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Synergy and group size in microbial
cooperation

Daniel M. Cornforth1,∗, David Sumpter2, Sam Brown1,3, Åke Brännström4,5

ABSTRACT:

Microbes produce many molecules that are important for their growth and develop-

ment, and the consumption of these secretions by nonproducers has recently become

an important paradigm in microbial social evolution. Though the production of these

public goods molecules has been studied intensely, little is known of how the benefits

accrued and costs incurred depend on the quantity of public good molecules produced.

We focus here on the relationship between the shape of the benefit curve and cellular

density with a model assuming three types of benefit functions: diminishing, accelerat-

ing, and sigmoidal (accelerating then diminishing). We classify the latter two as being

synergistic and argue that sigmoidal curves are common in microbial systems. Synergis-

tic benefit curves interact with group sizes to give very different expected evolutionary

dynamics. In particular, we show that whether or not and to what extent microbes

evolve to produce public goods depends strongly on group size. We show that synergy

can create an “evolutionary trap” which can stymie the establishment and maintenance

of cooperation. By allowing density dependent regulation of production (quorum sens-

ing), we show how this trap may be avoided. We discuss the implications of our results

for experimental design.
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Introduction

Cooperative behaviour is a ubiquitous feature of interactions at all levels of biology,

and a large body of theory has been developed to explain the apparent paradox of

its evolution and maintenance in the face of noncooperative social cheats (e.g. Smith

and Szathmáry 1995; Keller 1999; West et al. 2006). Over the past decade, microbes

have proven effective in testing this theoretical work. They reproduce very quickly

and are relatively easy to control and genetically manipulate. They have been used to

elucidate major parts of social evolution theory like the evolution of altruism and spite

and to support related evolutionary hypotheses (Griffin et al. 2004; Gardner et al. 2004;

West et al. 2006). Additionally, microorganisms are fascinating in their own right and

understanding their sociality carries major health consequences (Brown et al. 2009).

In microbes, among the social traits most studied is production of secreted com-

pounds, for example compounds that scavenge for iron when iron is limited (Griffin

et al. 2004) or those that convert sucrose to glucose when glucose is limited (MacLean

and Gudelj 2006; Gore et al. 2009). Investigation in the past decade has only scratched

the surface of these public goods, and the list of known public goods products is quickly

growing (West et al. 2006). Most of this work focuses on Hamilton’s rule (rb > c) as the

condition that favors the evolution of social traits. There has been a primary focus on

population structuring (shaping Hamilton’s r), though all three quantities are essential

in social evolution (West et al. 2006).

In this paper, we primarily focus on fitness effects (shaping Hamilton’s b and c) and
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specifically the group-beneficial traits of public goods production. Figure 1A shows

three plausible benefit functions: one decelerating, one accelerating, and one sigmoidal

(first accelerating then decelerating). We use “synergy” to refer to acceleration in bene-

fit functions, which corresponds to the first part of the sigmoidal function and all of the

accelerating function in figure 1A. This synergy allows per-capita fitness benefits to in-

crease with group size as shown in figure 1B, sometimes termed “group augmentation”

(Kokko et al. 2000). Synergy is abundant in biology, from ant pheromone trails to hu-

man architecture (Clutton-Brock 2002; Sumpter and Brännström 2008; Sumpter 2010).

The mechanisms causing this synergy vary widely (Sumpter and Brännström 2008). De-

spite the abundance of synergy in other cooperative organisms, the phenomenon is not

well-investigated in microbes. Though recent work has uncovered benefit nonlinearities

in Myxococcus and an engineered E. coli system (Smith et al. 2010; Chuang et al. 2010),

it is generally ruled out in mathematical models (West and Buckling 2003; Foster 2004;

Ross-Gillespie et al. 2009), and the scope and impact of these nonlinearities has not

been well investigated. Here we argue that although its sources and abundance are still

not well understood, synergy is likely to be a key factor in microbe evolution.

Synergy occurs any time each additional public goods molecule produced gives a

greater fitness benefit than the previous. Many biological molecules themselves can

provide benefits in a sigmoidal fashion due to ‘positively cooperative reactions” (Hill

1910). Aside from basic molecular properties, sigmoidal benefits are often expected

due to ecological interactions. For instance, the normal lifecycle of many invading

parasites requires production of threshold quantities of toxins to function and/or to
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be able to overwhelm the immune system (Williams et al. 2000). Synergy may also

arise from less apparent and more complex ecological interactions. For example, an

adversarial molecule which, up to some point neutralizes produced public goods, could

lead to synergy. For example, plants that produce “quorum quenching” molecules

which neutralize quorum sensing molecules (whose production is, itself, cooperative

(Diggle et al. 2007)). Synergy could even be caused by the consumption of others’

public goods, as in, for example, the siderophore pyoverdine secreted by Pseudomonas

aeruginosa (Brown and Kümmerli 2010).

Most theoretical studies of co-operative microbial interactions typically preclude

synergy (Brown and Johnstone 2001; Foster 2004; West and Buckling 2003; Ross-

Gillespie et al. 2009). It has previously been concluded that high density is disfa-

vorable for public goods cooperation because a producing cell enjoys a growth benefit

proportional to the average production of its neighbors, allowing nonproducers more

opportunities to exploit high-producing cells (Ross-Gillespie et al. 2009). As we shall

see here, the opposite conclusion is possible when synergy exists. Synergy has been

studied previously theoretically in other contexts where an individual is classified as

either a cooperator or defector (Queller 1985; Archetti 2009a,b) and more recently in

a continuous-trait model (Deng and Chu 2011); see Archetti 2009b for a review on

nonlinear public goods games in biology. Here, we extend these studies to continuously

variable traits to understand aspects of evolution not examined in previous frameworks.

We show that synergy often permits an evolutionary repellor near non-production which

can have important consequences and demonstrate the role quorum sensing may play
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in its avoidance.

If the fitness effects of public goods production depend on density, then this should

provide evolutionary pressure for microbes to regulate their production accordingly.

By releasing autoinducer molecules, a cell can assess how many other cells surround

it, a proxy for cellular density, and can up-regulate or down-regulate various genes in

response (Fuqua et al. 1996; Robson et al. 1997). This mechanism, known as quo-

rum sensing, regulates the expression of many genes for the secretion of extracellular

molecules. In this paper, we also investigate the co-evolution of quorum sensing and a

synergistic trait.

Model

We adopt a standard setting for studying games with continuous cooperative invest-

ments (Doebeli et al. 2004). We consider an infinite population, in which each individual

i has a strategy or trait value xi which represents the individual’s level of cooperative

investment. For simplicity, we will assume that individual cooperative investments are

constrained between 0 and 1, i.e. 0 ≤ xi ≤ 1. The demographic dynamics unfold in

discrete generations. At each generation, groups of size N are randomly formed. As-

suming that the players in one of these groups have the respective strategies x1, . . . , xN ,

the payoff for an individual i in the group, 1 ≤ i ≤ N , is given by:

B (x1 + . . .+ xN)

N
− C (xi) . (1)
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Here, B(x1+. . .+xN) is the collective benefit of the group’s cooperative investment (fig.

1A). The collective benefit is divided equally among the N individuals in the group to

give the per-capita benefit (fig. 1B), and C(xi) is the cost of the investment. Both the

benefit and cost functions are assumed strictly increasing.

The selection gradient

D(x) =
B′(Nx)

N
− C ′(x), (2)

indicates the direction of gradual evolutionary change in a monomorphic population

of individuals all having the same trait value x, where primes denote first derivatives.

For details on how the selection gradient is derived from the demographic model and

how it relates to gradual evolutionary change, see Geritz et al. (1997); Sumpter and

Brännström (2008); Doebeli et al. (2004); Dieckmann and Law (1996). With small

mutational steps, the evolutionary dynamics will proceed in the direction indicated

by the selection gradient and will cease only at a boundary strategy or at an interior

strategy x∗ at which the selection gradient vanishes, D(x∗) = 0. Such strategies are

said to be evolutionarily singular. If nearby monomorphic populations evolve towards

the singular strategy, it is said to be convergence stable. A convergence stable singular

strategy can either be evolutionarily stable (then called continuously stable), effectively

an endpoint of evolution, or it can be an evolutionary branching point at which a

monomorphic population may gradually diverge to become dimorphic (Geritz et al.

1997). Mathematically, the requirement that a singular strategy is convergence stable
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but not evolutionarily stable can be written:

B′′(Nx∗) < C ′′(x∗) < B′′(Nx∗)/N < 0, (3)

where double primes denote second derivatives. We refer to Doebeli et al. (2004); Geritz

et al. (1997) for details. In words, this condition implies that both the benefit function

B and the cost function C need to be decelerating in the vicinity of the singular strategy

x∗.

Group size has been considered previously as the number of founders initiating a

microbe colony (see Brännström and Dieckmann 2005; Brännström et al. 2010), but

our analysis takes N to be the size of the group of interacting cells or neighboring

bacteria within a public good molecule’s radius of diffusion, which will often be a proxy

for cellular density. To consider impacts of genetic assortment, we suppose that when

a focal individual joins a group at the beginning of a generation, some positive fraction

of the other individuals in the group may be identical to it by descent. This fraction is

a random variable ρ. We show in Online Appendix A1 that, with these assumptions,

the selection gradient takes the form:

D(x) =
B′(Nx)(1 + 〈ρ〉 (N − 1))

N
− C ′(x), (4)

where brackets indicate the expectation. The condition for convergence stability is:

B′′(Nx∗)(1 + 〈ρ〉 (N − 1))− C ′′(x∗) < 0 (5)

and the criterion for evolutionary stability is:
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B′′(Nx∗)
N

[(1 + (N − 1) 〈ρ〉)2 +Var(ρ)(N − 1)2]− C ′′(x∗). (6)

Again, both the benefit function B and the cost function C need to be deceler-

ating in the vicinity of the singular strategy x∗ for evolutionary branching to occur.

Interestingly, we see that the mean of ρ (which is simply others-only relatedness, see

Online Appendix) is sufficient to define convergence stability, but both its mean and

variance are required for evolutionary stability. Higher variance in ρ makes conditions

for evolutionary branching more restrictive.

We also consider the effects of group size-dependent regulation (quorum sensing) on

the maintenance of cooperation. Here an individual can alter its behavior, dependent

on the size of its group. At sufficiently low group sizes, the public good is not produced,

or produced in very little quantity, whereas at sufficiently high group sizes, production

is simply the productive investment x. The payoff to individual i with trait values (x,

s) in this model variant is simply:

B (Q(s1, N)x1 + . . .+Q(sN , N)xN)

N
− C (Q(si, N)xi) (7)

where Q(si, N) = 1/(1 + esi−N). Here si determines the group size threshold above

which individual i produces public goods and below which does not (see Appendix for

further details).
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Results

We begin by assuming that groups are formed entirely randomly among the whole

population, so that there is no correlation among phenotypes of group members. Figure

2A shows the evolutionary dynamics under small mutational steps when the benefit is

a decelerating function of the group’s total cooperative investment (dotted line in fig.

1; diminishing returns, see also Foster 2004). Here per-capita benefits decrease with

group size. Assuming that the cost is proportional to the investment C(x) = cx, it

follows that the selection gradient D(x) = B′(Nx)/N − c is strictly decreasing with

x, so there is exactly one continuously stable strategy (both convergence stable and

evolutionarily stable) which is either full defection, an intermediate level of cooperation,

or full cooperation (fig. 2A). This CSS, once reached, is resistant to invasions by mutants

with phenotypes sufficiently close on either side. This is very much the standard picture

of evolutionary games involving costs and benefits to cooperation; the evolutionarily

stable cooperative investment decreases with group size N (Ross-Gillespie et al. 2009).

Whereas figure 2A illustrates the implications for the most common assumptions on

benefit functions, it is not necessarily the case that increasing total producers leads to

decreasing per-capita benefits. The alternative scenario is where the per-capita benefit

derived from cooperative interactions increases with group investment (fig. 2B). Here,

for linear cost functions, the selection gradient D(x) is strictly increasing and there

is either one or two convergence stable strategies, corresponding to no cooperative

investment or full cooperative investment. Typically, for small groups, no investment
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is the only evolutionarily stable strategy, but at some critical group size full investment

also becomes stable (fig. 2B).

In a biologically realistic setting, synergistic interactions cannot continue indefinitely

and there is a critical level at which the per-capita benefit of additional cooperative

investment begins to decrease. This leads to a sigmoidal form of the benefit function

B. In this situation, the evolutionary dynamics can incorporate elements of both cases

discussed above. This can be seen in figure 2C where we have two branches of singular

strategies; the lower is repelling (since it comes from the synergistic lower part of the

benefit function), and the upper branch is attracting (due to decelerating portion of

the benefit function at higher cooperative investments). In this example, cooperation

first becomes possible at intermediate sizes, and then suddenly shifts to no cooperation

at high group sizes.

Thus far, we have assumed that costs are proportional to the amount invested, lead-

ing to a linear cost function. When costs are non-linear, the population can sometimes

become dimorphic in the vicinity of a singular strategy. In this case, the two evolution-

ary branches diverge and may eventually end up on opposite sides of the convergence

stable solution in a process is known as evolutionary branching (Geritz et al. 1997). In

this case, the branches may end on opposite sides of the evolutionary repellor caused by

the synergistic part of the benefit curve as well. Figure 3 A-C demonstrates (assuming

no assortment) that not only is coexistence possible when the benefits are synergistic,

but the coexisting community can emerge from an initially monomorphic community

in small evolutionary steps. Figure 3B and 3C show the evolutionary dynamics with
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group size fixed (N = 30). If the population starts with a trait value below approxi-

mately x = 0.2, evolution proceeds toward zero investment. If, instead, the trait value

is initially above this threshold, evolutionary branching occurs and a stable coexistence

between full producers and nonproducers is eventually achieved.

Figure 3D, which depicts population dynamics between two strategies, shows that

the coexistence is maintained by frequency-dependent population dynamics. If, how-

ever, a high enough frequency of nonproducers would for any reason accumulate in the

population, the producers will be eliminated leaving only nonproducers. We have a

wide range of outcomes for a single benefit and cost function: full investment by all;

full investment by some proportion of the population and zero investment by all others;

and zero investment by all – dependent only on initial conditions and group size. In this

example, all singular strategies are evolutionarily unstable, but as equation 3 shows,

group size can also determine whether a population evolves toward an intermediate

evolutionarily stable investment level or whether a dimorphic population emerges.

We have until now assumed random assortment among all individuals in the popula-

tion (ρ = 0). This may be acceptable in situations where the individuals are interpreted

as founders which may have dispersed from afar, but in many other biological contexts,

the groups will not be well-mixed. As shown in figure 4, high assortment makes co-

operation more likely to evolve; compared to plots in figure 2 in the bifurcation plots

of singular strategies, the repelling branches (convergence unstable) are lowered and

the attracting (convergence stable) branches are raised. This is because the benefits

grow but there is no longer the need to split the spoils among many genotypes. This
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relates to previous work with discrete types demonstrating that assortment decreases

the critical cost for a mixed equilibrium between cooperators and defectors Archetti

2009a,b. Assortment is especially important in large groups where direct benefits are

not alone sufficient to maintain cooperation. Sufficiently high relatedness values may

allow cooperation to be maintained at some positive level for arbitrarily high group

sizes, even when the benefit function is diminishing or sigmoidal (in contrast to fig.

2). From equation 4, with linear costs, cooperation is stable at arbitrarily high group

sizes when the maximum value of B′(x) exceeds c/rw (see Appendix). If cooperation

is convergence stable at some group size with no assortment (ro = 0), then in a clonal

population (ro = 1) a positive level of cooperation is also convergence stable at arbitrar-

ily high group sizes. Equations 5 and 6 make clear that the conditions for evolutionary

branching are very dependent on both the mean and variance of ρ. We give an example

in the Online Appendix where changing Var(ρ) can alter evolutionary stability with-

out affecting convergence stability, thus determining whether evolutionary branching

occurs.

In figure 5, we show the joint evolution of the trait for public goods production and

the quorum sensing threshold group size above which the trait is expressed (see equation

7). In this case, costs and benefits of expression correspond to those in figure 2C. At each

generation, a group is formed of size 5 or size 45 with equal probability. When the public

good is constitutively produced, the population always ends at nonproduction, then

unstable even at large group sizes. In contrast when group size dependent regulation

of the trait is allowed to evolve, the cooperation can be maintained. The threshold (s)
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can evolve such that the cooperative trait is not expressed at the low group size (5)

but is expressed at other group sizes, when it is advantageous (see Online Appendix

for an example). Figure 5 also reveals that when the investment value x is sufficiently

low, the threshold s is expected to increase which can make investment less likely to

subsequently increase.

Discussion

Our results underline several important caveats for experiments on microbes. In pair-

wise invasibility experiments, it is important to realize that just because a producer

may be unable to invade cheats when at low frequencies, this does not necessarily mean

it cannot be very stably maintained at higher frequencies. So even if cheats invade co-

operators but not the reverse, coexistence at intermediate levels may still be possible.

After the demonstration that a producer is exploited by a cheat one should also test

how producers fare at different starting frequencies. It is possible above some starting

frequencies, producers will achieve intermediate abundances, but below this threshold

will be lost.

Our analysis also points to the potential complexities of varying density in microbe

experiments. If laboratory results using well-mixed cultures do not accord with natu-

ral settings, differences in density in addition to relatedness should be explored. For

instance, figures 3 and 4 show that density in addition to relatedness can be crucial to

the qualitative evolutionary dynamics. In figure 4, in the simplest case with no assort-
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ment, group size and initial conditions determine whether all nonproducers, all cheats,

or some combination of the two will be reached; as equation 3 shows, group size can

also determine whether a uniform level of intermediate investment is the evolutionary

endpoint or whether the population splits into a dimorphism. Microbe experiments are

characterized by bacterial populations in high densities in nutrient-rich and enemy-free

environments, which can be vastly different from many natural environments, and these

differences must be carefully considered.

In this paper we have focused primarily on the shapes of benefit functions in so-

cial evolution, and a significant part of our consideration was the repellor that can

arise from sigmoidal functions. When we considered nonlinear cost functions, it was

only to understand their effect on evolutionary branching. However, diminishing cost

functions in addition to synergy can possibly lead to evolutionary repellors (see On-

line Appendix A1). Additionally, evolutionary repellors exist in other, noncooperative

contexts as well. For instance, dynamics qualitatively similar to the sigmoidal case

have been demonstrated in epidemiological contexts, dependent on tradeoffs in parasite

transmission strategies (Ferdy and Godelle 2005).

Whenever synergy exists, the benefit curve will most likely be sigmoidal, since ben-

efits cannot accelerate indefinitely. The most significant qualitative difference between

the diminishing functions that are typically assumed and sigmoidal functions is that

the latter often permits an evolutionary repellor, making non-production locally stable

(figure 2C). Once above this repellor, public goods production is stable, and we have

shown that gradual evolution in addition to loss of function mutations can lead to a
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coexistence between producer and nonproducer. But how does the population cross

the repellor initially from below, allowing cooperation to be established? Kin selection

theory offers one explanation. As figure 3 shows, in assorted populations for high group

sizes, the repellor becomes arbitrarily close to zero, lowering the hurdle to production.

With sufficiently high relatedness, cells in high densities do not need to share the spoils

among many genotypes, and thus cooperation can be maintained at arbitrarily high

densities. This assortment, along with a jump in phenotype space by mutation or ac-

quisition of mobile genetic elements may allow this repellor to be overcome (Smith 2001;

Nogueira et al. 2009; Rankin et al. 2011). Even after this crossover, the evolutionary

trap is always present, and if long enough spans of time are spent in low density popu-

lations as is common in many bacteria at some point in their lifecycles, the cooperative

trait value can drop below the repellor and be lost forever.

One mechanism to avoid the evolutionary trap created by synergy is density-dependent

gene regulation or quorum sensing. The evolutionary advantage of quorum sensing is

usually phrased as limiting expression of particular genes to certain cellular densities.

Cells which express genes only at high densities, when they receive a benefit, gain a fit-

ness advantage over a nonregulated counterpart. We have shown that quorum sensing

can prevent non-producers from invading when density is too low, limiting the cheat

load that could otherwise sink cooperation. The density-dependent increase in fitness

may be nonsynergistic (Brookfield 1998; Brown and Johnstone 2001; Czárán and Hoek-

stra 2009) due to, for instance, reduced loss of secretions into the environment at high

cellular densities. In contrast, figure 5 shows that when the regulated trait is synergistic,
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this effect can prevent the trait from falling below the evolutionary repellor. In either

scenario, quorum sensing may help maintain public goods production in the population

by upregulating it only when favored by natural selection. However in the synergistic

case, quorum sensing also helps prevent the collapse of cooperation while cells grow in

low-density environments (figure 5).

Many bacteria spend much of their time in low densities until their environment

changes upon, for example, entering a host. By restricting expression to high density,

cooperation is not diminished when at low numbers for relatively long periods of time.

Though low densities can cause declines in production regardless of the cause of group

augmentation, in the synergistic cases (2B and 2C), the situation is especially dire. Re-

stricting expression to high population sizes effectively bypasses the synergistic portion

of the benefit function, and consequently, the cooperative trap (below which cooper-

ation may not recover) is avoided (figure 5). There are several adaptive explanations

for autoinduction sensing, including to sense density, to sense diffusion properties, and

even to sense the presence of other strains of bacteria (Brookfield 1998; Redfield 2002).

Whatever this mix of adaptive functions selecting for quorum sensing, the prevention of

widespread cooperative collapse may be an important consequence. However, we also

see in figure 5 that quorum sensing does little to help cooperation initially overcome

the repellor. In fact, at very low levels of production (under the evolutionary repellor),

the quorum sensing threshold may actually increase and make stable cooperation even

more difficult to achieve. So quorum sensing is unhelpful in crossing the repellor ini-

tially but may be crucial for the maintenance of cooperation by preventing a population
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from slipping into the trap after cooperation has already been established.

It would be interesting to integrate our work into a more demographically sophis-

ticated model. As a result of groups being reformed at each generation in our model,

successful individuals replace other individuals drawn from the entire population, rather

than more realistic models with limited dispersal in viscous populations (Wright 1949;

Hamilton and May 1977; Rousset 2004). This limited dispersal causes competition

among patchmates which can have major effects on evolution (Hamilton and May 1977;

Taylor 1992). Equation 6 indicates that higher variance of the degree of assortment

among groups in a population can make the conditions for evolutionary branching

more narrow; this would be interesting to study further in the context of the effects

on evolutionary branching of various dispersal regimes (Ajar 2003). Another possible

consideration for future work is that in our model, the individual traits did not affect

relatedness. However a feedback between the trait and relatedness is possible, as in

the classic example of the evolution of dispersal rates (Hamilton and May 1977; Rous-

set and Ronce 2004) where dispersal rate affects relatedness and vice versa (Lion and

van Baalen 2008; Lehmann and Rousset 2010). This could also occur when the patch

size increases with public goods production; if a patch has a higher carrying capac-

ity dependent on cooperation within it, synergistic functions may lead to interesting

dynamics.

On a more biological note, we reiterate that a particular microbe may best be

represented by different functional forms from what we use here. For instance, we did

not consider the possibility that in high densities, fewer molecules are lost into the
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environment which would also increase group benefits at higher densities. In addition

to this, some microbes have preferential access to their own public goods products even

when in a well-mixed environment (Gore et al. 2009). For example, we could allow

producers to get a benefit greater than the equal share of production we give them

in the model studied here. However, even in microbes with properties different than

those specified here, synergy will likely play a prominent role. Lastly, the interplay

between the production and regulation in our model made simplifying assumptions

about the evolution of autoinduction thresholds, and in reality a particular quorum

sensing network can regulate many traits, rather than only one. With many traits, the

quorum sensing trait will be likely be more stable. The evolvability of various features

of quorum sensing (in this case, the group size at which autoinduction occurs) has not

received significant attention in the literature, however there is evidence that various

aspects of the quorum sensing are evolveable (Ansaldi and Dubnau 2004; Ichihara et al.

2006; Sandoz et al. 2007). Future work integrating molecular details into the evolution

of these thresholds could be very interesting.
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Online Appendix

A1. Derivation of selection gradient and stability with genetic assortment

At each generation, an individual is identical by descent to some number in its group

including itself (among the total group members N), which is a random variable K.

We define Pr(k) as the probability that a rare mutant in the population has exactly

k− 1 other genetically identical mutants in its group. Thus, 〈K〉 = ∑N
k=1 kPr(k) is the

expectation of the number of mutants in a random mutant’s group, and 〈K〉/N is the

likelihood that a recipient of the mutant’s act is also a mutant, again assuming mutants

are rare in the population. So with no assortment Pr(1) = 1, and with assortment

Pr(1) < 1. Our expression for relatedness of a rare mutant to a random individual in

its group is just the expected genotype of a recipient’s genotype to that of the actor

(unity) (Grafen 1985) which is:

rw =
〈K〉
N

=
N∑

k=1

k

N
Pr(k). (A1)

This is whole-group relatedness (rw) which is of interest since cooperators get a direct

benefit from their own cooperation. (Others-only relatedness, or ro, is relatedness to

recipients other than the focal cooperator itself with rw = ro
N−1
N

+ 1
N

(Pepper 2000).

This value is the same as 〈ρ〉 in the main text). The expected payoff of an individual

with trait y in a monomorphic population with trait value x is given by
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P (y, x) =
N∑

k=1

Pr(k)B(ky + (N − k)x)

N
− C(y). (A2)

From this, the selection gradient becomes:

D(x) =
N∑

k=1

kPr(k)B′(Nx)

N
− C ′(x) (A3)

= rwB
′(Nx)− C ′(x) =

B′(Nx)(1 + ro(N − 1))

N
− C ′(x), (A4)

The solutions of D(x∗) = 0 are the singular strategies. The condition for convergence

stability of a singular strategy is:

∂D

∂x
|x=x∗ = NB′′(Nx∗)rw − C ′′(x∗) (A5)

= B′′(Nx∗)(1 + ro(N − 1))− C ′′(x∗) < 0, (A6)

Using ρ from the main text, this condition is simply:

∂D

∂x
|x=x∗ = NB′′(Nx∗)rw − C ′′(x∗) (A7)

= B′′(Nx∗)(1 + 〈ρ〉(N − 1))− C ′′(x∗) < 0, (A8)

and for evolutionary stability:

∂2P

∂y2
|y=x∗ =

1

N

N∑

k=1

Pr(k)k2B′′(Nx∗)− C ′′(x∗) (A9)

=
B′′(Nx∗)

N

N∑

k=1

Pr(k)k2 − C ′′(x∗) < 0. (A10)

Now

Var(K) =
N∑

k=1

Pr(k)(k − 〈K〉)2 (A11)
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N∑

k=1

Pr(k)k2 = 2
N∑

k=1

Pr(k)k〈K〉 −
N∑

k=1

Pr(k)〈K〉2 +Var(K) (A12)

N∑

k=1

Pr(k)k2 = 〈K〉2 +Var(K) (A13)

By using ρ from the main text, the condition for evolutionary stability becomes:

B′′(Nx∗)
N

[(1 + (N − 1) 〈ρ〉)2 +Var(ρ)(N − 1)2]− C ′′(x∗) < 0. (A14)

A2. Assuming linear costs and nondecreasing benefits, if a positive level

of cooperation evolves without assortment at some group size N0, then a

positive level of cooperation evolves in arbitrarily large group sizes when

ro > 1/N0:

For some xo, N0,the selection gradient is positive:

B′(N0x0)

N0

− c > 0. (A15)

Now for some arbitrarily high N1, let x1 =
N0x0

N1
. The selection gradient now is

B′(N1x1)

N1

+
ro(N1 − 1)B′(N1x1)

N1

− c > 0. (A16)

which is equivalent to
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roB
′(N1x1) +

B′(N1x1)(1− ro)

N1

− c (A17)

Now, so long as ro > 1/No, this gradient is positive since the first term itself is

greater than c.

A3. Variance can affect evolutionary branching

Here we show an example (fig A3) of a situation where 〈ρ〉 is constant but Var(ρ) is not,

and this distinction determines whether evolutionary branching occurs. When N = 4,

variance may be zero if every group has two individuals of one genotype and two of

another, or it may follow a binomial distribution with 〈ρ〉 = 1/3. Both of these give

〈 rw〉 = 1/2.

A4. Quorum sensing model

The payoff to an individual with trait values x and s in two distinct group sizes N1 and

N2 is:

P1 =
B (Q(s1, N1)x1 + . . .+Q(sN1 , N1)xN1)

N1

− C (Q(si, N1)xi) (A18)

P2 =
B (Q(s2, N2)x2 + . . .+Q(sN2 , N2)xN2)

N2

− C (Q(si, N2)xi) (A19)

where Q(si, N) = 1/(1 + esi−N) as in the main text. The expected payoff then for

a pair (x, s), given that the individual randomly joins one of the two group sizes is

P = (P1 + P2)/2. The singular strategies occur when ∂P
∂x

= ∂P
∂s

= 0, and these zeros of
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these selection gradients define the isoclines of figure 5. See (Geritz et al. 1997; Brown

and Taylor 2010) for details of analyzing systems of multiple trait evolution.
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FIGURE CAPTIONS

fig 1: Accelerating, decelerating, and sigmoidal benefit functions. A) Total ben-

efit as a function of total public goods investment Nx, expressed as the product of

the group size N and the cooperative investment per individual, x. The solid and

dashed lines represent synergistic (accelerating) benefits as they have positive concav-

ity for some intervals, whereas the dotted line always represents diminishing returns.

B) Corresponding per-capita benefit B(Nx)/N as a function of group size, N , assum-

ing that every individual cooperates at some fixed amount (here, x = 1, meaning full

cooperation). The benefit functions used are B(x) = α(β + deκ−bx)−1 − α(β + deκ)−1

with α = 105, d = 1, β = 1, κ = 0, and b = 0.1 (decelerating benefits; dotted

line), B(x) = bxa with b = 0.1 and α = 3 (accelerating benefits; dashed line), and

α(β + deκ−bx)−1 − α(β + deκ)−1 where α = 90000, d = 1, β = 2, κ = 10, b = 0.2.

(sigmoidal benefits; solid line).

fig 2: Bifurcation plots illustrating the evolutionary dynamics with decelerating,

accelerating, and sigmoidal benefit functions. The solid lines indicate the location of

interior singular strategies for different group size N . Arrows indicate the direction of

gradual evolution of a monomorphic population. A) Decelerating benefits. There is

a unique evolutionarily stable strategy which decreases with group size. When group

sizes are greater than approximately 80, cooperation is entirely disfavored. (B(x) =

α(β + deκ−bx)−1 − α(β + deκ)−1 with α = 2000, d = 1, β = 1, κ = 0, and b = 0.8)

B) Accelerating benefits. For small group sizes there is a unique evolutionarily stable

strategy corresponding to full defection. As the group size increases, full cooperation
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also becomes an evolutionarily stable strategy. Any interior singular strategy is repelling

and decreases with group size, but never reaches zero. (B(x) = bxa with b = 0.1 and

α = 3) C) Sigmoidal benefits. Up to two interior singular strategies are possible, one

repelling and the other attracting. (B(x) = α(β + deκ−bx)−1 − α(β + deκ)−1 where

α = 10000, d = 1, β = 2, κ = 7, and b = 0.3). Each convergent stable attractor could

potentially be an evolutionary branching point. The cost function used is C(x) = cx

with c = 5.

fig 3: Evolutionary branching and the emergence of two coexisting strategies of full

defection and full cooperation in a setting with sigmoidal benefits and non-linear costs.

A) Bifurcation plot illustrating the effects of group size on directional selection for the

function used in the other diagrams in the figure. B) A pairwise invasibility plot (PIP)

illustrating the monomorphic evolutionary dynamics. There are two singular strategies

at approximately x = 0.2 and x = 0.4 of which only the latter is convergence stable.

Monomorphic populations with trait values above the first singular strategy will evolve

towards the second singular to the singular strategy where they undergo disruptive

selection and subsequently evolutionary branching. C) Individual-based simulation

demonstrating evolutionary branching at approximately x = 0.4, thus corroborating

the predictions from the PIP. The inserted panel shows the evolutionary dynamics for

populations which initially have trait values lower than the first singular strategy at

approximately x = 0.2; here investment decreases to zero. D) Population dynamics of

the resultant coexisting strategies of full defection (x = 0) and full cooperation (x = 1).

If the fraction of cooperators is initially below approximately 18%, the cooperators will
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be eliminated altogether. Otherwise, the population dynamics will result in a stable

coexistence with approximately 45% cooperators. The sigmoidal benefit function used

is the same as in figure 1, B(x) = b(x3 + βx2)(x2 +α)−1, but with different parameters

b = 200, β = 450, α = 180. The non-linear cost function used is C(x) = c1x − c2x
2

with c1 = 170, c2 = 50. The assumed group size in B-D is N = 30.

fig 4: Effect of assortment (positive relatedness) on the evolutionary dynamics of

decelerating, accelerating, and sigmoidal benefit functions. The colors correspond to

different degrees of others-only relatedness (which are equal to the values of 〈ρ〉): ro = 0,

ro = 0.01, and ro = 0.5. Solid lines indicate attracting (convergence-stable) singular

strategies, while dashed lines indicate singular strategies which are repelling (not con-

vergence stable). Panels A, B, and C have use all the same benefit and cost functions

as in figure 2.

fig 5: Joint evolution of the public goods production trait x and the group-size

threshold s, above which the production is expressed. Benefits and costs are as in figure

2C. At each generation, a group is formed of size 5 or size 45 with equal probability.

For very low quorum sensing thresholds, production is not affected by changes in group

size and evolution inevitably brings the production down to zero. However, for an

intermediate range of the quorum sensing threshold s, public goods production can be

stably maintained. This is true even if the threshold and production is allowed to co-

evolve, provided that initial state is a population with an intermediate quorum sensing

threshold and a sufficiently high production. For other initial conditions, co-evolution

will bring the production down to zero and increase the threshold to arbitrarily large
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values.

fig A1: The effect of variance on evolutionary branching when whole-group related-

ness rw = 1/2. A) The blue line is the singular strategy which is convergent stable. The

two other curves enclose the area for evolutionary stability of the binomial (magenta)

and fixed (tan) cases. B) Simulation with N = 4 in the binomial case. C) Simulation

with N = 4 in the fixed case. (For all panels, B(x) = α(β + deκ−bx)−1 − α(β + deκ)−1

where α = 800, d = 1, β = 1, κ = 0, and b = 1.3. C(x) = c1x− c2x
2 with c1 = 130 and

c2 = 50.)

fig A2: The functional shape of Q(N) with a threshold of s = 10.

fig A3: Simulation run of the joint evolution of x and s. The costs and benefits are

the same as those in figure 2C of the main text. The group size is randomly chosen

between N = 5 and N = 45. The quorum sensing cut-off evolves above 5, and so

cooperation can be maintained.
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Å. Brännström and U. Dieckmann. Evolutionary dynamics of altruism and cheating

among social amoebas. Proceedings: Biological Sciences, 272:1609–1616, 2005.
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J. Maynard Smith and E. Szathmáry. The Major Trnasitions in Evolution. Oxford

University Press, 1995.

D. J. T. Sumpter. Collective Animal Behavior. Princeton University Press, 2010.
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