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Abstract Adaptive dynamics (AD) so far has been put on a rigorous footing only for
clonal inheritance. We extend this to sexually reproducing diploids, although admit-
tedly still under the restriction of an unstructured population with Lotka–Volterra-like
dynamics and single locus genetics (as in Kimura’s in Proc Natl Acad Sci USA 54:
731–736, 1965 infinite allele model). We prove under the usual smoothness assump-
tions, starting froma stochastic birth anddeath processmodel, that,when advantageous
mutations are rare and mutational steps are not too large, the population behaves on
the mutational time scale (the ‘long’ time scale of the literature on the genetical foun-
dations of ESS theory) as a jump process moving between homozygous states (the
trait substitution sequence of the adaptive dynamics literature). Essential technical
ingredients are a rigorous estimate for the probability of invasion in a dynamic diploid
population, a rigorous, geometric singular perturbation theory based, invasion implies
substitution theorem, and the use of the SkorohodM1 topology to arrive at a functional
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convergence result. In the small mutational steps limit this process in turn gives rise
to a differential equation in allele or in phenotype space of a type referred to in the
adaptive dynamics literature as ‘canonical equation’.

Keywords Individual-based mutation-selection model · Invasion fitness for diploid
populations · Adaptive dynamics · Canonical equation · Polymorphic evolution
sequence · Competitive Lotka–Volterra system

Mathematics Subject Classification (2000) 92D25 ·60J80 ·37N25 ·92D15 ·60J75

1 Introduction

Adaptive dynamics (AD) aims at providing an ecology-based framework for scaling
up from the micro-evolutionary process of gene substitutions to meso-evolutionary
time scales and phenomena (also called long term evolution in papers on the founda-
tions of ESS theory, that is, meso-evolutionary statics (cf. Eshel 1983, 2012; Eshel et
al. 1998; Eshel and Feldman 2001). One of the more interesting phenomena that AD
has brought to light is the possibility of an emergence of phenotypic diversification
at so-called branching points, without the need for a geographical substrate (Metz et
al. 1996; Geritz et al. 1998; Doebeli and Dieckmann 2000). This ecological tendency
may in the sexual case induce sympatric speciation (Dieckmann and Doebeli 1999).
However, a population subject to mutation limitation and initially without variation
stays essentially uni-modal, closely centered around a type that evolves continuously,
as long as it does not get in the neighborhood of a branching point. In this paper we
focus on the latter aspect of evolutionary trajectories.
AD was first developed, in the wake of Hofbauer and Sigmund (1987), Marrow

et al. (1992), Metz et al. (1992), as a systematic framework at a physicist level of
rigor by Dieckmann and Law (1996) and by Metz and Geritz and various cowork-
ers (Metz et al. 1992, 1996; Geritz et al. 1998). The first two authors started from
a Lotka–Volterra style birth and death process while the intent of the latter authors
was more general, so far culminating in Durinx et al. (2008) which works out the
details for general physiologically structured populations at a physicist level of rigor.
The theory was first put on a mathematically rigorous footing by Champagnat and
Méléard and coworkers (Champagnat et al. 2008;Champagnat 2006;Méléard andTran
2009), and recently also from a different perspective by Peter Jagers and coworkers
(Klebaner et al. 2011). All these papers deal only with clonal models. In the meantime
a number of papers have appeared that deal on a heuristic basis with special models
with Mendelian genetics (e.g. Kisdi and Geritz 1999; Van Dooren 1999, 2000; Van
Doorn and Dieckmann 2006; Proulx and Phillips 2006; Peischl and Bürger 2008),
while the general biological underpinning for the ADs of Mendelian populations is
described in Metz (2012). In the present paper we outline a mathematically rigorous
approach along the path set out in Champagnat et al. (2008), Champagnat (2006), with
proofs for those results that differ in some essential manner between the clonal and
Mendelian cases. It should be mentioned though that just as in the special models in
Kisdi andGeritz (1999), VanDooren (1999, 2000), Proulx and Phillips (2006), Peischl
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Adaptive dynamics of Mendelian diploids

and Bürger (2008) and in contrast with the treatment in Metz (2012) we deal still only
with the single locus infinite allele case (cf. Kimura 1965), while deferring the infinite
loci case to a future occasion.
Our reference framework is a diploid population in which each individual’s ability

to survive and reproduce depends only on a quantitative phenotypic trait determined
by its genotype, represented by the types of two alleles on a single locus. Evolution of
the trait distribution in the population results from three basic mechanisms: heredity,
which transmits traits to new offsprings thus ensuring the extended existence of a trait
distribution, mutation, generating novel variation in the trait values in the population,
and selection acting on these trait values as a result of trait dependent differences in
fertility and mortality. Selection is made frequency dependent by the competition of
individuals for limited resources, in line with the general ecological spirit of AD. Our
goal is to capture in a simplemanner the interplay between these differentmechanisms.

2 The model

We consider a Mendelian population and a hereditary trait that is determined by the
two alleles on but a single locus with many possible alleles [the infinite alleles model
of Kimura (1965)]. These alleles are characterized by an allelic trait u. Each individual
i is thus characterized by its two allelic trait values (ui

1, u2
i ), hereafter referred to as its

i igenotype, with corresponding phenotype φ(u1, u2), with φ : R
m → R

n . In order to
keep the technicalities to a minimum we shall below proceed on the assumption that
n = m = 1. In the Discussion we give a heuristic description of how the extension to
general n and m can be made. When we are dealing with a fully homozygous popula-
tionwe shall refer to its unique allele as A andwhenwe consider but two co-circulating
alleles we refer to these as A and a.
Wemake the standard assumptions thatφ and all other coefficient functions are smooth
and that there are no parental effects, so that φ(u1, u2) = φ(u2, u1), which has as
immediate consequence that if ua = u A+ζ , |ζ | « 1, then φ(u A, ua) = φ(u A, u A)+
∂2φ(u A, u A)ζ + O(ζ 2) and φ(ua, ua) = φ(u A, u A) + 2∂2φ(u A, u A)ζ + O(ζ 2),
i.e., the genotype to genotype map is locally additive, φ(u A, ua) ≈ (φ(u A, u A) +
φ(ua, ua))/2, and the same holds good for all quantities that smoothly depend on the
phenotype.

Remark 2.1 The biological justification for the above assumptions is that the evolu-
tionary changes that we consider are not so much changes in the coding regions of
the gene under consideration as in its regulation. Protein coding regions are in general
preceded by a large number of relatively short regions where all sorts of regulatory
material can dock. Changes in these docking regions lead to changes in the production
rate of the gene product. Genes are more or less active in different parts of the body,
at different times during development and under different micro-environmental con-
ditions. The allelic type u should be seen as a vector of such expression levels. The
genotype to phenotype map φ maps these expression levels to the phenotypic traits
under consideration. It is also from this perspective that we should judge the assump-
tion of smallness of mutational steps ζ : the influence of any specific regulatory site
among its many colleagues tends to be relatively minor.
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The individual-based microscopic model from which we start is a stochastic birth
and death process, with density-dependence through additional deaths from ecological
competition, and Mendelian reproduction with mutation. We assume that the popu-
lation’s size scales with a parameter K tending to infinity while the effect of the

1interactions between individuals scales with K . This allows taking limits in which
we count individuals weighted with 1 . As an interpretation think of individuals thatK
live in an area of size K such that the individual effects get diluted with area, e.g.
since individuals compete for living space, with each individual taking away only a
small fraction of the total space, the probability of finding a usable bit of space being
proportional to the relative frequency with which such bits are around.

2.1 Model setup

The allelic trait space U is assumed to be a closed and bounded interval of R. Hence
the phenotypic trait space is compact. For any (u1, u2) ∈ U2, we introduce the fol-
lowing demographic parameters, which are all assumed to be smooth functions of the
allelic traits and thus bounded. Moreover, these parameters are assumed to depend in
principle on the allelic traits through the intermediacy of the phenotypic trait. Since
the latter dependency is symmetric, we assume that all coefficient functions defined
below are symmetric in the allelic traits.

f (u1, u2) ∈ R+: the per capita birth rate (fertility) of an individual with
genotype (u1, u2).

D(u1, u2) ∈ R+: the background death rate of an individual with geno-
type (u1, u2).

K ∈ N: a parameter scaling the per capita impact on resource
density and through that the population size.

C((u1,u2),(v1,v2))
K ∈ R+: the competitive effect felt by an individual with

genotype (u1, u2) from an individual with genotype
(v1, v2). The function C is customarily referred to as
competition kernel.

μK ∈ R+: the mutation probability per birth event (assumed to
be independent of the genotype). The idea is that μK

is made appropriately small when we let K increase.
σ > 0: a parameter scaling the mutation amplitude.

1 hmσ (u, h) dh = 
σ

m(u, ) dh: themutation law of amutant allelic trait u+h from an
σ

individual with allelic trait u, withm(u, h) dh a prob-
abilitymeasurewith support [−1, 1]∩{h | u+h ∈ U}.
As a result the support of mσ is of size ≤ 2σ .

Notational convention When only two alleles A and a co-circulate, we will use the
shorthand:

f AA = f (u A, u A), f Aa = f (u A, ua), faa = f (ua, ua), DAA = D(u A, u A),

C((u A, ua), (u A, u A)) = CAa,AA, etc.
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To keep things simplewe take ourmodel organisms to be hermaphroditeswhich in their
female role give birth at rate f and in their male role have probabilities proportional
to f to act as father for such a birth.
We consider, at any time t ≥ 0, a finite number Nt of individuals, each of them with

1 1 Nt Ntgenotype in U2. Let us denote by (u1, u2), . . . , (u , u ) the genotypes of these indi-1 2
viduals. The state of the population at time t ≥ 0, rescaled by K , is described by the
finite point measure on U2

Nt 1σ,K
ν = δ i i (2.1)t (u1,u2)

,
K

i=1

where δ(u1,u2) is the Dirac measure at (u1, u2).
Let (ν, g) denote the integral of the measurable function g with respect to the mea-
sure ν and Supp(ν) the support of the latter. Then (νσ,K , 1) = Nt and for anyt K

σ,K
(u1, u2) ∈ U2, the positive number (νt , 1{(u1,u2)}) is called the density at time t of
genotype (u1, u2).
LetMF denote the set of finite nonnegative measures on U2, equipped with the weak
topology, and define

n 1MK 1 1 n n U2= δ i i : n ≥ 0, (u1, u2), . . . , (u1, u2) ∈ .(u1,u2)K
i=1

σ,KAn individual with genotype (u1, u2) in the population ν reproduces with an indi-t
j j

j j 1,u2)vidual with genotype (u1, u2) at a rate f (u1, u2)
f (
ν

u
σ,K .

K ( , f )
With probability 1 − μK (u1, u2) reproduction follows the Mendelian rules, with a
newborn getting a genotype with coordinates that are sampled at random from each
parent.
At reproduction mutations occur with probability μK (u1, u2) changing one of the

two allelic traits of the newborn from u to u + h with h drawn from mσ (u, h) dh.
Each individual dies at rate

Nt 1σ,K j jD(u1, u2)+ C ∗ ν (u1, u2) = D(u1, u2)+ C((u1, u2), (u1, u2)).t K
j=1

The competitive effect of individual j on an individual i is described by an increase
i i j jC((u1,u2),(u1,u2))of K of the latter’s death rate. The parameter K scales the strength of

competition: the larger K , the less individuals interact. This decreased interaction
goes hand in hand with a larger population size, in such a way that densities stay
well-behaved. Appendix A summarizes the long tradition of and supposed rationale
for the representation of competitive interactions by competition kernels.
For measurable functions F : R → R and g : U2 → R, g symmetric, let us define

the function Fg onMK by Fg(ν) = F((ν, g)).
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For a genotype (u1, u2) and a point measure ν, we define the Mendelian reproduction
operator

AFg(ν, u
i
1, u

i
2, u1

j
, u2

j
)

1 1 j 1 ji i= F (ν, g) +  g(u1, u1) + F (ν, g)+ g(u1, u2)4 K K

1 1i j i j+F (ν, g) +  g(u2, u1) + F (ν, g) +  g(u2, u2) − Fg(ν),
K K

(2.2)

and form(u, h) dh a measure onR parametrized by u, we define theMendelian repro-
duction-cum-mutation operator

i i j jM Fg(ν, u1, u2, u1, u2)�� � � � ��1 1 1i j i j i= F (ν, g)+ g(u1 + h, u1) +F (ν, g) +  g(u1 + h, u2) mσ (u1, h)8 K K� � � � ��1 1i j i j i+ F (ν, g) +  g(u2 + h, u1) + F (ν, g) +  g(u2 + h, u2) mσ (u2, h)K K� � � � ��1 1i j i j j+ F (ν, g) +  g(u1, u1 + h) + F (ν, g) +  g(u2, u1 + h) mσ (u2, h)K K� � � � �� �1 1i j i j j+ F (ν, g) +  g(u1, u2 + h) + F (ν, g) +  g(u2, u2 + h) mσ (u2, h) dh
K K

− Fg(ν). (2.3)

The process (νσ,K , t ≥ 0) is aMK -valued Markov process with infinitesimal gener-t
ator defined for any bounded measurable functions Fg fromMK to R 
and ν = 1 n

i i byK i=1 δ(u1,u2)

L K Fg(ν)

n � � 
1i i σ,K i i i i= D(u1, u2)+ C ∗ νt (u1, u2) F (ν, g) −  
K

g(u1, u2) − Fg(ν)

i=1
n n j jf (u1, u2)i i i i i i j j+ (1− μK (u1, u2)) f (u1, u2) AFg(ν, u1, u2, u1, u2)K (ν, f )

i=1 j=1, j �=i

n n j jf (u1, ui i i i 2) i i j j+ μK (u1, u2) f (u1, u2) M Fg(ν, u1, u2, u1, u2). (2.4)
K (ν, f )

i=1 j=1, j �=i

The first term describes the deaths, the second term describes the births without muta-
tion and the third term describes the births with mutations. (We neglect the occurrence
of multiple mutations in one zygote, as those unpleasantly looking terms will become
negligible anyway whenμK goes to zero.) The density-dependent non-linearity of the
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death termmodels the competition between individuals andmakes selection frequency
dependent.
Let us denote by (H) the following three assumptions

(H1) The functions f , D, μK and C are smooth functions and thus bounded since U
is compact.Therefore there exist f̄  , D, C̄ < +∞ such that¯

0 ≤ f (·) ≤ f̄  , 0 ≤ D(·) ≤ D̄, 0 ≤ C(·, ·) ≤ C̄ .

(H2) r(u1, u2) = f (u1, u2)− D(u1, u2) > 0 for any (u1, u2) ∈ U2, and there exists
C > 0 such that C ≤ C(·, ·).  

(H3) For any σ > 0, there exists a function m̄σ : R → R+, m̄σ (h) dh <∞, such
that mσ (u, h) ≤ m̄σ (h) for any u ∈ U and h ∈ R.

σ,KFor fixed K , under (H1) and (H3) and assuming that E((ν , 1)) <∞, the existence0
and uniqueness in law of a process on D(R+,MK ) with infinitesimal generator L K

can be adapted from the one in Fournier and Méléard (2004) or Champagnat et al.
(2008). The process can be constructed as solution of a stochastic differential equa-
tion driven by point Poisson measures describing each jump event. Assumption (H2)
prevents the population from exploding or going extinct too fast.

3 The short term large population and rare mutations limit:
how selection changes allele frequencies

In this section we study the large population and rare mutations approximation of the
process described above, when K tends to infinity and μK tends to zero. The limit
becomes deterministic and continuous and the mutation events disappear.
The proof of the following theorem can be adapted from Fournier and Méléard

(2004).

Theorem 3.1 When K tends to infinity and if νK converges in law to a deterministic0
measure ν0, then the process (νσ,K ) converges in law to the deterministic continuous
measure-valued function (νt , t ≥ 0) solving

t

(νt , g) = (ν0, g) +  − (νs, (D + C ∗ νs)g)
0

f (u1, u2) f (v1, v2)(+ (νs ⊗ νs, g(u1, v1)+ g(u1, v2)
4(νs, f ) )+ g(u2, v1)+ g(u2, v2) ) ds.

Below we have a closer look at the specific cases of genetically mono- and dimorphic
initial conditions.
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3.1 Monomorphic populations

Let us first study the dynamics of a fully homozygote population with genotype
(u A, u A) corresponding to a unique allele A and genotype AA. Assume that the initial

0condition is N0
K δ(u A,u A), with

N K

converging to a deterministic number n0 > 0 whenK
K goes to infinity.
In that case the population process is N K δ(u A,u A) where N K is a logistic birth andt t

CAA,AAdeath process with birth rate f AA = f (u A, u A) and death rate DAA + N K .K t

tThe process ( N
K

K
, t ≥ 0) converges in law when K tends to infinity to the solution

(n(t), t ≥ 0) of the logistic equation

dn
(t) = n(t) ( f AA − DAA − CAA,AA n(t)), (3.1)

dt

with initial condition n(0) = n0. This equation has a unique stable equilibrium equal
to the carrying capacity:

f AA − DAA
n̄ AA = . (3.2)

CAA,AA

3.2 Genetic dimorphisms

Let us now assume that there are two alleles A and a in the population (and no muta-
tion). Then the initial population has the three genotypes AA, Aa and aa. We use
(N K

aa,t ) to denote the respective numbers of individuals with genotypeAA,t , N K
Aa,t , N K

AA, Aa and aa at time t , and (NAA, NAa, Naa) to indicate the typical state of the
population. Let

f AA NAA + f Aa NAa/2
p = 

f AA NAA + f Aa NAa + faa Naa

be the relative frequency of A in the gametes. Then the population dynamics t  → 
(N K

aa,t ) is a birth and death process with three types and birth ratesAA,t , N K
Aa,t , N K

bAA, bAa, baa and death rates dAA, dAa, daa defined as follows.

1
bAA = ( f AA NAA + f Aa NAa) p

2
( f AA NAA + 12 f Aa NAa)

2

= ,
f AA NAA + f AaY + faa Naa

1 1
bAa = ( f AA NAA + f Aa NAa) (1− p)+ ( faa Naa + f Aa NAa) p

2 2 (3.3)

( f AA NAA + 1 f Aa NAa)( faa Naa + 1 f Aa NAa)= 2 2 2 ,
f AA NAA + f Aa NAa + faa Naa
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1
baa = ( faa Naa + f Aa NAa) (1− p)

2
( faa Naa + 1

2 f Aa NAa)
2

= .
f AA NAA + f Aa NAa + faa Naa

CAA,AA NAA + CAA,Aa NAa + CAA,aa Naa
dAA = DAA + NAA,

K

CAa,AA NAA + CAa,Aa NAa + CAa,aa Naa
dAa = DAa + NAa, (3.4)

K

Caa,AA NAA + Caa,Aa NAa + Caa,aa Naa
daa = Daa + Naa .

K

To see this, it suffices to consider the generator (2.4) with μK = 0; for instance,
K (ν, f ) =  f AA NAA + f Aa NAa + faa Naa .

Proposition 3.2 Assume that the initial condition K−1(N K
aa,0) con-AA,0, N K

Aa,0, N K

verges to a deterministic vector (x0, y0, z0) when K goes to infinity. Then the normal-
ized process K−1(N K

Aa,t , N K
AA,t , N K

aa,t ) converges in law when K tends to infinity to
the solution (x(t), y(t), z(t)) = ϕt (x0, y0, z0) of

⎛ ⎞ 
x(t)d ( )⎝ ⎠y(t) = X x(t), y(t), z(t) , (3.5)

dt z(t)

where

⎛ ⎞ 
b̃AA(x, y, z)− d̃AA(x, y, z)

X (x, y, z) = b̃Aa(x, y, z)− d̃Aa(x, y, z) ⎠ , (3.6)⎝ 
b̃aa(x, y, z)− d̃  aa(x, y, z)

with

˜ ( f AAx + 2
1 f Aa)( f AAx + 2

1 f Aa y)
bAA(x, y, z) = ,

f AAx + f Aa y + faaz

d̃AA(x, y, z) = (DAA + CAA,AA x + CAA,Aa y + CAA,aa z) x,

and similar expressions for the other terms.

Due to its special functional form, the vector field X has some particular properties.
We summarize some of them in the following Propositions.

Proposition 3.3 The vector field (3.6) has two fixed points (n̄ AA, 0, 0) and (0, 0, n̄aa)

(denoted below by AA and aa) where

f AA − DAA faa − Daa
n̄ AA = , and n̄aa = .

CAA,AA Caa,aa
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The (3 × 3) Jacobian matrix DX (n̄ AA, 0, 0) has the eigenvalues − f AA + DAA

(negativebyassumption(A2)), −Caa,AAn AA − Daa < 0, and

SAa,AA = f Aa − DAa − CAa,AAn̄ AA.

An analogous result holds for DX (0, 0, n̄aa).

This result follows from a direct computation left to the reader.
As we will see later on, the eigenvalue SAa,AA will play a key role in the dynamics of
trait substitutions. It describes the initial growth rate of the number of Aa individuals
in a resident population of AA individuals and is called the invasion fitness of an Aa
mutant in an AA resident population. It is a function of the allelic traits u A and ua .

Notation When we wish to emphasize the dependence on the two allelic traits
(u A, ua), we use the notation

SAa,AA = S(ua; u A) = f (u A, ua)− D(u A, ua)

f (u A, u A)− D(u A, u A)− C((u A, ua), (u A, u A)) . (3.7)
C((u A, u A), (u A, u A))

Note that the function S is not symmetric in u A and ua and that moreover

S(u A; u A) = 0. (3.8)

In Appendices B and C the long term behavior of the flow generated by the vector
field (3.6) is analyzed in more detail. The main conclusions are:

Proposition 3.4 First consider the case when the mutant and resident traits are pre-
cisely equal. Then the total population density goes to a unique equilibrium and the rel-

2ative frequencies of the genotypes go to the Hardy–Weinberg proportions [ p , p(1−p),
(1− p)2], i.e., there exists a globally attracting one-dimensional manifold filled with
neutrally stable equilibria parametrized by p, with as stable manifolds the populations
with the same p.
For the mutant and resident sufficiently close, this attracting manifold transforms into
an invariant manifold connecting the pure resident and pure mutant equilibria. When
SAa,AA > 0 the pure resident equilibrium attracts only in the line without any mutant
alleles and its local unstable manifold is contained in the aforementioned invariant
manifold (Theorem C.1). When moreover the traits are sufficiently far from an evolu-
tionarily singular point (defined by ∂1S(u A; u A) = 0) the movement on the invariant
manifold is from the pure resident to the pure mutant equilibrium, and any move-
ment starting close enough to the invariant manifold will end up in the pure mutant
equilibrium (Theorem C.2).
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4 The long term large population and rare mutations limit: trait substitution
sequences (TSS)

In this section we generalize the clonal theory of adaptive dynamics to the diploid
case. We again make the combined large population and rare mutation assumptions,
except that we now change the time scale to stay focused on the effect of the muta-
tions. Recall that the mutation probability for an individual with genotype (u1, u2)

1is μK ∈ (0, 1]. Thus the time scale of the mutations in the population is . WeK μK
study the long time behavior of the population process in this time scale and prove that
it converges to a pure jump process stepping from one homozygote type to another.
This process will be a generalization of the simple TSS that for the haploid case were
heuristically derived in Dieckmann and Law (1996), and Metz et al. (1996) where
they were called ’Adaptive Dynamics’, and rigorously underpinned in Champagnat
(2006), Champagnat and Méléard (2011).
Let us define the set of measures with single homozygote support.

M0 = n̄ AAδ(u A,u A) ; u A ∈ U and n̄ AA the equilibrium of (3.1) .

Wewill denote by J the subset of U where ∂1S(u; u) vanishes. Wemake the following
hypothesis.

Hypothesis 4.1 For any u ∈ J we have

d
∂1S(u; u) = 0.

du

This hypothesis implies that the zeros of ∂1S(u; u) are isolated (see Dieudonné 1969),
and since U is compact, J is finite.

∗Definition 4.2 The points u ∈ U such that ∂1S(u∗; u∗ ) = 0 are called evolutionary
singular strategies (ess).

Note that because of (3.8),

∗ ∗ ∂2S(u∗; u ) = ∂1S(u∗; u ) = 0.

Let us now define the TSS process which will appear in our asymptotics.

Definition 4.3 For any σ > 0, we define the pure jump process (Zσ , t ≥ 0) witht
values in U , as follows: its initial condition is u A0 and the process jumps from u A to
ua = u A + h with rate

[S(u A + h; u A)]+
f (u A, u A) n̄ AA mσ (u A, h) dh. (4.1)

f (u A, u A + h)
Remark 4.4 Under our assumptions, the jump process Zσ is well defined on R+.
Note moreover that the jump from u A to ua only happens if the invasion fitness
S(ua; u A) > 0.
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We can now state our main theorem.

σ,K γKTheorem 4.5 Assume (H). Assume moreover that ν = K δ(u A0 ,u A0 )
with γK con-0 K

verging in law to n̄ A0A0 uniformly bounded in L1 and such that ∂1S(u A0 , u A0) = 0.
(That is, the initial population is monomorphic for a type that is not an ess). Assume
finally that

ln K 1∀ V > 0, « « exp(V K ), as K →∞. (4.2)
σ KμK

For η > 0 introduce the stopping time

σ,K(ν , d(., J ))
T σ,K

t/KμK= inf t > 0; ≤ η , (4.3)η σ,K(ν , 1)t/KμK

where d is the distance on the allelic trait space.
Extend MF with the cemetery point ∂ .
Then there exists σ0(η) > 0 such that for all 0 < σ < σ0(η), the process
σ,K
(ν 1 T σ,K + ∂1 T σ,K ; t ≥ 0) converges (in the sense of finite dimensionalt/KμK { η ≥t} { η <t}
distributions on MF equipped with the topology of the total variation norm) to the
M0-valued Markov pure jump process (Aσt ; t ≥ 0) with

At
σ = n̄(Zt

σ )δ(Zt
σ ,Zt

σ )1{Tησ≥t} + ∂1{Tησ<t},

where

{ }
T σ = inf t > 0; d(Zσ , J ) ≤ η .η t

The process (Aσt ; t ≥ 0) is defined as follows: Aσ = n̄ A0A0δ(u A0 ,u A0 )
and Aσ jumps0

from n̄ A,Aδ(u A,u A) to n̄a,aδ(ua ,ua)

with ua = u A + h and infinitesimal rate (4.1).

Remark 4.6 Close to singular strategies the convergence to the TSS slows down. To
arrive at a convergence proof it is therefore necessary to excise those close neighbor-
hoods. This is done by means of the stopping times T σ,K and T σ : we only considerη η

the process for as long as it stays sufficiently far away from any singular strategies.
Assumptions (H) imply that the thus stopped TSS (Zt

σ )t is well defined on R+. Since
its jump measure is absolutely continuous with respect to the Lebesgue measure, it
follows that T σ converges almost surely to∞when η tends to 0 (for any fixed σ > 0).η

We now roughly describe the successive steps of the mutation, invasion and substi-
tution dynamics making up the jump events of the limit process, following the bio-
logical heuristics of Dieckmann and Law (1996), Metz et al. (1996), Metz (2012).
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The details of the proof are described in Appendix D, based on the technical
Appendices B and C.
The time scale separation that underlies the limit in Theorem 4.5 both simplifies the
processes of invasion and of the substitution of a new successful mutant on the pop-
ulation dynamical time scale and compresses it to a point event on the evolutionary
time scale. The two main simplifications of the processes of mutant invasion and sub-
stitution are the stabilization of the resident population before the occurrence of a
mutation, simplifying the invasion dynamics, and the restriction of the substitution
dynamics to a competition between two alleles. In the jumps on the evolutionary time
scale t/KμK these steps occur in opposite order. First comes the attempt at invasion
by a mutant, then, if successful, followed by its substitution, that is, the stabilization
to a new monomorphic resident population. After this comes again a waiting time till
the next jump.
To capture the stabilization of the resident population, we prove, on the assumption
that the starting population is monomorphic with genotype AA, that for arbitrary fixed

σ,K
ε > 0 for large K the population density (νt ,1{( u A)})with high probability staysu A,

in the ε-neighborhood of n̄ AA until the next allelic mutant a appears. To this aim, we
use large deviation results for the exit problem from a domain (Freidlin and Wentzel
1984) already proved in Champagnat (2006) to deduce that with high probability the
time needed for the population density to leave the ε-neighborhood of n̄ AA is bigger
than exp(V K ) for some V > 0. Therefore, until this exit time, the rate of mutation
from AA in the population is close to μK pAA f AA K n̄ AA and thus, the first mutation
appears before this exit time if one assumes that

1 V K« e .
KμK

Hence, on the time scale t/KμK the population level mutation rate from AA parents
is close to

pAA f AA n̄ AA.

To analyze the fate of these mutants a, we divide the population dynamics of the
mutant alleles into the three phases shown in Fig. 1, in a similar way as was done in
Champagnat (2006).
In the first phase (between time 0 and t1 in Fig. 1), the number of mutant individuals
of genotype Aa or aa is small, and the resident population with genotype AA stays
close to its equilibrium density n̄ AA. Therefore, the dynamics of themutant individuals
with genotypes Aa and aa is close to a bi-type birth and death process with birth rates
f Aa y+2 faaz and 0 and death rates (DAa +CAa,AAn̄ AA) y and (Daa +Caa,AAn̄ AA) z
for a state (y, z). If the fitness SAa;AA is positive (i.e., the branching process is super-
critical), the probability that the mutant population with genotype Aa or aa reaches
K ε > 0 at some time t1 is close to the probability that the branching process reaches

+K ε > 0, which is itself close to its survival probability [SAa;AA] when K is large.f Aa
Assuming the mutant population with genotype Aa or aa reaches K ε > 0, a second

σ,K σ,Kphase starts.When K →+∞, the population densities ((νt ,1{AA}), (νt ,1{Aa}),
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the total mass of the limit process is not continuous, which would be in contradiction
σ,Kwith the C-tightness of the sequence (ν , t ≥ 0), which would hold in case oft/KμK

convergence in law for the Skorohod topology (since the jump amplitudes are equal
to K

1 and thus tend to 0 as K tends to infinity).
However, certain functionals of the process converge in a stronger sense. Let us for
example consider the average over the population of the phenotypic trait φ. This can
be easily extended to more general symmetric functions of the allele.

Theorem 4.7 Assume that u → φ(u, u) is strictly monotone. Define

  σ,K(ν , φ)
T σ,K

t/KμK= inf t > 0, d , Jφ ≤ η ,φ,η σ,K(ν , 1)t/KμK

where Jφ = {φ(u, u); u ∈ J }.
Under the assumptions of Theorem 4.5, the process

  σ,K(ν , φ)
(Rσ,K

t/KμK
t , t ≥ 0) = 1{T σ,K≥t}, t ≥ 0

σ,K φ,η(ν , 1)t/KμK

converges in law in the sense of the Skorohod M1 topology to the process
(φ(Zσ Zt

σ )1{T σ ≥t}, t ≥ 0) where T σ = inf{t > 0, d(φ(Zσ , Zt
σ ), Jφ) ≤ η}.t φ,η φ,η t

The Skorohod M1 topology is a weaker topology than the usual J1 topology, allow-
ing processes with jumps tending to 0 to converge to processes with jumps (see Sko-
rohod 1956). For a càd-làg function x on [0, T ], the continuity modulus for the M1
topology is given by

wδ(x) = sup d(x(t), [x(t1), x(t2)]).
0≤t1≤t≤t2≤T ;
0≤t2−t1≤δ

Note that if the function x is monotone, then wδ(x) = 0.
Proof From the results of Theorem 4.5, it follows easily that finite dimensional dis-
tributions of (Rσ,K , t ≥ 0) converge to those of (φ(Zσ , Zt

σ ), t ≥ 0). By Skorohodt t
(1956), Theorem 3.2.1, it remains to prove that for all η > 0,

lim lim supP(wδ(R
σ,K
) > η) = 0.t

δ→0 K→∞ 

The rate of mutations of (Rσ,K , t ≤ T ) being bounded, the probability that two muta-t
tions occur within a time less that δ is o(δ). It is therefore enough to study the case
where there is at most one mutation on the time interval [0, δ]. As in the proof of
Proposition 3.2, with probability tending to 1 when K tends to infinity, the process
(Rσ,K , t ≥ 0) is close to FWφ (t/KμK ) where FWφ is defined byt

(ϕt (M0),Wφ)
FWφ (t) = ,(ϕt (M0), 1) 
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and ⎛ ( )⎞ 
φ u A, u A( )⎝ ⎠Wφ = φ u A, ua . ( )
φ ua, ua

(Recall that ϕt is the flow defined by the vector field; see Proposition 3.2.) Away from
invading mutations, the function FWφ is constant and the modulus of continuity tends
to 0. Around an invading mutation, it follows from Corollary C.4 that the function
FWφ is monotone. Therefore the same conclusion holds.  o

5 Small mutational steps: the time scale of the canonical equation

We are now interested to study the convergence of the TSS when the mutation ampli-
tude σ tends to zero. Without rescaling time, the TSS trivially tends to a constant. In

1order to get a nontrivial limit, we have to rescale time adequately, namely with
σ 2
,

since S(u A; u A) = 0.
Theorem 5.1 Assume that the initial values Z0

σ are uniformly bounded in L2 and that
they converge to Z0

0 as σ tends to 0. Then, the sequence of processes (Zσ 
t/σ 2
, t ≥ 0) 

tends in law in D([0, T ], R) to the deterministic (continuous) solution (u(t), t ≥ 0) 
of the canonical equation

d
u(t) = f (u(t), u(t)) n̄(u(t)) h [h ∂1S(u(t); u(t))]+ m(u(t), h) dh, (5.1)

dt
R

where

f (u, u) − D(u, u) 
n̄(u) = . 

C((u, u), (u, u)) 

The proof of this theorem is similar to the proof of Theorem 4.1 in Champagnat and
Méléard (2011).
In this general form the canonical equation is still of little practical use, although

already some qualitative conclusions can be drawn from it. The trait increases when-
ever the selection gradient ∂1S(u; u) is positive and decreases when it is negative,
i.e., movement is always uphill with respect to the current allelic fitness landscape
S(·; u). The equilibria of (5.1) correspond to the allelic evolutionarily singular strat-
egies, except that close to those strategies (5.1) is no longer applicable since in their
neighborhood the convergence of the underlying individual-based process to the sim-
ple TSS becomes slower and slower. So all we can deduce from the canonical equation
(5.1) is that for small mutational steps the trait substitution sequencewill move to some
close neighborhood of an allelic evolutionarily singular strategy.

Remark 5.2 If we had considered extended TSSes taking values in the powers of the
trait space as is done in Metz et al. (1996), the convergence to the canonical equation
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would similarly have gone awry due to a slowing down of the convergence near evo-
lutionarily singular strategies, and the occurrence of polymorphism close to some of
them, with adaptive branching as a particularly salient example; branching can only
be investigated with a time scaling different from the one for the canonical equation
(Metz et al. 1996; Champagnat and Méléard 2011).

To get from the previous observation to some biological conclusion we need to
decompose the genotypic fitness function S into its ecological and developmental
components

SAa,AA = S̃(φAa;φAA) = f̃ (φAa) − D̃(φAa) − C̃(φAa, φAA) 
f̃ (φAA)−D̃(φAA) ,

C̃(φAA,φAA) (5.2)
φAa = φ(u A, ua), φAA = φ(u A, u A), f̃ (φAa) = f (u A, ua), etc. 

and

∂1S(u; u) = ∂1 S̃(φ(u; u);φ(u; u))∂1φ(u, u). (5.3)

Hence, the allelic singular strategies are of two different types, ecological, character-
ized by ∂1 S̃(φ(u; u);φ(u; u)) = 0, and developmental, characterized by ∂1φ(u, u) = 
0. On the phenotypic level the latter are perceived as developmental constraints
(cf. Van Dooren 2000).
To arrive at quantitative conclusions we have to make additional assumptions about

the within individual processes. One often used assumption is that the mutation dis-
tribution is symmetric. With that assumption (5.1) reduces to

d 1
u(t) = n̄(u(t)) Va(u(t))∂1S(u(t); u(t)), (5.4)

dt 2

with Va the allelic mutational variance. (The factor 12 comes from the fact that the inte-
gration is only over a half-line.) This equation can easily be lifted to the phenotypic
level as

d
U (t) = n̄(U (t)) Vp(U (t))∂1 S̃(U (t);U (t)), (5.5)

dt

with U = φ(u, u) and Vp the phenotypic mutational variance, an equation fully
phrased in population level observables. The factor 12 is canceled by a factor 2 com-
ing from the fact that the fitness S̃ refers to heterozygotes with only one mutant
allele, while after a substitution the other allele is also a mutant one. For this equa-
tion only the ecological singular strategies remain while developmental constraints
appear in the form of Vp becoming zero (cf. Van Dooren 2000). [It is also pos-
sible to lift (5.1) to the phenotypic level. However, the truncated first and sec-
ond moments that appear in the resulting expression are no longer well-established
statistics that can be measured independent of any knowledge of the surrounding
ecology.]
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6 Discussion

This paper forms part of a series by a varied collection of authors that aim at putting the
tools of adaptive dynamics on a rigorous footing (Metz et al. 1992, 1996; Dieckmann
and Law 1996; Geritz et al. 1998; Champagnat et al. 2008; Champagnat 2006; Durinx
et al. 2008; Méléard and Tran 2009; Champagnat and Méléard 2011; Metz 2012;
Klebaner et al. 2011; Bovier and Champagnat 2012), (see also Diekmann et al. 2005;
Barles and Perthame 2007; Carrillo et al. 2007; Desvillettes et al. 2008). It is the first
in the series to treat the individual-based justification of the adaptive dynamics tools
in a genetic setting. As such it forms the counterpart of the more heuristic, but also
more general (Metz 2012). We only consider unstructured Lotka–Volterra type popu-
lations and single locus genetics, in line with applied papers such as Kisdi and Geritz
(1999), Van Dooren (1999), Proulx and Phillips (2006), Peischl and Bürger (2008).
For such models we proved the convergence (for large population sizes and suitably
small mutation probabilities) of the individual-based stochastic process to the TSS of
adaptive dynamics, and the subsequent convergence (for small mutational steps) of the
TSS to the canonical equation. Not wholly unexpectedly, the results are in agreement
with the assumed framework of the more applied work. Yet, to arrive at a rigorous
proof new developments were needed, like the derivation of a rigorous estimate for
the probability of invasion in a dynamic diploid population (Appendix D), a rigorous,
geometric singular perturbation theory based, invasion implies substitution theorem
(Appendix C), and the use of the Skorohod M1 topology to arrive at a functional
convergence result for the TSS (Sect. 4).
The main differences of Mendelian models compared to the clonal ones in Dieck-

mann and Law (1996),Metz et al. (1996) and successors, is a difference in the invasion
probability of a mutant due to the additional noise inherent in the Mendelian mecha-
nism, and the occurrence of an additional factor 2 in the canonical equation due to the
fact that mutants invade as heterozygotes but establish as homozygotes. In addition
there is the conceptual point that developmental constraints that appear phenotypi-
cally as restrictions on the mutational covariance matrix are on the allelic level seen
as restrictions on the allelic selection gradient.
We finish with listing the remaining biological limitations of the present results and

the corresponding required further developments.
The first limitation is the assumption of an unstructured population. For a fair num-

ber of real populations the assumption of random deaths appears to match the obser-
vations, but no organisms reproduce in a Poisson process starting at birth. Moreover,
in nature a good amount of population regulation occurs through processes affecting
the birth rate, as when a scarcity of resources translates in a delay of maturing to
the reproductive condition. Durinx et al. (2008) heuristically treats very general life
histories (although only for a finite number of birth states, a finite number of vari-
ables channeling the interaction between individuals, and a deterministic population
dynamics converging to a unique equilibrium) based on the population dynamical
modeling framework of Diekmann et al. (1998, 2001, 2003). However, it only con-
siders the convergence to the canonical equation, starting from the TSS, conjectured
to be derivable from the population dynamical model, with the goal of relating its
coefficient functions to observationally accessible statistics of individual behavior.
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In fact, even the convergence to a deterministic population model, as in Theorem 3.1,
does not easily fit in the scheme of Fournier and Méléard (2004) in the (biologically
common) cases where the movement of individuals through their state spaces depends
directly or indirectly on the population size and composition. (The special case where
this movement decomposes in a product of a population- and a state-dependent term
is covered in Tran (2006, 2008), Ferrière and Tran (2009), an extension to the ”Dap-
nia” models of Diekmann et al. (2010), Diekmann and Metz (2010) in Metz and Tran
(2012).)
A further limitation is that we assumed the trait to be governed by only a sin-

gle locus [in keeping with a well-established tradition starting with Kimura (1965)].
The more locus case still has to be worked out. The superficially more easy case
with infinitely many loci, so that no mutant ever occurs on the same locus, is consid-
ered from a heuristic perspective in Metz (2012), Metz and de Kovel (2012). How-
ever, the problem of rigorously setting up the underlying individual-based model
as a limit for models with an ever increasing number of loci still needs to be
tackled.
The final extension to be considered is to higher dimensional geno- and phenotypic

trait spaces.We conclude with a heuristic discussion of the form such an extension will
take. On the genotypic level the canonical equation will take essentially the same form
as (5.1) and (5.4), with scalar u, h and ∂1S replaced by vectors, and the mutational
variance by a covariance matrix, just as this is written in Dieckmann and Law (1996),
Champagnat et al. (2008), Durinx et al. (2008), Champagnat and Méléard (2011) for
the clonal and Metz (2012), Metz and de Kovel (2012) for the Mendelian case. How-
ever, there is one remaining snag,which is the reasonwhyweopted for treating only the
one-dimensional case. In the directions orthogonal to the selection gradient the fitness
landscape around the resident strategy has the same shape as at an evolutionarily singu-
lar strategy. In the one-dimensional casewe opted for just removing the neighborhoods
of the singular strategies. If we were to apply the same strategy for the higher dimen-
sional case wewould have to remove all residents. The way out is by observing that the
directions where something awry may occur are but a very small minority among all
possible directions in which mutations may occur. Heuristic calculations suggest that
the trouble only occurs in a narrow double horn with a boundary that at the resident
strategy is orthogonal to the selection gradient, so that when the mutational step size σ 
goes to zero, the probability of amutant ending up in that horn decreases as somehigher
power ofσ .Moreover, in the directions orthogonal to the selectiongradient thefitness is
a quadratic function, making the probability of invasion scale not linearly but quadrat-
ically with the size of any mutational steps in those directions. The main problem with
such mutants is that some of them may on the population dynamical time scale keep
coexisting with the resident. Further heuristic calculations then suggest that for such a
resident pair the probability of invasion of a subsequent mutant more in the direction of
the selection gradient is to the lowest order of approximation - in the distance between
the two residents - equal to the probability of invasion in a monomorphic population
of the average type, and that such a mutant ousts both residents. Therefore the general
(i.e., more type) TSS is close to a simple TSS in which those untoward mutants are
just removed from the consideration, the smaller the mutational step the closer. We
put rigorously underpinning this scenario forward as the last of our list of challenges.
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Appendix A: A few words about competition kernels

In the ecological literature themodels described in Sect. 2 are known as Lotka–Volterra
competition models (Lotka 1925; Volterra 1931). The early LVmodels were all deter-
ministic, phrased as ODEs corresponding to large population limits such as considered
in the Sect. 3, without mutations. The determinism together with the assumption of
clonal reproduction obviated the need to separately model birth and deaths: compe-
tition was represented as its overall effect on the population growth rate. The later
stochastic models, e.g. (Dieckmann and Law 1996; Metz et al. 1996), usually put the
effect of competition only in the death rate, as otherwise the chosen linear form of the
interaction might lead to negative birth rates.
The simplest case is when C = 0. This is the case customarily put forward in

population genetics textbooks as starting point for the derivation of their determin-
istic models for gene frequency change by selection, but for the fact that population
geneticists usually work in discrete time. The unnatural consequence that the popu-
lation either will die out or will keep growing indefinitely is made invisible by trans-
forming to relative frequencies. The more realistic case of non-selective competition,

 

C((u1, u2), (v1, v2)) = C(v1, v2), leads to the same population genetical equations.
The selective pressures on the gene frequencies then do not change with the popula-
tion size or composition as they are caused only by differences in the fixed mortality
components and the fertilities.
Where in population genetics the early selectionmodels assumed indefinitely grow-

ing populations, the early stochastic models, in continuous time the Moran-type mod-
els, assumed constant population sizes. Although later variable population sizes were
introduced, it was just assumed that these sizes neither become zero nor grow too large
too often (Karlin 1968; Seneta 1974; Heyde and Seneta 1975; Heyde 1977, 1983;
Donnelly and Weber 1985; Klebaner 1988). Stochastic models with the population
regulation represented in accordance with ecological tradition are relative newcomers
(e.g. Metz and Redig 2012).
The case where the additional death rate incurred by an individual from its compet-

itive interaction depends only on the genotype of the focal individual and not on that of
its competitors is known in the ecological literature as purely density dependent selec-
tion (Roughgarden 1971, 1976, 1979) , and in the mathematical literature as logistic
population regulation. This logistic case can be generalized toC((u1, u2), (v1, v2)) =
  

C(u1, u2)C(v1, v2), when it is not the total density but, e.g. the total biomass that deter-
mines the felt competitive effect and different phenotypes have different biomasses.
A further generalization is that population growth is regulated by a finite number of
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variables, think for example of the combination of space and nitrogen depletion:
k

C((u1, u2), (v1, v2)) = Ci (u1, u2)Ci (v1, v2). 

i=1

The vector (C1, . . . , Ck)
T is known as the impact of the individuals on their envi-

ronment, and the vector (C1, . . . , Ck) as their sensitivity (Meszéna et al. 2006). The
latter generalization is evolutionarily richer in that it can allow diversification, which
is excluded by the earlier considered kernels. In Durinx et al. (2008) it is shown heuris-
tically that close to an evolutionarily singular strategy any clonal model evolutionarily
behaves like a Lotka–Volterra competition model of the above type with k smaller
than or equal to one plus the dimension of the trait space.
The above considerations all come from either ecology or population genetics,

and originally were phrased for a fixed finite number of types, clonal ones in the
ecological and Mendelian ones in the population genetics literature. The first model
characterizing these types in terms of traits was formulated by MacArthur and Levins
(1964), (see also MacArthur 1970). This model was later used to great effect by a
large number of authors (e.g. Levins 1968; MacArthur and Levins 1967; May 1973,
1974; Roughgarden 1976, 1979; Christiansen and Fenchel 1977; Slatkin 1980), (but
see also Roughgarden 1989), to study species packing population dynamically as well
as evolutionarily. The first genetic model of this type was studied by Christiansen
and Loeschcke (1980, 1987), Loeschcke and Christiansen (1984), who considered
the possibilities for the coexistence of finite numbers of genotypes. Explicit trait-
based LV-style birth and death process models with mutation only appeared on the
scene with the birth of adaptive dynamics (Dieckmann and Law 1996; Metz et al.
1996).
The most common assumption in trait-based LV competition models (MacArthur

and Levins 1964; MacArthur 1970, 1972; Roughgarden 1979) is that

C((u1, u2), (v1, v2)) 

Q(u1, u2)q((u1, u2); z)Q(v1, v2)q(v1, v2; z) dz= C((u1, u2), (u1, u2)) . 
Q2(u1, u2)q2((u1, u2); z) dz

Here z ∈ R is customarily interpreted as a trait of a fine-grained self-renewing resource
with a fast logistic dynamics that is supposed to be non-evolving. That is, it is assumed
that a resource unit comprises close to infinitely many very small particles, so that the
resource dynamics can be treated as deterministic and that the turnover of the resource
is very fast so that it effectively tracks its deterministic equilibrium as set by the current
consumer population. Functions of (u1, u2) depend again on this argument through φ.
Q is the average rate constant for the encounter and absorption of resource particles
by our consumer individuals, expressed in resource units, while q tells how this use
is spread over the resource axis.
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The most commonly used parametric form is

f (u1, u2) − D(u1, u2) =: r(u1, u2) = r̄ , 

r(u1, u2) (φ(u1, u2) − φ0)2=: k(u1, u2) = exp − ,
C(u1, u2), (u1, u2)) 2σ 2k

(z − φ(u1, u2))2
Q(u1, u2)q((u1, u2); z) = exp − , 

σ 2a

leading to

(φ(u1, u2) − φ(v1, v2))2 (φ(u1, u2) − φ0)2
C((u1, u2), (v1, v2)) = r̄ exp − + 

2σ 2 2σ 2a k

Deterministic models based on this kernel have all sorts of nice mathematical prop-
erties, but Adaptive Dynamically they are a bit degenerate in that when σa < σk the
final stop for TSS that result from the long term large population and rare mutations
limit, as treated in Sect. 4, is a Gaussian distribution over trait space (cf. Roughgarden
1979) whereas for almost any slightly different model the final stop has finite support
(Gyllenberg and Meszéna 2005; Leimar et al. 2008). For this reason adaptive dynam-
ics researchers started to use slightly modified expressions for k or C . [When K is
still finite, the number of branches visible in simulations also stays finite, due to the
early abortion of incipient ones, with the number of recognizable branches becom-
ing larger with increasing K and σk/σa (Claessen et al. 2007, 2008).] Exploring the
consequences of all sorts of different competition kernels by now has become a little
growth industry; a good sample may be found in Doebeli (2011).

Remark A.1 The description of the mechanism underlying the competition kernel
given above was a bit brash, in keeping with biological tradition. Starting from an
underlying fast logistic resource dynamics actually gives

f (u1, u2) = y(φ(u1, u2)) v(φ(u1, u2), z)w(z)kR(z)dz − d1(φ(u1, u2)) , 
D(u1, u2) = d2(φ(u1, u2))

w(z)kR(z)
C((u1, u2), (v1, v2)) = y(x) v(φ(u1, u2); z) v(φ(v1, v2); z) dz

rR(z) 

and hence

1/2
w(z)kR(z)

Q(u1, u2)q((u1, u2); z) = V v(φ(u1, u2); z) 
rR(z) 

with y the yield, i.e., y−1 is the resource mass needed to make one consumer, w 
the mass of a resource unit, v the rate constant of consumers encountering and eating
resource units, d1 the rate constant of consumermass loss due to basal metabolism, and
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d2 the consumermortality rate, rR the lowdensity reproductive rate of the resource, and
kR its carrying capacity. V is some unknown proportionality constant. (In the above
terms the time scale separation results from both rR and v being very large and y very
small with the product of y and v being O(1).) Apparently the interpretation of Q and
q is more complicated than the standardly attributed one based on the assumption of
constant wkR/rR.
Although time-honoured, the above described mechanistic underpinning is not with-
out flaws, as explicitly laid out by Chesson (1990). In the derivation it is assumed
that, but for the indirect coupling through the consumers, the dynamics of different
resources are independent. Even very similar resource populations do not compete.
However, this is only possible if their ecological properties depend everywhere dis-
continuously on the trait z, since the assumed logistic nature of the resource dynam-
ics means that there is non-negligible competition between equal resource parti-
cles. The alternative assumption alluded to by MacArthur (1972) that the intrinsic
resource dynamics is of a chemostat type (as can be approximately the case for
seeds from perennial plants) also is problematical: Under the reasonable assump-
tion that the resource mass removed by a consumer population equals the mass
this population acquires, the detrimental effect from competition becomes non-lin-
ear in the competitor densities, instead of being simply representable by a competition
kernel.

Appendix B: Properties of the vector field (3.6.)

B.1 Neutral case

We first consider the case of neutrality between the A and a alleles, namely fa1a2 = f ,
Da1a2 = D0 and Ca1a2,b1b2 = D1 for a1a2, b1 b2 = AA, Aa, aa. We have in this case
with n = x + y + z

x + y/2
p = 

n

which is the proportion of allele A. We get for the vector field

⎛ ⎞ 
f (x + y/2) p − (D0 + D1n)x

X0 = f (x + y/2)(1− p) + f (z + y/2) p − (D0 + D1n)y⎝ ⎠ 
f (z + y/2)(1− p) − (D0 + D1n)z

Theorem B.1 The vector field X0 has a line of fixed points given by

⎛ ⎞
2v 2 − 2 n0 v + n0⎜ 4 n0 ⎟⎜ 2 ⎟ 

r0(v) = ⎜ − v 22
− 
n

n
0
0 ⎟ , ⎜ ⎟ ⎝ ⎠2v 2 + 2 n0 v + n0

4 n0
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with n0 = ( f − D0)/D1. That is, we have for any v, X0(r0(v)) = 0. The parametri-
zation with v is chosen such that the differential of the vector field X0 at each point of
the curve r0, DX0(r0(v)), has the three eigenvectors

⎧ ⎫2⎪ v 2 − 2 n0 v + n0 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 4 n0 ⎪ ⎨ ⎬ 
2

e1(v) = r0(v) = −v 2 − n0 , ⎪ ⎪ ⎪ 2 n0 ⎪ ⎪⎪ 2 ⎪ ⎪ ⎩ v 2 + 2 n0 v + n0 ⎭ 
4 n0⎛ ⎞v − n0

2 n0dr0(v) ⎜ ⎟ ⎜− v ⎟e2(v) = = , ⎝ n0 ⎠dv 
v + n0
2 n0⎛ ⎞ 

d2r0 1 1⎝ ⎠e3(v) = = −2
2 2n0dv 1

with respective eigenvalues D0 − f < 0, 0, and − f < 0. The corresponding eigen-
vectors of the transposed matrix DX0(r0(v))t , to be denoted by β1(v), β2(v) and
β3(v) can be normalized such that for any i, j, ∈ {1, 2, 3} and any v 

(βi (v), e j (v)) = δi, j . 

Proof This is easily seen by using the standard variables: total population density,
n = x + y + z, relative frequency of the A allele, p = (x + y/2)/n, and excess
heterozygosity realtive to the Hardy–Weinberg proportion, h = y/n − 2p(1− p).
In these new coordinates, the vector field X0 becomes the vector field Y0 given by

⎛ ⎞ 
f − (D0 + D1 n) n

Y0(n, p, h) = 0 .⎝ ⎠ 
− f h

This vector field obviously vanishes on the line n = n0, h = 0. One gets immedi-
ately the results by taking v = n0 (1 − 2 p). The spectral results follow by standard
computations. o 

B.2 Small perturbations

We now assume that mutations are small. We denote by ζ the variation of the allelic
trait ζ = ua − u A. The vector field depends on ζ and will be denoted by X (ζ, M).
We assume regularity in ζ and M , and observe that X (0, M) = X0(M).
In practice we will apply our results to the vector field (3.6) which has a particu-

lar algebraic form. It is however convenient to derive the perturbation results in full
generality. We will come back to the particular case of (3.6) in Sect. C.
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From now on, we will assume that the vector field X (ζ, ·) satisfies the following
properties for any x , any z and any ζ 

( ) ( )
Xx ζ, (0, 0, z) = X y ζ, (0, 0, z) = 0, 

and

Xz(ζ, (x, 0, 0)) = X y(ζ, (x, 0, 0)) = 0. (B.1)

This comes from the fact that pure homozygotic populations stay pure homozygotic
forever.
Our goal in this section is to understand the time asymptotic of the flow associated

to the vector field X (ζ, M).
Since the curve r0 is transversally hyperbolic (even transversally contracting, see

Proposition B.1) for the vector field X0, we can apply Theorem 4.1 in Hirsh et al.
(1977) to conclude that for ζ small enough, there is an attracting curve rζ invariant
by X . Moreover, rζ is regular and converges to r0 when ζ tends to zero. In other
words, there is a small enough tubular neighborhood V of r0 such that for any |ζ |
small enough, rζ is contained in V and attracts all the orbits with initial conditions
in V . [For earlier, weaker results in this direction for general differential and differ-
ence equation population dynamical models without genetics see (Geritz et al. 2002;
Dercole and Rinaldi 2008, Appendix B).]
Applying Theorem 4.1 in Hirsh et al. (1977) requires that the curve r0 is a compact

manifold without boundary, but this is not the case here. However one can perform
some standard surgery to put our problem in this form in a neighborhood of the part
of r0 which lies in the positive quadrant which is the only part of phase space that
matters for us.

B.2.1 Location of the zeros of the perturbed vector field

Since the curve rζ is invariant and (locally) attracting for the flow associated to the
vector field X (ζ, M), where M stands for the vector (x, y, z) it is enough to study the
flow on this curve. In particular, since rζ is a curve, if the vector field does not vanish
on rζ except at the intersections with the lines x = y = 0 and y = z = 0 (the fixed
points aa and AA respectively see Theorem 3.3), we know that the orbit of any initial
condition on rζ (between AA and aa) will converge either to AA or to aa.
We now look for the fixed points on rζ of the flow associated to the vector field

X (ζ, M) which are the points where the vector field vanishes. Since rζ is attracting,
it is equivalent (and more convenient) to look for the fixed points in V .
It is convenient to use for this study local frames in the tubular neighborhood V of

r0. There are many possibilities for defining such frames, we found that a convenient
one is to represent a point M by the parametrisation

d2r0(v) 
M(v, r, s) = r0(v) + re1(v) + se3(v) = (1+ r)r0(v) + s 2 . 

dv
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with v ∈ [−n0 − δ, n0 + δ], r ∈ [−δ, δ], s ∈ [−δ, δ] with δ >  0 to be chosen small
enough later on. We observe that M(v, 0, 0) = r0(v).
The Jacobian of the transformation (v, r, s) → (x, y, z) = M(v, r, s) is equal to

−(1 + r)/2 and therefore does not vanish if 0 < δ <  1. It is easy to verify that
if δ >  0 is small enough, the map (v, r, s) → M(v, r, s) is a diffeomorphism of
[−n0 − δ, n0 + δ] × [−δ, δ]2 to a close neighborhood of V (provided this tubular
neighborhood is small enough). In particular, once δ >  0 is chosen, for any ζ >  0
small enough, V contains the intersection of rζ with the first quadrant (by continuity
of rζ in ζ ).
In order to find the zeros of the vector field X (ζ, M), we will use convenient linear

combinations of its components which reflect the fact that the flow is transversally
hyperbolic. We will first equate to zero two linear combinations of the components,
and by the implicit function theorem this will lead to a curve containing all possible
zeros.Wewill then look at the points on this curve where the third (independent) linear
combination of the components vanishes.

Proposition B.2 For any δ >  0 small enough, there is a number ζ0 = ζ0(δ) such
that for any ζ ∈ [−ζ0, ζ0] there is a smooth curve Zζ = (rζ (v), sζ (v)) ⊂ R

2,
depending smoothly on ζ , and converging to 0 when ζ tends to zero such that for any
v ∈ [−n0 − δ, n0 + δ] we have

(β1(v), X (ζ, M(v, rζ (v), sζ (v)))) = (β3(v), X (ζ, M(v, rζ (v), sζ (v)))) = 0. 

Moreover, if a point (v, r, s) with v ∈ [−n0− δ, n0+ δ], r and s small enough is such
that

(β1(v), X (ζ, M(v, r, s))) = (β3(v), X (ζ, M(v, r, s))) = 0

then (r, s) = (rζ (v), sζ (v)).
Proof Consider the map F from R

2 × R
2 to R

2 given by

( ) ( ( ) ( ) )
F (ζ, v), (r, s) = (β1(v), X ζ, M(v, r, s) ), (β3(v), X ζ, M(v, r, s) ) . 

For any v0 ∈ [−n0 − δ, n0 + δ], and |ζ | small enough, the differential of F in (r, s) 
at (0, v0, 0, 0) is invertible. This follows by continuity from the same result in ζ = 0
where the determinant of the differential is f ( f − D0). Therefore, by the implicit
function theorem (see for example Dieudonné 1969), for any v0 ∈ [−n0 − δ, n0 + δ],
there is an open neighborhoodUv0 of (v0, 0) inR

2 and two regular functions functions
on Uv0 , r

v0 and sv0 such that for any (ζ, v) ∈ Uv0 we have( )
F (ζ, v), (rv0(ζ, v), sv0(ζ, v)) = 0. 

Since the set [−n0 − δ, n0 + δ] × {0} is compact in R
2, we can find a finite sequence

v1, . . . , vm such that the finite sequence of sets (Uv j ) is a finite open cover of [−n0 − 
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δ, n0 + δ] × {0}. We now define the functions r and s in the tubular neighborhood
∪ jUv j of [−n0 − δ, n0 + δ] × {0} by

r(ζ, v) = rv j (ζ, v), s(ζ, v) = sv j (ζ, v), for(ζ, v) ∈ Uv j . 

This definition is consistent since if (ζ, v) ∈ Uv j ∩Uve with e = j we have rv j (ζ, v) = 
rve (ζ, v) and sv j (ζ, v) = sve (ζ, v) by the uniqueness of the solution in the implicit
function theorem. The last assertion of the proposition follows also from the unique-
ness of the solution in the implicit function theorem. o 
It follows immediately from the above result that the vector field X (ζ, · ) vanishes

in a small enough neighborhood of r0 if and only if

(β2(v), X (ζ, M(v, rζ (v), sζ (v)))) = 0, 

which at a given ζ is an equation for v.
We analyze a neighborhood of the point ζ = 0. We first observe that

(β2(v), X (0, M(v, r0(v), s0(v)))) = (β2(v), X (0, M(v, 0, 0)))
= (β2(v), X (0, r0(v)))) = 0. 

Therefore by the Malgrange preparation Theorem (Golubitsky and Guillemin 1973)
(the Weierstrass preparation Theorem in the analytic setting), we can write

( )(β2(v), X ζ, M(v, rζ (v), sζ (v)) ) = ζ 2h(ζ, v) + ζ g(v). (B.2)

Lemma B.3 The function g in (B.2) is given by

g(v) = (β2(v), ∂ζ X (0, r0(v))). 

Proof We have

\ ) ( ( )ig(v) = β2(v), ∂ζ X ζ, M(v, rζ (v), sζ (v)) iζ =0\ ) ( ( ))= β2(v), ∂ζ X 0, r0(v) + β2(v), DX (0, r0(v))∂r M(v, 0, 0)∂ζ rζ (v))i iζ =0\ )
+ β2(v), DX (0, r0(v))∂s M(v, 0, 0)∂ζ sζ (v))iiζ =0

( ) \ )
= (β2(v), ∂ζ X 0, r0(v) ) + β2(v), DX (0, r0(v))e1(v)∂ζ rζ (v))i iζ =0\ ) 

+ β2(v), DX (0, r0(v))e3(v)∂ζ sζ (v))i . iζ =0
The lemma follows at once from Proposition B.1. o 
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The following result gives conditions for the perturbed vector field to have only
two fixed points near r0.

Theorem B.4 Assume the function

g(v) = (β2(v), ∂ζ X (0, r0(v))). 

satisfies dg/dv(±n0) = 0 and does not vanish in (−n0, n0). Then for |ζ | small enough
(but non zero), the vector field X has only two zeros in a tubular neighborhood of r0.
These zeros are (n AA(ζ ), 0, 0)) and (0, 0, naa(ζ )) with n AA(ζ ) and naa(ζ ) regular
near ζ = 0 and n AA(0) = naa(0) = n0.

As we will see in the proof g(±n0) = 0 and the condition dg/dv(±n0) = 0 ensures
that these zeros are isolated.

Proof We observe that

( ) ( )
X ζ, r0(−n0) = X ζ, n0, 0, 0) , 

hence

( ) ( )
∂ζ X y ζ, r0(−n0) = ∂ζ Xz ζ, r0(−n0) = 0. 

On the other hand, by a direct computation one gets

⎛ ⎞ 
0

β2(−n0) = 1⎝ ⎠ 
2

and we get g(−n0) = 0. Similarly one has g(n0) = 0.
Since the functions g and h in (B.2) are regular, for |ζ | small, it follows that the

function v → (β2(v), X (ζ, M(v, rζ (v), sζ (v)))) can vanish only in neighborhoods of
points where g vanishes. We conclude that if g does not vanish on the open interval
] − n0, n0[, and

dg
(±n0) = 0,

dv 

there is a number δ' > 0 such that for |ζ | small enough non zero, the function v → 
(β2(v), X (ζ, M(v, rζ (v), sζ (v)))) has at most two zeros in the interval [−n0−δ', n0+ 
δ']. Such zeros must be simple and near±n0. By Theorem 3.3 we conclude that these
two zeros exist and are the two fixed points aa and AA respectively. o 
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Appendix C: Applications to the process of mutant substitution

Recall that in our setting, the resident population is monomorphic with genotype
(u A, u A). The mutant allelic trait ua is given by

ua = u A + ζ, 

where ζ has been chosen according to the distribution mσ (u A, h) dh and therefore
|ζ | ≤ σ .

C.1 The stable manifold of the AA fixed point.

As we have seen before in Theorem 3.3 the stability of the fixed point AA can be
decided by looking at the fitness of the mutant. We will need later on a property of the
stable manifold in the case where this fixed point is unstable.

Theorem C.1 For |ζ | small enough, if SAa,AA(ζ ) > 0, the local stable manifold of
the unstable fixed point AA intersects the closed positive quadrant only along the line
y = z = 0. The local unstable manifold is contained in the curve rζ .

Proof Hyperbolicity follows from Theorem 3.3, and we can apply Theorem 5.1 in
Hirsh et al. (1977). From Theorem 3.3, one finds that the Jacobian matrix DX AA has
three eigenvectors

E1(ζ ) = e1(−n0) +O(ζ ), E2(ζ ) = e2(−n0) +O(ζ ), E3(ζ ) = e3 +O(ζ ), 

with respective eigenvalues D0 − f +O(ζ ), O(ζ ), − f +O(ζ ).
It follows from Theorem 5.1 in Hirsh et al. (1977) that the local stable manifold

W s, loc
AA of AA is a piece of regular manifold tangent in AA to the two dimensional

affine stable subspace Es
AA(ζ ) with origin in AA, and spanned by the vectors E1(ζ ) 

and E3(ζ ).
The x axis (y = z = 0) is invariant by the vector field and is contained in the sta-

ble manifold. The first result follows from the fact that Es
AA(ζ ) intersects the closed

positive quadrant only along the line y = z = 0.
Since the local (one dimensional) unstable manifoldW u, loc

(ζ ) of AA is tangent toAA
the linear unstable direction in E2(ζ ) in AA, it is enough to show that this direction
points inside the quadrant. This follows immediately from the expression of E2(ζ ). By
uniqueness of the invariant curve (see Theorem 5.1 in Hirsh et al. 1977), we conclude
thatW u, loc

(ζ ) ⊂ rζ , and the result follows by the invariance of the positive quadrantAA
by the flow. o 

C.2 Invasion and fixation conditions

( )
Recall that the functions f (u1, u2), D(u1, u2) andC (u1, u2), (v1, v2) are symmetric
in (u1, u2) and (v1, v2). Since ua = u A + ζ , we have

f AA = f (u A, u A), f Aa = f (u A + ζ, u A), etc., 
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and

1 d f AA 2 d f AA 2f Aa = f AA + ζ +O(ζ ), faa = f AA + ζ +O(ζ ), etc. 
2 du du

After some elementary computations one gets

1 d SAa,AA 2g(v) = −  (0)(v2 − n AA).2n AA dζ 

Therefore, if

d SAa,AA
(0) = 0

dζ 

the function g vanishes only for v = ±n AA, and the vector field X (ζ, .) has for small
|ζ | = 0 only two fixed points near the intersection of the curve r0 with the positive
quadrant (these fixed points are on the lines x = y = 0 and z = y = 0).
Note that at neutrality we have SAa,AA(0) = 0 = SAa,aa(0), hence

d SAa,AA 2SAa,AA(ζ ) = (0)ζ +O(ζ ),
dζ 

and similarly for SAa,aa(ζ ).
Hence, if d SAa,AA (0) = 0, for |ζ | small enough, the stability of AA is determineddζ 

by the sign of d SAa,AA (0)ζ (and similarly for aa).dζ 
By a direct computation, one gets

d SAa,AA d SAa,aa
(0) = −  (0).

dζ dζ 

Hence the two fixed points have opposite stability, therefore if invasion occurs it
implies fixation. The fixed point AA is stable (the mutant does not invade) if ζ and
d SAa,AA/dζ(0) have opposite sign. +We now summarize these results. We denote by r the piece of rζ contained inζ 

the positive quadrant.

Theorem C.2 For ζ non zero of small enough modulus, if ζ d SAa,AA/dζ(0) >  0
(which implies dSAa,AA/dζ(0) = 0) the fixed point AA is unstable and we have
fixation for the macroscopic dynamics.

+More precisely, the curve r is the piece of unstable manifold between AA andζ +aa. There exists an invariant tubular neighborhood V of r such that the orbit of anyζ 

initial condition in V converges to aa.
If ζ d SAa,AA/dζ(0) <  0, the fixed point AA is stable and the mutant disappears

in the macroscopic dynamics.

Proof The result follows immediately from Theorems 3.3, C.1 and B.4. o 
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The last results of this section concern the proof of Theorem 4.7. Indeed we want to
prove the monotonicity of the function

(M(t), W (ζ ))
FW (t) = . (C.1)(M(t), 1) 

Here M(t) denotes a trajectory of the vector field X (ζ, · ), namely

d M = X (ζ, M),
dt

in other words M(t) = ϕt (M0), and W (ζ ) is a three dimensional vector depending
continuously on ζ . We denote by 1 the vector with all components equal to one.

Proposition C.3 Assume

i\ )i i id r0i iinf , W (0) > 0. i i v∈[−n0,n0] dv 

Then for any |ζ | sufficiently small, under the hypothesis of Theorem C.2, if M0 is close
enough to the curverζ , the function FW (t) is strictly monotone. The same result holds
if W (0) is proportional to 1 and

i\ )i i d r0 dW i i iinf , (0) > 0. i i v∈[−n0,n0] dv dζ 

Proof We have

d FW 1
\ (X (M), 1) )

= X (M) − M, W (ζ ) . 
dt (M(t), 1) (M(t), 1) 

Since the invariant curve rζ is transversally attracting, it is enough to consider a point
M ∈ rζ . If s denotes the curvilinear abscissa of the curve rζ , we have for any s

( )  ( ) drζ   X ζ, rζ (s) = X ζ, rζ (s) . 
ds

Therefore on the invariant curve [M(t) = rζ (s) for a certain s which depends on t],

1
\ (X (M), 1) )

X (M) − M, W (ζ )(M(t), 1) (M(t), 1)    
X
(
ζ, rζ (s)

) \ 
drζ (drζ /ds, 1) )

= − rζ (s), W (ζ ) . (rζ (s), 1) ds (rζ (s), 1) 
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By Theorem 4.1 in Hirsh et al. (1977) we have

⎛ ⎞ 
v(s) − n0drζ dr0 1 ⎝ ⎠lim = = J −2v(s) , 

ζ →0 ds ds 24v2(s) + 2n0 v(s) + n0

where

dv 1= J . 
ds 24v2(s) + 2n0

By a direct computation, one can check that

\ )
drζlim , 1 = 0, 

ζ →0 ds

and the first part of the result follows from Theorem C.2.
If W (0) = γ 1 for some real number γ , we have

dW
W (ζ ) = γ 1 + ζ (0) + O(ζ 2).

dζ 

Therefore

1
\ (X (M), 1) )

X (M) − M, W (ζ )(M(t), 1)( ) (M(t), 1)
X ζ, rζ (s)

\ 
drζ (drζ /ds, 1) dW

)
= ζ − rζ (s), (0) + O(ζ 2) ,(rζ (s), 1) ds (rζ (s), 1) dζ 

and the result follows as before. o 
Consider now the average phenotypic trait φ. This corresponds to the vector

⎛ ( )⎞ ⎛ ( ) ⎞ 
φ u A, u A φ u A, u A( ) ( )⎝ ⎠ ⎝ ⎠Wφ(mut) = φ u A, ua = φ u A, u A + ζ ( ) ( )
φ ua, ua φ u A + ζ, u A + ζ ⎛ ⎞ ⎛ ⎞ 

1 0( ) dφ
(
u A, u A

)⎝ ⎠ ⎝ ⎠ = φ u A, u A 1 + ζ 1/2 + O(ζ 2).
du A1 1

Corollary C.4 The function FWφ is strictly monotonous for |ζ | small enough.

Proof One gets

⎛ ⎞ ⎛ ⎞   \ ) v − n0 0d r0 dWφ 1 1⎝ ⎠ ⎝ ⎠, (0) = −2v , 1/2 = ,
dv dζ 2n0 2

v + n0 1
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and by Proposition C.3 we get the monotonicity in time of the average phenotypic
trait. o 

Appendix D: Proof of Theorem 4.5

The proof of the theorem will essentially follow the same steps as the ones of the
proof of Theorem 1 in Champagnat (2006) and of the Appendix A in Champagnat and
Méléard (2011).Wewill not repeat the details andwewill restrict ourselves to the steps
that must be modified. The proof is based on intermediary results that we state now.

Proposition D.1 Assume that for K ≥ 1, Supp(ν0
K ) = {AA, Aa, aa} and

K K Klim ((ν0 , 1AA), (ν0 , 1Aa), (ν0 , 1aa)) = (x0, y0, z0) ∈ Vζ 
K→∞

a.s., where Vζ is defined in Theorem C.2. Then for all T > 0

i i i σ,K ilim sup i(ν , 1AA) − ϕt (x0, y0, z0)1i = 0 a.s, (D.1)t
K→∞ t∈[0,T ] 

and similarly for Aa and aa, where ϕt is the flow of the vector field (3.6).

The proof of this result can be obtained following a standard compactness-unique-
ness result, (see Ethier and Kurtz 1986; Fournier and Méléard 2004) and using
Theorem C.2.

Proposition D.2 Let Supp(ν0
K ) = {AA} and let τ1 denote the first mutation time.

εFor any sufficiently small ε >  0, if (νK , 1AA) belongs to the 2 -neighborhood of0
f AA−DAA σ,Kn̄ AA = , the time of exit of (ν , 1AA) from the ε-neighborhood of n̄ AA isCAA,AA t

bigger than eV K ∧ τ1 with probability converging to 1.
Moreover, there exists a constant c such that for any sufficiently small ε >  0,the
previous result still holds if the death rate of an individual with genotype AA

σ,KDAA + CAA,AA(νt , 1AA) (D.2)

is perturbed by an additional random process that is uniformly bounded by c ε.

(In principle τ1 also depends on K , but to avoid clutter we have suppressed this in the
notation.) Such results are standard (cf. Champagnat 2006). The first part of this prop-
osition is an exponential deviation estimate on the so-called “exit from an attracting
domain” (Freidlin and Wentzel 1984). It is used to prove that when the first mutation
occurs, the population density has never left the ε-neighborhood of n̄ AA.When amuta-

σ,K σ,Ktion a occurs, the additional term in (D.2) isCAA,Aa(νt , 1Aa)+CAA,aa(νt , 1aa)
σ,K σ,Kwhich is smaller that C̄ ε if (νt , 1Aa) + (νt , 1aa) ≤ ε.

From these results, one can deduce the following proposition, already proved in Cham-
pagnat (2006).
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Proposition D.3 Let Supp(ν0
K ) = {AA} and let τ1 denote the first mutation time.

There exists ε0 such that if (νK , 1) belongs to the ε0-neighborhood of n̄ AA, then for0
any ε < ε0,

K σ,Klim P τ1 > ln K , sup |(ν , 1) −  n̄ AA| < ε  = 1,t
K→∞ t∈[ln K ,τ1] 

and K μK τ1 converges in law (when K tends to infinity) to a random variable with
exponential law with parameter 2 f AA pAA n̄ AA, that is for any t > 0,

t
lim P

K τ1 > = exp(−2 pAA f AA n̄ AA t).
K→∞ KμK

1Then, if ln K « KμK
, we deduce that limK→∞ PK τ1 < ln K = 0 and that for

any ε >  0

K σ,Klim P sup |(ν , 1) −  n̄ AA| > ε  = 0.t
K→∞ t∈[0,τ1] 

Let us define two stopping timeswhich describe the first timewhere the process arrives
in a ε-neighborhood of a stationary state of the dynamical system.

σ,K σ,K
τA = τA(ε, K ) = inf{t ≥ 0; (νt , 1aa) = (νt , 1Aa)

σ,K= 0 , (νt , 1AA) −  n̄ AA| < E}, (D.3)
σ,K σ,K

τa = τa(ε, K ) = inf{t ≥ 0; |(νt , 1aa) −  n̄aa | < ε ,  (νt , 1Aa)
σ,K= (νt , 1AA) =  0}. (D.4)

Note that τA is the extinction time of the population with alleles a and fixation
of the allele A and that τa is the extinction time of the population with allele A and
fixation of the allele a.

Proposition D.4 Recall that the SAa,AA has been defined in (3.7). Let (zK ) be a
sequence of integers such that z

K
K converges to n̄ AA. Then

[SAa,AA]+lim lim P
K
zK (τa < τA) = (D.5)

ε→0 K→∞ K δAA+ K1 δAa f Aa

K [SAa,AA]+lim lim P zK (τA < τa) = 1− (D.6)
ε→0 K→∞ K δAA+ K1 δAa f Aa

η∀η >  0, lim lim P
K
zK τa ∧ τA > ∧ τ1 = 0. (D.7)

ε→0 K→∞ K δAA+ K1 δAa KμK
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Proof The proof is inspired by the proof of Lemma 3 in Champagnat (2006). We
introduce the following stopping times.

σ,KRK = inf{t ≥ 0 ; |(ν , 1AA) − n̄ AA| ≥ ε},ε t
σ,K σ,KSK = inf{t ≥ 0 ; (ν , 1Aa) + (ν , 1aa) ≥ ε}.ε t t

RK is the time of drift of the resident population AA away from its equilibrium, SK
ε ε 

is the time of invasion of the mutant allele a, either if the population with genotype
Aa is sufficiently large or the one with genotype aa.
Assume that (ν K , 1Aa) =  1 . Using Proposition D.2, second part, one can prove0 K

as in Champagnat (2006) that there exist ρ, V > 0 such that, for K large enough,

ρ K V
P < τ1 ≥ 1− ε and P(SK ∧ τ1 ∧ e < RK ) ≥ 1− ε.ε εK uK

σ,KThen, on [0, τ1 ∧ SK ∧ RK ], one has n̄ AA − ε ≤ (ν , 1AA) ≤  ¯ andε ε t n AA + ε 
σ,K σ,K(νt , 1Aa) ≤ ε, (νt , 1aa) ≤ ε.

Using (3.3), (3.4) and by minorizing or majorizing the birth and death rates,
it can be easily checked that, for K large enough, almost surely, the process
σ,K σ,K

((ν , 1{Aa}), (ν , 1{aa})) is stochastically lower-bounded and upper-bounded byt t
11,ε 12,ε 

A1 A A A2two normalized bi-type branching processes = ( t , t )t∈R+ and = K K K K
21,ε 22,ε
A A
( t , t )t∈R+ .K K
The branching processes A1 and A2 have initial condition (1, 0) and birth rates for a
state (y, z) of the form (for i = 1, 2),

y
Ni = f Aa y + 2 faaz+o1(ε)(y + z) ; N i (ε, y, z) = + faaz) o2(ε), Aa(ε, y, z) aa ( f Aa

2

and death rates

Mi
Aa(ε, y, z) = (DAa + CAa,AAn̄ AA) y + o3(ε)(y + z), 

Mi (ε, y, z) = (Daa + Caa,AAn̄ AA) z + o4(ε)(y + z).aa

Moreover we can check that the oi (ε) don’t depend on K .
i iLet us denote by q1(t) and q2(t) the probabilities of extinction of the processA

i before
time t , starting respectively from (1, 0) or (0, 1). These probabilities correspond to the
extinction of the allele a. Using the generating function, it can be proved (see Athreya

iandNey 1972) that the vector qi (t) is solution of the differential system q̇ = Y i (ε, qi ) 

where the vector field Y i is of class C2 and

2
Y i ( ) f Aa q1 + (DAa + CAa,AA n̄ AA) − ( f Aa + DAa + CAa,AA n̄ AA) q10, (q1, q2) = .

2 faa q1q2 + (Daa + Caa, AA n̄ AA) − (2 faa + Daa + Caa, AA n̄ AA) q2

Note that this vector is independent of i . o 
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Lemma D.5 For any ε >  0 small enough, we have the following properties.

(i) The vector field Y i (ε, · ) vanishes at the point M0 = (1, 1).
(ii) If SAa,AA < 0, this fixed point is stable, and the trajectory emanating from the

origin converges to this fixed point.
(iii) If SAa,AA > 0, this fixed point is unstable. There is another fixed point

⎛ ⎞
DAa+CAa,AA n̄ AA

Pi ⎝ f Aa ⎠ = ε f Aa(Daa+Caa,AA n̄ AA) 

(2 f Aa faa + Daa + Caa,AA n̄ AA) − 2 faa(DAa + CAa,AA n̄ AA) 

+Oi (ε), 

which is stable and the trajectory emanating from the origin converges to this
fixed point.

Proof Assertion (i) follows by a direct computation.( )
The difference between Y i (ε, · ) and Y 0, · is of order ε in C2. The first parts( )

of assertions (ii) and (iii) follow at once from the similar results for Y 0, · and the
stability of hyperbolic fixed points (see for example Guckenheimer andHolmes 1983).
Note that in case (iii),

2 faa q1 − (2 faa + Daa + Caa,AA n̄ AA) <  0, 

since q1 ∈ [0, 1].
We now prove the second part of case (ii). Let <ε denote the flow of the vector fieldt ( )
Y (ε, · ). Since the fixed points M0 is stable for Y 0, · , there is a number r0 > 0,
such that for any ε >  0 small enough, the ball Br0(M0) centered in M0 and of radius
r0 is attracted to the fixed point M0 by the flow <ε. Let T0 > 0 denote the smallest( ) t ( )
time such that <0 (0, 0) ∈ Br0/2(M0). This time is finite since Y 0, (0, 0) = 0,t( ) ( )
q1(t) = <0 (0, 0) converges to 1 when t tends to infinity, and Y2 0, (q1, q2) ist 1
linear in q2. By continuity in ε of the map<ε T0 (see Guckenheimer and Holmes 1983),( )
we conclude that for any ε >  0 small enough, <ε T0 (0, 0) ∈ Br0(M0). The second
part of assertion (ii) follows.
The second part of assertion (iii) is proved by similar arguments, noting that the fixed
point Pε depends continuously in ε. o 
We conclude the proof of Proposition D.4 by similar arguments as in Champagnat
(2006) or in Champagnat and Méléard (2011), using Theorems C.1 and C.2.

References

Athreya KB, Ney PE (1972) Branching processes. Springer, Berlin
Barles G, PerthameB (2007) Concentrations and constrainedHamilton–Jacobi equations arising in adaptive

dynamics. In: Danielli D (ed) Recent developments in nonlinear partial differential equations. CONM,
vol 439, pp 57–68. AMS, Providence

Bovier A, Champagnat N (2012) Time scales in adaptive dynamics: directional selection, fast and slow
branching (in prep)

13



Adaptive dynamics of Mendelian diploids

Carrillo JA, Cuadrado S, PerthameB (2007) Adaptive dynamics via Hamilton–Jacobi approach and entropy
methods for a juvenile-adult model. Math Biosci 205(1):137–161

Champagnat N, Ferrière R, Méléard S (2008) From individual stochastic processes to macroscopic models
in adaptive evolution. Stoch Models 24(Suppl 1):2–44

Champagnat N (2006) Amicroscopic interpretation for adaptive dynamics trait substitution sequence mod-
els. Stoch Process Appl 116(8):1127–1160

Champagnat N, Méléard S (2011) Polymorphic evolution sequence and evolutionary branching. Probab
Theory Relat Fields 151(2011):45–94

Chesson P (1990) MacArthur’s consumer-resource model. Theor Popul Biol 37:26–38
Christiansen FB, Fenchel TM (1977) Theories of populations in biological communities. Springer, Berlin
Christiansen FB, LoeschckeV (1980) Evolution and intraspecific competition. I. One-locus theory for small

additive gene effects. Theor Popul Biol 18:297–313
Christiansen FB, Loeschcke V (1987) Evolution and intraspecific competition. III. One-locus theory for

small additive gene effects and multidimensional resource qualities. Theor Popul Biol 31:33–46
Claessen D, Andersson J, Persson L, de Roos AM (2007) Delayed evolutionary branching in small popu-

lations. Evol Ecol Res 9:51–69
Claessen D, Andersson J, Persson L, de Roos AM (2008) The effect of population size and recombination

on delayed evolution of polymorphism and speciation in sexual populations. Am Nat 172:E18–E34
Dercole F, Rinaldi S (2008) Analysis of evolutionary processes: the adaptive dynamics approach and its

applications. Princeton UP, NJ
Desvillettes L, Jabin PE, Mischler S, Raoul G (2008) On selection dynamics for continuous structured

populations. Commun Math Sci 6(3):729–747
Dieckmann U, Law R (1996) The dynamical theory of coevolution: a derivation from stochastic ecological

processes. J Math Biol 34:579–612
Dieckmann U, Doebeli M (1999) On the origin of species by sympatric speciation. Nature 400:54–357
Diekmann O, Gyllenberg M, Metz JAJ, Thieme HR (1998) On the formulation and analysis of general

deterministic structured population models. I. Linear theory. J Math Biol 36:349–388
Diekmann O, Gyllenberg M, Huang H, Kirkilionis M, Metz JAJ, Thieme HR (2001) On the formulation

and analysis of general deterministic structured population models. II. Nonlinear theory. J Math Biol
43:157–189

Diekmann O, Gyllenberg M, Metz JAJ (2003) Steady state analysis of structured population models. Theor
Popul Biol 63:309–338

Diekmann O, Jabin PE, Mischler S, Perthame B (2005) The dynamics of adaptation: an illuminating exam-
ple and a Hamilton–Jacobi approach. Theor Pop Biol 67:257–271

Diekmann O, Gyllenberg M, Metz J, Nakaoka S, de Roos A (2010) Daphnia revisited: local stability and
bifurcation theory for physiologically structured population models explained by way of an example.
J Math Biol 61:277–318

Diekmann O, Metz JAJ (2010) How to lift a model for individual behaviour to the population level? Phil
Trans R Soc Lond B 365:3523–3530

Dieudonné J (1996) Foundations of modern analysis. Academic Press, New York
Doebeli M (2011) Adaptive diversification. Princeton UP, NJ
Doebeli M, Dieckmann U (2000) Evolutionary branching and sympatric speciation caused by different

types of ecological interactions Am Nat 156:S77–S101
Donnelly P, Weber N (1985) The Wright–Fisher model with temporally varying selection and population

size J Math Biol 22:21–29
Durinx M, Metz JAJ, Meszéna G (2008) Adaptive dynamics for physiologically structured models J Math

Biol 56:673–742
Eshel I (1983) Evolutionary and continuous stability J Theor Biol 103:99–111
Eshel I (2012) Short-term and long-term evolution. In: Dieckmann U, Metz JAJ (eds) Elements of adaptive

dynamics. Cambridge studies in adaptive dynamics. Cambridge UP, London (in press)
Eshel I, FeldmanMW (2001) Optimization and evolutionary stability under short-term and long-term selec-

tion. In: Sober E, Orzack S (eds) Adaptationism and optimality. Cambridge UP, NJ, pp 161–190
Eshel I, Feldman MW, Bergman A (1998) Long-term evolution, short-term evolution, and population

genetic theory J Theor Biol 191:391–396
Ethier SN, Kurtz TG (1986) Markov Processes, characterization and convergence. Wiley, New York
Ferrière R, Tran VC (2009) Stochastic and deterministic models for age-structured populations with genet-

ically variable traits. In: Besse C, Goubet O, Goudon T, Nicaise S (eds) Proceedings of the CANUM
2008 conference. ESAIM proceedings, vol 27, pp 289–310

13



P. Collet et al.

Fournier N, Méléard S (2004) Amicroscopic probabilistic description of a locally regulated population and
macroscopic approximations Ann Appl Probab 14:1880–1919

Freidlin MI, Wentzel AD (1984) Random perturbations of dynamical systems. Springer, Berlin
Geritz SAH, Gyllenberg M, Jacobs FJA, Parvinen K (2002) Invasion dynamics and attractor inheritance

J Math Biol 44:548–560
Geritz SAH, Kisdi É, Meszéna G, Metz JAJ (1998) Evolutionarily singular strategies and the adaptive

growth and branching of the evolutionary tree Evol Ecol 12:35–57
Golubitsky M, Guillemin V (1973) Stable mappings and their singularities. Springer, New York
Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems and bifurcation of vector

fields. Springer, New York
Gyllenberg M, Meszéna G (2005) On the impossibility of coexistence of infinitely many strategies J Math

Biol 50:133–160
Heyde CC (1977) The effect of selection on genetic balance when the population size is varying Theor

Popul Biol 11:249–251
HeydeCC (1983) An alternative approach to asymptotic results on genetic compositionwhen the population

size is varying J Math Biol 18:163–168
Heyde CC, Seneta E (1975) The genetic balance between random sampling and random population size

J Math Biol 1:317–320
Hirsh M, Pugh C, Shub M (1977) Invariant manifolds. In: Lecture notes in mathematics, vol 583. Springer,

Berlin
Hofbauer J, Sigmund K (1987) Dynamical systems and the theory of evolution. Cambridge UP, NJ
Karlin S (1968) Rates of approach to homozygosity for finite stochastic models with variable population

size Am Nat 102:443–455
Kimura M (1965) A stochastic model concerning the maintenance of genetic variability in quantitative

characters Proc Natl Acad Sci USA 54:731–736
Kisdi É, Geritz SAH (1999) Dynamics in allele space: evolution of genetic polymorphism by small muta-

tions in a heterogeneous environment Evolution 53:993–1008
Klebaner FC (1988) Conditions for fixation of an allele in the density-dependent Wright–Fisher models

J Appl Prob 25:247–256
Klebaner FC, Sagitov S, Vatutin VA, Haccou P, Jagers P (2011) Stochasticity in the adaptive dynamics of

evolution: the bare bones J Biol Dyn 5:147–162
Levins R (1968) Toward an evolutionary theory of the niche. In: Drake ET (ed) Evolution and environment.

Yale Univ Press, New Haven pp 325–340
Leimar O, DoebeliM, DieckmannU (2008) Evolution of phenotypic clusters through competition and local

adaptation along an environmental gradient Evolution 62:807–822
Loeschcke V, Christiansen FB (1984) Intraspecific exploitative competition. II. A two-locus model for

additive gene effects Theor Popul Biol 26:228–264
Lotka AJ (1925) Elements of physical biology. Williams and Wilkins, Baltimore [reprinted as Elements of

Mathematical Biology. Dover (1956)]
MacArthur RH, Levins R (1964) Competition, habitat selection, and character displacement in a patchy

environment Proc Natl Acad Sci USA 51:1207–1210
MacArthur RH, Levins R (1967) The limiting similarity, convergence and divergence of coexisting species

Am Nat 101:377–385
MacArthur RH (1970) Species packing and competitive equilibrium for many species Theor Popul Biol

1:1–11
MacArthur RH (1972) Geogr Ecol. Harper & Row, New York
Marrow P, Law R, Cannings C (1992) The coevolution of predator–prey interactions: ESSs and Red Queen

dynamics Proc R Soc Lond B 250:133–141
May RM (1973) Stability and complexity in model ecosystems. Princeton UP, NJ
May RM (1974) On the theory of niche overlap Theor Popul Biol 5:297–332
Méléard S, Tran VC (2009) Trait substitution sequence process and canonical equation for age-structured

populations J Math Biol 58:881–921
Meszéna G, Gyllenberg M, Pásztor L, Metz JAJ (2006) Competitive exclusion and limiting similarity:

a unified theory Theor Popul Biol 69:68–87
Metz JAJ (2012) Invasion fitness, canonical equations, and global invasion criteria for Mendelian popula-

tions. In: Dieckmann U, Metz JAJ (eds) Elements of adaptive dynamics. Cambridge UP, London (in
press)

13



Adaptive dynamics of Mendelian diploids

Metz JAJ, de Kovel CGF (2012) The canonical equation for adaptive dynamics for Mendelian diploids and
haplo-diploids (in prep)

Metz JAJ, Nisbet RM, Geritz SAH (1992) How should we define fitness for general ecological scenarios
Trends Ecol Evol 7:198–202

Metz JAJ, Geritz SAH,Meszéna G, Jacobs FAJ, vanHeerwaarden JS (1996) Adaptive dynamics, a geomet-
rical study of the consequences of nearly faithful reproduction. In: van Strien SJ, Verduyn Lunel SM
(eds) Stochastic and spatial structures of dynamical systems. North Holland, Amsterdam, pp 183–231

Metz JAJ, Redig F (2012) A birth and death process approach to selection in diploid populations (in prep)
Metz JAJ, Tran VC (2012) Daphnias: from the individual based model to the large population equation.

J Math Biol (submitted)
Peischl S, Bürger R (2008) Evolution of dominance under frequency-dependent intraspecific competition

J Theor Biol 251:210–226
Proulx SR, Phillips PC (2006) Allelic divergence precedes and promotes gene duplication Evolution

60:881–892
Roughgarden J (1971) Density dependent natural selection Ecology 52:453–468
Roughgarden J (1976) Resource partitioning among competing species—a coevolutionary approach Theor

Popul Biol 9:388–424
Roughgarden J (1979) Theory of population genetics and evolutionary ecology: an introduction.

MacMillan, New York
Roughgarden J (1989) The structure and assembly of communities. In: Roughgarden J, May RM, Levin

SA (eds) Perspectives in ecological theory. Princeton UP, NJ, pp 203–226
Seneta (1974) A note on the balance between random sampling and population size Genetics 77:607–610
Skorohod AV (1956) Limit theorems for stochastic processes Theory Probab Appl 1(3):261–290
Slatkin M (1980) Ecological character displacement Ecology 61:163–177
Tran VC (2006) Modèles particulaires stochastiques pour des problèmes d’évolution adaptative et pour

l’approximation de solutions statistiques. Dissertation, Université Paris X–Nanterre, 12. http://tel.
archives-ouvertes.fr/tel-00125100

Tran VC (2008) Large population limit and time behaviour of a stochastic particle model describing an
age-structured population ESAIM Probab Stat 12:345–386

Van Dooren TJM (1999) The evolutionary ecology of dominance–recessivity J Theor Biol 198:519–532
Van Dooren TJM (2000) The evolutionary dynamics of direct phenotypic overdominance: emergence pos-

sible, loss probable Evolution 54:1899–1914
Van Doorn S, Dieckmann U (2006) The long-term evolution of multi-locus traits under frequency-depen-

dent disruptive selection Evolution 60:2226–2238
Volterra V (1931) Leçons sur la théorie mathématique de la lutte pour la vie. Gauthier-Villars, Paris

13

http://tel



