Oxidation of SO2 by stabilized Criegee intermediate (sCI) radicals as a crucial source for atmospheric sulfuric acid concentrations

Boy, M., Mogensen, D., Smolander, S., Zhou, L., Nieminen, T., & Paasonen, P. (2013). Oxidation of SO2 by stabilized Criegee intermediate (sCI) radicals as a crucial source for atmospheric sulfuric acid concentrations. Atmospheric Chemistry and Physics 13 (7) 3865-3879. 10.5194/acp-13-3865-2013.

[thumbnail of acp-13-3865-2013.pdf]
Preview
Text
acp-13-3865-2013.pdf - Published Version

Download (2MB) | Preview

Abstract

The effect of increased reaction rates of stabilized Criegee intermediates (sCIs) with SO2 to produce sulfuric acid is investigated using data from two different locations, SMEAR II, Hyytiaelae, Finland, and Hohenpeissenberg, Germany. Results from MALTE, a zero-dimensional model, show that using previous values for the rate coefficients of sCI+SO2, the model underestimates gas phase H2SO4 by up to a factor of two when compared to measurements. Using the rate coefficients recently calculated by Mauldin et al. (2012) increases sulfuric acid by 30-40%. Increasing the rate coefficient for formaldehyde oxide (CH2OO) with SO2 according to the values recommended by Welz et al. (2012) increases the H2SO4 yield by 3-6%. Taken together, these increases lead to the conclusion that, depending on their concentrations, the reaction of stabilized Criegee intermediates with SO2 could contribute as much as 33-46% to atmospheric sulfuric acid gas phase concentrations at ground level. Using the SMEAR II data, results from SOSA, a one-dimensional model, show that the contribution from sCI reactions to sulfuric acid production is most important in the canopy, where the concentrations of organic compounds are the highest, but can have significant effects on sulfuric acid concentrations up to 100m. The recent findings that the reaction of sCI+SO2 is much faster than previously thought together with these results show that the inclusion of this new oxidation mechanism could be crucial in regional as well as global models.

Item Type: Article
Research Programs: Mitigation of Air Pollution (MAG)
Air Quality & Greenhouse Gases (AIR)
Bibliographic Reference: Atmospheric Chemistry and Physics; 13(7):3865-3879 (April 2013)
Depositing User: IIASA Import
Date Deposited: 15 Jan 2016 08:48
Last Modified: 27 Aug 2021 17:23
URI: https://pure.iiasa.ac.at/10314

Actions (login required)

View Item View Item