substantially to the integrals. In short, we use the conjecture that 737 

integrals of the type 738 

∫
∞ −=
0

)( dtetxcI ct
c  (A15) 739 
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go to x  as c goes to zero, as long as x(t) is ergodic. A formal argument, albeit not a 740 

proof, is obtained from the substitution )1(1 ctec −− −=τ , which gives 741 

∫=
c

cc dxcI
/1

0
)(~ ττ

, (A16) 742 

where ))1ln(()(~ 1 ττ ccxxc −−= −  is the process x(t) with an accelerating time. As c 743 

approaches zero the time-transform becomes increasingly linear at lower time-values (a 744 

Taylor expansion gives )(
2
1)1ln( 3221 ττττ cOccc ++=−− − ), which supports the 745 

conclusion that with probability one 746 

xIcc
=

→0
lim

. (A17) 747 

Returning to L2 (eq. A14c) and U2 (eq. A14e), we can use equation (A17) to conclude 748 

that with probability one 749 

δ+
=

→ 1
)0(lim 20

qnL
s  (A18) 750 

and 751 
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δ−
=

→ 1
)0(lim 20

qnU
s . (A19) 752 

Using equation (A18) and (A19) in equation (A14a) we get 753 

n(0)
q

1+δ
< lim

s→0
sIE < n(0)

q

1−δ  (A20) 754 

which is valid for any δ > 0. Since we can choose δ arbitrarily close to zero we get 755 

lim
s→0

sIE = n(0)q  (A21) 756 

with probability one. Returning to the probability of invasion PE we have 757 

lim
s→0

PE
s
= lim

s→0

1

s + sI
=

1

n(0)q  (A22) 758 

for every possible future environment with probability one. Consequently, the 759 

expectation of PE converges to the same limit, i.e. 760 

lim
s→0

P0
s
= lim

s→0

E[PE | E(0)]
s

= lim
s→0
E PE

s
| E(0)

⎡

⎣⎢
⎤

⎦⎥
=

1

n(0)q  (A23) 761 
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Ruling out ∞→sPE /  762 

Equation (A23) follows from eq. (A22) if we can completely rule out the possibility of 763 

PE / s  going to infinity. It is thus necessary to show that sIE → 0 is not only unlikely, 764 

with probability zero, but impossible for all possible future environments E(t), t ≥ 0. For 765 

this, we first write (using the substitution T = st ) 766 

∫∫
∞ −∞ − ==
0

)/(

0

)( d)/()0(d)()0( TesTqntetqsnIs sTStS
E , (A24) 767 

which in principle behaves as ∫
∞ −

0
d)/()0( TesTqn T . It follows that sIE → 0  implies the 768 

mutant has, for some unlikely E(t), a death rate equal to exactly zero always, or during a 769 

longer-than-zero time-interval an infinite selective advantage s (such that S(t) is infinite). 770 

The first options implies a forever immortal mutant, and the second that the mutant has 771 

infinite fitness. We regard both these alternatives as not only unlikely, but impossible (no 772 

organism is immortal and infinite fitness of a small mutation requires a discontinuous 773 

fitness function), which is sufficient for (A23). 774 

  775 
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Figure legends 776 

Figure 1. Instantaneous fitness of the resident type (grey, solid line) and a rare mutant 777 

(dash-dotted dotted line) as functions of the resident population size in the continuous-778 

time theta-logistic model (eqs. 19a-c), disregarding environmental stochasticity (ε is set 779 

to 0 when plotting these functions). The dashed line shows the difference between mutant 780 

and resident fitness (x100). The background shading is a histogram (y-scale not shown) 781 

of the population sizes from a simulation of the stochastic resident population dynamics, 782 

where the environmental process is an Ornstein-Uhlenbeck process (Eq. 20) . Parameter 783 

values: d0 = 1, r = 1, K = 106, θ(resident) = 2, θ(mutant) = 1.98, 2
εσ = 0.7, TC = 1. 784 

 785 

Figure 2. Probability of mutant invasion (y-axis) as a function of the initial resident 786 

population size (x-axis) for the stochastic continuous-time theta-logistic model (eqs. 19a-787 

c, 20). The black dots (with 95% confidence intervals) indicate the estimated probability 788 

from 105 simulations, started with a single mutant individual. All invasion attempts for a 789 

given n(0) were started at the same initial condition. Initial conditions were generated by 790 

simulating the resident population for 100 time units and thereafter until the appropriate 791 

(equally spaced on the log x-axis) population size occurred. The dashed line is the 792 

prediction given by equation (13), where s  and )/( nd  were calculated from simulations. 793 

The background shading is a histogram of the resident population dynamics, with log-794 

spaced bins. Parameter values are the same as Figure 1. 795 



48 

 

 796 

Figure 3. Mutual invasions of two types in the discrete time logistic model (eqs. 6, 7, 21). 797 

a) Probability of type 2 invading type 1. b) Probability of type 1 invading type 2. a, b) 798 

Estimated invasion probability (black dots with 95% confidence intervals), based on 105 799 

simulations starting at different initial resident population sizes. The dashed line indicates 800 

the prediction based on equations (15a,b) ), where s  and nH were calculated from 801 

simulations. Background shading is a histogram of simulated resident population 802 

dynamics (y-scale not shown, but the same in a) and b)). c) A successful invasion of type 803 

2 (black dots) into a resident population of type 1 (grey dots). The two types coexisted for 804 

at least 104 generations and showed no signs of one excluding the other (not shown). 805 

Parameters, type 1: r = 2.8, K = 106; type 2: r = 2.85, K = 1.0023×106.  806 

 807 









Appendix B  

Computer simulation details 

Continuous time 

The continuous time birth-and-death process was approximated by a discrete time 

process, with a time interval Δt (a more exact waiting-time approach was in this case too 

time-consuming). At each time-step, each individual gives birth with probability bΔt and 

dies with probability dΔt, where the birth and death rates b and d depend on the 

individual’s θ -value as well as total population size n and current environmental state ε 

(eqs. 19a,b). Each reproduction produced a new individual identical to the parent. Δt was 

in the simulations set to 3.17x10-4, chosen such that the total event probability per 

individual (b + d) was equal to 0.001 at equilibrium conditions (Figures 1 and 2). 

However, Δt was increased to 0.01 in Appendix C to save computer time (This applies to 

Figures C1, C2 and C3. We also tested Δt = 0.001 for a few parameter values, but with no 

noticeable difference in the results).  

The environmental Ornstein-Uhlenbeck process was approximated by a discrete time 

AR(1) process (Box et al. 1994), with the same autocovariance function (eq. 20). In other 

words, the environmental process was implemented as 

tttt a νεε +=Δ+ , (B1) 

where  



tea Δ−= γ  (B2) 

and νt is drawn from a normal distribution with zero mean and variance 

)1(][ 22 a−= εσνV . (B3) 

Since the discrete time implementation assumes the environment stays constant across a 

time-step, Δt also has to be small enough that εt and εt+Δt only differ by a small amount, 

i.e. that the simulation constant a (eq. B2) is very close to one. 

Invasions (Figure 2) were simulated by replacing a single individual of the resident type 

with an individual of the invading type, and the abundances of the two types were 

followed over time. A simulation was interrupted as soon as one of them went extinct, 

and a successful invasion was recorded if the invading type had become fixed.  

Discrete time 

At each time-step, each individual was given a geometrically distributed number of 

offspring (eq. 9), with the mean number of offspring equal to ef, where the fitness f is 

given by the individual’s r and K parameters (eq. 21). All parents died after reproduction. 

A successful invasion was recorded as soon as the invading type had reached an 

abundance equal to K/10. At this cutoff point numerical investigations showed that 

invasion and a long-term coexistence was certain.  

All simulations were run in MATLAB® (R2007b, The MathWorks). 
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Appendix C  

Tests of accuracy 

We tested the accuracy of the approximate expressions for P0 in equations (13a,b) 

(continuous time) and (15a,b) (discrete time) by comparing them to the original 

expressions for PE in equations (8a,b) and (14a,b), averaged across a suite of simulated 

possible future environments. This was done instead of more explicit simulations of 

individual invasion attempts, which would be too computer time consuming. We thus 

rely on the validity of the assumption of an infinite population size, which underlies 

equations (8a,b) and (14a,b), but gain the ability to investigate larger portions of 

parameter space.  

 

To estimate the error of equations (13a,b), we used the example continuous time model 

described in the main text, selected 100 initial conditions from the (simulated) stationary 

distribution of {n(t), ε(t)}, and started 50 independent simulations of the resident 

population dynamics from each initial condition. We then used each simulation to 

calculate the integrals of equations (8a,b), (Euler method, Δt = 0.01, see Appendix B). 

We thus acquired 50 measurements of PE from each initial condition and calculated their 

arithmetic mean to get an estimate of P0, which was compared to the predicted value 



given by equations (13a,b). Figure C1 shows a sample of estimated PE-values (black 

dots) together with the corresponding estimated P0-values (red crosses), our prediction 

(eqs. 13a,b, blue lines) and a diffusion approximation (eq. 17, green lines).  

The error in the predicted P0 for each initial condition i was calculated as ei = 

log((predicted P0)/(estimated P0)), and the total error for each parameter setting was 

measured as the square root of the bias-corrected mean squared error, according to 

2
0

2100

1
2

100
1 cvcvee

i itot −−= ∑ =
μ , (C1) 

where ∑ =
=

100

1 2

2
,2

ˆ100
1

i
i

iP

P
s

cv is the mean squared relative standard error, 2
,iPs  is the squared 

standard error of the estimated P0 for initial condition i, and μ0 is the (estimated) mean 

prediction error, across initial conditions. The bias correction is based on the assumption 

that PE has a constant coefficient of variation, independent of initial conditions, and 

Taylor expansions of the log transform. Qualitatively, our results are the same, with or 

without the bias correction. The error estimate in equation (C1) can be interpreted as the 

mean relative error of our prediction, averaged across initial conditions. It includes a 

possible constant bias (μ0) as well as variation between initial conditions not captured by 

the predicted 1/n(0) relationship (eq. 13a). 

Figure C2 shows the estimated relative error (eq. C1) for different values of the 

population carrying capacity, K, and the mean fitness advantage, s . The calculations are, 

to be precise, carried out for constant values of Δθ (–2.5 < log10(-Δθ) < 0), and the 



corresponding s  varies somewhat depending on the value of K. This variation is, 

however, very small and a correction for this would not change any conclusions drawn 

from Figure C2. The greyscale shading and solid line contour levels depict the estimated 

error. The dashed straight lines indicate the boundaries 007.0/50 << sK , which 

approximates the region where the error is less than 5%. 

Figure C3 shows the dependence of the error on the variance ( 2
εσ , x-axis) and correlation 

time (TC, y-axis) of the environmental fluctuations (see eq. 20). The invading mutant has 

a θ-value of 1.995 (compared to the resident θ = 2), but the different environmental 

parameters would generate different values of s , all else being equal. For a fair 

comparison between different values of 2
εσ  and TC, we adjusted the mutant K-value such 

that the mutant has a fixed average fitness advantage s  = 0.0002.  This K-adjustment is 

always small (less than 10-5K) and shifts sign from positive at low values of σε
2  to 

negative at high values of σε
2 . Further, the initial conditions are always the same 50 

conditions sampled from the stationary distribution of the standard parameter values 

σε
2 = 0.4 , TC = 1.  

The error depicted in Figure C3 is large at high values of TC and close to the region where 

the resident population goes extinct too quickly for measurements to be possible (dotted 

region). That our approximation fails in slowly fluctuating environments (a large TC) is 

not surprising, since one of the main assumptions is that the environmental fluctuations 

are much faster than the invasion process. This is confirmed by trial calculations with ten 

times faster invasions ( s  = 0.002), which basically shifts the error contour levels to ten 



times lower values of TC (not shown). When the population dynamics are very violent, 

close to the dotted region in Figure C3, a close inspection of the population dynamics 

shows that the resident population goes through repeated periods of very low densities, 

several orders of magnitude below K. Each such bottleneck of the resident population 

strikes the mutant too, since they are ecologically very similar, and has a large negative 

impact on the probability of invasion. The total probability becomes highly dependent on 

the exact number of bottlenecks during an invasion, which causes a large variation in 

invasion probability between different realizations of the environmental process, despite 

a very long invasion time. It follows that the assumptions of our derivation are not 

fulfilled and the approximation fails (it requires an even smaller value of s ).  

Figures C4-5 show the same calculations as Figures C1-2, but for the discrete time model 

(eq. 21). In figure C5 it can be seen that the region where the error is less than 5% is now 

larger ( 40 /K < s < 0.019 ), especially at the upper end. The reason for this is hard to 

disentangle completely, but one answer might be the rapid chaotic fluctuations of 

population size in this model, which means an invading mutant is quickly exposed to the 

full range of environmental fluctuations. This model is also, at least in the short term, 

much more deterministic than the continuous time model. The resident population sizes 

during the important first few generations after the first appearance of a new mutant are 

highly predictable, given the initial population size. There is thus relatively little variation 

between different realizations of IE (there is a relatively small spread of black dots in 

Figure C4), which reduces the possible error related to taking the mean of a function as 

the function of the mean (P0 is the mean of PE, which is a non-linear function of IE (eq. 

14a)). Finally, we would like to point out that a diffusion approximation succeeds within 



almost exactly the same region of parameter space, a region within which the difference 

between the two predictions is still small.  

 

  



Figure Legends 

Figure C1. Samples of simulated invasion probabilities, PE (y-axis, eq. 8a), of the 

continuous time example model (eqs. 19, 20). For each parameter setting (panel), 100 

initial conditions {n(0), ε(0)} were chosen from the simulated stationary distribution of 

{n(t), ε(t)} and for each initial condition the future population dynamics was simulated 

50 times to give 50 estimates of the conditional invasion probability PE (black dots, eq. 

8a). Red crosses: The estimated unconditioned invasion probability, P0, calculated as the 

arithmetic mean of the PE-values (eq. 9). Blue lines: The predicted P0 (eq. 13a).  Green 

dashed lines (often coinciding with the blue lines): The diffusion approximation (eq. 17 

with ne from eq. 13b). Black dash-dotted lines: The neutral prediction (1/n(0)). Resident 

population parameters: d0 = 1, r = 1, θ = 2, V(εt) = σε
2  = 0.4, TC = 1. The carrying 

capacity K differs between the panel rows and is indicated in the left hand margin. The 

invading type has a θ-value equal to 2 – Δθ, where Δθ = 0.00316, 0.0178, 0.178 and 1.00 

in the panel columns, left to right, respectively. The corresponding mean fitness 

advantage, s , is indicated on the top of each column (the dependence on K is small, less 

than 2%).  

 

Figure C2. The average relative error (eq. C1) of the predicted P0 (eq. 13a) (grey shading 

and contour lines), depicted as a function of the mean fitness advantage s  (x-axis) and 

the carrying capacity K (y-axis). The effective population size ne (eq. 13b) is 

approximately 0.24K. The region 007.0/50 << sK , roughly where the error is less than 

5%, is indicated by a black dashed line. The figure is based on a grid of 11 Δθ-values and 



12 K-values, equally spaced on a logarithmic scale (see Fig. C1 and the main text for 

further details).  

 

Figure C3. The average relative error (eq. C1) of the predicted P0 (eq. 13a) (grey shading 

and black contour lines), depicted as a function of the variance (x-axis) and correlation 

time (y-axis) of the external environment (εt, see eqs. 19, 20). The model and most 

parameter values are as in Fig C1. The resident has K = 108 and θ = 2. The invading type 

has θ = 1.995 and a K-value adjusted such that s  = 0.0002, irrespective of strength and 

autocorrelation of the environmental fluctuations. In the dotted area, the extinction rate of 

the resident population was too high for meaningful measurements. 

 

Figure C4. Same as Figure C1, but for the discrete time model (eq. 21). The resident type 

has r = 2.8 (corresponding to chaotic dynamics) and the invading mutant has r = 2.8 - Δr, 

where Δr ranges from 10-2.5 to 1, equally spaced on a logarithmic scale, in steps of 100.5. 

The K-values are spaced similarly, from 104 to 108. At K-values below 104, the resident 

population went extinct too quickly. Only a sample of the simulation results are depicted 

here. Black dots: PE-values (eq. 14a). Red crosses: P0 (mean PE). Blue lines: predicted P0 

(eqs. 15a,b). Green dashed lines: diffusion approximation (eq. 17 with ne given by eq. 

15b). Black dash-dotted lines: The neutral prediction (1/n(0)). Each row of panels 

corresponds to a fixed value of K, as indicated in the left margin. Each column 

corresponds to Δr = 0.00316, 0.0316, and 1.00, from left to right, respectively. The 



corresponding mean fitness advantage, s , is indicated on the top of each column (the 

dependence on K is small, less than 2%). 

 

Figure C5. The average relative error (eq. C1) of the predicted P0 of the discrete time 

model (eq. 21), depicted as a function of the mean fitness advantage s  (x-axis) and the 

carrying capacity K (y-axis). The effective population size ne (half the harmonic mean) is 

roughly 0.34K. Other details are given in Figure C4 and Appendix C. The dashed lines 

mark the boundaries of the region 40 /K < s < 0.019 , where the mean relative error is 

below 5%. 
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