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Abstract

There is currently a lack of in-situ environmental data for the calibration and validation of remotely sensed products and for
the development and verification of models. Crowdsourcing is increasingly being seen as one potentially powerful way of
increasing the supply of in-situ data but there are a number of concerns over the subsequent use of the data, in particular
over data quality. This paper examined crowdsourced data from the Geo-Wiki crowdsourcing tool for land cover validation
to determine whether there were significant differences in quality between the answers provided by experts and non-
experts in the domain of remote sensing and therefore the extent to which crowdsourced data describing human impact
and land cover can be used in further scientific research. The results showed that there was little difference between experts
and non-experts in identifying human impact although results varied by land cover while experts were better than non-
experts in identifying the land cover type. This suggests the need to create training materials with more examples in those
areas where difficulties in identification were encountered, and to offer some method for contributors to reflect on the
information they contribute, perhaps by feeding back the evaluations of their contributed data or by making additional
training materials available. Accuracies were also found to be higher when the volunteers were more consistent in their
responses at a given location and when they indicated higher confidence, which suggests that these additional pieces of
information could be used in the development of robust measures of quality in the future.
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Introduction

The proliferation of Web2.0 technology over the last decade has

resulted in changes in the way that data are created. Individual

citizens now provide vast amounts of information to websites and

online databases, much of which is spatially referenced. The

analysis and exploitation of this georeferenced subset of crowd-

sourced data, or what is more commonly referred to as

volunteered geographic information (VGI) [1,2], has the potential

to fundamentally change the nature of scientific investigation.

Citizens have a long history of being involved in scientific research

or the more recently coined ‘citizen science’ [3]. There are many

successful examples of citizen science that have led to new

scientific discoveries, including unravelling protein structures [4]

and discovering new galaxies [5], as well as websites for public

reporting of illegal logging/deforestation [6] and waste dumping

[7], which have demonstrated how citizens can have a visible

impact upon the environment and local governance. Analysis of

more passive sources of geo-tagged data from the crowd from

search engines such as Google has also revealed interesting

scientific trends, e.g. the relationship between GDP and searches

about the future [8], trends in influenza [9] and the ability to

characterize crop planting dates [10]. One of the critical

advantages of VGI is the potential increase in the volumes of

data about all kinds of spatially referenced phenomena. Such data

can be collated and used for many different scientific activities:

from the calibration of scientific models (e.g. economic prediction

models that require information about land use) to the validation

of existent data (e.g. maps derived through Earth Observation).

With improved connectivity via mobile phones and the use of

low cost, ubiquitous sensors (e.g. those which directly and

instantaneously capture data about their immediate environment),

the opportunities to exploit such rich veins of VGI are many and

varied. However, whilst one of the pressing challenges concerns

how to manage large data volumes in terms of processing and

storage, a number of yet unaddressed issues persist. These include

how to handle data privacy, how to ensure adequate security, and

critically, how to assess VGI data quality. Data quality is an area

that has attracted increasing attention in the literature [1,11–13]:

quantifying VGI data quality underpins its usefulness (that is, its

reliability and credibility) and potential for incorporation into

scientific analyses. The critical issue is whether ordinary citizens

can provide information that is of high enough quality to be used

in formal scientific investigations.

With open access to high resolution satellite imagery through

providers such as Google Earth and Bing Maps, it is possible to
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collect vast amounts of volunteered information about the Earth’s

surface such as land cover and land use. The collection of

crowdsourced land cover data is the main aim of the Geo-Wiki

project [14,15] in what is currently a contributory approach to

citizen science [16]. Geo-Wiki is a web-based geospatial portal

(http://www.geo-wiki.org) with an interface linked to Google

Earth. It can be used to visualize and validate global land cover

datasets such as GLC-2000, MODIS and GlobCover [12] which

frequently disagree over the land cover they record at any given

location [17–19]. Since its inception, a number of Geo-Wiki

branches have been initiated, each one specifically devoted to

gathering different types of information such as agriculture

(agriculture.geo-wiki.org), urban areas (cities.geo-wiki.org), bio-

mass (biomass.geo-wiki.org) and more recently human impact

(humanimpact.geo-wiki.org).

The general aim of this paper is to determine whether there are

significant differences in quality in the information contributed by

experts and non-experts. This is explored through a land cover

case study with obvious implications for the domains of remote

sensing and landscape analyses and investigation of the extent to

which VGI can be trusted as a source of training and validation

data in remote sensing. However, by investigating generic research

questions related to the quality and reliability of information

contributed by citizens with different levels of domain expertise,

this research should also be of interest to the broader field of

citizen science. The next section describes data collection via the

human impact Geo-Wiki campaign and the analysis of volunteer

and volunteered data quality. Following the results, some

discussion is provided regarding the implications of incorporating

VGI in scientific research including recommendations for further

research before conclusions are drawn in the final section.

Materials and Methods

Data from the Human Impact Competition
Crowdsourced data on land cover were collected using a branch

of Geo-Wiki called Human Impact (http://humanimpact.geo-

wiki.org) and the data were subsequently used to validate a map of

land availability for biofuel production [20]. The volunteers were

presented with pixel outlines of 1 km resolution (at the equator)

Table 1. The spectrum of human impact.

Human Impact Description

0% No evidence of any human activity visible

1 to 50% Some visible evidence of human activities such as tracks/roads; evidence of managed forests; some evidence of deforestation; some
scattered human dwellings, some scattered agricultural fields; some evidence of grazing

51% to 80% Increasing density of agriculture from subsistence on the lower end to intensive, commercial agriculture with large field sizes on the
upper end

81% to 99% Urban areas with decreasing amounts of green space and increasing density of housing

100% A built up urban area with no green space, typically the business district of a city

doi:10.1371/journal.pone.0069958.t001

Figure 1. Number of pixels classified per day by the volunteers. These are daily totals from the start of the competition on day 1 to the end
at just over 50 days, which shows a clear acceleration as the competition progressed.
doi:10.1371/journal.pone.0069958.g001
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projected onto Google Earth (where pixels in this context refer to

the smallest area for which information is collected) and were then

asked to determine the percentage of human impact and the land

cover type at each location from the following list: (1) Tree cover,

(2) Shrub cover, (3) Herbaceous vegetation/Grassland, (4)

Cultivated and managed, (5) Mosaic of cultivated and managed/

natural vegetation, (6) Flooded/wetland, (7) Urban, (8) Snow and

ice, (9) Barren and (10) Open Water. The concept of ‘human

impact’ was defined as the amount of evidence of human activity

visible in the Google Earth images. A spectrum of these intensities

is shown in Table 1, which is loosely based on the ideas of

Theobald [21]. Volunteers were also asked to indicate their

confidence in the class type and the impact score, whether they

had used high resolution imagery and the date of the image.

Volunteers were recruited by emails sent to registered Geo-Wiki

volunteers, relevant mailing lists and contacts, in particular those

with students, and through social media. Background information

on the competitors was collected through the registration

procedure. The competition ran for just under 2 months in the

autumn of 2011 [22]. The top ten volunteers were offered co-

authorship on a paper resulting from the competition [20] as well

as Amazon vouchers as an incentive. Other incentives included

inviting friends, which resulted in extra points, a leader board so

that competitors could gauge the competition, and appealing to

the environmental motivation of individuals through the biofuel

theme.

A set of 299 ‘control’ points was used to determine quality

where three experts with backgrounds in physical geography,

geospatial sciences, remote sensing and image classification agreed

upon the land cover at each location. The first 99 control points

were provided to the volunteers at the start of the competition, the

next 100 were provided three-quarters of the way through and the

Figure 2. Global distribution of pixels collected by the volunteers. The distribution is shown by (a) human impact and (b) land cover type.
doi:10.1371/journal.pone.0069958.g002
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final 100 were provided at the end, where the latter were drawn

from higher resolution imagery. The volunteers were then ranked

by an index that combined quality and quantity through equal

weighting, and the top ten were declared the winners. Interest-

ingly, there were some minor changes in the top ten once quality

was considered.

A total of ,53,000 locations were validated by more than 60

individuals and Figure 1 shows the rapid increase in contributions

in the last 20 days of the competition, with a particularly large

spike at the end. Figure 2 illustrates the spatial distribution of the

,53,000 points collected expressed as measures of human impact

and land cover. Note that the crowdsourced data can be freely

downloaded from http://www.geo-wiki.org.

Of these ,53,000 validations, 7657 were at the control

locations, which were then used to assess quality. The data were

then filtered for ‘unknown’ expertise resulting in 4020 control data

points scored by 29 Expert volunteers and 3548 control data

points scored by 33 Non-expert volunteers. Experts were

considered to be individuals with a background in remote

sensing/spatial sciences versus non-experts who were new to this

discipline or had some self-declared limited background. The

control data, whose analysis forms the basis of the paper, have the

following characteristics. Experts evaluated an average of 64.8

control data points each (s.d. 108.1) and non-experts 57.2 (s.d.

95.1). Although there is the potential for a few individuals to have

a disproportionately large impact on data quality and composition,

in this case, of the 29 experts, 18 contributed more than 50

evaluations, and of the 33 non-experts, 19 evaluated more than 50

data points. The volunteers’ demographics (age, gender, socio-

economic status etc.) were not captured as part of the contributor

registration. This is unfortunate, because although a proxy for

previous experience is evaluated in this paper, it is well recognised

that such factors can influence contributor responses. Such data

will be collected in future campaigns.

Analysis of Human Impact
To determine how well the answers provided by the volunteers

matched the control data in terms of the degree of human impact,

a linear regression was fit as follows:

Yi~azbXizei ð1Þ

where Yi is the degree of human impact from the control data, Xi is

the degree of human impact from the volunteers, a and b are

Figure 3. Median response time of the volunteers. The response time is in seconds measured from the start of the competition until the end at
just over 50 days.
doi:10.1371/journal.pone.0069958.g003

Table 2. A confusion matrix for the comparison of controls with responses from the crowd.

Class 1 (control j) Class 2 (control j) … Class n (control j)

Class 1 (volunteer i) x1,1 x1,2 … xn,1

Class 2 (volunteer i) x2,1 x2,2 … xn,2

… … … … …

Class n (volunteer i) xn,1 xn,2 …

doi:10.1371/journal.pone.0069958.t002
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coefficients of the linear regression equation and ei is a normally

distributed random error term for each observation i.

Each volunteer provided information on expertise during

registration. Equation 1 was extended to include an indicator of

respondent expertise in the regression model:

Yi~azbXXizbEEizei ð2Þ

where, in addition to the previously defined variables, bX is the

regression coefficient for volunteer human impact, Ei is the

expertise indicator variable for observation i (0 for Non-Expert, 1

for Expert), and bE is the regression coefficient for this variable.

Thus, this coefficient is a measure of the difference in human

impact (on aggregate) between the Non-Expert and Expert

contributions. This model implicitly assumes human impact is

equally predicted by experts and non-experts (i.e. is uniform), and

assumes a uniformity of the intercept term within each expert

group, if the intercept is considered to be a for the non-expert

group, and a+bE for the expert one.

The data provided by the volunteers were then analysed for

consistency, which is a known issue in ground truthing [23]. After

every 50 points, the volunteers were provided with a point they

had previously validated. The average, median and standard

deviation of the maximum difference between the volunteers and

the controls were calculated for all control points, by expertise, by

volunteer consistency in the land cover they recorded, and by

confidence.

Finally, the response times of the volunteers were calculated

between each successive data point they scored. The median

response time was 55 secs with a first and third quartile of 32 and

100 secs respectively. The average response time was 5,226 secs,

indicating a highly skewed distribution, which reflects large pauses

in contributions, e.g. at the end of a validation session. Figure 3

shows the median response time per day over the course of the

competition. There is a general trend towards shorter response

times as the competition unfolded with the shortest response times

between successive validations occurring at the end of the

competition. Thus, we were interested in understanding the

relationship between response time and quality of the human

impact responses overall and whether there was any difference in

quality towards the end of the competition.

The response time data were first pre-processed in two ways.

First, all response times greater than 5 minutes were removed as

these were deemed unrepresentative of typical behavior. This was

based on visual inspection of the distribution. However, 5 minutes

also represents the 92.5th percentile and therefore includes the

majority of the data. Second, response times were log transformed

due to the skewness of the distribution. A linear regression

equation of the form given in (1) was fit to the entire dataset where

the dependent variable, Yi, was the absolute difference in the

answers for human impact between the control data and the

volunteers’ scores, and the independent variable, Xi, was the log of

the response times, with a and b representing coefficients of the

linear regression, and ei the error term for each observation i.

The last 100 control points provided to the volunteers at the end

of the competition were locations of cropland or agricultural land

covers (the classes of Cultivated and managed and Mosaic of cultivated

and managed/natural vegetation) and where high resolution images

existed. In order to evaluate how volunteer performance changed

with experience, only control points with agricultural land cover

and where high resolution images were available were selected

from the first 199 control points. The average accuracy in human

impact across the first two control sets was then compared to the

average accuracy of the third set using a t-test to determine

whether there were any significant differences.

Analysis of Land Cover
As in the analysis of human impact scores above, control points

were used to evaluate volunteer accuracy in terms of the land

cover they indicated. An error or confusion matrix was populated

for all contributors (Table 2) and the overall accuracy was

calculated as follows:

07Accuracy~

Pn

i,j~1

xi,j

Pn

i~1

Pn

j~1

xi,j

� 100 ð3Þ

where i is the volunteer class, j is the control class and n is the total

number of classes.

In addition, two other measures of accuracy were calculated,

specific to each land cover class: user’s and producer’s accuracies.

User’s accuracy describes errors of commission or Type I errors.

For example, the user’s accuracy for the forest class indicates the

likelihood that what was labeled as forest by the volunteers really is

forest. Producer’s accuracy reflects errors of omission or Type II

errors. Using the forest example again, this measure reflects how

well the forest cover control pixels were classified by the

Table 3. Regression analysis for the model Yi = a+bXi+ei,
where Yi is the degree of human impact from the control data,
Xi is the degree of human impact from the participants.

Estimate Std. Error t value Pr(.|t|)

a 11.300 0.363 31.16 0.000

b 0.699 0.006 122.43 0.000

doi:10.1371/journal.pone.0069958.t003

Table 4. Extending the regression to include an indicator of
expertise, where bE is the regression coefficient for this
indicator and bX is the regression coefficient for participant
human impact scores.

Estimate Std. Error t value Pr(.|t|)

a 9.009 0.432 20.85 0.000

bX 0.705 0.006 123.49 0.000

bE 4.251 0.442 9.62 0.000

doi:10.1371/journal.pone.0069958.t004

Table 5. The regression analysis of predicting the degree of
human impact by expert and non-expert groups, when the
regression is split into 2 simultaneous models.

Estimate Std. Error t value Pr(.|t|)

a (Expert) 7.960 0.527 15.12 0.000

a (Non-expert) 14.200 0.494 28.74 0.000

b (Expert) 0.725 0.008 91.06 0.000

b (Non-expert) 0.685 0.008 83.61 0.000

doi:10.1371/journal.pone.0069958.t005
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volunteers. These two measures are calculated as follows:

User0sAccuracy(by classi)~
xi,i

Pn

j~1

xi,j

� 100 ð4Þ

Producer0sAccuracy(by classj)~
xj,j

Pn

i~1

xi,j

� 100 ð5Þ

where i is the volunteer class, j is the control class and n is the total

number of classes.

Separate accuracy measures were calculated for the three sets of

control pixels (to determine whether accuracies change over time)

for locations where the volunteers were the most confident and to

compare experts and non-experts.

Contributor consistency in land cover labeling was then

analysed by determining the proportion of times when the same

land cover type was chosen when presented with the same data

point. This was calculated for all points, by expertise, and by

various degrees of confidence.

Finally, the impact of response time on the quality of land cover

validations was analysed using logistic regression of the following

form:

Logit(Pi)~azbXi ð6Þ

where the probability (Pi) that the land cover is correctly identified

is expressed as a function of response time, Xi.

The effect of response time on accuracy in the final set of

controls was compared with the first and second set to determine

whether contributors were more interested in scoring a greater

number of points and spent less time on each data point towards

the end of the competition. A two-tailed binomial test was used to

test whether the number of correct classifications at the end of the

competition was greater than expected based on the total number

of classifications performed and the probability of correct

classification in the earlier part of the competition.

Results and Discussion

Human Impact
The result of the regression described in Equation 1 to

determine how well the degree of human impact can be predicted

by the contributors based on the control points is provided in

Table 3. This shows that b differs significantly from zero and is

positive but less than 1 suggesting that there is evidence that the

users underestimated the degree of human impact by roughly 30

percent.

The results of including an indicator variable describing

respondent expertise (Equation 2) are shown in Table 4. The

slopes are still positive and suggest that allowing for expertise even

in a simple way changes the results of relating to the slope term.

To investigate this further, Equation 1 was extended to include

variables describing expertise. Although computed together, this

effectively splits the regression into two models - one for each of

Figure 4. The distribution of human impact by land cover class. The distribution is shown for (a) the control pixels and (b) the volunteers,
where the latter show a much wider range of answers.
doi:10.1371/journal.pone.0069958.g004
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the expert groups - and the results are shown in Table 5. These

results indicate that there is little variation in the degree to which

the expert and non-expert group underestimated the degree of

human impact.

Figure 4 shows the distribution of human impact scores for the

control pixels and the contributor data by land cover class. It

shows a general trend for contributors to underestimate the degree

of human impact across the different land cover types with the

exception of (5) Mosaic of cultivated and managed/natural vegetation.

A further analysis explored how human impact scores varied

with land cover class. The standard regression described in

Equation 1 was extended to include indicators for the land cover

classes. Since there was only a small number of data points

classified as Open water, Barren or Urban, these classes were excluded

from the regression analysis. The results for the remaining five

land cover types are shown in Table 6 and Figure 5 plots the

contributed against the control human impact scores with the

regression coefficients for different land cover classes.

The results show that the prediction of the degree of human

impact varies with land cover classes. The coefficients for the

Herbaceous vegetation/Grassland class most strongly predict human

impact, the coefficients for the Shrub cover class are the weakest

predictors and all classes underestimate human impact. This

indicates that the conceptualizations of these classes may need to

be more clearly defined and perhaps more training examples used

to illustrate the different degrees of human impact by land cover

type.

Table 7 shows the results of the consistency analysis. Overall the

contributors were consistent in their answers regarding the degree

Figure 5. The relationship between the volunteer responses and the controls for human impact by land cover type. The lines show
the coefficient slopes when each control land cover class is evaluated in turn. Note that the data points have had a small random noise component
added to allow their density to be visualised.
doi:10.1371/journal.pone.0069958.g005

Table 6. Regression analysis for the degree of human impact.

Estimate Std. Error t value Pr(.|t|)

a (Tree cover) 7.264 0.343 21.16 0.000

a (Shrub cover) 4.284 0.520 8.24 0.000

a (Herb./Grass) 6.567 0.504 13.03 0.000

a (Cultivated) 73.669 0.857 86.01 0.000

a (Cult./nat mosaic) 36.046 0.485 74.32 0.000

b (Tree cover) 0.220 0.012 18.52 0.000

b (Shrub cover) 0.089 0.021 4.34 0.000

b (Herb./Grass) 0.366 0.015 24.62 0.000

b (Cultivated) 0.098 0.010 10.06 0.000

b (Cult./nat mosaic) 0.273 0.008 33.58 0.000

doi:10.1371/journal.pone.0069958.t006
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of human impact, with an average deviation of less than 10% (i.e.

9.6%) although the spread of answers was higher at 17.4%. When

expertise was considered, non-experts had a lower average

deviation than the experts by just under 3%. When the consistency

was extended to land cover, those pixels which showed consistent

choices in land cover had a lower average deviation in human

impact by 8.3% compared to those which showed inconsistency in

land cover choice. This reflects pixels that were clearly more

difficult to identify. Finally, when contributors were the most

confident in their choice of human impact, they were also more

consistent (average deviation of 7.9%), with consistency decreasing

as confidence decreased resulting in an average deviation of as

much as 25.9% for the least confident category. This analysis of

consistency serves to highlight the need to examine those pixels

which were not consistently labeled and which are probably more

difficult to judge in terms of both human impact and land cover,

which can then be used to help train the volunteers.

The results of the regression analyzing the effect of response

times are shown in Table 8 and indicate that the agreement

between the volunteers and the control pixels increased signifi-

cantly with a faster response time for human impact, although the

effects were small. For each increase in magnitude in response

time, the agreement between the crowd and the control pixels

increased in accuracy by 1.4%. The average deviation in human

impact for pixels of (4) Cultivated and managed and (5) Mosaic of

cultivated and managed/natural vegetation and high resolution imagery

from the first two control sets was 17.1%. This was compared to

the third set of control data points (consisting of only these pixel

types) and the average deviation in human impact was lower,

decreasing to 14.7%. A t-test confirmed that the means are

significantly different from one another (p,0.0001; t =24.8533;

degrees of freedom = 3326.222) and showed that accuracy in

human impact actually increased at the end of the competition.

Thus, these analyses indicate that there are no particular concerns

over quality in relation to response time.

Land Cover
The overall accuracies for the three sets of control points labeled

C1, C2 and C3 are presented in Table 9 for the full dataset,

considering only those contributions where confidence was high

(i.e. ‘sure’ on the slider bar) and then disaggregated by expertise

(i.e. experts or non-experts).

Considering all three sets of control data, accuracy varies

between 66 and 76%. There is little difference between the first

and second set of controls but there is a marked increase in

accuracy for the final set (C3) with 76%. This is unsurprising since

the final control sample was drawn from high resolution imagery.

When taking only those answers where the volunteers indicated

high confidence (or ‘sure’ on the slider bar), there was around a

3% increase in the accuracy to 69%. Unlike with human impact,

experts were more accurate than non-experts, e.g. 62% for non-

experts and 69% for experts for C1 with even larger differences

observed for C2 and C3. This suggests that extra training should

be provided to those individuals with a non-expert background. As

training manuals are often unread or rarely consulted, a more

interactive approach could be introduced such that the volunteers

are made aware of their errors as they progress through a

competition. In addition, a forum could be set up to discuss pixels

that present difficulties in identification, particularly for non-

experts.

Table 10 shows the user’s and producer’s accuracies for the five

most common land cover types in the dataset. Overall the results

show that there is generally an increase in the accuracy across

control sets although C3 should only really be considered for

cropland and mosaic classes. The lowest accuracies are in shrub

cover, grassland/herbaceous and the mosaic cropland class, which

Table 7. Consistency of response to degree of human impact.

Disaggregation Category Average HI (%) Median HI (%) Std Dev (%)

All All points 9.60 0.00 17.43

Expertise Experts 10.90 5.00 18.50

Non-experts 7.95 0.00 15.82

Land cover consistency Agree on land cover between points 7.20 0.00 14.55

Disagree on land cover between points 17.25 10.00 22.80

Confidence Sure 7.92 0.00 15.68

Sure+Quite sure 9.13 0.00 16.93

Quite sure+Less sure+Unsure 22.08 15.00 23.65

Less sure+Unsure 25.92 15.00 25.16

doi:10.1371/journal.pone.0069958.t007

Table 8. Regression analysis for the model Yi = a+bXi+ei
where Xi is response time and Yi is human impact.

Estimate Std. Error t value Pr(.|t|)

a 12.9915 1.0706 12.135 0.000

b 1.4110 0.6157 2.291 0.022

doi:10.1371/journal.pone.0069958.t008

Table 9. Accuracy of land cover (in %) based on comparison
of volunteer response with three sets of controls.

Dataset used No allowance for confusion between classes

C1 C2 C3

Full dataset 66.4 66.5 76.2

Confidence rating
of sure

69.4 69.3 78.9

Experts 69.2 72.3 84.6

Non-experts 62.4 61.9 65.9

doi:10.1371/journal.pone.0069958.t009
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indicates the need to provide more examples of how these classes

appear on Google Earth within the training materials as the

volunteers are confusing these classes more often than others.

When considering points where the volunteer had a high

confidence, the patterns are similar and there is generally an

increase in accuracy although the mosaic cropland class continues

to be more problematic, with a decrease in the user’s accuracy

across control sets. Finally, the effect of expertise on land cover

classification accuracy produced variable results depending upon

the land cover type and the control set considered. For the forest

class, the non-experts improved in their ability to correctly identify

forest by the second set of controls, while the non-experts actually

showed a decrease in the producer’s accuracy. Similarly, for the

shrub class, the non-expert showed a greater level of improvement

in the second set of controls compared to the expert and

outperformed them in terms of both user’s and producer’s

accuracy in C2. The experts were better than non-experts at

identifying herbaceous, cropland and mosaic but once again there

were differences in the user’s and producer’s accuracies. By

building up a picture of where experts and non-experts have

differing performance by land cover class, we can tailor the kinds

of training materials provided to the volunteers, focusing on areas

where greater problems in identification lie.

Similar to human impact, a further analysis was then

undertaken on a subset of the data where the volunteers were

provided with the same pixels at different times in the competition

(Table 11). The results show that the volunteers were consistent in

their response just over 76.1% of the time where this was slightly

lower for experts (75.7%) and slightly higher for non-experts

(76.7%). A very minor increase to 77.6% was observed when

considering only those pixels where the volunteer was sure but

when the volunteers were less sure or unsure about their responses,

their consistency in response decreased to 66.7%.

The final analysis concerned the relationship between quality in

land cover classification and response time. The results showed

that the crowd was 40% more likely to disagree with the control

for each order of magnitude increase in response time (p,.0001)

as shown in Table 12 and indicated by the value of b.

Considering the issue of whether quality in land cover validation

(and therefore accuracy) decreased near the end of the competi-

tion, we compared the probability that the volunteers agreed with

the control pixels for land cover types (4) Cultivated and managed and

(5) Mosaic of cultivated and managed/natural vegetation at the end of the

competition (75.9%) with that from the early to middle part of the

competition (70.6%). This difference was determined to be highly

significant (p,.0001; number of trials = 1500; number of

successes = 1139) using a binomial test and therefore the accuracy

in estimating land cover actually increased in the final stages of the

competition. Thus for both human impact and land cover, there

are no concerns about the quality decreasing near the end of the

competition with a faster response time.

Table 10. User’s and producer’s accuracies for the five main
land cover types and for different subsets of the data
including confidence and expertise.

Data set

Land
cover
type No confusion

User’s accuracy Producer’s accuracy

C1 C2 C3 C1 C2 C3

Full 1 75.9 77.4 43.6 67.1 69.6 100.0

2 52.1 46.5 0.0 61.7 67.2 N/A

3 45.1 56.3 6.0 51.3 56.3 30.0

4 78.9 88.8 95.2 74.2 72.8 76.0

5 71.5 68.8 64.6 62.2 60.7 76.4

Sure 1 78.7 82.4 53.1 68.0 70.2 100.0

2 50.8 48.6 0.0 64.4 71.2 N/A

3 43.9 52.4 10.7 47.7 53.7 50.0

4 81.0 89.6 95.2 76.5 75.0 78.7

5 72.4 68.2 63.7 66.8 65.8 78.8

Expert 1 78.4 83.5 52.6 73.0 68.8 100.0

2 54.8 45.7 0.0 63.8 65.1 N/A

3 50.9 65.6 7.1 52.4 65.2 33.3

4 77.1 90.5 95.5 82.6 80.5 86.5

5 76.5 75.7 78.1 59.3 71.8 80.2

Non-
expert

1 71.9 73.6 35.0 58.6 70.2 100.0

2 48.5 47.2 0.0 58.9 68.8 N/A

3 38.0 48.7 5.6 49.5 48.9 28.6

4 82.8 87.0 94.6 61.2 66.3 63.0

5 66.1 62.4 52.5 66.3 51.6 71.8

1 = Tree cover; 2 = Shrub cover; 3 = Herbaceous vegetation/Grassland; 4 =
Cultivated and managed; 5 = Mosaic of cultivated and managed/natural
vegetation.
doi:10.1371/journal.pone.0069958.t010

Table 11. Consistency of response in choosing the land
cover type.

Disaggregation Category Consistent Percentage

None Full dataset Y 76.1

N 23.9

Expertise Expert Y 75.7

N 24.3

Non-Expert Y 76.7

N 23.3

Confidence Sure Y 77.6

N 22.4

Quite sure+Less
sure+Unsure

Y 76.4

N 23.6

Less sure+Unsure Y 66.7

N 33.3

doi:10.1371/journal.pone.0069958.t011

Table 12. Logistic regression analysis for the model Logit
(Pi)=a+bXi where Xi is the log of the response time and Pi is
the probability that the land cover is correctly identified.

Estimate Std. Error t value Pr(.|t|)

a 1.46573 0.13955 10.504 0.000

b 20.40005 0.07957 25.027 0.000

doi:10.1371/journal.pone.0069958.t012
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Conclusions
This paper assessed the quality of crowdsourced data collected

through a Geo-Wiki competition. Volunteers identified the degree

of human impact and classified land cover at random locations

using Google Earth images. Quality was assessed by comparing

volunteer results with results agreed by experts at a number of

control points. Control points were provided to volunteers at the

beginning, middle and end of the competition. The results showed

that there is little difference between experts and non-experts in

identifying human impact while experts were better than non-

experts in identifying land cover. However, the results for both

varied by land cover type and through the competition. For

example, experts were better than non-experts at identifying shrub

land cover at the start of the competition but non-experts

improved more than experts and then outperformed them in

shrub cover identification by the middle of the competition,

indicating that volunteers were learning over time. The volunteers

were shown to be reasonably consistent in their characterizations

of human impact and land cover with non-experts outperforming

the experts in terms of human impact and vice versa for land

cover. Moreover, when contributors were confident in their choice

of human impact, they were also more consistent, and unsurpris-

ingly, consistency decreased as confidence decreased. Finally,

increased response times (as observed towards the end of the

competition) did not have a negative impact on quality, and

volunteers were therefore not sacrificing quality for the desire to

complete more locations and thereby win the Geo-Wiki compe-

tition. Thus overall, the non-experts were as reliable in what they

identified as the experts were for certain, identifiable situations,

and the reliability of the information provided by non-experts

improved faster and to a greater degree than experts. Thus, better,

targeted training materials and a continual learning process built

into the competition might help address these issues. Also, allowing

volunteers to reflect on the information they contribute, for

example by regularly feeding back evaluations of their data

through the use of control points or by making additional material

available to them, would also potentially decrease differences

between experts and non-experts, particularly in the classification

of land cover. The findings of this research relating to the

differences between expert and non-expert citizens are also

relevant to other areas of research that seek to benefit from the

advantages of citizen science. For example, recent activity such as

the umbrella Zooniverse project (http://www.zooniverse.org)

promotes collaborative projects in many areas of social and

physical science research. Currently, registration to its projects

captures no information about the contributor, their training or

their socio-economic context. Approaches that include informa-

tion about participant background, control points, reflection,

repetition, etc. have broad potential for other citizen science

projects that involve classification or identification, e.g. [24,5]

where experts can be used to build a database of controls for

monitoring and learning purposes.

The next step in this research is to develop robust measures of

quality for each location in the crowdsourced database based on

rules that take into account the number of times that contributors

have provided information at a given location along with the

consensus in the answers, their expertise and the confidence in the

answers provided. However, the results from this study suggest the

need for more nuanced approaches than a simple Linus Law or

mass of evidence approach (which have been previously suggested

in this domain) for determining when to believe the crowd and

therefore when the information they provide can be used with

confidence. Formal methods for combining evidence such as

Bayesian probability, Dempster-Shafer theory of evidence, Possi-

bility Theory and Endorsement theory provide different ways for

combining or partitioning evidence. They allow measures of

certainty and uncertainty to be generated and provide different

measures of confidence in aggregated information and for

determining when the weight of evidence indicates that crowd-

sourced data or VGI are ‘believable’. Since the relationship

between reliability and confidence was found to be strong in this

research, this also suggests that future activities seeking to

incorporate crowdsourced data should capture measures of

contributor confidence in the information they provide. Ongoing

research by the authors will investigate these areas in more detail.
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