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Abstract

With increasing fishing pressures having brought several stocks to the brink of collapse,

there is a need for developing efficient harvesting methods that account for factors beyond

merely yield or profit. We consider the dynamics and management of a stage-structured fish

stock. Our work is based on a consumer-resource model which De Roos et al. (2008) have

derived as an approximation of a physiologically-structured counterpart. First, we rigorously

prove the existence of steady states in both models, that the models share the same steady

states, and that there exists at most one positive steady state. Furthermore, we carry out

numerical investigations which suggest that a steady state is globally stable if it is locally stable.

Second, we consider multi-objective harvesting strategies which account for yield, profit, and
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the recovery potential of the fish stock. The recovery potential is a measure of how quickly a

fish stock can recover from a major disturbance and serves as an indication of the extinction

risk associated with a harvesting strategy. Our analysis reveals that a small reduction in yield

or profit allows for a disproportional increase in recovery potential. We also show that there

exists a harvesting strategy with yield close to the maximum sustainable yield (MSY) and

profit close to that associated with the maximum economic yield (MEY). In offering a good

compromise between MSY and MEY, we believe that this harvesting strategy is preferable in

most instances. Third, we consider the impact of harvesting on population size structure and

analytically determine the most and least harmful harvesting strategies. We conclude that

the most harmful harvesting strategy consists of harvesting both adults and juveniles, while

harvesting only adults is the least harmful strategy. Finally, we find that a high percentage of

juvenile biomass indicates elevated extinction risk and might therefore serve as an early-warning

signal of impending stock collapse.

Keywords: Stage structure; Selective harvest; Pareto efficiency; MEY; MSY; Early-warning signal

1 Introduction

Mounting fishing pressure over the past decades has severely impacted aquatic ecosystems and

marine resources (Garcia and Newton, 1995; Hutchings and Myers, 1994). Many fish stocks have

been severely depleted and some have even collapsed. Few examples better highlight the dangers

associated with intense exploitation than the Northern Cod Fishery at the eastern coast of Canada.

In the early 1990s, the stock biomass suddenly collapsed to very low levels. Even though the

Canadian government acted quickly to impose a moratorium on further exploitation, the stock

remains commercially extinct to this date. The failure of the Northern Cod Fishery underlines the

need for developing sustainable fisheries-management practices (Olsen et al., 2004). Theoretical

models that account for both economic and ecological aspects of fisheries are likely to play a key

role in this important endeavor.

Much of fisheries-management theory is based on simple unstructured models, often formulated

with ordinary differential equations. Over the last three decades or so, there has been a trend to-

wards increased realism in ecological theory. This trend has been supported by the introduction

of physiologically-structured population models (e.g., Metz and Diekmann, 1986; Cushing, 1989;

De Roos, 1997; Persson et al., 1998; Claessen et al., 2003; Farkas and Hagen, 2007). Whereas

unstructured population models treat all individuals as equals, physiologically-structured popu-

lation models distinguish between individuals based on one or more physiological characteristics.

The size of an individual is a common choice in the context of fisheries, as individual size is often

a good predictor of life-history state and associated vital rates such as mortality, fecundity, and

growth.

Size-structured models are more difficult to work with than their unstructured counterparts,
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both analytically and computationally. In addition, they do not always connect with the exist-

ing fisheries-management theory in a straightforward way. While some physiologically-structured

populations models can be reduced to finite-dimensional ODE models (e.g., Diekmann and Metz,

1989), this depends on the vital rates having a precise mathematical form. Recently, De Roos

et al. (2008) formulated a stage-structured population model which incorporates key individual

life-history processes. As this model was derived as an approximation of an ecologically motivated

physiologically-structured population model, it is a promising candidate for a standard model of

ecological dynamics in fisheries management. In Sect. 2, we present this physiologically-structured

population model and show how the approximating stage-structured counterpart is derived. We

then consider and, when possible, rigorously analyze the existence and stability of steady states in

Sect. 3. In this section, we also introduce the recovery potential as a promising measure of a fish

stocks ability to resist collapse. A reader who is not interested in the mathematical details could

leave Sect. 3 for a later reading.

An important reason why physiologically-structured population models are preferable in fish-

eries management is that they allow more realistic description of harvesting regimes. Excess

mortality induced by fisheries is often size- or stage-dependent. This dependence can arise from

the choice of gear or fishing ground, from regulations stipulating size limits, or as an adaptation

of the fisheries to size-dependent market prices. Although it has been known for some time that

fishing induces changes in both abundance and size structure (see, e.g., Rijnsdorp et al.,1996;

Olsen et al., 2004; Walsh et al., 2006), much remains to be understood about the consequences of

size-dependent fishing mortality.

In Sect. 4, we consider the impact on fisheries yield, fisheries profit, and the recovery po-

tential of the targeted fish stock. We further explore demographic effects of stage-selective har-

vesting. In particular, we study how different harvesting rates of juveniles and adults affect the

size-composition and recovery potential of the fish stock. Finally, in the concluding Sect. 5, we

discuss the results obtained and identify key challenges for future research.

2 Model and parameters

In this section, we recapitulate selected achievements by De Roos et al. (2008). We introduce their

physiologically-structured population model and show how the approximative stage-structured

counterpart is derived when harvesting is stage-selective. We also state the parameter values that

we use in numerical investigations.

2.1 Model

We adopt a physiologically-structured population model formulated by De Roos et al. (2008),

which accounts for key aspects of individual life histories. Below, we give a complete but brief
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description of the model elements and refer the reader to De Roos et al. (2008) for further details

and motivations.

The population is composed of juveniles and adults which forage on a shared resource R = R(t).

Juveniles use all available energy for growth and maturation, while adults do not grow and instead

invest all their energy in reproduction. Individuals are completely characterized by their size

(weight) s. Juveniles are born with size s0 and grow until they reach the size sm at which they cease

to grow, mature, and become adults. The juveniles’ growth rates depend on resource abundance.

Both foraging ability and metabolic requirements are assumed to increase with individual body

size.

Let n(s, t) be the size distribution of juvenile consumers with s0 ≤ s < sm and N = N(t)

the total number of adult consumers, all of size s = sm. The consumer-resource system with

stage-selective harvesting is described by the following differential equations:

∂

∂t
n(s, t) +

∂

∂s

(
g(s,R)n(s, t)

)
= −dj(R)n(s, t)−Hj(s, n(s, t)), for s0 ≤ s < sm,

g(s0, R)n(s0, t) = b(sm, R)N(t),

d

dt
N(t) = g(sm, R)n(sm, t)− da(R)N(t)−Ha(N), (1)

d

dt
R(t) = G(R)−

(∫ sm

s0

fj(s,R)n(s, t)ds+ fa(sm, R)N(t)

)
.

Here, n(sm, t) = lims→s−m
n(s, t), g(s,R) represents the juvenile growth rate in body mass, b(R, sm)

is the fecundity rate of adults with sm, while dj(R) > 0 and da(R) > 0 are the respective juvenile

and adult background mortality rates. Hj (s, n (s, t)) and Ha (N) represent the size-dependent

respective harvesting rates of juveniles and adults, fj(s,R) and fa(sm, R) are the respective feeding

rates of juveniles and adults, and G(R) is the rate at which the resource grows in the absence of

consumers.

The system above can be simplified by assuming that the juvenile and adult background mor-

tality rates are constant and given by

dj(R) = dj > 0 and da(R) = da > 0. (2)

Additionally, it is assumed that juveniles and adults do not produce biomass when the energy

intake is insufficient to cover maintenance requirements. The net biomass production per unit

biomass of juveniles and adults, respectively, denoted by wj(R) and wa(R), are given by

wj(R) =




σImax

R
H+R − T if R > H

σImax/T−1 = RjT,

0 otherwise

wa(R) =




σqImax

R
H+R − T if R > H

σqImax/T−1 = RaT.

0 otherwise

(3)
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Here, σ represents the efficiency of resource ingestion. The maximum ingestion rates per unit

biomass of juveniles and adults are Imax and qImax, respectively. The factor q represents the

difference in ingestion rates between the juvenile stage and the adult stage. A value of q < 1

implies that juveniles have a higher resource intake rate per unit body mass than the adults,

whereas q > 1 describe the opposite situation of adults having the higher ingestion rate. When

q = 1, juveniles and adults are equally able to ingest the resource. The juvenile growth rate,

g(s,R), and the adult birth rate, b(R, sm), are defined as follows:

g(s,R) = swj(R) and b(sm, R) =
sm
s0

wa(R). (4)

The feeding rates of juveniles and adults are respectively given by

fj(s,R) = sImax
R

H +R
and fa(sm, R) = smqImax

R

H +R
. (5)

The resource follows semi-chemostat dynamics,

G(R) = r(Rmax −R), (6)

in which r denotes the intrinsic turnover rate and Rmax denotes the maximum resource density in

the absence of consumers.

Finally, the harvesting rates of juveniles and adults are assumed to be constant per capita:

Hj(s, n(s, t)) = hjn(s, t) and Ha(N) = haN(t). (7)

As first demonstrated by De Roos et al. (2008), the size-stage-structured population model

described above can be simplified to an approximative stage-structured counterpart. This stage-

structured model is obtained from System (1) by assuming that the distribution of the juveniles

is fixed to its equilibrium distribution. Specifically, we assume that

∂

∂t
n(s, t) = 0

for all s and t. Solving the PDE in System (1) for its equilibrium distribution yields

n(s) = n(s0)

(
s

s0

)
−

(

1+
dj+hj
wj(R)

)

. (8)

To arrive at the stage-structured system, we introduce the variables

J(t) =

∫ sm

s0

sn(s, t)ds, and A(t) = smN(t),

and proceed as in De Roos et al. (2008; Eqs. 12-20) to obtain the simplified system:

dJ

dt
= wa(R)A+

(
wj(R)− v(wj(R))− dj − hj

)
J,

dA

dt
= v(wj(R))J − (da + ha)A, (9)

dR

dt
= r(Rmax −R)− Imax

R

H +R
(J + qA) ,
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in which

v(x) =
x− dj − hj

1− (s0/sm)
1−(dj+hj)/x

. (10)

The function v(x) has the same sign as x and a removable discontinuity at x = dj + hj. To make

v(x) continuous, we define v(dj + hj) = limx→dj+hj
v(x) = −(dj + hj)/ ln(s0/sm).

Two major advantages of the stage-structured System (9) over the physiologically-structured

System (1) are enhanced analytical tractability and reduced computational demands. In Sect. 3,

we give rigorous proofs showing that both systems are uniformly bounded and that they have the

same equilibria.

2.2 Scaling and parametrization

Table 1: Ecological and economic parameters

Symbol Value Unit Description

H 1 kg/a.u. Half-saturation constant of the consumers

T 1 day−1 Maintenance rate

r 1 day−1 Resource turn-over and per capita growth rate

Rmax 2 kg/a.u The maximum resource density

σ 0.5 - Efficiency of ingested biomass

s0 0.1 cm Size at birth

sm 10 cm Size at maturation

Imax 10 day−1 Maximum ingestion rates per unit biomass

q 0.8 - Differences in ingestion ability between juveniles and adults

dj 0.1 day−1 Juvenile mortality

da 0.1 day−1 Adult mortality

hj - day−1 Harvest rate of juveniles

ha - day−1 Harvest rate of adults

pj 1.2 ¤/kg Price of juvenile fish

pa 6 ¤/kg Price of adult fish

cj 0.31 ¤/a.u. Costs of juvenile fish per one unit of effort

ca 0.54 ¤/a.u. Costs of adult fish per one unit of effort

Note: All ecological parameters except hj and ha concern individual-level processes.

In Sects. 3-4 we carry out numerically investigations for varying stage-dependent harvesting

rates hj and ha. Table 1 gives the parameter values that are used. All ecological parameters

are taken from De Roos et al. (2008) and are based on empirical data, with the exception of

Rmax = 2. For the body-mass-specific factor q which phenomenologically describe the difference in

resource exploitation between juveniles and adults, we adopt the value q = 0.8. The half-saturation

constant H in the feeding response (5) express a resource density in kilogram biomass per unit

area. Changing the value of H can be interpreted as a change of the area in which the resource
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density and population density are expressed. By adopting the value H = 1 from De Roos (2008)

we thus effectively fix this area, which we refer to as an area unit (a.u.).

That the densities are expressed in an unknown area unit complicates the choice of economical

parameters. However, in general, small juveniles fish has a lower economic value per kilogram

than large adult fish, so we assume the value pj = 1.2 ¤/kilogram and pa = 6 ¤/kilogram as the

price of juvenile and adult fish, respectively. To motivate our choice of cost parameters cj and

ca, we believe that the cost of harvesting relative the income should be fairly low in a pristine

environment, where 15% might be a reasonable choice. Assuming a juveniles versus adult harvest

ratio of 1 : 4 and adopting cj = 0.31 ¤/a.u. and ca = 0.54 ¤/a.u. as the cost per one unit of

effort; the cost versus income ratio in a pristine environment will be approximately 15%.

3 Dynamics of stage-structured fish stocks

In this section, we present results about the dynamics of the physiologically-structured population

model, System (1), and its approximative stage-structured counterpart, (9). We first give rigorous

proofs showing that both systems are uniformly bounded and that the two systems have the same

equilibria under assumptions (2)-(7). We then introduce the measure of stock recovery potential,

which is used in Sect. 4. Finally, a numerical investigation is carried out which indicates that

System (9) always has exactly one global attractor. The global attractor is either an extinction

equilibrium or a positive (interior) equilibrium.

3.1 Existence of a global attractor

The following theorem states that both System (1) and System (9) are uniformly bounded, i.e., for

each system there exists a global attractor. For System (1), we do not need assumptions (2)-(7).

The only assumptions needed to prove the existence of a global attractor for System (1) are the

following: The resource and its growth rate are bounded, i.e., there exist constants Gm and Rm

such that

R(t) ≤ Rm and G(R) ≤ Gm. (11)

The harvest is non-negative and foraging rates for juveniles and adults are larger than the growth

and fecundity rates, that is,

0 ≤ Hj(s, n(s, t)), 0 ≤ Ha(N), g(s,R) ≤ fj(s,R) and b(s,R) ≤ fa(s,R). (12)

Before stating the theorem, we point out that these assumptions are clearly weaker than (2)-(7).

Note that if (12) fails then J(t)+A(t)+R(t) may diverge to infinity, since the population biomass

would possibly increase more than the decrease in resource biomass.

Theorem 3.1. If (11) and (12) hold, then System (1) is uniformly bounded. Moreover, System

(9) is uniformly bounded.
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Proof. For System (1), define

V (t) =

∫ sm

s0

sn(s, t)ds+ smN(t) +R(t).

We prove the conclusion for System (1) by showing that V (t) is bounded. From System (1) and

by (12), we obtain

dV (t)

dt
=

∫ sm

s0

s
∂

∂t
n(s, t)ds + sm

∂

∂t
N(t) +

∂

∂t
R(t)

≤ −

∫ sm

s0

s
∂

∂s

(
g(s,R)n(s, t)

)
ds− dj(R)

∫ sm

s0

sn(s, t)ds

+smg(sm, R)n(sm, t)− smda(R)N(t)

+G(R)−

(∫ sm

s0

fj(s,R)n(s, t)ds+ fa(sm, R)N(t)

)

= s0b(sm, R)N(t) +

∫ sm

s0

g(s,R)n(s, t)ds − dj(R)

∫ sm

s0

sn(s, t)ds− smda(R)N(t).

+G(R)−

(∫ sm

s0

fj(s,R)n(s, t)ds+ fa(sm, R)N(t)

)
.

Now by (11) and (12), we have

dV (t)

dt
≤ Gm − dj(R)

∫ sm

s0

sn(s, t)ds− smda(R)N(t)

≤ Gm +Rm − dj(R)

∫ sm

s0

sn(s, t)ds− smda(R)N(t)−R(t)

≤ Gm +Rm −min
R

{dj(R), da(R), 1}V (t).

Thus, since minR dj(R) > 0 and minR da(R) > 0,

V (t) <
Gm +Rm

minR{dj(R), da(R), 1}
+ ε

for large enough t and any ε > 0. Hence, System (1) is uniformly bounded.

For System (9), we define

V (t) = R(t) + J(t) +A(t),
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and hence

dV (t)

dt
= r(Rmax −R)− Imax

R

R+H
(J + qA)

+
(
wa(R)− da − ha

)
A+

(
wj(R)− dj − hj

)
J

= r(Rmax −R)

−

(
(1− σ)Imax

R

R+H
+ T + dj + hj

)
J −

(
(1− σ)qImax

R

R+H
+ T + da + ha

)
A

≤ rRmax

− min
R

{
(1− σ)Imax

R

R+H
+ T + dj + hj, (1− σ)qImax

R

R+H
+ T + da + hj, r

}
V (t).

Since σ < 1 and since dj, da, hj, ha, r, and T are positive, the theorem now follows as in the former

case.

3.2 Existence of equilibria

We now explore the existence of equilibria to System (1) and (9). First note that if wj(R) = 0,

then n(s, t) = 0, N(t) = 0 and R(t) = Rmax, which implies that System (1) has an extinction

equilibrium at (J,A,R) = (0, 0, Rmax). Therefore, in the rest of the paper we assume, in addition

to (2)-(7), that wj(R) > 0, i.e., RjT < R < Rmax.

Theorem 3.2. System (1) has an extinction equilibrium (0, 0, Rmax) and at most one positive

equilibrium (J ,A,R) where

J =
n(s0)s

2
0

1−
dj+hj

wj(R)



(
sm
s0

)1−
dj+hj

wj(R)

− 1


 , A =

n(s0)s
2
0wj(R)

da + ha

(
sm
s0

)1−
dj+hj

wj(R)

,

and R and n(s0) are obtained sequentially as the roots of the Eqs. (16) and (19).

Proof. It is clear that System (1) always has the extinction equilibrium (0, 0, Rmax). For a positive

equilibrium, we solve the equations ∂n/∂t = 0, dN/dt = 0 and dR/dt = 0. We obtain, with the

notation n(s, t) = n(s),

wj(R)
d(sn(s))

ds
= −djn(s)− hjn(s),

s0wj(R)n(s0) =
sm
s0

wa(R)N, (13)

0 = smwj(R)n(sm)− (da + ha)N,

0 = r(Rmax −R)− Imax
R

H +R

(∫ sm

s0

sn(s)ds+ smqN

)
.
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Note that by assumption wj(R) > 0. Integrating both sides of the first equation of (13) and solving

for n(s) gives

n(s) = n(s0)

(
s

s0

)
−

(

1+
dj+hj
wj(R)

)

. (14)

Substituting (14) into the third equation of (13) yields

(da + ha)N = n(s0)smwj(R)

(
sm
s0

)
−

(

1+
dj+hj
wj(R)

)

. (15)

From the second equation of (13) and (15), we have

f(R)
def
=

wa(R)

(da + ha)

(
sm
s0

)1−
dj+hj
wj(R)

= 1. (16)

Since f(R) is a monotonically increasing with respect to R, Eq. (16) has at most one positive

root R, RjT < R < Rmax, independent of n(s0). Using (14), we see that the total biomass in the

juvenile stage at equilibrium is given by

J =

∫ sm

s0

sn(s)ds =
n(s0)s

2
0

1−
dj+hj

wj(R)



(
sm
s0

)1−
dj+hj
wj(R)

− 1


 . (17)

Solving the second equation of system (13) for N at equilibrium yields

N =
n(s0)s

2
0wj(R)

(da + ha)sm

(
sm
s0

)1−
dj+hj
wj(R)

, (18)

and the total biomass in the adult stage at equilibrium is given by A = smN . Substituting (17)

and (18) into the fourth equation of (13) gives

r(Rmax −R) − Imax
R

H +R


 n(s0)s

2
0

1−
dj+hj

wj(R)



(
sm
s0

)1−
dj+hj
wj(R)

− 1




+
qn(s0)s

2
0wj(R)

da + ha

(
sm
s0

)1−
dj+hj
wj(R)


 = 0. (19)

Equation (19) has a unique positive root n(s0) for R given, RjT < R < Rmax. Once R and n(s0)

have been solved from (16) and (19), the positive steady juvenile and adult biomass density J and

A are obtained. Thus, system (1) has at most one positive equilibrium. This completes the proof

of the theorem.

After deriving the stage-structured biomass model, System (9), De Roos et al. (2008) concluded

that it has the same equilibria as System (1). For the sake of completeness, we provide a rigorous

proof of this fact:
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Theorem 3.3. System (9) has exactly the same equilibria as System (1).

Proof. The extinction equilibrium (0, 0, Rmax) clearly exists for both systems.

Let (J ,A,R) be the unique interior equilibrium of System (1) guaranteed by Theorem 3.2. It

follows by construction, exactly as in De Roos et al., 2008 [Eqs. (12)-(20)] that then (J ,A,R) is

also an equilibrium of System (9).

Consider the following equilibrium equations of System (9)

wa(R)A+
(
wj(R)− v(wj(R))− dj − hj

)
J = 0,

v(wj(R))J − (da + ha)A = 0, (20)

r(Rmax −R)− Imax
R

H +R
(J + qA) = 0.

Substituting the second equation of (20) into the first equation of (20) yields

g(R)
def
=

wa(R)v(wj(R))

(da + ha)[v(wj(R))− wj(R) + dj + hj]
= 1. (21)

By plugging in v(wj(R)) in g(R) we see that g(R) = f(R), where f(R) is the function defined in

(16). Hence, the existence of interior equilibria R∗ for the resource is equivalent for both systems.

Once R∗ = R has been solved from (21), the equilibrium juvenile and adult biomass density for

System (9), J∗ and A∗, are uniquely obtained from (20) and yield

J∗ =
r(Rmax −R∗)(H +R∗)(da + ha)

ImaxR∗(da + ha + qv(wj(R∗)))
, A∗ =

r(Rmax −R∗)(H +R∗)v(wj(R
∗))

ImaxR∗(da + ha + qv(wj(R∗)))
.

Thus, there exists a unique positive equilibrium for System (9), and hence we must have (J∗, A∗, R∗) =

(J ,A,R). The theorem follows.

From the proofs of Theorems 3.2 and 3.3, we can obtain information about when the positive

equilibrium exists. To do so, let

Θ(hj, ha)
def
=

wa(Rmax)

da + ha

v(wj(Rmax))

v(wj(Rmax))− wj(Rmax) + dj + hj
. (22)

From (16) and (21), we prove the following corollary. Here and in the rest of the paper, (J∗, A∗, R∗)

denotes the unique positive equilibrium.

Corollary 3.1. System (1) and System (9) always has the extinction equilibrium (0, 0, Rmax). The

unique positive equilibrium (J∗, A∗, R∗) exists in both systems if and only if Θ(hj, ha) > 1 where

Θ(hj, ha) is as in (22).

3.3 Local stability of equilibria

In this section, we investigate the local stability of equilibria to the stage-structured population

model, System (9). From local linearization, we obtain the following:
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Theorem 3.4. The extinction equilibrium (0, 0, Rmax) is locally stable if and only if Θ(hj, ha) < 1.

The positive equilibrium (J∗, A∗, R∗) is stable if Ψ(hj, ha) > 0 with Ψ(hj, ha) given by (24).

For the parameters in Table 1, we see numerically that Θ(hj, ha) > 1 implies Ψ(hj, ha) > 0. Hence,

for these parameters, the positive equilibrium is always locally stable.

Proof of Theorem 3.4. The stability of the extinction equilibrium (0, 0, Rmax) is governed by the

following characteristic equation, that results from straight forward linearization:
∣∣∣∣∣∣∣∣

wj(Rmax)− v(wj(Rmax))− dj − hj − λ wa(Rmax) 0

v(wj(Rmax) −da − ha − λ 0

−Imax
Rmax

H+Rmax
−qImax

Rmax
H+Rmax

−r − λ

∣∣∣∣∣∣∣∣
= 0,

i.e.

λ3 + aλ2 + bλ+ c = 0, (23)

where

a = r + dj + hj + da + ha + v(wj(Rmax))− wj(Rmax) > 0

b = (da + ha)[v(wj(Rmax)) + dj + hj − wj(Rmax)]− wa(Rmax)v(wj(Rmax)),

+r[dj + hj + da + ha + v(wj(Rmax))− wj(Rmax)],

c = r(da + ha)[dj + hj + v(wj(Rmax))− wj(Rmax)] + rwa(Rmax)v(wj(Rmax)).

Applying the Routh-Hurwitz criterion, which states that all roots of (23) have negative real parts

if and only if a > 0, c > 0 and ab > c, results in the conclusion (0, 0, Rmax) is locally stable if and

only if Θ(hj, ha) < 1.

The stability of the positive equilibrium (J∗, A∗, R∗) of System (9) is governed by

∣∣∣∣∣∣∣∣

a11 − λ a12 a13

a21 a22 − λ a23

a31 a32 a33 − λ

∣∣∣∣∣∣∣∣
= 0,

in which

a11 = −
wa(R

∗)A∗

J∗
, a12 = wa(R

∗), a13 =
∂wa(R

∗)

∂R
A∗ +

∂wj(R
∗)

∂R
J∗ −

∂v(wj(R
∗))

∂R
J∗,

a21 = v(wj(R
∗)), a22 = −da − ha, a23 =

∂v(wj(R
∗))

∂R
J∗,

a31 = −Imax
R∗

H +R∗
, a32 = qa31, a33 = −r −

HImax(J
∗ + qA∗)

(H +R∗)2
,

i.e.

λ3 + aλ2 + bλ+ c = 0,
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where

a = −(a11 + a22 + a33) > 0,

b = a22a33 − a23a32 + a11a33 + a13a31,

c = a11a23a32 + a13a31a22 − a12a23a31 − a13a21a32 > 0.

Applying the Routh-Hurwitz criterion once more, we see that since a, c > 0, (J∗, A∗, R∗) is stable

if and only if

Ψ(hj, ha)
def
= ab− c > 0. (24)

This completes the proof of Theorem 3.4.

By tracing (J∗, A∗, R∗) with the bifurcation software AUTO, and by Theorem 3.4 above, we be-

lieve the following holds: If we allow A, J,R ∈ R, then both equilibria exists near Θ = Θ(hj, ha) = 1

and they meet at a transcritical bifurcation at (0, 0, Rmax) when Θ = 1. Hence, the stability of the

two equilibria is exchanged when they collide. So (J∗, A∗, R∗) is stable and (0, 0, Rmax) is unstable

when Θ > 1, and vice versa when Θ < 1. See Sect. 3.5 for details.

3.4 The stock recovery potential

The quantity Θ = Θ(hj, ha) defined by (22), which appears in Theorem 3.4, is the generational

net biomass production (per unit body mass) in a virgin environment, i.e., when the resource

biomass is close to its maximum value Rmax. In other words, Θ approximates the net reproduction

(expressed in biomass) of a population small enough to have a negligible effect on the resource

biomass, which means that Θ > 1 ensures that the biomass of an initially small population will

increase in the absence of demographic stochasticity, while Θ < 1 ensures that the population will

go extinct. Hence, Θ can be seen as a measure of the potential of a stock to recover from a small

population size. Therefore, we refer to Θ as the recovery potential of a population. The recovery

potential gives an indication of a populations productivity and stability, and a value close to unity

reveals that the population is sensitive to disturbances. Typically, increased harvesting will lower

a stocks recovery potential.

The measure of recovery potential which we use here is closely related to, and could likely be

replaced by, the basic reproductive ratio (R0) in a virgin environment. The main difference is that

our measure of recovery potential is based on growth in biomass, whereas R0 is based on growth

in the number of individuals.

3.5 Numerical investigation of the basin of attraction

We present numerical investigations indicating that the locally stable equilibria in System (9) are

in fact globally stable. The numerical investigations are performed as follows: For fixed parameters
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and different initial conditions in the JAR-space, the trajectory is examined to see if it converges

to the same equilibrium, independent of the initial conditions.

For the parameters hj and ha, we consider the grid

hj ∈ [0, 0.2, 0.4, . . . , 4], ha ∈ [0, 5, 10, . . . , 140].

Concerning initial conditions, we let the trajectory start at points in the grid

J, A ∈ [0, 0.2, 0.4, . . . , 1] + ǫ, R ∈ [0, 0.4, 0.8, . . . , 2],

with ǫ = 0.01. We integrate System (9) from time t = 0 to time t = T , and then we check if

|(J,A,R)− (J∗, A∗, R∗)| ≤ 0.01. It turns out that if we chose T large enough, then as expected, all

trajectories for the same parameter values end up at the same equilibrium. Hence, this indicates

that the locally stable equilibria are global attractors. For all tested points in the hj ha-plane

below the extinction boundary, given by Θ = 1, trajectories end up at the interior equilibrium

(J∗, A∗, R∗), and for points above the extinction boundary, trajectories end up at (0, 0, Rmax).

Hence, below the extinction boundary, the interior equilibrium (J∗, A∗, R∗) seems to be the global

attractor, and above the curve the population seems to die out, i.e., (0, 0, Rmax) is the global

attractor.

To investigate the possibility of the existence of more attractors such as periodic solutions,

we have carried out additional AUTO investigations. In particular, we have traced the interior

equilibrium in the parameters hj, ha, indicating that the equilibria do not bifurcate outside the

curve Θ(hj, ha) = 1. This indicates that there are no more attractors in the system.

4 Management of stage-structured fish stocks

Classical management theory, which aims to maximize yield or profit, usually studies size-independent

harvesting for which the harvesting effort can be represented by a single real number (see e.g. Clark,

2010). However, for structured populations under size-dependent harvesting there can be several

different harvesting strategies which give the same, or similar, yield or profit, but differ significantly

from an ecological perspective, e.g. in the risk of extinction.

In Sect. 3, we introduced the stock recovery potential Θ which represents the net generational

biomass production (per unit body mass) in a virgin environment. This quantity allows a natural

interpretation as the ability to recover from overfishing. In particular, a higher value of Θ makes

the population less vulnerable to random extinction following disturbances. Hence, the value of Θ

associated with a harvesting strategy gives an indication of how risky the harvesting strategy is

from an extinction perspective.

To manage a fishery sustainably, we wish to ensure the harvested species’ long-term survival

in addition to achieving high yield of profit. We account for the extinction risk associated with a
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harvesting strategy by incorporating the recovery potential as a policy objective. Thus, our aim is

to maximize the target (yield or profit) while simultaneously minimizing the ecological risk. This

is a multi-objective optimization problem which lacks a unique solution as the target trades-off

against the recovery potential. It is, however, natural to consider a strategy to be inefficient if there

is another strategy that can achieve an equal or better value for both the target and the recovery

potential. By removing all such inefficient strategies, we are left with a subset of strategies that

can be identified with the so-called Pareto efficient strategies, also called the Pareto front.

4.1 Methodological underpinnings

We consider two harvesting targets: yield and profit at the interior equilibrium as determined by

the following functions,

P (hj, ha) = pjhjJ
∗(hj, ha, R

∗(hj, ha)) + pahaA
∗(hj, ha, R

∗(hj, ha))− cjhj − caha,

and

Y (hj, ha) = hjJ
∗(hj, ha, R

∗(hj, ha)) + haA
∗(hj, ha, R

∗(hj, ha)).

Here, pj and pa are the respective prices of juvenile and adult fish, while cj and ca are the respective

costs of harvesting juvenile fish and adult fish. In particular, if cj = ca = 0 and pj = pa = 1, then

P (hj, ha) equals the yield objective function Y (hj, ha).

For the given target (yield or profit), we aim to minimize the ecological risk by choosing an

harvesting strategy that maximizes the recovery potential. For this purpose, we define an optimal

harvesting strategy as follows.

Definition 4.1. The harvesting strategy (ĥj, ĥa) is optimal for yield Y (ĥj, ĥa) if for all (hj, ha)

such that Y (hj, ha) = Y (ĥj, ĥa) we have Θ(hj, ha) ≤ Θ(ĥj, ĥa). Optimal harvesting for profit is

defined as above but with Y (hj, ha) replaced by P (hj, ha).

The respective catch levels which result when the two targets, yield and profit, are maximized

independent of the ecological cost are commonly referred to as maximum sustainable yield (MSY)

and maximum economic yield (MEY), respectively. Christiansen (2009) argues that the former is

the better target for society as a whole, while the latter is a natural target for a fishing fleet. We

consider a continuum of harvesting strategies connecting MSY with MEY. Specifically, we consider

harvesting strategies in the sets

D = {(hj, ha) : Θ(hj, ha) > 1 and hj, ha ≥ 0},

and

LEB = {(hj, ha) : Θ(hj, ha) = 1 and hj, ha ≥ 0}.
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Here, LEB is the extinction boundary. The region D consists of the viable harvesting strategies,

where each harvesting strategy describes the effort allocation on juveniles and adults.

Note that there exist harvesting strategies which maximize the target functions Y (hj, ha),

P (hj, ha), and Θ(hj, ha) since these functions are continuous in the closed set D ∪ LEB. Hence, to

find an optimal strategy to catch a given amount of yield Y0, we solve the optimization problem

max
(hj,ha)∈E

Θ(hj, ha), where E = {(hj, ha)|Y (hj, ha) = Y0}.

Optimal harvesting with respect to yield and profit then represents two harvesting management

methods, which we refer to as yield management and profit management, respectively.

4.2 Pareto-optimal harvesting strategies

Figure 1(a)-(c) shows Pareto plots for all pairwise combinations of the three harvesting targets

yield, profit, and recovery potential. The Pareto efficient strategies are indicated with part of

colored curves as described in the figure caption. The points MMSY and CMEY correspond to the

harvesting targets maximum sustainable yield (MSY) and maximum economic yield (MEY).

For a fixed yield (profit), the recovery potential is maximized (thus minimizing the ecological

risk) on the Pareto front for yield (profit) in Fig. 1(a) (Fig. 1(b)). Therefore, the optimal

harvesting strategies for yield management is described by the Pareto front in Fig. 1(a) and

shown as the red and green curves from the point Θ(0, 0) to the point MMSY in Fig. 1(b) and

from the point (0, 0) to point MMSY in Fig. 1(d). The optimal harvesting strategies for profit

management correspond to the Pareto front in Fig. 1(b) and shown as the blue curve from the

point Θ(0, 0) to the point CMEY in Fig. 1(b) and from the point (0, 0) to point CMEY in Fig.1(d).

For profit management only adults are harvested. However, for yield management juveniles may

be harvested.

Let us first consider yield management, and analyze the differences between the two targets

MSY and MEY. Note that the recovery potential decreases as the landed yield increases. Therefore,

since MEY is always lower than MSY, targeting MSY is riskier than targeting MEY, and landing

a yield very close to MSY greatly increase the risk of extinction (Fig. 1(a)), while landing a yield

close to MEY will be a red strategy on the Pareto front which gives a negative profit (red strategies

in Fig. 1(b)). However, by landing a yield above MEY, but slightly below MSY (green curve in

Fig. 1(a)), it is possible to turn the loss into a profit without reducing the recovery potential

to very low levels. In fact, the peak profit is close to maximum, while the recovery potential of

the strategy that gives the peak profit is significantly higher than the recovery potential for MSY

(green curve in 1(b)).

Next consider profit management. Similarly as before, the recovery potential decreases as profit

increase along the Pareto front. Since MEY is always lower than MSY, this choice of management

method is safer from an ecological perspective but always produces a lower yield than with yield
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Figure 1: (a) Pareto plot for yield and recovery potential, in which optimal harvesting with respect

to yield is given by the Pareto front, which consists of the red and green curves. (b) Pareto plot

for profit and recovery potential, in which optimal harvesting with respect to profit is given by

the Pareto front, which is the blue curve to the right of the dashed line. (c) Pareto plot for

profit and yield, where the black curve from CMEY to MMSY is the Pareto front. (d) The Pareto-

efficient harvesting strategies for panels (a), (b), and (c). The green and blue curve corresponds

to harvesting only juveniles and adults, respectively, while the green curve corresponds to mixed

harvesting strategy encompassing both juveniles and adults. In panel (a)-(c), the point CMEY

represents the mapping of the harvesting strategy that gives maximizes profit, and the point

MMSY the mapping of the strategy that maximizes yield. The harvest rates of juveniles and adults

vary, while all other parameters are as in Table 1. (Color figure online.)
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management for the same recovery potential. In fact, the strategy which maximizes profit for a

given recovery potential simultaneously minimizes the yield. However, targeting MSY would result

in a loss of more than half of the profit, while aiming for the maximum profit that can be achieved

leads to the yield MEY which is significantly lower than MSY.

It is clear that yield and profit constitute conflicting targets, with or without taking recovery

potential into consideration. This leads us to investigate the trade-off between yield and profit for

different harvesting strategies, which we do by considering the Pareto efficient strategies for yield

and profit in Fig. 1(c). Note that the recovery potential of the Pareto efficient strategies is always

less than at MEY , but that the recovery potential is always higher than at MSY. Targeting MSY

results in a significantly lower profit than targeting MEY. However, with only a small decrease

in yield we can double the profit (the black curve from CMEY to MMSY in Fig. 1(c)). The green

curve in Fig. 1(c) shows that this level of profit can be achieved with optimal strategies for yield

management harvesting.

4.3 The most and the least harmful harvesting strategy

The distance to the extinction boundary (Fig. 1(d)) reflects the risk level of a harvesting strategy in

the sense of sensitivity to changes in mortality rate, e.g., by increased harvesting or other external

factors. This is because a small increase in mortality, e.g., due to illegal or unreported fishing,

could make the strategy cross the extinction boundary. Applying the implicit function theorem

on Θ(hj, ha) = 1, one can easily calculate the second derivative of ha(hj) with respect with hj:

d2

dh2j
ha(hj) =

wa(Rmax) ln
2
(

s0
sm

)

w2
j (Rmax)

(
sm
s0

)1−(dj+hj)/wj(R)

> 0,

which shows that the graph of extinction boundary Θ(hj, ha) = 1 is convex upward (see LEB in

Fig. 2). Therefore, the shortest distance to the extinction boundary LEB from any point in D will

be in the direction of a straight line that is not parallel to the axis, i.e., a harvest strategy that

is a combination of harvesting both adults and juveniles. The slope of the line from the origin to

curve LEB is

k =
wa(Rmax)

(
sm
s0

)1−
dj+x

∗

wj(Rmax)

x∗
,

where x∗ is a unique positive solution of the following equation with respect to variable x:

wa(Rmax)

(
sm
s0

)1−
dj+x

wj(Rmax)

wa(Rmax)

(
sm
s0

)1−
dj+x

wj(Rmax)

ln
sm
s0

− xwj(Rmax) = 0.

For a non-harvested population, the shortest path from the origin to the extinction boundary curve

LEB is in the direction of the line ha = khj, i.e., when the harvest effort is distributed between

juveniles and adults as (1, k)/(k+1) (see Fig. 2). This means that assuming a fixed harvest effort
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distribution, (1, k)/(k+1) is the distribution that requires the least increase in total effort to cause

the population to go extinct. In contrast, harvesting only adults requires the highest increase in

total effort to cause extinction. Therefore, assuming a fixed harvest effort distribution, from an

extinction perspective harvesting adults only is always the safest strategy, and harvesting juveniles

is never the most harmful harvesting strategy. In general, the least harmful harvesting strategy

will always be a single-stage harvesting strategy, i.e., harvesting either juveniles only or harvesting

adults only, but which strategy it is may depend on the model parameters. However, we do not

have an example of parameters for which harvesting adults are more harmful than harvesting

juveniles.
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Figure 2: Assuming a fixed harvest effort distribution, the most harmful harvesting strategy from

an extinction perspective is always a multi-stage harvesting strategy, i.e., simultaneously harvesting

juveniles and adults, and the least harmful harvesting strategy is always a single-stage harvesting

strategy. The reason is that the extinction boundary LEB given implicitly by Θ(hj, ha) = 1 is

convex upward. The extinction region is given by Θ(hj, ha) < 1 and the sustainable harvesting

region by Θ(hj, ha) > 1. From any point in the sustainable harvesting region, there exists a unique

shortest path to the extinction boundary curve LEB, which describes the harvest effort distribution

that requires the least increase in total effort to cause the population to go extinct.

4.4 Consequences of harvesting for population size-structure and biomass

Field and experimental data indicate that size-dependent selective harvesting of large fish can

result in a change in the size-distribution of the exploited stock toward smaller fish (Hamilton et
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al., 2007; Walsh et al., 2006). We investigate changes in population size-structure in response to

stage-dependent harvesting of juveniles and adults.

Let Jf and Af denote the fished juvenile biomass and adult biomass, respectively. The pop-

ulation size-structure is completely determined by the distribution of biomass between juveniles

and adults and, therefore, we use the percentage of juveniles biomass Jf/(Jf + Af ) to measure

the impact of fishing on size-structure.

First, harvesting will induce a shift in size-composition towards juveniles relative the non-

harvested population, that is, any type of fishing always results in a higher juvenile ratio in the

fished population than in the non-fished population, as shown in Fig. 3(c). Harvesting adults

affects the size-distribution faster and to a larger extent than what harvesting juveniles does (Fig.

3(a)-(b)), and a high percentage of juvenile biomass indicates a low recovery potential, and thus a

higher risk of extinction (Fig. 3(d)).

Second, the percentage of juvenile biomass in the population will initially increase when only

juveniles are harvested, but will start to decrease as harvesting increases further, while the per-

centage of juveniles biomass can either increase or decrease if adults are harvested at a constant

rate (Fig. 3(a)-(b)). Third, increasing the harvest rate of adult fish always induces an increase

of the percentage of juveniles in the population (Fig. 3(b)), and Fig. 3 (a) and (b) show that

harvesting juveniles and adults equally always leads to an increase in the percentage of juveniles

in the population.

Third, for reproduction regulation (q < 1), De Roos et al. (2007) have shown that increased

mortality may induce an increase in juvenile biomass, despite the fact that the total consumer

biomass decreases. Juveniles use energy for growth, while adult individuals do not grow and

instead use all the ingested energy for reproduction. Since juveniles have a higher ingestion ability,

juveniles can compensate for the decrease in juvenile-stage biomass production from reproduction,

as adult biomass decrease from harvesting, by growth in body size. This will lead to an increase in

juvenile biomass although harvesting decreases the adult biomass (Fig. 1 in De Roos et al., 2007).

In contrast, adult biomass always decreases with increasing harvest rates (Fig. 1 in De Roos et

al., 2007). Hence, this shows that fishing leads to a higher percentage of juveniles irrespective of

the type of fishing than without fishing, even if only juveniles are fished.

4.5 Summary of main results

We conclude by briefly summarizing our main results. (1) When the desired target is profit, only

adults should be harvested, but when yield is the desired target, a small fraction of juveniles

should be harvested as described by the green curve in Fig. 1(d). (2) In both cases, it is possible

to increase the recovery potential considerably at a relatively small cost. This is particularly true

when yield is the desired target. In this case, a reduction in the realized yield of only some 10%

can lead to a tenfold increase in the recovery potential. (3) There exists a harvesting strategy
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Figure 3: The effect of harvesting on population size structure: (a) Increasing harvesting on juve-

niles can either increase or decrease the proportion of juveniles in the population. (b) Increased

harvesting on adults will always increase the proportion of juveniles in the population. (c) Harvest-

ing will always increase the proportion of juveniles in the population relative the non-harvested

population. (d) A high proportion of juveniles is an indication of low recovery potential. The

harvest rates of juveniles and adults vary, while all other parameters are as in Table 1. (Color

figure online.)
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which in both yield and profit is close to that associated with MSY and MEY. This strategy will

be preferable over MSY or MEY in most instances. (4) The least harmful harvesting strategy is

single-stage harvesting of either juveniles or adults (depending on stock dynamics) while the most

harmful strategy consists of harvesting both juveniles and adults in some proportion. (5) A high

precentage of juvenile biomass may be indicative of low recovery potential.

5 Discussion

We have analyzed dynamics and optimal management strategies in a stage-structured consumer-

resource fish stock model. First, we proved existence of equilibria and considered local stability.

Numerical investigations of their basin of attraction indicate that the locally stable equilibria are

global attractors. The question of proving global stability and absence of limit cycles in Systems

(1) and (9) remains open. In order to explore optimal multi-objective harvesting strategies for

the stage-structured population model, System (9), we introduced a measure which is relevant

for sustainable harvesting – the recovery potential of a fish stock. The recovery potential reflects

the ability of a population to grow from a small population size, i.e., the ability to recover from

overfishing or any other major disturbance. Because the recovery potential acts as a measure of

extinction risk, it allowed us to compare harvesting strategies from an ecological perspective.

To identify promising stage-dependent harvesting strategies, we numerically determined Pareto

efficient strategies for the three possible pairs of yield, profit, and recovery potential. This led us

to two important conclusions: First, a small decrease in the landed yield or profit relative to the

maximum sustainable yield (MSY) or the profit associated with the maximum economic yield

(MEY) allows for a disproportional increase in the fish stock’s recovery potential. Second, there

exists a harvesting strategy, which gives a yield close to MSY and a profit close to what is obtained

at MEY. We believe that this harvesting strategy is preferable in most cases over targeting MSY

or MEY alone. In examining the Pareto-efficient harvesting strategies, Fig. 2(d), we found that

strategies optimal for a small yield targeted only juveniles, while strategies optimal for yields close

to MSY included a proportion of adults. In contrast, strategies optimal for any level of profit

exclusively targeted adults. We caution that these results are obtained for the specific parameter

values given in Table 1. Changes in these parameters, and in particular the price of adult fish

relative to juvenile fish, may have large impacts on our results. Moreover, our results do not

account for induced evolutionary changes which can be undesirable (Olsen et al., 2004; Walsh et

al., 2006).

Harvesting affects the size structure of fish stocks. For the specific parametrization used in our

study, harvesting always resulted in an increase in the proportion of juveniles in the population,

even when only juveniles were harvested. The fraction of juvenile biomass in the population

appears to be negatively correlated with stock recovery potential. Consequently, a high percentage

22



of juvenile biomass in the population may indicate an elevated risk of extinction. While this is

in line with intuitive expectations, our findings highlight that size structure may be important

for assessing the risk of extinction. Moreover, we would not be surprised if changes in stock size

structure could serve as an early warning signal of an impending stock collapse.

In a separate analysis aimed at a broader audience, we intend to further develop the ideas

presented here. Among other extensions, we will consider impact on stock size structure as an

additional objective for Pareto efficiency and explore the extent to which the results depend on the

mode of population regulation. Further work on sustainable harvesting of size- and stage-structure

populations is highly desirable and could well result in effective tools for informing fisheries policy.

Acknowledgments
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